
TESTING POLICY-BASED SYSTEMS WITH SCENARIOS

Mark Strembeck

Institute of Information Systems, New Media Lab

Vienna University of Economics and Business (WU Vienna)

Austria

mark.strembeck@wu.ac.at

ABSTRACT

Policy-based systems consist of interacting software arti-

facts and, at first glance, can be tested as any other soft-

ware system. In a policy-based system, however, the be-

havior of system entities may change dynamically and fre-

quently, depending on the policy rules governing this be-

havior. Therefore, policy-based systems demand for a test-

ing approach that especially allows for the testing of dy-

namically changing system behavior. Thus, testing of pol-

icy rules has to check if the behavior that is actually en-

forced by a set of policies, conforms to the intended be-

havior of the corresponding system entities. Scenarios are

an important means to specify behavior of software enti-

ties. In this paper, we introduce an approach to test policy-

based systems with scenarios, and present an (embedded)

domain-specific language for scenario-based testing.

KEY WORDS

Policy-based systems, scenario-based testing

1 Introduction

In the information systems context, Policies are rules gov-

erning the choices in behavior of a (software) system [22].

They enable the dynamic parametrization of behavior in

a system – without changing the system entities inter-

preting and enforcing these rules. The complexity of to-

day’s distributed information systems results in high ad-

ministrative efforts which become even worse for grow-

ing/expanding systems. Policy-based systems are auto-

nomic (self-managing) in a way that they autonomously

determine which policies must be applied to a certain man-

agement situation. Therefore, policies have become a pop-

ular approach to cope with the increasing complexity of

system management (see, e.g., [2, 29, 30, 32]).

Each policy language is in essence a domain-specific

language (DSL) (see, e.g., [23, 26, 33]) that enables the def-

inition of policy rules. Policy languages thus combine the

advantages of DSLs and policy-based system management.

They are a means for the parametrization and behavioral

configuration of software-based systems. In other words,

they allow to dynamically change the behavior of software

components, without changing the implementation of these

components. In principle, policy-based management can

be added to each software-based system. However, most

benefits are achieved if the corresponding software system

is designed to be a policy-based system from the begin-

ning, of course. In this case, each software component in

the system is explicitly build for policy-based management.

System engineers then define tailored policy languages for

the different target domains (e.g. for system backups, ac-

cess control, or quality-of-service policies) which are used

to (dynamically) govern the behavior of the components in

the system. Moreover, if a system is designed for policy-

based management, it is possible to successively define ad-

ditional policy languages for other target domains.

Policy language(s)

Policy rules

Software infrastructure for policy-based management

Figure 1. Test layers of policy-based systems

Figure 1 shows the test layers of policy-based sys-

tems. The bottom layer, includes a number of interact-

ing software components that provide the infrastructure for

policy-based management. The next layer includes policy

rules that govern the behavior of system entities. Finally,

the topmost layer in Figure 1 represents one or more policy

language(s). To thoroughly test a policy-based system, we

have to test each of these layers as well as inter-layer de-

pendencies. Being a DSL, each policy language is based on

a language (meta) model, including static and dynamic se-

mantics1. Thus, testing policy languages especially has to

verify that all policy expressions that are defined via a pol-

icy language conform to the static and dynamic semantics

of this policy language.

One of the main characteristics of policy-based sys-

tems is that the runtime behavior of system entities can be

changed dynamically, without changing or re-starting the

system. This is a significant difference to other software

systems. Thus, a testing mechanism for policy-based sys-

tems must enable the testing of runtime behavior induced

by dynamically changing policies.

1Similar to the fact that each (non-trivial) software system has an ar-

chitecture, no matter if the architecture is “good” or “bad”, each lan-

guage is based on a corresponding language (meta) model that defines the

language’s elements/alphabet and grammar, at least implicitly (see, e.g.,

[23, 26, 33])

Test caseTest suite Test scenario

Precondition
Postcondition

Expected result Test result

Test body

Setup sequence

Cleanup sequence

*1..
*1..

0..1

0..1 0..1

0..1

0..1

* *

*

*

1

checked against

returns

0..1

0..1

Figure 2. Concept formation: scenario-based testing

Because policies and scenarios are complementary ar-

tifacts (see [24]), scenario-based testing (see, e.g., [16, 20,

25]) is well-suited to meet the testing demands of dynamic

policy-based systems. Scenarios describe action and event

sequences and make process descriptions explicit. In soft-

ware engineering, scenarios are used to explore and to de-

fine (actual or intended) system behavior as well as to spec-

ify user needs (see, e.g., [1, 8]). Scenarios can be described

in many different ways and exist on different levels of ab-

straction (cf. [8]). When specifying a software system they

are defined with different types of models, such as UML

interaction models or UML activity models.

2 Scenario-based Testing

As it is almost impossible to completely test a complex

software system, one needs effective means to select rel-

evant test scenarios, express and maintain them, and auto-

mate tests whenever possible. Scenarios are a means to re-

duce the risk of omitting or forgetting relevant test cases,

as well as the risk of insufficiently describing important

tests (see, e.g., [16, 20, 25]). We especially follow the as-

sumption that if each design-level scenario is checked via

a corresponding test scenario, we reach a sound test cov-

erage of the most relevant system functions. Moreover, in

a thorough engineering approach, changes in behavior of

a system are first identified at the scenario level (see also

[8]). Thus, if a scenario changes, we can rapidly identify

affected test scenarios and to propagate the changes into the

corresponding test specifications.

A test scenario tests one particular behavioral facet

of a system. In the first place, it represents one particu-

lar action and event sequence which is specified through

the test body of the respective scenario. In addition to the

test body, each test scenario includes an expected result and

may include a number of preconditions and postconditions,

as well as a setup sequence and a cleanup sequence (see

Figure 2). When a test scenario is triggered, it first exe-

cutes the corresponding setup sequence. A setup sequence

includes an action sequence that is executed to set up a run-

time environment for the corresponding scenario, for ex-

ample a setup sequence may create several objects that are

required by the commands invoked through test body.

Next, the preconditions of the scenario are checked. If

at least one precondition fails, the test scenario is aborted

and marked as incomplete. In case all preconditions are

fulfilled, the test body is executed. In particular, the action

sequence in the test body produces a test result. This test

result is then checked against the expected result (for exam-

ple using binary infix operators as =, ≥, or ≤). If the check

fails, the test scenario is aborted and marked as incomplete.

In case the check is successful, the postconditions of the

scenario are checked. Again, if at least one postcondition

fails, the test scenario is aborted and marked as incomplete.

If all postconditions are fulfilled, the cleanup sequence is

called and the scenario is marked as complete. A cleanup

sequence includes an action sequence that is executed to

undo changes that were made during the test scenario. For

example, the cleanup sequence can delete objects that were

created by the setup sequence.

Each test scenario is part of a test case. In particu-

lar, a test case consists of one or more test scenarios and

may include a number of test case preconditions and test

case postconditions, as well as corresponding setup and

cleanup sequences (see Figure 2). When a test case is

triggered, it first executes the respective setup sequence.

The runtime structures produced by the setup sequence are

then available to all test scenarios of the corresponding test

case. Subsequently, the preconditions of the test case are

checked. Similar to test scenarios, a test case is aborted and

marked as incomplete if one of its preconditions or post-

conditions fails. Next, each test scenario of the test case

is executed as described above. If at least one test scenario

is incomplete, the corresponding test case is also marked as

incomplete. After the test scenarios, the test case’s postcon-

ditions are checked before the test case cleanup sequence

is executed. Similar to the scenario cleanup sequence, the

test case cleanup sequence is executed each time the corre-

sponding test case is triggered. Each test case is part of a

test suite (see Figure 2) and a test suite includes one or more

test cases. Furthermore, a test suite may have an own setup

sequence and a cleanup sequence. The runtime structures

produced by the test suite setup sequence are available to

all test cases of the corresponding suite.

3 Testing Policy-based Systems

In the context of policy-based system management, a man-

aged object (or managed entity) is an object whose behav-

ior is controlled via policy rules. Thus, policies refer to

managed objects and to test policy rules we define intended

system behavior via action and event sequences that have

well-defined observable effects on managed objects – such

as the invocation of a certain method, the controlled ma-

nipulation of a certain variable, or sending and receiving of

a particular message over a network, for example. Subse-

quently, these sequences are executed and it is checked if

the actual (policy governed) behavior of the respective sys-

tem entities yields the exact effects specified through the

test sequences. For the purposes of this paper, we subdivide

testing of policy-based systems in policy runtime testing

(Section 3.1), testing of policy language semantics (Sec-

tion 3.2), and user acceptance testing of policy languages

(Section 3.3).

3.1 Policy Runtime Testing

A test suite for policy runtime testing sets up a well-defined

runtime environment and specifies test scenarios that define

typical usage patterns of the system. Then the test scenar-

ios are executed to check if the policy controlled behavior

of the corresponding system entities conforms to the ex-

pected/intended behavior. Figure 3 depicts the process of

policy runtime testing.

Specify policy

rules

Specify test scenarios

for policies
Policies Policies Policy

tests

Policy

tests

Run test

scenarios

[Missing or failed test scenarios]

[Testing completed]
Policy

tests

Policy

rules

Policy runtime testing

Figure 3. Policy runtime testing

Example test scenarios for policy runtime testing are:

• Context: hospital information system. A primary care

physician (respectively a software agent representing

the physician) legitimately tries to access a certain pa-

tient record. The test scenario then checks if the legit-

imate request is actually granted through the (autho-

rization) policies of the system.

• Context: e-learning and teaching system. In an online

exam, a student illegitimately tries to access another

student’s test realm. A test scenario may then check,

for example, that a) the access request is denied and

b) an obligation policy is discharged which forces an

“exam observer” object to send a message to the cor-

responding teacher to further investigate the incident.

• Context: online brokerage system. The price of a cer-

tain company share listed at the New York Stock Ex-

change drops below a predefined value. The test sce-

nario checks if a respective obligation policy is dis-

charged which forces the “stop loss observer” object

to sell the corresponding stock.

However, most often it is not possible to perform test

runs on live systems. To actually test the behavior of pol-

icy controlled system entities, test scenarios thus require a

controlled runtime environment which allows to simulate

the corresponding test situation. Therefore, we use mock

objects in test scenarios (see Figure 4).

Test scenario

Policy Managed object

**

governs behavior

Mock object
*1.. *1..

impersonate

*1..

*0..

uses

tests

*1..

*

Figure 4. Concept formation: policy runtime tests

A mock object (see [5, 13]) is an object that imperson-

ates a certain system entity, in particular a certain managed

object. The mock object is a lightweight object (compared

to the system entity it impersonates) that simulates some

behavioral aspects of the corresponding impersonated sys-

tem entity. Thus, mock objects are always used for be-

havior verification. With mock objects we can rapidly set

up testing environments to check if the policy rules to be

tested actually induce the correct (intended) behavior on

the respective system entities.

3.2 Testing Policy Language Semantics

A semantics test checks if a certain policy expression yields

the exact behavior induced by the corresponding policy lan-

guage’s static and dynamic semantics. In other words, the

static and dynamic semantics of the policy language must

never be violated. This means that semantics tests check

actual (platform-specific) policy rules resulting from pol-

icy expressions that are specified via the respective policy

language.

In general, semantics tests can be subdivided into

static semantics tests and dynamic semantics tests. Static

semantics tests check “semantic invariants”. This means,

they verify that the policy language’s meta-model, includ-

ing additional invariants on meta-model elements (see, e.g.,

[26]), are not violated and hold at any time. For example,

testing of static semantics includes syntax checking during

or after parsing the policy language expressions. Testing of

dynamic semantics verifies that the language commands of

a policy language behave exactly as specified. This means,

the corresponding test scenarios check if a certain language

command exactly yields the specified results. For example,

in a role-based access control policy language, we have to

test if the “createRole” command actually creates a role ob-

ject, or if the “roleSubjectAssign” command correctly as-

signs a role to a subject.

Moreover, it is important to understand the differ-

ences between policy runtime testing (see Section 3.1) and

testing of policy language dynamic semantics. In contrast

to dynamic semantics testing, policy runtime testing veri-

fies the correct behavior of platform-specific policy rules

(see Section 3.1). The differences between policy runtime

testing and dynamic semantics testing are thus similar to

the differences between testing a general purpose program-

ming language (e.g. C, C#, Java, Perl, Ruby, or Tcl) and

testing actual programs written in that programming lan-

guage. With respect to this analogy, the policy language

then refers to the programming language and actual poli-

cies (respectively platform-specific policy artifacts) refer to

the program.

3.3 User Acceptance Test

User acceptance testing checks if a software product is

ready for deployment and operational use (see, e.g., [10]).

In particular, the developers and users (the domain experts)

agree upon a set of acceptance criteria that must be met

by the respective software application. Subsequently, these

criteria are checked to validate and verify the system’s

functionality. Scenarios are a popular means to describe

behavior-based acceptance tests (see, e.g., [6, 7]). Scenar-

ios on a user level then describe the action and event se-

quences that must be supported by the corresponding sys-

tem (see also [8]). Moreover, the user-level acceptance

tests (defined by domain experts) can be refined to exe-

cutable test scenarios. Using this technique, user accep-

tance testing can be automated to a certain degree (see, e.g.,

[11, 14, 25, 27]).

Moreover, agile software engineering methods reg-

ularly apply scenario-based techniques, such as use cases

and user stories, to model user requirements. In each feed-

back loop the developers and domain experts then check

the existing test scenarios, add new test scenarios, or adapt

test scenarios if necessary (see, e.g., [12, 15]).

User acceptance testing of a policy language has to

validate that the policy language being build, meets the

needs of the domain experts. In particular, we have to en-

sure that the policy language’s expressiveness is adequate

for the respective target domain, and that the concrete syn-

tax of our policy language is convenient to use. There-

fore, user acceptance testing is conducted in close coop-

eration with domain experts (as physicians and nurses for

the health care domain; analysts, traders, and controllers

for the financial services domain; or network specialists for

the quality-of-service domain).

This way we establish multiple feedback cycles and

make sure that the change requests of domain experts di-

rectly enter the engineering process. The close coopera-

tion of software engineers and domain experts then yields

a technically sound policy language with a user interface

(the concrete syntax, see, e.g., [26]) which is tailored to

the needs of domain experts. User acceptance testing is

therefore just as important as technical testing of a policy

language (which is described in the above sections).

4 STORM: A DSL for Scenario-Based Run-

time Testing

STORM (Scenario-based Testing of Object-oriented Run-

time Models) is an embedded DSL (see, e.g., [26, 33]) im-

plemented in eXtended Object Tcl (XOTcl) [17]. STORM

provides all features of scenario-based testing (see Section

2) and can, in principle, be used to test arbitrary software

components. However, as a DSL for scenario-based test-

ing, it is especially well-suited for policy runtime testing

(see Section 3.1) and testing of a policy language’s (dy-

namic) semantics (see Section 3.2).

As an embedded DSL, STORM directly benefits from

the dynamic language features of XOTcl. The extensive

reflection options of XOTcl allow to introspect the run-

time structures of test cases and test scenarios. In addition,

STORM preconditions, postconditions, test bodies, setup

sequences, and cleanup sequences may include arbitrary

Tcl/XOTcl source code and thus allows for an extensive

flexibility and supports rapid test development. For exam-

ple, native XOTcl objects can directly be used as mock ob-

jects. Moreover, because XOTcl is a homoiconic language2

one can dynamically generate code in and from STORM

test scenarios, e.g. to define or manipulate mock objects at

runtime. In addition, as an embedded DSL, STORM can be

extended in a straightforward manner via the flexible lan-

guage features of its host language, such as mixins [34] for

example. Thereby, STORM can serve as a base DSL for

a family of other scenario-based testing DSLs that provide

additional features required by specialized testing domains,

such as testing of distributed/remote components or Web-

based testing for example.

Figure 5 shows four UML interaction diagrams that

depict the internal call sequences of STORM test cases

and test scenarios (see also Section 2). When the

runTestScenarios command is called, the respective test

case first executes the corresponding setup script (the setup

script defines the setup sequence of a STORM test case, see

2In homoiconic languages the source code is represented via the (or

one of the) language’s fundamental data type(s). Thereby, programs

written in homoiconic languages can generate new and/or adapt existing

source code dynamically to redefine or extend program behavior at run-

time.

: TestCase

runTestScenarios()

[existSetupScript=true]

evaluateSetupScript()

[for each TestScenario]loop

: TestScenario

checkPreConditions()

ref

TestScenario_CheckPreConditionspre_result

[pre_result=failed]break

test()

ref
TestScenario_Test

testbody_result

checkPostConditions()

ref

TestScenario_CheckPostConditionspost_result

opt [existCleanupScript()=true]

cleanup()

failed:testbody

[testbody_result=failed]break

opt [existCleanupScript()=true]

cleanup()

cleanup()

ref
TestScenario_Cleanup

[post_result=failed]break

opt [existCleanupScript()=true]

cleanup()

cleanup()

ref
TestScenario_Cleanup

ref
TestScenario_Cleanup

cleanup()

success

opt [existCleanupScript()=true]

cleanup()

opt

sd TestCase_RunTestScenarios

failed: precondition

failed:postcondition

: TestScenario

test()

[existTestBody()=true]alt

evaluateTestBody()

success

alt [existExpectedResult()=true]

evaluation_result

isEqual(expected_result

 evaluation_result)

test_result

[else]

success:expected_result undefined

[else]
failed:test_body undefined

alt [test_result=true]

failed [else]

sd TestScenario_Test

: TestScenario

checkPreConditions()

[for each precondition]loop

evaluatePreCondition()

evaluation_result

break [evaluation_result=failed]

success

failed

sd TestScenario_CheckPreConditions

: TestScenario

cleanup()

opt [existCleanupScript()=true]

evaluateCleanupScript()

sd TestScenario_Cleanup

Figure 5. Internal call sequences of STORM test cases

also Section 2). Next, the test case evaluates its test sce-

narios. For each test scenario, the respective test case first

checks if all preconditions hold. In case at least one pre-

condition is violated, the test run is stopped. The test case

then executes the test case cleanup script (the cleanup script

defines the cleanup sequence of STORM test cases, see also

Section 2) and returns a “failed” message indicating the vi-

olated precondition that caused the failure.

In case all preconditions of a test scenario hold, the

test command of the respective test scenario is called. The

test command then evaluates the test body. If the actual

result of the test body (i.e. the value(s) or the object re-

turned by the test body) matches the expected result of this

test scenario a “success” message is returned, otherwise the

test method returns a “failed” message (see Figure 5). A

failed test body again stops the test run and triggers the

cleanup script. If the evaluation of the test body is success-

ful, however, the next step is to check the test scenario’s

postconditions. If at least one postcondition is violated the

test run is stopped. In case all postconditions hold, the com-

plete procedure is repeated for the next test scenario. In

case all test scenarios are successfully executed, the cor-

responding test case returns a “success” message (see Fig-

ure 5). Note that (differing from Section 2) one may also

choose not to define the expected result of a STORM test

scenario. In this case, the evaluation of the test body re-

sults in a “success” message, with an additional comment

indicating that the expected result for this scenario is unde-

fined (see also Figure 5). This option is sensible a) to define

test scenarios were the result of the test body shouldn’t be

tested or b) for test scenarios were it is difficult to predeter-

mine the result of the test body (e.g. for functions choosing

a random object from an object pool). All checks of the

test scenario are then included in the corresponding pre and

postconditions.

1: ::STORM::TestScenario someIdentifier

2: -test body {

3: arbitrary Tcl/XOTcl code }

4: -expected result someString

5: -preconditions {

6: list of arbitrary Tcl/XOTcl scripts

7: to check preconditions }

8: -postconditions {

9: list of arbitrary Tcl/XOTcl scripts

10: to check postconditions }

11: -cleanup script {

12: arbitrary Tcl/XOTcl code }

Above we have the skeleton of a STORM test sce-

nario. Because of the page restrictions, we had to cut the

detailed example from the paper. However, on our Web

page we provide an extended version of this paper where

we reinserted the example. The STORM DSL syntax spec-

ification is found in Appendix A.

5 Related Work

In [28] Tsai et al. present an object-oriented and scenario-

based test framework implemented in Java. In particular,

they extended the JUnit test environment to load scenario

information from a database before running test scenarios.

Another scenario-based testing extension for JUnit is pre-

sented by Wittevrongel and Maurer [31]. They introduce

SCENTOR as an approach for scenario-based testing of e-

business applications. Wittevrongel and Maurer use UML

1.x sequence diagrams to define scenarios. These sequence

diagrams then serve as input to write actual tests. In [21],

Sadilek and Weißleder suggest an approach to test the ab-

stract syntax of DSLs. In particular, they generate JUnit

tests to check positive and negative example models for

conformance with the respective abstract syntax. A test

passes if the corresponding positive example model is ac-

tually an instance of the abstract syntax while the negative

example model is not.

King et al. [9] propose a framework for self-testing

of autonomic computing systems (ACS). In particular, they

introduce so called “test manager components” that com-

municate with an ACS to dynamically validate change re-

quests. This means, each time an ACS receives a change re-

quest for a managed resource, the corresponding test man-

ager component needs to ensure that all functional and non-

functional requirements are still being met after the change.

Based on the results of this validation procedure, the ACS

either accepts or rejects the change request. FIT for rules

[4] is a testing framework for JBoss rules [19]. FIT for rules

is built on FIT (Framework for Integrated Testing) and cap-

tures test scenarios in the form of HTML tables. In particu-

lar, all input data (functions calls, parameters, etc.) and as-

sertions (e.g. expected results) of a test scenario are defined

using a tabular layout. These test scenarios are then passed

to the JBoss rule engine. Finally, the results produced by

the rule engine are compared to the expected results.

In [3], Dietrich and Paschke suggest an approach to

apply test-driven development to the definition of business

rules. In [18], Paschke further discusses the verification,

validation, and integrity checking of policies via test-driven

development techniques. In [25], Zdun and Strembeck pre-

sented an approach for the use case and scenario-based test-

ing of software components. Tests are derived from use

case scenarios via continuous refinement. This means, tests

are defined as a formalized and executable description of

a requirements level scenario. The use case and test in-

formation can be associated with a software component as

embedded component metadata. In particular, the approach

provides a model-based mapping of requirements level sce-

narios to test scenarios, as well as (runtime) traceability of

these links.

Ryser and Glinz [20] present the SCENT method.

They describe natural language scenarios which are then

formalized using a state chart notation. The state charts

are annotated with additional test relevant information and

provide the basis for the derivation of test cases.

6 Conclusion

In this paper, we presented an approach to test policy-

based systems with scenarios. In particular, we imple-

mented STORM as an embedded DSL for scenario-based

runtime testing. It allows for the testing of dynamically

changing system behavior and thereby directly supports

testing of policy-based systems. However, STORM does

not prescribe any particular type of development or test-

ing process, and can be integrated with different testing ap-

proaches including test-driven development of policy lan-

guages and/or policy rules.

We used STORM to define test suites for a general

purpose policy framework (71 test cases including 439 test

scenarios), a policy decision point for RBAC policies (25

test cases including 322 test scenarios), and a number of

different applications using these components.

To test policy rules with STORM, we define test sce-

narios which specify intended system behavior via action

and event sequences that have well-defined observable ef-

fects on test objects (e.g. mock objects specifically de-

signed for testing purposes). Subsequently, the correspond-

ing test scenarios are executed and STORM checks if the

actual (policy governed) behavior of the respective system

entities yields the exact effects defined through the test se-

quences.

A STORM DSL Synatx

STORM::TestSuite

suite = "STORM::TestSuite" , identifier ,

[" -setup_script" , " {" , script , "}"],

[" -cleanup_script" , " {" , script , "}"],

[" -detailed_report", (1 | 0)],

[" -halt_on_first_error", (1 | 0)],

[" -order" {identifier}];

identifier = letter | digit | other ,

{letter | digit | other} ;

letter = "a"|"b"|..."z"|"A"|"B"|..."Z" ;

digit = "0"|"1"|"2"|..."9" ;

other = "-"|":"|"_" ;

script = "an arbitrary Tcl/XOTcl script" ;

STORM::TestCase

test_case = "STORM::TestCase" , identifier ,

[" -setup_script" , " {" , script , "}"],

[" -cleanup_script" , " {" , script , "}"],

[" -preconditions" , " {" , condition_list , "}"],

[" -postconditions" , " {" , condition_list , "}"],

[" -order" {identifier}];

condition_list = condition , {condition} ;

condition = "{" , script , "}" ;

identifier = letter | digit | other ,

{letter | digit | other} ;

letter = "a"|"b"|..."z"|"A"|"B"|..."Z" ;

digit = "0"|"1"|"2"|..."9" ;

other = "-"|":"|"_" ;

script = "an arbitrary Tcl/XOTcl script" ;

STORM::TestScenario

test_scenario = "STORM::TestScenario" , identifier ,

" -test_body" , " {" , script , "}",

" -expected_result" , "" , string ,

[" -cleanup_script" , " {." , script , "}"],

[" -preconditions" , " {" , condition_list , "}"],

[" -postconditions" , " {" , condition_list , "}"];

condition_list = condition , {condition} ;

condition = "{" , script , "}" ;

identifier = string ;

string = letter | digit | other ,

{letter | digit | other} ;

letter = "a"|"b"|..."z"|"A"|"B"|..."Z" ;

digit = "0"|"1"|"2"|..."9" ;

other = "-"|":"|"_"| " ";

script = "an arbitrary Tcl/XOTcl script" ;

References

[1] J. Carroll. Five Reasons for Scenario-Based Design.

In Proc. of the IEEE Annual Hawaii International

Conference on System Sciences (HICSS), 1999.

[2] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.

The Ponder Policy Specification Language. In Proc.

of the 2nd International Workshop on Policies for Dis-

tributed Systems and Networks (POLICY), January

2001. Lecture Notes in Computer Science (LNCS),

Vol. 1995, Springer Verlag.

[3] J. Dietrich and A. Paschke. On the Test-Driven Devel-

opment and Validation of Business Rules. In Proc. of

the International Conference on Information Systems

Technology and its Applications (ISTA), May 2005.

[4] FIT for rules – Homepage. http://fit-for-

rules.sourceforge.net/, [accessed September 2010].

[5] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes.

Mock roles, not objects. In Companion to the 19th an-

nual ACM Conference on Object-Oriented Program-

ming Systems, Languages, and Applications (OOP-

SLA), October 2004.

[6] P. Hsia, J. Gao, J. Samuel, D. Kung, Y. Toyoshima,

and C. Chen. Behavior-Based Acceptance Testing of

Software Systems: A Formal Scenario Approach. In

Proc. of the International Computer Software and Ap-

plications Conference (COMPSAC), November 1994.

[7] P. Hsia, D. Kung, and C. Sell. Software requirements

and acceptance testing. Annals of Software Engineer-

ing, 3, 1997.

[8] M. Jarke, X. Bui, and J. Carroll. Scenario Manage-

ment: An Interdisciplinary Approach. Requirements

Engineering Journal, 3(3/4), 1998.

[9] T. King, D. Babich, J. Alava, P. Clarke, and

R. Stevens. Towards Self-Testing in Autonomic Com-

puting Systems. In Proc. of the International Sympo-

sium on Autonomous Decentralized Systems (ISADS).

IEEE Computer Society, March 2007.

[10] H. Leung and P. Wong. A study of user acceptance

tests. Software Quality Journal, 6(2), 1997.

[11] K. Leung and W. Yeung. Generating User Acceptance

Test Plans from Test Cases. In Proc. of the Interna-

tional Computer Software and Applications Confer-

ence - Vol. 2- (COMPSAC). IEEE Computer Society,

July 2007.

[12] M. Lippert, P. Becker-Pechau, H. Breitling, J. Koch,

A. Kornstädt, S. Roock, A. Schmolitzky, H. Wolf, and

H. Züllighoven. Developing Complex Projects Us-

ing XP with Extensions. IEEE Computer, 36(6), June

2003.

[13] T. Mackinnon, S. Freeman, and P. Craig. Endo-

testing: Unit testing with mock objects. In Extreme

programming examined. Addison-Wesley, 2001.

[14] R. Martin. The Test Bus Imperative: Architectures

That Support Automated Acceptance Testing. IEEE

Software, 22(4), 2005.

[15] G. Melnik, F. Maurer, and M. Chiasson. Executable

Acceptance Tests for Communicating Business Re-

quirements: Customer Perspective. In Proc. of the

AGILE Conference. IEEE Computer Society, July

2006.

[16] C. Nebut, F. Fleurey, Y. L. Traon, and J. Jezequel.

Automatic Test Generation: A Use Case Driven Ap-

proach. IEEE Transactions on Software Engineering

(TSE), 32(3), March 2006.

[17] G. Neumann and U. Zdun. XOTcl, an Object-

Oriented Scripting Language. In Proc. of Tcl2k: 7th

USENIX Tcl/Tk Conference, February 2000.

[18] A. Paschke. Verification, Validation and Integrity of

Distributed and Interchanged Rule Based Policies and

Contracts in the Semantic Web. In Proc. of the Work-

shop on Semantic Web Policy, November 2006.

[19] M. Proctor, M. Neale, et al. JBoss Drools Documen-

tation. Version 5.1, http://labs.jboss.com/drools/, Au-

gust 2010.

[20] J. Ryser and M. Glinz. A Scenario-Based Approach to

Validating and Testing Software Systems Using Stat-

echarts. In Proc. of the International Conference on

Software and Systems Engineering and their Applica-

tions (ICSSEA), December 1999.

[21] D. Sadilek and S. Weißleder. Towards Automated

Testing of Abstract Syntax Specifications of Domain-

Specific Modeling Languages. In Proc. of the

Workshop on Domain-Specific Modeling Languages.

CEUR Workshop Proceedings, Vol.324, http://ceur-

ws.org, March 2008.

[22] M. Sloman. Policy Driven Management for Dis-

tributed Systems. Journal of Network and Systems

Management, 2(4), Plenum Press, December 1994.

[23] T. Stahl and M. Völter. Model-Driven Software De-

velopment. John Wiley & Sons, 2006.

[24] M. Strembeck. Embedding Policy Rules for

Software-Based Systems in a Requirements Context.

In Proc. of the 6th IEEE International Workshop on

Policies for Distributed Systems and Networks (POL-

ICY), June 2005.

[25] M. Strembeck and U. Zdun. Scenario-based Com-

ponent Testing Using Embedded Metadata. In Proc.

of the Workshop on Testing of Component-based Sys-

tems (TECOS), September 2004. Lecture Notes in

Informatics (LNI), Vol. 58.

[26] M. Strembeck and U. Zdun. An Approach for the Sys-

tematic Development of Domain-Specific Languages.

Software: Practice and Experience (SP&E), 39(15),

October 2009.

[27] D. Talby, O. Nakar, N. Shmueli, E. Margolin, and

A. Keren. A Process-Complete Automatic Accep-

tance Testing Framework. In Proc. of the IEEE In-

ternational Conference on Software - Science, Tech-

nology & Engineering (SWSTE), February 2005.

[28] W. Tsai, A. Saimi, L. Yu, and R. Paul. Scenario-based

Object-Oriented Testing Framework. In Proc. of the

Third International Conference on Quality Software

(QSIC). IEEE Computer Society, November 2003.

[29] A. Vedamuthu, D. Orchard, F. Hirsch,

M. Hondo, P. Yendluri, T. Boubez, and U. Yal-

cinalp. Web Services Policy 1.5 - Framework.

http://www.w3.org/TR/ws-policy, September 2007.

W3C Recommendation.

[30] M. Winslett. Policy-driven Distributed Authoriza-

tion: Status and Prospects. In Proc. of the Interna-

tional Workshop on Policies for Distributed Systems

and Networks (POLICY), June 2007.

[31] J. Wittevrongel and F. Maurer. SCENTOR: Scenario-

Based Testing of E-Business Applications. In Proc. of

the IEEE International Workshops on Enabling Tech-

nologies (WETICE), June 2001.

[32] R. Yavatkar, D. Pendarakis, and R. Guerin. A

Framework for Policy-based Admission Control.

IETF, RFC 2753 (Informational), http://ietf.org/rfc/

rfc2753.txt, January 2000.

[33] U. Zdun and M. Strembeck. Reusable Architectural

Decisions for DSL Design: Foundational Decisions

in DSL Projects. In Proc. of the 14th European Con-

ference on Pattern Languages of Programs (Euro-

PLoP), July 2009.

[34] U. Zdun, M. Strembeck, and G. Neumann. Object-

based and class-based composition of transitive mix-

ins. Information and Software Technology, 49(8), Au-

gust 2007.

