
On the Impact of Concurrency for the Enforcement of
Entailment Constraints in Process-driven SOAs

Thomas Quirchmayr and Mark Strembeck

Institute for Information Systems, New Media Lab, UZA II, WU Vienna, Austria
{firstname.lastname}@wu.ac.at

Abstract. A distributed business process is executed in a distributed computing
environment. In this context, the service-oriented architecture (SOA) paradigm
provides a mature and well understood framework for the integration of software
services. Entailment constraints, such as mutual exclusion or binding constraints,
are an important means to specify and enforce business processes in a SOA. How-
ever, the inherent concurrency of a distributed system may lead to omission and
ordering failures. Such failures impact the enforcement of entailment constraints
in a process-driven SOA. In particular, the impact of these failures as well as
the corresponding countermeasures depend on the architecture of the respective
process engine. In this paper, we discuss the impact of omission and ordering
failures on the enforcement of entailment constraints in process-driven SOAs. In
this context, we especially consider if the respective process engine acts as an
orchestration engine or as a choreography engine.

1 Introduction

A business process describes a sequence of tasks which are executed sequentially or in
parallel to achieve a business goal (see, e.g., [24]). In recent years, service-oriented ar-
chitectures (SOA; see, e.g., [10, 13, 16, 17]) are increasingly used in the area of business
process management. The SOA-paradigm is neutral from a technology point of view.
However, Web services are a popular option to implement and deploy SOA services
(see, e.g., [10, 17]). In this context, a process-driven SOA (see, e.g., [9]) is specifically
built to support the definition, the execution, and monitoring of intra-organizational or
cross-organizational business processes. In order to control and coordinate the services
in a process-driven SOA, we have to ensure that the execution of the different services
adheres to the process flow defined via the corresponding business process. In this con-
text, a process engine is a software component that is able to control the process flow
in a process-driven SOA.

In general, two architectural options for such process engines exist (see, e.g., [3,
4, 14, 18]). An orchestration engine acts as a central coordinator that communicates
with different services and controls the process flow. If we use an orchestration engine,
the services usually have no knowledge about their involvement in one or more busi-
ness processes. In contrast, service choreography relies on collaborating choreography
engines. Each of these choreography engines controls a certain part of the business pro-
cess (e.g. a certain sub-process). Thus, in order to execute an entire business process the

ms
Textfeld
 This is an extended version of the paper published as: T. Quirchmayr, M. Strembeck: On the Impact of Concurrency for the Enforcement of Entailment Constraints in Process-driven SOAs , In: Proc. of the 10th International Workshop on Security in Information Systems (WOSIS), Angers, France, July 2013 In the extended version, we reinserted the text that we had to cut from the paper due to the page restrictions for the conference version.

different choreography engines (and thereby the services controlled via these choreog-
raphy engines) need to be aware of their involvement into a larger process (to a certain
degree). In this paper, we focus on the impact of omission and ordering failures in a
process-driven SOA on the enforcement of entailment constraints. In particular, we dis-
cuss the differences that result from choosing an orchestration engine or choreography
engines respectively.

1.1 Task-based Entailment Constraints

In a business process context, a task-based entailment constraint places some restriction
on the subjects who can perform a task x given that a certain subject has performed
another task y. Entailment constraints are an important means to assist the specification
and enforcement of business processes. Mutual exclusion and binding constraints are
typical examples of entailment constraints (see, e.g., [6, 20, 25, 26]).

Mutual exclusion constraints can be subdivided into static mutual exclusion (SME)
and dynamic mutual exclusion (DME) constraints. A SME constraint defines that two
tasks (e.g. ’Order Supplies’ and ’Approve Payment’) must never be assigned to the same
role and must never be performed by the same subject (to prevent fraud and abuse).
This constraint is enforced at the type-level and thereby automatically applies to all
corresponding process instances. A DME constraint is enforced at the instance-level
by defining that two tasks must never be performed by the same subject in the same
process instance. In contrast to mutual exclusion constraints, binding constraints define
that two bound tasks must be performed by the same entity. In particular, a subject-
binding (SB) constraint defines that the same individual who performed the first task
must also perform the bound task(s). Similarly, a role-binding (RB) constraint defines
that bound tasks must be performed by members of the same role but not necessarily
by the same individual.

Most often, entailment constraint are defined in the context of a corresponding ac-
cess control model. In recent years, role-based access control (RBAC) has developed
into a de facto standard for access control in software-based systems. Process-related
RBAC models define entailment constraints and corresponding access control polices
in a business process context (see, e.g., [5, 21, 25]). In a process-driven SOA, the re-
spective process engine must ensure the consistency of process-related RBAC models
(see, e.g., [11]). In particular, it must enforce the entailment constraints and ensure the
static (design-time) and dynamic (runtime) correctness of the corresponding models to
prevent constraint conflicts or inconsistencies (see, e.g., [19, 20]).

Figures 1 and 2 show a simplified example of a business process that is executed
via a process-driven SOA. Each task in such a process is performed by a certain sub-
ject. In order to perform the different tasks, the subjects invoke corresponding software
services. If, for instance, there is a subject-binding between ta and tf and a DME con-
straint between ta and te (see Figure 2), the respective process engine must ensure that
for each process instance pi, the corresponding task instances tai and tfi are allocated
to the same subject while the task instances tai and tei are allocated to different subjects
(see, e.g., [19, 20]).

B
us

in
es

s
P

ro
ce

ss
U

se
r

Sa

S
er

vi
ce

s

Sb Sc SdSe

S1 S2

ta tf

tc

te

tb td

Sf

Execute BP flow Invoke

Fig. 1. Business Process Example in a SOA

SB

DME

RB2

RB1

ta tf

tc

te

tb

RB3

td

Fig. 2. Exemplary Entailment Constraints

1.2 Motivation

In the context of our work on the specification and enforcement of entailment con-
straints in business processes (see, e.g., [11, 19–21]), we implemented a correspond-
ing runtime engine. Our runtime engine ensures the consistency of business processes
with corresponding entailment constraints at the type-level (design-time) and at the
instance-level (runtime). The source code of our implementation is available for down-
load1. However, the deployment of such a process engine in a distributed system raises
a number of challenges.

As mentioned above, the runtime enforcement of entailment constraints demands
that the respective process engine correctly allocates the different task instances to cor-
responding subjects (see Section 1.1). In a process-driven SOA (see [9]), the allocation
of tasks to subjects requires that the process engine and the services exchange corre-
sponding messages. However, in a distributed system (see, e.g., [7]) ordering failures
and omission failures may occur that impede the message exchange and thereby the en-
forcement of the entailment constraints. An omission failure occurs, if either a message
is lost (e.g. due to a network failure) or if a machine crashes. Simplified, an ordering
failure occurs if two messages are received in a different order by different receivers.
In this context, orchestration engines and choreography engines apply different strate-
gies to deal with such failures and to ensure the correct enforcement of entailment
constraints.

The remainder of this paper is structured as follows: Section 2 gives an overview of
different architectural options for the enforcement of entailment constraints in process-
driven SOAs. Section 3 portrays different communication schemes to maintain task-
allocation histories within a distributed business process. Sections 4 and 5 describe
the impact of omission failures and ordering failures on the enforcement of entailment
constraints respectively. Section 6 discusses the properties of different communication
schemes with respect to the enforcement of entailment constraints. Section 7 discusses
related work and Section 8 concludes the paper.

1 http://wi.wu.ac.at/home/mark/BusinessActivities/library.html

2 Architectural Options for Enforcing Entailment Constraints

Figure 3 shows three basic options to enforce access control policies and entailment
constraints in a process-driven SOA. Figure 3(a) shows the most simple option where
the process engine and all services (in Figure 3 (Web) services are indicated by circles
including a capital “S”) that are controlled via this process engine are located at the
same physical machine. This configuration has the advantage that the messages that
need to be exchanged between the process engine and the services do not have to travel
over a network. Furthermore, because all messages are exchanged on a single machine
it is straightforward to maintain a local history log of all task allocations and access con-
trol decisions. However, in an actual SOA such a localized architecture is most often not
a viable option (see, e.g., [2, 9, 10, 15]). Thus, Figures 3(b) and 3(c) sketch the archi-
tectures resulting from the use of an orchestration engine or interacting choreography
engines respectively. Both options demand the exchange of messages over a network
(in Figure 3 messages sent over a network are indicated by dashed lines).

Client

PEP

PDP
RBAC
Policy

Repository

use

S

invoke

server
response

client
request

Process
Engine

Domain

S S

(a) Local Process Engine

PEP

PDP Stub

S
Sa

Sb
invoke

PEP

PDP Stub

S
Sc

Sd
invoke

PDP
use

Orchestration Engine

Domainx Domainy

server
response

client
request

server
response

client
request

RBAC
Policy

Repository

(b) Orchestration Engine

PEP

PDP
RBAC
Policy

Repository

use

S
Sa

invoke

server
response

client
request

Choreography
Enginex

Sb

Domainx

RBAC
Policy

Repository

use

S
Sc

invoke

server
response

client
request

Choreography
Enginey

Sd

Domainy

PEP

PDP
RBAC
Policy

Repository

use

S
Se

invoke

server
response

client
request

Choreography
Enginez

Domainz

PEP

PDP
S

(c) Choreography Engines

inter-domain communication intra-domain communication

Fig. 3. Three architectural options to enforce access control policies and constraints in a SOA

In case we use an orchestration engine, the services of each domain as well as the
orchestration engine reside on a different physical machine (see Figure 3(b)). Thus, in
order to make access control decisions and in order to allocate task instances in accor-
dance with the corresponding entailment constraints, each domain must communicate

with the central orchestration engine. Because the orchestration engine acts as a central
controller, it is able to keep a central process execution history. On the other hand, the
orchestration engine is also a single point of failure which (in case of a system crash)
will stop the entire system from working (see, e.g., [3, 23]).

If we use choreography engines, each engine can make local access control deci-
sions and perform task allocations for the local services (see Figure 3(c)). However, in
case a decision involves tasks that are constrained via mutual exclusion or binding con-
straints, the choreography engines must communicate to ensure the consistency of the
entailment constraints (see Section 1.1). Moreover, because each choreography engine
does only control a fragment of the entire business process, it is more difficult to main-
tain a complete process execution history (see, e.g., [7, 9]). As a result, the distributed
nature of architectures relying on an orchestration engine or on choreography engines
demands for a consideration of potential omission failures (see Section 4). As a result,
the distributed nature of architectures relying on an orchestration engine or on choreog-
raphy engines demands for a consideration of potential omission failures (see Section
4) and ordering failures (see Section 5).

3 Maintaining Task-allocation Histories in Process-driven SOAs

To allocate tasks in process-driven SOAs each process engine at least needs to know
certain parts of the process history. For example, if the tasks ta and te from Figure
4(b) are mutually exclusive, the choreography engine of domain y needs to know which
subject was allocated to an instance of ta to correctly allocate instances of te (see, e.g.,
[19, 20]).

O
rc

he
st

ra
tio

nm
E

ng
in

e
+

mA
cc

es
sm

C
on

tr
ol

U
se

r
S

er
vi

ce
s

txPEP txPDPmStubP
E

P

txPEP txPDPmStub txPEP txPDPmStub

RBAC
Policy

Repository

txPDP

Sa Sb Sc Sd Se

Domainx Domainy Domainz

S1 S2

ta tf

tc

te

tb td

Sf

(a) Distributed Business Process
Example with an Orchestration Engine

C
ho

re
og

ra
ph

y
E

ng
in

es
U

se
r

S
er

vi
ce

s

Sa Sb Sc Sd Se

Domainx Domainy Domainz

S1 S2

ta tf

tc

te

tb td

Sf

txPEP txPDP

RBAC
Policy

Repository

txPEP txPDP

RBAC
Policy

Repository

txPEP txPDP

RBAC
Policy

RepositoryP
E

P
l+

lA
cc

es
s

C
on

tr
ol

(b) Distributed Business Process
Example with Choreography Engines

Fig. 4. Business Process Examples in a SOA based on different Process Engines

Figure 5 shows different communication schemes of entities participating in the dis-
tributed example business process from Figure 1. It illustrates the process flow and the

message exchange that is necessary to allocate task instances at runtime. An orchestra-
tion engine controls the entire business process and thus can allocate the task instances
in accordance with the corresponding entailment constraints based on a central process
history (see Figure 5(a)). For example, allocating tai

requires an allocation-request sent
from the orchestration engine (OE) to Domain x (Dx) which hosts the corresponding
service Sa (cf. Figure 4(a)). After a successful allocation of tai , Dx confirms the allo-
cation. When the OE receives the acknowledgement, the local history (indicated as hg

in Figure 5(a)) is extended with the allocation information of tai
2. Maintaining history

Dy

Dz

t

t

Dx ttai
tbi

tci
tdi

tei

tfi

OE t

hg h'g h''g h'''g

al
lo

c
t a

i

al
lo

c
t b

i

al
lo

c
t c

/d
/e

i

al
lo

c
t f i

(a) Orchestration Engine

CEy

CEz

t

t

CEx ttai tbi

tci tdi tei

tfi

hg h'g

h'g h''g

h''g h''g h''g

(b) Choreography Engines - CU-PS

CEy

CEz

t

t

CEx ttai tbi

tci tdi tei

tfi

htai
htbi

htci

htci

htbi
htai

htdi
htei

(c) Choreography Engines - TB-PS

CEy

CEz

t

t

CEx ttai tbi

tci tdi tei

hCEx
h'CEx

h'CEx
hCEy

hCEy

tfi

hCEy
hCEy

(d) Choreography Engines - EB-PS

CEy

CEz

t

t

CEx t

htai

tai tbi

tci

tfi

tdi tei

htbi

htci htbi
htai

htci

htai
htbi

(e) Choreography Engine - TB-PL

CEy

CEz

t

t

CEx ttai tbi

tci

tfi

tdi tei

hCEx
h'CEx

h'CEx
h'CEx

hCEy h'CEx

hCEy

(f) Choreography Engines - EB-PL
History Message BP Flow Task Allocation

OE ... Orchestration Engine CE ... Choreography Engine D ... Domain h ... History

Fig. 5. History Management in Process-driven SOAs related to Figures 1, 2, and 4

2 The square brackets in Figure 5(a) to 5(f) encompassing the task instances tci , tdi and tei
indicate, that exactly one of them has to be allocated (see also Figures 1, 2 and 4).

information in a choreography engines architecture, on the other hand, is more complex
as there does not exist a single history at a central location (see Figures 5(b) to 5(f)).
Different approaches can be applied to obtain these information. First, it is possible to
request the allocation information (which subject, executing a specific role, is allocated
to a specific task instance) from the corresponding process engine before a task instance
is to be allocated (History Pull). The second possibility is to send allocation informa-
tion of task instances to certain process engines ex ante (History Push). Both approaches
may operate at the task level (task-based), the process-engine level (engine-based), or
on a global level (cumulative):

– A Cumulative History Push (CU-PS) communication scheme operates on a global
level (i.e. it involves all choreography engines in a process-driven SOA) and ex-
tends the history with each access decision and task allocation. For example, in
Figure 5(b) the allocation information of tai

is recorded in the history log as ta is
dynamically mutual exclusive to te (see Figure 3(c)).

– In a Task-based History Push (TB-PS) communication scheme a choreography en-
gine notifies the other engines as soon as a task is allocated to an executing-subject.
For example, in Figure 5(c) choreography engine CEx notifies CEy immediately
after tai

was allocated. The message only contains allocation information of tai

(indicated as htai
in Figure 5(c)).

– In an Engine-based History Push (EB-PS) communication scheme the history push
takes place when the process flow is passed from one choreography engine to an-
other. For example, in Figure 5(d) CEx notifies CEy (h′

CEx
). This notification

includes the history of all task allocations of CEx.
– In a Task-based History Pull (TB-PL) communication scheme a choreography en-

gine performs and on demand requests (pull) for the execution history of a partic-
ular task. For example, Figure 5(e) shows that the allocation history of each task
is requested from the corresponding choreography engine (e.g., CEz requests the
allocation information for tai

and tbi , namely htai
and htbi

).
– In a Engine-based History Pull (TB-PL) communication scheme a choreography

engine requests the entire execution history from another choreography engine (i.e.
the history of all corresponding task instances). For example, in Figure 5(f) CEz

requests the allocation history for tai
and tbi , namely h′

CEx
, before allocating tfi .

Omission and ordering failures may impact the enforcement of entailment constraints in
context of task allocation to a different extent, depending on the communication scheme
used for administering historical task-allocation informations.

4 Omission Failures

An omission failure occurs, if either a message is lost (e.g. due to a network failure) or
if a machine crashes (see, e.g., [7]).

4.1 Lost Request or Lost Reply Messages

Depending on the process history scheme (see Section 3) a lost message may have
different consequences on task allocation procedures (see Figures 6 to 8). Figure 6

shows lost messages in context of an orchestration engine architecture. The request
from the orchestration engine to allocate a specific task to a subject or the response of
the service domain Dx may get lost. However, without confirming a task allocation the
entire business process flow cannot be continued, because the allocation of subsequent
tasks may depend on the respective process history (see Section 3).

OE
t

Dx t

alloc tai

(a) Lost Request

OE
t

Dx t

alloc tai

tai

ok

(b) Lost Response

Fig. 6. Orchestration Engine Message Loss

CEx t

CEy t

tai tbi

tci

htbi
htai

htai
htbi

(a) Lost Notification
task-based

CEx t

CEy t

tai tbi

tci

hCEx h'CEx

h'CEx

(b) Lost Notification
engine-based

CEx t

CEy t

tai tbi

h'g

hg h'g

tci

(c) Lost Notification
cumulative

Fig. 7. Choreography Engines Message Loss (History Push)

CEx t

CEy ttci

tbi

req h'CEx

h'CEx

(a) Lost Request
engine-based

CEx t

CEy t

tbi

tci

h'CEx

req h'CEx

h'CEx

(b) Lost Response
engine-based

CEx t

CEy ttci

tbi

req htbi

htbi

(c) Lost Request
task-based

CEx t

CEy t

tbi

tci

htbi

htbi

req htbi

(d) Lost Response
task-based

History Message BP Flow Task Allocation
OE ... Orchestration Engine CE ... Choreography Engine D ... Domain h ... History

Fig. 8. Choreography Engines Message Loss (History Pull)

In a choreography engines architecture the main problem is the exchange of the
process history between the choreography engines. If a choreography engine cannot
access the process history, it cannot allocate tasks that must adhere to entailment con-
strains. Figures 7(a) and 7(b) sketch the loss of a task-based respectively engine-based
history push (indicated as htbi

and h′
CEx

respectively). Figure 7(c) shows the loss of a
cumulative history push stopping the entire business process (see Sections 1.1 and 3).

Figure 8 shows lost allocation history request and response messages based on task-
based and engine-based history pull. If a history request (see Fig. 8(a)) or the respective

response (see Figure 8(b)) is lost, the entire business process may stop – which means
that all tasks that have a binding or a mutual exclusion constraint to preceding tasks,
cannot be allocated.

4.2 Sender and Receiver Crash

OE t

Dx t

alloc tai

tai
tbi

(a) Receiver Crash

OE t

Dx t

alloc tai

tai
tbi

ok

(b) Receiver Crash

Fig. 9. Orchestration Engine

CEx t

CEy t

tai tbi

recovery

hg hg'

hg'

tei

(a) Receiver Crash

CEx t

CEy ttci

tai tbi

hg hg'

hg'

(b) Sender Crash

Fig. 10. Choreography Engines - Cumulative

CEx t

CEy trecovery

tai tbi

htai
htbi

htai
htbi

tei

(a) Receiver Crash
task-based

CEx t

CEy t

tbi

htbi

htbi

tci

(b) Sender Crash
task-based

CEx t

CEy trecovery

tai tbi

tei

h'CExhCEx

h'CEx

(c) Receiver Crash
engine-based

CEx t

CEy t

tbi

tci

h'CEx

h'CEx

(d) Sender Crash
engine-based

Fig. 11. Choreography Engines - History Push

CEx t

CEy t

tbi

tci

reqhtbi

htbi

(a) Receiver Crash
task-based

CEx t

CEy t

tbi

tci

reqhtbi

htbi

(b) Receiver Crash
task-based

CEx t

CEy t

tbi

tci

h'CEx

req h'CEx

(c) Sender Crash
engine-based

CEx t

CEy t

tbi

tci

reqh'CEx

h'CEx

(d) Receiver Crash
engine-based

History Message BP Flow Task Allocation
OE ... Orchestration Engine CE ... Choreography Engine D ... Domain h ... History

Fig. 12. Choreography Engines - History Pull

Figures 9(a) and 9(b) show the crash of a receiver in an orchestration engine archi-
tecture. In particular, the crash occurs while trying to allocate a subject to task instance
tai

. In both cases the allocation fails and the business process cannot be continued (cf.
Sections 1.1 and 3). Figures 10 and 11 depict crashes in a choreography engines archi-
tecture based on history push. Figures 10(b), 11(b) and 11(d) show that a sender crash
may not impact the allocation of subsequent tasks (as long as another choreography

engine controls the current business process flow) if the corresponding process history
was previously delivered from CEx to CEy . A receiver crash may lead to difficulties
(see Figures 10(a), 11(a) and 11(c). In particular, if the receiver (in the example: CEy)
is not able to recover (see, e.g., [7]) before the process flow is passed from CEx to
CEy , the process execution is stopped. On the other hand, if the receiver recovers in
time, it is possible to allocate tei if we use a cumulative or engine-based history push
scheme (see Section 3). In case of a task-based history push Figure 11(a) shows that
htai

could not be delivered and thus tei may not be allocated.
A crash in a choreography engines architecture that uses history pull scheme may

also lead to task allocation problems. For example, in Figure 12(a) a crash of CEx may
interrupt the process flow because CEy cannot allocate tci without first receiving the
process history from CEx. In a similar way, the process flow is interrupted if CEy

crashes after CEx has sent the process history (see Figures 12(b) and 12(d)). However,
in the example from Figure 12(c) CEx may crash after it sent the process history to
CEy – in such as scenario, the process flow will not be interrupted. As it is basically
neither possible for the receiver nor for the sender to clearly distinguish a crash from
lost messages it may be advantageous to establish a so called ”heartbeat” scheme (see,
e.g., [8]).

5 Ordering Failures

Because distributed systems usually cannot rely on a global physical clock nor on ex-
actly synchronized local clocks, it is not trivial to order events (e.g., sending of a mes-
sage, reception of a message, task execution) that occur on different machines in a
distributed system (see, e.g., [7, 12]). In the following, ordering failures are shown in
choreography engines using task-based history push exemplary, as this combination
may be most impacted by these failures because it requires most messages to be sent.
The discussion analogously applies to the other history schemes from Figure 5.

CEy

CEz

t

t

CEx t

htai

tai tbi

1

1

2

23

htai

htbi

htbi

htci

tci

tfi

Fig. 13. Ordering Failures within a Choreography Engines
Architecture related to Figure 5(c)

Figure 13 depicts ordering failures that may occur in a choreography engines ar-
chitecture using task-based history push without any message ordering mechanism.
It shows that history notifications are delivered in a different chronological sequence
they were sent (e.g., htai

is delivered to CEz after htbi
and htci

). Without any order-
ing mechanism it is not possible to determine to which subject tfi is to be allocated.

CEy

CEz

t

t

CEx t

1

1 2

23

(a) FIFO Ordering

CEy

CEz

t

t

CEx t

1

1 2

2 3

(b) Causal Ordering

CEy

CEz

t

t

CEx t

1

12

23

(c) Total Ordering

Fig. 14. FIFO, Causal and Total Message Ordering related to Figure 13

However, different well-known ordering schemes exist. FIFO Ordering relates to the
sequence of messages sent from a specific sender perspective (see, e.g., [7, 12]). If an
event e1 happended before another event e2 (written as e1 → e2) then e1 may causally
affect e2. A causal ordering scheme essentially enforces a ”global FIFO” ordering on
all messages (rather than on messages from one particular sender only). Total ordering
defines that messages are delivered in the same order from all participating and correct
receivers, but not at all that the messages are in the same sequence they were issued
by the sender. FIFO-total ordering guarantees message delivery under consideration
of FIFO as well as total ordering whereas Causal-total ordering arranges messages in
causal and total order (see, e.g., [7]).

6 Discussion

A history push approach relies on a synchronous request-reply protocol and thus always
expects (and waits for) a reply, in our case the history information of another choreog-
raphy engine. History push approaches also need a mechanism to ensure the delivery
of allocation histories. Therefore, basically two different solutions exist. The first one
is to introduce a ’confirmation’-message from the receiving choreography engine to the
sending choreography engine after receiving the history information (see Figure 15(a);
indicated via the word ’Conf’ in Table 1). The history message is sent until it is con-
firmed (asynchronous).

CEx t

CEz t

tai

recovery

hg

tfi

...

...

htai
htai

htai

...

conf

(a) Task-based History
Push with Receiver
Confirmation

CEx t

CEz t

tai

recovery

hg

tfi

...

...

htai

...

req
htai

(b) Task-based History
Push with Pull

Fig. 15. Approaches to ensure History Message Delivery in a Choreography Engines Architecture

The second option is to combine push and pull (see Figure 15(b)). All history-
related messages are pushed to the choreography engines exactly once (either task-
based, engine-based, or cumulative). If a history record is not available at the time a
specific task is to be allocated, the corresponding information is explicitly requested
from the respective choreography engine (pull). On the one hand, a push approach with
a confirmation message can ensure an accurate delivery of history information (even
in the case of omission failures). On the other hand, a push-pull approach possibly
minimizes the amount of history-related messages that need to be sent.

Table 1 shows the properties of the different communication schemes related to five
performance categories. The performance categories have the following meaning:

– Timeliness relates to an accurate provision of history-related information (is a his-
tory information available when needed or does it have to be explicitly requested).

– Number of Messages indicates the amount of history-related messages to be ex-
changed between choreography engines (e.g. request, reply, notification).

– Size of Messages relates to the size of the message payload (single task-allocation
record or a complete engine-specific history respectively a complete process his-
tory).

– Impact of Failure is the degree to which the execution of the entire business process
is affected (interference of a part of the business process or the entire business
process).

– Effort of Ordering refers to the need to implement an ordering mechanism (see
Section 5).

Table 1. Performance Evaluation of Task-allocation History Maintenance Approaches
(++ Very High Performance, - - Very Low Performance, # Average Performance)

Performance
Category

Choreography Engines Orchestration
EngineTB-PS EB-PS CU-PS TB-PL EB-PL

Timeliness (Conf) + (++) + (++) + (++) - - # #
Number of Messages
(Conf)

- (- -) #(#) ++ (+) - # - -

Size of Messages ++ # - - ++ # ++
Impact of Omission
Failure (Conf)

++ (++) + (+) #(#) - # - -

Effort of Ordering - - - - ++ ++ ++ ++

Related to the communication schemes mentioned in Table 1 their properties can be
interpreted as follows:

– Task-Based History Push. All history push communication schemes provide histor-
ical information in a timely manner. A push-pull approach may demand an addi-
tional request message before allocating a task. However, a confirmation message
ensures accurate delivery of history information. This communication scheme re-
quires one message (history) respectively two messages (history and confirmation)

for each constraining task at least. Moreover, the payload of each message includes
a single-task allocation record only. Because process control is distributed and the
allocation histories are sent in advance for each constraining task, the impact of
omission failures is small. Moreover, we require an ordering mechanism to ensure
the correct submission of multicast messages. A choreography engine multicasts its
entire allocation history (multiple task allocation records) to all choreography en-
gines that control constrained tasks. In this scheme, fewer messages are sent (one
history and possibly a confirmation message) but the payload increases (task al-
location history of an entire choreography engine). Also the impact of omission
failures increases as the delivery of a history may be more time-critical. Moreover,
we require an ordering mechanism to ensure the correct submission of multicast
messages.

– Cumulative History Push. This scheme requires the smallest number of messages
to be sent. The history message contains all previous task allocation records of the
respective process. Because as single history is passed between the choreography
engines, its delivery is still more time-critical. However, as multicasting is not nec-
essary, we do not need to implement an ordering mechanism.

– Task-Based History Pull. In this scheme, the respective choreography engine has
to request the allocation history of the constraining task(s) before allocating a con-
strained task. Similar to task-based history push the message size is small (a re-
quest respectively a response consisting of a single task-allocation record). As the
allocation of a constrained task heavily depends on the communication between
choreography engines, an omission failure may have significant effects. However,
as multicasting is not necessary there is no need to implement an ordering mecha-
nism.

– Engine-Based History Pull. In this scheme, each choreography engine requests
engine-based allocation histories when allocating its first constrained task. Simi-
lar to engine-based history push, the number of messages decreases but their size
increases compared to task-based history exchange. Omission failures may delay
task allocation for the allocation of the first constrained task. However, as multicas-
ting is not necessary there is no need to implement an ordering mechanism.

– Orchestration Engine. This scheme maintains the entire business process history
locally but has to communicate with the different remote services. As there is no
need to exchange a history, the messages are allocation requests of small size (a
single request and a respective confirmation for each task to be allocated). An or-
chestration engine architecture is most impacted by omission failures. In case the
orchestration engine suffers a crash, the execution of the entire business process
freezes. Each crashed domain, hosting a task to be allocated next, also stops at
least a part of the business process from working. However, as multicasting is not
necessary there is no need to implement an ordering mechanism.

In addition to the assessment shown in Table 1, the following three interrelated deter-
minants have to be considered in order to choose a proper process engine architecture:
the number of constrained tasks per business process (degree of constraint; DOC), the
number of participants in the business process (degree of distribution; DOD) and the
number of business process control transitions between different participants in a busi-

ness process instance (degree of networking; DON). According to these characteristics
and the corresponding performance categories, we can choose the approach that best
fits a particular SOA. For example, a business process with a high DOC, a high DOD,
and a high DON may best be handled with a choreography engines architecture using
an engine-based history push approach with confirmation. On the other hand, if our fo-
cus is on minimized size of messages and minimal costs for implementing an ordering
mechanism, an orchestration engine architecture may be a better choice.

7 Related Work

Several approaches address the enforcement of entailment constraints during task al-
location. In [22], Tan et al. present an approach for constraint specification within a
workflow authorization schema. Furthermore they define a set of consistency rules for
constraints to prevent inconsistencies and ambiguities between constraints. Bertino et
al. [5], propose a language for expressing entailment constraints and algorithms to check
the consistency of these constraints while assigning roles and users to workflow tasks.
Similarly, Schefer et al. [19] discuss resolution strategies for conflicts of process-related
mutual-exclusion and binding constraints before these conflicts cause an inconsistent
RBAC configuration. Xu et al. [27] consider concurrency in access control decisions
through the development of XACML-ARBAC, a language to resolve the concurrency
problem. However, they focus on the administration of session-aware RBAC models
and do not discuss the problems of enforcing entailment constraints in a distributed en-
vironment. In particular, they assume fail-save participants and processes, reliable com-
munication, as well as a centralized workflow coordinator. Ayed et al. [1] discuss the
deployment of workflow security policies for inter-organizational workflow. However,
the approach also assumes fail-save hard- and software. Our work is complementary
as it discusses the enforcement of entailment constraints in distributed systems at run-
time considering omission and ordering failures. In particular, we consider omission
and ordering failures that may occur in a process-driven SOA.

8 Conclusion

In this paper, we discussed the impact of omission and ordering failures on the en-
forcement of entailment constraints in process-driven SOAs. Because the enforcement
of entailment constraints relies on the availability of a process history, we observe dif-
ferent history schemes and examine the impact of failures on architectures that use an
orchestration engine or choreography engines respectively. This paper was inspired by
our work on the specification and enforcement of entailment constraints in business
processes (see, e.g., [11, 19–21]) and the implementation of a corresponding runtime
engine3.

In recent years, we see an increasing interest in process-aware information systems
in both research and practice. In this context, an increasing number of existing and fu-
ture systems will have to be extended with respective consistency checks. The discus-

3 available from: http://wi.wu.ac.at/home/mark/BusinessActivities/library.html

sion from this paper can help to address the challenges that result from the deployment
of a process engine in a distributed system.

References

1. S. Ayed, N. Cuppens-Boulahia, and F. Cuppens. Deploying security policy in intra and
inter workflow management systems. 2012 Seventh International Conference on Availability,
Reliability and Security, 0:58–65, 2009.

2. J. Bacon and K. Moody. Toward open, secure, widely distributed services. Commununication
of ACM, 45(6):59–64, June 2002.

3. A. Barker, C. D. Walton, and D. Robertson. Choreographing web services. IEEE Transac-
tions on Services Computing, 2(2):152–166, 2009.

4. A. Barros, M. Dumas, and P. Oaks. Standards for web service choreography and orchestra-
tion: Status and perspectives. In Proceedings of the Workshop on Web Services Choreography
and Orchestration for Business Process Management, 2005.

5. E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization
constraints in workflow management systems. ACM Transactions on Information and System
Security, 2(1):65–104, Feb. 1999.

6. F. Casati, S. Castano, and M. Fugini. Managing workflow authorization constraints through
active database technology. Information Systems Frontiers, 3(3):319–338, Sep 2001.

7. G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems: Concepts and
Design (5th Edition). Addison Wesley, May 2011.

8. I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On scalable and efficient distributed fail-
ure detectors. In Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’01, pages 170–179, New York, NY, USA, 2001. ACM.

9. C. Hentrich and U. Zdun. Process-Driven SOA: Patterns for Aligning Business and IT. CRC
Press, Taylor and Francis, 2012.

10. M. N. Huhns and M. P. Singh. Service-oriented computing: Key concepts and principles.
IEEE Internet Computing, 9(1):75–81, Jan. 2005.

11. W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, and S. Dustdar. An integrated approach
for identity and access management in a SOA context. In Proceedings of the 16th ACM
Symposium on Access Control Models and Technologies, SACMAT ’11, pages 21–30, New
York, NY, USA, 2011. ACM.

12. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communication
of ACM, 21(7):558–565, July 1978.

13. G. Li, V. Muthusamy, and H.-A. Jacobsen. A distributed service-oriented architecture for
business process execution. ACM Transactions on Web, 4(1):2:1–2:33, Jan. 2010.

14. N. Milanovic and M. Malek. Current solutions for web service composition. IEEE Internet
Computing, 8(6):51–59, Nov. 2004.

15. G. Neumann and M. Strembeck. Design and implementation of a flexible RBAC-service
in an object-oriented scripting language. In Proceedings of the 8th ACM conference on
Computer and Communications Security, CCS ’01, pages 58–67, New York, NY, USA, 2001.
ACM.

16. M. P. Papazoglou and W.-J. Heuvel. Service oriented architectures: approaches, technologies
and research issues. The VLDB Journal, 16(3):389–415, July 2007.

17. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing:
State of the art and research challenges. IEEE Computer, 40(11):38–45, Nov. 2007.

18. C. Peltz. Web services orchestration and choreography. IEEE Computer, 36(10):46–52,
2003.

19. S. Schefer, M. Strembeck, J. Mendling, and A. Baumgrass. Detecting and resolving conflicts
of mutual-exclusion and binding constraints in a business process context. In Proceedings
of the 19th International Conference on Cooperative Information Systems (CoopIS), volume
7044 of Lecture Notes in Computer Science (LNCS), pages 329–346, Berlin, Heidelberg,
2011. Springer-Verlag.

20. M. Strembeck and J. Mendling. Generic algorithms for consistency checking of mutual-
exclusion and binding constraints in a business process context. In Proceedings of the
18th International Conference on Cooperative Information Systems (CoopIS), volume 6426
of Lecture Notes in Computer Science (LNCS), pages 204–221, Berlin, Heidelberg, 2010.
Springer-Verlag.

21. M. Strembeck and J. Mendling. Modeling process-related RBAC models with extended
UML activity models. Information & Software Technology, 53(5):456–483, 2011.

22. K. Tan, J. Crampton, and C. A. Gunter. The consistency of task-based authorization con-
straints in workflow systems. In Proceedings of the 17th IEEE Workshop on Computer Secu-
rity Foundations, CSFW ’04, pages 155–170, Washington, DC, USA, 2004. IEEE Computer
Society.

23. M. V. Tripunitara and B. Carbunar. Efficient access enforcement in distributed role-based
access control (RBAC) deployments. In Proceedings of the 14th ACM Symposium on Access
Control Models and Technologies, SACMAT ’09, pages 155–164, New York, NY, USA,
2009. ACM.

24. W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business process management:
A survey. In W. M. P. van der Aalst and M. Weske, editors, Business Process Management,
volume 2678 of Lecture Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg,
2003.

25. J. Wainer, P. Barthelmess, and A. Kumar. W-RBAC - a workflow security model incorporat-
ing controlled overriding of constraints. International Journal of Cooperative Information
Systems, 12:2003, 2003.

26. C. Wolter and A. Schaad. Modeling of task-based authorization constraints in BPMN. In
Proceedings of the 5th international Conference on Business Process Management, BPM’07,
pages 64–79, Berlin, Heidelberg, 2007. Springer-Verlag.

27. M. Xu, D. Wijesekera, X. Zhang, and D. Cooray. Towards session-aware RBAC admin-
istration and enforcement with XACML. In Proceedings of the 10th IEEE International
Conference on Policies for Distributed Systems and Networks, POLICY’09, pages 9–16,
Piscataway, NJ, USA, 2009. IEEE Press.

