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Abstract European electricity companies trade electric power across
country and market boundaries. So called schedules are data sets that
define the terms and conditions of such power trades. Different propri-
etary or standardized formats for schedules exist. However, due to a
wide variety of different trading partners and power markets, a number
of problems arise which complicate the standardized exchange of sched-
ules. In this paper, we discuss a project that we conducted to develop a
domain-specific language (DSL) for scheduling in a large Austrian elec-
tricity company running more than 140 power plants. The DSL is written
in Ruby and provides a standardized programming model for specifying
schedules, reduces code redundancy, and enables domain experts (“sched-
ulers”) to set up and to change market definitions autonomously.
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1 Introduction

The VERBUND AG1 is an Austrian electricity company and one of the largest
producers of electricity from hydropower in Europe. VERBUND AG has about
3.300 employees and is running more than 140 power plants in Austria and other
European countries (125 of which are hydropower plants) to serve about one
million private households and corporate customers. The VERBUND Trading
AG (VTR)2 is a subsidiary company of VERBUND AG. VTR is the operating
unit for the optimization of the power plants, for international power trading,
and for the scheduling process of the VERBUND group and its subsidiaries. VTR
trades about 500 GWh of electrical power on a daily basis (500 GWh correspond
to an annual electricity consumption of some 120000 households). In the VTR
context, schedules are structured data sets which contain the technical details

1 http://www.verbund.com/cc/en/
2 http://www.verbund.com/cc/en/about-us/our-business-divisions/trading
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about the terms, the conditions, and the volumes of the power deals made within
or across 21 European power markets in 18 countries.

A transmission system operator (TSO) is a company that runs an infrastruc-
ture (the power grid) for transporting (electrical) energy. The scheduling process
ensures the transfer of schedules to the TSO concerning the amount of power
traded in each of the TSO’s markets. The liberalization of the energy market
(which occurred in 2001 in Austria) requires that the exchange of the schedules
between the TSO and its trading partners be carried out in a standardized way
so as to guarantee the quick and automated processing of schedules and to ensure
the maintenance of a stable power grid.

However, due to the large number of different energy markets and trading
partners, VTR faces a number of problems with respect to a standardized ex-
change of schedules. The first problem is the heterogeneous set of applications
and scripts that VTR currently uses to carry out its scheduling process. The
legacy system that VTR employs to support the scheduling process has been in
use since 2007. The system is based on a number of different Microsoft Excel
workbooks and embedded spreadsheet applications (Visual Basic for Applica-
tions, VBA, macros). The bulk of the source code used for data retrieval, calcu-
lations, and format-building logic is the same in every workbook (code clones).
There are, however, differences between the workbooks arising from the imple-
mentation of the local market rules (rules that are specific for a given power
market) in each workbook. Therefore, the maintenance of the code requires sub-
stantial effort because, in order to maintain a consistent code basis, every change
in one workbook must be incorporated into every other workbook. VTR reports
on having spent an average of 30 person-days per year since 2007 on maintain-
ing and further-developing the existing scheduling-support system. The second
problem is to develop the technical knowledge needed to make changes to the
workbooks throughout the organization and to render the scheduling system
adaptable by non-technical domain experts (“schedulers”). At the same time,
any scheduler wishing to make changes must comply with company requirements
and work within the existing system landscape.

In this context, we developed a scheduling system based on a domain-specific
language (DSL) to address the above problems. The project started in January
2011 and has evolved over 2.5 years. For this project, we applied an extraction-
based DSL development style [15] to systematically define a DSL for scheduling
in the energy sector based on the existing scheduling system. In the remainder,
we report on this development project and its exploratory evaluation by first
providing some background on the scheduling domain (see Section 2). We then
document the DSL design and implementation in Section 3. Based on an early
case-study evaluation reported on in Section 4, we review the achieved benefits
of the DSL-based system refactoring (see Section 5) and the lessons learned from
applying an extraction-based DSL development style (see Section 6).
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2 Background: Scheduling Power Deals

During the scheduling process, VTR must handle different representation for-
mats of schedules which detail the amounts of power VERBUND AG produces,
the amounts of power it imports, the amounts it exports (deliveries that cross
market boundaries), and the amounts of power it trades in internal areas (de-
liveries within a market). Furthermore, VTR must deliver those schedules to
various market-specific recipients, including TSOs. Each market has its own
schedule. Runtime occurrences of schedules are referred to as schedule messages

(messages, hereafter), with each message having its particular format, covering
a particular scope, and relating to a particular mode of transmission. The most
common message formats are ESS (ETSO Scheduling System [5,6,7]) and KISS
(Keep It Small and Simple [4]). ESS is a special-purpose XML-based data for-
mat, while KISS is based on Microsoft Excel. Moreover, for some markets VTR
must provide proprietary (mostly Excel based) formats. The scope of a partic-
ular schedule can cover market-internal power deliveries, market-external power
deliveries, or both. A schedule can be transmitted either via e-mail, FTP, Web
applications, Web services, or any combination of these. Figure 1 illustrates this
configuration space of schedules.

format

schedule
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SMTP

FTP

transport

market

......

ESS

KISS
custom WS-*

HTTP
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Legend:

mandatory feature

or-feature group
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Figure 1: Excerpt from the Scheduling Domain Model, depicted as Feature Dia-
gram [2].

There are some principles that every schedule follows. Every delivery or re-
ceipt relationship is called a time series. Every time series is identified by a set
of elements. Every schedule has the following elements (although the name for a
particular element may differ, depending upon the format used for the particular
schedule): In Area, Out Area, In Party, Out Party, and the Capacity Agreement
ID. There are other elements that may elaborate upon the time series but those
elements are not part of the distinct identification of a schedule. Each time series
also contains the delivery quantities of the traded power. A particular time series
covers either the amount of electrical power delivered to one particular customer
or the amount of power received from a supplier in one control area.
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The In and Out Area define the direction of the energy flow. The Out Area
is the market area the energy comes from and the In Area is the market area
to which the energy goes. For the identification of the areas, standardized codes
are used. Time series covering deliveries within a market area (i.e., an inter-
nal delivery) have the same In and Out Area code, while time series covering
deliveries across two market areas (i.e., external or cross border delivery) bear
the respective area code for each market. The concept of the trading border is
similar to geographical borders, except that a trading border only exists where
there are power lines in place that link two markets. There are, for example, four
different market areas within Germany but only three have a border with and
power lines that link to Austria. As a result, there are trading borders between
three of the German markets and the Austrian market. Another example is the
border between Austria and Slovakia. There is a geographical border, but, be-
cause there are no power lines connecting the two countries, there is no trading
border between them.

The In and Out Party elements define separately the party which delivers and
the party which receives the energy. The Capacity Agreement ID is only applied
to cross border deals and identifies capacity rights. The term “capacity right”
refers to the right to export or import power across a specified trading border.
On limited borders, i.e., borders with limited power transmission capacity, one
of the parties must have a capacity for the import or export of power. Although
the required market-specific formats may dictate differing usage of certain ele-
ments, VTR defines a core data schema and value ranges across markets and
across different formats. In some markets, however, VTR employs proprietary
message formats which are fully customized. Additionally, the message exchange
protocols used to transmit time series can vary as well. The usual ways used to
transmit such series are SMTP (with attachments) and HTTP POST (via a web
application).

The number of recipients to which VTR sends the schedule messages also
varies from market to market. The schedules for these markets contain informa-
tion about the power flows both across and within market borders. A manda-
tory recipient of any schedule is the TSO but recipients can include other official
power market parties, such as power or energy exchanges like the EPEX (Eu-
ropean Power Exchange) in Germany and France or market makers in general
like Borzen in Slovenia, or OTE in the Czech Republic. In Austria, there are
two recipients. One is the TSO (the Austrian Power Grid AG) which receives
only data concerning power flows across the country’s borders and the other
is the APCS (Austrian Power Clearing and Settlement AG), to which all the
transaction data inside the Austrian market are sent.

The daily transactions result in a high number of schedules. On an aver-
age day, the number of schedules may go as high as about 200. The types
of schedules that VTR generates include long-term, day-ahead, intra-day, and
post-scheduling schedules. Long-term schedules cover the time frame before D-1,
where D stands for the delivery day. That is, if the delivery day is June 14, every
schedule sent before June 13 is considered to be long term. The valid time frame
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for a specific market can be found in the local market rules. The time frame
for day-ahead usually begins the day before delivery and ends after the final
schedules for the delivery day are sent, which usually is on D-1 at about 14:30.
In our example that would be June 13, 14:30. Again, the valid time frame for a
specific market can be found in the local market rules. Intra-day schedules cover
the time frame between the start of intra-day (which is usually shortly after the
end of day-ahead) and the end of the delivery day. Post-scheduling schedules
cover the defined time frame after delivery.

At VTR, long-term and day-ahead schedules are handled by a group of 4
schedulers. Intra-day scheduling is handled by an intra-day trading team, which
handles both intra-day scheduling and controls the power plants. Post scheduling
is again handled by the schedulers group. For verifying data quality, the standing
data (e.g., market definitions) and the transaction data (as retrieved by executing
data queries in the trading system) entering a schedule message are subjected to
review processes. The standing data must undergo a double-check by a second
scheduler to ensure their correctness. The transaction data at VTR are double-
checked upon processing by the power trader and the back-office staff.

Table 1: Key Figures for the Legacy Scheduling System

Number of implemented power markets 18
Number of Excel workbooks 14
Avg. SLOC3 per workbook 1 500
Avg. market-specific SLOC3 per workbook 50

3 A DSL for Scheduling

In addition to implementing the domain of scheduling as analyzed in Section 2,
the DSL-based scheduling system sets out to address a number of objectives.
The following four goals resulted from the actual difficulties with the existing
scheduling system as experienced by administrator and schedulers at VTR.

Minimize Code Clones. In the existing scheduling system, 14 Excel work-
books generate different schedule types for 18 of the 21 markets (see Table 1).
For the remaining three markets, third-party schedule generators are used which
are not maintained by VTR. On average, there are about 1 500 source lines of
code (SLOC3; mainly VBA code) in each workbook, for a total of approximately
21 000 SLOC in the 14 workbooks. The average number of market-specific SLOC
per market is approximately 50, summing up to 700 lines in 14 workbooks.
Therefore, when comparing the code bases of the workbooks, the workbooks
share approximately 97% of their code bases. Only the remaining 3% are code

3 The source lines of code (SLOC) were measured using cloc [3].
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fragments specific to single markets. Specialization involves local market rules
relating to message generation, such as those used in the mapping of codes
(e.g., market-area codes). Such rules usually follow a certain default rule that
makes it easy for human beings to read and to understand them. In some cases,
however, certain values must differ from default rules, such as crossing in and
crossing out of a control area for cross-border energy deliveries. Table 2 exem-
plifies configuration data specific to the power market of the German company
“Rheinisch-Westfälische Elektrizitätswerks Aktiengesellschaft” (RWE).

Table 2: Schedule Configuration Specific to the RWE Market

Configuration point Configuration value(s)

Format ESS V2R3
Borders EON, ENBW, LU, AT, FR, CH
SenderIdentification 13XVERBUND1234-P
SenderRole A01
ReceiverIdentification 10XDE-RWENET—W
ReceiverRole A04

The numerous code clones make the workbooks hard to maintain over time.
Propagating the latest version of the code to every workbook is tedious and
time-consuming. For example, one basic step within the scheduling process is
the use of Business Objects reports provided by the SAP business intelligence
software [12] as part of the power-trading system. SAP Business Objects offers
a COM-based API for generating such reports. Whenever there are SAP ven-
dor upgrades, there are API changes affecting any client application such as the
workbooks. As a result, one must examine every workbook to reflect these API
changes. In the majority of shared workbook code, a second source of redun-
dancy are recurring configuration data, common to all or subsets of markets.
For example, the various input and output identifiers (e.g., file names, output
directory names for messages and temporary files) follow one naming convention.

Establish Participatory Maintainability. There are two main participant
roles in the existing scheduling process. On the one hand, there is the sched-
uler as the non-technical domain expert, and, on the other hand, there is the
administrator responsible for setting up new markets. The scheduler, as the do-
main expert, has a deep knowledge of the scheduling process, of the message
formats used, of the local market rules, and of the delivery modes for messages.
The administrator, as the primary workbook developer, knows the programming
logic and the design of the workbook code. In the legacy system, almost every-
thing from the GUI logic that governs the configuration to the business logic
has been included in the monolithic workbook code. This means, of course, that
the administrator is the only one who can make even the smallest changes or
amendments to the code. The objective, therefore, is to develop a system that
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will allow the schedulers to participate in implementing new markets, with new
rules, only requiring action by an administrator for non-routine tasks (e.g., code
changes due to new interface versions of SAP Business Objects).

Cover Standard and Custom Message Formats. For 18 of the 21 power
markets mentioned above, VTR uses standardized message formats, such as the
Excel-based KISS or the XML-based ESS formats. However, VTR must be able
to derive custom, market-local message formats from standard formats to ac-
commodate market rules deviating from the standards. The concrete format for
a market is usually a deviation from a standard format and may be defined by
the market operator or energy controlling authority. Occasionally, even the rules
set by a TSO may differ from the standard or officially advertised rules.

Integrate Refactored System into the Existing System Landscape. To
keep changes to the existing technical landscape at VTR to a minimum, the
DSL development should avoid the introduction of new software components.
Software components already in use in the existing scheduling process are Excel,
Business Objects, as well as VBA and VB.NET as frontend languages to .NET
as runtime platform.

Provide Uniform, but Variable Graphical User Interfaces (GUI). Each
workbook provides a unique UI form to the scheduler for entering configuration
data, such as the delivery date, delivery message, or the message format to use.
These scheduler forms tend to be narrowly focused and tailored to meet the
exact needs of each particular market. This is, however, not a flaw in the design
of the forms. Rather, the narrowness is simply a result of the extreme tailor-
ing towards scheduling needs in a particular market. Nevertheless, the deviating
form designs affect a scheduler’s ease to move between the workbooks negatively,
because they require the user to interpret and to understand every different user
form. The goal, therefore, was to develop a uniform user interface that would
contain cross-market functionality to run schedules, but which would allow the
scheduler either to activate or to deactivate GUI parts deemed necessary or un-
necessary for a given market.

Given these requirements and restrictions, it was decided to develop an em-
bedded DSL using Ruby as its host-language infrastructure. An embedded DSL
meant a minimal and non-invasive addition to the existing system landscape
without the need for adding software components, for example, for parsing and
integrating an external DSL. Besides, an embedded DSL provides for seamless
integration with the existing runtime infrastructure such as the SAP business
intelligence software (see, e.g., [15,19]). The dominant interface for domain users
(schedulers) was to remain a revised, form-based GUI with the embedded DSL
serving as an alternative backend syntax for maintenance tasks, rather than as a
complete replacement. Ruby was adopted because of its suitability for develop-
ing embedded DSLs (see, e.g., [8]) and its availability as IronRuby for .NET [9],
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including IDE support by Microsoft, which is the required development platform
at VERBUND Trading AG.

3.1 Language Model and Concrete Syntax

The language model and the concrete-syntax style were extracted from review-
ing the documentation, the code base, and auxiliary documents of the existing
software system [15]. The reviews were performed by the DSL design team con-
sisting of the three authors. The main domain abstractions, which constitute
the core language model, were identified by studying, first, the Excel workbooks
because they host the existing VBA source code and the existing market defi-
nitions. Second, Business Objects reports were investigated for the trading data
they provide and for the business logic represented by data queries. Third, there
are the standards documents defining the schedule-message formats, including
markup-schema definitions such as the ETSO Scheduling System formats [5,6,7].

Abstract Syntax. Figure 2a shows the conceptual language model of the DSL.
The key abstraction is the Message which represents a schedule in a specific mes-
sage format. A Market models a power market and records important market-
specific data such as the market symbol, border codes, and the allowed message
formats. Market can refer to one direct default Market whose configuration
data is inherited if not redefined. A MessageBuilder implements a generator
for a specific message format which specifies a Message in terms of construction
rules for a ScheduleHeader and a ScheduleColumn. The attributes of Sched-
uleHeader enter the message headers as required by the message format. A
ScheduleColumn represents the different time series which form the body of a
schedule message. The construction rules typically take the form of mappings
and, if needed, transformations between message elements (e.g., as specified by
the KISS and ESS message formats) and the elements of a given Market defi-
nition. Depending on the message representation (e.g., XML), the construction
rules may also specify the representation creation. For writing XML markup,
our DSL integrates with the Builder library available for Ruby [18].

Concrete Syntax. In the existing, workbook-based scheduling system, the con-
figuration data for markets and schedule messages are maintained in a rows-and-
columns spreadsheet format with assigning certain rows, columns, or individual
cells the role of meta-data stores identifying the meta-data type using a text la-
bel. Both roles, administrators and schedulers, performed their tasks using this
tabulated syntax. To meet the requirements of a uniform GUI for domain users
(i.e., schedulers) and to separate the user interfaces between administrators and
schedulers (see requirements above), a textual concrete-syntax for administra-
tors as primary users of the scheduling DSL was devised. Listing 2b shows the
Market definition for the control area RWE and an exemplary MessageBuilder

definition of the KISS message format, showing the assignment of a market-
name symbol, the six transmission network borders relevant for this market,
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(a) Core Language Model

Market :RWE do
@symbol = :RWE

@borders = [:EON ,:ENBW ,:LU ,:APG,
:FR ,:CH]

@requiredMessageTypes = [:KISS]

MessageBuilder :KISS do
schedule do

@OutArea = ""

@InArea = ""

@OutParty = ""

@InParty = ""

@Oasis = ""

@InitialTerm = ""

end

end
end

(b) Concrete Syntax Example

Figure 2: Scheduling DSL

and the message format to use for this market: KISS. Note that for KISS only,
the variables are initialized using empty strings.

As an embedded DSL, the textual-concrete syntax leverages and integrates
with the concrete syntax of the Ruby host language. To reflect the use of the DSL
for configuration programming of markets and message builders, especially map-
ping and construction rules, a single assignment form is promoted. Assignments
establish correspondences between elements of market definitions and message
formats, on the one hand, as well as between market attributes and configuration
values, on the other hand. This syntax style is realized using the principles of
object scoping and nested closures [8].

Constraints. There are constraints applying to a Market and a Message-

Builder. The Marketmust have a unique name accompanied by a unique symbol
or abbreviation (e.g., “RWE”). This pair represents the market or control area
for which this definition stands. Furthermore, the possible borders for power
import and export have to be stated and the message types applicable to this
market. Each message format has then to be represented by a MessageBuilder

referenced by a Market. In addition, there are specific constraints on the data
representations of trading data. For example, value constraints on time stamps
are set by the ESS family of standards (see, e.g., [5]).

Structural Semantics. The inheritance semantics between a Market and its
default Market are those of concatenation-based prototypical inheritance [16].
This allows for factoring out common configuration data into single and reusable
Market definitions. This way, creating incremental variants of single market def-
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initions upon changed market requirements eases maintenance. Implementing
this refinement scheme is facilitated by the use of nested closures (see below).

VTRWindowsForm

VTRGUI (VB.NET)
«component»

VTRCore (VB.NET)

RubyProvider

«component»

SchedulingDateProvider

«component»

ManageRubyEngine

GetCon�gData

CreateMessage

«component»

«component»

MarketDe�nition

IronRubyEngine

«component»

«component»

BOProvider

«component»

VTRSchedulingHelpers

«component»

AMarketDe�nition.rb

«artifact»

AMessageBuilder.rb

«artifact»
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«artifact»

GetTransactionData

MessageBuilder
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FormatData

RubyEngine

Con�gData

Message

«manifest»

«manifest»

«manifest»

GetStandingData

Figure 3: An Architectural Overview of the DSL-Based Scheduling System

3.2 Implementation

The realized architecture is built from three interacting components: a GUI
component (VTRGUI), a managed assembly (VTRCore), and the IronRubyEngine
(see Figure 3). The GUI and the managed assembly are implemented using .NET
4.0 and VB.NET as frontend language. The retrieval process for transaction
data uses Microsoft Excel 2010 and SAP Business Objects. The Ruby engine
is provided by IronRuby 1.1.3, a Ruby implementation targeting the Microsoft
Common and Dynamic Language Runtimes (CLR, DLR) and widely complying
with MRI-Ruby 1.9.2.

The overall workflow of creating a Message is controlled by the GUI com-
ponent in terms of a wizard. Once the scheduler has selected a market defini-
tion (AMarketDefinition.rb) and a message-builder definition (AMessageBuil-
der.rb), the GUI sets up a Ruby evaluation context using the RubyProvider

component. Based on the standing data for the selected market, the VTRCore

retrieves the transaction data in terms of a Business Objects report using the BO-
Provider and provides market-specific configuration data to update the message-
creation wizard (e.g., available control areas). The scheduler then completes the
message-configuration step and has the selected MessageBuilder create the final
Message. The MessageBuilder formats the transaction data using helpers such
as the SchedulingDateProvider provided by the VTRCore.
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Figure 4: The Controlling GUI of the DSL-Based Scheduling System.

The language model is implemented by a Ruby class collaboration by map-
ping the entities in Figure 2a to Ruby classes. Ruby provides built-in lan-
guage mechanisms to realize nested closures, object scoping, and instance eval-
uation [8]; the techniques used to implement the structural semantics and the
concrete-syntax style outlined before. A Ruby block (also called a Ruby Proc or
a closure) is a group of executable statements defined in the environment of the
caller and is passed unevaluated to the called method as an implicit argument.
The called method may then execute the block zero or more times, supplying
the needed arguments for each block evaluation. For example, a context variable
storing a reference to a Market can be provided to the MessageBuilder when
processing the block which stores the message production rules. To populate a
Market or to construct a Message from a MessageBuilder, the market-definition
scripts and the message-builder scripts, which are implemented as blocks, are
evaluated in the scope of instance objects of Market and MarketBuilder. This
principle is referred to as object scoping [8]. In addition, this allows for imple-
menting the concrete syntax of Market and MessageBuilder as an expression
builder [8]: For this reason, each Market and MessageBuilder keyword (see, e.g.,
schedule in Listing 2b) is implemented as a Ruby method. By limiting evalua-
tion to defined accessors, methods, and classes, there is scaffolding of schedulers
to only use this pre-defined vocabulary. Populating a Market and creating a Mes-
sage are controlled by the VTRCore component, by instrumenting Ruby entities
in their .NET representation using cross-language method invocations [14].

The Ruby-based DSL implementation is written in 500 SLOC3, the VB.NET-
managed VTRCore component has a code base of 1 100 SLOC, and the GUI
amounts to 800 SLOC in VB.NET. Figure 4 shows the GUI wizard having loaded
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a definition of the Swiss market and the ESS 2.3 message builder. The wizard
provides views for both the administrator and the scheduler roles, with the
administrator being able to manipulate the market definitions and message-
builder definitions directly.

4 DSL Evaluation

To assess whether the DSL-based scheduling system meets the previously defined
requirements (see Section 3), we designed a case study [11]. In the following, we
summarize the case study objectives, the real-world setting to be studied (the
case), important details of data collection (collection techniques, actors), and
key observations. A complete account on the case study and on supplementary
evaluation steps (e.g., scenario testing of the prototype) is given in [1].

As for case selection, we picked the task of defining a new power market
to generate schedules for this market. The power market to be implemented
was not only required to be representative, but it should also involve complex
and large-sized schedules and time series. In addition, it should cause a high
frequency of message generation in a trading time window and a comparatively
high number of trading partners as message recipients. The selected case dealt
with the generation of schedule messages for the German market area RWE.
This is the most important market area for VTR in Central Europe in terms
of the traded energy amounts. There are 350 active traders in that control area
and the schedules VTR sends to the TSO (Amprion) of that control area contain
more than 100 time series, each one identifying either a delivery or a receipt of
energy to or from one counterparty.

The case objectives were twofold: First, the DSL-based and the legacy schedul-
ing systems were to be exercised by implementing the RWE market. The two
procedures of setting up a new market were to be performed by a VTR scheduler,
sufficiently proficient in using both scheduling systems. Second, the DSL-based
prototype was to be evaluated against the critical timing requirements on gen-
erating schedules for the RWE market. Schedule generation and delivery are
time-critical in the range of 1 or 2 minutes in certain markets including RWE.
This is because energy trading happens in fixed time boxes (e.g., 15 minutes after
the hour) and price increases tend to grow towards the end of trading windows.
Trading, however, is stopped effectively before the end of a time box to create
and to deliver the schedule messages reliably for completing the transaction.
To optimize an intra-day trading portfolio, the energy seller seeks to minimize
schedule-handling times to extend the effective trading time.

The case work was performed by the third author who, as a VTR energy
manager, can take both the roles of the administrator and the scheduler for the
legacy and the DSL-based scheduling system. Performing the case study involved
preparatory steps identical for each system. These steps included gathering the
market rules for the RWE market area and interfacing with the power-trading
system to obtain the trading data in terms of Business Objects reports. The main
task was then to implement the RWE market rules, once using the scheduling
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DSL and once using an Excel workbook. For this last step, we recorded the
working time needed, collected the resulting code artifacts (VBA macros, DSL-
based market definition), and monitored for runtime data to learn about the
time and space efficiency of the DSL-based scheduling system, especially when
generating schedules.

Table 3: A Scheduler’s Work Station Configuration at VTR.

Processor Intel U9600 @ 1.6 GHz
Memory (RAM) 3.00 GB
Hard Drive 60 GB SSD
Operating System MS Windows 7 Enterprise x64
Office suite MS Office 2010

The key observation was that the effective market-definition time using the
DSL amounted to approximately 10 minutes, while the definition process in
the legacy system required an entire, 8-hours working day (i.e., one person-day).
This substantial effort escalation in the legacy system was due to the tedious and
time-consuming task of screening existing Excel workbooks for code fragments
to be reused directly or, mostly, in a modified form.

0ms!

200,000ms!

400,000ms!

600,000ms!

800,000ms!

1,000,000ms!

1,200,000ms!

1,400,000ms!

1d! 6d! 11d! 16d! 21d! 26d!

(a) 110 Time Series per Schedule/Day, 1-
30 Days.

0ms!

10,000ms!

20,000ms!

30,000ms!

40,000ms!

50,000ms!

1
le
g
s!

1
1
le
g
s!

2
1
le
g
s!

3
1
le
g
s!

4
1
le
g
s!

5
1
le
g
s!

6
1
le
g
s!

7
1
le
g
s!

8
1
le
g
s!

9
1
le
g
s!

1
0
1
le
g
s!

(b) 1-110 Time Series per Schedule/Day,
1 Day.

Figure 5: Schedule Generation Times of the DSL-Based Scheduling System

In light of the strict timing requirements, we ran time-efficiency measure-
ments. Time efficiency was assessed by measuring the elapsed execution time
between the start and the end of the schedule-creation process in milliseconds
on a scheduler’s typical work station (see Table 3). We devised different data
sets as representative workloads for distinct scenarios: a fixed-size schedule con-
taining 110 time series (“legs”) of one market for 30 trading days and a schedule
growing by one time series per iteration for one trading day. Overall, we found
linear growth patterns for these workloads (see Figure 5a and Figure 5b). For
large-sized schedules (110 time series per schedule), average processing times of
43 seconds were measured. This compares with approximately 1.5 minutes for
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similarly sized schedules in the legacy system. For smaller sized, growing sched-
ules (one up to 110 times series per schedule), the average processing time was
approximately 345 milliseconds.

5 Achieved Benefits

Reduction of Code Redundancy. Where the old system required separate
Excel workbooks for each market implementation, the DSL only uses the market-
specific configuration artifacts called market definitions expressed in a Ruby-
based embedded DSL. In addition, general configuration settings, valid for sev-
eral markets, can be placed once into reusable market definitions used together
with specializations to generate a market-specific schedule. Different message
formats (KISS, ESS) are defined in a second set of DSL scripts referred to as
message builders. Again, message-format details only need to be maintained in
one central location rather than in separate workbooks. This also applies to
defining new, custom message formats.

Standardized Interface. The GUI implementation has been centralized and
unified as well. Initially, the GUI component reads the available markets from the
market definition, identifies the market-required message formats, and automat-
ically updates that information in the GUI (e.g., by providing market-specific
drop-down lists and check boxes). In a next step, the GUI provides market-
specific configuration steps to the scheduler, such as the different trading borders
or trading times. This runtime adaptation allows for the GUI code to be reused
across market implementations. On top, the GUI is used to provide a uniform
representation to the Business Objects reports, as basis for handling transaction
data in a standardized and a consistent manner across markets.

Scheduler Participation. The DSL-based scheduling system renders selected
internals of the scheduling accessible to and adaptable by the non-technical do-
main experts, the schedulers. That is, the scheduler can be trained with little
effort to perform small and anticipated changes to market definitions and mes-
sage builders on duty, based on a syntax reflecting her domain terminology and
without requiring deep knowledge on the underlying software execution plat-
form (.NET, Ruby). The revised GUI providing a consistent view on markets
and transaction data facilitates collaborative tasks and context switching, such
as in peer reviews of transaction data between schedulers (see Section 2).

Whereas the systematic design process was primarily driven by artifact re-
views (see Section 3.1), a late prototype of the DSL-based scheduling system was
used to set two schedulers, the target audience of the DSL, in the future situation
of working with the prototype. In separate ad hoc sessions, each scheduler was
guided through the schedule-generation process by the third author, a former
scheduler at VTR himself. Immediate feedback was collected orally, in particular,
feedback on the GUI, on the DSL-based procedure for defining a new market,
and on whether the generation times were acceptable. Defining markets using
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the DSL was judged intuitive by the two schedulers. Having the GUI adapted
immediately in response to changes in market definitions was deemed useful.
This positive feedback did not require any modifications to the actual language
design, that is, the abstract syntax, the concrete syntax, the constraints, and
the structural semantics (see Section 3.1).

Improved Concern Separation. The DSL-based scheduling system cleanly
separates between the concerns of defining/maintaining a market and defining/-
maintaining a message format. For example, a scheduler can implement a new
market and the pre-defined message formats (e.g., ESS 2.3 and KISS) can be
applied to schedules for this market directly. Conversely, when implementing a
new message format (e.g., another ESS revision), this format becomes available
to the base of market definitions. In the legacy system, such additions or changes
required modifications in all affected market implementations (workbooks).

6 Discussion

The development of this scheduling DSL did not occur in a vacuum. Rather,
it was an enhancement of an existing system. The existing scheduling system
presented us with a number of benefits and liabilities during the DSL devel-
opment process. One benefit from working with the existing system was that
we could derive the domain abstractions (e.g., market, schedule, message) from
that system [15,19]. A second benefit of investigating the existing system was
that this system clearly defined the scope of the DSL, as well as functional and
non-functional requirements on the DSL [19]. For example, in the evaluation
phase, we established a baseline of execution timings and working times using
the legacy system. An existing system, however, poses the potential liability that
relying upon the existing domain abstractions could hinder the critical review
and adoption of revised domain concepts [19]. As a result, the extracted DSL
could be limited in its expressiveness. We addressed this risk by conducting a do-
main analysis beyond the narrow boundaries of the existing scheduling system,
by including standards documents available for the scheduling domain.

As for the concrete-syntax style of the embedded scheduling DSL, a textual
concrete syntax and a graphical frontend syntax were adopted [15]. Under this
approach, the basic configuration data are stored as text, and the representation
of such data for the user is done by means of a GUI. The textual syntax represen-
tations of market and message-builder definitions are interpreted and rendered,
especially for the scheduler role. The choice of using a textual concrete syntax
for DSL development has a number of benefits. With this syntax, market and
message-builder configurations can be specified in a compact manner and exist-
ing editors for Ruby can be reused [19]. Furthermore, a textual concrete syntax
in support of a graphical frontend helps separate different working tasks for in-
dividual domain users. For the repetitive and routine task of generating schedule
messages, the visual frontend allows for acquiring a quick overview of standing
and transaction data. The non-routine task of modifying or creating market and
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message-builder definitions can be achieved in a compact textual form. A draw-
back of a mixed textual and graphical syntax is the need for scheduler awareness
of subtle interdependencies between the two syntactic representations of domain
concepts.

7 Conclusion

Documented and systematically collected empirical evidence on the alleged ben-
efits of DSLs such as an improved maintainability [17] in an industry setting
is rare (see, e.g., [13]). In this paper, we report on a successful development
and deployment project of an embedded DSL for the VERBUND Trading AG
(VTR), the subsidiary company responsible for power trading of the large-scale
Austrian electricity company VERBUND AG. The project was carried out in
a period of 2.5 years and included phases of domain analysis, DSL design and
implementation, and an empirical evaluation based on a case study design and
auxiliary software measurement. The DSL-based scheduling system is being ac-
tively used as a training tool for schedulers and as a backup scheduling system.
VTR is planning to adopt the DSL-based system as a full replacement of the
legacy system.

This project report shows that a DSL-based system refactoring can pro-
vide benefits in terms of reduced code redundancy for an improved maintain-
ability of a code base. By enabling non-technical domain experts (schedulers)
to participate in maintaining DSL-based system artifacts (e.g., market defini-
tions, message builders), maintenance times can be reduced substantially. Fi-
nally, the project demonstrates that developing a DSL by extracting the DSL el-
ements (e.g., its language model) from an existing system [15] represents a viable
software-refactoring strategy [10] in otherwise rigid enterprise system landscapes.
In follow-up work, we will perform more comprehensive and confirmatory em-
pirical evaluations (e.g., domain-expert interviews, controlled experiments with
domain-expert subjects) to reflect on the daily working routine based on the
new DSL-based scheduling system at VERBUND Trading AG.
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