
Generic Support for RBAC Break-Glass Policies in
Process-Aware Information Systems

Sigrid Schefer-Wenzl
Institute for Information Systems and New Media

WU Vienna, Austria
sigrid.schefer-wenzl@wu.ac.at

Mark Strembeck
Institute for Information Systems and New Media

WU Vienna, Austria
mark.strembeck@wu.ac.at

ABSTRACT
We present a break-glass extension for process-related role-
based access control (RBAC) models. Our extension en-
sures the static (design-time) and dynamic (runtime) con-
sistency of corresponding break-glass models. The extension
is generic in the sense that it can, in principle, be used to ex-
tend arbitrary process-aware information systems or process
modeling languages with support for process-related RBAC
and corresponding break-glass policies. We implemented a
library and runtime engine that provides full platform sup-
port for all properties of our approach.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms
Security; Business Processes; Management;

Keywords
Role-Based Access Control; Break-Glass Policies; Process-
aware Information Systems;

1. INTRODUCTION
Process-aware information systems (PAIS) can be config-

ured via process models that define all expected execution
paths for each business process (see, e.g., [29]). Correspond-
ing access control models specify which subjects are autho-
rized to perform the tasks that are included in the business
processes (see, e.g., [26, 30]). While such an approach is
well suited for process instances that conform to one of the
expected execution scenarios, we encounter problems when
dealing with exceptional situations, e.g., when no authorized
subject is available to execute a particular task in case of
emergency (see, e.g., [19, 31]). Exception Handling refers to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

actions that are executed when deviations appear between
what is planned and what is actually happening (see, e.g.,
[4, 5, 17, 29]).

In recent years, role-based access control (RBAC) [7, 15]
has developed into a de facto standard for access control in
both, research and industry. In RBAC, roles correspond to
different job-positions and scopes of duty within a particular
organization or information system [24]. Access permissions
are assigned to roles according to the tasks this role has to
accomplish. Via its role memberships, each subject acquires
all permissions that are necessary to fulfill its duties. Several
extensions for RBAC exist for different application domains.
In a business process context, RBAC has been extended to
consider access permissions for tasks included in a business
process (see, e.g., [10, 13, 28, 30]).

In many organizational environments some critical tasks
exist which – in exceptional cases – must be performed by a
subject although he/she is usually not permitted to perform
these tasks. For example, if a deadline is about to expire
and the senior lawyer is not available, a junior lawyer may
be authorized to submit a written objection to the court in
order to avoid damage to the company. In case of emer-
gency, machine operators are authorized to switch produc-
tion machines into an emergency state to ensure safety for
personnel and machinery. In a hospital context, a junior
physician shall be able to perform certain tasks of a senior
physician in case of emergency. Accordingly, a PAIS has to
provide mechanisms that help to coordinate exception han-
dling activities.

Break-glass policies have been introduced as a sophisti-
cated exception-handling mechanism for access control poli-
cies. They supplement ordinary access control policies in
order to allow the controlled overriding of access rights (see,
e.g., [3, 9, 11, 18]). Break-glass (the term is a metaphor
relating to the act of breaking the glass to pull a fire alarm)
refers to the possibility for a subject, who is not authorized
to execute a task, to gain authorization for this task in ex-
ceptional cases. Therefore, subjects should only make use
of break-glass policies if a regular task execution is not pos-
sible (e.g., no authorized subject is available). If a break-
glass policy is activated, the resulting task executions must
be carefully recorded for later audit and review. Typically,
a special review process is triggered to monitor such break-
glass executions.

In this paper, we provide a generic metamodel to for-
mally embed the break-glass policy concept into process-
related RBAC models [26]. This metamodel can be used
to extend arbitrary process modeling languages or process



engines. To demonstrate our approach, we defined a UML
extension based on this generic metamodel that allows for
modeling break-glass policies via extended UML Activity di-
agrams (see [22]). Moreover, we also implemented a break-
glass extension to the BusinessActivity library and runtime
engine (see [25, 26]). The source code of our implementation
is available for download [1].

The remainder of this paper is structured as follows. Sec-
tion 2 presents our formal metamodel for break-glass RBAC
models in business processes. Section 3 discusses related
work and Section 4 concludes the paper.

2. GENERIC METAMODEL FOR PROCESS-
RELATED BREAK-GLASS POLICIES

To support the definition of break-glass policies in a
business process context, we formally embed them into
our generic metamodel for Process-Related RBAC models
(see [26]). In particular, we specify that certain breakable
tasks can be performed by subjects who are usually not
allowed to execute these tasks. For this purpose, override
rules regulate that members of a certain role are permitted
to perform a certain task in case of emergency (breakable-
by-role override). In addition to role-based break-glass
rules, our approach enables the definition of subject-specific
break-glass rules, i.e. only a certain subject is authorized
to execute a task in case of emergency (breakable-by-subject
override). Breakable-by-subject override rules are used
in cases where only certain members of a role have all
necessary competencies to perform the breakable task.
Each break-glass execution will be recorded and monitored
via a corresponding review process.

The subsequent definitions provide a generic framework
for integrating break-glass policies into a business process
context. Based on the extended metamodel presented be-
low, we defined a UML extension [22] and implemented a
break-glass extension to the BusinessActivity library and
runtime engine [1] to demonstrate our approach. For the
purposes of this paper, Definition 1 repeats some of the def-
initions for Process-Related RBAC models (for details see
[23, 26]). New definitions for Process-Related Break-Glass
RBAC models are introduced in Definitions 2, 3, 4, and 5.

Definition 1. (Process-Related RBAC Model) Let S
be a set of subjects, R a set of roles, PT a set of process types,
PI a set of process instances, TT a set of task types, TI a
set of task instances, and CC a set of context constraints.
A Process-Related RBAC Model PRM = (E,Q,D) where
E = S∪R∪PT ∪PI ∪TT ∪TI refers to pairwise disjoint sets
of the model, Q = rsa ∪ tra ∪ pi ∪ ti ∪ es ∪ er to mappings
that establish relationships, and D = sme ∪ dme ∪ sb ∪ rb ∪
linkedCC ∪ fulfilledCC to mutual exclusion, binding, and
context constraints. For the partial mappings of the meta-
model (P refers to the power set):

1. The mapping rh : R 7→ P(R) is called role hier-
archy. For rh(rs) = Rj, we call rs senior role and
Rj the set of direct junior roles. The transitive clo-
sure rh∗ defines the inheritance in the role-hierarchy
such that rh∗(rs) = Rj∗ includes all direct and transi-
tive junior-roles that the senior-role rs inherits from.
The role-hierarchy is cycle-free, i.e. for each r ∈ R :
rh∗(r) ∩ {r} = ∅.

2. The mapping rsa : S 7→ P(R) is called role-to-
subject assignment. For rsa(s) = Rs, we call s ∈ S
subject and Rs ⊆ R the set of roles assigned to this
subject (the set of roles owned by s). This assignment
implies a mapping role ownership rown : S 7→ P(R)
that returns all direct and inherited roles for a subject.
The mapping rown−1 : R 7→ P(S) determines all
subjects owning a role, directly or transitively via the
role-hierarchy.

3. The mapping tra : R 7→ P(TT ) is called task-to-role
assignment. For tra(r) = Tr, we call r ∈ R role
and Tr ⊆ TT is called the set of tasks assigned to r.
This assignment implies a mapping task ownership
town : R 7→ P(TT ) which returns all tasks for a role.
The mapping town−1 : TT 7→ P(R) determines the set
of roles a task is assigned to, directly or transitively via
the role-hierarchy.

4. The mapping ptd : PT 7→ P(TT ) is called process
type definition. For ptd(pT ) = TpT , we call pT ∈
PT process type and TpT ⊆ TT the set of task types
associated with pT .

5. The mapping pi : PT 7→ P(PI) is called process in-
stantiation. For pi(pT ) = Pi, we call pT ∈ PT pro-
cess type and Pi ⊆ PI the set of process instances
instantiated from process type pT .

6. The mapping ti : (TT × PI) 7→ P(TI) is called task
instantiation. For ti(tT , pI) = Ti, we call Ti ⊆ TI

set of task instances, tT ∈ TT is called task type and
pI ∈ PI is called process instance.

7. The mapping es : TI 7→ S is called executing-
subject mapping. For es(t) = s, we call s ∈ S the
executing-subject and t ∈ TI is called the executed
task instance.

8. The mapping er : TI 7→ R is called executing-role
mapping. For er(t) = r, we call r ∈ R the executing-
role and t ∈ TI is called the executed task instance.

9. The mapping sb : TT 7→ P(TT ) is called subject-
binding. For sb(t1) = Tsb, we call t1 the subject-
binding task and Tsb ⊆ TT the set of subject-bound
tasks.

10. The mapping rb : TT 7→ P(TT ) is called role-binding.
For rb(t1) = Trb, we call t1 the role-binding task and
Trb ⊆ TT the set of role-bound tasks.

11. The mapping sme : TT 7→ P(TT ) is called static mu-
tual exclusion. For sme(t1) = Tsme with Tsme ⊆ TT ,
we call each pair t1 and tx ∈ Tsme statically mutual
exclusive tasks.

12. The mapping dme : TT 7→ P(TT ) is called dynamic
mutual exclusion. For dme(t1) = Tdme with Tdme ⊆
TT , we call each pair t1 and tx ∈ Tdme dynamically
mutual exclusive tasks.

13. The mapping linkedCC : TT 7→ P(CC) is called con-
text constraint to task linkage. For linkedCC(t) =
CCT , we call t ∈ TT constrained task and CCT ⊆ CC
the set of context constraints linked to this task.



14. The mapping fulfilledCC : CC 7→ BOOLEAN
is called context constraint fulfillment. For
fulfilledCC(cc) = boolean, we call cc ∈ CC context
constraint. The mapping follows a two-valued logic
returning exactly one truth value (true or false).
Thus, the fulfilledCC mapping returns true iff all
conditions linked to the context constraint are true.

The following definitions provide an extension to the
metamodel for Process-related RBAC models defined in
[26]. Definition 2 first specifies the new elements for
Process-Related Break-Glass RBAC models.

Definition 2. (Process-Related Break-Glass RBAC
Model). Let PRBGM = (E,Q,D,BG) be a Process-Related
Break-Glass RBAC Model, where E refers to the pairwise
disjoint sets of the metamodel, Q to mappings that estab-
lish relationships, D to binding, mutual exclusion, and con-
text constraints, and BG to mappings for break-glass poli-
cies. Below, we define the additional mappings for break-
glass policies BG (P refers to the power set):

1. To define which role is authorized to perform a certain
task, task types are assigned to roles via the task-to-
role assignment mapping tra (see Definition 1.3). In
addition, breakable tasks that are assigned to roles can
be executed in a break-glass scenario:
The mapping bbr : R 7→ P(TT ) is called breakable-
by-role override. For bbr(r) = Tb, we call r ∈ R
role and Tb ⊆ TT is called the set of breakable tasks
assigned to r. The mapping bbr−1 : TT 7→ P(R) re-
turns all roles a particular task is assigned to via the
bbr-mapping.

2. The breakable-by-role override mapping implies a
mapping to determine all breakable tasks that are
assigned to a particular role. Note that in a role-
hierarchy, each role owns the tasks that are directly
assigned to this role, as well as the tasks inherited
from its junior-roles (see Definition 1.1):
The mapping btown : R 7→ P(TT ) is called break-
glass task ownership. For each r ∈ R, the tasks
inherited from its junior-roles are included, i.e.
btown(r) =

⋃
rinh∈rh∗(r) bbr(rinh) ∪ bbr(r).

The mapping btown−1 : TT 7→ P(R) determines the
set of roles a task is assigned to via a break-glass
override assignment (directly or transitively via a role
hierarchy). The btown mapping complements the task
ownership mapping (town) from Definition 1.3.

3. Breakable tasks can also be directly assigned to sub-
jects:
The mapping bbs : S 7→ P(TT ) is called breakable-
by-subject override. For bbs(s) = Tb, we call s ∈ S
subject and Tb ∈ TT is the set of breakable tasks as-
signed to s. The mapping bbs−1 : TT 7→ P(S) returns
all subjects assigned to a particular breakable task via
the bbs-mapping.

4. A certain task instance is said to be “broken” if it
is executed by a subject via a break-glass override
assignment:
The mapping brokenTI : TI 7→ BOOLEAN is
called broken task instance mapping. For
brokenTI (tb) = boolean, we call tb ∈ TI task

instance with tb ∈ ti(tT , px). The mapping fol-
lows a two-valued logic returning exactly one
truth value (true or false): broken(tb) = true if
es(tb) ∈ bbs−1(tT ) ∨ es(tb) ∈ rown−1(r) with
tt ∈ bbr(r).

5. A certain process instance is said to be “broken” if
it includes at least one broken task instance (see
Definition 2.4):
The mapping brokenPI : PI 7→ BOOLEAN is
called broken process instance mapping. For
brokenPI (pb) = boolean, we call pb ∈ PI pro-
cess instance. The mapping follows a two-valued
logic returning exactly one truth value (true or
false): broken(pb) = true if ∃tb ∈ ti(tT , pb) with
broken(tb) = true.

6. To determine if the use of a break-glass policy was jus-
tified, the execution of broken task instances needs to
be monitored and reviewed. Thus, if a certain process
instance is broken, a corresponding review process is
triggered. In particular, a review process has to check
all broken task instances included in the broken pro-
cess instance:
The mapping review : PT 7→ PT is called review
process definition. For review(pb) = pr, we call
pb ∈ PT process type and pr ∈ PT review process
type.

As defined above, break-glass overrides enable certain sub-
jects or roles to perform certain tasks in emergency situa-
tions only. Therefore, the runtime allocation of ordinary
tasks on the one hand and tasks that are allocated via a
break-glass override on the other hand must be clearly sep-
arated. In particular, this means that a subject cannot ac-
cidentally perform a break-glass task. Instead, it must ac-
tively and explicitly choose to use a break-glass override. In
this context, it is important to discuss the different impli-
cations of entailment constraints, such as mutual exclusion
and binding constraints, defined in RBAC models.

SME constraints define that two statically mutual exclu-
sive tasks must never be assigned to the same role and must
never be performed by the same subject. This type of con-
straint is global with respect to all process instances in the
corresponding information system. Therefore, SME con-
straints do not only affect runtime task execution, they al-
ready affect the task-to-role and role-to-subject assignment
relations at design-time (see, e.g., [21, 25, 27, 32]). Thus,
if we want to define that certain subjects or members of a
certain role are allowed to perform two SME tasks in ex-
ceptional (emergency) situations, we must explicitly define
a corresponding break-glass override via the bbr or bbs map-
pings (see Definition 2).

In contrast, DME constraints define that two dynamically
mutual exclusive tasks must never be performed by the same
subject in the same process instance. In other words: two
DME tasks can be assigned to the same role. However, to
complete a process instance which includes two DME tasks,
one needs at least two different subjects (see, e.g., [21, 25,
27, 32]). In a break-glass scenario, DME tasks are differ-
ent from SME tasks because one (or more) subjects may
legally own two DME tasks (and are thereby competent and
empowered to perform both tasks–see, e.g., [11]). Thus, in
case a subject already owns two DME tasks via the tra and



rsa mappings (see Definition 1) we do not need to define
an additional bbr or bbs override assignment for the same
tasks. Instead, we ”only” need to allow that these subjects
are permitted to break the DME constraint (of tasks they
already own) in emergency situations. An abuse of this op-
tion is prevented because a break-glass allocation is always
conducted on purpose and cannot be performed accidentally,
and because each broken process instance is reviewed (see
Definition 2.6).

In contrast to mutual exclusion constraints, binding con-
straints define that the same role or subject who performed
a taskx must also perform a bound tasky. Therefore, bound
tasks must be assigned to the same subject or role in order
to ensure the satisfiability of the corresponding business pro-
cesses (see, e.g. [6, 20]). However, in a break-glass scenario
it may be necessary to break a binding constraint and per-
form a break-glass reallocation for tasks that have already
been allocated due to the transitivity of binding constraints
(see also [25]). For example, such a situation may arise if
the subject who is allocated to a tasky because of a bind-
ing constraint has an accident and therefore cannot perform
tasky. In such a situation, we can perform a break-glass
reallocation if the delay of tasky would result in an emer-
gency. Again, an abuse of this option is prevented because
a break-glass allocation is always conducted on purpose and
cannot be performed accidentally, and because each broken
process instance is reviewed (see Definition 2.6).

Based on the discussion above, we define two types of
correctness for Process-Related Break-Glass RBAC models.
Static correctness refers to the design-time consistency of
the elements and relationships in the Break-Glass RBAC
Model. Dynamic correctness refers to the compliance of pro-
cess instances with the break-glass definition as well as with
entailment and context constraints at runtime. Definition 3
provides static correctness rules that must hold in addition
to the rules for Process-Related RBAC models presented in
[26].

Definition 3. (Static Correctness). Let PRBGM =
(E,Q,D,CX,BG) be a Process-Related Break-Glass RBAC
Model. PRBGM is said to be statically correct if the fol-
lowing requirements hold:

1. Each role is allowed to own a task either regularly or
via a break-glass override assignment. To separate reg-
ular task ownerships from break-glass task ownerships,
we need to ensure that no task is assigned to a certain
role via both mappings:
∀tT ∈ TT : town−1(tT ) ∩ btown−1(tT ) = ∅

2. Each subject is allowed to own a task either regularly
(via its role memberships) or via a breakable-by-role
override assignment. To separate regular task owner-
ships from breakable task ownerships, we need to en-
sure that no task is assigned to a certain subject via
both mappings:
∀tT ∈ TT , r1, r2 ∈ R with tT ∈ btown(r1) and tT ∈
town(r2) : rown−1(r1) ∩ rown−1(r2) = ∅

3. Each subject is allowed to own a task either regularly
(via its role memberships) or via a breakable-by-subject
override assignment. To separate regular task owner-
ships from breakable task ownerships, we need to en-
sure that no task is assigned to a certain subject via

both mappings:
∀tT ∈ TT , r ∈ R with tT ∈ town(r) : rown−1(r) ∩
bbs−1(tT ) = ∅

Definition 4 specifies rules for the dynamic correctness of
Process-Related Break-Glass RBAC models. These rules
need to be fulfilled at runtime, i.e. when executing a certain
process instance. They extend the dynamic correctness rules
for Process-Related RBAC models specified in [26].

Definition 4. (Dynamic Correctness). Let PRBGM
= (E,Q,D,CX,BG) be a Process-Related Break-Glass RBAC
Model and PI its set of process instances. PRBGM is said
to be dynamically correct if the following requirements hold:

1. For each broken process instance, there has to exist a
corresponding review process:

∀pb ∈ pi(pT ) with broken(pb) = true : ∃pr ∈ review(pT )

2. For all broken task instances within the same process
instance, the executing-subjects of SME tasks do not
have to be different:

if ∃pb ∈ PI with broken(pb) = true then

∀tx ∈ ti(t1, pb), ∀ty ∈ ti(t2, pb) with t2 ∈ sme(t1) and

broken(tx) = true :
(es(tx) 6= es(ty) ∨ es(tx) = es(ty))

3. For all broken task instances within the same process
instance, the executing-subjects of DME tasks do not
have to be different:

if ∃pb ∈ PI with broken(pb) = true then

∀tx ∈ ti(t1, pb),∀ty ∈ ti(t2, pb) with t2 ∈ dme(t1) and

broken(tx) = true :
(es(tx) 6= es(ty) ∨ es(tx) = es(ty))

4. For all broken task instances within the same process
instance, the executing-role of role-bound tasks does
not have to be the same:

if ∃pb ∈ PI with broken(pb) = true then

∀tx ∈ ti(t1, pb),∀ty ∈ ti(t2, pb) with t2 ∈ rb(t1) and

broken(tx) = true :
(er(tx) 6= er(ty) ∨ er(tx) = er(ty))

5. For all broken task instances within the same process
instance, the executing-subject of subject-bound tasks
does not have to be the same:

if ∃pb ∈ PI with broken(pb) = true then

∀tx ∈ ti(t1, pb),∀ty ∈ ti(t2, pb) with t2 ∈ sb(t1) and

broken(tx) = true :
(es(tx) 6= es(ty) ∨ es(tx) = es(ty))

6. For all broken task instances within the same process
instance, context constraints do not have to be ful-
filled (remember that all broken process instances are
reviewed, see Definitions 2.6 and 4.1):

if ∃pb ∈ PI with broken(pb) = true then

∀tx ∈ ti(tT , pb) with broken(tx) = true
if ccx ∈ linkedCC(tT ) then

(fulfilledCC(ccx) = true ∨
fulfilledCC(ccx) = false)



Furthermore, the execution history of a process instance p
must reflect which subject has executed which task instance.
For this purpose, Definition 5 specifies the execution history
h(p) of a Process-Related Break-Glass RBAC model which
includes a record of all broken process instances.

Definition 5. (Execution History). Let PRBGM =
(E,Q,D,CX,BG) be a Process-Related Break-Glass RBAC
Model and PI its set of process instances. For a particu-
lar process instance p ∈ PI , an execution event exec(p) ∈
(TI × TT ×R× S) is a record of a particular task execution
where TI refers to the set of task instances, TT to the set
of corresponding task types, R to the set of executing-roles,
and S to the set of executing-subjects. The execution his-
tory h(p) of a process instance p is defined as a mapping
h : PI 7→ P({(tx, tt, r, s) | tx ∈ TI , tt ∈ TT , r ∈ R, s ∈ S}),
which maps h(p) to a set of execution events exec(p) (for
further details, see [26]).
The execution history includes a record of all broken pro-
cess instances. For a particular broken process instance, i.e.
broken(pi) = true, the broken task instances, corresponding
executing-subjects, and executing-roles are documented. The
break-glass execution history hb(pb) of a process instance pb
is defined as a mapping hb : PI 7→ P({(tb, tt, rb, sb) | tb ∈
TI , tt ∈ TT , broken(tb) = true, sb = es(tb), rb = er(tb)})
with hb ⊆ h.

3. RELATED WORK
Several approaches exist to integrate break-glass policies

into access control models. For example, the optimistic se-
curity principle [14] aims to handle exceptional cases. In
[14], any access is legitimate and is thus granted. A similar
approach is presented by Ardagna et al. [2]. They introduce
a break-glass approach where an action can be performed
either by finding a corresponding emergency policy or by
granting a break-glass override. In both approaches, the en-
forcement of security policies is retrospective, and relies on
administrators to detect unreasonable accesses and subse-
quently take steps to compensate undesired behavior. Such
approaches, however, cause an immense burden for admin-
istrators.

The break-the-glass RBAC (BTG-RBAC) model [8] spec-
ifies for each permission-to-role assignment if a break-glass
override is allowed or not. Moreover, obligations can be
specified to define arbitrary actions that must be performed
in case of a break-glass override. In [3], a break-glass exten-
sion for SecureUML is provided. The resulting SecureUML
break-glass policies can then be transformed into XACML.
However, this approach does not consider break-glass deci-
sions in connection with dynamic mutual exclusion or bind-
ing constraints.

Only few contributions exist to integrate the concept of
break-glass policies into a business process context. In [30]
Wainer et al. present an RBAC model for workflow systems.
They also extend this model via exception handling func-
tionalities that allow the controlled overriding of entailment
constraints in case of emergency. To achieve this, each con-
straint is associated with a certain level of priority. On the
other hand, roles hold override privileges according to their
level of responsibility. A comprehensive overview of excep-
tion handling patterns – including resource reallocation – is
provided in [19].

Several other approaches exist that deal with process

adaptations and process evolutions in order to flexibly
handle different types of exceptions in process-aware infor-
mation systems. For example, [16] provides a formal model
to support dynamic structural changes of process instances.
A set of change operations is defined that can be applied by
users in order to modify a process instance execution path,
while maintaining its structural correctness and consistency.
In [31], change patterns and change support features are
identified and several process management systems are
evaluated regarding their ability to support process changes.
Exception handling via structural adaptations of process
models are also considered in [17]. In particular, several
correctness criteria and their application to specific process
metamodels are discussed. In [12], a survey on flexibility
criteria for business process management systems is pre-
sented. Amongst others, clearly defined responsibilities for
tasks and sophisticated exception handling mechanisms
are identified as important flexibility requirements for
process-aware information systems. In comparison to our
work, these approaches have in common that processes
must be changed in order to handle exceptional situations.
The main goal of our approach is to maintain the designed
process flow, while ensuring that only authorized subjects
are allowed to participate in a workflow.

4. CONCLUSION
In this paper, we presented a break-glass extension for

process-related RBAC models. In order to handle emer-
gency scenarios in a controlled manner, break-glass policies
define which subjects are allowed to execute certain tasks in
case of emergency. Our approach is generic in the sense that
it can be used to extend arbitrary process-aware informa-
tion systems or process modeling languages with support for
process-related RBAC and corresponding break-glass poli-
cies. We used our approach to define a break-glass extension
for UML activity diagrams [22] and to implement an exten-
sion for the BusinessActivity library and runtime engine[1].

5. REFERENCES
[1] Business Activity Library and Runtime Engine.

Available at: http://wi.wu.ac.at/home/mark/

BusinessActivities/library.html, 2012.

[2] C. A. Ardagna, S. D. C. di Vimercati, S. Foresti,
T. W. Grandison, S. Jajodia, and P. Samarati. Access
control for smarter healthcare using policy spaces.
Computers & Security, 29(8):848–858, 2010.

[3] A. D. Brucker and H. Petritsch. Extending Access
Control Models with Break-Glass. In Proceedings of
the 14th ACM symposium on Access control models
and technologies (SACMAT), 2009.

[4] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi.
Specification and implementation of exceptions in
workflow management systems. ACM Trans. Database
Syst., 24:405–451, September 1999.

[5] D. K. W. Chiu, Q. Li, and K. Karlapalem. A meta
modeling approach to workflow management systems
supporting exception handling. Inf. Syst., 24:159–184,
April 1999.

[6] J. Crampton and H. Khambhammettu. Delegation
and Satisfiability in Workflow Systems. In Proceedings
of the 13th ACM symposium on Access control models
and technologies (SACMAT), 2008.

http://wi.wu.ac.at/home/mark/BusinessActivities/library.html
http://wi.wu.ac.at/home/mark/BusinessActivities/library.html


[7] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.
Role-Based Access Control. Artech House, second
edition edition, 2007.

[8] A. Ferreira, D. Chadwick, P. Farinha, R. Correia,
G. Zao, R. Chilro, and L. Antunes. How to Securely
Break into RBAC: The BTG-RBAC Model. In
Proceedings of the 2009 Annual Computer Security
Applications Conference, December 2009.

[9] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha,
E. Oliveira-Palhares, D. W. Chadwick, and
A. Costa-Pereira. How to Break Access Control in a
Controlled Manner. In Proceedings of the 19th IEEE
Symposium on Computer-Based Medical Systems,
2006.

[10] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K.
Thomas. Flexible Team-Based Access Control Using
Contexts. In Proceedings of the sixth ACM symposium
on Access control models and technologies (SACMAT),
May 2001.

[11] S. Marinovic, R. Craven, J. Ma, and N. Dulay.
Rumpole: A Flexible Break-Glass Access Control
Model. In Proceedings of the 16th ACM symposium on
Access control models and technologies (SACMAT),
2011.

[12] S. Nurcan. A Survey on the Flexibility Requirements
Related to Business Processes and Modeling Artifacts.
In Proceedings of the Proceedings of the 41st Annual
Hawaii International Conference on System Sciences
(HICSS), January 2008.

[13] S. Oh and S. Park. Task-Role-Based Access Control
Model. Information Systems, 28(6), 2003.

[14] D. Povey. Optimistic Security: A New Access Control
Paradigm. In Proceedings of the 1999 workshop on
New security paradigms (NSPW), 2000.

[15] H. F. Ravi Sandhu, Edward Coyne and C. Youman.
Role-Based Access Control Models. IEEE Computer,
29(2), 1996.

[16] M. Reichert and P. Dadam. Adept flex-Supporting
Dynamic Changes of Workflows Without Losing
Control. J. Intell. Inf. Syst., 10(2), 1998.

[17] M. Reichert, S. Rinderle-Ma, and P. Dadam.
Flexibility in Process-Aware Information Systems. In
Transactions on Petri Nets and Other Models of
Concurrency II. 2009.

[18] E. Rissanen, B. S. Firozabadi, and M. Sergot. Towards
a Mechanism for Discretionary Overriding of Access
Control. In Proceedings of the 12th International
Workshop on Security Protocols, 2004.

[19] N. Russell, W. M. van der Aalst, and A. H. M. T.
Hofstede. Exception Handling Patterns in
Process-Aware Information Systems. In International
Conference on Advanced Information Systems
Engineering (CAiSE), 2006.

[20] S. Schefer, M. Strembeck, and J. Mendling. Checking
Satisfiability Aspects of Binding Constraints in a
Business Process Context. In Proc. of the BPM
Workshop on Workflow Security Audit and
Certification (WfSAC), 2011.

[21] S. Schefer, M. Strembeck, J. Mendling, and
A. Baumgrass. Detecting and Resolving Conflicts of
Mutual-Exclusion and Binding Constraints in a
Business Process Context. In Proc. of the 19th

International Conference on Cooperative Information
Systems (CoopIS), October 2011.

[22] S. Schefer-Wenzl and M. Strembeck. A UML
Extension for Modeling Break-Glass Policies. In 5th
International Workshop on Enterprise Modelling and
Information Systems Architectures (EMISA), 2012.

[23] S. Schefer-Wenzl and M. Strembeck. Modeling
Context-Aware RBAC Models for Business Processes
in Ubiquitous Computing Environments. In Proc. of
the 3rd International Conference on Mobile,
Ubiquitous and Intelligent Computing (MUSIC), June
2012.

[24] M. Strembeck. Scenario-Driven Role Engineering.
IEEE Security & Privacy, 8(1), 2010.

[25] M. Strembeck and J. Mendling. Generic Algorithms
for Consistency Checking of Mutual-Exclusion and
Binding Constraints in a Business Process Context. In
Proc. of the 18th International Conference on
Cooperative Information Systems (CoopIS), 2010.

[26] M. Strembeck and J. Mendling. Modeling
Process-related RBAC Models with Extended UML
Activity Models. Information and Software
Technology, 53(5), 2011.

[27] K. Tan, J. Crampton, and C. A. Gunter. The
Consistency of Task-Based Authorization Constraints
in Workflow Systems. In Proceedings of the 17th IEEE
workshop on Computer Security Foundations, June
2004.

[28] R. K. Thomas and R. S. Sandhu. Task-Based
Authorization Controls (TBAC): A Family of Models
for Active and Enterprise-Oriented Autorization
Management. In Proceedings of the IFIP TC11
WG11.3 Eleventh International Conference on
Database Securty XI: Status and Prospects, August
1997.

[29] W. M. P. van der Aalst, M. Rosemann, and
M. Dumas. Deadline-based Escalation in
Process-Aware Information Systems. Decision Support
Systems, 43:492–511, March 2007.

[30] J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC -
A Workflow Security Model Incorporating Controlled
Overriding of Constraints. International Journal of
Cooperative Information Systems (IJCIS), 12(4), 2003.

[31] B. Weber, S. Rinderle, and M. Reichert. Change
Patterns and Change Support Features in
Process-Aware Information Systems. In International
Conference on Advanced Information Systems
Engineering (CAiSE), 2007.

[32] C. Wolter, A. Schaad, and C. Meinel. Task-Based
Entailment Constraints for Basic Workflow Patterns.
In Proceedings of the 13th ACM symposium on Access
control models and technologies (SACMAT), 2008.


	Introduction
	Generic Metamodel for Process-Related Break-Glass Policies
	Related Work
	Conclusion
	References

