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Abstract—In this paper, we present an approach for the
scenario-based testing of the core language models of domain-
specific modeling languages (DSML). The core language model is
a crucial artifact in DSML development, because it captures all
relevant domain abstractions and specifies the relations between
these abstractions. In software engineering, scenarios are used
to explore and to define (actual or intended) system behavior
as well as to specify user requirements. The different steps
in a requirements-level scenario can then be refined through
detailed scenarios. In our approach, we use scenarios as a primary
design artifact. Non-executable, human-understandable scenario
descriptions can be refined into executable test scenarios. To
demonstrate the applicability of our approach, we implemented a
scenario-based testing framework based on the Eclipse Modeling
Framework (EMF) and the Epsilon model-management toolkit.

Keywords—Domain-specific modeling, scenario-based testing,
language engineering, metamodel testing

I. INTRODUCTION

In model-driven software development (see, e.g., [1]–[3]),
a domain-specific modeling language (DSML) is a tailor-made
software language for a specific problem domain. DSMLs
are used as an abstraction and communication layer targeting
software engineers and domain experts. Here, a domain expert
is a human user who is a professional in a particular domain,
such as a stock analyst in the investment banking domain
or a physician in the health-care domain. DSMLs are built
so that domain experts can understand and phrase domain-
specific statements that can be processed by an information
system. Thus, DSMLs aim at increasing the number of people
who can actively participate in the specification, configuration,
and management of software-based systems (see, e.g., [2]).
However, in order to realize the benefits of DSMLs, we must
ensure that the DSML is correctly implemented and behaves
as specified. Moreover, because DSMLs evolve over time (see,
e.g., [4]), we must be able to efficiently test the evolving
language artifacts such as the core language model.

The DSML core language model captures all relevant
domain abstractions and specifies the relations between these
abstractions (see, e.g., [5]). Changes of the core language
model often result from the iterative and collaborative DSML
development process. Another example for DSML changes
is the integration of two or more DSMLs (and their core
language models) into a new DSML. In such an integration

procedure, the derived DSML remains dependent on the source
DSMLs (e.g., in terms of model transformations) because they
represent system viewpoints or optional domain features such
as security concerns (see [6] for some background).

In principle, any change to the core language model may
result in defects. Because the core language model is a central
DSML artifact and because many other artifacts depend on the
core language model (such as model-transformation definitions
or model constraints; see, e.g., [4], [6]) an undetected error
in the core language model may have severe effects on all
corresponding software artifacts. As many of such dependent
artifacts are created late in the DSML development process
(e.g., during platform integration, see, e.g., [5]), the cost-
escalation factor of such defects can be considered significant.

In this context, the core language model of a DSML is
defined as a metamodel compliant with, e.g., the Meta Object
Facility (MOF) or Ecore. Recently, metamodel-testing ap-
proaches have been presented (see, e.g., [7]–[9]) to assist in the
systematic development of DSMLs and to minimize the risk
of late or post-release defects. While such approaches cover
important metamodel-testing tasks, they fall short with respect
to providing a testing procedure for evolving metamodels.
Most importantly, existing approaches consider a metamodel
as a given artifact from (and for) which instance models,
test models, or test oracles are generated (and provided).
Therefore, existing approaches usually fail in making changed
metamodels testable against unchanged domain requirements.

In the context of software (systems) engineering, we often
find the situation that requirements as well as corresponding
solutions are best defined at a human-understandable, non-
executable level of abstraction. In contrast to that, the software-
based solution is designed and implemented at an executable
level, using frameworks and programming languages. This re-
sults in a semantic gap between the human-level requirements
and solution descriptions on the one hand, and the technical
platform that is used to implement the respective software
services on the other. The wider this semantic gap, the more
difficult is the task to correctly specify and implement a system
that behaves as desired by its human users. Scenarios are a
natural means to describe (intended) system behavior both as
a structured textual requirements definition (see, e.g., [10]) and
as a source-code implementation for a software test (see, e.g.,
[11]–[13]).



To complement existing testing processes, we propose
a scenario-driven metamodel-testing approach. In our work,
scenarios (see, e.g, [11], [12], [14], [15]) are used to define
domain requirements. The initial scenario descriptions can
be defined at an abstract level and are specified by (or in
collaboration with) domain experts (e.g., via structured text
descriptions or UML use case diagrams). In a subsequent step,
the requirements-level scenarios are refined and serve as input
for the derivation of executable scenario test scripts which
closely resemble the narrative structure of the scenarios at
the requirements level. The executable scenario specifications
are then used to test the evolving core language model for
compliance with the corresponding domain requirements. In
our approach, the specification and execution of the scenario-
based tests of core language models are supported by a testing
framework based on the Eclipse Modeling Framework (EMF)
and the Epsilon model-management toolkit. The benefits of our
approach are three-fold: First, it provides support for testing
of changing core language models in different phases of a
DSML life-cycle. Second, it facilitates the early establishment
of an initial and requirements-based test library. Third, the ex-
ecutable scenario scripts provide an executable documentation
of critical application scenarios.

The remainder is structured as follows: In Section II,
we provide an overview of the drivers for language-model
evolution and a synthesis of metamodel-testing approaches.
Against the background on scenario-based testing in Section
III, we lay out the notion of scenario-based test procedures
and present the design of our prototypical testing framework
in Section IV. Subsequently, we demonstrate our approach and
prototype via a DSML integration example (see Section V).
Finally, we discuss related work in Section VI and provide a
concluding outlook in Section VII.

II. TESTING EVOLVING CORE LANGUAGE MODELS

The language model of a DSML consists of a core language
model to define its abstract syntax, constraint specifications to
define additional static semantics, and behavior specifications
for dynamic semantics (see, e.g., [5]). In DSML development,
the core language model is defined as a metamodel which is
specified using a metamodeling language (such as MOF or
EMF Ecore). A domain engineer derives the metamodel from
domain requirements established during a domain analysis
and from the corresponding requirements artifacts (e.g., a
variability model, a mockup language, or an existing system
implementation). In the following, such a core language model
is referred to as the Metamodel Under Test (MUT). The MUT
is subject to continued change to maintain the high coupling
between the DSML and the corresponding application domain
(see, e.g., [4]). As a result, models can be instances of the
changed MUT (MUT’ in Fig. 1) and violate the DSML’s do-
main requirements. Such requirement violations can result, for
example, from both under-constraining and over-constraining
an MUT (e.g., by tightening or loosening multiplicity con-
straints). At the same time, new domain requirements may con-
tradict pre-existing requirements (requirements inconsistency,
see, e.g., [16]).

Additionally, the step-wise and iterative development of a
DSML language model ([4], [5]) may also result in require-
ments violations. Each development phase (e.g., the definition

Fig. 1. Metamodel evolution, requirements violation, and metamodel testing.

of language-model constraints or behavior specifications) can
require changes to an initially constructed MUT. The multi-
phase procedure is often performed repeatedly, for example,
in case of changing requirements or when applying a perfec-
tive metamodel refactoring by following metamodeling best-
practices (see, e.g., [17]). Likewise, the phase of defining
the MUT itself is also split into smaller, interrelated, and
non-trivial working steps (see [5], [18], [19]), for example:
1) identifying the domain concepts and, subsequently, their
relationships using canonical naming schemes; 2) mapping the
domain onto metamodeling-language constructs including the
concept-internal design (e.g., metaclass properties), concept
partitioning (e.g., packaging, namespaces), or concept refac-
toring via auxiliary concepts (e.g., abstract metaclasses).

DSML integration enables the reuse of DSMLs by com-
posing two or more languages into an integrated DSML to
implement a new domain or to integrate domain viewpoints
(see, e.g., [18], [20]). Integration should apply to all parts
of the language model (e.g., core language model, model
constraints; see [21]) as well as model transformations (see,
e.g., [6]). When reusing and integrating DSML concepts to
meet domain requirements, the DSML engineer must address
syntactic and semantic mismatches between the source core
language models (the core language models of the DSMLs
that are to be integrated) that may cause conceptual defects
in the target model (the core language model of the new,
integrated DSML). In a coupled DSML integration, we first
identify candidate concepts in the source DSML model(s), and
then define links between the corresponding concepts in the
source and target DSML models, for instance to propagate
changes either way. If those links between source and target
DSMLs are defined via model transformations, inter-model
inconsistencies can easily emerge because of subtle changes
to transformation definitions. Moreover, after integrating two
DSMLs a domain expert must (re)validate the reused DSML
concepts according to the source-domain and target-domain
requirements. Finally, a DSML integration procedure (see [21])
resembles the characteristics of DSML development (several
iterations, multiple steps per iteration; see above).

Testing metamodels that define the abstract syntax of
DSMLs has a number of objectives (see, e.g., [22]). For a



DSML, the requirements conformance of the corresponding
metamodel is critical. This conformance relation, however,
can only be verified by the domain experts (see [7], [22]).
Another important testing objective is assessing the specifica-
tion consistency of the interrelated metamodel specifications,
for example, consisting of a meta-metamodel instantiation and
metamodel constraints expressed using a constraint language
such as the Object Constraint Language (OCL) or the Epsilon
Validation Language (EVL). An exemplary consistency defect
is the risk of contradicting constraint expressions, such as con-
flicting invariant expressions in boundary cases (see [9]). An
inconsistency defect, however, may also hint at requirements
inconsistencies (see [16]). In the remainder, we concentrate on
the requirements-conformance objective for evolving MUTs.
Current metamodel-testing approaches address conformance
checking differently (see also Fig. 1) and exhibit limitations
concerning MUT evolution:

Modeling-space sampling: These approaches (see, e.g.,
[7], [8]) adopt techniques of model-based testing, testing of
model transformations, and model simulation (see [23]) to
generate a sample of potential MUT instantiations. Such a
sample is produced in an automated manner by traversing
the metamodel and creating metamodel instances according to
the metamodel specification and pre-defined sampling criteria
(e.g., coverage in terms of metamodel fragments, dissimilarity,
boundary cases, custom structural constraints) to find both
minimal and representative sets of instances. To verify the
conformance relation, the generated models are then reviewed
by the domain experts (see [7]) or processed via platform-
specific, application-level input/output data to be tested against
corresponding applications (see [8]). A first shortcoming with
respect to evolving MUTs is the requirement of an existing
and sufficiently specified MUT (see [9]) to generate potential
instances. This requirement is not always met in the step-
wise development of DSML models. A second barrier is
that the derived models, at the time of model generation,
cannot be considered requirements-conforming anymore. The
sampling procedure operates on the changed MUT and so risks
presenting the domain expert with a non-representative sample
for review. Third, the sampling procedures (see [7]) have to
be calibrated for an MUT to obtain both representative and
manageable samples. Finally, there is the risk of perceptual
misjudgements by the reviewers, for example, due to relatively
large sample sizes or a high similarity between sampled
models. Tool support for manual reviews is lacking, as well
(see [24]).

Metamodel-test models: A second research direction (see,
e.g., [9], [25]) is based on ideas from model simulation (see
[26]) and aims at the manual definition of potential MUT
instantiations by domain experts and DSML engineers (see
Fig. 1). Such a procedure requires a generic, proxy metamodel
from which the test models are instantiated. In practice, most
often custom defined test metamodels (TMM in [9]) and ex-
tended UML object models are used for this task. Alternatively,
the test specifications can be created as, for instance, external
code models [25]. During test execution, the test models
are bound late to the actual MUT (e.g., through just-in-time
instantiation of the metamodel or entity resolution according
to the test model details). Moreover, to limit the test-modeling
effort, groups of related test models with some variation
points can be defined (referred to as test specifications in [9]).

Test models are suitable for deriving testable requirements
specifications early. However, each test model must not only
reflect the metamodel fragment relevant to the requirement
tested, but also the context of this metamodel fragment to
represent a bindable instance of the MUT (e.g., also auxiliary
model types must be resolvable). This makes test models
vulnerable to metamodel changes which do not directly affect
the tested requirements (such as metamodel refactorings). This,
again, requires the active maintenance of test models. Finally,
establishing variation points for a test model manually (e.g.,
facing a complex multiplicity configuration) is not trivial.

Metamodel validation: A testing approach using model-
constraint expressions (e.g., defined via OCL or EVL) specifies
test cases in terms of collections of model constraints on
MUTs (e.g., specified as invariants), defined at the level of the
corresponding meta-metamodel (see [22]). The specification
of metamodel constraints requires expertise in both the meta-
modeling language and the underlying constraint language.
However, the translation of requirements (e.g., a narrative
text, a requirements catalog, or variability models) into well-
defined constraint expressions is not trivial. Nevertheless, as
the expressions are defined over the meta-metamodel instan-
tiation structure (e.g., MOF or Ecore repository viewpoint)
of the MUT, the resulting tests are widely decoupled from
details of the evolving MUTs (e.g., navigation axes between
model types, the domain of model-types). Model-constraint
expressions are typically organized according to the built-in
constructs of the specification languages (e.g., via operations,
invariants, and query blocks). While the need for structuring
of model constraints, for example, to match a certain testing
level, has been acknowledged (see [27]), existing approaches
do not consider the structure of non-executable requirements
specifications, such as semi-structured textual or diagrammatic
scenario descriptions (see, e.g., [10]). Such abstraction mis-
matches complicate the co-maintenance of the requirements
description and the corresponding model constraints.

III. SCENARIO-BASED TESTING

In software engineering, scenarios are used to specify
user needs as well as to explore and to define (actual or
intended) system behavior (see, e.g., [11]–[15]). Scenarios can
be described in different ways at various abstraction levels,
for example, via structured text, graphical models, or precise
(and formal) textual specifications. For specifying a software
system, they are typically defined using different types of
models, such as UML interaction or activity models.

The different action steps in a non-executable scenario
description can then be refined through detailed, executable
scenario tests. Detailed scenarios are used to depict the dy-
namic runtime structures of a system, for instance, to show how
a certain functionality is realized on the level of interacting
software components. Therefore, scenarios are a natural source
for behavior tests. Non-executable scenario descriptions for a
DSML can directly be defined by domain experts to serve
as an (additional) input for software engineers to implement
integration and component tests at the implementation level
(see, e.g., [28]).

As it is almost impossible to completely test a complex
software system, effective means are needed to select relevant



tests, to express and to maintain them, and to automate test
procedures whenever possible. Scenarios can help to reduce the
risk of omitting or forgetting relevant test cases, as well as the
risk of describing important tests insufficiently. If each design-
level scenario is checked via a corresponding scenario test, a
critical test coverage of the most relevant requirements on the
MUT can be achieved. Moreover, in a thorough engineering
approach, changing domain requirements are first identified at
the scenario level (see also [11], [12]). Hence, one can rapidly
identify affected scenario tests and propagate the changes into
the corresponding test specifications.

IV. LANGUAGE-MODEL TESTING USING SCENARIOS

Performing a scenario-based testing and development pro-
cess for metamodels involves planning activities (e.g., deciding
on a test procedure) and the creation of a number of testing
artifacts, such as non-executable scenario descriptions and ex-
ecutable test scenario specifications. To support such a testing
process, we developed a prototype infrastructure as a scenario-
oriented extension of the Epsilon EUnit testing framework
[29]. The prototype is based on a scenario-test metamodel
from [30] and realizes a concrete syntax to define scenario-
based test specifications. Furthermore, it provides runtime and
reporting support. Metamodel testing is so available for several
metamodel types (e.g., EMF/Ecore, XML).

A. Metamodel-Testing Procedures with Scenarios

Several testing procedures can be supported by scenarios,
including regression tests. Fig. 2 shows a process for the
definition of an existing MUT. The collected scenario tests are
then used to validate the MUT which is modified by a sequence
of meta-modeling actions. Before a new action is performed,
the scenario tests validate the changed MUT’ for requirements
conformance and a test report is issued. Upon successful
completion of the corresponding test scenario, the next action
can be performed by the DSML engineer. Otherwise, the
MUT must be adjusted to comply with the test scenarios.
Such a testing procedure is suitable for metamodel refactoring
tasks (e.g., partitioning into sub-packages, restructuring of
relationship representations; see [17]). This procedure may
be repeated for the MUT’, for example, when creating a
revised metamodel version due to new domain requirements
(see Fig. 2).
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Fig. 2. Iterative language-model development and scenario-based testing.

Fig. 3 shows how a domain expert and the DSML engineer
collaborate to complete the above testing and development

procedure. Note that in some domains (e.g., software testing),
the roles of the domain expert (e.g., the software tester) and
of DSML engineer can be shared by single subjects (e.g., a
software tester who develops and employs a testing DSML).
The domain expert defines a guiding scenario description
which is then mapped onto a suitable testing infrastructure by
the DSML engineer. After having the domain expert and the
DSML engineer collaboratively review the executable scenario
test, the DSML engineer takes on the actual meta-modeling
action (e.g., a refactoring or a DSML language-definition step).
The results are then fed into the scenario tests relevant for
the corresponding part of the core language model. If the
tests fail, this part of the core language model does not meet
the respective requirements and must be adjusted. If the tests
succeed, the next action can be performed by the DSML
engineer (see Fig. 2).

ad: A scenario-based testing activity

(domain expert)

Create scenario

descriptions

(DSML engineer)
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descriptions into tests

(domain expert, DSML engineer)
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Run scenario tests
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Fig. 3. Scenario-based testing for language-model fragments.

In an alternative procedure, there might be no pre-existing
MUT. Each meta-modeling action adds to the incomplete MUT
and creates a testable scenario specification (or fragments
thereof). After having completed the last meta-modeling ac-
tion, an initial MUT and a set of scenario tests are available.
This procedure leans itself towards the initial and step-wise
definition of a DSML model (see, e.g., story boarding in
[31]). These two procedures and variants thereof can also be
combined.

The non-executable scenario descriptions provided by the
domain expert can be defined in different ways. For demon-
stration purposes, we adopt the one-column table format as
found in [10]. Content-wise, a scenario description should
establish the conditions under which it runs, i.e. a trigger
and preconditions. In addition, the scenario goal which is to
be achieved (e.g., testable postconditions) should be given.
Finally, a set of validation or action steps which form the
scenario body must be provided.

The conceptual model of the executable scenario-test spec-
ification available to the DSML engineer is depicted in Fig. 4.
The corresponding specification syntax as realized by our
EMF/Epsilon prototype is shown in Listing 1. A test scenario
tests one particular facet of a system, here the MUT. In the first
place, it represents one particular action and event sequence
which is specified through the test body of the respective
scenario. In addition to the test body, each test scenario
includes an expected result and may include a number of



preconditions and postconditions, as well as a setup sequence
and a cleanup sequence (see Fig. 4). When a test scenario is
executed, it first executes the corresponding setup sequence.
A setup sequence includes an action sequence that is executed
to set up an evaluation environment for the corresponding
scenario, for example, a setup sequence may load and create
several models as well as define helper operations required
by the test body. Next, the preconditions of the scenario are
checked. If at least one precondition fails, the test scenario
is aborted and marked as incomplete. If all preconditions are
fulfilled, the test body is executed. In particular, the action
sequence in the test body produces a test result. This test result
is then checked against the expected result using appropriate
matcher and comparison operations. If the check fails, the test
scenario is aborted and marked as incomplete. If the check
is successful, the postconditions of the scenario are checked.
Again, if at least one postcondition fails, the test scenario is
aborted and marked as incomplete. If all postconditions are
fulfilled, the cleanup sequence is called and the scenario is
marked as complete. A cleanup sequence includes an action
sequence that is executed to undo actions that were made
during the test scenario. For example, the cleanup sequence
can delete intermediate models and model elements created by
the setup sequence. Note that the cleanup sequence is executed
each time the respective test scenario is executed, even if the
scenario is marked as incomplete.

Test caseTest suite Test scenario

Precondition
Postcondition

Expected result Test result

Test body

Setup sequence

Cleanup sequence

*1..
*1..

0..1

0..1 0..1

0..1

0..1

* *

*

*

1

checked against

returns

0..1

0..1

Fig. 4. Scenario-based testing domain model [30].

Each test scenario is part of a test case. In particular, a test
case consists of one or more test scenarios and may include
a number of preconditions and postconditions, as well as a
setup sequence and a cleanup sequence (see Fig. 4). When a
test case is run, it first executes the respective setup sequence.
The runtime structures produced by the setup sequence are then
available to all test scenarios of the corresponding test case.
Subsequently, the preconditions of the test case are checked.
Similar to test scenarios, a test case is aborted and marked
as incomplete if one of its preconditions or postconditions
fails. Next, each test scenario of the test case is executed as
described above. If at least one test scenario is incomplete, the
including test case is also marked as incomplete. After the test
scenarios, the postconditions are checked before the test case
cleanup sequence is executed. The test case cleanup sequence
is executed each time the corresponding test case is performed.

Each test case is part of a test suite (see Fig. 4) and a test
suite includes one or more test cases. Furthermore, a test suite

may have a setup sequence and a cleanup sequence, as well.
Again, the runtime structures produced by the test-suite setup
sequence are available to all test cases of the corresponding
suite.

1 @TestSuite
2 $setup -- test suite A setup sequence
3 $cleanup -- test suite A cleanup sequence
4 operation TestSuite_A() {
5 @TestCase
6 $pre -- test case A precondition
7 $post -- test case A postcondition
8 $setup -- test case A setup sequence
9 $cleanup -- test case A cleanup sequence

10 operation TestCase_A() {
11 @TestScenario
12 $pre -- test scenario A precondition
13 $post -- test scenario A postcondition
14 $setup -- test scenario A setup sequence
15 $cleanup -- test scenario A cleanup sequence
16 operation TestScenario_A() {
17 -- test scenario A specification
18 }
19 @TestScenario
20 $pre -- test scenario B precondition
21 -- ... -- further pre-/postconditions, setup/cleanup sequences
22 operation TestScenario_B() {
23 -- test scenario B specification
24 }
25 }
26 @TestCase
27 operation TestCase_B() {
28 -- test scenario specifications for test case B
29 }
30 }

Listing 1. A concrete syntax for scenario-test specifications.

B. Scenario-based Metamodel-Testing Infrastructure

Our approach for scenario-based metamodel testing is
implemented as an Eclipse-based prototype.1 The prototype
provides support for authoring, execution, and reporting of
scenario-based test specifications as introduced in Section
IV-A. Our prototype leverages the capabilities of the Epsilon
family of model-management languages (see [32]). Among
others, Epsilon provides the Epsilon Unit Testing Framework
(EUnit, see [29]) which is designed to define tests for model-
management tasks. EUnit itself is an embedded language
which reuses constructs of the core Epsilon Object Language
(EOL) to implement test-specific functionality (e.g., special
annotations to define test operations). In our prototype, we
developed a language extension of EOL. In this way, we
reuse important EUnit and EOL features such as the built-in
test annotations, guarding expressions, and the setup/cleanup
operations while providing our own extensions to support
scenario-based test specifications (see Fig. 4).

Our extension tackles four requirements which result
from the conceptial metamodel introduced in Section IV-A:
Scenario-based test specifications can include test suites, test
cases, and test scenarios (see Sections III and IV). Therefore,
our EUnit extension for scenario-based testing must be able
to explicitly distinguish between these test concepts (R1). Fur-
thermore, a test case includes one or more test scenarios and
a test suite groups one or more test cases. These containment
relationships must unfold into a particular sequencing of test
execution, as explained in Section IV-A (R2). Test suites, test
cases, and test scenarios each include setup as well as cleanup

1All software artifacts are publicly available at http://nm.wu.ac.at/modsec.



sequences (R3). Finally, test cases and test scenarios must
support guard conditions which are evaluated before and after
test-case and test-scenario executions, respectively (R4).

Language-model extensions: To address the four require-
ments defined above, we adapted the EOL model (i.e., the
abstract syntax) and its behavioral specification accordingly.
Fig. 5 shows an excerpt from the EOL language model as
a UML class diagram. At the topmost level, EUnit tests are
grouped into modules (EOL Modules) which are containers
for Statements (e.g., any EOL logical expressions, condi-
tional expressions) as well as annotation and operation defi-
nitions (OperationDeclarationOrAnnotationBlock). Anno-
tations (grouped into AnnotationBlocks) add orthogonal
metadata to OperationDeclarations and can be subdivided
in two categories: An ExecutableAnnotation contains an
EOL statement for evaluation while a SimpleAnnotation
simply marks operations. Each EUnit test is implemented
as a unit pair of an EOL operation and an attached @test
annotation (see [29]). Operations and annotations are the
only named structuring techniques available for EOL and
EUnit, a notion of objects is not available. Test-implementing
operations (OperationDeclaration) can contain an arbitrary
EOL StatementBlock as test and operation body. In the op-
eration and test bodies, a number of built-in assertion/matcher
primitives of EUnit can be used along with model-management
helpers (see [29]). The return value (ReturnStatement) of a
test (i.e., an annotated OperationDeclaration; see Fig. 5)
must be evaluated against an expected result to establish
whether a test passes or fails. These return values can be of an
Epsilon-internal type (e.g., PrimitiveType, Collection etc.),
of an element type of a loaded model (ModelElementType), or
of any Java type. For example, the return value can be accessed
in postcondition blocks ($post) via the built-in result
variable (see [32]).

EOL Module

Block
OperationDeclaration-

OrAnnotationBlock

OperationDeclaration AnnotationBlock

Annotation

SimpleAnnotation
Executable-

Annotation

StatementBlock

Statement AnyType

ModelElement-

Type
PrimitiveType

1 *

1..*

1

*

returnType0..1

...

Return-

Statement

Fig. 5. Excerpt of the building blocks of our Epsilon prototype.

As an embedded EOL extension, EUnit makes heavy use
of the Annotation feature (see [29], [32]). Therefore, we also
used Annotations to extend the abstract syntax and the se-
mantics (e.g., the composite execution modes). To provide test
suites, test cases, and test scenarios as language constructs (see
requirement R1), we defined three SimpleAnnotation kinds.
Similarly, annotations to specify setup/cleanup sequences at
all three test levels (see requirement R3) are provided. More-
over, by declaring additional ExecutableAnnotations, pre-
and postconditions can be evaluated for all test levels (see
requirement R4).

To fully comply with requirement R1 and to provide
containment relationships between test suites, test cases, and
test scenarios (see requirement R2), we used nested EOL
operations, with the following restrictions: EOL Statements
which form operation bodies have been extended to allow for
declaring OperationDeclarationOrAnnotationBlocks, i.e.
nested operation declarations. Operations which are declared
as nested operations have limited visibility and accessibility.
For example, there is no lexical scoping at the script level,
they cannot be called explicitly even from within the enclosing
operation. Rather, the EUnit engine internally collects the
nested operation declarations and performs their evaluation
upon execution of the enclosing operation. Thus, it was
necessary to alter both the EOL grammar specification and
the EOL execution engine. We modified the corresponding
ANTLR grammar to accept nested operation declarations
and their attached annotations. The corresponding changes
to the dispatcher of operations and (executable) annotations
are implemented via refined methods which operate on the
respective abstract-syntax-graph representations accordingly
(see requirement R2).

To sum up, Table I shows the correspondences between
scenario-based testing domain concepts from Fig. 4, the ex-
tended EUnit concrete syntax (see also Listing 1), and the
underlying EOL language-model entities (see also Fig. 5).

TABLE I. CORRESPONDENCES BETWEEN SCENARIO-TESTING
CONCEPTS, EUNIT CONCRETE SYNTAX, AND EOL ABSTRACT SYNTAX.

Domain concept Epsilon syntax construct Epsilon object
Test suite @TestSuite SimpleAnnotation
Setup sequence $setup ExecutableAnnotation
Cleanup sequence $cleanup ExecutableAnnotation
Test case @TestCase SimpleAnnotation
Precondition $pre ExecutableAnnotation
Postcondition $post ExecutableAnnotation
Test scenario @TestScenario SimpleAnnotation
Test body operation’s body Statement
Test result operation’s return value ReturnStatement
Expected result as defined (data, model etc.) of type AnyType

Concrete-syntax extensions: The concrete syntax for
scenario-based test specifications as shown in Listing 1 pro-
vides the textual interface for domain experts and DSML
engineers. With respect to requirements R1–R4, the ANTLR
grammar specification of EOL was adapted slightly, in a fully
backward-compatible way. These adaptations allow for nested
operation declarations (see Listing 2, lines 14–15)2. Besides
this small modification, the EOL grammar is reused as is.

1 OperationDeclarationOrAnnotationBlock
2 = AnnotationBlock | OperationDeclaration;
3 AnnotationBlock
4 = Annotation { Annotation };
5 Annotation
6 = SimpleAnnotation | ExecutableAnnotation;
7 OperationDeclaration
8 = ("operation"|"function") [Type] Name
9 "(" [FormalParameterList] ")" [":" Type] StatementBlock;

10 StatementBlock
11 = "{" Block "}";
12
13 (* Allowing for nested operation and annotation declarations: *)
14 Block
15 = { OperationDeclarationOrAnnotationBlock | Statement };
16

2Please note that only the modified grammar rules are shown, syntax entities
relating to, for instance, model loading or model transformation are omitted
for brevity. See [32] for the grammar details.



17 SimpleAnnotation
18 = "@", Name [Value {"," Value}];
19 ExecutableAnnotation
20 = "$", Name LogicalExpression;
21
22 (* The rules below are reused from the standard EOL grammar *)
23 Statement = ? ... ?;
24 Name = ? ... ?;
25 Value = ? ... ?;
26 LogicalExpression = ? ... ?;
27 Type = ? ... ?;
28 FormalParameterList = ? ... ?;

Listing 2. Excerpt from the extended EUnit grammar specification, in EBNF.

Advanced features: Non-executable scenario descriptions
can include cross-references within the same scenario and
between two or more scenarios (see [10]). For example, a
scenario fragment or an extension scenario may refer to a
superordinate scenario’s goal as their end condition. Similarly,
domain requirements may map to the equal pre- and postcon-
ditions in scenario tests, to establish the intention of invariance.
To avoid code redundancy in scenario-based test specifications,
constraint expressions and, more generally, EOL statements
can be specified in two ways for reuse between scenario tests
and/or between different testing levels (suite, case, scenario).

First, they can be defined as freestanding, helper EOL
operations. This is possible because conditions ($pre, $post)
and sequences ($setup, $cleanup) can refer to arbitrary
EOL LogicalExpressions including operation-call state-
ments (see Listing 2 and [32]). Second, to share state-
ments for setup and cleanup sequences between test op-
erations of an entire test level, helper operations can
be associated with the following annotations @SuiteSe-
tup/@SuiteCleanup, @CaseSetup/@CaseCleanup, and @Sce-
narioSetup/@ScenarioCleanup. These annotations register
the annotated operations as the authoritative setup and cleanup
sequences with the corresponding test level (i.e. test suite, test
case, test scenario). Note that these global setup and cleanup
sequences can be combined with local ones: During a test
run, when executing setup sequences, the global sequences
take precedence over the local ones. For cleanup sequences
the precedence is inverse, with the global sequences being run
after the local ones.

V. SCENARIO-BASED TESTING PROCEDURE FOR A DSML
INTEGRATION CASE

To demonstrate our approach, we now discuss a case for the
integration of two DSMLs A and B which represent two narrow
domains: system auditing and reactive distributed systems (see
Figs. 6 and 7). The integrated DSML should cover a new
and an integrated domain (i.e., auditable distributed systems).
While a more detailed background on this application case is
given in previous work (see [6]), it is important to note that
this application case is about a coupled DSML integration.
The derived DSML remains backward-dependent on the source
DSMLs (e.g., to track perfective changes in the source lan-
guages). In this paper, we walk through a small case fragment.

This fragment allows us to demonstrate a testing procedure
as depicted in Fig. 8. This procedure resembles one of the char-
acteristic procedures described in Section IV-A, with scenario
tests being specified upfront. The new, derived DSML C is
created in three meta-modeling steps: 1) defining entities and
their internal structure, 2) establishing entity relationships, and

AuditEvent
Signal

data : EString

AuditRuleCondition EventSystem

NamedElement

name : EString
publish

0..*

subscribe 0..*

conditions

0..*

auditEvents 0..*

auditRules

0..*

Fig. 6. Auditing event-based systems (DSML A).

StateMachine State Transition

Event
NamedElement

name : EString

states

0..*

transition

0..1

events0..*

target

1

Fig. 7. State/transitional behavioral system (DSML B).

3) enforcing new domain-specific language-model constraints.
During and between each step, the scenario tests are executed
to check the requirements conformance.

De ne DSML-C 

relationships

Test scenarios

Enforce new

domain constraints

MM
A

Establish test plan

Coupled DSML integration

Specify 

test scenarios

Test report Test report Test report

MM
B

MM
C

De ne 

DSML-C entities

Fig. 8. A step-wise, scenario-assisted DSML integration process using model
transformations.

Following a scenario-driven test plan (see Figs. 8 and
9), the main domain actors (e.g., a security-audit expert and
the distributed-systems expert) draft non-executable scenario
descriptions based on the agreed domain requirements. Table II
exemplifies an excerpt from the resulting scenario descriptions
in a one-column table format [10].

(DSML engineer)

Translate scenario

descriptions into tests
see Listing 3

(auditor, systems operator,
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Review scenario tests
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Run scenario tests
see Listing 3
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Fig. 9. Scenario-based DSML integration via model transformations.



TABLE II. REQUIREMENTS-LEVEL SCENARIO DESCRIPTION.

Test case 1 In order to support auditable events in a reactive distributed
system, DSMLs A and B must be integrated. An auditable
distributed system must be fully integratable into the current
target software platforms, using existing code-generation
templates. Therefore, a complete and structure-preserving
DSML composition must be performed.

Primary actors System auditor, distributed-systems operator
Trigger/Setup The model-transformation workflow to integrate the meta-

models of DSML A & DSML B is executed.
Test scenario 1 The central concept are AuditableEvents to be propagated

and monitored. The new concept AuditableEvent must
share all features of the Event (DSML A) and AuditEvent
(DSML B) concepts.

Preconditions The source concepts Event and AuditEvent must be avail-
able in the DSMLs A and B.

Expected result A metaclass named C::AuditableEvent with the combined
structural features of A::Event and B::AuditEvent.

Test scenario 2 In DSML C, each AuditableEvent publishes Signals.
Expected result AuditableEvents must maintain a reference named pub-

lish to Signal.

Test case 2 Ascertain that each triggered AuditableEvent can be sensed
by the monitoring facility.

Primary actors System auditor, distributed-systems operator
Preconditions All metamodel constraints for the source DSMLs must hold

for DSML C.
Trigger/Setup The model-transformation workflow to integrate the meta-

models of DSML A & DSML B is executed.
Test scenario 1 An AuditableEvent issued by a Transition must publish

at least one Signal.
Preconditions AuditableEvent has all structural features of AuditEvent

and Event.
Expected result Instances of AuditableEvent must refer to at least one

Signal instance.

Scenario descriptions: In our example, the metamodels of
the DSMLs A and B should be fully composed. The conceptual
weaving is to be achieved by turning Events propagated
in a distributed system into AuditableEvents that can be
tracked for auditing purposes (e.g., through an appropriate
system-monitoring facility). Furthermore, the domain requires
all events to be audited, without exception. Also, each au-
dited event must issue a Signal to the monitoring facility.
These three goals are clearly documented in terms of the
three scenario sections of Table II. In addition, the domain
experts document the prerequisites for achieving these goals
(e.g., presence conditions of certain entities in the source
metamodels).

Scenario-test specifications: In a next step, the DSML
engineer specifies the test cases based on the scenario descrip-
tions. The DSML engineer maps certain document sections to
selected parts of an EUnit scenario-based test structure (e.g.,
preconditions in the document become $pre annotations) and
operationalizes the requirements by translating them into con-
straint expressions over the source and the target metamodels
(e.g., specific bound checks for multiplicity elements). One
possible scenario-test specification is shown in Listing 3.

1 @TestSuite
2 $setup runTarget("merge")
3 operation TestSuite_1() {
4 @TestCase
5 operation TestCase_1() {
6 @TestScenario
7 $pre EventSystem!EClass.all->exists(c | c.name = "AuditEvent")
8 $pre StateMachine!EClass.all->exists(c | c.name = "Event")
9 operation TestScenario_1() {

10 assertTrue("Missing composed classifier.", EventSystemStateMachine
!EClass.all->exists(ae | ae.name = "AuditableEvent"));

11 }
12 @TestScenario
13 operation TestScenario_2() {

14 assertTrue("Firing event of a transition must be capable of
publishing signals.", EventSystemStateMachine!EClass.all->
selectOne(c | c.name = "Transition").eStructuralFeatures->
selectOne(tsf | tsf.name = "events").eType.
eStructuralFeatures->exists(aesf | aesf.name = "publish"));

15 }
16 }
17 @TestCase
18 $pre verifyEntities(StateMachine!EClass)
19 $pre verifyEntities(EventSystemStateMachine!EClass)
20 operation TestCase_2() {
21 @TestScenario
22 $pre EventSystemStateMachine!EClass.all->selectOne(ae | ae.name = "

AuditableEvent").eStructuralFeatures.isEmpty() = false
23 operation TestScenario_1() {
24 assertFalse("An AuditableEvent in the context of a transition must

publish at least one signal.", EventSystemStateMachine!
EClass.all->selectOne(c | c.name = "Transition").
eStructuralFeatures->selectOne(sf | sf.name = "events").
eType.eStructuralFeatures->first().lowerBound = 0);

25 }
26 }
27 }
28 operation verifyEntities(eClass) {
29 -- Check for valid composition candidates (Note: details are omitted)
30 }

Listing 3. A possible mapping of the scenario descriptions to scenario tests.

The top-level test suite groups the two corresponding test
cases and three test scenarios (lines 1–27). The first test case
(lines 4–16) includes two scenarios. The first scenario (lines 6–
11) requires two preconditions to be fulfilled (lines 7–8). The
second test scenario (lines 12–15) verifies whether an event
triggered by a transition is capable of publishing signals. The
event must be of type AuditableEvent. The second test case
(lines 17–26) utilizes the helper verifyEntities (lines 28–
30) for the evaluation of two preconditions (lines 18–19), with
each running the test on a different metamodel. The third test
scenario (lines 21–25) checks for the mandatory signaling by
system events (see above). At this stage, when executed, all
tests will be reported failed.

Initial composition specifications: Once having the EUnit
scenario-test specifications reviewed collaboratively by the
domain experts and the DSML engineer, the DSML engineer
specifies the actual metamodel composition. In this application
case, this is achieved by devising an Epsilon-based compo-
sition workflow [6]3. To provide an impression, Listing 4
shows the Epsilon Merging Language (EML [32]) rule for the
creation of AuditableEvent. The merge procedure creates an
EClass of the required name (line 5), establishes inheritance
relationships, and incorporates the structural features from both
source DSMLs (lines 6–7). Once performed, all except for one
scenario test defined in Listing 3 pass. Fig. 10 shows the EUnit
console reporting the failing test scenario.

1 rule MergeAuditEvent
2 merge l : EventSystem!EClass
3 with r : StateMachine!EClass
4 into t : EventSystemStateMachine!EClass {
5 t.name = "AuditableEvent";
6 t.eSuperTypes ::= l.eSuperTypes + r.eSuperTypes;
7 t.eStructuralFeatures ::= l.eStructuralFeatures + r.

eStructuralFeatures;
8 }

Listing 4. EML merge rule for DSML composition.

Patching composition specifications: Based on the test
report, the DSML engineer reviews jointly with the domain

3See also the meta-modeling action in Fig. 9.



1st scenario-test run 2nd scenario-test run

Fig. 10. Scenario-test reports in EUnit.

experts the failing test scenario to exclude an erroneous
specification. Once verified, the DSML engineer investigates
the initial composition specification (Listing 4). The DSML
engineer realizes that the source metaclass A::AuditEvent
for the composed AuditableEvent does not conform to the
requirement of the targeted domain because A::AuditEvent
does not necessarily have to contain a Signal given the lower
multiplicity bound of 0 of the publish EReference. To fix
this, the DSML engineer adds a statement to the EML merge
rule which modifies the lower bound accordingly (see line 9
in Listing 5). With this, all scenario tests pass (see Fig. 10).
Fig. 11 documents the critical metamodel fragment of the final
composed DSML.

1 rule MergeAuditEvent
2 merge l : EventSystem!EClass
3 with r : StateMachine!EClass
4 into t : EventSystemStateMachine!EClass {
5 t.name = "AuditableEvent";
6 t.eSuperTypes ::= l.eSuperTypes + r.eSuperTypes;
7 t.eStructuralFeatures ::= l.eStructuralFeatures +
8 r.eStructuralFeatures;
9 t.eStructuralFeatures->selectOne(sf | sf.name = "publish").

lowerBound = 1;
10 }

Listing 5. Refinement of EML merge rule.

C

AuditableEvent
[A::AuditEvent@B::Event]

Signal
[A::Signal]

publish

1..*

Transition
[B::Transition]

0..*

events

Fig. 11. Relevant excerpt from the final metamodel C.

VI. FURTHER RELATED WORK

In Section II, we have already iterated over closely related
work on metamodel testing which falls into three categories:
modeling-space sampling ([7], [8], [23]), metamodel-test mod-
els ([9], [25]), and metamodel validation [22].

Tort et al. ([16], [33]) have investigated testing support for
conceptual modeling. In their approach, conceptual schemas
are defined using UML models (at the M1 level) and OCL
model constraints. We consider MUTs at the M2 level. Con-
ceptual schemas cover both structural (entities, entity rela-
tionships) and behavioral aspects (events) while we look at

an MUT as the structural specification of a core language
model. Assisted by a dedicated Conceptual Schema Testing
Language (CSLT) and runtime, executable test specifications
can exercise a conceptual schema under test. State changes
and state-based assertion checking as well as the temporal
validation of event creation and occurrence can be tested. In
a test-first application of the approach [16], test instantiations
are specified to guide the development process. The runtime
for model and test execution allows for testing UML models
and the corresponding OCL model constraints to identify
consistency defects and requirement inconsistencies.

The application case in Section V demonstrates that a
testing facility which can refer to several metamodels at once
is suitable for expressing test cases on model transformations
[24]. For example, in our scenario-test format, preconditions
expressed over the source metamodels and postconditions on
the target metamodels establish a transformation contract. This
closely resembles the idea of partial test oracles for model
transformations (see, e.g., the basic precondition and postcon-
dition contracts in [34]). Besides assertion checking, such con-
tractual constraints can also be used as criteria for generating
input test models (see, e.g., [35]). Moreover, requirements-
level testing including non-executable requirements descrip-
tions was also explored for model transformations [36].

Approaches to metamodel testing as ours apply to test-
ing support of language-model and abstract-syntax design in
isolation. A systematic alignment of testing activities to other
phases is widely missing. Sadilek et al. [37] touch on all phases
and their testing requirements, however, they do not analyze
testing techniques other than their metamodel-testing approach
(MMUnit [9]) in detail. Recently, one of the authors [38]
evaluated the adequacy of general-purpose testing techniques
for the various phases of DSML integration, including visual-
syntax testing and testing of composed platform-integration
artifacts (e.g., rewritten generator templates [6]). Neverthe-
less, metamodel testing affects indirectly other phases and
language-model artifacts dependent on the MUTs: Merilinna
et al. [8] provide for indirect testing of the platform-specific
artifacts by generating and deploying them during metamodel
testing. As metamodels can also be systematically derived
from or transformed into corresponding grammar definitions
(see, e.g., [39]), test-based validation can so extend partially
to the grammar-based textual concrete syntaxes. The case of
dependent model transformations is mentioned above.

VII. CONCLUSION

In this paper, we presented an approach for the scenario-
based testing of core language models. The core language
model is a metamodel that defines the abstract syntax of a
DSML. Because the core language model is central to the
proper implementation of a DSML, it is very important to
ensure the correctness and consistency of this metamodel.
Moreover, in case two (or more) DSMLs are integrated to de-
fine a composite DSML, it is also important to systematically
check the corresponding composed core language model.

Our approach uses domain scenarios at the requirements
level as primary artifacts. These non-executable scenario de-
scriptions are refined into executable scenario tests. In this way,
our approach integrates scenario descriptions on different ab-
straction layers. This is a first step towards providing forward-



and backward-traceability for DSML test scenarios (also fu-
ture work). To demonstrate our approach, we implemented a
corresponding extension to the Eclipse Modeling Framework
and Epsilon model-management toolkit.
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“Guideline for the definition of EMF metamodels using an entity-
relationship approach,” Inform. Softw. Tech., vol. 51, no. 8, pp. 1217–
1230, 2009.

[18] F. Lagarde, H. Espinoza, F. Terrier, C. André, and S. Gérard, “Leverag-
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