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We present an approach that uses special purpose role-based access control (RBAC) constraints to
base certain access control decisions on context information. In our approach a context constraint
is defined as a dynamic RBAC constraint that checks the actual values of one or more contextual
attributes for predefined conditions. If these conditions are satisfied, the corresponding access
request can be permitted. Accordingly, a conditional permission is an RBAC permission that is
constrained by one or more context constraints. We present an engineering process for context
constraints that is based on goal-oriented requirements engineering techniques, and describe how
we extended the design and implementation of an existing RBAC service to enable the enforcement
of context constraints. With our approach we aim to preserve the advantages of RBAC and offer
an additional means for the definition and enforcement of fine-grained context-dependent access
control policies.
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1. INTRODUCTION

The evolution of software and hardware technologies for interactive net-
worked applications is progressing at a high pace. This poses high demands
on access control services that are deployed in interconnected and interactive
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environments. In particular, such services often need to consider context in-
formation to enforce complex access control policies that rely on information
like time, location, process-state, or access history, for instance. Therefore, per-
missions and permission assignment often depend on such context information.
One possibility to deal with a dynamically changing context is to rapidly modify
permission assignment relations according to the changes in the environment.
An other approach is to define conditional permissions, that is, permissions
that consider certain context conditions in access control decisions and thus
are context-aware to a certain degree. Either way, it is sensible to adapt ex-
isting access control models and technologies to meet the needs of networked
interactive applications, as offered by web-based services and pervasive com-
puting environments for example. Therefore, we think that an access control
mechanism with context constraints should be based on well-known models and
techniques, and should offer a path from “traditional” to context-dependent ac-
cess control policies.

Role-based access control (RBAC) [Ferraiolo et al. 2001; Sandhu et al. 1996]
provides an access control model that enables the enforcement of many differ-
ent access control policies. A central idea is to support constraints on almost
all parts of an RBAC model (e.g., permissions, roles, or assignment relations)
to achieve a high flexibility. Static and dynamic separation of duties are two of
the most common types of RBAC constraints [see, e.g., Ahn and Sandhu 2000].
However, as mentioned above, it is often required to consider various context
information in authorization decisions, especially in highly interconnected and
interactive environments. Moreover, in many real-world applications it is nec-
essary to enforce fine-grained policies where permissions are directly assigned
to certain individuals [see, e.g., Adam et al. 2002; Georgiadis 2001].

In this paper, we propose context constraints as a means to consider context
information in access control decisions. We present a process for the engineering
of context constraints, which is designed as an extension to the scenario-driven
role engineering process [see Neumann and Strembeck 2002]. Moreover, we
describe how we extended the design and implementation of the XORBAC com-
ponent [cf. Neumann and Strembeck 2001) to enable the enforcement of context
constraints. With this extension, XORBAC provides an access control service that
preserves the advantages of RBAC [see e.g., Sandhu et al. 1996] and allows for
the definition of “traditional” RBAC policies. Additionally, it adds further flexi-
bility through the specification of fine-grained context-dependent access control
policies via context constraints.

1.1 Motivation

In recent years, software-based appliances and applications rapidly evolved
from relatively isolated stand-alone computer workstations to interconnected
and highly flexible devices that are used in almost any part of human life.
Together with the widespread deployment of the respective technologies cor-
responding security requirements arose to protect sensitive services and in-
formation objects that are (potentially) accessed by many interacting users
and/or machines. One important demand in this respect is the enforcement of
customized context-dependent access control policies.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.



394 • M. Strembeck and G. Neumann

Some motivating examples of applications that inevitably need to consider
context information in authorization decisions are sketched below:

—In the area of computer-supported cooperative work (CSCW) such as work-
flow management, or groupware applications, context, may, for example, con-
sist of the interacting persons, the processed documents, the daytime, the
logical and/or physical location of a person, and so on. Researchers have al-
ready investigated related access control (and other security) issues for more
than two decades and achieved many improvements [see, e.g., Bertino et al.
1999, 2001; Georgiadis et al. 2001]. However, even this relatively well-known
area still offers a rich field for further research.

—Mobile code applications range from comparatively simple downloaded Java
applets to proactive mobile agents that gather information from distributed
sources and/or autonomously travel in a computer network and react on cer-
tain events. The protection of host computers from malicious mobile applica-
tions, as well as the protection of mobile applications from malicious hosts,
results in many access control related problems where context information
needs to be considered, for example, the owner of an agent, the owner of a
host, the access/travel history of an agent and so on [see, e.g., Edjlali et al.
1998; Jaeger et al. 1999].

—Another example is the purchase of digital goods over the internet, for exam-
ple, downloading research articles from digital libraries, purchasing music
files directly from an artist, or subscribing to a video streaming channel. Dig-
ital goods may pass into the possession of the respective customer, where the
owner may use the corresponding products as often, or as long, as she likes to.
However, one may also sell only a restricted number of uses or limit the au-
thorized users to some explicitly named individuals. This and other context
information may be captured in special digital contracts for instance [see,
e.g., Guth et al. 2003]. Although some recent contributions describe sophisti-
cated approaches for specific subdomains, [e.g., Adam et al. 2002] the whole
field is still young and a large number of open research questions remains.

—Hardware technologies for wireless communications as Bluetooth, Wireless
LAN (IEEE 802.11), or mobile phone related technologies distribute quickly.
Moreover, middleware standards such as CORBA or the simple object ac-
cess protocol (SOAP), and software technologies for dynamic service lookup
and ad hoc networking like Jini, universal plug and play (UPNP), or E-Speak
evolve [see, e.g., Kim et al. 2002]. With these technologies the vision of ubiqui-
tous and pervasive computing [Weiser 1991; Weiser 1993] is about to become
reality. They enable the realization of novel applications based on mobile de-
vices [see, e.g., Schmidt et al. 1999]. For example, customized location-based
services, distance monitoring of medical parameters, direct and ad hoc inter-
actions through mobile devices, or an intelligent/aware home that responds
to particular events and actively controls the access to certain services [see,
e.g., Covington et al. 2001].

The impressive technical opportunities yet give also an enormous rise to com-
plexity of information security in general and of access control in particular. For
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example, publicly offered services (commercial as well as nonprofit) must be pro-
tected so that only authorized users may access specific resources. Furthermore,
user-related information needs to be protected from illegal accesses, no matter if
the respective information is stored on a user’s mobile device, through an intel-
ligent home environment, or by a publicly available service (such as connection
or movement logs of cell phones). Among other things, the fulfillment of these
requirements is certainly essential to protect the privacy of users in a pervasive
computing environment [see, also Myles et al. 2003; Warrior et al. 2003].

1.2 Different Categories of RBAC Constraints

In principle, RBAC supports the definition of arbitrary constraints on the differ-
ent parts of an RBAC model [cf. Sandhu et al. 1996]. However, at first research
efforts concerning RBAC constraints focused primarily on separation of duty
constraints. With the increasing interest in RBAC in general and constraint-
based RBAC in particular, research pertaining to other types of RBAC con-
straints also gained in importance [see, e.g., Bertino et al. 2001; Jaeger 1999].
In this paper, we especially deal with context constraints in RBAC environ-
ments. Subsequently, we describe some dimensions for the categorization of
RBAC constraints that are relevant for the purposes of this paper. Then, we
use these dimensions to explain our definition of context constraints. At first
we differentiate between static and dynamic constraints:

—Static constraints are constraints that can be evaluated at “administration
time” of an RBAC model, for example, static separation of duty (SSD) con-
straints which specify that two mutual exclusive roles must never be assigned
to the same subject simultaneously.

—Dynamic constraints can only be checked at runtime according to the actual
values of specific attributes or with respect to characteristics of the current
session. For example dynamic separation of duty constraints which define
that two mutual exclusive roles must never be activated simultaneously
within the same user session, or time constraints which restrict role acti-
vation to a specific time interval (e.g., from 8 a.m. to 8 p.m.).

Another criterion to classify RBAC constraints is the distinction of endoge-
nous (model intrinsic) and exogenous (environmental) factors:

—Endogenous constraints are constraints that completely relate to intrinsic
properties of an RBAC model and inherently affect the structure and con-
struction of a concrete instance of an RBAC model. For example, a static
separation of duty (SSD) constraint on two mutual exclusive permissions pro-
hibits an assignment of these permissions to the same role. Moreover, it also
influences the definition of the respective role-hierarchy because it further
prohibits that two distinct roles that possess the corresponding permissions
can have a common senior role. Otherwise, a common senior could acquire
both (mutual exclusive) permissions and thereby violate the corresponding
SSD constraint [see, e.g., Ferraiolo et al. 1999; Strembeck 2004]. Depending
on the respective implementation, similar effects can be observed for cardi-
nality constraints for instance.
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—Exogenous constraints are constraints that either exclusively involve at-
tributes that do not belong to the core elements of an RBAC model (e.g.,
time constraints that restrict role activation to a specific time interval or al-
low access operations for a particular resource only on a specific weekday),
or which refer to external (i.e., external to the RBAC model) attributes or
properties of a specific RBAC model element (e.g., the location or current
project assignment of a specific subject). In general, exogenous constraints
are defined as conditions that take external data into account for certain
operations or decisions of an access control service.

Beside the categorization as static/dynamic and endogenous/exogenous, con-
straints can also be subdivided in authorization constraints and assignment
constraints:

—Authorization constraints are constraints that place additional controls on
access control decisions. Thus, even if a subject is in possession of a permis-
sion that grants a certain access request, the access can only be allowed if
the corresponding authorization constraints are fulfilled at the same time.
For example, such constraints can be applied to implement access control
policies based on access histories, as in Chinese Wall policies for instance.

—Assignment constraints are constraints that control the assignment or acti-
vation of permissions and roles (e.g., maximum and minimum cardinalities
or separation of duty constraints). On the source code level, assignment con-
straints may be implemented through the same means as applied for autho-
rization constraints (e.g., as an authorization constraint on the “assign role”
or “activate role” permission). We think, however, that it is sensible to dis-
criminate assignment and authorization constraints on the design level since
both types address distinguishable intentions when engineering an RBAC
policy.

The above categories are not completely orthogonal, and do not claim to
provide a complete classification framework for all possible types of RBAC
constraints. Nevertheless, these categories consider different aspects that
can be observed individually, and facilitate the communication about RBAC
constraints.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce the notion of context constraints as used in this paper. Subsequently, we
describe an engineering process for the elicitation and specification of context
constraints on the requirements level (Section 3). In Section 4, we then describe
the conceptual structure of the XORBAC component that can be implemented us-
ing any suitable programming environment. Especially we describe how context
information, which is captured by special XORBAC context functions, can be used
to define context constraints. Afterwards, Section 5 shows how we used specific
object-oriented techniques to implement a respective extension to XORBAC and
provide a language independent description of the functions that are needed
to manage and enforce context constraints, before we discuss related work in
Section 7. Section 8 concludes the paper.
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Fig. 1. RBAC permission with context constraint.

2. CONTEXT CONSTRAINTS

In the first place, a context constraint is an abstract concept on the model-
ing level (like other types of constraints, or the role concept are). A context
constraint specifies that certain context attributes must meet certain condi-
tions to permit a specific operation. With respect to the categories mentioned in
Section 1.2, we thus define context constraints as dynamic exogenous authoriza-
tion constraints. While context constraints can (in principle) also be applied as
assignment or activation constraints (cf. Section 1.2), our hitherto experiences
concerning the modeling and enforcement of context constraints are primarily
based on the usage of context constraints as dynamic exogenous authorization
constraints. As authorization decisions are based on the permissions a par-
ticular subject/role possesses, context constraints are associated with RBAC
permissions (see Figure 1).

A context constraint is defined through the terms context attribute, context
function, and context condition:

—A context attribute represents a certain property of the environment whose
actual value might change dynamically (like time, date, or session-data for
example) or which varies for different instances of the same abstract entity
(e.g., location, ownership, birthday, or nationality). Thus, context attributes
are a means to make (exogenous) context information explicit. On the pro-
gramming level, each context attribute CA represents a variable that is asso-
ciated with a domainCA which determines the type and range of values this
attribute may take (e.g., date, real, integer, string).

—A context function is a mechanism to obtain the current value of a spe-
cific context attribute (i.e., to explicitly capture context information). For
example, a function date() could be defined to return the current date. Of
course a context function can also receive one or more input parameters.
For example, a function age(subject) may take the subject name out of the
〈subject, operation, object〉 triple to acquire the age of the subject, which
initiated the current access request, e.g., the age can be read from some
database.

—A context condition is a predicate (a Boolean function) that consists of an
operator and two or more operands. The first operand always represents
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Fig. 2. Excerpt from a Datalog specification.

a certain context attribute, while the other operands may be either context
attributes or constant values. All variables must be ground before evaluation.
Therefore, each context attribute is replaced with a constant value by using
the corresponding context function prior to the evaluation of the respective
condition.

—A context constraint is a clause containing one or more context conditions. It
is satisfied iff (if and only if) all its context conditions hold.

The operator that is used in a context condition may be either a prefix oper-
ator that accepts two or more input parameters or a binary infix operator that
compares two values (a left operand and a right operand). On the implementa-
tion level, it is of course possible to realize the functionality offered by context
conditions in many different ways. An obvious option is to implement context
functions, context conditions, and context constraints as separate entities, ex-
actly as described above.

Context constraints are used to define conditional permissions. With respect
to the terms defined above, a conditional permission is a permission that is
associated with one or more context constraints and grants access iff each cor-
responding context constraint evaluates to “true”. Therefore, conditional per-
missions grant an access operation iff the actual values of the context attributes
captured from the environment fulfill the attached context constraints. The re-
lation between context constraints and permissions is a many-to-many rela-
tion (see Figure 1). Thereby, a number of permissions can be associated with
the same context constraint if necessary. Similarly, one permission may have
associated with it many context constraints.

Figure 2 shows an excerpt of a logical definition of RBAC decisions in the pres-
ence of context constraints, written as a (stratified) Datalog specification [see,
e.g., Apt et al. 1988]. The check access predicate examines if an access request
identified by the classical 〈subject, operation, object〉 triple can be granted or
must be denied. The assigned role and has permission predicates detect the
roles and permissions the subject possesses. The check context constraint
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predicate determines the context constraints associated with a specific permis-
sion (an 〈operation, object〉 pair) and subsequently checks that none of these
constraints is violated.

An algebraic definition of context constraints is given below (this definition
extends the definitions provided by Ferraiolo et al. [2001], in particular the
abbreviation PRMS refers to the set of permissions).

—ATTS, the set of context attributes (e.g., local time, local IP address, sub-
ject name, subject age).

—DOMAINS, the set of available domains (e.g., boolean, date, integer, real,
string).

—CONSTANTS = {x | x is a constant value ∧ domain(x) ∈ DOMAINS}.
—OPERANDS = ATTS ∪ CONSTANTS
—OPERATORS, the set of available (comparison) operators, for example, infix

operators as =, ≥, >, <, ≤, 	=.
—domain(oprtr : OPERATORS) → {d ⊆ DOMAINS}, a function to determine

the set of domains an operator is specified for.
—domain(oprnd : OPERANDS) → {d ∈ DOMAINS}, a function to determine

the type of an operand.
—CONDITIONS = 2 OPERANDS × OPERATORS, ∀c ∈ CONDITIONS : c →

{(oprnd1, . . . , oprndx , oprtr)|oprnd1, . . . , operndx ∈ OPERANDS, oprtr ∈
OPERATORS} ∧ {domain(oprnd1) ∪ · · · ∪ domain(oprndx) ⊆ domain(oprtr)}.

—CC = 2 CONDITIONS, the set of context constraints.
—conditions(cc : CC) → {cond ⊆ CONDITIONS}, a function to determine the

conditions linked to a certain context constraint.
—PCL ⊆ PRMS×CC, a many-to-many permission to context constraint linkage

relation.
— linked ccs(p : PRMS) → {constraints ⊆ CC}, the linkage of a permission p

to a set of context constraints. Formally: linked ccs(p) = {c ∈ CC | (p, c) ∈
PCL}
Endogenous constraints, as separation of duty constraints or cardinalities,

for example, can often be derived from the business rules of a particular or-
ganization, e.g., constraints like: the roles “accounting clerk” and “controller”
must be statically mutual exclusive, or the minimum user cardinality for the
“controller” role is “one”. In contrast to that it is, in our experiences, more com-
plicated to specify exogenous (context) constraints. In Section 3, we therefore
propose an engineering process for context constraints.

3. ELICITATION AND SPECIFICATION OF CONTEXT CONSTRAINTS

Context is an elusive concept, which has many different meanings to differ-
ent people and communities. A definition for the meaning of context found in
Merriam-Webster’s Collegiate Dictionary is: “(1) the parts of a discourse that
surround a word or passage and can throw light on its meaning (2) the interre-
lated conditions in which something exists or occurs.”

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.



400 • M. Strembeck and G. Neumann

In the area of ubiquitous and pervasive computing context can be defined as:
“. . . any information that can be used to characterize the situations of an entity.
An entity is a person, place, or object that is considered relevant to the inter-
action between a user and an application, including the user and applications
themselves.” [cf. Dey 2001].

In other words, context in general may consist of almost all information
describing a specific situation. That is, context on the one hand consists of rela-
tively static environment characteristics like a person’s nationality, affiliation
to an organization, or the salary of a certain employee. On the other hand,
context also includes dynamic and often changing attributes like time, the lo-
cation of a person or a device (physical and logical), proximity of other devices
or proximity of a specific human being, history information stored in a log-file or
database, the current CPU or network load, memory consumption of a specific
device, and so on.

With respect to access control, one has to ask first which parts of these un-
manageable quantities of context information are relevant for a specific au-
thorization decision, and how the corresponding information may be elicited
and defined on the modeling level. In this section, we therefore suggest a pro-
cess for the elicitation and specification of context constraints. This process is
based on goal-oriented requirements engineering techniques [see Antón 1996;
van Lamsweerde 2001], and is designed as an extension to the scenario-driven
role engineering process for RBAC roles presented in Neumann and Strembeck
[2002]. Prior to describing the engineering of context constraints in detail, we
give some background information concerning the scenario-driven role engi-
neering process.

In the scenario-driven role engineering process usage, scenarios of an infor-
mation system are used to derive permissions and to define tasks. In general,
a scenario describes an action and event sequence, for example, to register a
new patient in a hospital information system. Thus, each scenario consists of
several steps, and a subject performing a scenario must possess all permissions
that are needed to complete the different steps of this scenario. In turn, a task
consists of one or more scenarios, and tasks are combined to form work pro-
files. A work profile comprises all tasks that a certain type of subject is allowed
to perform. In a hospital environment different work profiles for physicians,
nurses, and clerks are needed, for instance. In the role engineering process,
work profiles are then used together with the permission catalog and the con-
straint catalog to define a concrete RBAC model. However, the scenario-driven
approach presented in Neumann and Strembeck [2002] only provides general
guidance for the subprocess of defining (exogenous) constraints. This fact and
our aim to specify and enforce context constraints in an RBAC environment led
us to the definition of the process extension proposed in this section.

3.1 Description of the Engineering Process

Figure 3 depicts an activity diagram for the engineering (sub)process. Like the
role engineering process as a whole, the engineering of context constraints is
in essence a requirements engineering process. To elicit context constraints we
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Fig. 3. A process for the elicitation and specification of context constraints.

especially use goals that are a familiar concept in the area of requirements
engineering [see, e.g., Antón 1996; van Lamsweerde 2001]. Furthermore, goals
are well suited to be applied in combination with scenarios to elicit and define
requirements and to drive a requirements engineering process [see, e.g., Jarke
et al. 1998; Rolland et al. 1999]. In general, a goal is an objective that the system
under consideration should or must achieve. Goals can be defined on different
levels of abstraction, ranging from high-level business goals to low-level tech-
nical concerns. Furthermore, goals may be used to represent functional as well
as nonfunctional aspects like performance for instance. An obstacle is an un-
desired condition, which obstructs the fulfillment of one or more goals. Thus,
obstacles can be seen as the opposite of goals. In the area of requirements en-
gineering, obstacles are a valuable means to define more complete and more
realistic requirements [see, e.g., van Lamsweerde and Letier 2000].

Scenarios and the scenario model serve as the basis for the scenario-driven
role engineering process [Neumann and Strembeck 2002]. The first step of the
constraint engineering subprocess shown in Figure 3 is thus to fetch the current
scenario model. The succeeding activities are now described in more detail:

—Identify scenario-goals and obstacles: In this activity the goal(s) and obsta-
cle(s) associated with each scenario are identified and explicitly modeled by
filling out a small goal-template (obstacle-template), which consists of at-
tributes like name, author, sub-goal-of, super-goal-of, and associated-with-
scenario.

—Identify step-goals and obstacles: For each step within a scenario the asso-
ciated goal(s) and obstacle(s) are identified and attached to the goal model.
Each step-goal is a natural sub-goal of the corresponding scenario goal(s).

—Verify goal model: Here, the goal model produced in the preceding steps is
verified and further elaborated. This activity is essential for the purpose
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of defining stable goals that reflect the (security) demands on the system
under consideration. To accomplish this task security engineers rely on the
assistance of domain experts, for example, a bond dealer, an executive officer,
and a clerk for a banking information system. The activities 2–4 are repeated
until the goal model is completed (see Figure 3), that is, until the security
engineers and domain experts define the model as adequate.

—Derive context attributes: Each goal (and obstacle) is examined to derive
the context attributes that are needed to describe/fulfill this particular goal
(e.g., daytime, a user’s nationality, or the IP address of the host computer
a specific service is requested from). Each context attribute is given a de-
scriptive name, and explicitly stored together with a link to the goal(s) or
obstacle(s) it has been derived from. Though it is often possible to straight-
forwardly derive context attributes and context conditions from goals (obsta-
cles) in a single step, we model each as an own sub-activity to ensure that it is
not omitted. In the further course of the process, context attributes are used
to decide if a specific access control service is able to enforce context condi-
tions based on a particular context attribute, for example, time information,
or the access history of a particular subject (see Section 4).

—Derive context conditions: The goals and obstacles are now used to specify
context conditions. Each goal and obstacle is a potential source of an access
control relevant context condition and is thus analyzed individually. Since
obstacles describe what should not happen, they are particularly useful in
the derivation of context conditions. At this stage of the process (which is
still focused on requirements engineering) we make no demands on the way
context conditions are specified. For example, they can be defined as short
sentences like “the IP address of the requesting computing device must have
the value x”, or “the request can only be granted if the requesting subject has
already finished the processing of document b”. However, the examples above
can also be defined in a much shorter form like “IP address = x”, and “access-
history = document b”, for instance. Each context condition is then stored
together with a link to the originating goal/obstacle and scenario. Moreover,
each context condition is classified if it can be enforced by the corresponding
access control service, that is, if it can be mapped to the functions offered by
a concrete access control service (see Section 4).
In our experiences, good reasons exist to model context conditions (and con-
text constraints) even if they cannot (yet) be enforced on a technical level.
The aim to specify and maintain a comprehensive, and preferably complete,
access control policy for an information system is perhaps the most impor-
tant reason. Such a “complete” policy rule set provides a valuable source of
information for the corresponding security engineers. For example, it is then
possible to identify which subset of an organization’s access control policy
rule set can (already) be enforced by the runtime system and which security
goals can not be achieved yet. These information can be applied to thoroughly
configure the respective access control service and to avoid security breaches
that could result from unavailable information. Furthermore, a “complete”
description of an access control policy rule set on the requirements level can
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Fig. 4. A simple scenario for online examinations.

drive the technical evolution of access control services to close the gap be-
tween an abstract (complete) policy rule set and its enforceable subset.

—Compose context constraints: In this activity, context conditions are composed
to form context constraints. Each context constraint comprises one or more
context conditions. A context constraint that consists of two or more context
conditions thereby defines each associated context condition must hold to ful-
fill this particular constraint. Context constraints are stored in a constraint
catalog.

—Assign context constraints: Each constraint can be traced back to the context
condition(s), control objective(s), obstacle(s), and/or scenario(s) it originates
from—remember that we derive permissions from scenarios and compose
work profiles of tasks/scenarios [cf. Neumann and Strembeck 2002]. Thus, we
can identify the permission(s) a context constraint could sensibly be assigned
to in a straightforward manner. The activities seven and eight are repeated
until the constraint model is complete (see Figure 3), that is, until the security
engineers define the model as adequate.

3.2 A Small Example

We now give an example for the engineering of context constraints as described
in the previous section. Since a detailed case study would fill its own paper,
we chose a simplified example that, however, provides additional insights into
the process, and allows for an intuitive understanding of the corresponding
activities.

Figure 4 shows a scenario for online examinations, depicted as message se-
quence chart. For example, online examinations are sensible for tests where
students have to show their ability to use certain software tools (e.g., a program-
ming language compiler, or a CASE tool), or for tests that should be analyzed
(semi)automatically in a subsequent step.

In our example, a student first sends a “fetch” request for an exam docu-
ment together with her matriculation number to the exam-server (for the sake
of simplicity, we assume that a proper authentication procedure already took
place, for example, by using a Kerberos-based mechanism). The exam-server
then generates an individualized scrambling of the exercises to counteract
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Fig. 5. Context attributes and conditions.

cheating or cooperation attempts of students (we presume, that all students
take the exam within an invigilated PC pool). Afterwards, the exam docu-
ment is dispatched to the client. Subsequently, the student edits the exam
document and finally dispatches the completed exam document back to the
server.

By applying the permission derivation procedure described in Neumann
and Strembeck [2002], we can identify the following student permissions as
〈operation, object〉 pairs: 〈fetch exam〉, 〈edit exam〉, 〈dispatch exam〉. In other
words, a student (resp, the student role) needs to be equipped with these per-
missions to successfully perform the scenario shown in Figure 4.

Subsequently, we conduct the engineering process for the elicitation and
definition of context constraints as described in Section 3.1. This results in
the following (condensed and simplified) goals and obstacles (we use a leading
G for goals and a leading O for obstacles):

G1 Enable online examinations.
G1.1 Provide an individual scrambling for each student.
G1.2 Ensure that students can edit their individual exam only.
G1.3 Ensure that students can fetch and dispatch their individual exam

documents.
G1.4 Ensure that only registered PCs can be used to access the exam-server.
G1.5 Ensure that student access to the exam-server is limited to a specific

date and a specific time interval.
O1.1 Student X can read or write the exam document of student Y.
O1.2 The exam-server can be accessed from an unregistered client PC.
O1.3 Student X is able to access the exam-server prior to, or after, the spec-

ified date and time interval.

According to the process shown in Figure 3, we now derive the context
attributes and context conditions from the above goals and obstacles (see
Figure 5).

Afterwards, the context conditions are used to compose context constraints,
which are then assigned to permissions (see Figure 3). According to the above
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goals and obstacles, we compose three context constraints and link them to
the permissions derived from the scenario depicted in Figure 4. For the sake of
simplicity, the context constraints are written as a list of conditions (cf. Figure 5)
surrounded by curly brackets:

—〈fetch exam〉 {Cond1, Cond2, Cond3}
—〈edit exam〉 {Cond2, Cond3, Cond4}
—〈dispatch exam〉 {Cond1, Cond3, Cond4}

Note that in the most simple case each context constraint consists of exactly
one context condition. Context constraints composed of more than one condition
are used to explicitly express the coherence and need for simultaneous validity
of several conditions when performing a certain operation, that is, when using
a specific permission.

The role and constraint engineering processes result in a concrete RBAC
model (i.e., a concrete set of access control policy rules). The elements of this
RBAC model are roles and role-hierarchies, permissions, and (context) con-
straints [see also Neumann and Strembeck 2002]. The XORBAC software com-
ponent [Neumann and Strembeck 2001] provides an RBAC service that (among
other things) supports role-hierarchies, separation of duty constraints, and car-
dinality constraints for both roles and permissions. Nevertheless, to actually
enforce RBAC policies that make use of context constraints on a technical level,
a respective RBAC service must provide means to map modeling-level context
constraints to concrete implementation structures. Sections 4 and 5 describe
how we extended the XORBAC component to enable the definition and enforce-
ment of context constraints.

4. xoRBAC: CONCEPTUAL STRUCTURE

Figure 6 depicts the conceptual structure of the XORBAC component. Per-
missions, roles, and subjects are the basic elements of XORBAC. The Subject
Management subcomponent provides means to manage subjects, that is, the
entities that may actively initiate an operation. XORBAC comprises static and
dynamic constraint management as individual subsystems (see Figure 6). The
Static Constraint Management of XORBAC is based on permissions and roles and
enables the definition of SSD constraints and cardinalities. The Dynamic Con-
straint Management allows for the definition of context conditions and context
constraints (see Section 2).

Context constraints can be defined for “ordinary” access permissions as well
as for administrative permissions such as assignment or revocation operations
for example. The Role Hierarchy Management uses the static constraint man-
agement component to prevent the creation of role hierarchies that are disal-
lowed by the SSD constraints or cardinalities within the system. The Access
Control Policy Management additionally includes the decision component and
the Assignment Unit for permission/role and user/role assignment and activa-
tion (see Figure 6).

The Decision Component contains the Environment Mapping, which captures
context information via sensors, and the Constraint Evaluation, which checks
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Fig. 6. Conceptual structure of the XORBAC software component.

if the collected values match the context constraints associated with a certain
conditional permission. Furthermore, XORBAC is associated with a metadata
service that records logging and audit information and enables the serialization
(and recreation) of XORBAC run-time instances by using XML encoded models
as serialization format.

To reach an authorization decision for a particular access request, the de-
cision component of XORBAC receives the following information as parameters:
the ID of an authenticated subject, that is, the user or user-agent who requests
an access, the operation to be performed, and the name of the object which is
the target of the operation—resulting in a 〈subject, operation, object〉 triple. If
one ore more context constraints need to be checked to reach a certain access
control decision, the decision component uses the corresponding functions pro-
vided by the environment mapping and constraint evaluation subcomponents
(see Figure 6).

In essence, the Environment Mapping component comprises the sensor li-
brary of the XORBAC access control service (see Figure 7). It manages all sensors
connected to XORBAC. Therefore, every sensor must be registered in the sensor
library before it can be used within XORBAC. Each sensor provides one or more
context functions.

A context function is a mechanism to obtain actual values for specific con-
text attributes (i.e., to explicitly capture context information). In other words,
context functions are used to filter environment information and to make the
current value of a relevant attribute available so that it can be used by XORBAC
(see also Section 2). Therefore, each context attribute that can be provided
by a respective context function can be used to define context conditions (cf.
Figure 7).

The sensor library of XORBAC can be extended with arbitrary new sensors,
respectively their corresponding software interface. This means that XORBAC
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Fig. 7. From sensors to context constraints.

can be connected to hardware as well as software sensors to capture context
attributes (see Section 5.5).

The constraint evaluation component checks if a set of actual sensor values
match the corresponding context constraints and returns either true or false
depending on the result of the evaluation. In this sense, context constraints
provide sensor fusion, that is, they combine and interrelate the measurements
of several sensors.

Thus, XORBAC sensors and XORBAC context constraints represent two differ-
ent layers. A sensor (resp., the corresponding context functions) only captures
“raw” context information from the environment and makes the respective con-
text attribute available, for example, as string or numerical value. In turn, a
context constraint uses the actual values of context attributes to check the as-
sociated context conditions and to decide if the corresponding access can be
granted.

Figure 8 shows the definition process of concrete XORBAC context conditions
as activity diagram. For each modeling level context condition (see Section 3.1),
we examine if the corresponding (abstract) context attribute(s) can be captured
by an actual context function of an XORBAC sensor. If so, a respective concrete
context condition is specified (see Section 5.3). If, however, no appropriate con-
text function is available, one may either implement a new context function or
a new sensor in order to enforce the corresponding modeling level condition,
or the corresponding modeling level condition is marked as “not yet enforce-
able”. In our experiences, good reasons exist to model context conditions (and
context constraints) even if they cannot (yet) be enforced on a technical level
(cf. Section 3.1).
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Fig. 8. Definition of concrete context conditions.

5. xoRBAC: IMPLEMENTATION

The XORBAC access control component is a freely available software component
implemented with XOTcl (eXtended Object Tcl) [Neumann and Zdun 2000].
XOTcl is a general-purpose object-oriented programming language that can be
dynamically loaded into every Tcl compatible environment and is embeddable
in C programs. As a Tcl extension, all Tcl commands [Ousterhout 1994] are
directly accessible in XOTcl. XOTcl preserves the flexibility of Tcl and adds new
language constructs to provide a highly flexible object-oriented programming
environment.

In the implementation of XORBAC, we especially used the dynamic object
aggregation feature and the per-object-mixin language construct of XOTcl. Dy-
namic object aggregation enables the dynamic aggregation and disaggregation
of objects at run-time. A per-object mixin (POM) is a class that is inserted at the
beginning of the precedence order of a particular object. In other words, POMs
are inserted in front of the precedence order induced by the class-hierarchy from
which the object was instantiated. Thus, POMs are a means to extend every
single object with additional behavior or capabilities dynamically at run-time
[see Neumann and Strembeck 2001; Neumann and Zdun 2000]. However, as
already mentioned, the design and abstract architecture of XORBAC presented
in this paper can of course be implemented using other programming languages
as well.

Some important features of XORBAC are: definition of arbitrary role-
hierarchies (permission-inheritance), user-role review, user-permission review,
permission-role review, definition of separation of duty constraints (constraint
inheritance via the role hierarchy), and definition of maximum and minimum
cardinalities (for further details see Neumann and Strembeck [2001]). In this
section, we describe an extension of XORBAC that enables the definition and
enforcement of context constraints on permissions (see also Sections 2 and 4).
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Fig. 9. Essential class relations of the XORBAC component.

5.1 Static Design-Time Structures

Figure 9 depicts the essential design level class relations of the XORBAC com-
ponent. Several design patterns [see Gamma et al. 1995] are used in the im-
plementation of XORBAC. For example, the RightsManager class serves as Fa-
cade for the XORBAC component, that is, it hides XORBAC internal structures
from other components that use XORBAC. Thus, every external component uses
XORBAC through a well-defined API offered by the RightsManager class. At run-
time, an Audit object can be registered for the RightsManager object according
to the Observer pattern. The user-role assignment and the permission-role as-
signment relations are implemented using the Decorator pattern [for details
see Neumann and Strembeck 2001].

As shown in Figure 9, the XORBAC component basically consists of eight
classes. The classes Sensor, Condition, and ContextConstraint form the Con-
text Unit of XORBAC. The context unit extends XORBAC with functions that allow
for the specification and enforcement of context constraints as described in
Section 4.

The ContextConstraint class is defined as a meta-class, which means that its
instances are regular classes [for further information on XOTcl meta-classes see
also Neumann and Zdun 2000]. Thus, for each conceptual context constraint
that was defined during the engineering process (see Section 3) a respective
ContextConstraint instance is created. At run-time, each of these instances
checks exactly one (modeling level) context constraint. Further on, each actual
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Fig. 10. A RightsManager object at runtime.

ContextConstraint checks one or more Condition objects. And each Condition
object uses either one or more Sensor objects to implement a specific modeling
level context condition.

5.2 Dynamic Run-Time Structures

In XORBAC, new sensors, conditions and context constraints (i.e., instances of
the Sensor, Condition, and ContextConstraint classes) can be dynamically
defined. In other words, the sensor-library and the pool of context conditions
and constraints can be dynamically extended.

Figure 10 depicts a RightsManager object at run-time, it shows the dynamic
object aggregation of Subject, Role, Permission, ContextConstraint, and
Condition instances, and their encapsulation within a respective namespace.
In XORBAC, POMs are used to assign roles to subjects and to assign permissions
to roles [Neumann and Strembeck 2001]. In the same way, XORBAC uses POMs
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Table I. Functions Needed for Access Decisions

Function Semantics
check access(s,op,ob) Check if subject s is allowed to perform operation op on object

ob. The function (implicitly) performs a role and permission
lookup and checks respective context constraints if
necessary (via the not violated function).

not violated(cc) Check if all conditions linked to context constraint cc are
satisfied. For this purpose, the not violated function
invokes the satisfied function for all associated conditions.
The function returns true if all conditions are satisfied and
false otherwise.

satisfied(c) Check if the predicate defined by condition c is satisfied. For
this purpose, the satisfied function invokes the
evaluate predicate function with the corresponding
operator and operands as input parameter.

evaluate predicate(oprtr,oprnds) Evaluate the predicate consisting of the operator oprtr and a
list of operands given by the oprnds parameter. Each
operand may either be a constant value or a variable
representing a context attribute. Since all variables must
be ground before evaluation, the evaluate predicate

function uses the respective context function functions to
receive the current values of relevant context attributes.

context function(ca) A context function captures the value of a specific context
attribute ca in the exact moment the respective function is
called.

Fig. 11. Next-path for the call of not violated.

to associate permissions with context constraints. The ContextConstraints are
linked to Permission objects according to the Decorator pattern (see Figure 9).
The use of POMs allows to dynamically (de)register ContextConstraints for
Permission objects at arbitrary times.

For each ContextConstraint the not violated function checks if all
Condition objects that are registered for this particular constraint are sat-
isfied (see also Table I). Figure 11 depicts two context constraints constraint1
and constraint2, which are registered as POMs for permission1. Each method
call to permission1 is intercepted and redirected to its POMs constraint1 and
constraint2 prior to invoking the respective method in permission1. This fea-
ture is called method combination or method chaining [see also Neumann and
Zdun 2000] and is a well-known approach to handle dynamic class structures.
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Fig. 12. Message sequence chart of a not violated call for the return of true.

In particular, Figure 11 shows a simple example of a next-path resulting
from a call of the not violated function on permission1. The not violated
call to permission1 is intercepted and passed along the next-path to its POMs
constraint1 and constraint2 and finally back to permission1. Regarding the
not violated function, the permissions and context constraints of XORBAC form
a Chain of Responsibility [see Gamma et al. 1995]. This means, a not violated
call is passed along the next-path until a context constraint is violated and
denies the request by returning false. However, if all context constraints re-
turn true the call is finally passed back to permission1, which then grants the
corresponding access request.

Figure 12 shows a message sequence chart of a not violated call for the
return of true. Section 5.4 provides a detailed description for access control
decisions with conditional permissions in XORBAC.

5.3 Specification of Context Constraints

Each Condition object implements one particular context condition (see
Section 2). In essence, a Condition object consists of an operator and a number
of operands. At least one operand is always represented by a particular context
function, which captures the current value of a specific context attribute. The
other operands may be either constant values or other context attributes (resp.,
context functions). The operator is used to compare the operands. This means, a
Condition object either compares the results of two (or more) context functions,
or the result of one (or more) context function and a number of constant values.
For this purpose the satisfied function is called (see Table I).
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Fig. 13. Evaluation of a context constraint at run-time.

Because each context condition represents a predicate, a concrete Condition
object returns either true or false as result of a satisfied call (see also
Section 2). In particular, the satisfied function uses the evaluate predicate
function (see Figure 12 and Table I).

When a predicate script is evaluated at run-time it first instantiates the
Sensor objects needed to check the corresponding condition (see also Figure 13).
Thus, in XORBAC every Condition object employs its own volatile Sensor ob-
jects to capture a consistent snapshot of the relevant context attributes (cf.
Section 4). Next, the corresponding context functions are executed (all vari-
ables must be ground before evaluation—see Section 2), and the respective re-
sults are compared using the corresponding comparison operator. Each XORBAC
Condition object contains a predicate script. Predicate scripts are automatically
generated from the operator and operands defined for a particular condition. A
predicate script delivers either a return value of “1” (true), or “0” (false).

To conveniently manage XORBAC, we developed a graphical front end that
allows for the administration of XORBAC run-time instances. Moreover, we de-
veloped a graphical tool that provides support for the scenario-driven role
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Table II. Context Constraint Specific Functions

Function Semantics
create condition(c,oprtr,oprnds) Create a new condition c containing the operator oprtr and a

list of operands oprnds.
delete condition(c) Remove all links between condition c and associated context

constraints. Subsequently, delete condition c.
create context constraint(cc) Create a new context constraint cc.
delete context constraint(cc) Remove all links between context constraint cc and associated

permissions. Subsequently, delete the context constraint cc.
link condition(c,cc) Link condition c to context constraint cc. Subsequently, c is

checked each time cc is evaluated.
unlink condition(c,cc) Remove the link between condition c and context constraint

cc. Subsequently, condition c is not checked when cc is
evaluated.

link constraint(cc,p) Link context constraint cc to permission p. Subsequently, cc is
evaluated each time a subject issues an access request
associated with p.

unlink constraint(cc,p) Remove the link between context constraint cc and
permission p. Subsequently, constraint cc is not evaluated
when permission p is checked.

conditions(cc) Return a list of all conditions currently linked to context
constraint cc.

context constraints(p) Return the list of all context constraints linked to the
permission object p.

engineering process and the constraint engineering process presented in
Section 3.1. Nevertheless, XORBAC can also be controlled “directly” via its API.
Table II shows the list of context constraint specific functions.

5.4 Access Control Decisions

The access control function of XORBAC is implemented via the check
access function, which receives the traditional access control triple
〈subject, operation, object〉 as input parameters. Thereby, XORBAC provides a
clear interface to other components that use XORBAC as their access control
service.

In XORBAC permissions are always positive, that is, a permission always
grants a certain access right and does not deny it. The processing of “ordi-
nary” access requests is explicitly described in Neumann and Strembeck [2001].
Therefore, the focus of section is on access control decisions with conditional
permissions. Figure 13 depicts a message sequence chart of an action and event
sequence, which occurs if an access request is granted by a context constraint.
Here constraint1 is an instance of the ContextConstraint class, conditionA
and conditionB are instances of the Condition class, and sensorX and sensorY
are actual Sensor objects (see Figure 9).

Initially, constraint1 receives a not violated call (see Figures 12 and 13).
Next, constraint1 calls the satisfied function of all Condition objects as-
sociated with constraint1. At first the satisfied function of conditionA is
called. Then, conditionA evaluates its predicate script to decide if this par-
ticular context condition is fulfilled. During the evaluation of the predicate
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script, conditionA draws a snapshot of the relevant context attributes by us-
ing two (volatile) sensor objects sensorX and sensorY (note that the call of
context function in Figure 13 serves as a placeholder for any call of an actual
context function—see also Sections 4 and 5.5). After conditionA has drawn a
snapshot of the relevant context attributes it compares the obtained values
by applying the corresponding comparison operator and returns either true
or false according to the result of this comparison (see also Section 2). In
Figure 13, the satisfied function of conditionA returns true. The same pro-
cedure is repeated for conditionB. Here, the satisfied function of conditionB
also results in a return value of true. Because all context conditions associated
with constraint1 are satisfied, constraint1 finally returns true as result of
the not violated call.

Note that the not violated function of a ContextConstraint returns true iff
each Condition object that is associated with this ContextConstraint is satis-
fied. Moreover, for a call of not violated the corresponding Permission object
is always the last object in the next-path and thus the last object within the
chain of responsibility (cf. Section 5.2). This means, if no ContextConstraint
previously denies the requested access by returning false the not violated
call is finally passed back to the respective Permission object, which then re-
turns true to indicate that the corresponding access request can be granted (cf.
Figure 12). Table I describes the functions that are needed for access decisions.

5.5 Sensor Library

We differentiate sensors in two coarse-grained categories: hardware sensors
(i.e., pieces of hardware that can be accessed via a software interface), which
capture information on a host’s physical environment (e.g., current GPS loca-
tion, temperature, noise-level, light, or proximity of an other device), and soft-
ware sensors, which exclusively consist of software components and are used
to gather information that can be extracted from system internal sources (e.g.,
the IP-address of a certain device, information stored in databases or log-files,
the status of other applications or services, CPU ID, CPU state, network load,
and so on).

In principle, both sensor types can be used to capture access control relevant
context information. However, for the time being, we concentrate especially on
the use of software sensors in XORBAC. The use of software sensors is sensible for
the purpose of access control because relevant access control related informa-
tion is often stored through software-based services. For example, information
like birthday, nationality, ownership, or physician to patient relations, can be
gathered from specific databases or documents as birth certificates, contracts,
passports, or patient records. Therefore (for the time being), it is convenient
to read such information directly from the respective electronic sources by us-
ing software sensors, for example, through a context function that executes a
certain database query, or a context function that reads a specific information
from XML documents. Likewise, most system internal attributes can be conve-
niently captured via software sensors that query the status of a certain software
service or look for specific log-file entries for example.
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Table III. Sensor-Specific Functions

Function Semantics
register sensor(s) Register sensor s in the sensor library. A sensor must be

registered in the sensor library before any of its context
functions (and thereby the resp. context attributes)
could be used to define context conditions.

deregister sensor(s) Remove sensor s from the sensor library. After removing a
sensor from the sensor library none of its context
functions (and thereby none of the resp. context
attributes) could be used define context conditions
anymore. A sensor may only be deregistered if no
condition currently uses the respective context
functions.

announce context attribute(s,cf,ca) Export the context function cf provided by sensor s to
make context attribute ca available. Subsequently, ca
can be used as an operand in the definition of context
conditions.

withdraw context attribute(ca) Withdraw context attribute ca from the list of available
context attributes and deregister the corresponding
context function. Subsequently, ca may no longer be
used to define context conditions. A context attribute ca
may only be withdrawn if it is not used in a context
condition.

In general, each context attribute that can be captured by a context function
can be used as an operand for the specification of XORBAC context conditions
(see Section 4). The different sensors and their context functions thus provide
the “operand-vocabulary” of the XORBAC component. Any sensor in XORBAC can
be extended with additional functions, and new sensors can be defined and
registered at run-time. Table III describes the list of sensor-specific functions.

The XORBAC component can be used for applications on Unix or Windows
with a C or Tcl linkage [see also Neumann and Strembeck 2001]. However,
some sensors may access platform-specific system functions, for example, to
read the local-host’s IP-address. Therefore, we install different sensor libraries
depending on the platform XORBAC is used on. Nevertheless, sensor interfaces
are (of course) platform independent. This means that two sensors which pro-
vide the same function on different platforms offer the same interface but may
access different implementations. A sensor’s interface thus hides the imple-
mentation details from the XORBAC component. Thereby, the sensor functions
of XORBAC are platform independent.

All sensors of XORBAC are passive sensors. That means that the correspond-
ing context functions do not permanently provide XORBAC with topical context
attribute values but are selectively polled to provide a “snapshot” of the context
attributes that are needed for a particular authorization decision.

6. THE GRAPHICAL ADMINISTRATION TOOL

While XORBAC can be completely controlled via its application program-
ming interface (API), it also provides a tailored graphical administration tool
that supports the complete set of functions offered by XORBAC. The XORBAC
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Fig. 14. Screenshot of the XORBAC administration tool main window.

administration tool can be used to create roles, permissions, subjects, context
conditions and context constraints, and to define and maintain the correspond-
ing assignment relations. For example, it offers the following features:

—Many-to-many user-role and permission-role assignment (and revocation).
—Definition of arbitrary (DAG) role-hierarchies (permission-inheritance, see

also [Neumann and Strembeck 2001]).
—Definition of context conditions, context constraints and conditional permis-

sions.
—Definition of separation of duty constraints for both roles and permissions

(SOD constraint-inheritance via the role-hierarchy, see also [Strembeck
2004]).

—Maximum and minimum cardinalities for both roles and permissions.
—Extensive review functions (introspection), e.g., subject-role review,

permission-role review, subject-permission review, and graphical inspection
of the corresponding relations.

The XORBAC administration tool is a separate software component that is
included in the XORBAC package. It uses the XORBAC API to access the different
functions of XORBAC. The administration tool is written in XOTcl and uses
freely available widget sets. Figure 14 shows the main window of the XORBAC
administration tool, and the foreground of this figure depicts and describes the
enlarged toolbar located at the top of the window.
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Fig. 15. Dialog for the creation of context conditions.

With respect to the main topic of this article we now take a closer look at
the creation (and maintenance) of context conditions and context constraints
(see Section 2). Figure 15 shows a screenshot of the dialog for the creation of
context conditions. In particular, the screenshot depicts the specification of a
context condition using a binary infix operator (here: lower equal, ≤). The cor-
responding left operand is specified on the left-hand side of the creation dialog.
In this example, the respective operand is “today’s date”, which is determined
at run-time via the context function lhsClock provided by the LocalhostSensor
of XORBAC. The lhsClock context function receives a format string, which al-
lows to parameterize the return value of this function. The %Y%m%d format string
given in the example causes the lhsClock function to return the current date
in a “YYYY MM DD” format.

The right-hand side of the dialog specifies the right operand. In Figure 15
this operand represents the expiration date of an XML-based digital contract.
To read the expiration date from the corresponding XML document [Bray
et al. 2004] we use the xPathTextNodeQuery context function provided by the
GenericXPathSensor of XORBAC (note that the combo box widget for sensor se-
lection of the right operand is not visible in Figure 15 because we moved the
scrollbar down to show the two parameters passed to the xPathTextNodeQuery
function). The xPathTextNodeQuery context function receives two parame-
ters defining an XML document (here: /home/repository/contract001.xml)
and the corresponding XPath query (here: //contract//expiration-date). If
the contract001NotExpired condition should be evaluated at run-time, the
lhsClock function first determines today’s date and the xPathTextNodeQuery
function performs an XPath query [Clark and DeRose 1999] to read the value
of the expiration-date element in the contract001.xml document (remember
that all variables must be ground before evaluation, see also Sections 2 and 5.4).
Subsequently, the condition is evaluated using the respective operator (here:
lower equal) and returns either true or false.
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Fig. 16. Dialog for the creation of context constraints.

The context condition dialog shown in Figure 15 is dynamic to a certain de-
gree. For example, the options/entries offered by the “Context Function” combo
boxes depend on the sensor selected via the “Sensor” combo box. Moreover, the
number of entry widgets allowing to pass parameters to the respective con-
text functions is dynamically determined. This means that, depending on the
chosen context function, the dialog draws the exact number of entry widgets
(and corresponding captions) that are needed to specify parameter values for
the respective context function. In Figure 15, for instance, we have one entry
widget to pass a format string to the lhsClock function and two entry wid-
gets to define a document and an XPath query for the the xPathTextNodeQuery
function.

Having specified the context conditions, we can define context constraints
(which consist of context conditions, see Section 2). Figure 16 depicts the dialog
for the creation of context constraints. On the left-hand side we have the list of
available condition objects. Each of these conditions may be linked to the cor-
responding context constraint object (here: myConstraint). And any condition
object that is linked to a specific context constraint is evaluated each time the
respective context constraint is evaluated (see also Section 5.4).

Subsequent to the creation of a context condition or context constraint, the
dialogs shown above can be used to modify/maintain the respective condition
and constraint objects and their relations.

7. RELATED WORK

A number of recent research contributions deals with different approaches to
consider context information in access control decisions. These contributions
range from abstract high-level models to case studies and concrete (imple-
mented) software systems.

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.



420 • M. Strembeck and G. Neumann

Adam et al. [2002] introduced a sophisticated authorization model that was
specifically designed to meet access control requirements of digital libraries. In
particular, their model allows for the consideration of additional user and object
attributes aside from unique identifiers. Here, credentials represent attributes
that describe certain characteristics and qualifications of users, like age, salary,
nationality, or current project involvement for example. Likewise, digital li-
brary objects are associated with attributes describing the contents of these
objects (e.g., via categories as taxation, civil law, information system research).
Moreover, digital library objects are structured in different segments, like au-
thor information, abstract, sections, bibliography. These information are used
to define fine-grained access control policies. Adam et al. [2002] implemented
a prototype system that provides nearly all functions of their authorization
model.

Various contributions concerning access control in collaborative environ-
ments exist, especially, for groupware and workflow systems. For example,
Thomas and Sandhu [1997] introduced TBAC, a family of models that support
the specification of active security models. In TBAC permissions are actively
(de)activated according to the current task/process-state. Nitsche et al. [1998]
gives a high-level description of a system extension that was implemented to
consider context information for authorization decisions in medical workflows.
Wolf and Schneider [2003] suggests to consider the authentication method
that was applied to identify a particular subject (e.g., password-based versus
certificate-based authentication) as context information to assign/activate cer-
tain roles. In Kang et al. [2001], an approach for access control in interorga-
nizational workflows is suggested, and Bertino et al. [1999] presents a well-
elaborated language and algorithms to express and enforce constraints, which
ensure that all tasks within a workflow are performed by predefined users/roles.
A more general language that allows for the specification of different access
control policies that can coexist in the same system is presented by Jajodia
et al. [2001]. One similarity for all of these approaches is that they allow to use
some type of context information, for example, the execution history of individu-
als/roles and the current task, to make assignment, activation, or authorization
decisions.

Georgiadis et al. [2001] introduce the context-based team access control
model (C-TMAC) as an extension of the TMAC approach presented by Thomas
[1997]. Here, a team is defined as a group of users acting in different roles with
the objective of corporately completing a certain task, for example, a group of
physicians and nurses attending a patient. Thus, in C-TMAC the team concept
is used to associate users with contexts, like roles are used to associate users
with permissions.

The problem of information sharing and security in dynamic coalitions [see
Cohen et al. 2002; Phillips et al. 2002] is related to C-TMAC. A (dynamic) coali-
tion consists of two or more different organizations (resp., their employees) that
temporary work together to achieve a common goal. Coalitions can be formed
dynamically, and each coalition member may share a number of information
resources with other coalition members. However, each party must be able to
individually tailor the access rules for their content according to the status of
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other coalition members. Bharadwaj and Baras [2003] describes a preliminary
approach to enable the automated negotiation of RBAC policies in dynamic
coalitions.

El Kalam et al. [2003] introduced an access control model they call
“organization-based access control”. In particular, they introduce “organization”
as a modeling level concept to group subjects. A subject may be either a user or
an organization, and each subject can be assigned to a role. Moreover, they use
a modeling level concept called “context”. Here, a specific context is defined by a
certain condition (e.g., “subject is attending physician”, or “case of emergency”).
The relation “permission” is then used to link organizations, roles, views, activ-
ities, and contexts (“organization v grants role w permission to perform activity
x on view y in context z”). A more concrete example of a “permission” relation
could be: “hospital x grants role Intern permission to read patient records in
case of emergency”.

Wang [1999] presents an approach to realize context- and role-based access
control for a hypermedia environment. He uses three different role categories:
roles that represent the job position of a user (e.g., “software engineer”), team
roles to express team membership (e.g., “software testing group”), and per-
sonal roles that are assigned to individuals but may, in exceptional cases, be
delegated to other persons in order to transfer individual job responsibilities.
While subjects are managed via roles, hypermedia objects are managed using
so called wrappers, i.e. wrappers serve as containers for several hypermedia
objects. Context information is only implicitly included through the notions of
team membership and process state (which can be derived from the wrapper a
certain object is actually contained in).

Edjlali et al. [1998] presented a history-based access control mechanism for
mobile Java code, called Deeds. They propose to utilize the access history of
individual (esp., mobile) programs as context information to protect a host
computer, respectively, information stored on the host, from potentially inse-
cure/dangerous operation sequences. Jaeger et al. [1999] introduces a system
architecture for the control of downloaded executable content. The underly-
ing model was built to support both, system- and application-specific access
control policies. In other words, administrators are able to define system wide
mandatory access control policies, while individual users may perform addi-
tional discretionary access controls for specific subdomains (within the limits
of the system wide policy). As context information Jaeger et al. particularly use
the identity of the content provider and of the content itself, the identity of the
downloading principal, and the actual state of the associated application. They
implemented their security architecture based on IBM’s Lava operating system
environment.

Barkley et al. [1999] suggests a model to include relationships between
real-world entities into RBAC access decisions. In particular, they propose
to apply the resource access decision facility (RAD), defined by the Object
Management Group (OMG), to combine the access decisions of two (or more)
access control services. Their approach combines an RBAC service and a
service that evaluates the relationships between real-world subjects and/or
objects.
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Wilikens et al. [2002] presented an approach that aims at context-related
access control in the healthcare domain. They give an example that uses time
constraints and the (physical) location of physicians and members of the nurs-
ing staff as context information to control access operations on patient records.
Longstaff et al. [2000] presents an other approach from the healthcare domain
which allows to override permission assignments (and even separation of duty
constraints) in case of emergencies. However, a system which allows that spe-
cific policy rules or constraints are overridden must perform audits on the use
of overrides to prevent/detect fraudulent use of this feature.

Role templates, as proposed by Giuri and Iglio [1997], could be used to con-
sider certain types of context information. In particular, Giuri and Iglio sug-
gest to parameterize roles and permissions to gain more flexibility (and less
redundancy) compared to treating them as fixed entities. For example, instead
of defining an own role-hierarchy for each project within an organization a
generic parameterized hierarchy may be defined. Users are assigned to a spe-
cific project-role, and the name of the concrete project or department is used
as a parameter for the assignment operation. Hence, according to the concrete
parameter value, a user may only access resources that are allocated to her
project or department.

Covington et al. [2001] described an approach which uses two different kinds
of roles to assign rights to users and to include context information in an
Intelligent/Aware Home environment. They suggest to use classical RBAC roles
to provide subjects with permissions. Besides, they introduce the notion of
“environment roles” that are automatically (de)activated by the environment
(the aware home) to depict the actual environmental context. In essence, en-
vironment roles are bound to environment conditions that can be captured by
the (hardware) sensors within the Aware Home, like time, the day of the week,
room temperature, or location of a user. Environment roles are activated ac-
cording to these conditions and are used together with subject roles to reach an
authorization decision.

The TRBAC model, presented by Bertino et al. [2001], allows for the pe-
riodic (de)activation of roles and for the definition of temporal dependen-
cies among the actions that (de)activate roles. In particular, they use active
rules, so called role triggers, to define temporal dependencies between acti-
vation events. Thus, time in general and time intervals between activation
events in specific are used as context information in TRBAC. Atluri and Gal
[2002] presents a formal authorization model for temporal data. Their model
is especially focused on access control measures for web-based information
portals.

Yao et al. [2001] described the support of active security in the OASIS role-
based access control architecture. In OASIS, role activation is governed by rules
that are specified in logic. The corresponding rules may also specify certain
preconditions that must be fulfilled to activate a particular role. Moreover, these
conditions are bound to events that cause that a role is deactivated as soon as
a condition becomes false. Likewise, the rules specifying access to objects or
services can be bound to conditions/attributes that need to be evaluated each
time a rule is applied. The time of day, or user attributes, like membership in
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a certain group, are examples for such environmental attributes. Bacon et al.
[2001] presents an approach to express OASIS policy rules, for example, for role
activation, in pseudo-natural language statements that can be translated into
first-order logic with side conditions.

Belokosztolszki et al. [2003] presented an approach to control information
flow in (and out of) the OASIS RBAC system. In particular, they use so-
called “contexts” to classify elements of their RBAC system. These contexts
are applied to control information flows between system entities. Note that
the notion of context used by Belokosztolszki et al. does not refer to dynamic
environment parameters. In fact, in Belokosztolszki et al. [2003] a “context”
roughly corresponds to “security labels” in lattice-based access control [Denning
1976].

McDaniel gives a good overview on the consideration of context in authoriza-
tion policies (on a technical level). Moreover, he presents the Antigone Condition
Framework (ACF), which supports the creation and evaluation of policy con-
ditions [McDaniel 2003]. ACF is intended to be a general-purpose condition
framework, which can be applied to extend other services with ACF conditions.
In essence, ACF conditions are (parametrized) Boolean functions. ACF condi-
tions are similar to context conditions as defined in Section 2.

8. CONCLUSION AND FUTURE WORK

This paper introduced a framework for a special kind of RBAC constraints,
called context constraints, which are defined as dynamic exogenous authoriza-
tion constraints. We specified the required terminology and provided a defi-
nition for context constraints. We presented an elicitation process to derive
context constraints during role engineering and described an implementation
that extends an existing RBAC system to enable the enforcement of context
constraints.

The presented process for the elicitation and specification of context con-
straints is based on goal-oriented requirements engineering techniques. This
process is designed as an extension to the scenario-driven role engineering
process for RBAC roles [Neumann and Strembeck 2002]. The overall process
provides guidance for security engineers and allows for the specification of con-
crete RBAC models including context constraints. Moreover, we implemented
a graphical software tool that supports the role engineering process in general
and the specification of context constraints in particular. To actually enforce
the context constraints that are defined on the modeling level, we extended
the design and implementation of the XORBAC component. Thereby, XORBAC
provides a flexible RBAC service that preserves the advantages of RBAC and
additionally offers functions for the definition and enforcement of fine-grained
context-dependent access control policies. In particular, it allows for the defini-
tion of conditional permissions.

While it is possible to define (in principle) any kind of context constraint on
the modeling level, the enforcement of such constraints is clearly limited to the
functionality that is provided by a concrete RBAC service. Nevertheless, the
XORBAC sensor-library can be dynamically extended with additional sensors,

ACM Transactions on Information and System Security, Vol. 7, No. 3, August 2004.



424 • M. Strembeck and G. Neumann

and each context attribute that can be captured by an XORBAC sensor/context
function can be used in the definition of context constraints.

The XORBAC component can be used for applications on Unix or Windows
with a C or Tcl linkage [see also Neumann and Strembeck 2001]. Nevertheless,
while some sensors may access platform-specific system functions we install
different sensor libraries depending on the platform XORBAC is used on. How-
ever, the sensor interfaces are (of course) platform independent. The graphical
administration tool for XORBAC is implemented with XOTcl and freely available
widget sets and can be directly applied on different platforms including Unix
and Windows.

The abstract design of XORBAC is generic and can be used to extend arbitrary
(traditional) RBAC services with context constraints. Our reference implemen-
tation of XORBAC presented in this paper can be flexibly extended with reason-
able efforts and thereby allows for the consideration of previously “unknown”
context information. Approaches for context-dependent access control could be
implemented in many other ways as the one suggested in this paper, of course
(see Section 7). However, in our opinion the context constraint approach has
yet a good potential to investigate the consideration and significance of context
information in access control.

Novel applications using pervasive computing techniques, and the vision
of ubiquitous internet access, for example, in cars or planes, yet give only a
rough idea of the upcoming related security issues. Thus, we hope to increase
the knowledge and understanding of context with respect to access control to
enable the enforcement of tailored context-dependent access control policies.
This is, however, a wide open ground and is likely to provide research questions
for many years.

In our experiences, context constraints, as defined in this paper, are intu-
itively understandable and are a suitable means to model dynamic context-
dependent constraints. Furthermore, they allow for the dynamic evolution of
access control policies, and the alignment to changing environment conditions
as they frequently occur in interactive networked environments. Although con-
text constraints can be modeled and used in a straightforward manner, they
can potentially add a great deal of complexity to access control policies. On
the other hand, they add much flexibility and expressiveness, and allow for
the definition of fine-grained access control policies as they are often needed in
real-world applications. So far we especially gained experiences with XORBAC
in the domain of web-based collaborative applications. However, we are con-
ducting more case studies to further improve the role engineering process and
to investigate the applicability of context constraints in different application
domains. For example, we are interested in the enforcement of RBAC policies
that include context constraints in an ad hoc computing environment.
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