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Abstract: The core language model is a central artifact of domain-specific modeling languages (DSMLs) as it captures

all relevant domain abstractions and their relations. Natural-language scenarios are a means to capture require-

ments in a way that can be understood by technical as well as non-technical stakeholders. In this paper, we

use scenarios for the testing of structural properties of DSML core language models. In our approach, domain

experts and DSML engineers specify requirements via structured natural-language scenarios. These scenario

descriptions are then automatically transformed into executable test scenarios providing forward and backward

traceability of domain requirements. To demonstrate the feasibility of our approach, we used Eclipse Xtext to

implement a requirements language for the definition of semi-structured scenarios. Transformation specifica-

tions generate executable test scenarios that run in our test platform which is built on the Eclipse Modeling

Framework and the Epsilon language family.

1 INTRODUCTION

A domain-specific language (DSL) provides

tailored development support for a specific do-

main (Stahl and Völter, 2006). In model-driven

development (MDD), a domain-specific modeling

language (DSML) allows for developing tailored,

platform-independent models. Their abstract syntax

is typically defined using metamodeling and it is ex-

posed to domain modelers in terms of a diagrammatic

concrete syntax (Sendall and Kozaczynski, 2003).

The process of developing a DSML, either from

scratch or by reusing existing DSMLs, involves an

initial phase of domain analysis (Lisboa et al., 2010;

Czarnecki and Eisenecker, 2000). A domain anal-

ysis aims at documenting the domain knowledge in

terms of the domain vocabulary and the domain re-

quirements (e.g., rules of applying the domain terms,

normative procedural guidelines). In the domain mod-

eling step, the data sources (e.g., code bases and ap-

plication documentation available for the domain) are

collected and reviewed to identify domain-specific

entities, operations, and entity relationships. In a

model-driven approach, this step yields a number of

model artifacts (e.g., the core language model with

accompanying optional constraints).

The core language model of a DSML captures

the abstracted domain entities and their relationships

(Strembeck and Zdun, 2009). This way, it defines the

abstract syntax of a DSML. A DSML’s core language

model is often defined as a metamodel conforming

to standards, such as the Meta Object Facility (Ob-

ject Management Group, 2013) or as an extension

to MOF-based general-purpose modeling languages

such as the Unified Modeling Language (Object Man-

agement Group, 2011). Supplementary models can

describe the commonalities and variations between

domain entities defined by the core language model

(variability models) and domain operations (e.g., rel-

evant business processes). After domain modeling is

finished, the resulting models are reviewed to validate

the conformance of these domain models with the do-

main vocabulary and domain requirements.

In a domain modeling activity, domain require-

ments are frequently documented using natural-

language descriptions (Neill and Laplante, 2003; Di-

ethelm et al., 2005). This is due to the fact that

domain requirements emerge and are often elicited

during interviews, discussions, and meetings where

different stakeholders are involved (Sutcliffe, 2002).

Whereas such natural-language requirements descrip-

tions are more accessible to non-technical stake-



holders and stakeholders of diverse professional

backgrounds (Dwarakanath and Sengupta, 2012), a

natural-language description raises important issues

when it comes to validating model artifacts such as

the core language model against the domain require-

ments. A corresponding issue is, for example, the

ambiguity of natural-language descriptions (Sutcliffe,

2002; Institute of Electrical and Electronics Engi-

neers, 2011). This ambiguity can be caused by con-

textual details not being made explicit in the require-

ments narrative and/or by not being representable in

a core language model, for instance, due to lacking

expressiveness of the respective modeling language.

Adding to these issues, the core language model

is typically created in several iterations and is there-

fore not a static artifact. Changes of the domain re-

quirements trigger the evolution of the core language

model (Wimmer et al., 2010). Requirements can

change, for instance, due to additional functionality,

a modified legal situation in the corresponding appli-

cation domain, or the refactoring of software systems.

While the core language model is the primary arti-

fact of a DSML, there are other DSML artifacts (such

as model transformations or model constraints) which

directly depend on the core language model (Strem-

beck and Zdun, 2009; Hoisl et al., 2013). An un-

detected requirement violation in the core language

model may have severe effects on all dependent soft-

ware artifacts.

The creation of a DSML and its core language

model involves DSML engineers and domain experts.

Here, a domain expert is a professional in a particu-

lar domain, such as a stock analyst in the investment

banking domain or a physician in the health-care do-

main. While the domain expert provides the domain-

specific knowledge, the DSML engineer is responsi-

ble for the domain model specification and implemen-

tation (e.g., the creation of model artifacts, their at-

tributes, relationships). The challenge in the phase of

domain analysis and modeling is the establishment of

a common body of knowledge for both, the domain

expert, and the DSML engineer (i.e., a shared vocab-

ulary) and the correct abstraction and mapping of do-

main knowledge to a target modeling language.

A testing technique for evolving and heavily cou-

pled language models would offer a means for se-

lecting relevant, requirements-driven tests, to express

and to maintain these tests, and to automate the

testing procedure. Current testing approaches for

metamodels fall short in a number of ways: For

modeling-space sampling (Gomez et al., 2012; Mer-

ilinna et al., 2008), a sufficiently specified model un-

der test is needed, which is not available in an it-

erative development and evolution of domain mod-

els. The same holds true for metamodel-test models

(i.e., simulating a set of valid instance model alter-

natives), which require the full domain model under

test to be specified (Sadilek and Weißleder, 2008; Cic-

chetti et al., 2011). Metamodel validation approaches

(e.g., model-constraint evaluations) employ formal

expression languages (e.g., OCL), but do not consider

the structure of non-executable requirements spec-

ifications (Merilinna and Pärssinen, 2010). More-

over, approaches exist for tracing requirements (Win-

kler and Pilgrim, 2010) and testing natural-language

statements (Gervasi and Nuseibeh, 2002; Yue et al.,

2013), but lack an integrated model-driven tool-chain

to combine both, domain modeling capabilities and

requirements specification/validation.

We propose a testing approach that employs sce-

narios to describe system behavior, as well as to

bridge the gap between informal natural-language re-

quirements on the one hand and formal models (in-

cluding source code implementations) on the other

hand (Sutcliffe, 2002; Jarke et al., 1998; Uchitel et al.,

2003). Thus, in our approach, domain requirements

can directly serve as a normative specification for the

core language model of a DSML. The paper makes

the following contributions:

• Semi-structured domain-requirements language:

We specify a semi-structured requirements lan-

guage that can be used by domain experts to

define scenarios via structured natural language.

These natural-language scenario descriptions are

then transformed into an executable scenario for-

mat. The executable test scenarios check the

conformance of (evolving) DSML core language

model definitions against the scenario-based re-

quirements specification.

• Traceable mapping of domain requirements: In

this way, our approach supports a systematic,

semi-automated, and traceable mapping of do-

main requirements documented in natural lan-

guage to executable test scenarios for require-

ments validation. The mapping conventions are

defined in a reusable form applicable to different

scenarios.

• Participatory requirements validation: In our ap-

proach, the domain expert uses scenarios to define

domain requirements (Sutcliffe, 2002; Jarke et al.,

1998). This way, the domain expert actively con-

tributes to defining and to validating the DSML

core language model, in close cooperation with

the DSML engineer.

As a proof-of-concept prototype, we implemented

a complete MDD-based tool chain in which the def-

inition of natural-language requirements, scenario-



based tests, and DSML model transformations are

supported. The prototype builds on top of the Eclipse

Modeling Framework (EMF) and the Epsilon lan-

guage family. It is publicly available at http://nm.

wu.ac.at/modsec.

The remainder of the paper is structured as fol-

lows: Section 2 presents a motivating example of

DSML integration. DSML integration exemplifies

the reuse of existing artifacts from two or more in-

dividual source DSMLs to implement a new DSML

(Hoisl et al., 2012). Section 3 introduces our ap-

proach for transforming requirements into executable

test scenarios. Section 4 specifies a language for

requirements-level scenarios, whose applicability—

in combination with transformation definitions—is

shown in a DSML integration case in Section 5. Sec-

tion 6 discusses how our approach contributes to ad-

dress the issues of natural-language requirements test-

ing raised in Section 2. At last, related work is re-

viewed in Section 7 and Section 8 concludes the pa-

per.

2 MOTIVATING EXAMPLE

When modeling a domain, textual use-case scenar-

ios are commonly employed for documenting domain

requirements. Consider the example of story-driven

modeling (Diethelm et al., 2005). First, use-case nar-

ratives are collected textually which are then refined

into diagrammatic models. During so-called object-

game sessions, the team of developers (e.g., DSML

engineers analyzing the domain) draw up sketches of

object diagrams cooperatively (e.g., using a white-

board). These diagrams are then translated into UML

collaboration diagrams and grouped into model se-

quences, the so-called story boards. From these story

boards, structural and behavioral specifications (e.g.,

unit tests) can be derived (see Figure 1).

Create natural-language

scenario descriptions
(e.g., use cases)

Run executable

tests
(e.g., unit tests)

Translate

scenarios
(e.g., object games, story boards)

Figure 1: Translating requirements into executable tests.

The transitions between different types of require-

ment descriptions (e.g., text and collaboration dia-

grams), as well as between requirement descriptions

and executable specifications (e.g., collaboration dia-

grams and unit tests) provide the opportunity to con-

tinuously elicit the requirements, by adding miss-

ing or by clarifying ambiguous details. At the same

time, however, each transition risks introducing in-

consistency between the requirements in their differ-

ent representations (see also Figure 1). For exam-

ple, a requirements detail documented in textual form

in a use-case description, might be simply omitted

accidentally when drawing up the collaboration dia-

grams. Then, once certain details have been clarified

in terms of UML collaboration, a diagrammatically

documented requirement might turn out to be con-

flicting with the early, textually recorded ones. Con-

sequently, each requirements representation must be

constantly maintained to reflect changes to other rep-

resentations.

The risk of inconsistency between multiple re-

quirements representations and the maintenance over-

head, as exemplified for story-driven modeling above,

motivated us to investigate means of automati-

cally transforming natural-language scenarios at the

requirements level into executable test scenarios.

Throughout the paper, we will look at the develop-

ment of a language model from existing ones, the case

of DSML integration (Hoisl et al., 2012).

Consider the DSMLs A and B representing two

technical domains: system auditing and distributed

state-transition systems (see Figures 2 and 3). The

integrated DSML C should cover a new and an

integrated domain (i.e., auditable distributed state-

transition systems). This example is taken from an

integration case which is described in full detail in

(Hoisl et al., 2013).

AuditEvent
Signal

data : EString

AuditRuleCondition EventSystem

NamedElement

name : EString
publish

0..*

subscribe 0..*

conditions

0..*

auditEvents 0..*

auditRules

0..*

Figure 2: Auditing event-based systems (DSML A).

StateMachine State Transition

Event
NamedElement

name : EString

states

0..*

transition

0..1

events0..*

target

1

Figure 3: State/transitional behavioral system (DSML B).

The integration of the core language models of the

DSMLs A and B is achieved by turning Events propa-



gated in a distributed system into AuditableEvents

that can be tracked for auditing purposes (e.g.,

through a corresponding system-monitoring facility).

Table 1 shows an excerpt of a natural-language sce-

nario description for the integrated DSML C which

resulted from eliciting domain requirements during a

domain analysis (see also Figure 1). The description

is structured according to a one-column table format

as suggested by (Cockburn, 2001). From the descrip-

tion of test scenario 1 follows that the domain re-

quires all events to be audited and each audited event

shall issue a signal to the monitoring facility (see Ta-

ble 1).

Table 1: Example requirements-level natural-language sce-
nario description (excerpt).

Test case 1 Ascertain that each triggered AuditableEventcan be

sensed by the monitoring facility.

Primary actors System auditor, distributed-systems operator

Preconditions All metamodel constraints for the source DSMLs

shall hold for DSML C.

Trigger/Setup The model-transformation workflow to integrate the

metamodels of DSML A & DSML B is executed.

Test scenario 1 An AuditableEvent issued by a Transition shall

publish at least one Signal.

Preconditions AuditableEvent has all structural features of Au-

ditEvent and Event.

Expected result Instances of AuditableEvent shall refer to at least

one Signal instance.

From this natural-language requirements descrip-

tion, a DSML engineer then derives concrete com-

position steps which are performed manually or

via model-to-model transformations (Czarnecki and

Helsen, 2006). The resulting relevant core language

model fragment of the merged DSML C is shown in

Figure 4.

C

AuditableEvent
[A::AuditEvent@B::Event]

Signal
[A::Signal]

publish

1..*

Transition
[B::Transition]

0..*

events

Figure 4: Excerpt from merged DSML C core language
model.

When turning non-executable requirements de-

scriptions into executable specifications (e.g., soft-

ware tests, transformation definitions; see also Fig-

ure 1), evaluating the natural-language requirements

against these evolving software artifacts poses impor-

tant challenges (Sutcliffe, 2002; Institute of Electrical

and Electronics Engineers, 2011).

Ambiguity of Requirements: In contrast to formal

specifications, natural language is prone to misinter-

pretation (Sutcliffe, 2002). The ambiguity of natural-

language statements may lead to erroneous or incom-

plete requirement implementations. For instance, the

definition of the scenario trigger in Table 1 can lead to

misinterpretations. It is ambiguous whether the sce-

nario is meant to be enacted either at the beginning,

at the end, or anywhere in between the integration of

the two core language models.

Consistency of requirements: A DSML core lan-

guage model may have to comply to a number of dif-

ferent requirements. When defining scenarios in nat-

ural language, it is difficult to check that the require-

ments are free of conflicts. Natural language allows

for expressing identical requirements differently, for

instance, the expected result from test scenario 1 in

Table 1 can be rephrased: The first structural fea-

ture of the metaclass AuditableEventmust never

have a lower bound of zero.

Singularity of Requirements: To allow for an easy

to understand and testable requirements specification,

a requirement statement should ideally include only

one requirement with no use of conjunctions. For ex-

ample, the test case 1 precondition from Table 1 de-

mands that the constraints for the composed DSML

C reference back to the individual constraint sets of

DSMLs A and B. This backward-dependent relation-

ship adds to the complexity of the requirements vali-

dation (i.e., constraints have to be checked twice for

the two source core language models and a third time

when applied in the context of the composed DSML

C).

Traceability of Requirements: Requirements

should be forward traceable (e.g., to DSML core lan-

guage model source code artifacts; in our example the

implemented metamodels of Figure 2 and Figure 3)

and backward traceable (e.g., to specific stakeholder

statements a requirement originates from; in our ex-

ample the requirements described in Table 1). That is,

all forward and backward relationships for a require-

ment are identified and recorded (Institute of Electri-

cal and Electronics Engineers, 2011). This way, a re-

quirement can be navigated from its source (e.g., the

expected result in Table 1) to its implementation (e.g.,

a corresponding assertion statement in an automatable

test specification); and vice versa. Tracing of natural-

language requirements to their respective DSML ar-

tifact implementations (and vice versa) is non-trivial

because of different abstraction levels and specifica-

tion formats, for instance, natural language vs. source

code (Marcus et al., 2005).

Validation of requirements: Requirements have

to be validated in order to prove that they are satis-



fied by a corresponding DSML core language model

implementation. Acceptance testing is a common

method for the validation of software systems require-

ments (Institute of Electrical and Electronics Engi-

neers, 2011). Nevertheless, tool-supported and auto-

mated testing of natural-language statements is diffi-

cult due to their ambiguity and the lack of a formal

structure. Without adequate tool support, the valida-

tion of requirements from Table 1 in the context of the

merged DSML C core language model (Figure 4) can

only be done manually—a tedious and error-prone

task whose complexity increases with the amount of

involved metamodel elements, transformation state-

ments, and requirement specifications.

These challenges increase with the number of re-

quirements and scenario descriptions to be satisfied,

the transformation rules involved, and the DSML ar-

tifacts created.

3 FROM REQUIREMENTS TO

EXECUTABLE SCENARIO

TESTS

Our approach of mapping natural-language require-

ments to executable scenario descriptions is sketched

in Figure 5. In this process, the primary actors are

the domain expert and the DSML engineer. In cer-

tain domains (e.g., software testing), both roles can

be taken by one subject at the same time. First, the

domain expert and the DSML engineer must agree on

a requirements specification format (Sutcliffe, 2002).

This is to assure that the requirements are captured

in a format which can be further processed. For

the specification of system behavior on the require-

ments level, natural-language scenarios are a suitable

choice (Sutcliffe, 2002; Jarke et al., 1998; Uchitel

et al., 2003). Scenarios can help to reduce the risk

of omitting or forgetting relevant test cases, as well

as the risk of describing important tests insufficiently.

A requirements-level scenario description establishes

the conditions under which it runs (Cockburn, 2001;

Strembeck, 2011): A trigger corresponds to the event

which sets off the scenario. Preconditions announce

the system state expected by the use case before start-

ing. The objective of the scenario defines the goal

which should be achieved. Important persons in-

volved are named as primary actors. Finally, a set

of validation or action steps specifies the scenario’s

expected outcome. Examples of two semi-structured

natural-language scenario descriptions on the require-

ments level are provided in Table 1 and in Listing 3.

Based on the scenario descriptions of the domain

Create natural-language

scenario descriptions
Run scenario

tests
Step definitions

Figure 5: Transforming requirements into executable test
scenarios via step definitions.

expert, the DSML engineer has to translate these sce-

narios into executable tests (see Figure 5). Executable

tests allow for the automatic validation of DSML core

language models against requirement-level scenarios.

If each requirement-level scenario is checked via one

(ore more) executable test scenario(s), a critical test

coverage of the most relevant requirements can be

achieved. The scenario tests are reviewed by the do-

main expert and the DSML engineer. This ensures

that the executable scenario descriptions reflect the re-

quirements sufficiently.

Each natural-language description of a scenario is

called a step. In order to translate natural-language

requirements into executable tests, for each scenario-

step a corresponding step definition (Wynne and

Hellesøy, 2012) must be defined (see Figure 5; an ex-

ample is shown in Listing 4). We transform natural-

language requirements into executable test scenar-

ios via linguistic rule-based step definitions (Win-

kler and Pilgrim, 2010). A rule-based step defini-

tion deduces traces by applying rules to steps (in con-

trast to, e.g., approaches based on information re-

trieval). Linguistic rules overcome the limitation of

structural approaches by extending the analysis of a

step’s structure to the analysis of its language (via

natural-language processing techniques). In doing so,

step definitions serve as the connecting link between

the domain expert’s vocabulary and the DSML engi-

neer’s vocabulary.

After the step definitions have been defined, the

DSML engineer performs the domain modeling ac-

tivity; i.e., the DSML engineer constructs (fragments

of) the DSML core language model in a way that the

design decisions comply with the requirement speci-

fications. The test scenarios are then checked against

the core language model (fragments). If all tests suc-

ceed, the core language model (part) adheres to the

requirements. If a test fails, the domain expert and

the DSML engineer review the respective test scenar-

ios for their validity and iterate over the core language

modeling artifacts.

This process facilitates the step-wise refinement



of requirements as well as an iterative development

of DSML core language models. At first, a require-

ment specification may not capture all needs for the

whole DSML core language model (Sutcliffe, 2002).

Nevertheless, by performing domain modeling ac-

tions, the DSML engineer constructs a requirements-

conforming DSML core language model fragment.

As the requirements evolve, so does the DSML core

language model, for example, when integrating two

DSMLs (Hoisl et al., 2012). This test-driven method

of step-wise development and refinement of DSML

core language models helps detect requirements vio-

lations at an early stage. Furthermore, step definition

patterns are designed for reuse (e.g., in other core lan-

guage modeling scenarios; see Figure 5).

4 A LANGUAGE FOR

REQUIREMENTS-LEVEL

SCENARIOS

To specify natural-language requirements via scenar-

ios, we define a model-based scenario-description

language. Using this language, the domain expert

can express domain requirements on DSML core lan-

guage models via semi-structured natural-language

scenarios. At the same time, each scenario descrip-

tion can so be represented as a well-defined model to

facilitate further-processing of the scenario descrip-

tion. Figure 6 shows the metamodel of our scenario-

description language. The main concepts and con-

cept relationships were identified by studying related

work on requirements metamodels (Goknil et al.,

2008; Somé, 2009) and acceptance testing (Wynne

and Hellesøy, 2012).

given : String [0..*]

when : String [0..*]

then : String [1..*]

RequirementsSpecification
NamedElement

name : String [1]

ScenarioFeature

in_order_to : String [0..1]

as_a : String [0..1]

i_want : String [0..1]

features 0..*

scenarios

0..*

Figure 6: Scenario-based requirements specification lan-
guage metamodel.

Abstract syntax: Requirements are specified in

terms of characteristic functionality (Features) the

stakeholders request and the DSML shall implement.

A Feature is described textually via four proper-

ties: A Feature has a name, is specified in order to

meet a certain goal (in order to), defines participat-

ing stakeholders (as a), and describes the feature’s

purpose (i want). A structural Feature of core lan-

guage models may describe relationships of domain

concepts or metaclass properties (e.g., inheritance re-

lationships, metaclass attributes).

Scenarios describe important action and event

sequences characteristic to a given Feature. We

use Scenarios to determine the details of language

model compositions. In addition to its name, a Sce-

nario is associated with one or more conditions that

trigger the scenario (given), define when alterna-

tive paths are chosen (when), and specify expected

outcomes (then). A RequirementsSpecification

has a name and documents as many Features as re-

quested and a Feature consists of as many Scenario

descriptions as needed.

Concrete syntax: Following related approaches

to textual use-case modeling and acceptance test-

ing (Wynne and Hellesøy, 2012; Goknil et al., 2008;

Somé, 2009), we provide a textual concrete-syntax

for the domain user of the requirements language. In

this way, the domain expert is able to define scenario-

based requirements via natural-language statements

(an example is shown in Listing 1). The syntax rules

allow for using synonyms for steps (e.g., And, But;

see Listing 2). This way, the domain expert can,

on the one hand, phrase requirements in a natural

and readable way and, on the other hand, concate-

nate multiple steps into composite statements (i.e.,

adding multiple steps to each Given, When, or Then

section). This allows the domain expert to define sce-

narios which are expressed over multiple, interrelated

models.

Listing 1: A textual concrete syntax.

1 RequirementsSpecification: "..."

2 Feature: "..."

3 In order to "..."

4 As a "..."

5 I want "..."

6 Scenario: "..."

7 Given "..."

8 When "..."

9 Then "..."

In our proof-of-concept implementation, this tex-

tual concrete syntax is specified using an Eclipse

Xtext grammar (see Listing 2). The style of the tex-

tual concrete syntax can easily be adjusted to the

needs of a particular domain—we aligned our exem-

plary grammar definition with (Wynne and Hellesøy,

2012). Also note that this textual concrete syntax is

just one option to define instance models of the re-

quirements metamodel (Figure 6). Viable alternatives

can be realized for our implementation with small ef-

fort, including tree-based views (e.g., via the Sample

Reflective Ecore Model Editor), diagrammatic views

(e.g., via the Eclipse Graphical Modeling Frame-

work), or further textual views (e.g., via XML). In



this way, our implementation allows, on the one hand,

that the requirements specification document can be

tailored to the best suitable format for the domain

and, on the other hand, that formats and views can

be switched interchangeably.

Listing 2: Xtext grammar definition for semi-structured
scenario-based requirements.

1 grammar at.ac.wu.nm.dsml.sbt.SRL with org.eclipse .xtext.

common.Terminals

2

3 import "http:// requirementsspecification /0.1"

4 import "http:// www.eclipse .org/emf /2002/ Ecore" as ecore

5

6 RequirementsSpecification returns RequirementsSpecification

:

7 {RequirementsSpecification }

8 ’RequirementsSpecification :’ name=EString

9 (features +=Feature )*

10 ;

11

12 Feature returns Feature :

13 {Feature}

14 ’Feature:’ name=EString

15 (’In order to’ in_order_to =EString)?

16 (’As a’ as_a=EString )?

17 (’I want ’ i_want=EString)?

18 (scenarios +=Scenario )*

19 ;

20

21 Scenario returns Scenario :

22 {Scenario }

23 ’Scenario :’ name=EString

24 (’Given ’ given+=EString

25 ((’Given ’|’And ’|’But’) given+=EString )*)?

26 (’When ’ when+=EString

27 ((’When ’|’And ’|’But ’) when+=EString)*)?

28 ’Then ’ then+=EString

29 ((’Then ’|’And ’|’But ’) then+=EString)*

30 ;

31

32 EString returns ecore::EString:

33 STRING | ID;

Platform integration: The requirements meta-

model as shown in Figure 6 and the correspond-

ing tool support provide the means to define non-

executable, requirements-level scenarios which are

independent from any metamodeling infrastructure

(Ecore, MOF) and from a test-execution frame-

work. To validate core language models against

these descriptions in a systematic and automated

manner, they must be transformed into executable

test cases by the DSML engineer using step defi-

nitions. Scenario-based testing approaches (Strem-

beck, 2011; Sobernig et al., 2013) provide the neces-

sary abstractions (e.g., test cases, test scenarios, pre-

and post-conditions, setup and cleanup sequences)

to represent scenario descriptions directly as exe-

cutable tests. For our proof-of-concept implemen-

tation, we use our scenario-based testing framework

published in (Sobernig et al., 2013) as test-execution

platform. This execution platform for scenario tests

is built on top of EMF and extends the Epsilon EU-

nit testing framework (Kolovos et al., 2013). In

the step of platform integration, instance models of

the requirements metamodel (see Figure 6) are trans-

formed into executable scenario tests supported by

this test framework. Table 2 shows the exemplary

correspondences between the metamodel concepts,

the scenario-based testing domain concepts (Strem-

beck, 2011), and the syntactical equivalents as pro-

vided by the test-execution platform (Kolovos et al.,

2013; Sobernig et al., 2013). Note that integra-

tion with alternative validation platforms for the sce-

nario descriptions (e.g., an OCL engine, a model-

transformation engine) can be achieved by provid-

ing a dedicated set of step definitions. We adopted

the scenario-based test framework (Sobernig et al.,

2013) because of its matching test abstractions and

for demonstration purposes.

Table 2: Correspondences between requirements language,
scenario-testing concepts, and EUnit concrete syntax.

Requirements lan-

guage

Test concept Epsilon syntax con-

struct

RequirementsSpeci-

fication

Test suite @TestSuite

Feature Test case @TestCase

Scenario Test scenario @TestScenario

Scenario.Given Precondition $pre

Scenario.When Test body operation’s body

Scenario.Then Expected result EUnit assertion

5 SCENARIO-BASED TESTING

EXEMPLIFIED: A DSML

INTEGRATION CASE

We demonstrate the scenario-based testing of DSML

core language models via a DSML integration case.

We build on the motivating example introduced in

Section 2 and show how the transformation from

natural-language requirements into executable sce-

nario tests is achieved via our software prototype.

To recall, in our integration scenario from Sec-

tion 2 we want to fully compose the core language

models of two DSMLs A and B (Figures 2 and 3).

The resulting merged DSML C covers an integrated

domain established through the conceptual weaving

of AuditEvents (from DSML A) and Events (from

DSML B) into AuditableEvents. The process steps

involved in this DSML integration are shown in Fig-

ure 7.

To scenario-test the DSML core language model

composition, the domain expert and the DSML engi-

neer first determine a requirements specification for-

mat (in our case through an Xtext grammar; see List-

ing 2). After the requirements specification format
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Figure 7: Scenario testing of DSML core language model integration.

has been determined, the domain expert can define

natural-language scenarios tackling the domain re-

quirements. Listing 3 shows an excerpt of such a re-

quirements specification conforming to the syntax of

our grammar. To support the domain expert in elab-

orating requirements, Xtext generates an editor sup-

porting, for example, syntax highlighting, auto com-

pletion, or error reporting. Due to space limitations,

we define a brief requirements-level scenario for only

one DSML integration feature (more examples can be

obtained from http://nm.wu.ac.at/modsec). List-

ing 3 shows a refinement from the initial Table 1 sce-

nario and requires that all audited events shall issue a

signal to the monitoring facility.

Listing 3: Scenario-based semi-structured requirements ex-
ample.

1 RequirementsSpecification: "DSMLs A and B integration "

2 Feature: "Monitor AuditableEvent "

3 In order to "ascertain that each triggered

AuditableEvent can be sensed by the monitoring

facility "

4 As a "system auditor and distributed -systems operator "

5 I want "that AuditableEvents shall publish Signals"

6

7 Scenario: "AuditableEvent shall publish at least one

Signal"

8 Given "that EventSystemStateMachine .AuditableEvent

has all features of EventSystem .AuditEvent and

StateMachine .Event"

9 When "in metamodel EventSystemStateMachine metaclass

AuditableEvent references metaclass Signal"

10 Then "instances of EventSystemStateMachine .

AuditableEvent shall refer to at least 1 Signal

instance "

11 ...

After this, the DSML engineer defines corre-

sponding step definitions for every requirements-level

scenario to allow for the translation into executable

test scenarios (an example is shown in Listing 4).

Our software prototype supports the specification of

step definitions by employing token-matching pat-

terns, i.e., string-sequences are recognized via regular

expressions—a linguistic rule-based approach (Win-

kler and Pilgrim, 2010). In addition, a step definition

can be composed of a unique and unordered collec-

tion of regular expression patterns (see lines 3–5 in

Listing 4). This is to aid the DSML engineer in the

process of matching steps which are not easily rec-

ognizable via a single regular expression statement.

In this context, a step definition can match multi-

ple scenario-steps of identical or different types (e.g.,

steps of types Given and When).

Listing 4: A scenario-transforming step definition.

1 var stepDef : Map = Map {

2 -- tests if multiplicity >= 1 between two classifiers

3 Set {

4 "ˆinstances of (\\S+)\\.(\\S+) (?: shall|must) refer to

at least (\\d+) (\\S+) instances ?$"

5 }

6 = "assertFalse (\" An $1 shall publish at least $2 $3.\",

$0!EClass.all->selectOne (c | c.name = \"$1\").

eStructuralFeatures ->first().lowerBound < $2);"

7 -- more step definitions

8 };

Our software prototype implements an EGL-

based (Epsilon Generation Language) transformation

from requirements-level scenarios into executable

tests deployable in our extended EUnit testing frame-

work (Kolovos et al., 2013; Sobernig et al., 2013).

The transformation evaluates step definitions (Listing

4) against the requirements specification (Listing 3).

The generated EUnit test scenario resulting from the

requirement specification transformation is shown in

Listing 5.

Listing 5: Generated EUnit scenario tests.

1 --DSMLs A and B integration

2 @TestSuite

3 operation dsmls_a_and_b_integration () {

4 --Monitor AuditableEvent :

5 --In order to ascertain that each triggered

AuditableEvent can be sensed by the monitoring

facility

6 --As a system auditor and distributed -systems operator



7 --I want that AuditableEvents shall publish Signals

8 @TestCase

9 operation monitor_auditableevent () {

10 --AuditableEvent shall publish at least one Signal

11 @TestScenario

12 --Given that EventSystemStateMachine .AuditableEvent

has all features of EventSystem .AuditEvent and

StateMachine .Event

13 $pre EventSystemStateMachine !EClass.all ->selectOne (ae |

ae.name = "AuditableEvent ").eStructuralFeatures .

size() = EventSystem !EClass.all ->selectOne (ae |

ae.name = "AuditEvent ").eStructuralFeatures .size

() + StateMachine !EClass.all->selectOne (ae | ae.

name = "Event").eStructuralFeatures .size()

14 operation

auditableevent_shall_publish_at_least_one_signal

() {

15 --When in metamodel EventSystemStateMachine metaclass

AuditableEvent references metaclass Signal

16 if (EventSystemStateMachine !EClass.all->selectOne (c |

c.name = "AuditableEvent ").eStructuralFeatures

->first().eType.name = "Signal") {

17 --Then instances of EventSystemStateMachine .

AuditableEvent shall refer to at least 1

Signal instance

18 assertFalse("An AuditableEvent shall publish at

least 1 Signal.", EventSystemStateMachine !

EClass.all->selectOne (c | c.name = "

AuditableEvent ").eStructuralFeatures ->first()

.lowerBound < 1);

19 }

20 }

21 }

22 ...

23 }

Before the actual domain modeling composition

is performed, the domain expert and the DSML en-

gineer collaboratively review the executable test sce-

narios. This review is facilitated by maintaining the

requirement statements along with the corresponding

test cases (i.e., established trace links). For our exam-

ple, the core language model integration is executed

via an Epsilon-based workflow (e.g., matching, copy-

ing, merging core language model elements; see Fig-

ure 7).

Afterwards, the scenario tests (Listing 5) are run

against the integrated DSML C core language model.

If a test fails, the domain expert and the DSML engi-

neer review the corresponding test scenario accord-

ing to the error message shown via the EUnit re-

porting console to exclude an erroneous specifica-

tion. Figure 8 shows a failing test scenario because of

non-conforming multiplicity requirements in the inte-

grated DSML C core language model. In order to get

all scenario tests pass (Figure 9), the DSML engineer

needs to patch the composition specification until it

fully complies to the specified requirements (details

are omitted here for brevity).

6 DISCUSSION

In Section 2, we argue that natural-language scenarios

are useful to capture requirements, but have serious

Figure 8: EUnit scenario-test report: one test fails.

Figure 9: All scenario tests pass.

drawbacks when it comes to evaluating them against

DSML software artifacts. In this section, we discuss

how our work contributes to (partly) overcome this

shortcomings.

Ambiguity of Requirements: Step definitions pro-

vide for the transformation of natural-language re-

quirements into formal specifications. Those formal

specifications render ambiguous natural-language re-

quirements explicit. In this sense, DSML engineers

play an important role as they serve as the inter-

face of mapping natural-language requirements to ex-

ecutable scenarios. A correct mapping (i.e., accurate

step definitions) can only be ensured in close collab-

oration with the domain expert. Still, the ambiguity

of natural-language requirements remains, but formal

specifications help to reduce the number of semantic

variation points.

Consistency of requirements: Executable scenario

tests add to the conflict-free definition of require-

ments. All test scenarios of a requirements specifica-

tion document are executed in the same context of one

test suite. This ensures, that each scenario is tested

against identical language model artifacts. Inconsis-

tent tests fail and are reported back to the DSML en-

gineer. Consequently, the requirements need to be re-

viewed by the domain expert.

Singularity of Requirements: If a scenario step

conjugates other steps of the requirements specifica-

tion, this can be recognized in a pattern-based step

definition approach. Composite steps match more

than one step definition pattern which indicates that

requirements singularity may not be satisfied.



Traceability of Requirements: In our approach, on

the one hand, requirements are forward traceable via

transforming step definitions. With this, it is possi-

ble to keep track of the requirements-level scenarios

to their executable test counterparts. On the other

hand, we provide support for the backward traceabil-

ity of executable test scenarios. In our transforma-

tion routines, the natural-language scenario steps are

copied as comments besides their corresponding ex-

ecutable test scenarios (see Listing 5). Furthermore,

the EUnit reporting console pairs passed/failed tests

to their respective executable scenario implementa-

tions. This allows to trace the natural-language re-

quirements from the scenario-test report.

Validation of requirements: In this paper, exe-

cutable scenario tests are employed to collect evi-

dence that proves that the system can satisfy the spec-

ified requirements. A test report is generated which

shows the conformance status of the DSML core lan-

guage model against the requirements specification.

In this sense, the requirements specification serves as

a documentation of the core language model devel-

opment activities which can be validated. Further-

more, step definitions are an important documentation

source as they provide for the generation of validation

specifications (i.e., executable test scenarios) from the

natural-language requirements.

7 RELATED WORK

Related work falls into three categories: testing of

1a) natural-language requirements and 1b) evolving

metamodels, requirements 2a) metamodeling and 2b)

traceability, and 3) available tool support.

Testing against natural-language requirements:

In order to test natural-language statements, they

need to be processed and transformed into an an-

alyzable representation. Several natural-language

processing techniques exists—keyword extraction,

part of speech tagging etc. (Winkler and Pilgrim,

2010)—for instance, to derive model-based (Santi-

ago Júnior and Vijaykumar, 2012) or functional test

cases (Dwarakanath and Sengupta, 2012), to check

model properties (Gervasi and Nuseibeh, 2002),

and to generate analysis models from textual use

cases (Yue et al., 2013). Our approach benefits

from these documented experiences on processing

natural-language requirements into processable and

executable artifacts, in particular linguistic rule-based

transformations (Winkler and Pilgrim, 2010). We re-

alize this processing, in contrast to related work, using

an integrated, model-driven tool chain. At the same

time, testing DSML core language models and their

integration has distinct requirements, for example,

navigating between different metamodels to capture

model transformations. Navigation between meta-

models is supported by our approach, for instance,

via a mapping of multi-metamodel requirements (e.g.,

line 8 in Listing 3) into executable test scenarios in-

volving individual and integrated DSML core lan-

guage models (e.g., precondition on line 13 in Listing

5).

Testing evolving metamodels: We distinguish be-

tween three current metamodel-testing approaches to

test requirements-conformance objectives for evolv-

ing metamodels: 1) modeling-space sampling, 2)

metamodel-test models, and 3) metamodel valida-

tion. Modeling-space sampling (1) adopts techniques

of model-based testing, testing of model transforma-

tions, and model simulation to generate a sample of

potential metamodel test instantiations (Gomez et al.,

2012; Merilinna et al., 2008). Such a sample is pro-

duced in an automated manner by traversing the meta-

model and creating metamodel instances according

to the metamodel specification and pre-defined sam-

pling criteria. Metamodel-test models (2) aim at the

manual definition of potential metamodel instantia-

tions by domain experts and DSML engineers. Such a

procedure requires a generic, proxy metamodel from

which the test models are instantiated. Metamodel

validation approaches (3) employ model-constraint

expressions (e.g., specified via the OCL) to express

test cases on metamodels (e.g., specified as invari-

ants), defined at the level of the corresponding meta-

metamodel (Merilinna and Pärssinen, 2010). Our ap-

proach primarily extends metamodel validation tech-

niques to provide an explicit scenario abstraction,

both at the requirements and the testing level. In-

dividual steps (e.g., Given) are transformed, for in-

stance, into constraint-expressed preconditions evalu-

ated over the metamodels under test.

Requirements metamodels: The requirements

metamodel defined in Section 4 could be extended by

integrating it with closely related metamodels (Goknil

et al., 2008; Somé, 2009). A consolidated require-

ments metamodel using the proposal by (Goknil et al.,

2008) would benefit from additional concepts such as

requirements relations, status, and priority. In addi-

tion, there is a first SysML integration available for

the metamodel in (Goknil et al., 2008). The require-

ments metamodel in (Somé, 2009) would allow for an

alignment with UML-compliant use cases and a cor-

responding, alternative textual concrete syntax.

Requirements traceability: Requirements are

traced, for example, to prove system adequateness, to

validate artifacts, or to test a system (Winkler and Pil-

grim, 2010). Using traceability links in MDD has its



purpose, for instance, in supporting design decisions,

in managing artifacts’ dependencies, or in validat-

ing requirements via end-to-end traceability of MDD

processes (Winkler and Pilgrim, 2010). Recent ap-

proaches (e.g., based on structural rules or informa-

tion retrieval techniques) try to overcome the issues of

tracing natural-language requirements (as discussed

in Section 2). We contribute to the field of require-

ments traceability via a linguistic rule-based approach

for testing DSML core language models (and their in-

tegration) and provide for accompanying tool support.

Tool support: Acceptance test approaches provide

tool support for specifying executable test cases in

the domain expert’s language (Wynne and Hellesøy,

2012; Mugridge and Cunningham, 2005). These test

cases are commonly defined via structured text or ta-

ble formats. While our approach shares these design

decisions, we built our proof-of-concept implementa-

tion on top of an existing model-management toolkit

and a previously developed, general-purpose unit- and

scenario-testing framework (Sobernig et al., 2013) to

reuse their model management capabilities.

8 CONCLUSION

In this paper, we presented a linguistic, rule-based ap-

proach for a traceable translation of semi-structured

natural-language requirements into executable test

scenarios. This is motivated by the observed need to

foster the cooperation of the domain expert and the

language engineer when refining and validating the

core language models, i.e., the abstract syntaxes of

domain-specific modeling languages (DSMLs), iter-

atively. We exemplified the usage of our approach

by presenting a case for the scenario-based testing of

DSML integration. The feasibility of our approach is

demonstrated via a dedicated software prototype. We

discussed how our work can help to cope with prob-

lems that emerge when validating DSMLs against

their requirements recorded in natural language.

A benefit of our work is its design for reuse (see

also Figures 5 and 7). Step definitions provide a map-

ping convention for translating natural-language re-

quirements into executable test scenarios. These map-

ping conventions are separated from the transforma-

tion routines. In order to provide for further scenario-

based DSML core language model tests, the transfor-

mation routines do not change (as they are only de-

pendent on the requirements specification language).

The linguistic patterns as part of the step definitions

can be reused, as well.

In future work, we plan to extend the requirements

specification language (e.g., scenario outlines, nested

steps), in particular to cover (iterative) metamodel de-

velopment which differs from the coupled metamodel

evolution under DSML integration. In addition, we

will establish a repository of step definitions for test-

ing DSML core language models and their integra-

tion.

ACKNOWLEDGEMENTS

This work has partly been funded by the Austrian Re-

search Promotion Agency (FFG) of the Austrian Fed-

eral Ministry for Transport, Innovation and Technol-

ogy (BMVIT) through the Competence Centers for

Excellent Technologies (COMET K1) initiative and

the FIT-IT program.

REFERENCES

Cicchetti, A., Ruscio, D. D., Kolovos, D. S., and Pieranto-
nio, A. (2011). A test-driven approach for metamodel
development. In Emerging Tech. for the Evolution and
Maintenance of Softw. Models, pages 319–342. IGI
Global.

Cockburn, A. (2001). Writing Effective Use Cases.
Addison-Wesley.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative
Programming — Methods, Tools, and Applications.
Addison-Wesley Longman Publishing Co., Inc., 6th
edition.

Czarnecki, K. and Helsen, S. (2006). Feature-based sur-
vey of model transformation approaches. IBM Sys-
tems Journal, 45(3):621–645.

Diethelm, I., Geiger, L., and Zündorf, A. (2005). Applying
story driven modeling to the Paderborn shuttle system
case study. In Proc. Int. Conf. Scenarios: Models,
Transformations and Tools, volume 3466 of LNCS,
pages 109–133. Springer.

Dwarakanath, A. and Sengupta, S. (2012). Litmus: Gen-
eration of test cases from functional requirements in
natural language. In Proc. 17th Int. Conf. Applications
of Natural Language Processing and Information Sys-
tems, pages 58–69. Springer.

Gervasi, V. and Nuseibeh, B. (2002). Lightweight val-
idation of natural language requirements. SP&E,
32(2):113–133.

Goknil, A., Kurtev, I., and Berg, K. (2008). A metamod-
eling approach for reasoning about requirements. In
Proc. 4th European Conf. Model Driven Architecture:
Foundations and Applications, volume 5095 of LNCS,
pages 310–325. Springer.

Gomez, J. J. C., Baudry, B., and Sahraoui, H. (2012).
Searching the boundaries of a modeling space to test
metamodels. In Proc. 5th IEEE Int. Conf. Softw.
Testing, Verification and Validation, pages 131–140.
IEEE.



Hoisl, B., Sobernig, S., and Strembeck, M. (2013). Higher-
order rewriting of model-to-text templates for inte-
grating domain-specific modeling languages. In Proc.
1st Int. Conf. Model-Driven Eng. and Softw. Dev.,
pages 49–61. SciTePress.

Hoisl, B., Strembeck, M., and Sobernig, S. (2012). Towards
a systematic integration of MOF/UML-based domain-
specific modeling languages. In Proc. 16th IASTED
Int. Conf. on Softw. Eng. and Applications, pages 337–
344. ACTA Press.

Institute of Electrical and Electronics Engineers (2011).
Systems and software engineering – life cycle
processes – requirements engineering. Available
at: http://standards.ieee.org/findstds/

standard/29148-2011.html. ISO/IEC/IEEE
29148:2011.

Jarke, M., Bui, X. T., and Carroll, J. M. (1998). Scenario
management: An interdisciplinary approach. Requ.
Eng., 3(3-4):155–173.

Kolovos, D., Rose, L., Garcı́a-Domı́nguez, A., and Paige,
R. (2013). The Epsilon book. Available at: http:

//www.eclipse.org/epsilon/doc/book/.

Lisboa, L. B., Garcia, V. C., Lucrédio, D., de Almeida,
E. S., de Lemos Meira, S. R., and de Mattos Fortes,
R. P. (2010). A systematic review of domain analysis
tools. Inform. Softw. Tech., 52(1):1–13.

Marcus, A., Maletic, J. I., and Sergeyev, A. (2005). Recov-
ery of traceability links between software documenta-
tion and source code. Int. J. Softw. Eng. and Knowl-
edge Eng., 15(5):811–836.

Merilinna, J. and Pärssinen, J. (2010). Verification and val-
idation in the context of domain-specific modelling.
In Proc. 10th Workshop Domain-Specific Modeling,
pages 9:1–9:6. ACM.

Merilinna, J., Puolitaival, O.-P., and Pärssinen, J. (2008).
Towards model-based testing of domain-specific mod-
elling languages. In Proc. 8th Workshop Domain-
Specific Modeling, pages 39–44.

Mugridge, R. and Cunningham, W. (2005). Fit for Develop-
ing Software: Framework for Integrated Tests. Pren-
tice Hall.

Neill, C. J. and Laplante, P. A. (2003). Requirements en-
gineering: The state of the practice. IEEE Softw.,
20(6):40–45.

Object Management Group (2011). OMG Unified Model-
ing Language (OMG UML), Superstructure. Avail-
able at: http://www.omg.org/spec/UML. Version
2.4.1, formal/2011-08-06.

Object Management Group (2013). OMG Meta Ob-
ject Facility (MOF) Core Specification. Available
at: http://www.omg.org/spec/MOF. Version 2.4.1,
formal/2013-06-01.

Sadilek, D. A. and Weißleder, S. (2008). Testing metamod-
els. In Proc. 4th European Conf. Model Driven Archi-
tecture: Foundations and Applications, volume 5095
of LNCS, pages 294–309. Springer.

Santiago Júnior, V. A. D. and Vijaykumar, N. L. (2012).
Generating model-based test cases from natural lan-
guage requirements for space application software.
Softw. Quality Control, 20(1):77–143.

Sendall, S. and Kozaczynski, W. (2003). Model transfor-
mation: The heart and soul of model-driven software
development. IEEE Softw., 20(5):42–45.

Sobernig, S., Hoisl, B., and Strembeck, M. (2013).
Requirements-driven testing of domain-specific core
language models using scenarios. In Proc. 13th Int.
Conf. Quality Softw., pages 163–172. IEEE Computer
Society.

Somé, S. (2009). A meta-model for textual use case de-
scription. JOT, 8(7):87–106.

Stahl, T. and Völter, M. (2006). Model-Driven Software
Development. John Wiley & Sons.

Strembeck, M. (2011). Testing policy-based systems with
scenarios. In Proc. 10th IASTED Int. Conf. Softw.
Eng., pages 64–71. ACTA Press.

Strembeck, M. and Zdun, U. (2009). An approach for
the systematic development of domain-specific lan-
guages. SP&E, 39(15):1253–1292.

Sutcliffe, A. (2002). User-Centred Requirements Engineer-
ing: Theory and Practice. Springer.

Uchitel, S., Kramer, J., and Magee, J. (2003). Synthesis of
behavioral models from scenarios. IEEE Trans. Softw.
Eng., 29(2):99–115.
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