
AAuuttoommaatt iioonn ooff WWiinnddoowwss AAppppll iiccaatt iioonnss

wwii tthh OObbjjeecctt RReexxxx

��������	
��
�

�
Bachelor of Science in Business Administration

UUNNIIVVEERRSSIITTYY OOFF AAUUGGSSBBUURRGG
CCCOOOMMMPPPUUUTTTEEERRR SSSCCCIIIEEENNNCCCEEE IIINNN EEECCCOOONNNOOOMMMIIICCCSSS IIIIIIIII AAANNNDDD NNNEEEWWW MMMEEEDDDIIIAAA

222000000333

2

Table of Content

List of Figures 15

List of Tables 19

List of Object Rexx Scripts 20

List of other Scripts 23

Acronyms 24

Preamble 29

1. Object Rexx 31

2. The Component Object Model 33

2.1. COM Interfaces 33

2.2. The COM Library 35

2.3. Further Items 35

2.3.1. Process 35

2.3.2. Thread 36

2.3.3. Apartment 36

2.3.3.1. Single-Threaded Apartment 36

2.3.3.2. Multi-Threaded Apartment 36

2.3.4. Monikers 36

2.4. COM Clients and Server 37

2.4.1. COM Client Getting a Pointer to an Object 37

2.4.2. The CLSID 38

2.4.2.1. Creation of CLSID with Uuidgen.EXE 39

3

2.4.2.2. Creation of CLSID with GUIDGen.EXE 40

2.4.3. Communication of Objects 41

2.5. Defining COM Interfaces 41

2.6. The Registry 42

2.6.1. The Registry Editor 44

2.6.2. The OLE/COM Object Viewer 46

2.6.3. The WindowsRegistry Class 47

2.7. Distributed COM (DCOM) 49

2.7.1. COM Components in different Processes 49

2.7.2. COM Components on different Machines 50

2.7.3. Features of DCOM 50

2.8. COM+ (Component Service) 52

2.8.1. New Features of COM+ 52

2.8.2. Features for Creating Applications 53

3. ActiveX 55

3.1. History of OLE/ActiveX 55

3.2. Object Linking and Embedding 56

3.2.1. Linking 56

3.2.2. Embedding 57

3.2.3. The Class ID (CLSID) of the OLE object 57

3.2.4. Features of ActiveX 57

3.3. ActiveX Control 58

4

3.3.1. Interfaces 59

3.3.2. Further Characteristics 61

3.3.2.1. Licensing 61

3.3.2.1.1. Design-Time Licensing 61

3.3.2.1.2. Run-Time Licensing 61

3.3.2.2. Initialization Security 62

3.3.2.3. Compression 62

3.3.2.4. Self-Registration 62

3.3.2.5. Digital Signature and Certification 63

4. ActiveX Automation 64

4.1. ActiveX Client 65

4.2. ActiveX Object 65

4.3. Important Interfaces 67

4.4. Interaction of Objects and Clients 69

4.4.1. Dual Interface 71

4.4.2. Object Access with the IDispatch Interface 72

4.4.3. ID Binding 72

4.4.4. Late Binding 73

4.4.5. Object Access with the VTBL 73

4.4.6. Out-of-Process Servers 73

4.4.7. In-Process Servers 73

4.5. Exposing ActiveX Objects 73

5

4.5.1. Initializing of exposed Objects 74

4.5.2. Implementation of the exposed Objects 75

4.5.3. Implementation of the Class Factory 75

4.5.4. The Application Object 76

 Registration 76

4.5.6. Registration of Classes 77

4.5.7. Releasing of the exposed Objects and OLE 79

4.5.8. Retrieving of the Objects 79

4.5.9. The Returning of Objects 80

4.5.10. Termination of Objects 80

4.6. Design of an Application which is Automated 80

4.6.1. IUnknown Interface 80

4.6.2. IDispatch Interface 80

4.6.3. Dual Interface 81

4.6.4. Registration of Interfaces 81

4.6.5. Creation of a CLSID 82

4.6.6. IEnumVARIANT Interface 82

4.7. Type Library 82

4.7.1. Creation of a Type Library 83

4.7.2. Registration of a Type Library 84

4.7.3. Error Handling 85

4.8. Access of ActiveX Objects 85

6

5. How to Get Script Code 86

5.1. Trial and Error 86

5.2. Macro Recorder Tool 86

5.3. Converting Visual Basic Script Code to Object Rexx 89

5.4. Other Sources 90

6. OLE and Object Rexx with OLEObject Class 94

6.1. Methods of the OLEObject Class 95

6.2. Type Conversion 95

6.3. Init 97

6.3.1. Init with ProgID 98

6.3.2. Init with CLSID 98

6.3.3. Init with WITHEVENTS 99

6.4. UnKnown 100

6.4.1. Unknown without Arguments 100

6.4.2. Unknown with Arguments 101

6.4.3. Unknown with identical Method Names 102

6.5. GetObject 105

6.6. GetConstant 106

6.6.1. GetConstant with the Name of the Constant 107

6.6.2. GetConstant without the Name of the Constant 109

6.7. GetKnownEvents 110

6.8. GetKnownMethods 114

7

6.9. GetOutParameters 118

7. Tools 120

7.1. METHINFO.rex 120

7.2. OLEInfo.rex 120

7.3. RGF_OLEInfo.hta 121

8. Useful Object Rexx Classes 124

8.1. WindowObject 124

8.2. MenuObject 124

8.3. Object Rexx Classes Remoting the User Interface 124

8.3.1. WindowsProgramManager 124

8.3.2. WindowsManager 124

8.3.3. WindowsClipboard 125

8.3.4. WindowsRegistry 125

8.3.5. WindowsEventLog 125

9. Embedding Object Rexx in HTML or XML 126

9.1. Tag 126

9.2. Document Type Definition (DTD) 126

9.3. HTML (Hypertext Markup Language) 126

9.4. XML (eXtensible Markup Language) 127

9.5. Cascading Style Sheets (CSS) 127

9.6. Document Object Model (DOM) 127

9.7. Microsoft Internet Explorer (MSIE) 128

8

9.7.1. Embedding an Object Rexx Script in HTML 129

9.7.2. MSIE and Error 131

10. WMI 133

10.1. Win32_Service 133

10.2. Win32_OperatingSystem 135

10.3. Win32_DiskPartition 136

10.4. Win32_LogicalDisk 136

10.5. Win32_Process 138

10.6. Win32Shutdown 139

11. Automation of Microsoft Agent Technology 141

11.1. Introduction to MS Agent Technology 141

11.2. Overview of MS Agent Technology 143

11.3. MS Agent and Events 151

12. Automation of Microsoft Speech 154

12.1. Text-To-Speech Synthesis (TTS) 155

12.1.1. Introduction to MS Speech TTS 156

12.1.2. MS Speech TTS embedded in HTML 158

12.1.3. Reading a MS Word Document 162

12.2. Speech Recognition 165

12.2.1. Dictation Recognition 166

12.2.2. Command and Control Recognition 168

12.2.2.1. C&C Recognition with Configuration File 168

9

12.2.2.2. C&C and the Creation of a new Grammar Rule 170

13. Windows Script Host 173

13.1. Scripting 174

13.1.1. Script Basics 174

13.1.2. Server-Side Scripting 175

13.2. Object Rexx and Windows Script Host 176

13.2.1. Basics 176

13.2.2. COM Interfaces 176

13.3. Host and Engine 177

13.3.1. Script Host and Script Engine Basics 177

13.3.2. Interaction between Scripting Host and Engine 178

13.4. Types of Script File 179

13.4.1. WSF File Using Windows Script Files (.wsf) 179

13.4.2. WSH File 180

13.4.3. REX File 180

13.4.4. RXS File 180

13.5. Running a Script 181

13.5.1. CScript 181

13.5.2. WScript 181

13.5.3. Embedding a Script in a HTML File 182

13.5.4. Other Possibilities to Run a Script 182

13.6. Instantiating of Objects 182

10

13.7. WSH Object Model 183

13.7.1. WshArguments Object 184

13.7.2. WshController 186

13.7.2.1. WSHController on the local Machine 188

13.7.2.2. WSHController on multiple Machines 189

13.7.2.3. WSHController and Events 194

13.7.3. WshNetwork Object 195

13.7.4. WshShell 198

13.7.4.1. Run Method and SendKeys Method 198

13.7.4.2. Accessing the Registry 200

13.7.4.3. Creation of Shortcuts 201

13.7.4.3.1. Creation of a Shortcut 201

13.7.4.3.2. Creation of an UrlShortcut 202

13.7.4.3.3. Deletion of a Shortcut 203

13.7.4.4. WshEnvironment 204

13.7.4.5. WshScriptExec 205

13.8. FileSystemObject Object 206

13.8.1. The AvailableSpace Property 206

13.8.2. DriveType Property 207

13.8.3. Creation of a Folder with a WSF File 208

13.8.4. Creating a Text File 209

13.8.5. Attribute Property 209

11

13.8.6. Copying a File 210

13.8.7. Deleting Files and Folders 210

13.9. Dictionary Object 211

13.10. Security in Windows Script Host 211

13.10.1. SignFile and VerifyFile Methods 214

13.10.2. Sign and Verify methods 218

13.11. Starting Applications with WSH 221

13.12. Windows Script Components 222

13.12.1. Windows Script Components Basics 223

13.12.2. Structure of Windows Script Components 223

13.12.2.1. The Registration 224

13.12.2.2. Exposing the Functions 226

13.12.2.3. The Script Code 227

13.12.2.4. Accessing the Functions of the Component 229

13.12.2.5. Remote Instantiation of a Script Component 230

13.12.2.6. Windows Script Component Wizard 233

14. MS.NET 234

14.1. Smart Devices 235

14.2. Web Services 235

14.2.1. Simple Object Access Protocol 236

14.2.2. Web Services Description Language 236

14.2.3. Universal Discovery Description and Integration 236

12

14.2.4. Difference of Web Site and XML Web Service 236

14.3. NET Framework 237

14.3.1. Common Language Runtime 237

14.3.2. The Assembly 239

14.3.3. Metadata 243

14.3.4. Cross-Language Interoperability 244

14.3.5. .NET Framework Class Library 245

14.4. Programming with the .NET Framework 247

14.4.1. ADO.NET 247

14.4.1.1. Objects of ADO.NET 247

14.4.1.2. ADO.NET Architecture 248

14.4.2. .NET Remoting 249

14.4.3. Accessing the Internet 251

14.4.4. Active Directory-Components 252

14.4.5. CodeDOM 253

14.4.6. Components Development 254

14.4.7. Developing World-Ready Applications 255

14.4.8. Asynchronous Calls 256

14.4.9. Creation of Messaging Components 257

14.4.9.1. Basic Knowledge of Messaging 258

14.4.9.2. Types of Queues 258

14.4.10. Windows Management Instrumentation 259

13

14.4.11. Processing Transactions 259

14.4.12. Security 260

14.4.12.1. Basic Security Terms 260

14.4.12.2. Access Security 261

14.4.12.3. Role-based Security 261

14.4.12.4. Cryptography 261

14.4.12.5. Security Policy Management 263

14.4.12.6. Security Tools 263

14.4.13. System Monitoring Components 263

14.4.14. Microsoft .NET Passport 264

14.5. Building Applications 265

14.5.1. ASP.NET 265

14.5.2. Windows Service Applications 266

14.5.3. Windows Forms 267

14.5.4. Design-Time Support 267

14.6. Object Rexx and MS.NET 268

14.6.1. Exposing of .NET Framework Components for Usage with COM 269

14.6.2. Assembly Registration Tool (Regasm.exe) 270

14.6.3. COM Interop 273

14.6.3.1. COM Wrappers 273

14.6.3.2. COM Callable Wrapper 274

14.6.4. Conclusion 279

14

15. Examples of Use 280

15.1. Döner Dome Restaurant 280

15.2. High Value Customers Consultancy 281

15.3. Tourplanning 282

Summary 285

Bibliography 288

MS Library Sources 289

Microsoft Library .NET Framework Sources 300

Other Sources: 307

System Administration Scripting Guide Sources 311

Microsoft Speech SDK 5.1 Documentation Sources 312

15

List of Figures

Figure 1: History of Rexx 32

Figure 2: Snapshot of the MS-DOS shell with uuidgen.exe 40

Figure 3: Snapshot of GUIDGen.EXE 40

Figure 4: Snapshot of the window of Start->Run 45

Figure 5: Snapshot of the Registry Editor 45

Figure 6: Snapshot of OLE/COM Object Viewer 46

Figure 7: Snapshot of the Registry Editor with the new key “TestKey” 48

Figure 8: COM components in different processes 50

Figure 9: DCOM: COM components on different machines 50

Figure 10: Timeline of ActiveX 56

Figure 11: Relations among ActiveX objects and ActiveX clients 65

Figure 12: Some objects of MS Excel 66

Figure 13: VTBL with I Unknown and I Di spat ch interface. 70

Figure 14: Dispatch interface is not supported 71

Figure 15: Accessing an Object Through the IDispatch Interface 72

Figure 16: Interfaces that should be implemented to expose ActiveX 75

Figure 17: Interaction of ActiveX components, CLSIDs and ProgIDs. 78

Figure 18: IEnumVARIANT interface 82

Figure 19: Macro Recorder tool 87

Figure 20: MS Word macro, which recorded that a text is typed. 88

16

Figure 21: Outlook Express 6 with the newsgroup microsoft.public.msagent. 93

Figure 22: Interaction of OLE object, OLEObject and Script 94

Figure 23: Snapshot of MS Excel 105

Figure 24: Snapshot of MS Word 109

Figure 25: Object Rexx Workbench with the command line 111

Figure 26: Snapshot of MS Excel 114

Figure 27: Snapshot of MS Excel 118

Figure 28: OLE/ActiveX Object Viewer with functions of Qualcomm Eudora 121

Figure 29: Snapshot of the start page of “rgf_oleinfo.hta” 122

Figure 30: Snapshot of “RGF_OLEInfo.hta” with compact listing. 123

Figure 31: Example for DOM 128

Figure 32: Snapshot of Embedding Object Rexx in HTML.htm. 131

Figure 33: Error handling with the MSIE. 132

Figure 34: Snapshot of MSAgents 141

Figure 35: Snapshot of Merlin 143

Figure 36: Snapshot of Agent_Overview.rex 151

Figure 37: Snapshot of the MS Speech SDK 5.1 Help 155

Figure 38: Speech recognition process flow 156

Figure 39: Snapshot of MSSpeech_TTS_2.hta 162

Figure 40: Snapshot of the IBM Object Rexx Workbench with command line. 163

Figure 41: Speech recognition process 166

Figure 42: Interaction between Scripting Host and Engine 178

17

Figure 43: WSH Object Model 183

Figure 44: Snapshot of the MS-DOS Shell 185

Figure 45: Snapshot of the registry with regedit.exe 188

Figure 46: Snapshot of the Security Policy console. 191

Figure 47: Snapshot of the start page of the User Accounts 192

Figure 48: Snapshot of the form for creating a password 193

Figure 49: WSHNetwork1.JPG:\\Server =Antares\Public=Eigene Daten 196

Figure 50: WSHNetwork2.JPG: Shows the new network drive” Z:” 196

Figure 51: WSHNetwork3.JPG: Shows the network printer 197

Figure 52: Creation of a certificate 212

Figure 53: Certificate Snap-In 213

Figure 54: Signed source code of code 50 216

Figure 55: MSDOS Shell with the command to sign the script 217

Figure 56: Message box to verify the script. 218

Figure 57: Dialog box which occurs after the Verify method is invoked. 221

Figure 58: Snapshot of Registration field. 224

Figure 59: ITypeInfo Viewer of the OLE/COM Object Viewer 229

Figure 60: Microsoft Windows Script Component Wizard. 233

Figure 61: Differences between Web Site and Web Service 237

Figure 62: All elements are united in a single file. 241

Figure 63: Multifile assembly 241

Figure 64: Single-file assembly and multifile assembly 242

18

Figure 65: ADO.NET architecture 249

Figure 66: Remotingprocess 251

Figure 67: Messagerouting between sites 258

Figure 68: Levels of design-time support 268

Figure 69: Illustration of a registry entry with a reference to Mscoree.dll 271

Figure 70: RGF_OLEINFO.HTA with the new created ProgIDs of .NET classes 272

Figure 71: Principle of RCW and CCW 274

Figure 72: Access of a CCW 275

Figure 73: COM interfaces for the CCW 275

Figure 74: CCW method call 276

Figure 75: RGF_OLEInfo.hta: New ProgID “AndyMc.CSharpCOMServer” 278

Figure 76: User interface of the cash registering system of project Döner Dome281

Figure 77: User interface of High-Value Customers consultancy 282

Figure 78: Tourplanning 284

Figure 79: Microsoft Document Explorer 289

Figure 80: Microsoft Document Explorer 300

Figure 81: System Administration Scripting Guide 311

Figure 82: Microsoft Speech SDK 5.1 Documentation 312

19

List of Tables

Table 1: OLE Control interfaces 60

Table 2: Important interfaces for OLE Automation. 69

Table 3: VBScript code to Object Rexx 90

Table 4: Methods of the OLEObject class 95

Table 5: Type conversion 97

20

List of Object Rexx Scripts

Code 1: WindowsRegistryClass.REX 48

Code 2: Init_Instantiation of Word with ProgID.REX 98

Code 3: Init_Instantiation of Word with CLSID.REX 99

Code 4: Init_WITHEVENTS.rex 100

Code 5: UnKnown_without_Arguments.rex 101

Code 6: UnKnown_with_Arguments.rex 102

Code 7: UnKnown_Identical_Methodnames.rex 104

Code 8: GetObject.rex 106

Code 9: GetConstant_GetConstant with name of Constant.REX 108

Code 10: GetConstant_GetConstant without name of Constant.REX 110

Code 11: GetKnownEvents_AllEventsOfAnApplication.rex 114

Code 12: GetKnownMethods_AllMethodsOfAnApplication.rex 118

Code 13: Embedding Object Rexx in HTML.htm 130

Code 14: WMI_ListAllServicesOnTheSystem.rex 135

Code 15: WMI_Win32_OperatingSystem.rex 136

Code 16: WMI_Win32_DiskPartition.rex 136

Code 17: WMI_Win32_LogicalDisk.rex 138

Code 18: WMI_LaunchANewProcess.rex 139

Code 19: WMI_Win32Shutdown.rex 140

Code 20: Agent_Intro.rex 143

Code 21: Agent_Overview.rex 150

21

Code 22: Agent_Events.rex 153

Code 23: MSSpeech_TTS_1.rex 158

Code 24: MSSpeech_TTS_2.hta 161

Code 25: MSSpeech_TTS_3_Word.rex 165

Code 26: MSSpeech_SR_1_Dictation.rex 168

Code 27: MSSpeech_SR_2_CommandAndControl.rex 169

Code 28: MSSpeech_SR_3_CommandAndControl_2.rex 172

Code 29: WSH_Arg.rxs 186

Code 30: WSHController_OnTheSameMachine.rex 189

Code 31: WSHRemoteCalc.rxs 189

Code 32: WshController_OnMultipleMachines.rxs 194

Code 33: WshControllerWithEvents.rxs 195

Code 34: WSHRemoteCalc.rxs 195

Code 35: WshNetwork.REX 198

Code 36: RunMethodAndSenkeysMethod.htm 200

Code 37: WSHRegistry.rex 201

Code 38: CreationOfAShortcut.rex 202

Code 39: CreationOfAnUrlShortcut.rex 203

Code 40: DeletionOfAShortcut.rex 204

Code 41: WshEnvironment.rex 205

Code 42: WshScriptExec.rxs 206

Code 43: FSOAvailableSpace.rex 207

22

Code 44: FSODriveType.rex 208

Code 45: FSOCreationOfANewFolder.wsf 209

Code 46: FSOCreationOfATtextfile.rex 209

Code 47: FSOFileAttribute.rex 210

Code 48: FSOCopyingAFileWithANewName.rex 210

Code 49: FSODeletionOfTheFilesAndFolders.rex 211

Code 50: DictionaryObject.rex 211

Code 51: ScriptWhichIsToSign.wsf 214

Code 52: WSH_Scripting_Signer_SignFile.rex 215

Code 53: Signer_VerifyFile.rxs 216

Code 54: WSH_ScriptingSigner_Sign.rex 219

Code 55: WSH_ScriptingSigner_Verify.rex 220

Code 56: WSH_EmbeddingAScriptInHTML.htm 222

Code 57: WSH_WSC_Test.wsc 229

Code 58: WSH_WSC_TEST.rex 230

Code 59: WSH_WSC_Remote.wsc 232

Code 60: MS_NET_System_Random.rex 273

Code 61: MS_NET_AndyMc_CSharpCOMServer.rex 279

23

List of other Scripts

OtherScript 1: Excel macro for UnKnown_Identical_Methodnames.rex 103

OtherScript 2: MS Word macro for code 9 108

OtherScript 3: VBS script code for Win32_Service 133

OtherScript 4: VBS script code for Win32_LogicalDisk 137

OtherScript 5: VBS script code for Win32_Process 138

OtherScript 6: VBS script for the demonstration of Win32Shutdown 139

OtherScript 7: Macro for MSSpeech_TTS_3_Word.rex. 164

OtherScript 8: solx.xml 170

OtherScript 9: Remote.vbs 194

OtherScript 10: Sign method with Visual Basic Script 219

OtherScript 11: Verify method with Visual Basic Script 219

OtherScript 12: RemoteWSC.vbs 233

OtherScript 13: testcomserver.cs 277

24

Acronyms

ACF Application Configuration File

ADO ActiveX Data Object

ADSI Active Directory Service Interfaces

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASP Active Server Pages

ATL ActiveX Template Library

BAT MS DOS batch file extension

CATID CATegory ID

CCW COM Callable Wrapper

CLS Common Language Specification

CLSID CLaSs IDentifier

CodeDOM Code Document Object Model

COM Component Object Model

CORBA Common Object Request Broker Architecture

CRL Certification Revocation List

CSS Cascading Style Sheets

CTL Certificate Trust List

DB DataBase

DCERPC Distributed Computer Environment Remote Procedure Call

DCOM Distributed COM

DDE Dynamic Data Exchange

DEF module-DEFinition file

DHTML Dynamical HTML

25

DISPID DISPatch IDentifier

DLL Dynamic Linked Library

DNS Domain Name Service

DOM Document Object Model

DOS DOS

DTD Document Type Definition

EXE Executable program

FTC Federal Trade Commission

GUI Graphical User Interface

GUID Globally Unique IDentifier

HTA HTML Application

HTML Hypertext Markup Language

HTML HTML file extension

HTTP HyperText Transfer Protocol

I/O Input/Output

IBM International Business Machines

ID IDentifier

IDL Interface Definition Language

IID Interface IDentifier

IIS Internet Information Services

IPX/SPX Internet Packed Exchange/Sequenced Packed Exchange

IT Information Technology

JIT Just-In-Time

JPEG Joint Photographic Expert Group

JS Jscript file extension

L&H Lernout&Hauspie

26

LAN Local Area Network

LCID LoCal IDentifier

LDAP Lightweight Directory Access Protocol

LPC Local Procedure Call

LPK License PacKage file

MDI Multiple Document Interface

MemberID Member IDentifier

MFC Microsoft Foundation Classes

MIDL Microsoft Interface Definition Language

MS MicroSoft

MSDN Microsoft Developer Network

MS-DOS MicroSoft-Disk Operating System

MSIE Microsoft Internet Explorer

MSIL MicroSoft Intermediate Language

MTS Microsoft Transaction Server

MVP Most Valuable Professional

NetBIOS Network Basic lnput/Output System

OCX ActiveX file extension

ODL Object Description Language

OLE Object Linking and Embedding

PDF Portable Document Format

PE Portable Executable

ProgID Program IDentifier

RAD Rapid Application Development

RC Resource Compiler

RCW Runtime Callable Wrapper

27

RegDB Registration DataBase

REX Object REXx file extension

Rexx REstructured eXtended eXecutor

ROT Running Object Table

RPC Remote Procedure Call

RXS ObjectRexxScriptFile extension

SAPI Speech Application Programming Interface

SDK Software Development Kit

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

SP3 Service Pack 3

SQL Structured Query Language

SR Speech Recognition

SSI Single Sign In

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TLB Type Library file extension

TTS Text-To-Speech

UDDI Universal Discovery Description and Integration

UDP User Datagram Protocol

UDT Uniform Data Transfer

UDT User-Defined Type

UNIX UNIpleXed Information and Computing System

URI Uniform Resource Identifier

URL Uniform Resource Locator

US United States

28

UUID Universally Unique ID

VB Visual Basic

VBA Visual Basic for Applications

VBS Visual Basic Script file extension

VBScript Visual Basic® Scripting Edition

VTBL Virtual function TaBL

WAN Wide Area Network

WAV Wave file extension

Win Windows

Windows Me Windows Millennium Edition

Windows NT Windows New Technology

Windows SE Windows Standard Edition

Windows XP Windows eXPerience

WMI Windows Management Instrumentation

WSC Windows Script Components

WSC Windows Script Component file extension

WSDL Web Services Description Language

WSE Windows Script Engine

WSF Windows Script Host file extension

WSH Windows Script Host

WSH Windows Script Host file extension

WYSIWIG What You See Is What You Get

XML eXtensible Markup Language

29

Preamble

This master thesis with the subject “Automation of Windows Applications with Object

Rexx” is a reference work. It will help in obtaining solutions to Automation problems

with Object Rexx. Object Rexx code examples explain many fields of the Automation

technology. This paper was written for the Associate Professorship of Computer

Science in Economics III and New Media of Prof. Dr. Rony G. Flatscher at the

University of Augsburg.

First, there is an introduction to the Component Object Model. After that, the ActiveX

Automation technology is explained theoretically and then practically with Object

Rexx samples. Often the Object Rexx samples are explained with the source code of

another language like Visual Basic Script. It will help solve Automation problems with

Object Rexx through the comparative analysis of possible solutions. This is

necessary because in the most cases there is only Visual Basic Script and no Object

Rexx instruction available. Also included in this paper is a list of sources for more

information, a description of tools and an introduction of the embedding of Object

Rexx in HTML/XML. The Object Rexx OLEObj ect class is described with examples.

The Automation technology is explained by Microsoft Office components, the MS

Agent technology, MS Speech technology, Windows Management Instrumentation

(WMI) and Windows Script Host (WSH). These technologies are described

theoretically and then practically with Object Rexx scripts. Then there is an

introduction to MS.NET and a description of access possibilities of MS.NET functions

with Object Rexx or other languages via OLE. This is significant because Object

Rexx has no language compiler for the .NET Framework. In the end are some

examples, which describe how to use this technology in the economical environment.

The terms ActiveX and OLE are used synonym. All Object Rexx scripts have Visual

Basic, Visual Basic Script or JScript codes as draft. Each Object Rexx script can also

be written with these languages.

The scripts in this master thesis were programmed with Object Rexx version 2.1.2.

on a MS Windows XP Home machine (German). New OREXXOLE.DLL files are

needed for some chapters. MS Word 2002 (German), MS Excel 2000 (German), and

30

MS Internet Explorer 6.0 (German) were used. Further software, which is necessary,

is described in the sections.

The author says thank-you to Times L. Richardson for marking this paper, and to the

development office of the language Object Rexx that supported the author patiently

and competently.

Send comments to this address: Florian.Helmecke@Web.DE

Document Conventions:

In this paper Object Rexx script code is written in a framed field:

Obj ect Rexx scr i pt code

Comments have a green font colour.

Obj ect Rexx scr i pt code comment

Text, written between quotation marks, is written in blue font colour.

Obj ect Rexx scr i pt code t ext wr i t t en bet ween quot at i on mar ks

Other script codes like Visual Basic Script code is used to explain the Object Rexx

code. It is written with a coloured background.

Ot her scr i pt code

Folder specifications or commands like method names, which are written in the

normal text, are written with Cour i er New.

Sometimes in the lettering of a figure “Snapshot” is written. That means that the

content of the display was copied to the clipboard by pressing Ct r l , Al t and Pr i nt .

31

1. Object Rexx

In 1979 Rexx (REstructured eXtended eXecutor) was developed by Mike F.

Cowlishaw (IBM-Fellow). It was the successor for the cryptical script language EXEC

for IBM mainframes. It has a simple and easy to learn syntax.

Since the beginning of the 90s an object-orientated version of Rexx was developed.

This language Object Rexx is fully compatible with the classic Rexx and is internally

built object-orientated. Procedural commands are internally converted to object-

orientated commands. Object Rexx has a powerful object model and is available for a

lot of operating systems like OS/2, AIX, Linux or Windows. Object Rexx uses an

interpreter and is interactive. [Fla02]

Object Rexx also supports messaging, polymorphism, classes, objects, methods,

inheritance and multiple inheritance. [IBM03]

Figure 1 gives a survey of the history of Rexx.

32

Figure 1: History of Rexx 11

1 Taken from [IBM03]

33

2. The Component Object Model

This chapter describes the Component Object Model with its interfaces, the COM

Library, some basic concepts, COM clients and server, the CLSID and how to get

one, the registry and ways to modify it, DCOM and COM+. This chapter concerns

elements which are used for technologies described later in this document.

The Component Object Model (COM) is a technology from Microsoft that is object-

based, RPC-based [Fla03], distributed and platform-independent. COM offers an

object model that makes it possible for objects to interact with other objects. The

objects could be in the same process, in another process or on a remote machine.

COM is also a binary-standard, which means that the objects can be written in

different object-orientated languages and differ in their structure. Examples for such

languages are C, Basic, Java or Object Rexx. COM is the basis for OLE (Object

Linking and Embedding) or later called ActiveX2. [MLCOMa]

Since Windows 2000 COM supports asynchronous calling, the control returns without

delay after a given command and the client can continue its work while the command

is worked on. [MLMMGa]

COM objects can be created with the Windows Script Components of Windows Script

Host3 [IBM02].

2.1. COM Interfaces

Interfaces are important because they enable the access of objects [MLCOMb].

Because it is the most important interface, the Unknown interface is also contained in

this item. [MLCOMe]

Methods are the functions of the interfaces [MLCOMc]. Interface means in this case

that it pertains to a group of functions [MLCOMb]. Clients can access the COM objects

(also-called COM components [MLCOMa]) with a pointer to an interface. In this way

the client can use the methods of the interface [MLCOMb]. The object must support all

2 c.p. 3.
3 c.p. 13.12.

34

methods of that interface. Otherwise, there is an error message if a method is used

that is not supported by the object [MLCOMc].

The COM interfaces are unchangeable and each of them has its own interface

identifier (IID), a subset of GUID (Globally Unique IDentifier), which allows checking

an object if it supports an interface and makes it unique [MLCOMd].

All interfaces inherit their functions from the I Unknown interface. Inheritance means

that the following interfaces include all methods of the parent interface.

The I Unknown interface has three core methods: Quer yI nt er f ace, AddRef , and

Rel ease [MLCOMe].

The Quer yI nt er f ace method makes it possible for the client to access other

interfaces and to navigate in an object [MLCOMf].

There are four conditions for this method:

• It must be transitive, which means that if a query from one interface to a second

interface is successful and if a query from that second interface to a third interface

is successful then a query from the first interface to the third interface must be also

successful.

• The second requirement is that it is reflexive, which means that it must be

successful if a pointer is held on an object and queried to that interface.

• It must be symmetric. If a query with a pointer to one interface is successful for

another, a query through the obtained pointer must be successful for the first

interface.

• It is static. That means if a call to Quer yI nt er f ace for a pointer has success in

pointing an interface the first time, it is successful the second time again.

In a decentralized system, it is not always known, if an object is still needed or not

because there could be several clients who access an object. To solve this problem

COM uses the reference count [MLCOMg].

By an access, the reference count for an interface on an object is raised with the

AddRef method [MLCOMh]. Otherwise, the Rel ease method reduces the reference

35

count. The memory is freed from the object if the reference count is zero and no

client accesses this object [MLCOMi].

2.2. The COM Library4

The Library is initialized, respectively uninitialized, through each process that uses

COM.

The COM library consists of DLL (dynamic linked library) and EXE files and it

contains data about the following topics.

• A unique class identifier (CLSID) helps to locate the server that implements a

class and where it is located.

• A standard mechanism makes it possible for applications to control the memory of

their processes.

• In the library are API (application programming interfaces) functions that enable

the programming of COM applications for clients and server.

• Remote procedure calls when an object is running in a remote server or local

server.

2.3. Further Items5

This chapter describes some basic concepts to support the understanding of COM.

These concepts are process, thread, apartment and monikers.

2.3.1. Process

A process is a collection of virtual data, memory space, code and system resources.

The operating system makes it possible for processes to operate with the Microsoft’s

Remote Procedure Call (RPC) to communicate with each other.

4 This section uses [MLCOMj]
5 The following definitions refer to [MLCOMk]

36

2.3.2. Thread

A thread is an executed code in a process. Multithreaded applications are in danger

of races (one thread has finished faster than another thread which depends on it) and

deadlocks (each thread is waiting for another thread).

2.3.3. Apartment

A COM object is contained in one apartment. There are two types of apartments.

2.3.3.1. Single-Threaded Apartment

COM objects contained in the apartment can only receive method calls from that

thread that pertains to the apartment. The method calls are synchronized.

2.3.3.2. Multi-Threaded Apartment

COM objects contained in the apartment can receive method calls from one or more

threads that pertain to the apartment. The model is called free-threading and the calls

are synchronized by the objects.

2.3.4. Monikers

A moniker is used to identify an object. It is an object which enables a component to

get a pointer to an object and the moniker functions as a name which unambiguously

identifies a COM object [MLGLOd]. This is called binding. A moniker is contained in a

DLL and implements the I Moni ker interface. There are moniker provider and

moniker clients. The first is a component that supplies monikers identifying its objects

to moniker clients and the second is a component that accesses a moniker to obtain

a pointer to another object [MLCOMah].

There are the following monikers [MLCOMai]:

• Monikers used for almost any object in any location:

• File monikers are used to identify any object that is contained in its own file

[MLCOMaj].

• Composite monikers are monikers that can characterize the relation among

other monikers and that are a composition of other monikers [MLCOMak].

37

• Item monikers identify an object that is included in another object

[MLCOMal].

• Monikers that are mainly used inside OLE:

• Anti-monikers are used for the generation of new moniker classes

[MLCOMam].

• Pointer-monikers are used for the identification of an object that can occur

only in the running or active state [MLCOMan].

• A so-called Class moniker can identify classes. They bind to the class object of the

class [MLCOMao].

2.4. COM Clients and Server6

This item describes the interaction of COM server and client. Initially this paper

explains how to get a pointer to an object. A basic element of COM is the CLSID. The

properties of the CLSID and how to create it are explained. Finally the

communication of objects is discussed.

A COM server supplies services to clients, which can be demanded with a pointer on

the COM interfaces. There are two kinds of servers, the out-of-process and the in-

process server. The out-of-process server runs in an EXE file in a remote machine or

in a local machine. The in-process server runs in a dynamic linked library and is able

to be implemented within an EXE process to use it for remote machines.

COM allows the employment within networks.

2.4.1. COM Client Getting a Pointer to an Object7

This section shows the possibilities how an object can be instantiated.

A client uses the services of a COM server. This is enabled by the methods of the

interface of the server [MLCOMl].

6This section uses [MLCOMl]
7This section uses [MLCOMm]

38

There are four ways how clients can instantiate an object:

• Objects pass their interface pointer to the client directly with the implemented

interface of another object for bidirectional communication.

• An object is called with its CLSID (CLaSs IDentifier).

• An API function in the COM Library is called to create an object of a

predetermined type

• The method of an interface is called to create another object. Then an interface

pointer on that other object is returned

2.4.2. The CLSID

The CLSID is an important basic concept that is used very often in further chapters.

For this reason an explanation of how to create a CLSID, is included.

The CLSID (Class identifier) is a globally unique identifier (GUID). It is compounded

with an OLE class object. For a server application it is recommended that the CLSID

be registered if a class object generates more than one instance of the object.

[MLCOMn]

COM enables a client to launch a server and to have access to the interfaces

methods through its CLSID. The server is like a COM class. This class is an

implementation of a group of interfaces and can be used by different applications.

The code is stored in DLL´s or in executable files. The CLSID identifies the COM

class and contains information of the location of the DLL or EXE code. If the server

and the client are on the same system, the CLSID is the only thing needed. On

distributed machines, a registry helps the server to be used by a client. A server

signs on its location in the registry and can be called with the CLSID [MLCOMo].

The server is responsible for implementing the code for a class object. He is also

responsible for registering its CLSID and for security [MLCOMp].

A class can be registered in the registry in the following ways: [MLCOMq]

• Registering at installation,

39

• self-registration,

• registering of objects in the ROT (running object table),

• installing as a user account or as a Win 32 service,

• registering a running EXE server.

A CLSID is a GUID (Globally Unique IDentifier). That means that there is no other

class with the same CLSID and in this way there cannot be any software collisions.

As well if there are the same names for a class, the CLSID´s are different [MLCOMr].

2.4.2.1. Creation of CLSID with Uuidgen.EXE8

This utility is part of the Visual Studio and helps to create unique CLSID´s to prevent

name collisions. The command uui dgen / n5 in the shell prompt9 like in figure 2

offers five CLSIDs.

8 This section uses [MLCOMr]
9 Start->Run->Command

40

Figure 2: Snapshot of the MS-DOS shell10 with uuidgen.exe11

2.4.2.2. Creation of CLSID with GUIDGen.EXE

Another tool to generate CLSID´s is GUIDGen.EXE which is part of the Visual Studio.

Figure 3 shows the user interface of GUIDGen.EXE creating a new CLSID [MLMMGb].

Figure 3: Snapshot of GUIDGen.EXE12

10 Part of MS WindowsXP
11 Part of MS Visual Studio

41

2.4.3. Communication of Objects13

If a client wants to call an object this object could be in-process or out-of-process.

In the case of in-process the client reaches the object directly. In the other case, out-

of-process, it reaches only a proxy object supplied by the original object or COM.

This proxy object implements the procedure call for the original object with all

necessary parameters including the pointers. This procedure is called marshalling

(coding [Fla03]). Marshalling means the packaging and the sending of interface

method calls across process or thread boundaries [MLGLOa].

In the case of an in-process, the caller for an object is for the server the client. In the

case of an out-of-process situation, the caller is a stub. This stub gets its instruction

from the proxy. It unmarshals (decoding [Fla03]) the information and calls the object.

2.5. Defining COM Interfaces14

COM supplies many interfaces the developer can use. But if the supplied interfaces

do not satisfy the requirements of an application the developer has to program its

interface by himself. This chapter shows the prerequisites for programming an

interface and which properties an interface must have.

The I Unknown interface is the interface from which all interfaces are deducible. After

defining an interface it is described in MIDL (Microsoft Interface Definition Language),

compiled and registered. To define interfaces the following things are required: MS

Windows NT version 4.0 or later or Windows 95. A 32-bit C/C++ compiler with the

MS Platform Software Development Kit is also required.

The following steps are necessary to program an interface:

• Decision about a type-library-driven marshalling or a proxy/stub DLL.

• Write a description of the interface in an interface definition language (IDL) file. In

an application configuration file (ACF) specific details about the interface are

12 Part of MS Visual Studio
13 This section uses [MLCOMs]
14This section uses [MLCOMt]

42

written. In the case of a type-library-driven marshalling a library statement is

added.

• With the MIDL compiler type library and header file, or interface identifier file, DLL

data file and header file and proxy/stub files are generated.

• Dependent on the chosen marshalling method, a module definition (DEF) file is

written. The MIDL-generated files are compiled and linked into a single proxy DLL.

The interface is registered in the system registry or the type library is registered.

Interfaces must have the following features: [MLCOMu]

• They must be unchangeable. That means that after creation no part of the

interface might be mutated.

• HRESULT must be returned for all methods. HRESULT shows if an action was a

success or a failure15.

• The interfaces have a unique interface identifier (IID)

• The data types have to be remotable. If this isn’t possible, marshalling and

unmarshalling routines have to be created. If needed, a pointer to the I Unknown

interface is created.

• The string parameters in interface methods have to be Unicode.

Remotable interfaces are important because of the distributed COM. MIDL makes it

possible that the interfaces are used outside of the machine, process or the thread.

[MLCOMv]

Important for an efficient interface is the quantity of the data that is transferred in a

method call and the rate of method calls across the interface border. [MLCOMv]

2.6. The Registry

The registry is the system database for the operating system with data about a lot of

areas of the system. First it is briefly described and then several access possibilities

15 c.p. 4.7.3.

43

are shown with tools like the Registry Editor, the OLE/COM Object Viewer or via an

Object Rexx script.

The registry of Windows contains information about the users of a system, software

and hardware configuration. The registry is searched by a client for information about

components. Any application can read from and insert data to the registry [MLCOMw].

There is also information about the COM objects. When the registry is asked for a

ProgID (Program IDentifier) or the CLSID, the location of the EXE or DLL is given

back. Then the server is either loaded into the process space of the client application

in case of in-process components or in case of remote or local servers the server is

started in its own process space. The server returns a reference to one interface of

the components after he created an instance of this component [MLCOMw].

The hierarchy of the registry is structured as named values or single default values,

subkeys and keys. The keys get the name by backslash-delimited strings and can

have one or more values consisting of binary data integral values or strings

[MLCOMx]. The registry of Windows XP has the following root keys:

HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHI NE,

HKEY_USERS and HKEY_CURRENT_CONFI G which can be seen with the Registry

Editor and the root key HKEY_PERFORMANCE_DATA (access of performance data)

which can’t be seen with the Registry Editor [MLWSIa].

Before information can be added to the registry a key must be opened. For this, it is

necessary to offer a handle to a key that is open. There are, through the system,

predefined keys. It is possible that the usage of the handles differ from platform to

platform. [MLWSIa]

The HKEY_CLASSES_ROOT contains HKEY that is responsible to switch to a registry

key. The whole phrase allows the configuration of the CLSID by the user in the path

HKEY_CLASSES_ROOT\ CLSI D. The information that is stored under this key, is used

by Shell and COM. Another key is HKEY_CURRENT_USER. With this key, the

preferences of the user can be changed. These preferences could be colors, network

connections, application preferences or environment variables.

HKEY_LOCAL_MACHI NE sets the physical state of the computer including the current

configuration data and system information. HKEY_USERS describes the default user

44

configuration for the current user and new users. The HKEY_CURRENT_CONFI G key

is an alias for HKEY_LOCAL_MACHI NE\ Syst em\ Cur r ent Cont r ol Set \ Har dwar e

Pr of i l es\ Cur r ent and offers information of the current hardware profile. [MLWSIa]

COM supports the self-registration with the functions Dl l Regi st er Ser ver and

Dl l Unr egi st er Ser ver for the DLL. [MLCOMy]

Each time an application is loaded, it should control whether the CLSID and the

application's CLSID are present in the registry. If this is not the case, it should be

registered as the original setup. It is also checked if the path containing server entries

and points to the location where the application is installed are correct. [MLCOMz]

Container applications that permit linking to embedded objects, server applications

and container/server applications installed on the system must sign on their data into

the registry. [MLCOMaa]

It is very time-consuming to check each component if it supports the interface. To

solve that problem component categories are installed which are allocated with a

GUID named CATID (Category ID). Components that support each interface of a

component category could register themselves as member of that category. It is also

possible that a component supports various categories [MLCOMab].

2.6.1. The Registry Editor16

With the Registry Editor it is possible to edit and view the registry.

Dependent on the operating system the file r egedt 32. exe (Windows NT) or

r egedi t . exe (Windows 95, Windows 98 and Windows XP) is used. Open the

St ar t menu, select Run and insert Regedi t on a Windows XP machine to launch

the Registry Editor. The editor contains information about the registry and its

organization including the CLSID´s. The CLSID´s are presented in the form

{ xxxxxxxx- xxxx- xxxx- xxxx- xxxxxxxxxxxx} .

Figure 4 shows the “Run” window of a Windows XP machine where the file name of

the Registry Editor is inserted.

16This section uses [MLCOMac]

45

Figure 4: Snapshot of the window of Start->Run17

The figure 5 contains a snapshot of the Registry Editor with some opened keys.

Figure 5: Snapshot of the Registry Editor18

17 Part of MS Windows XP
18 Part of MS Windows XP

46

2.6.2. The OLE/COM Object Viewer19

Another more comfortable possibility to watch the registry is the OLE/COM Object

Viewer. It shows the CLSIDs and the COM classes in the registry on the machine.

COM classes and other settings can be configured including DCOM and security

settings. The COM classes can also be tested, activated remotely or locally and the

supported interfaces can be shown. The content of the type library can be seen. The

OLE/COM Object Viewer can be downloaded from the Microsoft Homepage20 and

installed on the machine. The figure 6 shows the OLE/COM Object Viewer with the

_Wor kbook interface of Excel with interface, CLSID and Type Library information.

Figure 6: Snapshot of OLE/COM Object Viewer21

19 This section uses [MS98]
20 http://www.microsoft.com/com/resources/oleview.asp
21 Can be downloaded from the Microsoft Homepage

47

2.6.3. The WindowsRegistry Class2223

The Wi ndowsRegi st r y class enables Object Rexx to modify and query the

Windows registry and to delete or add items. Code 1 demonstrates some features of

the Wi ndowsRegi st r y Class.

First the Regi st r y object is created. Then the handles of the root key and of the

current key are shown. The key “Test Key ” is generated in the key

HKEY_CURRENT_USER with the Cr eat e method and some values and types are

defined with the Set Val ue method. After that these values and types are taken with

the Get Val ue method and its suffixes Dat a and Type. The Del et eVal ue method

deletes the named value “Name1” und the Del et e method erases the whole key

“Test key ”. At least the directive : : REQUI RES Wi nsyst m. cl s is needed because

the Wi ndowsRegi st r y class is not a built-in class and the Wi ndowsRegi st r y

class information is therein contained.

-

- - Wi ndowsRegi st r yCl ass. REX - -

-

r eg = . Wi ndowsRegi st r y~New - - Cr eat i on of t he r egi st r y obj ect

 SAY " The handl e of t he r oot key i s : " r eg~CLASSES_ROOT

 SAY " The handl e of t he cur r ent key i s : " r eg~CURRENT_KEY

 SAY " - "

r eg~Cr eat e(r eg~Cur r ent _User , " Test Key") - - The key " Test Key" i s cr eat ed

r eg~Set val ue(, " " , " Keyval ue") - - Def aul t val ue

 - - Ot her val ues ar e added

r eg~Set val ue(, " Name1" , " 0" , " BI NARY")

r eg~Set val ue(, " Name2" , " 1234" , " NUMBER")

r eg~Set val ue(, " Name3" , " Val ue3" , " EXPAND")

 - - Messagebox

CALL RxMessageBox " St ar t t he Regi st r at i on Edi t or t o wat ch t he " -

 " cr eat ed ent r i es! " , " I nf or mat i on" , " OK" , " I NFORMATI ON"

 - - Show t he val ues and t ypes

St em. = r eg~Get val ue(, " ")

 SAY " Def aul t val ue: " st em. dat a

 SAY " Def aul t t ype: " st em. t ype

St em. = r eg~Get val ue(, " Name1")

 SAY " Name1 val ue: " st em. dat a

 SAY " Name1 t ype: " st em. t ype

22 This section uses [IBM01, p249ff]
23 This section uses [IBM01a]

48

St em. = r eg~Get val ue(, " Name2")

 SAY " Name2 val ue: " st em. dat a

 SAY " Name2 t ype: " st em. t ype

St em. = r eg~Get val ue(, " Name3")

 SAY " Name3 val ue: " st em. dat a

 SAY " Name3 t ype: " st em. t ype

r eg~Del et eVal ue(, " Name1") - - Name1 i s del et ed

 - - Messagebox

CALL RxMessageBox " Name1 i s del et ed! " , " I nf or mat i on" , " OK" , " I NFORMATI ON"

r eg~Del et e(r eg~Cur r ent _User , " Test Key") - - The Key " Test Key" i s del et ed

 - - Messagebox

CALL RxMessageBox " The Key Test Key i s del et ed! " , " I nf or mat i on" , " OK" , -

 " I NFORMATI ON"

: : REQUI RES " wi nsyst m. cl s" - - Loads t he Wi ndowsRegi st r y c l ass def i ni t i on

Code 1: WindowsRegistryClass.REX24

Figure 7 shows the Registry Editor with the new created key “Test key ” (small circle)

and its values (big circle).

Figure 7: Snapshot of the Registry Editor with the new key “ TestKey” 25

24 Modelled after [IBM01a]
25 Part of MS Windows XP

49

2.7. Distributed COM (DCOM)26

DCOM is an extension of COM. It enables data transfer between objects which are

located on machines which are distributed in a LAN, WAN or over the Internet. This

section contains comments on DCOM, CORBA, and COM components in different

processes, to COM components on different machines and to the features of DCOM.

Distributed COM supports the communication of objects in networks like the Internet,

WAN or LAN. It adds on COM and extends it. DCOM is available for Windows, Apple

Macintosh and all major UNIX platforms. The ActiveX Consortium manages DCOM.

DCE RPC (Distributed Computer Environment – Remote Procedure Call) is the

fundament of DCOM. In this way, DCOM is able to be adapted to other DCE RPC

platforms. Virtual machine environments like Java or platform-neutral development

frameworks can be integrated with DCOM .

CORBA and DCOM

The Common Object Request Broker Architecture (CORBA) is a further standard for

distributed object computing. It has an abstract object model with components and

interfaces. Like DCOM it has standard mappings from the abstract object definition to

programming languages.

The so-called Object Request Broker of CORBA transmits and supervises messages

between the objects. CORBA is unlike DCOM platform-independent. Both models

can be used as server-side component model [Br02].

2.7.1. COM Components in different Processes27

If a client wants to communicate with a component in another process, COM

intercepts the call and passes it on to the other process according to the security

provider and DCE RPC with a LPC (Local Procedure Call).

26 This section uses [MLDCOa]
27 This section uses [MLDCOa]

50

This is illustrated in figure 8.

Figure 8: COM components in different processes28

2.7.2. COM Components on different Machines29

In the case of different machines for the client and the component, DCOM

communicates with a network protocol by using a protocol stack. This is illustrated in

figure 9.

Figure 9: DCOM: COM components on different machines30

2.7.3. Features of DCOM31

COM tools and components can be used for DCOM and reduce the expense on

development. It is also possible that components developed for distributed use can

be reused in the future. This section describes the features of DCOM.

28 Taken from [MLDCOa]
29 This section uses [MLDCOa]
30 Taken from [MLDCOa]
31 This section uses [MLDCOa]

51

DCOM ensures that a client connects to a component and it does not matter if the

component is in the same process or anywhere in the Internet. There are no changes

in the source code and it is not necessary that the program is recompiled.

Languages like Java, C, Delphi or Basic can be used for DCOM. Unfortunately

DCOM is not supported by Object Rexx [IBM01b,p154] and there is actually

(December 2002) no planning to change this [Doe02].

To check if a client is still active, DCOM uses a pinging protocol. The machine of the

client sends a periodic message and if there are three ping periods without receiving

a ping message the connection is interrupted. The reference count is reduced to zero

and the component is freed.

DCOM enables unidirectional and interactive symmetric communication between

peers and between servers and clients.

DCOM offers scalability, which means the possibility for a distributed application to

grow if data and the number of users grow. If the number of users and the amount of

data is reduced, the distributed application could be small.

DCOM uses UDP (User Datagram Protocol) as transport protocol, which is part of the

TCP/IP (Transmission Control Protocol/Internet Protocol). There are also other

protocols supported like IPX/SPX (Internet Packed Exchange/Sequenced Packed

Exchange) or NetBIOS. To reduce the number of network round trips DCOM

supports batching to bundle several method calls.

If the number of users and data grows, possibly it is necessary to distribute the load

among multiple server machines. That is called load balancing. It is called static load

balancing if there are always the same users who run on the same machine the

same application. DCOM´s location independence makes it possible that different

servers are chosen for different users. Another kind of load balancing is the dynamic

load balancing. That means that the referral component uses information about

statistics, network topology and server load to allocate transparently the client to the

most adequate server.

52

2.8. COM+ (Component Service)32

COM+ is a development of the Microsoft Transaction Server (MTS) (technology for

distributed applications [MLMTSa]) and the Component Object Model. Content of this

section are the new features of COM+ and the new features with regard to the

creation of applications.

COM+ is based on MS Windows 2000 and able to program distributed, enterprise-

wide and mission-critical applications, which can also run on Windows 95, Windows

98 and Windows NT systems. DCOM is flowed into COM+ and both are then not

supported by Object Rexx and there is actually no planning to change this [Doe02].

2.8.1. New Features of COM+33

With installation of COM+ new features are offered which are listed below:

• COM+ library or server applications can be enabled and disabled and COM+

server applications can be paused and resumed.

• COM+ supports COM+ partitions. With this technique, it is possible that various

versions of COM+ applications are configured and installed on the same machine.

• Private components can be created so that private applications cannot be

accessed from outside the application. Nevertheless, they still take part in all

COM+ services.

• Application Recycling enables the automatically shutting down of a process and

restarting it if there are problems with this process.

• COM+ enables components to be moved and copied, which means that a single

physical implementation of a component can be configured for many different

times.

• COM+ application recycling integrates with COM+ application pooling service and

adds scalability for single-threaded processes.

32 This section uses [MLCO+a]
33 This section uses [MLCO+b]

53

• Corresponding to performance, scalability, helping to increase concurrency and

need, an application's isolation level can be configured.

• COM+ allows its applications to be implemented as NT service. In this way the

application's dependent services can be started automatically, the COM+

application can run as local system and the server can be automatically started or

restarted.

• The Component Services checks if there is enough memory before creating an

object to improve the reliability.

• Process dumping allows an administrator to dump a process without ending the

process.

2.8.2. Features for Creating Applications34

COM+ offers new features for creating distributed, component-based applications.

• COM+ Events is a system with so-called subscribers and publishers. The

subscribers are COM+ objects that run the methods on the event interface. The

publishers are COM+ objects calling an event object.

• With COM+ transactional multi-tier applications can be created.

• COM+ allows execution of objects on any thread type. This new model is called

neutral threading.

• All Microsoft Transaction Server (MTS) 2.0 semantics are supported by COM+.

• With object pooling objects can be pooled and generated by an application

according to applications requirements.

• Instead of the system registry, the registration database (RegDB) is installed. The

scriptable and transactional interface COM+ catalog accesses the RegDB.

34 This section uses [MLCO+c]

54

• With the COM+ queued components service components can be executed

instantaneously if server and client are linked or the implementation is suspended

until there is a link.

• Process access permission security and role-based security are supported by

COM+

55

3. ActiveX

This section discusses ActiveX with its history, the meaning of linking and

embedding, the features of ActiveX and ActiveX Controls. The basics of Object

Linking and Embedding, which is the basis of OLE Automation, are explained.

ActiveX is another name for OLE (Object Linking and Embedding) [En01,p.7]. ActiveX

is based on COM. COM and OLE offer the possibility for interacting of different

objects programmed by different people. OLE is an object-based technology

[MLOLEa].

3.1. History of OLE/ActiveX35

In the 1980s Microsoft developed the dynamic data exchange (DDE) protocol to ease

the creation of compound documents. A compound document contains data of

different formats like spreadsheets, bitmaps, text or sound clips, generated by

different applications. Later in 1991 the DDE was extended and became to OLE

version 1.0. The objects were linked or embedded to reference them. The objects are

a kind of software component that can be integrated in an application to enlarge its

functionality. With version 2.0 (1993) OLE was improved and was given a huge

infrastructure to sustain the component software. In 1996 ActiveX was introduced to

use interactive software that is Internet-enabled [MS96]. The figure 10 contains a

timeline of ActiveX.

35 [MLOLEa]

56

Figure 10: Timeline of ActiveX36

3.2. Object Linking and Embedding37

OLE makes it possible that different elements and different programs are linked in a

single document. This could be elements like text, pictures, tables or sounds. The

sections 3.2.1. to 3.2.3. were taken from [He02,p5f].

There are two methods: Embedding and Linking.

3.2.1. Linking38

Information can be linked with other files. All changes in the source document can be

transferred automatically to the target document.

Disadvantage: There is a gap in the target document if data in the source file is

erased.

Advantage: Changes of data in the source file are immediately transferred to

the target document.

36 Taken from [MLOLEa]
37 Taken from [He02,p5]
38 Taken from [He02,p5]

57

3.2.2. Embedding3940

An embedded object is a copy from information of the source file that is inserted into

the target document. Data and document are linked fix. The application which

contains the embedded data can start the source application for working with the

data via OLE. Afterwards the worked data is saved [Fla03f].

Advantage: Data is part of the target document.

3.2.3. The Class ID (CLSID) of the OLE object41

Each application supporting OLE can be identified with its class ID. For example the

CLSID of the Microsoft Internet Explorer (Version 5.00.2014.0216) is:

"{ 0002DF01- 0000- 0000- C000- 000000000046} "

Alternatively, the Program ID can be used:

ProgID of Microsoft Internet Explorer: "I nt er net Expl or er . Appl i cat i on".

3.2.4. Features of ActiveX

An application that can embody linked or embedded objects into its own document is

called a container application [MLGLOb]. A container application is used to access

and store compound documents [MLAUTa]. A component or server application is

used to generate OLE document components for container applications [MS03].

OLE allows data transfer with the clipboard´s Copy&Paste and with drag and drop

[MLOLEb]. The Uniform Data Transfer (UDT) is the presupposition for drag and drop,

clipboard and Automation and replaced DDE [MLGLOc].

Copy&Paste or drag and drop are used to insert data from a server application to a

container application. Server and container communicate through the OLE system

dynamic-link library (DLL). It is also possible that an application is a container and a

server at the same time [MS03].

39 Taken from [He02,p5]
40 Section uses [Ar03]
41 Taken from [He02,p6]

58

There are three primary type specifications: [MLOLEa]

• Creation and management of custom controls is described with OLE Controls.

• For scripting and programmability, there is the OLE Automation specification.

Automation controller and Automation object are there explained.

• For the management and the generating of compound documents, there are OLE

Documents. The creation of containers and embeddable or linkable objects is

there explained.

With OLE Automation an application can be driven by another application. OLE

enables development, design and deployment of component software and

asynchronous and decentralized innovation [MLOLEa].

3.3. ActiveX Control

This chapter gives an overview of ActiveX Control. Thereby the interfaces are listed

and explained and features like digital signature and certification, design-time

licensing, run-time licensing, initialization security, compression, self-registration and

licensing are discussed.

An ActiveX Control is an OLE control or respectively a former OCX control with extra

characteristics [MLAXCa]. Integrated in a Microsoft Internet Explorer an ActiveX

Control can improve Web pages with features like text boxes or buttons. HTML

pages can be automated with the properties, events and methods provided by

controls [MLAXCb]. With the HTML <OBJECT> tag ActiveX Controls can be inserted

to web pages [MLAXCa].

ActiveX Controls can also be installed in applications programmed in many

languages. In this way it is possible to reuse packaged functionality. With Visual C++

and one of the ActiveX Control frameworks like BaseCtl framework, the ActiveX

Template Library (ATL) or Microsoft Foundation Class Library (MFC), controls can be

written [MLAXCa].

59

3.3.1. Interfaces42

This part provides an overview over important interfaces that are used for ActiveX

controls. A table gives a short description about the interfaces.

An OLE control is a COM object. In this way it supports the interfaces I Unknown,

I Cl assFact or y and the I Cl assFact or y2. The I Cl assFact or y interface is

used to register a class in the system registry and must be implemented

[MLCOMad].The I Cl assFact or y2 interface is optional and makes it possible that

object creation can be controlled by a class factory object through licensing. It is an

extension to the I Cl assFact or y interface [MLCOMae]. Normally, an OLE control

supports other interfaces that enable, for example, the support for a user interface for

the control, the support of Automation or the writing of persisting information to disk.

The table 1lists the interfaces that are also supported by an OLE control [MLAXCb]:

I Connect i onPoi nt Cont ai ner Responsible for connection points for

connectable objects [MLCOMaf].

I Dat aObj ect Notification of changes in data and data transfer

[MLCOMag].

I Di spat ch Access to the control's methods and properties.

I Ext er nal Connect i on Support of external connections.

I Ol eCache2 In order to cache a control's data, this interface

supports the functions that a container calls.

I Ol eCont r ol This interface is used to support ambient

properties and mnemonics.

I Ol eI nPl aceObj ect Responsible for the in-place activation. In-place

activation means the skill to activate an object

from within an OLE control and to link a verb

42 [MLAXCb]

60

like Edi t or Pl ay with that activation. [MLAUTb]

I Ol eObj ect This interface is used for the communication

between control and container.

I Per Pr oper t yBr owsi ng Access of the data in the property pages

provided by an object.

I Per si st * Provide six interfaces that allow that a control

can write or read its persistent data to stream,

file or storage. The “*” is a place-marker for the

six different I Per si st interfaces.

I Pr ovi deCl assI nf o2 Allows getting a pointer to the type information

of the control.

I Runnabl eObj ect Determination whether a control is in a "loaded"

and a "running" state.

I Speci f yPr oper t yPages Offers a list of property page CLSID´s

supported by the object [MLAUTbf].

I Vi ewObj ect 2 Allows a container to render a control.

Table 1: OLE Control interfaces43

COM objects which can save their internal state are in a so-called “persistent state”.

Objects with a “persistent state” must implement one I Per si st * interface. Either

I Per si st St r eamI ni t or I Per si st St r eam must be implemented.

The first interface is employed when a control wants to know when it is generated

new as opposed to reloaded from an existing persistent state. The second interface

has not this “generated new” ability [MLAXCc].

Controls do not need properties or methods and in this case, they do not need to

implement the I Di spat ch interface. If a control does have any methods or

43 Modeled after [MLAXCb]

61

properties, then there are no requirements for which methods or properties a control

must expose [MLAXCd].

It is not necessary for controls to have events. If there are not any events then it is

not necessary to implement the I Connect i onPoi nt Cont ai ner interface

[MLAXCe].

3.3.2. Further Characteristics

This chapter discusses further characteristics of ActiveX Controls. These

characteristics are licensing, initialization security, digital signature and certification,

compression and self-registration.

3.3.2.1. Licensing44

There are two kinds of licensing for the most ActiveX Controls, run-time licensing and

design-time licensing.

3.3.2.1.1. Design-Time Licensing

Design-time licensing guarantees that the application or web page is built with a

legally acquired control. Control containers like Microsoft Access or Visual Basic

verify controls by calling I Cl assFact or y2: : Cr eat eI nst anceLi c [MLAXCf] and

allow a developer to place a control in an application or web page after the control is

licensed.

3.3.2.1.2. Run-Time Licensing

Run-time licensing guarantees that the application or a web page contains a legally

acquired control. Control containers also call functions in the control to confirm the

license. Therefore the I Cl assFact or y2 interface is needed. Run-time licensing can

be used with a HTML page by using the Obj ect object to include the so-called

license package file (LPK).

44 This section uses [MLAXCb]

62

3.3.2.2. Initialization Security45

There is a potential security hazard because a control can receive data from an

untrusted source. That is because it is possible that a control can obtain data from

any I Per si st * interface if the control is initialized.

There are two possibilities to ensure that an ActiveX Control is safe for initialization.

The first possibility is to work with the interface I Obj ect Saf et y . If the control

includes the I Obj ect Saf et y interface then the Internet Explorer calls a method

named I Obj ect Saf et y: : Set I nt er f aceSaf et yOpt i ons before loading the

control to check the security of the initialization.

The second possibility is to use the Component Categories Manager to create the

correct entries in the system registry. The registry is probed by the Internet Explorer

before loading the control, whether these entries exist.

Another problem solved in the same way is the scripting security. The problem is that

a control that is known to be safe is not safe when a non-reliable script automates it.

An example is the MS Office with its Automation model that can be abused to delete

files on a machine.

3.3.2.3. Compression46

ActiveX Controls can be downloaded faster over an intranet or the Internet with data-

compression. Therefore the .cab file format is used. Foundation for this non-

proprietary compression format is the Lempel-Ziv-compression algorithm.

3.3.2.4. Self-Registration47

An ActiveX Control is also a Component Object Model (COM) object. In this way it

supports the I Unknown interface and is self-registering. With the functions

Dl l Regi st er Ser ver and Dl l Unr egi st er Ser ver s ActiveX Controls support

45 [MLAXCb]
46 This section uses [MLAXCb]
47 This section uses [MLAXCb]

63

self-registration. To register as control the Component Categories API (application

programming interfaces) must be used [MLAPIa].

3.3.2.5. Digital Signature and Certification48

Microsoft Authenticode Technology allows digital signatures and digital certification

for ActiveX Controls. With a digital signature a unique public key and the software

vendor’s name are linked with the file which contains an ActiveX object.

48 This section uses [MLAXCb]

64

4. ActiveX Automation

This part discusses the technical background of the Automation technology that is

used in sections 6 and 8 to 13. Here are individualized the ActiveX client, the ActiveX

object, the interaction of objects and clients, the exposing of ActiveX objects, the

design of an application which is automated and the access of ActiveX objects.

With ActiveX Automation it is possible for applications to expose their functionality to

interpreted and scripting languages. It can be used on Windows 95, Windows 98,

Windows SE, Windows Me, Windows 2000 and Windows XP systems [MLAUTc].

Automation allows the changing and creation of objects that are exposed in one

application from another application, the creation of tools that can contain compilers,

object browser, external programming tools and macro languages to change and

access objects, and the creation of programming tools and applications that expose

objects [MLAUTd].

• ActiveX objects are exposed objects of programming tools or applications.

• ActiveX clients are programming tools or applications that use the ActiveX objects.

• ActiveX components are e.g. DLL or EXE files which contain classes, which define

the ActiveX objects. The exposed objects are described by type information. Type

information can be accessed either at run time or at compile time by the ActiveX

components [MLAUTd].

65

Figure 11 illustrates the relation among ActiveX client, the application and type

information.

Figure 11: Relations among ActiveX objects and ActiveX clients49

4.1. ActiveX Client

ActiveX clients are programming tools or applications that access and use ActiveX

objects or create new ActiveX objects.

The client implements properties and methods of the object and generates new

instances of the object. It is possible that the object occurs in another or in the same

application. Clients can be generated by writing a new application capable of

Automation, by redesigning a present programming tool to extend it for Automation or

by writing code in an application that allows implementation of another application's

objects through Automation. An ActiveX client is for example a programming tool like

Visual Basic or Object Rexx [MLAUTe].

4.2. ActiveX Object

The member functions events, properties and methods are exposed to ActiveX

clients by an ActiveX object.

49 Taken from [MLAUTd]

66

ActiveX objects support COM. The member functions of an ActiveX object make the

object programmable by ActiveX clients. Activities that an object can execute are

called methods. Properties allow using data about the state of an object. Activities

acknowledged by an object are Events. Several instances of an object are together a

collection object. If there are several instances of an object, all instances can be

addressed with the collection object.

Figure 11 shows a part of the object model of Microsoft Excel [MLAUTf].

Figure 12: Some objects of MS Excel50

The object names can remain consistent in the further versions of an application. The

objects can be used from any macro language or programming tool that implements

Automation. In this way, it is possible for system integrators to select a suited macro

language or programming tool. Exposed objects from many applications are available

for developers to create solutions that extend over applications [MLAUTg].

50 Taken from [MLAUTf]

67

4.3. Important Interfaces

Table 2 lists important interfaces for OLE Automation.

I Cl assFact or y This interface must be implemented for every class that is

registered in the system registry and to which a CLSID is

assigned, so objects of that class can be created.

Taken from [MLAUTaw]

I Cr eat eEr r or I nf o Error information is set with this interface.

Taken form [MLAUTav]

I Cr eat eTypeI nf o This type information interface provides the tools for

creating and administering the type information defined

through the type description.

Taken from [MLAUTau]

I Cr eat eTypeI nf o2 This is a type information interface which adds methods

for erasing items that have been added with

I Cr eat eTypeI nf o.

Taken from [MLAUTau]

I Cr eat eTypeLi b Supplies methods for managing and creating the

component or file that includes type information.

Taken from [MLAUTau]

I Cr eat eTypeLi b2 Used for the administration and creation of type

descriptions and type libraries.

Taken from [MLAUTau]

I Dat aObj ect Used for specification of methods that enable data

transfer and notification of changes in data.

Taken from [MLAUTax]

I Di spat ch Supplies a late-bound mechanism to access and retrieve

information about the properties and methods of an

object.

68

Taken from [MLAUTae]

I EnumVar i ant Provides a standard way for ActiveX clients to iterate over

collection objects51.

Taken from [MLAUTaj]

I Er r or I nf o Gives back information from an error object.

Taken from [MLAUTav]

I Font Di sp Exposes a font object's properties through Automation.

Taken form [MLAUTbd]

I Ol eCl i ent Si t e Primary means by which an embedded object gets

information about the extent and location of its moniker,

its display site, its user interface, and other resources

which are provided by its container.

Taken from [MLAUTbc]

I Ol eCont ai ner Enumerates objects in a compound document or locks a

container in the running state.

Taken from [MLAUTbb]

I Pi ct ur e Manages a picture object and its properties.

Taken from [MLAUTba]

I Pi ct ur eDi sp Exposes the picture object's properties through

Automation.

Taken from [MLAUTaz]

I Recor dI nf o Describes the structure of a particular UDT (user-defined

type).

Taken from [MLAUTbe]

I Ser vi cePr ovi der Generic access mechanism to locate a globally unique

identifier (GUID) identified service.

Taken from [MLAUTay]

I Suppor t Er r or I nf o Identifies an object as supporting the I Er r or I nf o

interface.

Taken from [MLAUTav]

I TypeComp Provides type lookup and binding methods.

Taken from [MLAUTat]

51 c.p. 4.6.6.

69

I TypeI nf o This interface reads the type information within the type

library.

Taken from [MLAUTat]

I TypeI nf o2 This interface offers additional type information retrieval

actions.

Taken from [MLAUTat]

I TypeLi b Gets back information about a type library.

Taken from [MLAUTat]

I TypeLi b2 Supplies further type library retrieval actions.

Taken from [MLAUTat]

I Unknown The I Unknown interface defines three member functions

(Quer yI nt er f ace, AddRef and Rel ease) that must be

implemented for each object that is exposed.

Taken from [MLAUTad]

Table 2: Important interfaces for OLE Automation.

4.4. Interaction of Objects and Clients52

The interaction of objects and clients is a notable area of Automation. Part of this

area is different items like VTBL, dual interface, object access with the I Di spat ch53

interface, ID binding, late binding, object access with the VTBL, in-process Servers

and out-of-process Servers.

ActiveX clients in two ways can use objects. They can be accessed by implementing

the member functions like the properties and methods directly in the virtual function

table (VTBL) of the object. They can also be accessed with the I Di spat ch interface

that derives from the I Unknown interface. Additionally there is the possibility to use

both procedures together. This is called a dual interface.

So-called Custom interfaces are user-defined interfaces and they are COM interfaces

that are not defined as part of OLE.

52 [MLAUTh]
53 c.p. 4.3.

70

With a type library or an I Di spat ch interface, the interfaces, with its members, an

object can use, can be seen by a programming tool or an ActiveX client.

All methods and properties of an object and the supported interfaces are itemized in

the VTBL. The three member functions of the I Unknown interface54 are the first three

entries in the VTBL. Afterward the member functions of the other interfaces follow

[MLAUTh].

The figure 13 illustrates a VTBL with I Unknown and I Di spat ch interface.

Figure 13: VTBL with IUnknown and IDispatch interface. 55

54 c.p. 2.1.
55 Taken from [MLAUTh]

71

The member functions of the custom interface, in this case called I MyI nt er f ace,

follow the I Unknown shown in the figure 14 if an I Di spat ch interface is not

supported.

Figure 14: Dispatch interface is not supported56

4.4.1. Dual Interface57

The first three items in a VTBL of a dual interface are functions of I Unknown58, the

next four items are members of I Di spat ch59 and the following entries are members

of the dual interface. Here the dual interface is called I MyI nt er f ace. Figure 15

demonstrates a VTBL for an object with dual interface.

56 Taken from [MLAUTh]
57 [MLAUTh]
58 c.p. 2.1.
59 c.p. 4.3.

72

Figure 15: Accessing an Object Through the IDispatch Interface60

4.4.2. Object Access with the IDispatch Interface61

To approach an object with the I Di spat ch interface, the object must first be

generated. After that, the I Unknown interface is queried for a pointer to the

I Di spat ch interface.

With the DISPID (dispatch identifier) parameters, data members, methods and

properties are approached internally [MLAUTbg].

The function I Di spat ch: : I nvoke enables the use of member functions. Thereby

the parameters of the member functions are bundled into the I Di spat ch: : I nvoke

parameters. After that, the parameters are unbundled by the object’s implementation

of I Di spat ch: : I nvoke, the member function is executed and errors are

managed. Through an I Di spat ch: : I nvoke parameter, the return value of the

object is given back to the client.

4.4.3. ID Binding

ID binding is another possibility to obtain the DISPID. Thereby the DISPID is obtained

from the type library during compilation [MLAUTi].

60 Taken from [MLAUTh]
61 [MLAUTi]

73

4.4.4. Late Binding

Late binding enables the client to obtain the DISPIDs at run time with the

I Di spat ch: : Get I DsOf Names function. It is only half as fast as ID binding

[MLAUTi].

4.4.5. Object Access with the VTBL

During the compile time the client gets the type information from the type library and

calls the functions and methods directly. Because the approach to the member

functions is without using the I Di spat ch interface, the VTBL binding is faster than

late binding and ID binding [MLAUTj].

4.4.6. Out-of-Process Servers

Out-of-process servers are executed in a separate process space. They are

implemented in an EXE file [MLAUTk].

4.4.7. In-Process Servers

In-process servers are executed in the process space of their controller. They are

stored in a dynamic-link library. It is faster as an out-of-process server [MLAUTk].

4.5. Exposing ActiveX Objects

To access ActiveX objects it is necessary to expose them. This section lists all

necessary steps for exposing ActiveX objects. Exposed objects can be accessed by

other programming tools and applications [MLAUTl].

ActiveX objects are exposed in several steps. The first is to initialize the objects.

Thereby OLE is initialized, the class factories of the exposed objects are registered

and the active object is registered. Then the exposed objects are implemented by

using the virtual function (VTBL), I Unknown and I Di spat ch interfaces and by

implementing the methods and properties of the object. When the application ends,

OLE is released by cancelling the active object and the registration of the class

factories, and by uninitializing of OLE. Therewith other users can use the active

objects, an IDL or ODL file with information about the methods and properties of the

objects is generated with the Interface Definition Language (IDL), respectively, the

74

Object Description Language (ODL). Both files are compiled with the Microsoft

Interface Definition Language (MIDL) compiler. It is also a registration file generated

for the application [MLAUTm].

4.5.1. Initializing of exposed Objects62

To initialize the exposed objects and OLE the functions Ol eI ni t i al i ze,

CoRegi st er Cl assObj ect , and Regi st er Act i veObj ect , are used.

With Ol eI ni t i al i ze, the COM library is initialized on the present apartment and

the concurrency model is identified as single thread apartment [MLAUTo].

CoRegi st er Cl assObj ect , registers the class factory of the object. Then it can be

used by other applications to generate new objects. Regi st er Act i veObj ect

allows other applications to join to a present object by registering the active object.

The object is scheduled in the ROT (running object table) [MLAUTp]. A moniker63

enables the identification of the objects [MLAUTq]. Thereby it identifies a COM object

in the same kind, as a file is identified by a path in the file system [MLGLOd].64

62 [MLAUTn]
63 c.p. 2.3.4.
64 c.p. 2.3.4.

75

4.5.2. Implementation of the exposed Objects

The figure 16 shows the interfaces with their member functions that should be

implemented to expose ActiveX objects [MLAUTr].

Figure 16: Interfaces that should be implemented to expose ActiveX65

4.5.3. Implementation of the Class Factory

The class factory of the object is a COM object and it is necessary to generate one or

more instances of an object. Therefore, the CLSID and the I Cl assFact or y

interface are used [MLGLOe].

The I Cl assFact or y interface has the two member functions Cr eat eI nst ance

and LockSer ver that provide services for OLE API functions. With the

Cr eat eI nst ance method an instance of the object’s class is generated. The

existing instance, listed in the running object table, of the Application object is given

back. The LockSer ver method avoids the shutting down of the object’s server

when the last instance of the object is released. The class factory uses apart from the

I Cl assFact or y interface also the I Unknown interface. In this way it is possible for

the client to check what interfaces the object can use [MLAUTs].

65 Taken from [MLAUTr]

76

It is possible to generate instances of a class with the class factory. The interfaces of

the object are the I Unknown and I MyI nt er f ace interfaces. The I MyI nt er f ace

allows early binding with the VTBL and late binding (I Di spat ch) with the functions

Get I DsOf Names, Get TypeI nf o, Get TypeI nf oCount , and I nvoke. In this way

the dual interface I MyI nt er f ace offers two kinds of using the member functions.

Member 1 and Member 2 can be used to implement the object directly through the

VTBL or they can also be used with the I Di spat ch: : I nvoke function. To handle

errors of exposed objects in the case of a dual interface the I Er r or I nf o interface is

used [MLAUTs].

Implementation of objects requires also a registrations file (location information for

OLE and the operating system) and a type library. The object is described in the

library section of an .idl file or an .odl file is generated. The .odl file is compiled with

the MIDL compiler. A .tlb file (type library) and a header (.h) file are generated

[MLAUTs]. The header file includes function declarations and type definitions that are

based on the interface definition in the IDL file [MLMIDLa].

4.5.4. The Application Object

When a user-interactive, document-based, ActiveX objects exposing application runs,

the first object that is initialized should be the top-level Appl i cat i on object. With

this root object it is possible for the ActiveX client to connect to the application's

exposed objects [MLAUTt].

4.5.5. RegistrationOLE objects have to be registered with the user’s

system registration database. This enables the location of remoting code for the

interfaces, the location of the type libraries for Automation tools and it enables the

generation of instances of the objects with CoCr eat eI nst ance.

The DLLRegi st er Ser ver method signs on the type library, the ProgID for each

application and the CLSID for each object in the DLL [MLAUTu].

The registration connects the ProgID of the application with a CLSID. It is possible to

generate instances of the application by name [MLAUTv].

77

Syntax of the registration file [MLAUTv]:

\
�

AppName. Obj ect Name[. Ver si onNumber] = human_r eadabl e_st r i ng

\
�

AppName. Obj ect Name\ CLSI D = { UUI D}

AppName describes the name of the application, Obj ect Name includes the name of

the object which should be registered, Ver si onNumber is not obligatory and

contains the number of the version of the object, human_r eadabl e_st r i ng offers

a short instruction of the application and UUI D contains the universally unique

identifier created with Guidgen.exe66 [MLAUTv].

4.5.6. Registration of Classes67

Objects generated with CoCr eat eI nst ance must be registered by transferring a

CLSID to the Automation component file.

The CLSID maps the ActiveX object to the ProgID and application. Figure 17 shows

an ActiveX component with its ProgID and CLSID.

66 c.p. 2.4.2.2.
67 This section uses [MLAUTw]

78

Figure 17: Interaction of ActiveX components, CLSIDs and ProgIDs.68

Syntax and description of the Registry Entries:

This human_r eadabl e_st r i ng offers a short instruction of the application. The

human_r eadabl e_st r i ng is here Hel l o 2. 0 Appl i cat i on.

��������		�	�
���
��	��
�� � � �� � � � �� �� � �� � � � �� � � � �� � � � � � � � � � �� ��� �� !!" �� #� ��$ $!%& ' (%") �

The ProgID is written in the form AppName. Obj ect Name. Ver si onNumber . Its

single parts are described above69.

��������		�	�
���
��	��
�� � � �� � � � �� �� � �� � � � �� � � � �� � � � � � � � � � �� �
* +" , �� �� �� !!" #�$ $!%& ' (%") #� �

The Ver si onI ndependent Pr ogI D is written in the form AppName. Obj ect Name.

The single parts are described above.

��������		�	�
���
��	��
�� � � �� � � � �� �� � �� � � � �� � � � �� � � � � � � � � � �� �
- +. %") �) / $) /) (* +" , �� �� �� !!" #�$ $!%& ' (%") �

Local Ser ver [32] means the usage of an EXE file as ActiveX component which is

executed in another process as the ActiveX client. “32“ means the usage on 32-bit

Windows platforms and is not obligatory. This entry has the syntax

f i l epat h[/ Aut omat i on] with name and path of the file which hosts the object.

/ Aut omat i on is not obligatory and means that it can be used for Automation. If the

ActiveX component is executed in the same process as the ActiveX client and if it is a

DLL, instead of Local Ser ver [32] I nPr ocSer ver [32] is used.

68 Taken from [MLAUTw]
69 c.p. 4.5.5.

79

��������		�	�
���
��	��
�� � � �� � � � �� �� � �� � � � �� � � � �� � � � � � � � � � �� �
�" & ' !	 +0 +� � �� �1 !!" # 2 �3�4 (" 5 ' (%") �

This entry offers the CLSID of the type library:

��������		�	�
���
��	��
�� � � �� � � � �� �� � �� � � � �� � � � �� � � � � � � � � � �� �
�6 $ �%7 �� ��� � � �� � � � �� �� � �� � � � �� � � � �� � � � � � � � � � �� ��

This entry shows that it is an ActiveX component:

��������		�	�
���
��	��
�� � � �� � � � �� �� � �� � � � �� � � � �� � � � � � � � � � �� �
* +" , +' 5 5 ' 7 ! �

4.5.7. Releasing of the exposed Objects and OLE70

The functions that are described in this section are used to release exposed objects

and OLE.

RevokeAct i veObj ect terminates the active status of an object. OLE is informed

with the CoRevokeCl assObj ect function that a class factory cannot be longer

accessed by other applications. OLEUni ni t i al i ze releases OLE by ending any

class factory, the COM library, other COM objects or servers and make RPC

impracticable on the apartment [MLAUTy].

4.5.8. Retrieving of the Objects

The following functions enable the retrieving of the objects.

With Regi st er Act i veObj ect the active object for an application is set when the

application is launched. At the termination of an application, the function

RevokeAct i veObj ect cancels the active object. A pointer to the active object is

returned with the function Get Act i veObj ect .

The Appl i cat i on object is always listed as active and it is possible that there is

more than one active object in an application. An active object requires a class

factory and that class factory is identified by a ProgID in the system registry,

registered with the Regi st er Act i veObj ect function [MLAUTz].

70 This section uses [MLAUTx]

80

4.5.9. The Returning of Objects

The application returns a pointer to the I Di spat ch interface, to return an object

from a method or property. The data type is VT_DI SPATCH in the case if I Di spat ch

can be used; otherwise, the data type is VT_UNKNOWN [MLAUTaa].

4.5.10. Termination of Objects

Here is described how to shut down an object.

An application that is controlled by an ActiveX client and that is visible becomes

invisible if the user ends it. Nevertheless, it is still possible to control the object until

the application is ended when there is no further external reference to the object. In

the case that the application is visible the object ends if the ActiveX client or if the

user gives command to shut down. In the case, if the application is invisible the

application ends if the last external reference is closed [MLAUTab].

4.6. Design of an Application which is Automated

If an application is created which is automated, several items must be taken in

consideration. Significant are the I Unknown interface, the I Di spat ch interface, the

dual interface, the registration of interfaces, the creation of CLSID´s and the

I EnumVARI ANT interface.

Generating a programmable interface with its events, methods and properties is like

an object-orientated framework for the application [MLAUTac].

4.6.1. IUnknown Interface71

The prototype for the member functions of the I Unknown interface is in the header

file Ol e2. h. With this fundamental interface, it is possible to use objects [MLAUTad].

4.6.2. IDispatch Interface

The I Di spat ch interface uses a late-bound mechanism to use information of the

member functions of an object. The following functions should also be used:

71 c.p. 2.1.

81

Get TypeI nf oCount gives back the amount of type descriptions for the object.

Get TypeI nf o details the programmable interface. The Get I DsOf Names function

maps the name of a function to a DISPID. It is possible to use a member function of

an object with the function I nvoke [MLAUTae].

4.6.3. Dual Interface72

Dual interfaces have advantages over VTBL-only or I Di spat ch–only interfaces.

There is better performance for ActiveX clients who use the VTBL interface. Clients

using the I Di spat ch interface may carry on their activity. It is possible to bind

during run time (I Di spat ch) or during compile time (VTBL) [MLAUTaf].

4.6.4. Registration of Interfaces73

So that OLE can locate the appropriate remoting code for interprocess

communication, an interface must be registered. This data can be watched with the

OLE/COM Object Viewer74.

Syntax of the registered information:

This term describes the universally unique ID and the name of the interface:

\ I nt er f ace\ { UUI D} = I nt er f aceName

This phrase offers the universally unique ID for the type library with the interface

description:

\ I nt er f ace\ { UUI D} \ Typel i b = LI BI D

This entry connects an IID (Interface IDentifier) to a CLSID in a 32-bit proxy DLL

[MLAUTah]:

\ I nt er f ace\ { UUI D} \ Pr oxySt ubCl si d[32] = CLSI D

72 c.p. 4.4.1.
73 [MLAUTag]
74 c.p. 2.6.2.

82

4.6.5. Creation of a CLSID

CLSIDs are so-called universally unique identifiers (UUIDs). UUIDs are created with

GUIDGen.exe75. The CLSID is registered by installing an application. Each object

which is exposed for creation has to have a unique CLSID [MLAUTai].

4.6.6. IEnumVARIANT Interface

ActiveX clients can iterate over collection objects with the I EnumVARI ANT interface.

With the _NewEnum property, which sends back an enumeration object that supports

the I EnumVARI ANT interface, the object signals that iteration can be used. With the

member function Ski p of the I EnumVARI ANT interface one or more parts in a

collection are skiped, Reset enables that the actual element is reset to the first

element in the collection, one or more elements in a collection are retrieved with the

Next function and the current state of the enumeration is duplicated with Cl one

[MLAUTaj]. The I EnumVARI ANT interface is illustrated in figure 18.

Figure 18: IEnumVARIANT interface76

The _NewEnum property must give back a pointer to the I Unknown interface of the

enumerator object, it must include DI SPI D = DI SPI D_NEWENUM(- 4) and it has to

have the name _NewEnum and it is not allowed to be localized [MLAUTak].

4.7. Type Library

Type libraries are an essential part for the Automation technology because they store

information about one or more ActiveX objects, their characteristics and their

interfaces with member functions.

75 c.p. 2.4.2.2.
76 Taken from [MLAUTaj]

83

In this way the objects are available to other programmers. The creation of a type

library, the registration of a type library and the error handling are explained.

The objects are written in an object description language file (.odl), and then

compiled with the MIDL77 compiler [MLAUTal].

Exposed objects that use VTBL binding78 have to be described in a type library,

because VTBL references are bound at compile time. Each set of exposed objects

must be described in a type library.

The main characteristic of type libraries is its ability to check the type during the

compile time. An interface is described with type information. DISPIDs can be stored

at compile time to enhance the run time capability by ActiveX clients that cannot use

VTBL. Local server access is possible. With the Regi st er TypeLi b function

exposed objects can be listed in the registration database. To uninstall an application

the UnRegi st er TypeLi b function is used. The library can be seen with type

browsers [MLAUTam].

4.7.1. Creation of a Type Library

This section provides information about the creation of a Type Library.

Type libraries are usable at run time and at compile time. They contain function-

specific documentation strings, help file names and contexts as well as type

information like the description of the methods, properties and objects. To generate a

type library an object description script is written first in the ODL format. After that, a

class description header (.h) file and a type library file (.tlb) is created with a MIDL

compiler.

A type library can be built-in in an EXE or DLL file or as a stand-alone file (.tlb file)

[MLAUTan].

77 c.p. 2.5.
78 c.p. 4.4.

84

With the following command a type library with the name out put . t l b and the

header file out put . h is generated from the description script inscript.odl:

MI DL / TLB out put . t l b / H out put . h i nscr i pt . odl

In order for Automation to locate the type library it is necessary to register the library

in the application’s registration file. A type library is built by adding the header file in

the project. The whole project is compiled. It is also possible to join the type library

with the compiled project thanks to the Resource Compiler (RC) [MLAUTao].

4.7.2. Registration of a Type Library79

The information that is exposed by applications and tools must be registered. Then

the information can be used by programming tools and type browser.

With the Regi st er TypeLi b function the registration entries for the type library are

created.

The data about the type library is stored in the following manner:

• The universally unique ID of the type library is written as follows.

\ TypeLi b\ { l i bUUI D}

• Maj or . mi nor is the version number of the type library. A changing of the major

version number requires a recompilation of code that was compiled against the

type library. If only the minor version number rises, it results in support of all

characteristics of the prior type library. human_r eadabl e_st r i ng offers a short

instruction of the type library.

\ TypeLi b\ { l i bUUI D} \ maj or . mi nor = human_r eadabl e_st r i ng

• The hel pf i l e_pat h offers the location of the Help file of the type library.

\ TypeLi b\ { l i bUUI D} \ maj or . mi nor \ HELPDI R = [hel pf i l e_pat h]

79 [MLAUTap]

85

• t ypel i b_f l ags is a hexadecimal description of the type library flags.

\ TypeLi b\ { l i bUUI D} \ maj or . mi nor \ Fl ags = t ypel i b_f l ags

• l c i d means local identifier which is described as a hexadecimal string. With

pl at f or m the target operating system platform is presented.

l ocal i zed_t ypel i b_f i l ename is the name of the localized type library.

\ TypeLi b\ { l i bUUI D} \ maj or . mi nor \ l c i d\ pl at f or m = l ocal i zed_t ypel i b_f i l ename.

4.7.3. Error Handling

If there is an error, ActiveX objects give back a message of the error, an error

number and the location of a Help file. Otherwise, it is possible to give back an

HRESULT (return value with severity code, context information, facility code and

status code [MLAUTaq]) with data of the error [MLAUTar].

4.8. Access of ActiveX Objects

To use ActiveX objects it is necessary to initialize OLE and to generate an instance of

the object. After obtaining information about the member functions of the object the

functions are called. When the application ends the active object is withdrawn and

OLE is uninitialized [MLAUTas].

86

5. How to Get Script Code

For a developer there is often a problem to get the script code. In the most cases,

there is no explanation of an Automation issue for Object Rexx. Here some ways are

demonstrated to get the script code. This section is also interesting for non-Object

Rexx developer. The Automation technology is a technology from Microsoft and in

this way many examples are available for Automation. If you want to program an

Object Rexx script, first try it with a Visual Basic Script, if it works, and then convert it

to Object Rexx script code. Proceedings like trial and error or the macro recorder tool

are included in this section as well as a table that help to convert Visual Basic Script

code to Object Rexx code and many further information sources like Internet links.

5.1. Trial and Error

Trial and Error is an important hint. Often there is no documentation available and

then the developer has to understand the system by trial and error. Attention should

also be paid to “small” things like a dot. The author took a long time to program the

Ver i f y method of the Scr i pt i ng. Si gner object with Object Rexx but it did not

work80. Sometime the author tried to invoke this method with the tool OLEInfo.rex81

and recognized that there was small dot before the phrase “.true”. This was the

solution to the problem. It is very important to be tenacious.

5.2. Macro Recorder Tool

A helpful tool to get the source code for a script, is the "Macro Recorder Tool" of the

Microsoft Office applications, that creates Visual Basic code of the actions that are

performed manually by the user [IBM02a,p1].

80 c.p. 13.10.2.
81 c.p. 7.2.

87

Figure 19 illustrates the macro recorder tool of MS Word.

Figure 19: Macro Recorder tool82

Microsoft Word, Microsoft Power Point or Microsoft Excel have such a macro

recorder. To use it look up in the menu Tool s / Macr o. . . . Then the actions are

made manually. After that, the recording is stopped, the macro is selected and the

Visual Basic Script code can be seen by pressing the Edi t code button like in

figure 20 [IBM02a,p1].

A macro recorder tool is also available for some non-Microsoft applications.

82 Taken from [IBM02a,p1]

88

Figure 20: MS Word macro, which recorded that a text is typed.83

A Visual Basic Script macro also contains information that is not required for the

Object Rexx source code.

All of the information is not contained in the macro which is needed to program such

a script with Object Rexx like the Vi si bl e property of MS Word. More information

for automating MS Office can be obtained in the Microsoft Library VBA Language

Reference84.

83 Part of MS Word 2002
84 http://msdn.microsoft.com/nhp/default.asp?contentid=28000550

89

5.3. Converting Visual Basic Script Code to Object Rexx

Table 3 helps to translate Visual Basic Script code to Object Rexx code.

 Visual Basic Script Edition Object Rexx

Method operator . (point) ~ (twiddle)

Continuation character _ (underscore) , (comma) or – (hyphen)

String concatenation & (ampersand) | | (two vertical lines) or � �
 (two blank characters)

Definition of variables DI M var _namen Give any name

Line comments ‘ (apostrophe)
REM (if no statement before)
:

�
REM (with statement

before)

- - (two hyphens)

Multiple line comments / * …* / (can span several
lines and can be nested)

Procedure calling
CALL pr oc1(a1, a2, a3)

or
pr oc1 a1, a2, a3

CALL pr oc1 a1, a2, a3

Function calling a=pr oc1(a1, a2, a3)

a=pr oc1(a1, a2, a3)
or
CALL pr oc1 a1, a2, a3
a=r esul t

Function calling a=pr oc1(a1, a2, a3)
Calling with named
arguments, e.g.:
' � $ +" & � 8�' � �9� �:�1 �� #��+, 4 5) (;:�<�

a=pr oc1(, , a3)
or
CALL pr oc1 , , a3
a=r esul t

Defining a procedure
Sub pr oc1(a1, a2, a3)
MsgBox " a1=" & a1 _
" a2=" & a2 _
" a3=" & a3
End Sub�

pr oc1: pr ocedur e
par se a1, a2, a3
say " a1=" a1 " a2=" a2 -
" a3=" a3

r et ur n
or
: : r out i ne pr oc1
say " a1=" ar g(1) -
" a2=" ar g(2) –
" a3=" ar g(3)

Defining a function
Func pr oc1(a1, a2, a3)

pr oc1=a1 & a2 & a3
End Func

pr oc1: pr ocedur e
par se a1, a2, a3
r et ur n a1 | | a2 | | a3
or
: : r out i ne pr oc1
r et ur n ar g(1) | | -
ar g(2) | | ar g(3)

90

With command
Wi t h MyLabel
. Hei ght = 2000
. Wi dt h = 2000
. Capt i on =" MyLabel "
End Wi t h

MyLabel ~Hei ght = 2000
MyLabel ~Wi dt h = 2000
MyLabel ~Capt i on=" MyLabel "

Table 3: VBScript code to Object Rexx85

5.4. Other Sources

There are many other information sources, which are here listed. These are Object

Rexx, Microsoft, general and other sources. There are some links with a short

description of newsgroups provided.

Object Rexx:

• This link contains a detailed tutorial of Object Rexx from Prof. Flatscher (German):

http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/

• The samples in the path Obj REXX/ Sampl es contain some examples scripts for

OLE and WSH that could be helpful.

• In the folder …\ Wi ndows\ Ver si on 2. 1\ books on the Object Rexx CD are

some e-books. To emphasize are RexxRef.pdf and RexxPg.pdf.

• In the section 7 are some valuable tools described which show interesting

information like the member functions of an automated application.

• The IBM Object Rexx site offers some suitable links: http://www-

3.ibm.com/software/ad/obj-rexx/

• This IBM Object Rexx support site contains some helpful hints and links:

http://www-3.ibm.com/software/ad/obj-rexx/support.html

• There is a link to the developer team of Object Rexx:

http://www.ibm.com/software/ad/obj-rexx/service-orexx.html

• Homepage of the Rexx Language Association: http://www.RexxLA.org/

85 Taken from [Fla02b,p21ff]

91

• This site offers a lot of links to Rexx sites: http://www2.hursley.ibm.com/rexx/

• Site with information about NetRexx: http://www2.hursley.ibm.com/netrexx/

Microsoft:

• The MSDN Library offers a lot of documents for Microsoft technologies:

http://msdn.microsoft.com/library/

• Here is an introduction to DHTML:

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/dhtml.asp

General:

• A good search engine is Google (http://www.google.com) or MetaGer

(http://www.metager.de)

• Here is a reference book about many items of information technology (German):

http://www.glossar.de

Newsgroups:

• The Dbforums (http://dbforums.com) is a starting page for many newsgroups. To

emphasize is the forum comp. l ang. r exx (http://dbforums.com/f135/) for Object

Rexx. A forum for scripting is mi cr osof t . publ i c. scr i pt i ng

(http://dbforums.com/f194/)� with two forums for JScript and VBScript. It is not

important in which of these two forums a thread is posted. There is also a forum

for Microsoft.NET (http://dbforums.com/f235/). But there are very less postings in

the MS.NET forum.

• The Developersindex (http://www.developersdex.com/newsgroups.asp) offers

many newsgroups. There are several newsgroups for scripting

(microsoft.public.scripting.jscript�� microsoft.public.scripting.vbscript��

microsoft.public.scripting.wsh). For MS.NET many newsgroups are provided.

92

• A newsgroup for the Microsoft Speech technology is located at:

http://communities.microsoft.com/newsgroups/messageList.asp?ICP=MSCOM&sL

CID=US&NewsGroup=microsoft.public.speech_tech&iPageNumber=1

• A newsgroup for the MS Agent technology can be found at this location:

news://msnews.microsoft.com/microsoft.public.msagent

• Startpage for a lot of XP newsgroups:

http://www.microsoft.com/windowsxp/expertzone/newsgroups/default.asp

The newsgroups are monitored by so-called MVPs (Most Valuable Professionals).

The MVPs are IT specialists from Microsoft. They answer to requests of users to

Microsoft technologies [Onl02].

Newsgroups can be accessed via a “normal” Internet Homepage or via the phrase

news://. In the second case the URL of the newsgroup is inserted like the “normal”

Internet Homepage to the MS Internet Explorer of Windows XP and then

automatically Outlook Express 6 is started (figure 21) where the newsgroup

news://msnews.microsoft.com/microsoft.public.msagent was typed into the command

line of the MSIE86.

86 Implemented with MS Windows XP Home

93

Figure 21: Outlook Express 6 with the newsgroup microsoft.public.msagent87.

Other Links:

• Here is the very rich resource for HTML “SelfHTML” located (German):

http://selfhtml.teamone.de

• Link to the World Wide Web Consortium (W3C): http://www.w3c.org

• Cascading Style Sheets Homepage of W3C: http://www.w3c.org/Style/CSS/

• Document Object Model Homepage of W3C: http://www.w3c.org/DOM/

• HyperText Markup Language (HTML) Home Page of W3C:

http://www.w3c.org/MarkUp/

• Javascript-based tutorial: http://people.freenet.de/JavaScript/javap00.htm

• ActiveX site for Object Rexx of Lee Peedin: http://pragmaticlee.safedataisp.net/

87 Part of MS Windows XP

94

6. OLE and Object Rexx with OLEObject Class

This part contains the OLEObject class. This class is the core interface of Object

Rexx for OLE. The methods I ni t , Unknown, Get KnownEvent s ,

Get KnownMet hods , Get Obj ect and Get Out Par amet er s of the OLEObj ect class

and the type conversion are represented. The methods are always explained with a

code example. Thereby the Microsoft Internet Explorer or parts of the Microsoft Office

like MS Word or MS Excel are automated with Object Rexx. Sometimes Visual Basic

Script code is used to clarify how to program the Object Rexx code.

Object Rexx supports OLE Automation. Object Rexx is an OLE Automation client.

Therefore, the OLEObj ect class is used. The Rexx OLEObject class is not a built-in

class [IBM01,p284].

In earlier Object Rexx versions the directive : : REQUI RES " OREXXOLE. CLS" was

needed. In the newest versions Object Rexx automatically loads it. In this way the

directive : : REQUI RES " OREXXOLE. CLS" with the class definition is not needed

[Fla03a]. OREXXOLE. DLL contains the library with the code [En01,p9]. For the OLE

object with its properties and methods the Rexx OLE object is like a proxy object. The

Rexx OLE object is used like all other objects in Rexx. It transfers invocations of

property get and property put operations and methods on to the real object

[En01,p12].

Figure 22: Interaction of OLE object, OLEObject and Script88

Figure 22 illustrates the interaction of OLE object, OLEObj ect and the Object Rexx

script.

88 Modeled after [En01,p12]

IE = .OLEObject~New("InternetExplorer.Application")

…

…

…

…

OOLLEEOObbjjeecctt

Rexx Object

OOLLEE

OObbjjeecctt

95

6.1. Methods of the OLEObject Class

The table 4 contains a short reference over all OLEObject class methods and

describes them.

The OLEObj ect class provides the following methods [IBM01,p285ff]:

Method Description

INIT With a CLSID or a ProgID an OLE object is
instantiated.

UNKNOWN Methods of the OLE object are called with this
central mechanism.

GETCONSTANT The value of a constant that is linked with an OLE
object is retrieved.

GETKNOWNEVENTS Returns a .stem with information on the events an
OLE object can generate.

GETKNOWNMETHODS Returns a .stem with information on the methods an
OLE object offers.

GETOBJECT(Class method) With a moniker89 or nickname (a string) an OLE
object can be accessed.

GETOUTPARAMETERS This method returns an array, which contains the
results of the single out parameters of the OLE
object.

Table 4: Methods of the OLEObject class90

6.2. Type Conversion

OLEObject supports an automatic conversion to and from types. Thereby OLE uses,

in opposition to Rexx, a strict typing of data. OLE types are named variants. That is

because the OLE types are stored in one structure that gets flagged with the type it

stands for [IBM01,p291f].

89 c.p. 2.3.4.
90 [IBM01,p285ff]

96

Table 5 illustrates the type conversion of VARIANT types and Rexx object

[IBM01,p291f], [MLSRIa]:

VARIANT type Rexx object

VT_EMPTY Indicates a value was

not specified.

.NIL

VT_NULL Indicates a null

reference

.NIL

VT_VOI D Indicates a C style

void

.NIL

VT_I 1 Indicates a char value REXX string A whole number

VT_I 2 Indicates a short

integer

REXX string A whole number

VT_I 4 Indicates a long

integer

REXX string A whole number

VT_I 8 Indicates a 64-bit

integer

REXX string A whole number

VT_UI 1 Indicates a byte REXX string A whole, positive

number

VT_UI 2 Indicates an unsigned

short

REXX string A whole, positive

number

VT_UI 4 Indicates an unsigned

long

REXX string A whole, positive

number

VT_UI 8 Indicates an 64-bit

unsigned integer

REXX string A whole, positive

number

VT_R4 Indicates a float value REXX string A real number

VT_R8 Indicates a double

value

REXX string A real number

VT_CY Indicates a currency

value

REXX string A fixed-point number

with 15 digits to the left

of the decimal point and

4 digits to the right

97

VT_DATE Indicates a DATE

value

REXX string

VT_BSTR Indicates a BSTR

string

REXX string

VT_DI SPATCH Indicates an IDispatch

pointer

REXX

OLEObject

VT_BOOL Indicates a Boolean

value

.TRUE or

.FALSE

VT_VARI ANT Indicates a VARIANT

far pointer

Any REXX

object that can

be

represented as

a VARIANT

VT_PTR Indicates a pointer

type

See

VT_VARIANT

VT_SAFEARRAY Indicates a

SAFEARRAY. Not

valid in a VARIANT

REXX Array

Table 5: Type conversion9192

6.3. Init93

I NI T is the most important method of the OLEObj ect class. I NI T instantiates an

OLE object. The code examples demonstrate the I NI T method when it is used with

a ProgID, with a CLSID or with events.

Therefore, the CLSID or the ProgID is used. For the usage of events it is optionally

possible to enable events (WI THEVENTS) or to disable events (NOEVENTS) which is

the default setting. The CLSID respectively ProgID can be found out by looking up

91 Taken from [IBM01,p291f]
92 Taken from [MLSRIa]
93 Section uses [IBM01,p285]

98

the registry with the Registry Editor94 or the documentation of the application or with

tools like RGF_OLEI NFO. HTA95, Microsoft OLEViewer96 or OLEI NFO. REX97.

Syntax:

I NI T(CLSI D/ Pr ogI D, [NOEVENTS/WITHEVENTS])

6.3.1. Init with ProgID

Code 2 demonstrates the instantiation of an OLE object with the example of MS

Word with the ProgID. The syntax is “Wor d. Appl i cat i on” because Rexx doesn’t

run “inside” Word and so first the Appl i cat i on object has to be generated

[IBM02a,p2].

-

- - I ni t _I nst ant i at i on of Wor d wi t h Pr ogI D. REX - -

-

 - - I nst ant i at i on of t he MS Wor d wi t h t he Pr ogI D

Wor d = . OLEObj ect ~New(" Wor d. Appl i cat i on")

 - - The Vi s i bl e pr oper t y i s set on t r ue98. Wor d can be seen on t he di spl ay

Wor d~Vi s i bl e = . TRUE

Code 2: Init_Instantiation of Word with ProgID.REX

6.3.2. Init with CLSID

The code 3 demonstrates the instantiation of an OLE object with the CLSID. This

script runs with MS Word 2002.

94 c.p. 2.6.1.
95 c.p 7.3.
96 c.p. 2.6.2.
97 c.p. 7.2.
98 [MS03a]

99

-

- - I ni t _I nst ant i at i on of Wor d wi t h CLSI D. REX - -

-

 - - I nst ant i at i on of t he MS Wor d wi t h t he Pr ogI D

Wor d = . OLEObj ect ~New(" { 000209FF- 0000- 0000- C000- 000000000046} ")

 - - The Vi s i bl e pr oper t y i s set on t r ue99. Wor d can be seen on t he di spl ay

Wor d~Vi s i bl e = . TRUE

Code 3: Init_Instantiation of Word with CLSID.REX

6.3.3. Init with WITHEVENTS100

Code 4 shows the usage of the parameter “WI THEVENTS”. An instance of the

Microsoft Internet Explorer is created with the class Event sWi t hI E that is derived

from OLEObj ect . In this class the method OnVi si bl e is contained which is called if

the event OnVi si bl e is fired.

It is important that the directive : : CLASS Event sWi t hI E gets the additional remark

SUBCLASS OLEObj ect . The class Event sWi t hI E is a class below the class

OLEObj ect and inherits from the superclass OLEObj ect all methods and variables

[IBM01,p8].

The directive : : CLASS generates a Rexx class. This Rexx class is now available

through the Rexx environmental symbol “. Event sWi t hI E” (note the dot). In this

way all methods like the method OnVi si bl e which are defined by the : : METHOD

directive and that come subsequent to the : : CLASS directive can be accessed

[IBM01,p87].

The phrase SUBCLASS causes that the class Event sWi t hI E to become a subclass

of the class OLEObj ect [IBM01,p88]

-

- - I ni t _WI THEVENTS. r ex - -

-

 - - An i nst ance of t he I nt er net Expl or er i s gener at ed. Her e wi t h t he

 - - par amet er " WI THEVENTS"

I E = . Event sWi t hI E~new(" I nt er net Expl or er . Appl i cat i on" , " WI THEVENTS")

 - - The I nt er net Expl or er i s shown101. Thi s i nvokes t he f i r i ng of t he

99 [MS03a]
100 [IBM01b]

100

 - - OnVi s i bl e event

I E~vi s i bl e = . t r ue

 - - Cl ass whi ch der i ves f r om OLEObj ect

: : CLASS Event sWi t hI E SUBCLASS OLEObj ect

 - - Met hod whi ch i s cal l ed i f t he event OnVi s i bl e i s f i r ed i n case

 - - i f t he wi ndow i s shown or hi dden.

: : METHOD OnVi si bl e –- i nt er cept s t he Vi s i bl e event

 say " The Mi cr osof t I nt er net Expl or er i s v i s i bl e"

Code 4: Init_WITHEVENTS.rex102

6.4. UnKnown103

The UNKNOWN method is, as well as the I NI T method104, a very important part of the

OLEObj ect class of Object Rexx. It is a fundamental instrument, through which the

methods of an OLE object are accessed.105. The code examples explain the

UNKNOWN method with arguments, without arguments and with identical method

names.

The UNKNOWN message passes on all unknown messages to the OLE program

[Fla02a,p13]. Methods of the OLE objects are called with this method. If the names of

methods of the OLE object and OLEObj ect are equal, then the method must be

called over the UNKNOWN method106. The problem occurs in the most cases with

Copy or Cl ass messages [Fla02a,p13]. The UNKNOWN method has two arguments.

The first argument is the name of the method that is to call. The second argument

contains the arguments of the method that is to call.

Syntax:

UNKNOWN(messagename, messagear gs)

6.4.1. Unknown without Arguments

Code 5 demonstrates the UNKNOWN method without message arguments.

101 [MS03b]
102 Modeled after [IBM01b]
103 This section uses [IBM01,p290]
104 c. p. 6.3.
105 c.p. 2.1.
106 c.p. 12.1.3.

101

At first, the selection of a cell in MS Excel is implemented with the Sel ect method in

a direct way. In the next step a cell is selected with the UNKNOWN method. Thereby

the Sel ect method is given over to the UNKNOWN method.

-

- - UnKnown_wi t hout _Ar gument s. r ex - -

-

 - - I nst ant i at i on of Excel

Excel = . OLEObj ect ~new(" Excel . Appl i cat i on")

 - - A wor kbook wi t h a wor ksheet i s added. " 1" i s t he i ndex of

 - - t he wor ksheet 107

Wor ksheet = Excel ~Wor kbooks~Add~Wor ksheet s[1]

 - - The Vi s i bl e pr oper t y i s set on t r ue so t hat excel can be seen on t he

 - - di spl ay108

Excel ~Vi s i bl e = . t r ue

 - - The cel l A7 i s sel ect ed di r ect wi t h t he Sel ect met hod109

Wor kSheet ~Range(" A7") ~Sel ect

 - - Handover of t he val ue " Thi s cel l was sel ect ed" t o t he cel l 110

Wor kSheet ~Range(" A7") ~Val ue = " Thi s cel l was sel ect ed"

 - - Message box wi t h i nf or mat i on

CALL RxMessageBox " The next cel l i s sel ect ed over t he UNKNOWN met hod" , -

 " I nf or mat i on" , " OK" , " ASTERI SK"

 - - The cel l C7 i s sel ect ed i ndi r ect over t he UNKNOWN met hod wi t h

 - - t he Sel ect met hod. Because t her e ar e no ar gument s, . NI L i s set

Wor kSheet ~Range(" C7") ~UNKNOWN(" Sel ect " , . ni l)

Code 5: UnKnown_without_Arguments.rex

6.4.2. Unknown with Arguments

Code 6 shows the UNKNOWN method with message arguments.

For the demonstration, the CheckSpel l i ng method of MS Excel is used. First, the

method is used in the normal, direct use whereby arguments are hand over too. Then

the method is implemented indirect over the UNKNOWN method, whereby an array is

used to hand over the arguments. This script was programmed for the German

version of MS Excel 2000111. For other versions the phrase “Benut zer . Di c ” must

107 [MS03c]
108 [MS03d]
109 [MS03h]
110 [MS03f]
111 Part of MS Office

102

be replaced. Probably instead of “Benut zer . Di c ” “Benut zer Di c ” is used. Make a

macro to get it.

-

- - UnKnown_wi t h_Ar gument s. r ex - -

-

Excel = . OLEObj ect ~New(" Excel . Appl i cat i on") - - I nst ant i at i on of Excel

Wor dToCheck1 = " Test " - - Wor d t o check

 - - Cal l s t he met hod CheckSpel l i ng and hands over t he ar gument

 - - wi t h t he t ext t o check and t he name of t he opt i onal par amet er

 - - Cust omDi ct i onar y. The ar gument I gnor eUpper case i s l ef t f r ee.

 - - Thi s ver s i on of t he CheckSpel l i ng met hod i s used wi t h t he

 - - Appl i cat i on obj ect 112

Resul t Of CheckSpel l i ngWi t hOut Unknown =Excel ~CheckSpel l i ng(Wor dToCheck1, Benut zer . Di c)

 - - Checks t he r esul t and t el l s i f t he spel l i ng i s cor r ect

I F Resul t Of CheckSpel l i ngWi t hOut Unknown = 1 t hen -

 SAY " The spel l i ng of " Wor dToCheck1" i s cor r ect . "

ELSE SAY " The spel l i ng of " Wor dToCheck1" i s NOT cor r ect . "

Wor dToCheck2 = " Teest " - - Wor d t o check

 - - Ar r ay whi ch i s hand over t o t he var i abl e Ar r ayFor UnKnown

 - - wi t h t he wor d whi ch i s t o check, t he opt i onal Cust omDi ct i onar y

 - - " Benut zer Di c" and t he opt i onal par amet er I gnor eUpper case i s l ef t

 - - f r ee.

Ar r ayFor UnKnown = . ar r ay~of (Wor dToCheck2, Benut zer . Di c,)

 - - The met hod CheckSpel l i ng i s used i ndi r ect over t he UNKNOWN met hod.

 - - Ther eby t he ar gument s of ar r ay Ar r ayFor UnKnown ar e used. The

 - - r esul t i s hand over t o t he var i abl e Resul t Of CheckSpel l i ngWi t hUnknown

Resul t Of CheckSpel l i ngWi t hUnknown = Excel ~UNKNOWN(" CheckSpel l i ng" , Ar r ayFor UnKnown)

 - - Checks t he r esul t and t el l s i f t he spel l i ng i s cor r ect

I F Resul t Of CheckSpel l i ngWi t hUnknown = 1 t hen SAY " The spel l i ng of " -

 Wor dToCheck2 " i s cor r ect . "

ELSE SAY " The spel l i ng of " Wor dToCheck2 " i s NOT cor r ect . "

Code 6: UnKnown_with_Arguments.rex

6.4.3. Unknown with identical Method Names

Code 7 demonstrates an UNKNOWN method that is used in a situation when the name

of an OLE object method is equal to one of OLEObj ect .

This script creates a chart in an MS Excel sheet and copies this chart. The Copy

method would not be transmitted to MS Excel 2000 but to the Object Rexx class

object. The UNKNOWN method of OLEObj ect solves this problem [He02,p17ff].

112 [MS03i]

103

First a macro (OtherScript 1) with the macro recorder tool of MS Excel is generated;

this helps to get the Object Rexx code. It is obvious that not all of the macro code is

necessary for the Object Rexx code. This macro contains a code that creates a chart

with data from the cell A1. In the Object Rexx script code 7 there is, additionally to

the macro, the chart selected and copied to the clipboard.

Sub Makr o1()

'

' Makr o2 Makr o

' Makr o am 03. 03. 2003 von FH auf gezei chnet

'

'

 Act i veCel l . For mul aR1C1 = " 10"

 Range(" A1") . Sel ect

 Char t s. Add

 Act i veChar t . Char t Type = x l Col umnCl ust er ed

 Act i veChar t . Set Sour ceDat a Sour ce: =Sheet s(" Tabel l e1") . Range(" A1") , Pl ot By: = _

 x l Rows

 Act i veChar t . Locat i on Wher e: =xl Locat i onAsObj ect , Name: =" Tabel l e1"

 Wi t h Act i veChar t

 . HasTi t l e = Fal se

 . Axes(xl Cat egor y, x l Pr i mar y) . HasTi t l e = Fal se

 . Axes(xl Val ue, x l Pr i mar y) . HasTi t l e = Fal se

 End Wi t h

End Sub

OtherScript 1: Excel macro for UnKnown_Identical_Methodnames.rex

Code 7 uses the information of the macro OtherScript 1.

-

- - UnKnown_I dent i cal _Met hodnames. r ex - -

-

Excel = . OLEObj ect ~new(" Excel . Appl i cat i on") - - I nst ant i at i on of Excel

 - - A wor kbook wi t h a wor ksheet i s added. " 1" i s t he i ndex of t he

 - - wor ksheet 113

Wor ksheet = Excel ~Wor kbooks~Add~Wor ksheet s[1]

 - - The Vi s i bl e pr oper t y i s set on t r ue so t hat Excel can be seen

 - - on t he di spl ay114

Excel ~Vi s i bl e = . TRUE

Wor ksheet ~Range(A1) ~Val ue = 10 - - The val ue of t he cel l A1 i s set on " 10"

Excel ~Char t s~Add - - The Add met hod pl aces a new char t sheet

113 [MS03c]
114 [MS03d]

104

 - - The Locat i on met hod embeds t he char t wi t h t he const ant

 - - " Xl Locat i onAsObj ect " i n t he sheet " Tabel l e1" 115

Excel ~Act i veChar t ~Locat i on(Excel ~Get Const ant (" Xl Locat i onAsObj ect ") , " Tabel l e1")

 - - Of f er s t he sour ce of dat a f or t he char t

Excel ~Act i veChar t ~Set Sour ceDat a(Wor ksheet ~Range(" A1"))

 - - The char t ar ea i n t he act i ve char t i s sel ect ed

Excel ~Act i veChar t ~Char t Ar ea~sel ect

 - - Her e t he char t i s copi ed t o t he c l i pboar d. The Copy met hod

 - - cannot be used i n t he nor mal way because t hi s Copy met hod

 - - woul dn' t be sent t o Excel but t o t he Obj ect Rexx c l ass. The

 - - UNKNOWN met hod sol ves t hi s pr obl em.

Excel ~Act i veChar t ~Char t Ar ea~UNKNOWN(" Copy" , . ni l)

Code 7: UnKnown_Identical_Methodnames.rex116

Figure 23 illustrates the result of code 7.

115 c.p. 6.6.
116 [He02,p17ff]

105

Figure 23: Snapshot of MS Excel117

6.5. GetObject118

The GETOBJECT method enables to get an active OLE object. This method is similar

to the I ni t method119.

Therefore a moniker is used which informs OLE of the type of object that is

necessary. The moniker120 determines which object has to be generated or to be

addressed in the case if the object is running. A moniker of the type file moniker is for

example the name and location of a MS Word document like

“C: \ Test \ Test Wor dDocument . DOC” [MLCOMaj]. Other monikers can be seen in

section 10.

117 Part of MS Office
118 [IBM01,p289f]
119 c.p. 6.3.
120 c.p. 2.3.4.

106

The parameter Cl ass is not obligatory. It is employed to install a subclass of

OLEObj ect or to get an OLE object, which supports events (“WI THEVENTS”).

Syntax:

GETOBJECT(Moni ker , Class)

Code 8 shows the implementation of the GETOBJECT method.

-

- - Get Obj ect . r ex - -

-

- - Openi ng of t he Wor d f i l e " Test Wor dDocument " and get an OLE obj ect

Wor dOLEObj ect = . OLEObj ect ~Get Obj ect (" C: \ Test \ Test Wor dDocument . DOC")

Code 8: GetObject.rex

6.6. GetConstant121

The Get Const ant method returns the value of a constant. There are applications

that have many constants. MS Word 2002 for example has 2682 constants122. The

Get Const ant method is represented in the example scripts with and without the

name of a constant.

A constant is associated with an OLE object. The . NI L object is given back if the

constant does not exist.

Syntax:

GETCONSTANT(Const ant name)

It is possible for you to define constants with a programming language like Visual

Basic for Applications. The Microsoft Office contains built-in constants. Their values

are predefined. The application, to which an MS Office constant refers, can be

determined by the constant prefix. For example the prefix “Wd” for Word or the prefix

“Xl ” for Excel [MS01].

121 This section uses [IBM01,p286]
122 Looked up with RGF_OLEInfo.hta c.p. 7.3.

107

6.6.1. GetConstant with the Name of the Constant

This method is demonstrated with a script that writes several different texts in MS

Word.

First, a macro is recorded in MS Word123. This macro is shown in OtherScript 2. It is

obvious that there is much more data recorded than is needed by the Object Rexx

script.

' Makr o auf gezei chnet am 03. 03. 2003 von

'

 Document s. Add Document Type: =wdNewBl ankDocument

 Sel ect i on. TypeText Text : =" Hel l o Wor l d"

 Sel ect i on. Font . Col or = wdCol or Red

 Sel ect i on. TypeText Text : =" Hel l o Wor l d"

 I f Sel ect i on. Font . Under l i ne = wdUnder l i neNone Then

 Sel ect i on. Font . Under l i ne = wdUnder l i neSi ngl e

 El se

 Sel ect i on. Font . Under l i ne = wdUnder l i neNone

 End I f

 Sel ect i on. TypeText Text : =" Hel l o Wor l d"

 Wi t h Sel ect i on. Par agr aphFor mat

 Wi t h . Shadi ng

 . Text ur e = wdText ur eNone

 . For egr oundPat t er nCol or = wdCol or Aut omat i c

 . Backgr oundPat t er nCol or = wdCol or Yel l ow

 End Wi t h

 . Bor der s(wdBor der Lef t) . Li neSt yl e = wdLi neSt yl eNone

 . Bor der s(wdBor der Ri ght) . Li neSt yl e = wdLi neSt yl eNone

 . Bor der s(wdBor der Top) . Li neSt yl e = wdLi neSt yl eNone

 . Bor der s(wdBor der Bot t om) . Li neSt yl e = wdLi neSt yl eNone

 Wi t h . Bor der s

 . Di st anceFr omTop = 1

 . Di st anceFr omLef t = 4

 . Di st anceFr omBot t om = 1

 . Di st anceFr omRi ght = 4

 . Shadow = Fal se

 End Wi t h

 End Wi t h

123 c.p. 5.2.

108

 Wi t h Opt i ons

 . Def aul t Bor der Li neSt yl e = wdLi neSt yl eSi ngl e

 . Def aul t Bor der Li neWi dt h = wdLi neWi dt h050pt

 . Def aul t Bor der Col or = wdCol or Aut omat i c

 End Wi t h

End Sub

OtherScript 2: MS Word macro for code 9

In code 9 is the Get Const ant method with the name of the constant demonstrated.

-

- - Get Const ant _Get Const ant wi t h name of Const ant . r ex - -

-

 - - I nst ant i at i on of t he MS Wor d wi t h i t s Pr ogI D

Wor d = . OLEObj ect ~New(" Wor d. Appl i cat i on")

Wor d~Vi s i bl e = . TRUE - - Wor d i s v i s i bl e124

Wor d~Document s~Add - - A new wor d document i s added

Wor d~Sel ect i on~TypeText (" Hel l o Wor l d ") - - Wr i t es t he t ext " Hel l o Wor l d "

 - - Changes t he Col or of t he Font t o Red wi t h t he Const ant " wdCol or Red"

Wor d~Sel ect i on~Font ~Col or = Wor d~Get Const ant (' wdCol or Red')

 - - Wr i t es t he t ext " Hel l o Wor l d " whi ch has now t he col or r ed.

Wor d~Sel ect i on~TypeText (" Hel l o Wor l d ")

 - - Under l i nes t he t ext . The val ue of t he const ant " wdUnder l i neSi ngl e"

 - - i s " 1" . The val ue i s l ooked up wi t h r gf _ol ei nf o. ht a125

Wor d~Sel ect i on~Font ~Under l i ne = 1

 - - Wr i t es t he t ext " Hel l o Wor l d " whi ch i s r ed and under l i ned

Wor d~Sel ect i on~TypeText (" Hel l o Wor l d ")

 - - The var i abl e Const ant Val ueOf WdCol or Yel l ow t he val ue of t he

 - - const ant " wdCol or Yel l ow" i s handed over .

Const ant Val ueOf WdCol or Yel l ow = Wor d~Get Const ant (' wdCol or Yel l ow')

 - - The backgr oundcol or of t he par agr aph get s t he col or yel l ow

 - - whi ch i s i ndi cat ed by var i abl e Const ant Val ueOf WdCol or Yel l ow

Wor d~Sel ect i on~Par agr aphFor mat ~Shadi ng~Backgr oundPat t er nCol or -

 = Const ant Val ueOf WdCol or Yel l ow

Code 9: GetConstant_GetConstant with name of Constant.REX

Figure 24 illustrates the result of code 9.

124 [MS03a]
125 c.p. 7.3.

109

Figure 24: Snapshot of MS Word126

6.6.2. GetConstant without the Name of the Constant

Code 10 shows all constants of MS Excel 2000 with their values.

All names have a “ !” symbol at their beginning because the name of the constant is

left out and a stem collection is built.

-

- - Get Const ant _Get Const ant wi t hout name of Const ant . r ex - -

-

 - - I nst ant i at i on of t he MS Excel wi t h i t s Pr ogI D

Excel = . OLEObj ect ~new(" Excel . Appl i cat i on")

 - - A wor kbook wi t h a wor ksheet i s added. " 1" i s t he i ndex of t he

 - - wor ksheet 127

Wor ksheet = Excel ~Wor kbooks~Add~Wor ksheet s[1]

 - - The Vi s i bl e pr oper t y i s set on t r ue so t hat excel can be seen

 - - on t he di spl ay

Excel ~Vi s i bl e = . t r ue

126 Part of MS Office
127 [MS03c]

110

const ant . = Excel ~Get Const ant - - Cr eat i on of a st em col l ect i on

 - - The st ar t val ue of count er = 1. The count er i s needed t hat

 - - each ent r y i s i n a new cel l .

count er = 1

 - - DO f unct i on over t he col l ect i on of al l const ant s

DO const ant name OVER const ant .

DO count er UNTI L count er > 0 - - DO f unct i on whi ch never ends

 - - Descr i pt i on of t he cel l . " A" st ands f or t he col umn and

 - - " count er " f or t he r ow. " | | " pr event s a bl ank char act er

a = " A" | | count er

 - - Descr i pt i on of t he cel l . " B" st ands f or t he col umn and

 - - " count er " f or t he r ow. " | | " pr event s a bl ank char act er

b = " B" | | count er

 - - Cel l s wi t h t he const ant names

Wor ksheet ~Range(a) ~val ue = const ant name

Wor ksheet ~Range(b) ~val ue = const ant . const ant name

count er = count er + 1 - - I ncr ement of t he count er

END - - End of t he second DO f unct i on

END - - End of t he f i r s t DO f unct i on

 - - Thi s command adapt s aut omat i cal l y t he br eadt h of t he A col umn.

Wor ksheet ~Col umns(" A: A") ~Ent i r eCol umn~Aut oFi t

Code 10: GetConstant_GetConstant without name of Constant.REX128

6.7. GetKnownEvents129

This method helps to get an overview over all events that are supplied from an

application.

The method GETKNOWNEVENTS returns a stem with data about the events of an OLE

object. This data with arguments of the belonging methods, types and names is

contained in the type library of the object.

Syntax:

GETKNOWNEVENTS

Code 11 lists all events of an OLE object in an Excel sheet. Therefore, the ProgID of

the OLE object must be inserted to the command line like demonstrated in figure 25.

128 Modeled after [IBM01,p286]
129 [IBM01,p286f]

111

Figure 25: Object Rexx Workbench with the command line130

Code 11 writes data about all events. The name of an event, the description of the

event, the number of parameters and name, type and flags of the parameter are

written to an MS Excel sheet. If there is no information about events the . NI L object

is given back and the function Ter mi nat i on is called.

-

- - Get KnownEvent s_Al l Event sOf AnAppl i cat i on. r ex - -

-

 - - Message box wi t h t he i nvi t at i on t o i nser t t he Pr ogI D

CALL RxMessageBox " I nser t t he Pr ogI D! " , " I nf or mat i on" , " OK" , " ASTERI SK"

PARSE PULL PROGI D - - Hand over of t he Pr ogI D i n t he command wi ndow

 - - I nst ant i at i on of t he Appl i cat i on wi t h i t s Pr ogI D wi t h t he

 - - par amet er " NOEVENTS" and hand over t o t he var i abl e " App"

App = . OLEObj ect ~New(PROGI D, " NOEVENTS")

event . = App~Get KnownEvent s - - St em cr eat i on

 - - Checks i f i nf or mat i on i s avai l abl e. I f not t hen t he . NI L obj ect

 - - i s gi ven back and Ter mi nat i on i s cal l ed. I f t he i nf or mat i on i s

 - - avai l abl e t he pr ogr am goes on.

130 IBM Object Rexx Workbench

112

I F event . == . NI L t hen CALL Ter mi nat i on ELSE

Excel = . OLEObj ect ~new(" Excel . Appl i cat i on") - - I nst ant i at i on of Excel

 - - A wor kbook wi t h a wor ksheet i s added. " 1" i s t he i ndex of t he

 - - wor ksheet 131

Wor ksheet = Excel ~Wor kbooks~Add~Wor ksheet s[1]

 - - The Vi s i bl e pr oper t y i s set on t r ue so t hat Excel can be seen

 - - on t he di spl ay132

Excel ~Vi s i bl e = . t r ue

 - - Handover of val ue " Event number " 133

Wor ksheet ~Range(“ A1”) ~val ue = " Event number "

 - - Handover of val ue " Name of t he Event "

Wor ksheet ~Range(“ B1”) ~val ue = " Name of t he Event "

 - - Handover of val ue " Event descr i pt i on"

Wor ksheet ~Range(“ C1”) ~val ue = " Event descr i pt i on"

 - - Handover of val ue " Number of Par amet er s of t he Event

Wor ksheet ~Range(“ D1”) ~val ue = " Number of Par amet er s of t he Event "

 - - Handover of val ue “ Name of t he Par amet er "

Wor ksheet ~Range(“ E1”) ~val ue = " Name of t he Par amet er "

 - - Handover of val ue " Type of t he Par amet er "

Wor ksheet ~Range(“ F1”) ~val ue = " Type of t he Par amet er "

 - - Handover of val ue " Fl ags of t he Par amet er "

Wor ksheet ~Range(“ G1”) ~val ue = " Fl ags of t he Par amet er "

 - - The cel l s A1 t o G1 get t he backgr oundcol or br i ght yel l ow

Wor kSheet ~Range(" A1: G1") ~I nt er i or ~Col or I ndex = 36

 - - The st ar t val ue of count er = 2 so t hat t he f i r s t l i ne i s f r ee

 - - f or t he descr i pt i on. The Count er Cel l count er i s needed t hat

 - - each ent r y i s i n a new cel l .

Count er Cel l = 2

DO i = 1 TO event . 0 - - DO f unct i on over al l event s

 - - The number of par amet er s i s hand over t o t he var i abl e

 - - Number Of Par amet er s

Number Of Par amet er s = event . i . ! PARAMS. 0

DO Count er Cel l UNTI L Count er Cel l > 0 - - DO f unct i on whi ch never ends

 - - Descr i pt i on of t he cel l s . " A, B, C, D" st ands f or t he col umn

 - - and " count er " f or t he r ow. " | | " pr event s a bl ank char act er

a = " A" | | count er cel l

b = " B" | | count er cel l

c = " C" | | count er cel l

d = " D" | | count er cel l

Wor ksheet ~Range(a) ~val ue = event . i - - Handover of t he event number

 - - Handover of t he name of t he event

Wor ksheet ~Range(b) ~val ue = event . i . ! NAME

 - - Handover of t he descr i pt i on of t he event

Wor ksheet ~Range(c) ~val ue = event . i . ! DOC

131 [MS03c]
132 [MS03d]
133 [MS03f]

113

 - - Handover of t he number of par amet er

Wor ksheet ~Range(d) ~val ue = event . i . ! PARAMS. 0

 - - St ar t val ue of t he count er var i abl e Count er Number Of Par amet er s

 - - i s set on " 1"

Count er Number Of Par amet er s = 1

 - - DO f unct i on t hat i s execut ed unt i l t he Var i abl e

 - - Count er Number Of Par amet er s i s l ess t han Number Of Par amer t er s + 1

DO WHI LE Count er Number Of Par amet er s < Number Of Par amet er s + 1

 - - Descr i pt i on of t he cel l . " E" st ands f or t he col umn and " count er "

 - - f or t he r ow. " | | " pr event s a bl ank char act er

e = " E" | | (Count er Cel l + Count er Number Of Par amet er s - 1)

 - - Cel l wi t h t he name of t he par amet er

Wor ksheet ~Range(e) ~val ue = event . i . ! PARAMS. Count er Number Of Par amet er s. ! NAME

 - - Descr i pt i on of t he cel l . " F" st ands f or t he col umn and " count er "

 - - f or t he r ow. " | | " pr event s a bl ank char act er

f = " F" | | (Count er Cel l + Count er Number Of Par amet er s - 1)

 - - Cel l wi t h t he t ype of t he par amet er

Wor ksheet ~Range(f) ~val ue = event . i . ! PARAMS. Count er Number Of Par amet er s. ! TYPE

 - - Descr i pt i on of t he cel l . " G" st ands f or t he col umn and " count er " f or

 - - t he r ow. " | | " pr event s a bl ank char act er

g = " G" | | (Count er Cel l + Count er Number Of Par amet er s - 1)

 - - Cel l wi t h t he f l ag of t he par amet er

Wor ksheet ~Range(g) ~val ue = event . i . ! PARAMS. Count er Number Of Par amet er s. ! FLAGS

 - - I ncr ement of count er Count er Number Of Par amet er s

Count er Number Of Par amet er s = Count er Number Of Par amet er s + 1

END - - End command f or t he t hi r d DO f unct i on

 - - I ncr ement of t he count er Count er Cel l

Count er Cel l = Count er Cel l + Number Of Par amet er s

END - - End command f or t he second DO f unct i on

END - - End command f or t he f i r s t DO f unct i on

 - - These commands adapt s aut omat i cal l y t he br eadt h of t he

 - - A, B, C, D, E, F and G col umns. 134135

Wor ksheet ~Col umns(" A: A") ~Ent i r eCol umn~Aut oFi t

Wor ksheet ~Col umns(" B: B") ~Ent i r eCol umn~Aut oFi t

Wor ksheet ~Col umns(" C: C") ~Ent i r eCol umn~Aut oFi t

Wor ksheet ~Col umns(" D: D") ~Ent i r eCol umn~Aut oFi t

Wor ksheet ~Col umns(" E: E") ~Ent i r eCol umn~Aut oFi t

134 [MS03g]
135 [MS03e]

114

Wor ksheet ~Col umns(" F: F") ~Ent i r eCol umn~Aut oFi t

Wor ksheet ~Col umns(" G: G") ~Ent i r eCol umn~Aut oFi t

EXI T - - Ter mi nat i on of t he pr ogr am

Ter mi nat i on: - - Tar get i f t he . NI L obj ect i s gi ven back

SAY " Ther e ar e NO event s! "

EXI T - - Ter mi nat i on of t he pr ogr am

Code 11: GetKnownEvents_AllEventsOfAnApplication.rex

Figure 26 shows a MS Excel sheet with all events of MS Excel.

Figure 26: Snapshot of MS Excel136

6.8. GetKnownMethods137

This method helps to get an overview over all methods that are supplied from an

application.

The method GETKNOWNMETHODS gives back a stem with data about the methods of

an OLE object. This data with arguments, types and names is contained in the type

136 Part of MS Office
137 [IBM01,p287ff]

115

library of the object. Not all the data can be used directly. The . NI L object is given

back if the data is not available. Some methods, which are only used internally, are

hidden and not shown to the user.

Syntax:

GETKNOWNMETHODS

The following code 12 allows looking at all methods of an OLE object. Therefore the

ProgID of the OLE object must be inserted to the command line138. The script writes

data about all methods with their name, description of the method, name and

description of the type library, return type of the method, MemberID, kind of

invocation (normal method call, property or property put), number of parameters and

name, type and flags of the parameter to an MS Excel sheet. If there is no

information about methods the . NI L object is given back and the function

Ter mi nat i on is called.

-

- - Get KnownMet hods_Al l Met hodsOf AnAppl i cat i on. r ex - -

-

 - - Message box wi t h t he i nvi t at i on t o i nser t t he Pr ogI D

CALL RxMessageBox " I nser t t he Pr ogI D! " , " I nf or mat i on" , " OK" , " ASTERI SK"

PARSE PULL PROGI D - - Hand over of t he Pr ogI D i n t he command wi ndow

 - - I nst ant i at i on of t he Appl i cat i on wi t h i t s Pr ogI D and hand over t o

App = . OLEObj ect ~New(PROGI D) - - t he var i abl e " App"

met hod. = App~Get KnownMet hods - - St em cr eat i on

 - - Checks i f i nf or mat i on i s avai l abl e. I f not t hen t he . NI L obj ect i s

 - - gi ven back and Ter mi nat i on i s cal l ed. I f t he i nf or mat i on i s

 - - avai l abl e t he pr ogr am goes on.

I F met hod. == . ni l t hen cal l Ter mi nat i on el se

Excel = . OLEObj ect ~New(" Excel . Appl i cat i on") - - I nst ant i at i on of Excel

 - - A wor kbook wi t h a wor ksheet i s added. " 1" i s t he i ndex of t he

Wor ksheet = Excel ~Wor kbooks~Add~Wor ksheet s[1] - - wor ksheet 139

 - - The Vi s i bl e pr oper t y i s set on t r ue so t hat Excel can be seen on

Excel ~Vi s i bl e = . t r ue - - t he di spl ay140

 - - Handover of val ue " Met hodnumber " 141

Wor ksheet ~Range(“ A1”) ~val ue = " Met hodnumber "

138 c.p. 6.7.
139 [MS03c]
140 [MS03d]
141 [MS03f]

116

 - - Handover of val ue " Name of t he met hod"

Wor ksheet ~Range(“ B1”) ~val ue = " Name of t he met hod"

 - - Handover of val ue " Met hoddocument at i on"

Wor ksheet ~Range(“ C1”) ~val ue = " Met hoddocument at i on"

 - - Handover of val ue " Name of t he t ype l i br ar y"

Wor ksheet ~Range(“ D1”) ~val ue = " Name of t he t ype l i br ar y"

 - - Handover of val ue " Document at i on of t he t ype l i br ar y"

Wor ksheet ~Range(“ E1”) ~val ue = " Document at i on of t he t ype l i br ar y"

 - - Handover of val ue " Ret ur nt ype of t he met hod"

Wor ksheet ~Range(“ F1”) ~val ue = " Ret ur nt ype of t he met hod"

 - - Handover of val ue " Member I D of t he met hod"

Wor ksheet ~Range(“ G1”) ~val ue = " Member I D of t he met hod"

 - - Handover of val ue " Ki nd of i nvocat i on of t he met hod"

Wor ksheet ~Range(“ H1”) ~val ue = " Ki nd of i nvocat i on of t he met hod"

 - - Handover of val ue " Number of Par amet er s of t he met hod

Wor ksheet ~Range(“ I 1”) ~val ue = " Number of Par amet er s of t he met hod"

 - - Handover of val ue " Name of t he Par amet er "

Wor ksheet ~Range(“ J1”) ~val ue = " Name of t he Par amet er "

 - - Handover of val ue " Type of t he Par amet er "

Wor ksheet ~Range(“ K1”) ~val ue = " Type of t he Par amet er "

 - - Handover of val ue " Fl ags of t he Par amet er "

Wor ksheet ~Range(“ L1”) ~val ue = " Fl ags of t he Par amet er "

 - - The cel l s A1 t o G1 get t he backgr oundcol or wi t h t he i ndex " 35"

Wor kSheet ~Range(" A1: L1") ~I nt er i or ~Col or I ndex = 35

 - - The st ar t val ue of count er = 2 so t hat t he f i r s t l i ne i s f r ee f or

 - - t he descr i pt i on. The Count er Cel l count er i s needed t hat each ent r y

Count er Cel l = 2 - - i s i n a new cel l .

DO x = 1 TO met hod. 0 - - DO f unct i on over al l met hods

 - - The number of par amet er s i s hand over t o t he var i abl e

Number Of Par amet er s = met hod. x. ! PARAMS. 0 - - Number Of Par amet er s

DO Count er Cel l UNTI L Count er Cel l > 0 - - DO f unct i on whi ch never ends

 - - Descr i pt i on of t he cel l s . " A, B, C, D, E, F, G, H, I " s t ands f or

 - - t he col umn and " count er " f or t he r ow. " | | " pr event s a bl ank char act er

a = " A" | | count er cel l

b = " B" | | count er cel l

c = " C" | | count er cel l

d = " D" | | count er cel l

e = " E" | | count er cel l

f = " F" | | count er cel l

g = " G" | | count er cel l

h = " H" | | count er cel l

i = " I " | | count er cel l

Wor ksheet ~Range(a) ~val ue = met hod. x - - Cel l wi t h t he met hodnumber

 - - Cel l wi t h t he name of t he met hod

Wor ksheet ~Range(b) ~val ue = met hod. x. ! NAME

 - - Cel l wi t h t he document at i on of t he met hod

Wor ksheet ~Range(c) ~val ue = met hod. x. ! DOC

 - - Cel l wi t h t he name of t he t ype l i br ar y

Wor ksheet ~Range(d) ~val ue = met hod. ! LI BNAME

117

 - - Cel l wi t h t he document at i on of t he t ype l i br ar y

Wor ksheet ~Range(e) ~val ue = met hod. ! LI BDOC

 - - Cel l wi t h t he r et ur nt ype of t he met hod

Wor ksheet ~Range(f) ~val ue = met hod. x. ! RETTYPE

 - - Cel l wi t h t he Member I D of t he met hod

Wor ksheet ~Range(g) ~val ue = met hod. x. ! MEMI D

 - - Checks t he k i nd of i nvocat i on because of t he number pr esent ed wi t h

 - - met hod. i . ! I NVKI ND und sel ect s t he appr opr i at e document at i on.

SELECT

WHEN met hod. x. ! I NVKI ND = 1 THEN Ki ndOf I nvocat i on = " Nor mal met hod cal l "

WHEN met hod. x. ! I NVKI ND = 2 THEN Ki ndOf I nvocat i on = " Pr oper t y get "

WHEN met hod. x. ! I NVKI ND = 4 THEN Ki ndOf I nvocat i on = " Pr oper t y put "

END

 - - Cel l wi t h t he k i nd of i nvocat i on of t he met hod

Wor ksheet ~Range(h) ~val ue = Ki ndOf I nvocat i on

 - - Cel l wi t h t he number of par amet er

Wor ksheet ~Range(i) ~val ue = met hod. x. ! PARAMS. 0

 - - St ar t val ue of t he count er var i abl e Count er Number Of Par amet er s i s

Count er Number Of Par amet er s = 1 - - set on " 1"

 - - DO f unct i on t hat i s execut ed unt i l t he Var i abl e

 - - Count er Number Of Par amet er s i s l ess t han Number Of Par amer t er s + 1

DO whi l e Count er Number Of Par amet er s < Number Of Par amet er s + 1

 - - Descr i pt i on of t he cel l . " J" st ands f or t he col umn and " count er "

 - - f or t he r ow. " | | " pr event s a bl ank char act er

j = " J" | | (Count er Cel l + Count er Number Of Par amet er s - 1)

 - - Cel l wi t h t he name of t he par amet er

Wor ksheet ~Range(j) ~val ue = met hod. x. ! PARAMS. Count er Number Of Par amet er s. ! NAME

 - - Descr i pt i on of t he cel l . " K" st ands f or t he col umn and " count er "

 - - f or t he r ow. " | | " pr event s a bl ank char act er

k = " K" | | (Count er Cel l + Count er Number Of Par amet er s - 1)

 - - Cel l wi t h t he t ype of t he par amet er

Wor ksheet ~Range(k) ~val ue = met hod. x. ! PARAMS. Count er Number Of Par amet er s. ! TYPE

 - - Descr i pt i on of t he cel l . " L st ands f or t he col umn and " count er " f or

 - - t he r ow. " | | " pr event s a bl ank char act er

l = " L" | | (Count er Cel l + Count er Number Of Par amet er s - 1)

 - - Cel l wi t h t he f l ag of t he par amet er

Wor ksheet ~Range(l) ~val ue = met hod. x. ! PARAMS. Count er Number Of Par amet er s. ! FLAGS

 - - I ncr ement of count er Count er Number Of Par amet er s

Count er Number Of Par amet er s = Count er Number Of Par amet er s + 1

END - - End command f or t he t hi r d DO f unct i on

 - - I ncr ement of t he count er Count er Cel l

Count er Cel l = Count er Cel l + Number Of Par amet er s

END - - End command f or t he second DO f unct i on

END - - End command f or t he f i r s t DO f unct i on

 - - Li st obj ect s wi t h t he col umn I Ds whi ch ar e accessed i n a f i x or der .

Col umnI D = . l i s t ~of (" A" , " B" , " C" , " D" , " E" , " F" , " G" , " H" , " I " , " J " , " K" , " L")

 - - DO f unct i on whi ch uses al l obj ect s of t he l i s t

DO Col umnAut oFi t OVER Col umnI D

 - - Aut of i t i s used f or al l col umns whi ch ar e pr ovi ded i n t he l i s t . The

 - - br eadt h of t he col umns A, B, C, D, E, F and G ar e aut omat i cal l y

118

 - - adapt ed. 142143

Wor ksheet ~Col umns(Col umnAut oFi t | | " : " | | Col umnAut oFi t) ~Ent i r eCol umn~Aut oFi t

END - - End of Do f unct i on

EXI T - - Ter mi nat i on of t he pr ogr am

Ter mi nat i on: - - Tar get i f t he . NI L obj ect i s gi ven back

SAY " Ther e ar e NO met hods! "

EXI T - - Ter mi nat i on of t he pr ogr am

Code 12: GetKnownMethods_AllMethodsOfAnApplication.rex

Figure 27 shows a MS Excel sheet with all methods of MS Word.

Figure 27: Snapshot of MS Excel144

6.9. GetOutParameters145

The GETOUTPARAMETERS method offers an array with the results of the single out

parameters of the OLE object.

142 [MS03e]
143 [MS03g]
144 Part of MS Office
145 [IBM01,p290]

119

If there are no out parameters, the . NI L object is given back. An out parameter is an

argument to the OLE object which is filled in by the OLE object. If this is impossible in

Rexx due to data encapsulation, the results are positioned in the array. The order in

the out array is from left to right.

Syntax:

GETOUTPARAMETERS

120

7. Tools

There are several tools, which support the work with Automation. These tools offer

for example information about the member functions of objects. The three tools

METHINFO.rex, OLEInfo.rex and RGF_OLEInfo.hta are represented.

7.1. METHINFO.rex146

The tool METHI NFO. r ex that is contained in the path

…\ Obj REXX\ SAMPLES\ OLE\ METHI NFO offers information about the methods of an

OLE object. Therefore, the script MAI N. r ex must be executed and the ProgID must

be inserted.

7.2. OLEInfo.rex147

The tool OLEI nf o. r ex is contained in the path

…\ Obj REXX\ SAMPLES\ OLE\ OLEI NFO. It is a Rexx OLE/ActiveX object viewer. It

offers information about the automated OLE objects with its ProgID and with its

exposed methods, events and properties. Information about the method signature

with flags, types and memberID and the method documentation is available and the

method can be invoked. Figure 28 illustrates the graphical user interface of the IBM

OLE/ActiveX object viewer.

146 Taken from METHINFO.rex
147 [IBM02b]

121

Figure 28: OLE/ActiveX Object Viewer with functions of Qualcomm Eudora148149

For more information look up in the HELP. TXT file in the same directory.

7.3. RGF_OLEInfo.hta150

This tool created by Prof. Dr. Rony G. Flatscher offers a rich set of information about

the installed OLE/ActiveX-COM objects.

There is data about the CLSID, ProgID, LocalServer32, InProcHandler32, the version

independent ProgID, a short description of OLE object and the date of the registry

148 User-interface of the IBM OLE/ActiveX Object Viewer
149 To automate Qualcomm Eudora 5.2, enable in the menu Tools->Options Automation
150 Taken from RGF_OLEInfo.hta

122

entry. It offers information about the methods with documentation, arguments and

return value. Information is available for read-only properties with documentation and

return value and for write-only and read/write properties with documentation,

arguments and return value. Methods with unknown invocation type properties and

events are also described with documentation, arguments and return values. All

constants with their name and value are shown.

Figure 29 illustrates the start page of this tool. If the box in the red circle is clicked the

user gets a compact listing.

Figure 29: Snapshot of the start page of “ rgf_oleinfo.hta” 151

Such a compact listing of the MS Word member functions is shown in Figure 30.

151 User interface of RGF_OLEInfo.hta

123

Figure 30: Snapshot of “ RGF_OLEInfo.hta” with compact listing.

To use this OLE-/Active-X Query Tool Object Rexx must be updated to version 2.1.2
152. Probably it is necessary to decrease the security level153 of the MS Internet

Explorer (version 6.0 or higher required).

Look up the readme.html file to get more information about this tool and how to get

it154. After installing execute the file “RGF_OLEI nf o. ht a” to run the tool 155

[Fla02a,p33].

152 http://www-

1.ibm.com/support/docview.wss?rs=0&q=Object+Rexx&uid=swg24003624&loc=en_US&cs=ut

f-8&cc=us&lang=en
153 MS IE (English version): Go to menu Tools->InternetOptions->SecurityLevel->CustomLevel
154 http://wi.wu-wien.ac.at/rgf/rexx/orx13/tmp/readme.html
155 c.p. 9.1.3.

124

8. Useful Object Rexx Classes

Object Rexx provides some useful Object Rexx classes, which facilitate the work with

Automation. These classes enable the access of the registry, access of windows,

managing of program groups, access of menus, using the clipboard and managing of

event log data. In this section the classes WindowObject, MenuObject,

WindowsProgramManager, WindowsManager, WindowsClipboard, WindowsRegistry

and WindowsEventLog are discussed. These classes are also described in the

Object Rexx Online Reference156.

8.1. WindowObject

Definition of properties of Window objects that are available for Object Rexx

programs. This class enables the sending of Windows messages (e.g.

WM_COMMAND), mouse clicks, texts, keys etc.. Menus can be queried and Windows

can be increased, moved, represented or put in the foreground [Fla02a,p2].

8.2. MenuObject

This class enables the locating of menus, submenus, menu position, menu ID etc

[Fla02a,p2].

8.3. Object Rexx Classes Remoting the User Interface

The following classes support the remoting of user interfaces.

8.3.1. WindowsProgramManager

This Object Rexx class requires the directive : : REQUI RES “ WI NSYSTM. CLS” . It

shows program groups. It enables the definition and deletion of program groups and

the contained files [Fla02a,p3]

8.3.2. WindowsManager

This Object Rexx class requires the directive : : REQUI RES “ WI NSYSTM. CLS” . This

class enables the pressing of buttons, choosing of menu items and the sending of

156 Object Rexx Workbench menu: Help->Online Reference

125

text in a Window. It is also possible to find Windows by the text of the title or by

coordinates and to choose the active Window [Fla02a,p3]

8.3.3. WindowsClipboard

This Object Rexx class requires the directive : : REQUI RES “ WI NSYSTM. CLS” . This

class enables the usage of the clipboard to for example transmitting text157 [Fla02a,p4]

8.3.4. WindowsRegistry

This Object Rexx class requires the directive : : REQUI RES “ WI NSYSTM. CLS” . With

this class it is possible to query, define or delete Windows registry entries158

[Fla02a,p4].

8.3.5. WindowsEventLog

This Object Rexx class requires the directive : : REQUI RES “ WI NSYSTM. CLS” . This

class enables reading, deleting and writing of event log data on Windows machines

or across machine border [Fla02a,p4].

157 c.p. 12.1.3.
158 c.p. 2.6.3.

126

9. Embedding Object Rexx in HTML or XML

It is possible to insert Object Rexx code in so-called markup language like HTML or

XML. Thereby the tags <Scr i pt Language = “ Obj ect Rexx” > and

</ Scr i pt > include the Object Rexx script code [Fla02a,p46]. This chapter describes

some basic concepts. These are Tag, Document Type Definition, HTML, XML,

Cascading Style Sheets, Document Object Model and the Microsoft Internet Explorer.

For older Object Rexx versions the directive “ : : REQUI RES OREXXOLE. CLS” is not

necessary in this case, because Object Rexx embedded in HTML is running over

ActiveX Scripting [En02].

Commands can be put at each position in the document. The execution of

commands ensues the document order. Public routines can be called from each

location in the script. Commands with attributes for events are executed if the event

is fired [Fla02a,p48].

9.1. Tag

A tag encloses a text. There is first an opening tag <some_t ag_name> and after the

text comes a closing tag </ some_t ag_name>. This enables the analysis of texts

because in this way it is possible to ascertain which text parts are enclosed from

which tags [Fla02a,p36].

9.2. Document Type Definition (DTD)

The Document Type Definition defines tags and their attributes. A content model

regulates the hierarchical structure, how the tags are fit into each other and how often

an element can be used. An instance of a DTD is a document that is marked up due

to the DTD rules. Such a document is called “validated” [Fla02a,p37].

9.3. HTML (Hypertext Markup Language)

HTML is a markup language for the WWW.

A so-called HTML-browser parses a HTML document and formats the text due to the

tags. For DTD version 4.01 is used and it is SGML-based (Standard Generalized

Markup Language [Mü01]). Thereby it is possible to use the names of tags and

127

attributes irrespective of capitalization and to define exclusion rules. In some cases it

is possible to leave end-tags if they are set clearly because of DTD rules [Fla02a,p38].

The content of a HTML is enclosed into the tags <ht ml > and </ ht ml > which is the

root element of a HTML file. The HTML file consists of the two parts <head> with the

head data like the title of the file and the <body> with the content which is shown in

the browser window. A comment is used as follows: <! —Thi s i s a comment - - >

[Mü01a]

If the file extension is not named .ht ml but . ht a (HTML Application) a secure, local

execution is enabled159 [Fla02a,p51].

9.4. XML (eXtensible Markup Language)

XML is a simplified version of SGML (Standard Generalized Markup Language).

XML enables the definition of DTD for markup languages. It is necessary to always

set the end tag. The values of attributes can be enclosed with apostrophes and

double quotation marks. Empty elements can be marked and the names must be

marked exactly in the defined capitalization [Fla02a,p39]. It is possible to omit DTDs.

The DTD can be derived if it is wellformed. The opening tags must have adequate

end-tags. All tags have to fit into each other and the tags needn’t overlap160

[Fla02a,p40].

9.5. Cascading Style Sheets (CSS)

CSS enables the definition of formatting rules for elements [Fla02a,p40].

9.6. Document Object Model (DOM)

The Document Object Model (DOM) is a norm of the W3 Consortium. Thanks to

DOM it is possible to change the elements of a web site dynamically [Mü01b]. In the

Microsoft context DOM is called DHTML [Fla02c,p12]].

159 c.p. 7.3. and 12.1.2.
160 c.p. 13.8.3.

128

A HTML/XML file is parsed and a parse tree is generated with the elements as nodes

as demonstrated in figure 31. There are Application Programming Interfaces (API) for

creation, querying, changing or deleting of nodes in the tree and for intercepting

events including the attributes of the tags. These APIs catch the events which occur if

there are keyboard- or mouse-actions or if there are events which are created by the

application like “document loaded” [Fla02a,p44].

Figure 31: Example for DOM161

9.7. Microsoft Internet Explorer (MSIE)

The MS Internet Explorer is a Windows Scripting Host. It offers the OLE-object

“wi ndow” which is a COM object for the implementation of DCOM (DHTML –

dynamic HTML). All OLE-object-properties of “wi ndow” like “document ” are used by

the MSIE. In this way functions and methods like “al l ” or “t abl es ” can be used.

161 Taken from [Fla02a,p45]

129

Elements can be added, changed or erased. The MS Internet Explorer controls the

execution of embedded scripts162 [Fla02a,p47].

9.7.1. Embedding an Object Rexx Script in HTML

Code 13 demonstrates the embedding of Object Rexx in HTML.

Thereby a text input is shown. If the button is clicked an event is fired and the text is

transferred to the head where a routine is called. In this routine the essential Object

Rexx code is contained. There the text is hand over. After that, this script code runs

Word and writes the text.

<ht ml >

<head>

<t i t l e>Demonst r at i on of OLE wi t h Obj ect Rexx</ t i t l e>

 <! - - Begi nni ng of t he scr i pt code - - >

<scr i pt l anguage=" Obj ect Rexx" >

 -

 - - Embeddi ng Obj ect Rexx i n HTML - -

 -

 - - Begi nni ng of t he r out i ne doTheWor k. I t i s r ef er enced f r om t he body

 - - i f t he but t on i s pr essed or c l i cked. " Publ i c" enabl es t he t r ansf er -

 - - r i ng of t he dat a f r om t he i nput ar ea i n t he body t o t he r out i ne

 : : r out i ne doTheWor k publ i c

 - - Tr ansf er of dat a t o t he var i abl e t ext . Ther eby r ef er s t he document

 - - obj ect t o t he cont ent whi ch i s shown i n a br owser wi ndow. " Al l " i s

 - - an obj ect whi ch enabl es t he access t o s i ngl e el ement s and cont ent

 - - of HTML document s. Thi s i s par t of DHTML. " Text " i s t he

 - - i dent i f i er . " Val ue" i s t he cont ent of t he i dent i f i er .

 t ext = document ~al l ~t ext ~val ue

 Wor d = . OLEObj ect ~New(" Wor d. Appl i cat i on") - - I nst ant i at i on of Wor d

 - - The v i s i bi l i t y of Wor d i s set on t r ue so t hat Wor d can be seen

 Wor d~Vi s i bl e = . TRUE - - on t he di spl ay

 Document = Wor d~Document s~Add - - A new Wor d document i s added

 Wor d~Sel ect i on~TypeText (t ext) - - The i nser t ed t ext i s wr i t t en t o Wor d

 - - End of t he scr i pt code

</ scr i pt >

 <! - - End of t he head - - >

</ head>

 <! - - Begi nni ng of t he body wi t h t he backgr oundcol or r ed - - >

<body bgcol or =" r ed" >

 <! - - The cont ent af t er t hat t ext i s cent r ed - - >

 <cent er >

162 c.p. 13.7.4.1.

130

 <! - - The f ont has t he s i ze 5 and t he t ext " Embeddi ng of Obj ect Rexx i n

 HTML” i s wr i t t en - - >

 <f ont s i ze=5>Embeddi ng of Obj ect Rexx i n HTML</ f ont >

 <! - - End of cent r i ng - - >

 </ cent er >

 <! - - Seven l i ne br eaks - - >

 <! - - Text wi t h t he demand t o i nser t a t ext - - >

 <name>Pl ease i nser t a t ext </ name>

 <! - - I nput ar ea of t he t ype t ext wi t h t he i nt er nal name " Text " . - - >

 <! - - The l engt h of t he ar ea whi ch i s v i s i bl e i s " 60" . The i nt er nal - - >

 <! - - l engt h i s" 70" . To r ef er ence t o t hi s obj ect t he i d" t ext " i s used- - >

 <i nput name=" Text " s i ze=60 maxl engt h=70 i d=" t ext " >

 <cent er >

 <! - - I nput ar ea of t he t ype but t on. The t ext on t he but t on i s" pr ess or

 c l i ck" . The phr ase" l anguage=" Obj ect Rexx" embeds Obj ect Rexx. I f

 one of t he t wo event handl er " onmouseup" or " onkeypr ess" i s

 execut ed t he r out i ne doTheWor k i s cal l ed - - >

 <i nput t ype=but t on val ue=" pr ess or c l i ck"

 l anguage=" Obj ect Rexx"

 onmouseup=" cal l doTheWor k"

 onkeypr ess=" cal l doTheWor k" >

 </ cent er >

</ body>

</ ht ml >

Code 13: Embedding Object Rexx in HTML.htm

Figure 32 shows the MS Internet Explorer with the user interface of the file

Embeddi ng Obj ect Rexx i n HTML. ht m.

131

Figure 32: Snapshot of Embedding Object Rexx in HTML.htm.163

9.7.2. MSIE and Error

If there is an error in an Object Rexx script that is embedded in HTML, then in the left

lower corner of the browser window is an alert sign (small red circle in figure 33).

Double click this sign to get more information about the error (big red circle in figure

33).

163 Part of MS Windows XP

132

Figure 33: Error handling with the MSIE.164

164 Part of MS Windows XP

133

10. WMI165

The Windows Management Instrumentation (WMI) offers control and management

information in an enterprise environment. It is a component of Microsoft Windows

operating system [MLWMIa]. The scripts show for example all services running on the

machine or shutting down the machine.

There are some examples for the implementation of WMI with Object Rexx in the

folder …\ Obj REXX\ SAMPLES\ OLE\ WMI .

10.1. Win32_Service166

The first example shows all services in an MS Excel sheet which are on the machine.

Therefore, an object of the WMI class is obtained with the GETOBJECT method. First,

there is the Visual Basic Script code OtherScript 3 which handles this subject.

Set Ser vi ceSet = _

Get Obj ect (" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ") . _

 I nst ancesOf (" Wi n32_Ser vi ce")

f or each Ser vi ce i n Ser vi ceSet

 WScr i pt . Echo Ser vi ce. Descr i pt i on

Next

OtherScript 3: VBS script code for Win32_Service167

Code 14 contains the Object Rexx script which writes service name and service

description to an MS Excel sheet additional to the VBS code.

As moniker168 is wi nmgmt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMIj].

165 c.p. 2.3.4. and 6.5.
166 [MLWMIb]
167 Taken from [MLWMIb]
168 c.p. 2.3.4.

134

-

- - WMI _Li st Al l Ser vi cesOnTheSyst em. r ex - -

-

Excel = . OLEObj ect ~new(" Excel . Appl i cat i on") - - I nst ant i at i on of Excel

 - - A wor kbook wi t h a wor ksheet i s added. " 1" i s t he i ndex of t he

 - - wor ksheet 169

Wor ksheet = Excel ~Wor kbooks~Add~Wor ksheet s[1]

 - - The Vi s i bl e pr oper t y i s set on t r ue so t hat excel can be seen on t he

 - - di spl ay170

Excel ~Vi s i bl e = . t r ue

 - - Hands over t he val ue " Ser vi cename"

Wor ksheet ~Range(A1) ~val ue = " Ser vi cename"

 - - Hands over t he val ue " Ser vi cedescr i pt i on"

Wor ksheet ~Range(B1) ~val ue = " Ser vi cedescr i pt i on"

 - - Set s t he count er var i abl e a on " 2" because i t s t ar t s i n t he Excel

 - - sheet i n t he second l i ne

a = 2

 - - Set s t he count er var i abl e b on " 2" because i t s t ar t s i n t he Excel

 - - sheet i n t he second l i ne

b = 2

 - - Get an obj ect f r om t he WMI ser v i ce (Wi nMgmt) . The phr ase

 - - " { i mper sonat i onLevel =i mper sonat e} " i nf or ms t he syst em t o t r eat t he

 - - cur r ent l ogi n cr edent i al s as t hose whi ch ar e used f or dat a or

 - - execut i ng met hods.

WMI Obj ect =. OLEObj ect ~GETOBJECT(" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ")

 - - DO f unct i ons over al l i nst ances of t he wi n32_Ser vi ce c l ass

DO ser vi ce OVER WMI Obj ect ~I nst ancesOf (" wi n32_Ser vi ce")

 - - Used f or t he l ocat i on of t he cel l . | | i s necessar y t hat t her e i s no

 - - empt y space bet ween t he col umn i dent i f i er and t he l i ne number .

aa = " A" | | a

bb = " B" | | b

 - - I nser t s t o t he adequat e cel l t he name of t he ser v i ce

Wor ksheet ~Range(aa) ~val ue = ser v i ce~name

 - - I nser t s t o t he adequat e cel l t he descr i pt i on of t he ser v i ce

Wor ksheet ~Range(bb) ~val ue = ser v i ce~descr i pt i on

 - - I ncr ement t he count er s a and b

a = a + 1

b = b + 1

END - - End of t he DO f unct i ons

 - - Thi s command adapt s aut omat i cal l y t he br eadt h of t he A col umn

Wor kSheet ~Col umns(" A: A") ~Ent i r eCol umn~Aut oFi t

169 [MS03c]
170 [MS03d]

135

 - - The wi dt h of col umn B i s set on 100

Wor kSheet ~Col umns(" B") ~Col umnWi dt h = 100

 - - Al l cel l s of t he col umn B wr ap t hei r t ext

Wor kSheet ~Col umns(" B") ~Wr apText = . t r ue

 - - Set s t he f ont t ype on bol d i n t he cel l s A1 and B1

Wor kSheet ~Range(" A1: B1") ~Font ~Bol d = . t r ue

Code 14: WMI_ListAllServicesOnTheSystem.rex

10.2. Win32_OperatingSystem

Code 15 is a short demonstration of the Wi n32_Oper at i ngSyst em class.

Therefore, some properties of the operating system are shown. The Windows

version, the Windows directory, the description of the machine, the encryption level

and the serial number are listed [MLWMIc].

As moniker171 is wi nmgmt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMIj].

-

- - WMI _Wi n32_Oper at i ngSyst em. r ex - -

-

 - - Get an obj ect f r om t he WMI ser v i ce (Wi nMgmt) . The phr ase

 - - " { i mper sonat i onLevel =i mper sonat e} " i nf or ms t he syst em t o t r eat t he

 - - cur r ent l ogi n cr edent i al s as t hose whi ch ar e used f or dat a or

 - - execut i ng met hods.

WMI Obj ect =. OLEObj ect ~GETOBJECT(" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ")

 - - DO f unct i ons over al l i nst ances of t he wi n32_Oper at i ngSyst em cl ass

DO a OVER WMI Obj ect ~I nst ancesOf (" Wi n32_Oper at i ngSyst em")

SAY " The Wi ndows Ver si on i s : " a~Ver si on

SAY " Wi ndowsdi r ect or y: " a~Wi ndowsDi r ect or y

SAY " Descr i pt i on: " a~Descr i pt i on

171 c.p. 2.3.4.

136

SAY " Encr ypt i on Level : " a~Encr ypt i onLevel

SAY " Ser i al number : " a~Ser i al Number

END

Code 15: WMI_Win32_OperatingSystem.rex172

10.3. Win32_DiskPartition

Code 16 shows some properties of the Wi n32_Di skPar t i t i on class that offers

information about a partition with index number, name and description [MLWMId].

As moniker173 is wi nmgmt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMIj].

-

- - WMI _Wi n32_Di skPar t i t i on. r ex - -

-

 - - Get an obj ect f r om t he WMI ser v i ce (Wi nMgmt) . The phr ase

 - - " { i mper sonat i onLevel =i mper sonat e} " i nf or ms t he syst em t o t r eat t he

 - - cur r ent l ogi n cr edent i al s as t hose whi ch ar e used f or dat a or

 - - execut i ng met hods.

WMI Obj ect =. OLEObj ect ~GETOBJECT(" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ")

 - - DO f unct i ons over al l i nst ances of t he Wi n32_Di skPar t i t i on c l ass

DO dp OVER WMI Obj ect ~I nst ancesOf (" Wi n32_Di skPar t i t i on")

 - - Wr i t es some pr oper t i es of t he Wi n32_Di skPar t i t i on c l ass

SAY " I ndex number : " dp~I ndex " Name: " dp~name " Descr i pt i on: " -

 dp~descr i pt i on

END

Code 16: WMI_Win32_DiskPartition.rex174

10.4. Win32_LogicalDisk 175176
The class Wi n32_Logi cal Di sk is demonstrated with the following script. The

quantity of free space on a local drive is determined. The properties which can be

used in this example are accurately selected with the ExecQuer y method. This

script shows all drives that have less than 20 free space.

172 [MLWMIc]
173 c.p. 2.3.4.
174 [MLWMId]
175 [IBM02c]
176 [MLWMIe]

137

OtherScript 4 is a Visual Basic Script code script that handles also this subject.

Set Di skSet = Get Obj ect (" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ") _

 . ExecQuer y(" sel ect Fr eeSpace, Si ze, Name f r om Wi n32_Logi cal Di sk wher e Dr i veType=3")

f or each Di sk i n Di skSet

 I f (Di sk. Fr eeSpace/ Di sk. Si ze) < 0. 20 Then

 WScr i pt . Echo " Dr i ve " + Di sk. Name + " i s l ow on space. "

 End I f

Next

OtherScript 4: VBS script code for Win32_LogicalDisk177

Code 17 also lists the name and volume name of disks, which have enough space for

contrast to OtherScript 4, which only tells the data of disks, which are low of space.

As moniker178 is wi nmgmt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMIj].

-

- - WMI _Wi n32_Logi cal Di sk. r ex - -

-

 - - Get an obj ect f r om t he WMI ser v i ce (Wi nMgmt) . The phr ase

 - - " { i mper sonat i onLevel =i mper sonat e} " i nf or ms t he syst em t o t r eat t he

 - - cur r ent l ogi n cr edent i al s as t hose whi ch ar e used f or dat a or

 - - execut i ng met hods.

WMI Obj ect =. OLEObj ect ~GETOBJECT(" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ")

 - - The pr oper t i es Fr eeSpace, Si ze, Name and Vol umeName f r om t he c l ass

 - - Wi n32_Logi cal Di sk ar e sel ect ed. The command" wher e" al l ows onl y dr i ves

 - - of t he t ype " 3" whi ch ar e l ocal di scs179.

 - - Onl y t he sel ect ed pr oper t i es can be used f or quer i es.

Di skSet = WMI Obj ect ~ExecQuer y(" sel ect Fr eeSpace, Si ze, Name, Vol umeName " -

 " f r om Wi n32_Logi cal Di sk wher e Dr i veType=3")

 - - DO f unct i on over al l i nst ances of t he Wi n32_Logi cal Di sk c l ass

DO Di sk OVER Di skSet

 - - The per cent age of f r ee space i s checked i f i t i s l ess t han 20%.

177 Taken from [MLWMIe]
178 c.p. 2.3.4.
179 [MLWMIf]

138

I F (Di sk~Fr eeSpace/ Di sk~Si ze) < 0. 20 THEN

 SAY " Dr i ve " Di sk~Name " wi t h vol ume name " -

 Di sk~Vol umeName " i s l ow on space. "

 ELSE SAY " Dr i ve " Di sk~Name " wi t h vol ume name " -

 Di sk~Vol umeName " has enough space. "

END

Code 17: WMI_Win32_LogicalDisk.rex

10.5. Win32_Process180

This script shows how to start a new process.

In this file the calculator is started. Therefore, a COM moniker181 notation is used to

reference the class. Then the class object is called itself because a new instance of

the Wi n32_Pr ocess class must be generated if a new process is generated. In this

context a so-called static method is used which is referenced to the class definition

itself. The methods in the foregoing scripts are so-called dynamic methods which are

referenced to the individual instances.

The OtherScript 5 which contains Visual Basic Script code handles also this subject.

set pr ocess = _
Get Obj ect (" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ! Wi n32_Pr ocess")

r esul t = pr ocess. Cr eat e (" not epad. exe" , nul l , nul l , pr ocessi d)

WScr i pt . Echo " Met hod r et ur ned r esul t = " & r esul t

WScr i pt . Echo " I d of new pr ocess i s " & pr ocessed

OtherScript 5: VBS script code for Win32_Process182

Code 18 doesn’t launch the notepad like OtherScript 5 and doesn’t tell the returned

result the ID of the new process, but it launches the calculator.

-

- - WMI _LaunchANewPr ocess. r ex - -

-

 - - Get an obj ect f r om t he WMI ser v i ce (Wi nMgmt) . The phr ase

 - - " { i mper sonat i onLevel =i mper sonat e} " i nf or ms t he syst em t o

 - - t r eat t he cur r ent l ogi n cr edent i al s as t hose whi ch ar e

 - - used f or dat a or execut i ng met hods. A COM moni ker

 - - not at i on (! Wi n32_Pr ocess) i s used t o r ef er ence t he

180 [MLWMIg]
181 c.p. 2.3.4.
182 Taken from [MLWMIg]

139

 - - Wi n32_Pr ocess c l ass.

Pr ocess = -

 . OLEObj ect ~GETOBJECT(" wi nmgmt s: { i mper sonat i onLevel =i mper sonat e} ! Wi n32_Pr ocess")

 - - Launches t he cal cul at or by usi ng t he Wi n32_Pr ocess c l ass

 - - obj ect i t ssel f . " Cr eat e" i s a so- cal l ed st at i c met hod.

Pr ocess~Cr eat e(" cal c")

Code 18: WMI_LaunchANewProcess.rex

10.6. Win32Shutdown183

The following script demonstrates the Wi n32Shut down method of the

Wi n32_Oper at i ngSyst em class.

This script will shut down the local machine. Caution: Close respectively save all

running processes before running this script.

First the OtherScript 6, a Visual Basic Script code script, handles also this subject.

Set col Oper at i ngSyst ems = _

Get Obj ect (" wi nmgmt s: { (Shut down) } ") . ExecQuer y(" Sel ect * f r om Wi n32_Oper at i ngSyst em")

For Each obj Oper at i ngSyst em i n col Oper at i ngSyst ems

 Obj Oper at i ngSyst em. Wi n32Shut down(1)

Next

OtherScript 6: VBS script for the demonstration of Win32Shutdown184

Code 19 is the Object Rexx version of this item.

As moniker185 is wi nmgmt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMIj].

-

- - WMI _Wi n32Shut down. r ex - -

-

 - - Get an obj ect f r om t he WMI ser v i ce (Wi nMgmt) . The phr ase

 - - " { (Shut down) } " of f er s t he pr i v i l ege t o per f or m a r emot e186.

WMI Obj ect = . OLEObj ect ~GETOBJECT(" wi nmgmt s: { (Shut down) } ")

 - - Al l i nst ances ar e sel ect ed f r om t he Wi n32_Oper at i ngSyst em cl ass

col Oper at i ngSyst ems = WMI Obj ect ~ExecQuer y(" sel ect * f r om Wi n32_Oper at i ngSyst em")

 - - DO f unct i on over al l i nst ances of t he Wi n32_Oper at i ngSyst em cl ass

183 [SGa]
184 Taken from [SGa]
185 c.p. 2.3.4.
186 [MLWMIh]

140

DO col Oper at i ngSyst em OVER col Oper at i ngSyst ems

 - - The Wi n32Shut down met hod i s execut ed wi t h t he f l ag 1 whi ch means

 - - " Shut down" . The f l ag " 2" e. g. means " Reboot " 187.

col Oper at i ngSyst em~Wi n32Shut down(1)

END - - End of DO f unct i on

Code 19: WMI_Win32Shutdown.rex

187 [MLWMIi]

141

11. Automation of Microsoft Agent Technology

The Microsoft Agent technology enables a new user interface to

communicate with the computer. Thereby it is possible to embed

animated characters to Web pages and applications. These agents

can be accessed by speech recognition to receive spoken

commands. This section introduces the MS Agent technology, an

overview over many functions and it the usage of events is shown.

Figure 34 illustrates the characters Peedy and Merlin that are part of

the MS Agent technology.

Figure 34: Snapshot of MSAgents188

The agents can also speak. This is possible with recorded audio or via a text-to-

speech (TTS) engine [MLAGTa].Such a TTS engine can be downloaded for several

languages from the Microsoft Agent download page189. The Microsoft Agent

technology is already installed on Microsoft Windows XP, Windows and Windows Me

systems. For other systems, the Microsoft Agent technology has to be downloaded

from the Microsoft Agent download page. On this page are also some other

characters downloadable. There is the SAPI 4.0 runtime support available that is

necessary for Windows XP machines. For using the speech recognition the speech

recognition engine must be downloaded. There is only an US English speech

recognition engine available [MS01a].

To access the agent technology with Object Rexx the new Or exxol e. dl l from the

13.1.2003 is needed [Fla03b].

11.1. Introduction to MS Agent Technology

Code 20 shows the instantiation of an agent, shows a short animation and lets the

agent speak. Therefore, the text-to-speech engine US English is needed.

188 Characters Merlin and Peedy which are part of the MS Agent technology
189 http://microsoft.com/products/msagent/downloads.htm

142

-

- - Agent _I nt r o. r ex - -

-

 - - I nst ant i at i on of t he agent obj ect

Agent Obj ect = . OLEObj ect ~New(" Agent . Cont r ol . 1")

 - - Connect s t he cur r ent cont r ol t o t he Mi cr osof t Agent ser ver 190.

Agent Obj ect ~Connect ed = . Tr ue

 - - The char act er i s l oaded i nt o t he Char act er s col l ect i on. The

 - - f i r s t par amet er i s t he char act er I D. I t i s r equi r ed and r ef er s

 - - t o t he char act er dat a. The second par amet er i s t he pr ovi der

 - - wi t h t he l ocat i on of t he char act er ’ s def i ni t i on f i l e191.

Agent Obj ect ~Char act er s~Load(" Mer l i n" , " Mer l i n. acs")

Mer l i n = Agent Obj ect ~Char act er s(" Mer l i n") - - Decr eases t he wr i t i ng expense

 - - The Top pr oper t y set s t he agent " 300" 192 pi xel f r om t he t op.

Mer l i n~Top = 300

 - - The Lef t pr oper t y set s t he agent " 450" pi xel f r om t he l ef t 193.

Mer l i n~Lef t = 450

 - - The LanguageI D pr oper t y det er mi nes t he l anguage of t he speech

 - - r ecogni t i on engi ne, t he commands of char act er ’ s pop- up menu and

 - - t he wor d bal l oon t ext . I n t hi s case t he l anguage i s US Engl i sh194.

Mer l i n~LanguageI D = x2d(409)

 - - The Show met hod makes t he agent v i s i bl e. I t s t ar t s al so t he Showi ng

Mer l i n~Show - - ani mat i on195.

CALL SysSl eep 1 - - The syst em sl eeps f or 1 second

 - - The Pl ay met hod i mpl ement s t he ani mat i on " Get At t ent i on" 196.

Mer l i n~Pl ay(" Get At t ent i on")

 - - The Speak met hod speaks t he t ext i ns i de t he br acket s197. The r eason

 - - f or " obj St at us =" i s expl ai ned wi t h t he pr ocedur e CkSt at us at t he end.

obj St at us = Mer l i n~Speak(" Hel l o, my name i s Mer l i n. I am an agent ! ")

 - - Cal l s t he pr ocedur e " CkSt at us"

CALL CkSt at us

 - - The Pl ay met hod i mpl ement s t he ani mat i on " Gr eet " .

obj St at us = Mer l i n~Pl ay(" Gr eet ")

CALL CkSt at us - - Cal l s t he pr ocedur e " CkSt at us"

CALL SysSl eep 2 - - The syst em sl eeps f or 2 second

 - - The memor y i s f r eed f r om t he agent " Mer l i n" 198.

190 [MLAGTb]
191 [MLAGTc]
192 [MLAGTd]
193 [MLAGTe]
194 [MLAGTf]
195 [MLAGTg]
196 [MLAGTh]
197 [MLAGTi]
198 [MLAGTj]

143

Agent Obj ect ~Char act er s~Unl oad(" Mer l i n")

EXI T - - The pr ogr am t er mi nat es.

 - - The pr ocedur e " CkSt at us" i s needed t o pr event t hat t he pr ogr am

 - - cont i nues t o execut e whi l e t he agent i s speaki ng or pl ayi ng.

 - - Syssl eep makes a shor t del ay199.

CkSt at us:

 DO UNTI L obj St at us~St at us = 0

 CALL SysSl eep 1

 END

RETURN

Code 20: Agent_Intro.rex

Figure 35 illustrates the execution of code 20.

Figure 35: Snapshot of Merlin200

11.2. Overview of MS Agent Technology

Code 21 gives an overview of the agent’s possibilities like animations, methods,

speech engines, speech recognition or some windows.

199 [Pe03]
200 Part of MS Agent Technology

144

For this file the US English, German and French TTS engines are required. The

agents Merlin, Peedy, Robby and Genie are used in this file. It is necessary to

download them from the MS agent download page201. Probably Merlin is already

installed on your machine. There is a . wav file (audio file) used for a short

demonstration. This is the Tada. wav file and it is normally installed with Windows. It

is located in the path \ wi ndows\ medi a. Ensure that this location is correct. At the

end of this script speech recognition is demonstrated. Therefore a microphone is

needed and the speech recognition engine must be downloaded. There are ten

seconds to speak to the computer. Nevertheless, this file should also run without

error if there is no microphone or if speech recognition is not installed or deactivated.

This script uses the methods Speak , Pl ay , Load, Show, Hi de, MoveTo, UnLoad

and Thi nk . Properties, which are used, are the Connect ed, Top, Hei ght , Lef t ,

GUI D and Speed property. The script tells how to get the HotKey for speech

recognition and demonstrates the windows with the properties of the characters, the

popup menu and how to make there an entry, the MS Agent property sheet and the

voice command window. Note that if you are working with other windows on your

machine during the runtime of this script, it is possible that some windows described

in the last part of the script will not occur.

-

- - Agent _Over vi ew. r ex - -

-

 - - I nst ant i at i on of t he Agent obj ect

Agent Obj ect = . OLEObj ect ~New(" Agent . Cont r ol . 1")

 - - Connect s t he cur r ent cont r ol t o t he Mi cr osof t Agent ser ver 202.

Agent Obj ect ~Connect ed = . Tr ue

 - - The char act er i s l oaded i nt o t he Char act er s col l ect i on. The

 - - f i r s t par amet er i s t he char act er I D. I t i s r equi r ed and r ef er s

 - - t o t he char act er dat a. The second par amet er i s t he pr ovi der

 - - wi t h t he l ocat i on of t he char act er ’ s def i ni t i on f i l e203.

Agent Obj ect ~Char act er s~Load(" Mer l i n" , " Mer l i n. acs")

Mer l i n = Agent Obj ect ~Char act er s(" Mer l i n") - - Decr eases t he wr i t i ng expense

 - - The Top pr oper t y set s t he t op edge of t he posi t i on of t he agent

Mer l i n~Top = 250 - - t o " 250" 204.

201 http://microsoft.com/products/msagent/downloads.htm
202 [MLAGTb]
203 [MLAGTc]

145

 - - The Lef t pr oper t y set s t he l ef t edge of t he posi t i on of t he agent

Mer l i n~Lef t = 700 - - t o " 700" 205.

 - - The LanguageI D pr oper t y det er mi nes t he l anguage of t he speech

 - - r ecogni t i on engi ne, t he commands of char act er ’ s pop- up menu and

 - - t he wor d bal l oon t ext . I n t hi s case t he l anguage i s US Engl i sh206.

Mer l i n~LanguageI D = x2d(409)

 - - The Show met hod makes t he agent v i s i bl e. I t s t ar t s al so t he Showi ng

Mer l i n~Show - - ani mat i on207.

CALL SysSl eep 1 - - The syst em sl eeps f or one second

 - - The Speak met hod speaks t he t ext i ns i de t he br acket s208.

 - - Sends t he agent , t he act i on and t he ar gument t o t he r out i ne Act .

CALL Act Mer l i n, " Speak" , " Hel l o, I am Mer l i n and I am an agent ! "

 - - The Pl ay met hod i mpl ement s t he ani mat i on " Expl ai n" 209.

CALL Act Mer l i n, " Pl ay" , " Expl ai n"

 - - Cont ent r ef er s t o210

CALL Act Mer l i n, " Speak" , " I want t o t el l you somet hi ng about " ,

 " agent s. Agent s can be cont r ol l ed wi t h Obj ect Rexx t hanks t o Act i veX. "

CALL Act Mer l i n, " Pl ay" , " Suggest "

CALL Act Mer l i n, " Speak" , " Fi r st l y t he Agent obj ect must be cr eat ed. Af t er " ,

 " t hat t he Connect ed pr oper t y i s set on t r ue. "

CALL Act Mer l i n, " Pl ay" , " Bl i nk"

CALL Act Mer l i n, " Speak" , " Then t he agent wi t h i t s char act er i s l oaded. " ,

 " Let us t r y t hat . I wi l l conj ur e up anot her agent . He wi l l be " ,

 " posi t i oned at t he coor di nat es 250 and 250. " ,

 " I set hi s LanguageI D on US Engl i sh and t hen I wi l l show hi m. "

CALL Act Mer l i n, " Pl ay" , " DoMagi c1"

 - - The agent Geni e i s l oaded, posi t i oned and got i t s l anguage and i s

Agent Obj ect ~Char act er s~Load(" Geni e" , " Geni e. acs") - - shown.

Geni e = Agent Obj ect ~Char act er s(" Geni e")

Geni e~Top = 250

Geni e~Lef t = 250

Geni e~LanguageI D = " &H0409" - - US Engl i sh l anguage I D

Geni e~Show

CALL Act Geni e, " Pl ay" , " Get At t ent i on"

CALL Act Geni e, " Speak" , " Hal l o I am Geni e! I can make you l ook l i ke a " ,

 " dwar f wi t h t he Hei ght pr oper t y! "

CALL Act Geni e, " Pl ay" , " Gest ur eLef t "

Mer l i n~Hei ght = 50 - - The agent Mer l i n i s set on hei ght " 50" 211

204 [MLAGTd]
205 [MLAGTe]
206 [MLAGTf]
207 [MLAGTg]
208 [MLAGTi]
209 [MLAGTh]
210 [To99]
211 [MLAGTl]

146

CALL Act Mer l i n, " Speak" , " Do not make me angr y! "

CALL Act Geni e, " Pl ay" , " Gest ur eUp"

Mer l i n~Hei ght = 128

CALL Act Mer l i n, " Pl ay" , " LookRi ght "

CALL Act Mer l i n, " Speak" , " That i s enough! I t was a mi st ake t o f et ch you. "

 - - The agent Mer l i n i s moved t o t he posi t i on 350, 100212.

CALL Act Mer l i n, " MoveTo" , 350, 100

CALL Act Mer l i n, " Speak" , " I wi l l i nvoke t he Hi de met hod! "

CALL Act Mer l i n, " Pl ay" , " DoMagi c2"

CALL SysSl eep 1 - - The syst em sl eeps f or " 1" second

Geni e~Hi de - - The Hi de met hod hi des t he agent " Geni e" 213.

 - - The agent Peedy i s l oaded, posi t i oned, got i t s l anguage and i s

Agent Obj ect ~Char act er s~Load(" Peedy" , " Peedy. acs") - - shown.

Peedy = Agent Obj ect ~Char act er s(" Peedy")

Peedy~Top = 100

Peedy~Lef t = 750

Peedy~LanguageI D = " &H0407" - - Ger man l anguage I D

Peedy~Show

CALL Act Peedy, " Pl ay" , " Get At t ent i on"

CALL Act Mer l i n, " Pl ay" , " LookLef t "

 - - The t ext i s wr i t t en i n t hought bal l oon214.

CALL Act Mer l i n, " Thi nk" , " Such an ugl y cr ow! "

CALL Act Peedy, " Speak" , " Hal l o i ch bi n Peedy. " - - Peedy speaks Ger man

CALL Act Mer l i n, " Speak" , " I can not under st and you. " ,

 " What di d you say? Come on change your LanguageI D! "

CALL Act Peedy, " Pl ay" , " Sad"

CALL Act Peedy, " Speak" , " I ch ver st eh den ni cht . I ch pr obi er e " ,

 " es ei nf ach mi t ei ner neuen TTS Maschi ne. "

Peedy~LanguageI D = " &H040C" - - Changi ng t o t he Fr ench l anguage I D

 - - Peedy i s speaki ng Fr ench

CALL Act Peedy, " Speak" , " Sal ut . Je sui s Peedy. Est - ce que t u me compr end?"

CALL Act Mer l i n, " Pl ay" , " LookLef t "

CALL Act Mer l i n, " Pl ay" , " LookRi ght "

CALL Act Mer l i n, " Pl ay" , " LookLef t "

CALL Act Mer l i n, " Pl ay" , " LookRi ght "

CALL Act Mer l i n, " Pl ay" , " LookLef t "

CALL Act Peedy, " Pl ay" , " Pl eased"

Peedy~LanguageI D = x2d(409) - - Changi ng t o US Engl i sh l anguage I D

 - - Now Peedy i s speaki ng Engl i sh

CALL Act Peedy, " Speak" , " Okay t hat i s t he l ast l anguage I had " ,

 " downl oaded f r om t he MS Agent downl oad page. I hope i t wor ks. "

CALL Act Mer l i n, " Pl ay" , " LookLef t "

CALL Act Mer l i n, " Speak" , " Fi ne! What do you know about us agent s?"

CALL Act Peedy, " Pl ay" , " Expl ai n"

212 [MLAGTm]
213 [MLAGTn]
214 [MLAGTo]

147

 - - Cont ent r ef er s t o215

CALL Act Peedy, " Speak" , " Okay. We can be used f or conver sat i onal " ,

 " i nt er f aces f or Web pages and appl i cat i ons. We ar e i nt er act i ve " ,

 " and we can make ani mat i ons. We can speak v i a a t ext - t o- speech " ,

 " engi ne and r ecor ded audi o. "

 - - Cont ent r ef er s t o 216

CALL Act Peedy, " Speak" , " We ar e abl e t o accept voi ce commands " ,

 " whi ch ar e spoken. We ar e a f ur t her user i nt er f ace. "

CALL Act Mer l i n, " Speak" , " That i s r i ght . I nst ead of speaki ng we " ,

 " can use a . wav f i l e l i ke. . . "

 - - I t i s al so possi bl e t o out put . wav f i l es wi t h t he Speak met hod217

CALL Act Mer l i n, " Speak" , " " , " \ wi ndows\ medi a\ t ada. wav"

CALL Act Peedy, " Pl ay" , " I dl e1_2"

CALL Act Peedy, " Speak" , " I t i s al so possi bl e t o posi t i on your PopupMenu " ,

 " wi t h t he Hi de f unct i on at t he coor di nat es 500 and 200. "

 - - Shows t he popup menu at t he posi t i on 500, 200218

Mer l i n~ShowPopupMenu(500, 500)

CALL Act Peedy, " Pl ay" , " LookRi ght "

CALL Act Mer l i n, " Speak" , " Oh, I woul d have i t al most f or got t en. Bef or e " ,

 " I have hi dden Geni e! Thank you f or r emember i ng. Do you know how t o " ,

 " show hi m af t er hi di ng hi m?"

CALL Act Peedy, " Pl ay" , " I dl e2_2"

CALL Act Peedy, " Speak" , " No. "

CALL Act Mer l i n, " Pl ay" , " Gest ur eLef t "

CALL Act Mer l i n, " Speak" , " That i s not good. Have you seen Robby?He knows " ,

 " i t pr obabl y. "

CALL Act Peedy, " Pl ay" , " Sear ch"

CALL Act Peedy, " Speak" , " No. "

 - - The agent Robby i s l oaded, posi t i oned, got i t s l anguage and i s

Agent Obj ect ~Char act er s~Load(" Robby" , " Robby. acs") - - shown.

Robby = Agent Obj ect ~Char act er s(" Robby")

Robby~Top = 100

Robby~Lef t = 50

Robby~LanguageI D = x2d(409) - - US Engl i sh I D

Robby~Show

CALL Act Robby, " Pl ay" , " Get At t ent i on"

CALL Act Robby, " Speak" , " Ho, ho. I hear d my name! I am Robby. "

 - - Shows wi t h Speed pr oper t y t he speech out put 219
CALL Act Robby, " Speak" , " My speech speed i s " Agent Obj ect ~Char act er s(" Robby") ~Speed" . "

CALL Act Robby, " Speak" , " That i s not bad f or a r obot . "

 - - Shows t he uni que i dent i f i er of Robby220.

215 [MLAGTa]
216 [MLAGTa]
217 [MLAGTi]
218 [MLAGTp]
219 [MLAGTq]

148

CALL Act Robby, " Speak" , " My GUI D i s " Agent Obj ect ~Char act er s(" Robby") ~GUI D" . "

CALL Act Robby, " Speak" , " What i s your pr obl em?"

CALL Act Robby, " Pl ay" , " Gest ur eLef t "

CALL Act Peedy, " Speak" , " Do you know how t o show an agent ?"

CALL Act Peedy, " Pl ay" , " I dl e1_1"

CALL Act Robby, " Pl ay" , " Expl ai n"

CALL Act Robby, " Speak" , " Use t he Show met hod! "

CALL Act Robby, " Pl ay" , " Suggest "

Geni e~Show

 - - Cont ent r ef er s t o221

CALL Act Geni e, " Speak" , " I want you t o not e t hat f or XP, i t i s " ,

 " r equi r ed t o downl oad SAPI 4. 0 r unt i me bi nar i es f r om t he MS Agent " ,

 " downl oad page t o make speech engi nes wor k! "

CALL Act Robby, " Pl ay" , " I dl e3_1"

CALL Act Robby, " Speak" , " That i s enough wor k f or t oday. But bef or e I " ,

 " wi l l change my f ont . "

Robby~Bal l oon~Font Name = Andy - - Changes t he f ont t ype t o " Andy" 222

CALL Act Robby, " Speak" , " I wi l l go home. Bye. "

CALL Act Robby, " Pl ay" , " I dl e2_2"

CALL Act Geni e, " Speak" , " Do not f or get . Fr ee t he space f r om you. " ,

 " Ther ef or e you have t o use t he UnLoad met hod"

Agent Obj ect ~Char act er s~Unl oad(" Robby") - - Robby i s f r eed f r om t he memor y223

CALL Act Geni e, " Pl ay" , " I dl e3_1"

CALL Act Geni e, " Speak" , " I am goi ng vol unt ar i l y . Bye. "

Agent Obj ect ~Char act er s~Unl oad(" Geni e")

CALL Act Mer l i n, " Speak" , " Okay. Let us t al k about t he Command " ,

 " col l ect i ons. I t i s possi bl e t o add a Command obj ect wi t h t he " ,

 " Add met hod. I wi l l add a command whi ch i s named Test Command. "

 - - The Add met hod of t he Commands obj ect adds a new command wi t h

 - - i t s name as I D, t he capt i on wi t h " T" as shor t cut det er mi ned by

 - - t he" &" st r i ng and voi ce st r i ng t o be r ecogni zed by a speech engi ne. 224

Mer l i n~Commands~Add(" Test Command" , " &Test " , " Test ")

 - - The PopupMenu i s shown. The SYSSLEEP cal l and t he second

 - - ShowPopupMenu command ar e needed because t her e i s st i l l

 - - a PopupMenu (Hi de) on t he di spl ay and ot her wi se i t doesn’ t wor k.

Mer l i n~ShowPopupMenu(500, 300)

CALL SysSl eep 2

Mer l i n~ShowPopupMenu(500, 300)

 - - Shows t he capt i on wi t h t he Capt i on pr oper t y225
CALL Act Mer l i n, " Speak" , " Her e t he capt i on i s " Mer l i n~Commands(" Test Command") ~Capt i on

220 [MLAGTr]
221 [MS01a]
222 [MLAGTs]
223 [MLAGTt]
224 [MLAGTu]
225 [MLAGTv]

149

CALL SysSl eep 1

 - - Shows t he voi ce st r i ng wi t h t he Voi ce pr oper t y226
CALL Act Mer l i n, " Speak" , " The voi ce val ue i s " Mer l i n~Commands(" Test Command") ~Voi ce

CALL Act Mer l i n, " Speak" , " Thi s voi ce val ue enabl es t o access t hi s command" ,

 " wi t h speech r ecogni t i on"

 - - Shows t he MSAgent Pr oper t y Sheet wi ndow wi t h t he Vi s i bl e pr oper t y227.

Agent Obj ect ~Pr oper t ySheet ~Vi s i bl e = . t r ue

CALL Act Peedy, " Pl ay" , " Gest ur eRi ght "

CALL Act Peedy, " Speak" , " The MS Agent Pr oper t y Sheet wi ndow shows " ,

 " cur r ent set t i ngs of out put , speech i nput and copyr i ght . You can" ,

 " al so change t hese set t i ngs, l i ke f or exampl e i f speech " ,

 " r ecogni t i on i s enabl ed or not , wi t h t hi s i nst r ument . "

CALL SysSl eep 3 - - The syst em sl eeps f or " 3" seconds t o wat ch t he wi ndow.

 - - The MS Agent Pr oper t y Sheet wi ndow i s hi dden.

Agent Obj ect ~Pr oper t ySheet ~Vi s i bl e = . f al se

 - - Shows t he Commands Wi ndow wi t h set t i ng t he Vi s i bl e pr oper t y

Agent Obj ect ~CommandsWi ndow~Vi si bl e = . t r ue - - on t r ue228.

CALL Act Peedy, " Pl ay" , " LookDown"

CALL Act Peedy, " Speak" , " Anot her wi ndow i s t he Voi ce Commands Wi ndow. " ,

 " I t shows t he commands whi ch ar e voi ce- enabl ed f or speech r ecogni t i on. "

CALL SysSl eep 3

 - - Cl oses t he Commands Wi ndow by set t i ng t he Vi s i bl e pr oper t y on f al se.

Agent Obj ect ~CommandsWi ndow~Vi si bl e = . f al se

CALL Act Mer l i n, " Pl ay" , " LookLef t "

CALL Act Mer l i n, " Speak" , " Oh, Peedy, t hat i s a good headi ng. Speech " ,

 " Recogni t i on. To use Speech Recogni t i on you have t o downl oad f r om t he" ,

 " MS Agent downl oad page t he U. S. Engl i sh speech r ecogni t i on engi ne. "

CALL Act Peedy, " Pl ay" , " Acknowl edge"

 - - Checks i f on t he machi ne i n speech i nput i s enabl ed. I f t hi s i s t he

 - - case t hen t he f i r s t DO f unct i on i s i mpl ement ed229

I F Agent Obj ect ~SpeechI nput ~Enabl ed = 1 THEN

 - - Begi nni ng of t he DO f unct i on whi ch i s i mpl ement ed i f speech i nput i s

 DO - - avai l abl e on t he machi ne.

 CALL Act Mer l i n, " Speak" , " On your machi ne i s speech r ecogni t i on enabl ed. "

 - - Of f er s t he shor t cut wi t h t he Hot Key pr oper t y wi t h t hat speech i nput

 - - can be accessed.

 CALL Act Mer l i n, " Speak" , " The Hot Key i s " Agent Obj ect ~SpeechI nput ~Hot Key " . "

 CALL Act Mer l i n, " Speak" , " Pr ess t hi s Hot Key t o execut e speech r ecogni t i on"

 CALL Act Peedy, " Pl ay" , " St ar t Li st eni ng"

 CALL Act Mer l i n, " Pl ay" , " St ar t Li st eni ng"

 CALL Act Mer l i n, " Speak" , " Okay l et us make a t est . Wai t unt i l I ended " ,

 " speaki ng. Take your mi cr ophone and speak t her ei n t he wor d * hi de* . " ,

 " Thi s wi l l make Peedy di sappear . Pr ess t he Hot Key " ,

226 [MLAGTw]
227 [MLAGTx]
228 [MLAGTy]
229 [MLAGTz]

150

 Agent Obj ect ~SpeechI nput ~Hot Key " and t hen a smal l message box comes. " ,

 " Dur i ng t hi s box di spl ayed you can speak. Thi s box shoul d be " ,

 " r ef er enced t o Peedy. I f not , f i r s t say * Peedy* and t hen * hi de* . " ,

 " Come on. "

 - - The syst em sl eeps f or " 10" seconds so t hat t he user has t i me t o

 CALL SysSl eep 10 - - i mpl ement t he speech r ecogni t i on

 END - - End of t he DO f unct i on

 ELSE DO - - I f speech r ecogni t i on i s not enabl ed t hi s DO f unct i on i s used.

 CALL Act Mer l i n, " Speak" , " On your machi ne i s speech r ecogni t i on NOT enabl ed. "

 CALL Act Peedy, " Pl ay" , " Sur pr i sed"

 CALL Act Peedy, " Pl ay" , " I dl e3_1"

 CALL Act Peedy, " Speak" , " Bye"

 CALL Act Peedy, " MoveTo" , 50, 500

 Peedy~Hi de

 END

CALL Act Mer l i n, " Speak" , " At l ast I want t o show you a wi ndow whi ch" ,

 " shows t he pr oper t i es of each char act er . "

 - - Shows a wi ndow wi t h t hat t he def aul t pr oper t i es of t he agent s ar e

Agent Obj ect ~ShowDef aul t Char act er Pr oper t i es - - descr i bed230.

CALL Act Mer l i n, " Pl ay" , " Sur pr i sed"

CALL syssl eep 3

CALL Act Mer l i n, " Pl ay" , " I dl e3_1"

CALL Act Mer l i n, " Speak" , " That i s al l we want ed t o t el l you. Bye. "

Agent Obj ect ~Char act er s~Unl oad(" Mer l i n")

Agent Obj ect ~Char act er s~Unl oad(" Peedy")

EXI T - - Ter mi nat es t he pr ogr am

 - - send agent obj ect (ar g #1) t he message gi ven as ar g #2; i f t her e ar e

 - - addi t i onal ar gument s, pass t hem as an ar r ay obj ect (f unct i on ar g()

: : ROUTI NE Act - - has t o cr eat e an ar r ay- obj ect st ar t i ng wi t h ar g #3)

 obj St at us= . message~new(ar g(1) , ar g(2) , " A" , ar g(3, " Ar r ay")) ~send

 DO UNTI L obj St at us~st at us=0

 CALL SysSl eep 1

 END

 RETURN

Code 21: Agent_Overview.rex

Figure 36 illustrates a scene of Agent _Over vi ew. r ex with Peedy, Merlin and

Genie.

230 [MLAGTaa]

151

Figure 36: Snapshot of Agent_Overview.rex231

11.3. MS Agent and Events

Code 22 demonstrates how to use events with the MS Agent technology.

In this script an event is fired if the agent is shown with the Show method. Then the

Show method of the class DemoOf Event s, which is a subclass of OLEObj ect , is

launched232. There the arguments are hand over and their values are printed to the

display. To run this script the new OREXXOLE. DLL from the 17.2.2003 is needed.

Without this DLL events of MS Agent can’t be handled. This is because in some

situations the events are hand over to Object Rexx in another kind as described in

the MS Agent documentation [Doe03a]. The DLL is changed in two steps.

231 IBM Object Rexx Workbench with MS Agents characters
232 c.p. 6.3.3.

152

First rename the old OREXXOLE. DLL with the following command: r en

c: \ Pr ogr amme\ Obj REXX\ or exxol e. dl l or exxol e. dl l . bkp and then copy

the new DLL to the folder c: \ pr ogr amme\ Obj REXX [Fla03c].

-

- - Agent _Event s. r ex - -

-

 - - I nst ant i at i on of t he agent obj ect

Agent Obj ect = . DemoOf Event s~New(" Agent . Cont r ol . 2" , " WI THEVENTS")

 - - Connect s t he cur r ent cont r ol t o t he Mi cr osof t Agent ser ver 233.

Agent Obj ect ~Connect ed = . Tr ue

 - - The char act er i s l oaded i nt o t he Char act er s col l ect i on. The

 - - f i r s t par amet er i s t he char act er I D. I t i s r equi r ed and r ef er s

 - - t o t he char act er dat a. The second par amet er i s t he pr ovi der

 - - wi t h t he l ocat i on of t he char act er ’ s def i ni t i on f i l e234.

Agent Obj ect ~Char act er s~Load(" Mer l i n" , " Mer l i n. acs")

Mer l i n = Agent Obj ect ~Char act er s(" Mer l i n") - - Decr eases t he wr i t i ng expense

 - - The Top pr oper t y set s t he agent " 250" pi xel f r om t he t op235.

Mer l i n~Top = 250

 - - The Lef t pr oper t y set s t he agent " 250" pi xel f r om t he l ef t 236.

Mer l i n~Lef t = 250

 - - The LanguageI D pr oper t y det er mi nes t he l anguage of t he speech

 - - r ecogni t i on engi ne, t he commands of char act er ’ s pop- up menu and

 - - t he wor d bal l oon t ext . I n t hi s case t he l anguage i s US Engl i sh237.

Mer l i n~LanguageI D = x2d(409)

 - - The Show met hod makes t he agent v i s i bl e. I t s t ar t s al so t he Showi ng

 - - ani mat i on238. Her e t he Show event i s f i r ed

Mer l i n~Show

 - - The Speak met hod speaks t he t ext i ns i de t he br acket s239.

 - - The r eason f or " obj St at us =" i s expl ai ned wi t h t he pr ocedur e

obj St at us = Mer l i n~Speak(" Hel l o I am Mer l i n. ") - - CkSt at us at t he end.

CALL CkSt at us - - Cal l s t he pr ocedur e " CkSt at us"

EXI T - - The pr ogr am t er mi nat es.

 - - The pr ocedur e " CkSt at us" i s needed t o pr event t hat t he pr ogr am

 - - cont i nues t o execut e whi l e t he agent i s speaki ng or pl ayi ng.

 - - Syssl eep makes a shor t del ay240.

233 [MLAGTb]
234 [MLAGTc]
235 [MLAGTd]
236 [MLAGTe]
237 [MLAGTf]
238 [MLAGTg]
239 [MLAGTi]
240 [Pe03]

153

CkSt at us:

 DO UNTI L obj St at us~St at us = 0

 CALL SysSl eep 1

 END

RETURN

 - - Cl ass whi ch der i ves f r om OLEObj ect

: : CLASS DemoOf Event s SUBCLASS OLEObj ect

 - - Met hod whi ch i s cal l ed i f t he event Show i s f i r ed when t he

: : METHOD Show - - agent occur s on t he di spl ay241.

 - - Hands over t he ar gument s Char act er I D and Cause

USE ARG Char act er I D, Cause

 - - Pr i nt s a t ext and t he cont ent of t he ar gument Cause t o t he di spl ay.

 - - Cause = 4 means t hat t he c l i ent appl i cat i on showed t he agent .

SAY " The cause i s: " Cause

 - - Pr i nt s a t ext and t he cont ent of t he ar gument Char act er I D t o t he

SAY " The Char act er I D i s: " Char act er I D - - di spl ay

SAY " Ther e was an Show event . " - - Pr i nt s a t ext t o t he di spl ay

Code 22: Agent_Events.rex

241 [MLAGTk]

154

12. Automation of Microsoft Speech

The Microsoft Speech SDK 5.1 is a new user interface. It lets the computer speak

and enables speech recognition. This section discusses the text to speech synthesis

with an introduction to TTS (text-to-speech), an Object Rexx script with the speech

technology is embedded in a HTML file and then there is a script that reads a MS

Word document. The possibility to use speech recognition with Object Rexx is also

explained.

The Microsoft Speech SDK (software development kit) contains the Microsoft speech

synthesis (or text-to-speech) engine, the Microsoft speech recognition engine and the

speech application programming interface (SAPI) which supports Automation. It can

be downloaded from the Microsoft Homepage242.

It includes the documentation, which can also be single downloaded from the same

page. The menu “St ar t - >Pr ogr ams- >Mi cr osof t Speech SDK 5. 1” offers the

documentation, tutorials, samples and tools [SPa]. Figure 37 shows this

documentation.

There is a newsgroup for Microsoft Speech where questions are answered243.

242 http://www.microsoft.com/speech/download/sdk51/
243

http://communities.microsoft.com/newsgroups/messageList.asp?ICP=MSCOM&sLCID=US&NewsGro

up=microsoft.public.speech_tech&iPageNumber=1

155

Figure 37: Snapshot of the MS Speech SDK 5.1 Help244

12.1. Text-To-Speech Synthesis (TTS)

Text-To-Speech synthesis is a further output possibility which signification will

increase in the future. This section introduces MS Speech TTS with the technical

background. It is also demonstrated how to embed MS Speech TTS in HTML and

how to read a MS Word document with Object Rexx.

Speech Synthesis converts text into spoken language. As shown in the figure 38 the

words are converted to phonemes. Thereby an audio stream is created which is

transformed by the sound card and emitted by a speaker [MS02].

244 Part of MS Speech SDK 5.1

156

Figure 38: Speech recognition process flow245

The TTS technology is only available from Microsoft in US English and Chinese.

Third party vendors for further TTS machines can be found on the Microsoft

Homepage246 [MS02].

The registry entry HKEY_LOCAL_MACHI NE\ SOFTWARE\ Mi cr osof t \ Speech\

Voi ces\ Tokens shows which voices are installed on the machine [SPb].

L&H TTS engine for the MS Agent Technology can’t be used with MS Speech SDK

5.1 because they are based on SAPI4 [NGS03].

12.1.1. Introduction to MS Speech TTS

Code 23 demonstrates Microsoft Speech synthesis. Thereby the four voices Sample

TTS Voice (says “blah” for all unknown words [MS03j]), Microsoft Mary, Microsoft

Mike and Microsoft Sam are used. The changing of the volume and of the speech

speed is shown. At the end, all available voices on the machine are enumerated.

245 Taken from [MS02]
246 http://www.microsoft.com/speech/evaluation/thirdparty/engines.asp

157

-

- - MSSpeech_TTS_1. r ex - -

-

SpO=. OLEObj ect ~New(" SAPI . SpVoi ce") - - I nst ant i at i on of a TTS obj ect 247

 - - The voi ce i s set wi t h t he Voi ce pr oper t y248. Ther ef or e t he Get Voi ces

 - - met hod249. Get Voi ces chooses t he voi ce by t he var i abl e voi cex.

SpO~Voi ce = SpO~Get Voi ces(" name=Sampl eTTSVoi ce" , " ") [0]

 - - The Speak met hod speaks t he i nser t ed t ext 250.

SpO~Speak(" Sampl e TTS Voi ce, hel l o")

SpO~Voi ce = SpO~Get Voi ces(" name=Mi cr osof t Mi ke" , " ") [0]

SpO~Speak(" Hel l o. I am t he voi ce Mi ke")

 - - The voi ce i s set wi t h t he Voi ce pr oper t y. Ther ef or e t he Get Voi ces

 - - met hod chooses t he voi ce by t he var i abl e voi cex and t he l anguage

 - - (her e Engl i sh) 251252.

SpO~Voi ce = SpO~Get Voi ces(" name=Mi cr osof t Sam" , " Language=409") [0]

SpO~Speak(" Hel l o. I am t he voi ce Sam! ")

SpO~Voi ce = SpO~Get Voi ces(" name=Mi cr osof t Mar y" , " Language=409") [0]

SpO~Speak(" Hel l o. I am t he voi ce Mar y! ")

SpO~Vol ume = 80 - - The vol ume i s set wi t h t he Vol ume pr oper t y253

SpO~Speak(" The vol ume i s set on " SpO~Vol ume)

SpO~Vol ume = 100

SpO~Speak(" Now t he vol ume i s set on 100. That i s t he maxi mum vol ume. ")

SpO~Rat e = - 10 - - The speech speed i s set wi t h t he Rat e pr oper t y254

SpO~Speak(" Thi s i s t he s l owest speaki ng r at e. The r at e i s " SpO~Rat e)

SpO~Rat e = 10

SpO~Speak(" Thi s i s t he f ast est speaki ng r at e. The r at e i s " SpO~Rat e)

SpO~Rat e = - 2

SpO~Speak(" Thi s i s t he speaki ng r at e " SpO~Rat e)

SpO~Speak(" Now t he avai l abl e voi ces ar e enumer at ed. ")

247 Looked up with RGF_OLEInfo.hta c.p. 7.3.
248 [SPc]
249 [SPc]
250 [SPc]
251 [SPd]
252 [SPb]
253 [SPc]
254 [SPc]

158

DO a OVER SpO~Get Voi ces - - DO f unct i on whi ch enumer at es al l voi ces

 - - Of f er s t he name of a voi ce and hands i t over t o t he var i abl e

 - - " st r voi ce" 255

 s t r voi ce = a~Get descr i pt i on

 SpO~Speak(" The voi ce " st r voi ce " i s avai l abl e! ")

 SAY st r voi ce

END - - End of DO f unct i on

Code 23: MSSpeech_TTS_1.rex

12.1.2. MS Speech TTS embedded in HTML

The next file embeds an Object Rexx script in a HTML document. This HTML

document is stored with an .HTA (HTML Application) extension. This ensures a local

and save execution256 [Fla02a,p51].

Code 24 speaks a text which can be inserted by the user. The user can vary the

volume, the speech speed (rate) and the voice. Press the Speak button to start the

speech.

<ht ml >

 <! - - Begi nni ng of t he head - - >

 <head>

 <! - - Text of t he t i t l e - - >

 <t i t l e>Demonst r at i on of Speech wi t h Obj ect Rexx</ t i t l e>

 <! - - Begi nni ng of t he Obj ect Rexx sour ce code - - >

 <scr i pt l anguage=" Obj ect Rexx" >

 -

 - - MSSpeech_TTS_2. ht a - -

 -

 - - Begi nni ng of t he r out i ne doTheWor k. I t i s r ef er enced f r om t he

 - - body i f t he but t on i s pr essed or c l i cked. " Publ i c" enabl es t he

 - - t r ansf er r i ng of t he dat a f r om t he i nput ar ea i n t he body t o t he

 : : r out i ne doTheWor k publ i c - - r out i ne

 - - Tr ansf er of dat a t o t he var i abl es" speecht ext " , " vol ume" and" r at e" .

 - - Ther eby r ef er s t he document obj ect t o t he cont ent whi ch i s shown

 - - i n a br owser wi ndow. " Al l " i s an obj ect whi ch enabl es t he access

 - - t o s i ngl e el ement s and cont ent of HTML document s. Thi s i s par t of

 - - DHTML. " speecht ext " , " vol ume" and " r at e" ar e t he i dent i f i er s.

 - - " Val ue" i s t he cont ent of t he i dent i f i er .

 speecht ext = document ~al l ~speecht ext ~val ue

 vol ume = document ~al l ~vol ume~val ue

 r at e = document ~al l ~r at e~val ue

255 [SPd]
256 c.p. 9.1.3.

159

 - - The r adi obut t ons ar e eval uat ed wi t h a SELECT f unct i on. The but t on

 SELECT - - whi ch i s sel ect ed hands over i t s voi ce t o t he var i abl e vx.

 WHEN document ~al l ~Mi cr osof t Mi ke~checked = 1 THEN vx = " Mi cr osof t Mi ke"

 WHEN document ~al l ~Mi cr osof t Mar y~checked = 1 THEN vx = " Mi cr osof t Mar y"

 WHEN document ~al l ~Mi cr osof t Sam~checked = 1 THEN vx = " Mi cr osof t Sam"

 END

 SpO=. OLEObj ect ~new(" SAPI . SpVoi ce") - - I nst ant i at i on of a TTS obj ect 257

 SpO~Vol ume = vol ume - - The vol ume i s set wi t h t he Vol ume pr oper t y258

 SpO~Rat e = r at e - - The speech speed i s set wi t h t he Rat e pr oper t y259

 - - The voi ce i s set wi t h t he Voi ce pr oper t y. Ther ef or e t he Get Voi ces

 - - met hod chooses t he voi ce by t he var i abl e vx and t he l anguage260 261

 SpO~Voi ce = SpO~Get Voi ces(" name=" vx, " Language=409") [0] - - (her e Engl i sh)

 - - The Speak met hod speaks t he i nser t ed t ext whi ch i s hand over by

 SpO~Speak(speecht ext) - - t he speecht ext var i abl e262.

 - - End of t he Obj ect Rexx code

 </ scr i pt >

 <! - - End of head - - >

 </ head>

 <! - - Begi nni ng of t he body wi t h t he backgr oundcol or " gol d" - - >

 <body bgcol or =" gol d" >

 <! - - Al l af t er t hat t ag i s cent r ed - - >

 <cent er >

 <! - - A t ext i s wr i t t en wi t h t he f ont s i ze " 7" - - >

 <f ont s i ze=7>Demonst r at i on of Mi cr osof t Speech wi t h Obj ect Rexx</ f ont >

 <! - - End of cent er t ag - - >

 </ cent er >

 <! - - Two l i ne br eaks - - >

 <! - - Begi nni ng of mar quee t ext - - >

 <mar quee>

 <! - - Text wi t h t he f ont col or " r ed" , f ont s i ze " 5" and f ont t ype

 " Andy" i s wr i t t en - - >

 <f ont col or =" r ed" s i ze=5 f ace=" Andy" >Obj ect Rexx can speak! !

 </ f ont >

 </ mar quee>

257 Looked up with RGF_OLEInfo.hta c.p. 7.3.
258 [SPc]
259 [SPc]
260 [SPd]
261 [SPb]
262 [SPc]

160

 <cent er >

 <! - - A t ext i s wr i t t en - - >

 <x>Text whi ch i s t o be spoken: </ x>

 <! - - I nput ar ea of t he t ype t ext wi t h t he i nt er nal name" SpeechText " .

 The l engt h of t he ar ea whi ch i s v i s i bl e i s " 100" . The i nt er nal

 l engt h i s" 150" . To r ef er ence t o t hi s obj ect t he i d " speecht ext "

 i s used - - >

 <i nput t ype=t ext name=" SpeechText " s i ze=100 maxl engt h=150

 i d=" speecht ext " >

 <x>Vol ume (a val ue bet ween 0 and 100) : </ x>

 <! - - I nput ar ea of t he t ype t ext wi t h t he i nt er nal name" Vol ume" . The

 l engt h of t he ar ea whi ch i s v i s i bl e i s" 3" . The i nt er nal l engt h

 i s " 3" . To r ef er ence t o t hi s obj ect t he i d " vol ume" i s used - - >

 <i nput name=" Vol ume" s i ze=3 maxl engt h=3 i d=" vol ume" >

 <x>Rat e (a val ue bet ween - 10 and 10) : </ x>

 <! - - I nput ar ea of t he t ype t ext wi t h t he i nt er nal name " Rat e" . The

 l engt h of t he ar ea whi ch i s v i s i bl e i s" 3" . The i nt er nal l engt h

 i s" 3" . To r ef er ence t o t hi s obj ect t he i d " r at e" i s used - - >

 <i nput name=" Rat e" s i ze=3 maxl engt h=3 i d=" r at e" >

 <x>Voi ces: </ x>

 <! - - I nput ar ea of t he t ype r adi o but t on wi t h t he i nt er nal name

 “ voi cek” . Val ue det er mi nes t he i nt er nal val ue " Mi cr osof t Mi ke"

 of t he r adi o but t on. The i dent i f i er i s “ Mi cr osof t Mi ke” . Ther e

 i s al so t he t ext " Mi cr osof t Mi ke" i s wr i t t en. - - >

 <i nput t ype=" r adi o" name=" voi ceK" val ue=" Mi cr osof t Mi ke"

 i d=" Mi cr osof t Mi ke" > Mi cr osof t Mi ke

161

 <! - - I nput ar ea of t he t ype r adi o but t on wi t h t he same i nt er nal name

 “ voi cek” . Thi s means t hat t he r adi o but t ons ar e member s of t he

 same gr oup. Val ue det er mi nes t he i nt er nal val ue " Mi cr osof t Mar y"

 of t he r adi o but t on. The i dent i f i er i s “ Mi cr osof t Mar y” . Ther e i s

 al so t he t ext " Mi cr osof t Mar y" i s wr i t t en. - - >

 <i nput t ype=" r adi o" name=" Voi ceK" val ue=" Mi cr osof t Mar y"

 i d=" Mi cr osof t Mar y" > Mi cr osof t Mar y

 <! - - I nput ar ea of t he t ype r adi o but t on wi t h t he same i nt er nal name

 “ voi cek” . Thi s means t hat t he r adi o but t ons ar e member s of t he

 same gr oup. Val ue det er mi nes t he i nt er nal val ue " Mi cr osof t Sam"

 of t he r adi o but t on. The i dent i f i er i s “ Mi cr osof t Sam” . Ther e i s

 al so t he t ext " Mi cr osof t Sam" i s wr i t t en. - - >

 <i nput t ype=" r adi o" name=" Voi ceK" val ue=" Mi cr osof t Sam"

 i d=" Mi cr osof t Sam" > Mi cr osof t Sam

 <! - - I nput ar ea of t he t ype but t on. The t ext on t he but t on i s" Speak" .

 The phr ase " l anguage=" Obj ect Rexx" embeds Obj ect Rexx. I f one of

 t he t wo event handl er " onmouseup" or " onkeypr ess" i s execut ed t he

 r out i ne doTheWor k i s cal l ed - - >

 <i nput t ype=but t on val ue=" Speak"

 l anguage=" Obj ect Rexx"

 onmouseup=" cal l doTheWor k"

 onkeypr ess=" cal l doTheWor k" >

 </ cent er >

 <! - - End of t he body - - >

 </ body>

<! - - End of t he HTML f i l e - - >

</ ht ml >

Code 24: MSSpeech_TTS_2.hta

Figure 39 illustrates the user-interface of MSSpeech_TTS_2. ht a.

162

Figure 39: Snapshot of MSSpeech_TTS_2.hta263

12.1.3. Reading a MS Word Document

Code 25 reads a Word document. The user is asked to insert the location and the

name of a Word document that should be read to the Object Rexx Workbench

command line as shown in figure 40.

263 Part of MS Windows XP

163

Figure 40: Snapshot of the IBM Object Rexx Workbench with command line.

After that, the Word document is opened and its content is copied to the clipboard.

This part is recorded by the macro recorder of Microsoft Word to get information

about the required source code (OtherScript 7). The MS Word document

“Hel l oWor l d. doc ” is loaded, the whole document is selected and copied to the

clipboard. The MS Word document should contain an English text.

164

Sub Makr o1()

'

' Makr o1 Makr o

' Makr o auf gezei chnet am 05. 02. 2003 von

'

 ChangeFi l eOpenDi r ect or y " C: \ Test \ "

 Document s. Open Fi l eName: =" Hel l oWor l d. doc" , Conf i r mConver si ons: =Fal se, _

 ReadOnl y: =Fal se, AddToRecent Fi l es: =Fal se, Passwor dDocument : =" " , _

 Passwor dTempl at e: =" " , Rever t : =Fal se, Wr i t ePasswor dDocument : =" " , _

 Wr i t ePasswor dTempl at e: =" " , For mat : =wdOpenFor mat Aut o

 Sel ect i on. Whol eSt or y

 Sel ect i on. Copy

End Sub

OtherScript 7: Macro for MSSpeech_TTS_3_Word.rex.

Additionally in code 25 is the content of the clipboard pasted by the Object Rexx

class Wi ndowsCl i pboar d to the Microsoft Speech object SpVoi ce. Therefore the

directive : : REQUI RES “ WI NSYSTEM. CLS” is needed264. Then the text is spoken.

The script also works if there is a graphic included in the selection.

-

- - MSSpeech_TTS_3_Wor d. r ex - -

-

 - - Message box wi t h t he i nvi t at i on t o i nser t t he pat h and f i l e name.

CALL RxMessageBox " I nser t t he f i l e name wi t h t he pat h" , " I nf or mat i on" , ,

 " OK" , " ASTERI SK"

 - - Hand over of t he pat h and f i l e name i n t he command wi ndow t o t he

PARSE PULL docu - - var i abl e " docu"

Wor d = . OLEObj ect ~New(" Wor d. Appl i cat i on") - - I nst ant i at i on of Wor d

Wor d~Vi s i bl e = . TRUE - - The v i s i bi l i t y of Wor d i s set on t r ue

Document = Wor d~Document s~Open(docu) - - The document i s opened

Wor d~Sel ect i on~Whol eSt or y - - Al l of t he Wor d document i s sel ect ed

 - - Her e t he sel ect ed t ext i s copi ed t o t he c l i pboar d. The Copy met hod

 - - cannot be used i n t he nor mal way because t hi s Copy met hod woul dn’ t be

 - - sent t o Wor d but t o t he Obj ect Rexx c l ass. The UNKNOWN met hod sol ves

Wor d~Sel ect i on~Unknown(" Copy" , . ni l) - - t hi s pr obl em265.

cb = . Wi ndowsCl i pboar d~New - - A c l i pboar d obj ect i s cr eat ed266

 - - The Past e met hod hands over t he cont ent of t he c l i pboar d267

wor dt ext = cb~Past e

264 c.p. 8.3.3.
265 c.p. 6.4.
266 [IBM01c]
267 [IBM01,p283]

165

SpO=. OLEObj ect ~New(" SAPI . SpVoi ce") - - I nst ant i at i on of a TTS obj ect 268

 - - The voi ce i s set wi t h t he Voi ce pr oper t y. Ther ef or e t he Get Voi ces

 - - met hod chooses t he voi ce by t he var i abl e voi cex and t he l anguage

 - - (her e Engl i sh) 269270.

SpO~Voi ce = SpO~Get Voi ces(" name=Mi cr osof t Sam" , " Language=409") [0]

 - - The Speak met hod speaks t he t ext of t he Wor d document whi ch i s hand

 - - over by t he var i abl e271.

SpO~Speak(wor dt ext)

 - - Loads def i ni t i on of t he Wi ndowsCl i pboar d c l ass

: : REQUI RES " WI NSYSTM. CLS"

Code 25: MSSpeech_TTS_3_Word.rex

12.2. Speech Recognition

Speech recognition is a further input possibility which signification will increase in the

future. This section provides information about the technical background, the

possibilities and problems with Object Rexx.

Speech recognition (speech-to-text) digitizes sound waves. These sound waves are

transformed to phonemes or basic language units. From these phonemes are words

constructed which are contextually analyzed to check the correct spelling of a word

(right and write). Figure 41 shows this recognition process.

268 Looked up with RGF_OLEInfo.hta c.p. 7.3.
269 [SPd]
270 [SPb]
271 [SPc]

166

�

Figure 41: Speech recognition process272

So-called speech recognition engines are software drivers. These software drivers

transform the acoustical signal to a digital signal. Continuous speech means that the

speaker can talk to the microphone without pause. There are two modes for

continuous speech recognition engines. The one is Command and Control (speaking

commands and asking questions) and the other is Dictation (enables the dictating of

letters, memos or e-mail messages) [MS02].

12.2.1. Dictation Recognition

Code 26 is a dictation recognition example.

It should enable free dictation. If there is not spoken to the microphone after the

invitation to speak then the program terminates. If there is spoken to the microphone

after the invitation to speak, then the program runs so long it is spoken to the

microphone. Only if speaking is stopped the program terminates. There is no error

message. Nevertheless, there is no event fired. The problem is that Object Rexx

does not support the events of MS Speech. The reason therefore is that the events of

MS Speech are not hand over to Object Rexx via the generic interfaces I Di spat ch

272 Taken from [MS02]

167

and I Unknown. The events are hand over via special ID’s. These ID’s are not

queried with Object Rexx [Doe03c].

-

- - MSSpeech_SR_1_Di ct at i on. r ex - -

-

 - - I nst ant i at es t he SR obj ect . Her e i s a an obj ect used whi ch enabl es

 - - shar ed cont ext t o al l ow r esour ces t o be used by ot her r ecogni t i on

 - - cont ext s or appl i cat i ons273. Event s ar e enabl ed.

SO = . Event sWi t hSO~New(" SAPI . SpShar edRecoCont ext " , " WI THEVENTS")

 - - The Cr eat eGr ammar met hod cr eat es an obj ect based on

SGr ammar = SO~Cr eat eGr ammar - - I SpeechRecoGr ammar 274

 - - The Di ct at i onSet St at e met hod set s t he di ct at i on t opi c st at e on

SGr ammar ~Di ct at i onSet St at e(1) - - act i ve275

 - - Cr eat es a message box wi t h i nvi t at i on t o speak

CALL RxMessageBox " Speak" , " I nf or mat i on" , ,

 " OK" , " ASTERI SK"

 - - Cl ass whi ch der i ves f r om OLEObj ect 276

: : CLASS Event sWi t hSO SUBCLASS OLEObj ect

 - - Met hod whi ch i s cal l ed i f t he Recogni t i on event 277 i s f i r ed. Thi s

 - - occur s when t he speech r ecogni t i on(SR) engi ne pr oduces a r ecogni t i on.

: : METHOD Recogni t i on

 USE ar g St r eamnumber , St r eamposi t i on, Recogni t i onType, Resul t

 say Resul t ~Phr aseI nf o~Get Text

 say " I have r ecogni zed s. t h. "

 - - The Fal seRecogni t i on event 278 occur s when t he speech r ecogni t i on (SR)

 - - engi ne pr oduces a f al se r ecogni t i on.

: : METHOD Fal seRecogni t i on

 USE ar g St r eamnumber , St r eamposi t i on, Resul t

273 [SPe]
274 [SPf]
275 [SPg]
276 c.p. 6.3.3.
277 [SPh]
278 [SPi]

168

 SAY " No r ecogni t i on"

 - - I f t he SR engi ne encount er s t he st ar t of an audi o i nput st r eam t hen

: : METHOD St ar t St r eam - - t he St ar t St r eam event i s f i r ed279.

 use ar g St r eamnumber , St r eamposi t i on

 SAY St r eamnumber

Code 26: MSSpeech_SR_1_Dictation.rex280

12.2.2. Command and Control Recognition

Code 27 and code 28 demonstrate the Command and Control (C&C) recognition.

12.2.2.1. C&C Recognition with Configuration File

Code 27 describes the Command and Control Recognition with a configuration file.

Therefore a second file is used which contains the grammar with the recognizable

text. The file name is sol x. xml and the text is “one”. If the program is started it runs

without error. If it is spoken the word “one” or not there is no event fired. The problem

is that Object Rexx does not support the events of MS Speech. The reason therefore

is that the events of MS Speech are not hand over to Object Rexx via the generic

interfaces I Di spat ch and I Unknown. The events are hand over via special ID’s.

These ID’s are not queried with Object Rexx [Doe03c].

-

- - MSSpeech_SR_2_CommandAndCont r ol . r ex - -

-

 - - I nst ant i at es t he SR obj ect . Her e i s a an obj ect used whi ch enabl es

 - - shar ed cont ext t o al l ow r esour ces t o be used by ot her r ecogni t i on

 - - cont ext s or appl i cat i ons281. Event s ar e enabl ed.

SO = . Event sWi t hSO~New(" SAPI . SpShar edRecoCont ext " , " WI THEVENTS")

 - - The Cr eat eGr ammar met hod cr eat es an obj ect based on

SGr ammar = SO~Cr eat eGr ammar - - I SpeechRecoGr ammar 282

 - - The CmdLoadFr omFi l e met hod283 l oads a command and cont r ol gr ammar

 - - f r om t he f i l e " sol x. xml " . " 1" means t hat t he gr ammar i s l oaded

 - - dynami cal l y , meani ng t hat r ul es can be modi f i ed and commi t t ed at r un

279 [SPj]
280 Modelled after [SPk]
281 [SPe]
282 [SPf]
283 [SPl]

169

SGr ammar ~CmdLoadFr omFi l e(" c: \ Test \ sol x. xml " , 1) - - t i me284.

 - - The CmdSet Rul eI dSt at e met hod285 act i vat es or deact i vat es a r ul e by

SGr ammar ~CmdSet Rul eI dSt at e(0, 1) - - i t s r ul e I D

 - - Message box wi t h t he i nvi t at i on t o speak.

CALL RxMessageBox " Speak" , " I nf or mat i on" , ,

 " OK" , " ASTERI SK"

 - - Cl ass whi ch der i ves f r om OLEObj ect 286

: : CLASS Event sWi t hSO SUBCLASS OLEObj ect

 - - Met hod whi ch i s cal l ed i f an event i s f i r ed. The Recogni t i on event

 - - occur s when t he speech r ecogni t i on (SR) engi ne pr oduces a

: : METHOD Recogni t i on - - r ecogni t i on287.

 use ar g St r eamnumber , St r eamposi t i on, Recogni t i onType, Resul t

 Resul t ~Phr aseI nf o~Get Text

 say " I have r ecogni zed s. t h. "

 - - The Fal seRecogni t i on event occur s when t he speech r ecogni t i on (SR)

: : METHOD Fal seRecogni t i on - - engi ne pr oduces a f al se r ecogni t i on288.

 use ar g St r eamnumber , St r eamposi t i on, Resul t

 SAY " No r ecogni t i on"

 - - I f t he SR engi ne encount er s t he st ar t of an audi o i nput st r eam t hen

: : METHOD St ar t St r eam - - t he St ar t St r eam event i s f i r ed289

 use ar g St r eamnumber , St r eamposi t i on

 SAY St r eamnumber

Code 27: MSSpeech_SR_2_CommandAndControl.rex290

OtherScript 8 contains the file sol x. xml with the grammar with the recognizable

text. This file is taken from [SPo]. Instead of “new +game” is “one” used.

284 [SPm]
285 [SPn]
286 c.p. 6.3.3.
287 [SPh]
288 [SPi]
289 [SPj]
290 Modeled after [SPo]

170

<GRAMMAR LANGI D=" 409" >

 <DEFI NE>

 <I D NAME=" RI D_NewGame" VAL=" 101" / >

 </ DEFI NE>

 <RULE NAME=" newgame" I D=" RI D_NewGame" TOPLEVEL=" ACTI VE" >

 <P> new +game </ P>

 </ RULE>

</ GRAMMAR>

OtherScript 8: solx.xml291

12.2.2.2. C&C and the Creation of a new Grammar Rule

Code 28 was modeled after an example from Inigo Surguy that was programmed

with the language Python292. It should create a new grammar rule and fire the

Recogni t i on event if the word “Hello” is said. This example doesn’t work correctly.

There comes always the following error message:

 28 * - * SGr ammar ~Rul es~Commi t

Er r or 92 r unni ng C: \ . . . \ SR_1. r ex l i ne 28: OLE er r or

Er r or 92. 906: OLE except i on: Code: 80045062 Sour ce:

unavai l abl e Descr i pt i on: unavai l abl e

-

- - MSSpeech_SR_3_CommandAndCont r ol _2. r ex - -

-

 - - I nst ant i at es t he SR obj ect . Her e i s a an obj ect used whi ch enabl es

 - - shar ed cont ext t o al l ow r esour ces t o be used by ot her r ecogni t i on

 - - cont ext s or appl i cat i ons293. Event s ar e enabl ed.

SpeechObj ect = . Event sWi t hSO~new(" SAPI . SpShar edRecogni zer " , " WI THEVENTS")

 - - The Cr eat eRecoCont ext met hod294 cr eat es a r ecogni t i on cont ext obj ect

 - - f r om t he r ecogni zer .

SCont ext = SpeechObj ect ~Cr eat eRecoCont ext

 - - The Cr eat eGr ammar met hod295 cr eat es an obj ect based on

SGr ammar = SCont ext ~Cr eat eGr ammar - - I SpeechRecoGr ammar

 - - The Di ct at i onSet St at e met hod set s t he di ct at i on t opi c st at e296.

291 Taken from [SPo]
292 http://www.surguy.net/articles/speechrecognition.xml
293 [SPe]
294 [SPp]
295 [SPf]

171

SGr ammar ~Di ct at i onSet St at e(0) - - Her e i nact i ve297

 - - The Add met hod298 cr eat es a new I SpeechGr ammar Rul e obj ect i n an

 - - I SpeechGr ammar Rul es col l ect i on.

 - - " wor dsRul e" i s t he r ul e name, " 33" means " SRATopLevel = 1" +

 - - " SRADynami c = 32" and " 0" i s t he r ul e I D299.

Wor dsRul e = SGr ammar ~Rul es~Add(" wor dsRul e" , 33, 0)

 - - The Cl ear met hod300 c l ear s a r ul e, l eavi ng onl y i t s i ni t i al s t at e.

Wor dsRul e~Cl ear

 - - The AddWor dTr ansi t i on met hod301 adds a wor d t r ansi t i on f r om t hi s r ul e

 - - s t at e t o anot her r ul e st at e i n t he same r ul e. The AddSt at e met hod302

 - - adds a st at e t o a speech r ul e303.

Wor dsRul e~I ni t i al st at e~AddWor dTr ansi t i on(Wor dsRul e~AddSt at e, " Hel l o")

 - - The Commi t met hod compi l es t he r ul es i n t he r ul e col l ect i on304.

SGr ammar ~Rul es~Commi t

 - - The CmdSet Rul eSt at e met hod305 act i vat es or deact i vat es a r ul e by

 - - i t s name. Her e i t i s act i vat ed306.

SGr ammar ~CmdSet Rul eSt at e(" wor dsRul e" , 1)

 - - The Commi t met hod compi l es t he r ul es i n t he r ul e col l ect i on.

SGr ammar ~Rul es~Commi t

 - - Cr eat es a message box wi t h i nvi t at i on t o speak

CALL RxMessageBox " Speak" , " I nf or mat i on" , ,

 " OK" , " ASTERI SK"

 - - Cl ass whi ch der i ves f r om OLEObj ect 307

: : CLASS Event sWi t hSO SUBCLASS OLEObj ect

296 [SPg]
297 [SPq]
298 [SPr]
299 [SPs]
300 [SPt]
301 [SPu]
302 [SPv]
303 [Doe03d]
304 [SPw]
305 [SPx]
306 [Spy]
307 c.p. 6.3.3.

172

 - - Met hod whi ch i s cal l ed i f an event i s f i r ed.

 - - The Recogni t i on event occur s when t he speech r ecogni t i on

: : METHOD Recogni t i on - - (SR) engi ne pr oduces a r ecogni t i on308.

 USE ar g St r eamnumber , St r eamposi t i on, Recogni t i onType, Resul t

 Resul t ~Phr aseI nf o~Get Text

 SAY " I have r ecogni zed s. t h. "

Code 28: MSSpeech_SR_3_CommandAndControl_2.rex

308 [SPh]

173

13. Windows Script Host

A disadvantage of further Windows versions was that they were not able to be used

for automation tasks. There were only MS-DOS Batch files available [Ge03]. This was

changed with the advent of Windows Script Host (WSH) [Mo98]. WSH enables the

interaction among ActiveX components, the access of the registry, the launching of

applications or the communication with the operating system. It is possible to

generate installation scripts for applications or to automate tasks for the user [Ge03].

Windows Script Host is a Windows administration tool and has the two components

host and engine. For the interaction of these two parts are used the interfaces

I Per si st * , I Act i veScr i pt , I Act i veScr i pt Si t e, I Di spat ch and

I connect i onPoi nt .

This section discusses scripting, Object Rexx and Windows Script Host, Windows

Script Host and Windows Script Engine, types of script files, kinds of running a script,

the instantiating of objects, the WSH object model, the Fi l eSyst emObj ect object,

the Di ct i onar y object, security in Windows Script Host, starting applications with

WSH and Windows Script Components.

Windows Script Host (WSH) is language-independent. It is possible to run scripts

from the command prompt and from the Windows desktop. WSH is the host for a

script. That means that it makes services and objects available for the script

[MLWSHa]. There are three WSH applications known at the point of time this paper

was written: Internet Information Services (IIS) whereat IIS is a WSH host and then

WSH engines can be used for scripting of ASP [Fla03e], MS Internet Explorer and the

WSH Shell which is used as Windows interface [Fla03].

With scripting, variables can be set and stored, and it can be worked with data in

HTML code [MLWSHc].

WSH makes objects from applications available in the runtime environment of the

scripting language [Fla02c,p8].

WSH objects and services enable [MLWSHa]:

• Connection to printers,

174

• changing of registry keys,

• changing and retrieving of environment variables,

• fundamental functions as Cr eat eObj ect and Get Obj ect ,

• printing of messages to the screen,

• mapping network drives and

• remote control of Windows applications.

WSH is included in for example Microsoft Windows 98, 2000 or XP. For Windows 95

the Windows Script Host 5.6 is downloadable from the Microsoft Homepage309

[MLWSHa]. The Windows Script Host is included and updated with the MS Internet

Explorer [Fla03].

A recommended source for information is the System Administration Scripting Guide.

This guide can be downloaded from the Microsoft Homepage310.

13.1. Scripting

This chapter contains information about script basics and server-side scripting to

improve the understanding.

13.1.1. Script Basics311

A script is programmed in a scripting language like VBScript, JScript, Python, DOS

Batch language Perl or Object Rexx 312.

Scripting facilitates work with data in HTML code to communicate with the user,

check the browser or the input and to work with controls and applets [MLWSHc].

Computer systems on a network can be remotely administered.

309 http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28001169
310 http://www.microsoft.com/downloads/release.asp?ReleaseID=38942
311 [MLWSHa]
312 [Fla02d]

175

A Windows script can be written with an unpretentious text editor. It is only necessary

to save the file with the appropriate extension [MLWSHd].

A script is normally stored in a file and it is used for remote-control and to automate

applications. Thereby it is a sequence of repetitious commands pointed to shells or

applications [Fla02d].

A script is suited for the following purposes:

• Starting other programs

• Key sequences are transmitted to an application

• Changing the Windows environment

• Logon procedures that are automatic

• Nonrepetitive tasks

• Sequence of tasks

• Response to an event

13.1.2. Server-Side Scripting313

Server-side scripting allows the running of scripts on the server for example for data

that can be stored in a database. Active Server Pages (ASP) is used for server-side

scripting with generating an ASP file. There could be a mix of components like Java

applets or ActiveX, scripting and HTML. ASP has the five standard objects

Appl i cat i on (lifetime control and share application-level information), Ser ver

(Internet Information Server control), Sessi on (settings and information about the

user’s present web-server session), Request (information from the user) and

Response (information to the user). ASP events are supported by Object Rexx

[IBM01,p505].

313 [MLWSHe]

176

13.2. Object Rexx and Windows Script Host314

This section provides information about the support of Windows Script Host by Object

Rexx. The COM interfaces which Object Rexx supports and basic items are

discussed.

13.2.1. Basics

Object Rexx is a script engine for Windows Script Host.

Object Rexx does not support WSH Script Debugging, which enables to view the

source code, to view and modify property and variable values, to check and view the

script flow and to control the pace of the script execution [MS01b], and DCOM315.

13.2.2. COM Interfaces

Not all of the WSH engines interfaces are supported by Object Rexx. Some

interfaces that are supported are generated dynamically. Not all methods of a

supported interface are implemented although the code for all methods of that

interface is present. Not implemented methods return E- NOTI MPL.

Interfaces with full support:

• I Act i veScr i pt Er r or

• I Act i veScr i pt Par se

• I Act i veScr i pt Par sePr ocedur e

• I Obj ect Saf et y

• I Unknown

Interfaces that are also supported:

• I Act i veScr i pt

314 This section uses [IBM01c,p152ff]
315 c.p. 2.7.

177

• Cl ose

• AddNamedI t em

• AddTypeLi b

• Get Scr i pt Di spat ch

• Get Scr i pt St at e

• Set Scr i pt Si t e

• Set Scr i pt St at e

• I Di spat ch

• Get I DsOf Names

• I nvoke

• I Di spat chEx

• Get Di spI D (no support for dynamic generation of methods or properties)

• Get Member Name

• Get Next Di spI D

• I nvokeEx (no support for dynamic generation of methods or properties)

13.3. Host and Engine

This section describes script host and engine and their interaction. Script host and

engine are the two kinds of script components.

13.3.1. Script Host and Script Engine Basics

With Windows Script Host VBScript, Jscript, Python, Perl and Rexx can be used as

an engine. .vbs and .js files are already registered in Windows; others have to be

registered before running a file [MLWSHf].

178

There are two kinds of script components. There is a script engine and a script host

[IBM01,p493].

The script host generates the script engine that is an OLE object and implements the

scripts. A Script host are for example the Shell, Internet authoring tools or the

Microsoft Internet Explorer, CScript and WScript. The script host can add initialized

objects to the runtime environment of the WSE and it is any application that uses one

of the I Act i veScr i pt f ami l y interfaces [Fla02d,p9].

The Script engine runs with any run-time or language environment like Microsoft

Visual Basic Scripting Edition, Lisp, Perl or Object Rexx that supports the COM

interfaces I Act i veScr i pt , I Act i veScr i pt Par se and I Per si st and

OLE/ActiveX Automation. The WSE makes it possible that objects from applications

are obtainable in the runtime environment [Fla02d,p3,p8].

13.3.2. Interaction between Scripting Host and Engine316

Script interfaces offer the possibility for an application to use OLE Automation and

scripting skills. The interaction of host and engine is illustrated in figure 42.

�

Figure 42: Interaction between Scripting Host and Engine317

316 [MLWSHg]
317 Taken from [MLWSHg]

179

1. Creation of a document or project.

2. Creation of the Windows Script Engine with the CoCr eat eI nst ance method.

3. The script is loaded with an I Per si st * �interface.

4. Named Items (remarkable OLE COM object to the script) are added with the

I Act i veScr i pt : : AddNamedI t em�method.

5. The script is running.

6. Information about the item with the I Act i veScr i pt Si t e: : Get I t emI nf o

method.

7. Connection of the scripting engine to the events with the I connect i onPoi nt

interface.

8. Methods and properties are called with standard OLE binding mechanisms or

I Di spat ch: : I nvoke.

13.4. Types of Script File318

In the sequent sections there are used several kinds of Windows Script Host files and

several kinds of files which contain Windows Script Host objects. These types of

Windows Script files are described in this section.

The first is the . wsf file, which is a container or project file, and the second is the

. wsh file, which is a property file for a script file. Other types are . vbs (VBScript),

. j s (JScript), . bat (MS DOS batch file), ASP page, . ht ml (HTML file) or . r xs and

. r ex (both Object Rexx).

13.4.1. WSF File Using Windows Script Files (.wsf)

This file format is used often in further code examples.

A WSF file (. wsf) is structured in XML. The . wsf format allows multiple-engine

support to join several languages in a .wsf file and can be edited with any XML editor

or any other editor. It is a project or container file. Functions from several languages

can be inserted in the project. Type libraries are used to add constants to the code

318 [MLWSHh]

180

and the code of several jobs can be saved in one file. A WSF file can be programmed

with any script engine319 [Fla02d,p10].

A script can be split up to several parts. As beginning, a . wsf file is generated and

the other parts referenced by the . wsf file are for example Visual Basic Script or

JScript files [MLWSHi].

13.4.2. WSH File

A WSH file is automatically created by setting the properties for a script file. It is a

text file. With a WSH file the implementation of one or more scripts is handled

[MLWSHk].

13.4.3. REX File

A REX file is a file with Object Rexx code. It is created with the Object Rexx

Workbench and can contain script code.

13.4.4. RXS File

There are several Object Rexx scripts, which only work with this extension.

A RXS File means ObjectRexxScriptFile. It contains an Object Rexx program that is

started via Windows Script Host [Fla02e]. It is suitable for the usage of

Wscr i pt . exe320 or Cscr i pt . exe321 [Fla03]. The . r xs files can be executed with

a double-click in the Windows Explorer or or with the name of the file. Thereby

WScript is launched and the script file is hand over as argument [Fla03e].

319 c.p. 13.8.3.
320 c.p. 13.5.2.
321 c.p. 13.5.1.

181

The following two commands are inserted to the command window322 [Fla03e]:

C: \ Assoc. r xs

Output:

. r xs=Obj ect RexxScr i pt Fi l e

And:

C: \ f t ype Obj ect RexxScr i pt Fi l e

Output:

Obj ect RexxScr i pt Fi l e=%Syst emRoot %\ syst em32\ WScr i pt . exe " %1" %*

13.5. Running a Script

There are different possibilities how to run a script. This chapter describes these

possibilities.

13.5.1. CScript323

With Cscr i pt . exe scripts can be started from the command prompt. The command

has the following syntax.

cscr i pt scriptname.extension [scr i pt opt i ons and par amet er s]

The output of the script is sent to the command window.

13.5.2. WScript

Another possibility to run a script is from Windows. Therefore, Wscr i pt . exe is

used. It offers a Windows-based dialog box for the properties. Here the output is a

windowed output [MLWSHm].

322 Start->Run->Cmd
323 [MLWSHl]

182

13.5.3. Embedding a Script in a HTML File324325

A further possibility of running scripts is to embed them in a HTML file with the

Microsoft Internet Explorer. It is possible to interact in this way with any scripting

engine [Fla02d]. This section was taken from [He02,p10]

There is a head and a body in the HTML file.

The head contains the title and the original source code of the Object Rexx script.

Here are the operations that are running in the background. The body contains what

can be seen on the monitor. There are the headlines, references and the input area

for the data. HTML-files consist of ASCII-text. HTML-commands are written in “tags”.

That means that they are marked with pointed brackets. There is always an opening

tag and a closing tag. All between them is the range of validity of the tag.

Dynamic HTML (DHTML) makes it possible to change elements of a www-site

dynamically. This site behaves like an application. To act in this way event-handlers

are used. Knowledge in script languages like Object Rexx is needed to work with

DHTML326.

13.5.4. Other Possibilities to Run a Script

Scripts can also be started with a double-click in the explorer.

13.6. Instantiating of Objects

Here is explained how to instantiate WSH objects with Object Rexx.

There are two possibilities to declare objects with Object Rexx. The one is the WSH

method WScr i pt ~Cr eat eObj ect () and the other is the Object Rexx method

. OLEObj ect ~New() , in which New generates a new instance of the object327. The

first possibility offers the advantage that it supports the events of the object. On the

other side, it is a COM object implementing a function that can be carried out

324 c.p. 9.1.3.
325 c.p. 13.7.4.1.
326 Taken from [He02,p10]
327 c.p. 6.3.

183

internally. If the WScr i pt object is used outside WSH, like for example in a REX file,

it does not work. Therefore, a RXS file328 is used. [IBM01,p512].

13.7. WSH Object Model329

This is the broadest section of the WSH chapter. It discusses the whole WSH object

model. It explains for example how to execute a script on another machine in a

network or how to send keystrokes to the active window.

Parts are the WSHArguments object, the WSHController object, the WSHNetwork

object and the WSHShell object.

The WSH consists of 14 objects that are illustrated in Figure 43.

Figure 43: WSH Object Model330

• WScr i pt is the root object of the object model and it is always available from

every script file. It offers information about the host file name and host version, the

name of the script file, command-line arguments and to the default output device.

It enables the creation, connection and disconnection of objects, and sync events

and stops the script's execution programmatically.

328 c.p. 13.7.1.
329 [MLWSHn]
330 Taken from [MLWSHn]

184

• WshAr gument s allows accessing the entire set of command-line arguments. With

WshNamed the set of named command-line arguments can be accessed.

WshUnnamed allows accessing the set of unnamed command-line arguments.

• WshCont r ol l er allows with the method Cr eat eScr i pt () , to generate a

remote script process. WshRemot e allows the manipulation of other scripts and

programs. WshRemot e Er r or shows the error information in the case of a script

error.

• WshNet wor k maps or closes network shares, allows the access to the shared

resources of a network, offers data of a user in the network and makes the

connection and disconnection to network printers and shares.

• WshShel l generates shortcuts, changes the environmental variables, starts a

program locally, accesses the system folder and changes the contents of the

registry. WshShor t cut offers a programmatically creation of a shortcut.

WshURLShor t cut creates a shortcut to an Internet URL. WshEnvi r onment

allows utilization of environmental variables like PATH or PROMPT.

WshSpeci al f ol der s allows accessing “Windows Special Folders” like the

St ar t Menu folder or the Deskt op folder. WshScr i pt Exec offers error and

status information about a script that runs with the Exec method of the WshShel l

object.

The COM interfaces used by the Windows Script Model are based on two categories:

• Helper Functions to perform actions with methods and properties.

• Script Execution and Troubleshooting to perform messages to the screen,

essential COM functions or changing of the Windows Script Host.

13.7.1. WshArguments Object331

The WshArguments object accesses the command-line arguments that are used.

331 This section uses [MLWSHo]

185

This script has the extension .rxs. To run that script the MS-DOS Shell is used and

the script runs with the command cscr i pt wsh_ar g. r xs / W
�

s
�

h or wscr i pt

wsh_ar g. r xs / W
�

s
�

h. Note that the WScr i pt object runs only if it is dynamically

generated by WScr i pt or CScr i pt to pass the pointer to Object Rexx and it is not

registered in the Windows registry [IBM01,p508]. The Ar gument s property returns

the WshAr gument s object. The Ar gument s property needs the WScr i pt

object. The Named and the Unnamed properties of the WshAr gument s object return

the WshNamed respectively the WshUnnamed object. WScr i pt ~Echo creates if the

script is executed with CScr i pt an output like the SAY command. If the script is

started with WScr i pt a pop-up box is generated [IBM01,p494].

Figure 44 illustrates the MS-DOS shell332 where the file WSH_Ar g. r xs with the

arguments is executed.

Figure 44: Snapshot of the MS-DOS Shell333

Code 29 contains the script WSH_Arg.rxs.

332 Start->Run->Command
333 Part of MS Windows XP

186

- - - - - - - - - - - - - - - - -

- - WSH_Ar g. r xs - -

- - - - - - - - - - - - - - - - -

 - - I nput : cscr i pt wsh_ar g. r xs / W s h

 - - or wscr i pt wsh_ar g. r xs / W s h

 - - The number of Ar gument s i n t he command- l i ne i s count ed wi t h

 - - t he count pr oper t y

SAY " Ther e ar e " wscr i pt ~Ar gument s~count " Ar gument s"

 - - St ops t he execut i on of t he scr i pt f or 5000 mi l l i seconds334

Wscr i pt ~Sl eep(5000)

 - - The number of Ar gument s i n t he command- l i ne i s count ed wi t h t he

SAY " Ther e ar e " wscr i pt ~Ar gument s~l engt h " Ar gument s" - - l engt h pr oper t y335

 - - The number of named Ar gument s i s count ed wi t h t he l engt h

 - - pr oper t y

WScr i pt ~Echo(" Ther e ar e " WScr i pt ~Ar gument s~Named~l engt h " named ar gument s. ")

 - - The number of unnamed Ar gument s i s count ed wi t h t he Count

 - - pr oper t y336

WScr i pt ~Echo(" Ther e ar e " WScr i pt ~Ar gument s~Unnamed~count " unnamed ar gument s. ")

WScr i pt ~Echo(WScr i pt ~Name) - - Of f er s t he name of t he WScr i pt obj ect

 - - Exi st s met hod r ecogni zes i f a named ar gument exi st s337. 1=t r ue

WScr i pt ~Echo(WScr i pt ~Ar gument s~Named~Exi st s(" W"))

 - - Unnamed Ar gument s ar e not r ecogni zed.

WScr i pt ~Echo(WScr i pt ~Ar gument s~Named~Exi st s(" s"))

Code 29: WSH_Arg.rxs

13.7.2. WshController338

This object has the method Cr eat eScr i pt that references the WSHRemot e object.

The WSHCont r ol l er object enables the instantiation of script on a remote machine

[Es02]. It is explained how to use this object on the local machine, on multiple

machines and the usage of events.

There are two scripts, the control script and the remote script. The control script

instantiates a WSHCont r ol l er object and connects to the remote machine. The

remote script is copied to the memory of the remote machine. The remote script is

there executed [WSS02].

334 [MLWSHp]
335 [MLWSHq]
336 [MLWSHr]
337 [MLWSHs]
338 [MLWSHt]

187

The method Cr eat eScr i pt has the following syntax:

Cr eat eScr i pt (CommandLi ne, [Machi neName]) . The parameter CommandLi ne

is required and contains the path of the control script seen from the controller

machine. The parameter Machi neName is optional and contains the name of the

remote machine. If this parameter is left free, the remote script is executed on the

controller machine [MLWSHu].

To use the remote functionality WSH 5.6 has to be installed339 (for Windows XP or

Internet Explorer 6 or greater WSH 5.6 is already installed), the remote and the local

machine must have Windows NT 4 SP3 or higher and the registry has to be changed.

Thereby for the key HKEY_LOCAL_MACHI NE \ SOFTWARE \ Mi cr osof t \ Wi ndows

Scr i pt Host \ Set t i ngs an entry must be added. Right-click that subkey in the

Registry Editor340, click on New and choose St r i ng Val ue in the Edi t menu.

Insert for value name “Remot e” and as data value „1“ [MS03k]. This key must be

activated on that machine on which the remote script is executed. If the remote script

is executed on a machine other as the source script this key needn’t be set on “1” in

the source system but it may be set on “1”. It is not necessary to restart the system

after modifying this key. Figure 45 shows in the small circle the key and in the big

circle the new entry.

339 http://msdn.microsoft.com/scripting
340 c.p. 2.6.1.

188

Figure 45: Snapshot of the registry with regedit.exe341

For Windows XP machines it is probably necessary to use the command C: \ >

wscr i pt - r egser ver in the menu St ar t - >Run. This is why there is a

configuration bug which prevents WSH 5.6 from setting up correctly [WSS02].

13.7.2.1. WSHController on the local Machine

This example shows the WSHCont r ol l er object with a remote script that is

launched on the same machine. For this example, a MS Windows XP Home machine

was used.

The first script code 30 is the control script.

341 The Registry Editor is part of MS Windows XP c.p. 2.6.1.

189

-

- - WshCont r ol l er _OnTheSameMachi ne. r ex - -

-

 - - I nst ant i at i on of t he Cont r ol l er Obj ect

Cont r ol l er = . OLEObj ect ~New(" WSHCont r ol l er ")

 - - The met hod Cr eat eScr i pt gener at es a WSHRemot e obj ect 342

Remot eScr i pt = Cont r ol l er ~Cr eat eScr i pt (" C: \ Test WSHCt r \ WSHRemot eCal c. r xs")

 - - The St at us pr oper t y t el l s t he St at us of t he r emot e scr i pt

 - - I n t hi s case t he st at us i s 0 whi ch means t hat t he r emot e scr i pt

SAY Remot eScr i pt ~St at us - - obj ect i s gener at ed but not execut ed343.

 - - The Execut e met hod begi ns t he execut i on of t he r emot e scr i pt

Remot eScr i pt ~Execut e - - obj ect 344.

 - - I n t hi s case t he st at us i s 1 whi ch means t hat t he r emot e scr i pt

SAY Remot eScr i pt ~St at us - - obj ect i s r unni ng.

 - - DO f unct i on whi ch i s execut ed unt i l t he val ue of t he st at us i s 2

DO UNTI L Remot eScr i pt ~St at us = 2

 CALL Syssl eep 1

END

 - - I n t hi s case t he st at us i s 2 whi ch means t hat t he r emot e scr i pt

 - - obj ect i s not st i l l r unni ng.

SAY Remot eScr i pt ~St at us

Code 30: WSHController_OnTheSameMachine.rex345

Code 31 is the remote script WSHRemot eCal c. r xs that is launched by the controller

script. It has the file extension . RXS because it must be a script file. Therein the

calculator is launched with the Exec method346.

-

- - WSHRemot eCal c. r xs - -

-

- - I nst ant i at i on of t he Shel l obj ect

WshShel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

WshShel l ~Exec(" cal c") - - Launches t he Cal cul at or

Code 31: WSHRemoteCalc.rxs

13.7.2.2. WSHController on multiple Machines

In the next example the WSHCont r ol l er object with the WSHRemot e object is used

on multiple machines. In this case two MS Windows XP Pro machines were used. It

342 [MLWSHu]
343 [MLWSHv]
344 [MLWSHw]
345 Modelled after [WSS02]
346 c.p. 13.7.4.5.

190

doesn’t work with MS Windows XP Home machines or if one of the two machines is a

MS Windows XP Home machine [DI03a].

Both the control script and the remote script are on the control machine.

There is a registry changing necessary on the target computer. By default a

For ceGuest issue is set for Windows XP machines. For ceGuest means that all

that is coming from the network is authenticated as Guest user. To change this,

open the Local Secur i t y Pol i cy console located in the folder

Admi ni st r at i ve Tool s347. In the Secur i t y Pol i cy console choose

Secur i t y Set t i ngs\ Local Pol i c i es\ Secur i t y Opt i ons . Then look for

Net wor k Access: Shar i ng And Secur i t y Model For Local Account s .

Change the setting from Guest to Cl assi c [DI03]. Figure 46 shows the setting in

the Security Policy console.

347 C:\Documents and Settings\All Users\Start Menu\Programs\Administrative Tools

191

Figure 46: Snapshot of the Security Policy console.348

A further prerequisite is that the same password must be set on both machines for

the administrator. Without setting a password it doesn’t work. A password for the

administrator is created by choosing St ar t - >Cont r ol Panel - >User Account s .

Double-click the computer administrator like in figure 47 [Sp03].

348 Part of MS Windows XP Pro

192

Figure 47: Snapshot of the start page of the User Accounts349

Then click Cr eat e a passwor d and fulfill the form like in figure 48.

349 Part of MS Windows XP Pro

193

Figure 48: Snapshot of the form for creating a password350

The control script code 32 contains additionally to the script code 30 the name of the

machine (f hkcn) where the remote script should be executed. There is no folder

specified because the remote script is located in the same folder as the control script

but it is also possible to insert the folder [MS03l]. The control script is on the control

machine in the folder c: \ Test WSHCt r located. That is the same folder specification

as the folder specification where the remote script will create the text file on the

remote machine. If the control script is located in another folder on the control

machine it doesn’t work.

-

- - WshCont r ol l er _OnMul t i pl eMachi nes. r xs - -

-

 - - I nst ant i at i on of t he Cont r ol l er Obj ect

Cont r ol l er = . OLEObj ect ~New(" WSHCont r ol l er ")

 - - The met hod Cr eat eScr i pt gener at es a WSHRemot e obj ect 351

350 Part of MS Windows XP Pro
351 [MLWSHu]

194

Remot eScr i pt = Cont r ol l er ~Cr eat eScr i pt (" wshr emot e. vbs" , " f hkcn")

 - - The Execut e met hod begi ns t he execut i on of t he r emot e scr i pt

Remot eScr i pt ~Execut e - - obj ect 352.

 - - DO f unct i on whi ch i s execut ed unt i l t he val ue of t he st at us i s 2353

DO UNTI L Remot eScr i pt ~St at us = 2

 CALL Syssl eep 1

END

Code 32: WshController_OnMultipleMachines.rxs354

This remote script OtherScript 9 is a Visual Basic Script file which is executed in the

memory of the machine “f hkcn”. If Object Rexx is not installed on the remote

machine an Object Rexx remote script won’t work. It creates a textfile with the name

WSHDemo. t xt in the folder C: \ Test WSHCt r of the remote machine. Into this text

file the text “WSHCont r ol l er was her e” is written.

Set f so = Cr eat eObj ect (" Scr i pt i ng. Fi l eSyst emObj ect ")

Set f soFi l e = f so. Cr eat eText Fi l e(" C: \ Test WSHCt r \ WSHDemo. t xt " , Tr ue)

f soFi l e. Wr i t eLi ne " WSHCont r ol l er was her e. "

f soFi l e. Cl ose

OtherScript 9: Remote.vbs355

13.7.2.3. WSHController and Events

The WSHController object has events. But these events can’t be used with Object

Rexx. Code 33 shows a control script which runs without error. It executes the

remote script code 34 which launches the calculator on the same machine, but the

St ar t event is not fired. The reason therefore is that the events of WSHController

are not hand over to Object Rexx via the generic interfaces I Di spat ch and

I Unknown. The events are hand over via special ID’s. These ID’s are not queried

with Object Rexx [Doe03c].

352 [MLWSHw]
353 [MLWSHv]
354 Modeled after [WSS02]
355 Modeled after [WSS02]

195

-

- - WshCont r ol l er Wi t hEvent s. r xs - -

-

 - - I nst ant i at i on of t he Cont r ol l er Obj ect

Cont r ol l er = . Event sWi t hWSHCt r ~New(" WSHCont r ol l er " , " WI THEVENTS")

 - - The met hod Cr eat eScr i pt gener at es a WSHRemot e obj ect . 356

Remot eScr i pt = Cont r ol l er ~Cr eat eScr i pt (" WSHRemot eCal c. r xs")

 - - The Connect Obj ect met hod connect s t he obj ect ' s event sour ces t o

 - - f unct i ons. Ther ef or e t he pr ef i x " X" i s used. 357

WScr i pt ~Connect Obj ect (Remot eScr i pt , " X")

 - - The Execut e met hod begi ns t he execut i on of t he r emot e scr i pt 358.

Remot eScr i pt ~Execut e

 - - DO f unct i on whi ch i s execut ed unt i l t he val ue of t he st at us i s 2

DO UNTI L Remot eScr i pt ~St at us = 2

 CALL Syssl eep 1

END

 - - Cl ass whi ch der i ves f r om OLEObj ect 359

: : CLASS Event sWi t hWSHCt r SUBCLASS OLEObj ect

: : METHOD XSt ar t - - Thi s met hod i s i nvoked i f t he St ar t event i s f i r ed.

 WScr i pt ~Echo(" WSHRemot e St ar t Event was f i r ed! ")

Code 33: WshControllerWithEvents.rxs360

The remote script code 34 executes the calculator with the Exec method 361.

-

- - WSHRemot eCal c. r xs - -

-

 - - I nst ant i at i on of t he Shel l obj ect

WshShel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

WshShel l ~Exec(" cal c") - - Launches t he Cal cul at or

Code 34: WSHRemoteCalc.rxs

13.7.3. WshNetwork Object362

Code 30 describes the WshNet wor k object. Thereby the computer, user and domain

name are accessed with the equal named properties.

356 [MLWSHu]
357 [MLWSHcz]
358 [MLWSHw]
359 c.p. 6.3.3.
360 Modeled after [MLWSHda]
361 c.p. 13.7.4.5.
362 [MLWSHx]

196

The available network drives are shown with the EnumNet wor kDr i ves method

[MLWSHy]. The MapNet wor kDr i ve(“ \ \ Ser ver \ Publ i c”) [MLWSHz] and

RemoveNet wor kDr i ve(“ name”) [MLWSHaa] methods create and delete a network

drive. Figure 49 illustrates the network with the two network machines Ant ar es that

is the remote machine and FHLAPTOP1.

Figure 49: WSHNetwork1.JPG:\\Server =Antares\Public=Eigene Daten 363

Figure 50 shows the created network drive.

Figure 50: WSHNetwork2.JPG: Shows the new network drive” Z:” 364

The AddWi ndowsPr i nt er Connect i on(“ \ \ pr i nt ser v\ Def aul t Pr i nt er ” ,

” Dr i ver Name”) method [MLWSHab] enables the access to a remote network

printer. The EnumPr i nt er Connect i ons method [MLWSHac] shows the printers

that are available on the machine or in the network for the user. At last the created

printer connection is deleted with the WshNet wor k~RemovePr i nt er Connect i on

method [MLWSHad]. Figure 51 shows the new printer in the printer menu.

363 Part of MS Windows XP
364 Part of MS Windows XP

197

Figure 51: WSHNetwork3.JPG: Shows the network printer365

Code 35 demonstrates the WSHNetwork object.

-

- - WshNet wor k. r ex - -

-

 - - To r un t hi s scr i pt a net wor k connect i on i s r equi r ed, ot her wi se t her e

 - - i s an er r or message. A pr i nt er must be i nst al l ed on t he r emot e

 - - machi ne. The pr i nt er needn’ t be pl ugged i n.

 - - I nst ant i at i ng of t he Net wor k obj ect

WshNet wor k = . OLEObj ect ~New(" WScr i pt . Net wor k")

SAY " Comput er Name = " WshNet wor k~Comput er Name - - Name of t he user ’ sdomai n366

SAY " User Name = " WshNet wor k~User Name - - Name of a user 367

SAY " Domai n = " WshNet wor k~User Domai n - - Name of t he comput er syst em368

 - - Tel l s how much net wor k dr i ves t her e ar e369.

SAY " Ther e ar e " WshNet wor k~EnumNet wor kDr i ves~Lengt h " net wor k dr i ves. "

 - - Cr eat es a new net wor k dr i ve wi t h dr i ve name " Z: " . Wor ks onl y i f

 - - t her e i s r eal l y a net wor k connect ed

WshNet wor k~MapNet wor kDr i ve(" Z: " , " \ \ Ant ar es\ Ei gene Dat en")

 - - Message box

CALL RxMessageBox " Look up i n t he Wi ndows Expl or er t o see t he new” –

 “ net wor k dr i ve! " , " I nf or mat i on" , " OK" , " I NFORMATI ON"

SAY " - "

 - - Shows al l net wor kdr i ves on t he machi ne370

DO i = 0 t o WshNet wor k~EnumNet wor kDr i ves~Lengt h - 1

SAY " Net wor k dr i ve: " WshNet wor k~EnumNet wor kDr i ves~I t em(i)

END

SAY " - "

WshNet wor k~RemoveNet wor kDr i ve(" Z: ") - - Del et es t he Net wor kDr i ve

 - - Message box

365 Part of MS Windows XP
366 [MLWSHae]
367 [MLWSHaf]
368 [MLWSHag]
369 [MLWSHy]
370 [MLWSHy]

198

CALL RxMessageBox " The new net wor k dr i ve i s del et ed! " , " I nf or mat i on" , " OK" , " I NFORMATI ON"

 - - Of f er s a r emot e Wi ndows- based pr i nt er connect i on

WshNet wor k~AddWi ndowsPr i nt er Connect i on(" \ \ ANTARES\ Canon Bubbl e- Jet BJC- 210SP" , -

 " Canon Bubbl e- Jet BJC- 210SP")

SAY - - Bl ank l i ne

 - - Of f er s wi t h t he odd- number ed i t ems al l net wor ked pr i nt er UNC names371.

DO i = 1 t o WshNet wor k~EnumPr i nt er Connect i ons~Lengt h - 1 by 2

SAY " Pr i nt er UNC names: " WshNet wor k~EnumPr i nt er Connect i ons~I t em(i)

END

SAY - - Bl ank l i ne

 - - Of f er s al l pr i nt er por t s because t he even- number ed i t ems ar e t he

 - - pr i nt er por t s

DO i = 0 t o WshNet wor k~EnumPr i nt er Connect i ons~Lengt h - 1 by 2

SAY " Pr i nt er por t : " WshNet wor k~EnumPr i nt er Connect i ons~I t em(i)

END

 - - Message box

CALL RxMessageBox " Look up i n t he Cont r ol Panel t o see t he new pr i nt er ! " , -
" I nf or mat i on" , " OK" , " I NFORMATI ON"

 - - Del et es t he pr i nt er connect i on, . t r ue means t hat t he connect i on i s

 - - r emoved whet her i f t he user i s connect ed or not

WshNet wor k~RemovePr i nt er Connect i on(" \ \ ANTARES\ Canon Bubbl e- Jet BJC- 210SP" , . t r ue)

SAY " The new pr i nt er i s del et ed. "

Code 35: WshNetwork.REX

13.7.4. WshShell

This section discusses the Run method and the Sendkeys method, the access of the

registry, the creation of shortcuts, WSHEnvi r onment and WSHScr i pt Exec .

13.7.4.1. Run Method and SendKeys Method372373

Code 36 demonstrates the Run and Sendkeys methods. It is possible to execute

applications and to simulate keystrokes with these methods.

The script is embedded in a HTML file. The file starts in the body. There the red

background colour and a centred text are defined. A button is created. If the button is

pressed the Object Rexx – described by “l anguage = ‘ Obj ect Rexx’ ”- routine

“doTheWor k ” in the head is called. The tag
 makes a line break.

371 [MLWSHac]
372 [MLWSHah]
373 c.p. 9.1.3.

199

In the head the <t i t l e> tag writes the title. With <scr i pt l anguage = “ Obj ect

Rexx” > the Object Rexx code begins.

First the command window is opened with the Run method374. From this location the

notepad is started with the SendKeys method. The notepad is remoted with the

SendKeys method and then the notepad and the command window are closed.

With </ scr i pt > the code ends.

<ht ml >

<head>

<t i t l e>Embeddi ng a scr i pt i n HTML</ t i t l e>

<scr i pt l anguage=" Obj ect Rexx" >

: : r out i ne doTheWor k publ i c

-

- - Run met hod and Sendkeys met hod - -

-

 - - I nst ant i at i on of t he Shel l Obj ect

Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

Shel l ~Run(" cmd") - - Openi ng of t he command wi ndow wi t h t he r un met hod

 - - The machi ne i s s l eepi ng f or 2 seconds t o see t he command wi ndow

CALL SysSl eep 2

 - - The pat h and t he f i l e name of not epad. exe ar e sent and pr ompt ed t o

Shel l ~Sendkeys(" c: \ wi ndows\ syst em32\ not epad. exe") - - t he command wi ndow

 - - The machi ne i s s l eepi ng f or 3 seconds f or seei ng t he wr i t t en t ext

CALL SysSl eep 3

Shel l ~Sendkeys(" ~") - - An ent er i s sent t o st ar t t he not epad

 - - Necessar y because ot her wi se t he machi ne wr i t es t he f ol l owi ng t ext

CALL SysSl eep 1 - - st i l l t o t he command wi ndow

 - - Text sent t o t he not epad

Shel l ~Sendkeys(" Thi s t ext i s wr i t t en wi t h t he SendKeys met hod")

CALL SysSl eep 2 - - Sl eepi ng t o r ead t he t ext

Shel l ~Sendkeys(" %d") - - The menu " Fi l e" i s opened wi t h t he shor t cut " ALT+d"

CALL SysSl eep 2 - - Sl eepi ng t o see t he f i l e menu

 - - The i t em exi t i s chosen (i n Ger man i t i s named " Beenden" and so

Shel l ~Sendkeys(" +b") - - i t has t he shor t cut SHI FT+b)

CALL SysSl eep 2 - - Sl eepi ng t o see t he f i el d

Shel l ~Sendkeys(" { TAB} ") - - Wi t h t he t abul at or t he next but t on i s act i vat ed

CALL SysSl eep 2 - - Sl eepi ng t o see t he f i el d

Shel l ~Sendkeys(" ~") - - Wi t h t he ent er command t he but t on i s c l i cked

CALL SysSl eep 2 - - Sl eepi ng t o see t he command wi ndow

Shel l ~Sendkeys(" exi t ") - - The exi t command i s pr ompt ed t o t he commandwi ndow

CALL SysSl eep 2 - - Sl eepi ng t o see t he command wi ndow wi t h t he exi t command

374 [MLWSHai]

200

 - - The exi t command i s execut ed and t he command wi ndow i s c l osed

Shel l ~Sendkeys(" ~")

</ scr i pt >

</ head>

<body bgcol or =" r ed" >

<cent er >

<f ont s i ze=5>Pr ess or c l i ck t he but t on t o st ar t t he scr i pt </ f ont >

</ cent er >

</ br >

</ br >

</ br >

</ br >

<cent er >

<i nput t ype=but t on val ue=" pr ess or c l i ck"

 l anguage=" Obj ect Rexx"

 onmouseup=" cal l doTheWor k"

 onkeypr ess=" cal l doTheWor k" >

</ cent er >

</ body>

</ ht ml >

Code 36: RunMethodAndSenkeysMethod.htm

13.7.4.2. Accessing the Registry

Code 37 demonstrates the RegWr i t e [MLWSHaj], RegRead [MLWSHak] and

RegDel et e [MLWSHal] methods. It is possible to access the registry with these

methods.

First a new key and new values are created; after that they are accessed with the

RegRead method and at last they are again erased375.

-

- - WSHRegi st r y. r ex - -

-

 - - I nst ant i at i ng of t he Shel l obj ect

Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 - - The " TESTKEY" key i s cr eat ed by t he RegWr i t e met hod wi t h t he name

 - - keyname and i t i s speci f i ed by t he f i nal backsl ash. HKCR i s t he

 - - abbr evi at i on f or HKEY_CURRENT_USER

Shel l ~RegWr i t e(" HKCU\ TESTKEY\ " , " keyname")

 - - The val ue wi t h t he name " name1" i s cr eat ed and has t he val ue " 1" .

 - - I t has t he i nt eger dat a t ype " REG_DWORD" .

Shel l ~RegWr i t e(" HKCU\ TESTKEY\ name1" , " 10" , " REG_DWORD")

375 c.p. 2.6.3.

201

 - - The val ue wi t h t he name " name2" i s cr eat ed and has t he val ue

 - - " val ue" . I t has t he st r i ng dat a t ype " REG_SZ" .

Shel l ~RegWr i t e(" HKCU\ TESTKEY\ name2" , " val ue" , " REG_SZ")

 - - Message box

CALL RxMessageBox " St ar t t he Regi st r at i on Edi t or t o wat ch t he “ –

 “ cr eat ed ent r i es! " , " I nf or mat i on" , " OK" , " I NFORMATI ON"

 - - Gi ves back t he def aul t val ue of t he key

SAY Shel l ~RegRead(" HKCU\ TESTKEY\ ")

 - - Gi ves back t he val ue of t he val ue- name name1

SAY Shel l ~RegRead(" HKCU\ TESTKEY\ name1")

 - - Gi ves back t he val ue of t he val ue- name name2

SAY Shel l ~RegRead(" HKCU\ TESTKEY\ name2")

Shel l ~RegDel et e(" HKCU\ TESTKEY\ name1") - - The val ue name " name1" i s del et ed

 - - Message box

CALL RxMessageBox " Wat ch t he r egi st r y edi t or t o see t hat " name1" i s” –

 “ del et ed" , " I nf or mat i on" , " OK" , " I NFORMATI ON"

 - - The key " TESTKEY" i s del et ed and accor di ngl y al so “ name2”

Shel l ~RegDel et e(" HKCU\ TESTKEY\ ")

 - - Message box

CALL RxMessageBox " The cr eat ed r egi st r y keys ar e del et ed" , -

 " I nf or mat i on" , " OK" , " I NFORMATI ON"

Code 37: WSHRegistry.rex

13.7.4.3. Creation of Shortcuts

With the objects WshShor t cut [MLWSHam], WshUr l Shor t cut [MLWSHan] and

WshSpeci al Fol der s [MLWSHao] shortcuts can be managed. The

WshSpeci al Fol der s object offers a comfortable access to folders like for example

the Deskt op, Pr ogr ams , Favor i t es or Recent folder. With the methods of the

Fi l eSyst emObj ect 376 object shortcuts can be copied and moved. Use the scripts

in the sections 13.7.4.3.1. to 13.7.4.3.3. sequently, then the machine is in the end in

the same state as in the beginning.

13.7.4.3.1. Creation of a Shortcut

Code 38 creates a shortcut to the notepad and sets some parameters.

It is necessary to use the Save method in the last step, otherwise the changes are

lost.

376 c.p. 13.8.

202

-

- - Cr eat i onOf AShor t cut . r ex - -

-

 - - I nst ant i at i on of t he Shel l Obj ect

Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 - - Accesses t he speci al f ol der " Deskt op" 377

Deskt opPat h = Shel l ~Speci al Fol der s(" Deskt op")

 - - Cr eat i on of a new shor t cut wi t h t he descr i pt i on " Not epad" 378

Shor t cut = Shel l ~Cr eat eShor t cut (Deskt opPat h“ \ Not epad. l nk")

 - - Shor t descr i pt i on of t he shor t cut i n t he comment f i el d379

Shor t cut ~Descr i pt i on = " Test Shor t cut "

Shor t cut ~Hot Key = " CTRL+ALT+n" - - Key- combi nat i on f or t he shor t cut 380

 - - Locat i on of t he i con of t he shor t cut and t he i ndex of t he i con381

Shor t cut ~I conLocat i on = " not epad. exe, 0"

 - - Locat i on of t he shor t cut ’ s execut abl e f i l e382

Shor t cut ~Tar get Pat h = " c: \ wi ndows\ not epad. exe"

 - - Act i vat es t he wi ndow and t he val ue " 3" di spl ays i t as a maxi mi zed

Shor t cut ~Wi ndowSt yl e = 3 - - wi ndow383

 - - Assi gns or i dent i f i es t he wor ki ng di r ect or y t o/ of a shor t cut 384

Shor t cut ~Wor ki ngDi r ect or y = Deskt opPat h

Shor t cut ~Save - - Saves t he shor t cut 385

Code 38: CreationOfAShortcut.rex 386

13.7.4.3.2. Creation of an UrlShortcut

Code 39 creates an Ur l Shor t cut to the Internet browser and links to the

Homepage of the University of Augsburg.

377 [MLWSHap]
378 [MLWSHaq]
379 [MLWSHar]
380 [MLWSHas]
381 [MLWSHat]
382 [MLWSHau]
383 [MLWSHav]
384 [MLWSHaw]
385 [MLWSHaq]
386 Modelled after [MLWSHap]

203

-

- - Cr eat i onOf AnUr l Shor t cut . r ex - -

-

 - - I nst ant i at i on of t he Shel l Obj ect

WshShel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 - - Accesses t he speci al f ol der " Deskt op" 387

Deskt opPat h = WshShel l ~Speci al Fol der s(" Deskt op")

 - - Cr eat i on of a new shor t cut wi t h t he descr i pt i on " Uni - Augsbur g" 388

Ur l Li nk = WshShel l ~Cr eat eShor t cut (Deskt opPat h" \ Uni - Augsbur g. ur l ")

 - - Locat i on wi t h t he shor t cut ’ s URL389

Ur l Li nk~Tar get Pat h = " ht t p: / / www. uni - augsbur g. de"

Ur l Li nk~Save - - Saves t he shor t cut 390

Code 39: CreationOfAnUrlShortcut.rex

13.7.4.3.3. Deletion of a Shortcut

The last example code 40 deletes the both generated shortcuts.

Therefore, the Fi l eSyst emObj ect object is used.

-

- - Del et i onOf AShor t cut . r ex - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

 - - I nst ant i at i on of t he Shel l Obj ect

WshShel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

387 [MLWSHap]
388 [MLWSHaq]
389 [MLWSHau]
390 [MLWSHaq]

204

 - - Accesses t he speci al f ol der " Deskt op" 391

Deskt opPat h = WshShel l ~Speci al Fol der s(" Deskt op")

 - - Del et i on of t he shor t cut s " Not epad. l nk" and " Uni - Augsbur g. l nk" 392

f so~Del et eFi l e(Deskt opPat h” \ Not epad. l nk")

f so~Del et eFi l e(Deskt opPat h“ \ Uni - Augsbur g. ur l ")

Code 40: DeletionOfAShortcut.rex

13.7.4.4. WshEnvironment393

This object allows the access to environment variables. Therefore the Envi r onment

property394 of the WshShel l object is used.

The following code 41 demonstrates the values of several environment variables. In

the end the Lengt h property offers the number of variables in a specific

environment.

-

- - WshEnvi r onment . r ex - -

-

 - - I nst ant i at i on of t he Shel l Obj ect

Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 - - Det er mi nat i on of t he l ocat i on of t he envi r onment var i abl e wi t h t he

 - - Envi r onment pr oper t y, her e " SYSTEM" , and t he Envi r onment var i abl e

 - - det er mi ned wi t h t he i t em pr oper t y395

Envsnop = Shel l ~Envi r onment (" SYSTEM") ~i t em(" NUMBER_OF_PROCESSORS")

Envspa = Shel l ~Envi r onment (" SYSTEM") ~i t em(" PROCESSOR_ARCHI TECTURE")

Envspr = Shel l ~Envi r onment (" SYSTEM") ~i t em(" PROCESSOR_REVI SI ON")

Envspi = Shel l ~Envi r onment (" SYSTEM") ~i t em(" PROCESSOR_I DENTI FI ER")

Envut mp = Shel l ~Envi r onment (" USER") ~i t em(" TMP")

 - - Resul t s of t he envi r onment var i abl es

SAY " Ther e ar e " envsnop " pr ocessor s on t he machi ne"

SAY " The pr ocessor t ype i s " envspa

SAY " The pr ocessor ver s i on i s : " envspr

SAY " Pr ocessor I D: " envspi

SAY " The di r ect or y f or st or i ng t empor ar y f i l es i s : " envut mp

391 [MLWSHap]
392 [MLWSHax]
393 [MLWSHay]
394 [MLWSHaz]
395 [MLWSHba]

205

SAY - - bl ank l i ne

 - - Locat i on of t he envi r onment var i abl e. Her e " PROCESS"

envp = Shel l ~Envi r onment (" PROCESS")

 - - The l engt h pr oper t y r et ur ns t he number of var i abl es i n t he pr ocess

 - - envi r onment 396

SAY " Ther e ar e" envp~l engt h " envi r onment var i abl es i n t he PROCESS envi r onment "

Code 41: WshEnvironment.rex

13.7.4.5. WshScriptExec397

Code 42 demonstrates the Exec method [MLWSHbd] with the St at us property

[MLWSHbe]. An application can be launched with the Exec method. The St at us

property shows if the application is running or not.

Note that here the Shel l object is instantiated in another way. The WSH method

WScr i pt ~Cr eat eObj ect (“ WScr i pt . Shel l ”) [MLWSHbf] is used to instantiate

the Shel l object. The script runs the Notepad editor with the Exec method and then

asks if the user wants to close the Notepad or not. With the St at us property the

action of the user is checked and it will be controlled if the Notepad editor is still

running or not.

The first SysSl eep function is required because otherwise the notepad is in front of

the message box. This is because of the asynchronous start of the Notepad editor.

The line that is sequently to the line that starts the notepad, is immediately executed

without waiting for the notepad. But it takes more time to load the notepad than the

message box. Therefore, the message box is earlier on the display and then the

notepad that comes later is in front of it [Doe02a].

-

- - WshScr i pt Exec. r xs- -

-

 - - I nst ant i at i on of t he Shel l Obj ect

Shel l = WScr i pt ~Cr eat eObj ect (" WScr i pt . Shel l ")

OExec = Shel l ~Exec(" not epad") - - Runs t he not epad

 - - Needed because ot her wi se t he not epad i s i n f r ont of t he messagebox

CALL syssl eep 1

 - - A message box occur s on t he di spl ay

CALL RxMessageBox " You can c l ose t he not epad or you can l eave i t open! " , -

396 [MLWSHbb]
397 [MLWSHbc]

206

 " Resul t " , " OK" , " I NFORMATI ON"

CALL syssl eep 5 - - The scr i pt pauses 5 seconds

OSt at us = OExec~St at us - - Handover of t he st at us i nf or mat i on

 - - Anal ysi s i f t he appl i cat i on i s r unni ng or not .

I F OSt at us = 0 t hen answer = " The not epad i s r unni ng"

ELSE answer = " The not epad i s c l osed"

 - - Message wi t h t he r esul t

CALL RxMessageBox answer , " Resul t " , " OK" , " I NFORMATI ON"

Code 42: WshScriptExec.rxs

13.8. FileSystemObject Object

The Fi l eSyst emObj ect object makes it possible to create or delete folders, to get

information about drives, to create and delete text files and other things. It is used for

script control for applications developed with other languages, to create Web pages

with HTML and for Windows Script Host. The object model is contained in the

Scripting type library (Scrrun.dll) [MLWSHbg] and consist of the Fi l eSyst emObj ect ,

Dr i ve, Fi l e, Fol der and Text St r eam objects [MLWSHbh]. By instantiating, the

Fi l eSyst emObj ect object the name of the type library is Scr i pt i ng [MLWSHbi].

Execute the scripts demonstrated in the sections 13.8.3 to 13.8.7 sequentially, then

the machine is in the end in the same state as in the beginning.

13.8.1. The AvailableSpace Property

Code 43 demonstrates the Avai l abl eSpace property. The script shows how much

memory is free on the drive [MLWSHbj].

207

-

- - FSOAvai l abl eSpace. r ex - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

 - - The Get Dr i veName met hod398 of f er s a st r i ng wi t h t he name of t he dr i ve

 - - of t he f ol der and t he Get Dr i ve met hod399 gi ves back a Dr i ve obj ect

d = f so~Get Dr i ve(f so~Get Dr i veName(" c: \ "))

 - - The Avai l abl eSpace pr oper t y shows t he f r ee space on t he dr i ve

e = d~Avai l abl eSpace

SAY e " byt es" - - The f r ee space i s pr ompt ed t o t he di spl ay

Code 43: FSOAvailableSpace.rex

13.8.2. DriveType Property

Code 44 shows the Dr i veType property [MLWSHbm]. The script checks the type of a

drive.

-

- - FSODr i veType. r ex - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

d = f so~Get Dr i ve(" c: \ ") - - The Get Dr i ve met hod gi ves back a Dr i ve obj ect 400

a = d~Dr i veType - - Det er mi ni ng t he Dr i veType Pr oper t y

SELECT - - Cor r espondi ng t o t he Dr i veType val ue t he t ype i s det er mi ned401

WHEN a = 0 THEN b = " Unknown"

WHEN a = 1 THEN b = " Removabl e"

WHEN a = 2 THEN b = " Fi xed"

398 [MLWSHbl]
399 [MLWSHbk]
400 [MLWSHbk]
401 [MLWSHbm]

208

WHEN a = 3 THEN b = " Net wor k"

WHEN a = 4 THEN b = " CD- ROM"

WHEN a = 5 THEN b = " RAM Di sk"

END

SAY " The dr i ve t ype i s " b - - The dr i ve t ype i s pr ompt ed

Code 44: FSODriveType.rex402

13.8.3. Creation of a Folder with a WSF File403

Code 45 creates two new folders. It is stored in a WSF file. Therefore it is structured

in XML code404.

In the first line the XML version is described. Then how to handle errors and

debugging is described. The <package> element implies the <j ob> element, which

includes the script block. The script block starts with <scr i pt l anguage=" Obj ect

Rexx" >. Inside the script the <! [CDATA[. . .]] > section makes the entire

<scr i pt > element opaque and ensures that characters in the <scr i pt > element

are not handled as XML characters. There is an error message if the folder already

exists.

<?xml ver s i on=" 1. 0" ?>

<?j ob er r or =" t r ue" debug=" t r ue" ?>

<package>

<j ob>

<scr i pt l anguage=" Obj ect Rexx" >

<! [CDATA[

-

- - FSOCr eat i onOf ANewFol der . wsf - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

f so~Cr eat eFol der (" c: \ Test 1") - - Cr eat i on of t he new f ol der named " Test 1"

402 Modelled after [MLWSHbm]
403 [MLWSHbn]
404 c.p. 9.1.4.

209

f so~Cr eat eFol der (" c: \ Test 2") - - Cr eat i on of a second f ol der names " Test 2"

]] >

</ scr i pt >

</ j ob>

</ package>

Code 45: FSOCreationOfANewFolder.wsf

13.8.4. Creating a Text File

Code 46 creates a text file and writes text into this file.

-

- - FSOCr eat i onOf ATt ext f i l e. r ex - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

 - - Cr eat i on of t he t ext f i l e " t ext f i l e. t x t " i n t he f ol der " c: \ Test "

 - - " 2" al l ows wr i t i ng t he f i l e and " . t r ue" al l ows t he cr eat i on of t he

 - - f i l ename i f i t doesn’ t exi st 405

t ext f i l e = f so~Opent ext f i l e(" c: \ Test 1\ Text f i l e. t x t " , 2, . Tr ue)

 - - Wr i t i ng t ext i nt o t he t ext f i l e406

t ext f i l e~Wr i t el i ne(" Thi s i s a t est t ext . ")

Code 46: FSOCreationOfATtextfile.rex

13.8.5. Attribute Property

The At t r i but e property [MLWSHbq] shows the type of a file as in code 47

demonstrated.

-

- - FSOFi l eAt t r i but e. r ex - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

 - - The Fi l e obj ect i s r et ur ned and t he At t r i but es ar e f ound out 407

a = f so~get f i l e(" c: \ t est 1\ t ext f i l e. t x t ") ~At t r i but es

SELECT - - Cor r espondi ng t o t he At t r i but e val ue t he t ype i s det er mi ned

WHEN a = 0 THEN b = " Nor mal f i l e" ;

WHEN a = 1 THEN b = " Read- onl y f i l e" ;

WHEN a = 2 THEN b = " Hi dden f i l e" ;

WHEN a = 4 THEN b = " Syst em f i l e" ;

405 [MLWSHbo]
406 [MLWSHbp]
407 [MLWSHbr]

210

WHEN a = 8 THEN b = " Di sk dr i ve vol ume l abel " ;

WHEN a = 16 THEN b = " Fol der or di r ect or y" ;

WHEN a = 32 THEN b = " Ar chi ve" ;

WHEN a = 64 THEN b = " Li nk or shor t cut " ;

WHEN a = 128 THEN b = " Compr essed f i l e" ;

END

 - - Text message of t he f i l e at t r i but e

CALL RxMessageBox b, " At t r i but e" , " OK" , " I NFORMATI ON"

Code 47: FSOFileAttribute.rex

13.8.6. Copying a File

This text file is now copied to another folder with a new name with code 48.

-

- - FSOCopyi ngAFi l eWi t hANewName. r ex - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

f i l e1 = " c: \ Test 1\ Text f i l e. t x t " - - Fi l e name wi t h f ol der name

f i l e2 = " c: \ Test 2\ Text f i l e_newname. t xt " - - Tar get f ol der wi t h new f i l e name

f so~CopyFi l e(f i l e1, f i l e2) - - CopyFi l e met hod t o copy t he f i l e408

Code 48: FSOCopyingAFileWithANewName.rex

13.8.7. Deleting Files and Folders

In the last step in code 49 the files and folders are deleted with two different kinds.

First with the Del et eFi l e [MLWSHbt] and Del et eFol der [MLWSHbu] method, and

then the other folder with the Del et e method [MLWSHbv].

408 [MLWSHbs]

211

-

- - FSODel et i onOf TheFi l esAndFol der s. r ex - -

-

 - - I nst ant i at i on of t he Fi l eSyst emObj ect

f so = . OLEObj ect ~New(" Scr i pt i ng. Fi l eSyst emObj ect ")

 - - The f i l e " Text f i l e_newname. t xt " i s del et ed

f so~Del et eFi l e(" c: \ Test 2\ Text f i l e_newname. t xt ")

f so~Del et eFol der (" c: \ Test 2") - - Del et i on of t he f ol der named " Test 2"

 - - Ret ur ns a f ol der obj ect wi t h t he f ol der " c: \ Test 1" named " pat h" 409

pat h = f so~Get Fol der (" c: \ Test 1")

pat h~Del et e - - The f ol der " c: \ Test 1" i s del et ed i ncl usi ve al l f i l es

Code 49: FSODeletionOfTheFilesAndFolders.rex

13.9. Dictionary Object410

Item pairs and data keys are associated and stored with that object. Code 50

demonstrates the Add [MLWSHby] and the Exi st s methods [MLWSHbz]. For

instantiating the type library Scr i pt i ng is used.

-

- - Di ct i onar yObj ect . r ex - -

-

 - - I nst ant i at i on of t he Di ct i onar y Obj ect

di c = . OLEObj ect ~New(" Scr i pt i ng. Di ct i onar y")

 - - Some keys e. g. " a" and some i t ems e. g. " Wi r t schaf t s i nf or mat i k" ar e added

di c~add(" a" , " Wi r t schaf t s i nf or mat i k")

di c~add(" b" , " Logi st i k")

di c~add(" c" , " I nf or mat i nsoekonomi k")

a = di c~exi st s(" a") - - The Exi st met hod shows i f an ar r ay occur s

 - - I f t he Exi st met hod has t he val ue " 1" t hen t he ar r ay occur s and t he

I F a = 1 t hen b = " Ar r ay a exi st s" - - message i s " Ar r ay a exi st s"

 - - I f t he val ue i s di f f er ent f r om " 1" t hen t he ar r ay doesn’ t exi st

ELSE b = " Ar r ay a doesn’ t exi st "

SAY b - - The message " b" i s pr ompt ed

Code 50: DictionaryObject.rex

13.10. Security in Windows Script Host

Scripting manifests problems because of destroying, spying or changing of contents

especially if there is an access via network. The problem is that all functions of the

host application are available to a script. There is also the danger of viruses

409 [MLWSHbw]
410 [MLWSHbx]

212

operating with this technique and there is no “sandbox” available for WSH

[Fla02d,p21f]. This section discusses how to create a test certificate and how to use

the Scr i pt i ng. Si gner object with the methods Si gn, Ver i f y , Si gnFi l e and

Ver i f yFi l e.

The user of a script can prove the authenticity of it [MLWSHca]. With the CryptoAPI

tools certificates, certification revocation lists (CRLs) and certificate trust lists (CTLs)

can be seen and managed and files can be digitally signed and used with Microsoft

Authenticode [MLWSHcb]. To sign a script a certificate by a commercial certification

authority or the administrator is necessary [MLWSHcc].

The Sel f Cer t . exe tool411 provided by the Windows SDK or the Microsoft Office

enables the creation of a certificate for test purpose. This certificate has no root

certificate authority [Cl01]. Figure 52 shows the user-interface of Sel f Cer t . exe.

Figure 52: Creation of a certificate412

The Certificate-Snap-In shows in figure 53 the new created own certificate413.

411 Start->Search->Files and Folders->Selfcert.exe
412 Part of MS Windows XP
413 Start->Run->Certmgr.msc

213

Figure 53: Certificate Snap-In414

An administrator can control scripts with so-called Software Restriction Policies. In

this way the scripts can’t implement any illegal activities in the operating system. A

trust level requires the file content, the path from which the script is running, and any

signature information in the script [MLWSHcd].

In the registry key \ HKEY_CURRENT_USER\ SOFTWARE\ Mi cr osof t \ Wi ndows

Scr i pt Host \ Set t i ngs\ Tr ust Pol i cy the verification policy is placed. With the

verification policy it is defined if the signature verification is turned on or off by the

administrator. If it is turned off, all scripts run on the system. If it is turned on, only

scripts which are correctly signed or which have a special permission run on the

system [MLWSHce].

With the Si gnFi l e method of the Scr i pt i ng. Si gner object (since WSH 5.6415) it

is possible to sign scripts. The object is with Object Rexx instantiated in the following

414 Part of MS Windows XP
415 http://msdn.microsoft.com/library/default.asp?url=/downloads/list/webdev.asp

214

manner: WshSi gner = . OLEObj ect ~New(" Scr i pt i ng. Si gner ") . The

Si gnFi l e method has the following syntax: WshSi gner ~Si gnFi l e(“ Fi l e t o

s i gn” , “ name of t he s i gni ng cer t i f i cat e” , “ name of

cer t i f i cat i on st or e”) . The default store for the certificates is “ my” [Es02].

A digital signature block of comments is written in a script when a script is signed. If

there is an attempt to change the script, the signature is invalidated [MLWSHcc].

13.10.1. SignFile and VerifyFile Methods

This section discusses the Si gnFi l e and the Ver i f yFi l e methods. The

Si gnFi l e method signs a file and the Ver i f yFi l e method checks if the file can be

verified.

Code 51 is the script, which is to be signed. It is a simple Object Rexx program

structured in XML416, which runs the calculator. It is also possible to sign a . vbs

script, but it is not possible to sign an Object Rexx script, which has the extension

. r ex or . r xs .

<j ob>

<scr i pt l anguage=" Obj ect Rexx" >

WshShel l = . OLEObj ect ~new(" WScr i pt . Shel l ")

WshShel l ~Exec(" cal c")

</ scr i pt >

</ j ob>

Code 51: ScriptWhichIsToSign.wsf

This script is signed with code 52 using the certificate created before.

416 c.p. 9.1.4.

215

-

- - WSH_Scr i pt i ng_Si gner _Si gnf i l e. r ex - -

-

 - - I nst ant i at es t he Scr i pt i ng. Si gner obj ect

Si gner = . OLEObj ect ~New(" Scr i pt i ng. Si gner ")

 - - Si gns t he f i l e " Scr i pt Whi chI sToSi gn" wi t h t he cer t i f i cat e

 - - " Test Cer t i f i cat e" whi ch i s st or ed i n " my" 417

Si gner ~Si gnFi l e(" Scr i pt Whi chI sToSi gn. wsf " , " Test Cer t i f i cat e" , " my")

Code 52: WSH_Scripting_Signer_SignFile.rex

After signing code 51 the source code of code 51 looks like figure 54.

<j ob>

<scr i pt l anguage=" Obj ect Rexx" >

WshShel l = . OLEObj ect ~new(" WScr i pt . Shel l ")

WshShel l ~Exec(" cal c")

</ scr i pt >

<si gnat ur e>

* * SI G * * MI I D/ AYJKoZI hvcNAQcCoI I D7TCCA+kCAQExDj AMBggq

* * SI G * * hki G9w0CBQUAMGYGCi sGAQQBgj cCAQSgWDBWMDI GCi sG

* * SI G * * AQQBgj cCAR4wJAI BAQQQcAVhGs441BGi owAQS9NQkAI B

* * SI G * * AAI BAAI BAAI BAAI BADAgMAwGCCqGSI b3DQI FBQAEECY3

* * SI G * * uzM6FTS6ewTr 6hHRLVmgggI hMI I CHTCCAYagAwI BAgI Q

* * SI G * * wXM5sMaLvZ5CyF0I f q2E1DANBgkqhki G9w0BAQQFADAa

* * SI G * * MRgwFgYDVQQDEw9UZXN0Q2VydGl maWNhdGUwHhcNMDI x

* * SI G * * Mj MxMj MwMDAwWhcNMDgxMj MxMj MwMDAwWj AaMRgwFgYD

* * SI G * * VQQDEw9UZXN0Q2VydGl maWNhdGUwgZ8wDQYJKoZI hvcN

* * SI G * * AQEBBQADgY0AMI GJAoGBAK3Y9YvOmkBOkwj TbDeUO/ 2P

* * SI G * * Fn6Ur hpvnqt 7LSHJt aEO7d7dVGzl r mWhd0GcQ0VCDECW

* * SI G * * Ef OTGhFRKpyF+RbOQd1vYW0um0O13PH7manCMObr GgRo

* * SI G * * Aj Mj sg+d4Ml 31Rsw1GAX1Vj JG4DK1XRaHUFvsr Ukm5xY

* * SI G * * konh81i wHTFMeGMXAgMBAAGj ZDBi MBMGA1UdJQQMMAoG

* * SI G * * CCsGAQUFBwMDMEsGA1UdAQREMEKAEPS0qW4wGdXwLRt f

* * SI G * * 3p8l aHehHDAaMRgwFgYDVQQDEw9UZXN0Q2VydGl maWNh

* * SI G * * dGWCEMFzObDGi 72eQshdCH6t hNQwDQYJKoZI hvcNAQEE

* * SI G * * BQADgYEANx5bZnYOM4FBmMSt OhmAqO8E6auR0bANxQ74

* * SI G * * MBR+Q3WUj l Rf EXKf aC+FgHCdgYpV2zef A14g1k4g21Xl

* * SI G * * bh6OT+RsSJj saqi mzJD107I pqdP8mNBTFHzZKpVXkw8m

* * SI G * * D9g1v8FTbP0gl z8gWw9gi 8mZwpzV5V22Wi 9pyXcDVSsA

* * SI G * * UZoxggFFMI I BQQI BATAuMBoxGDAWBgNVBAMTD1Rl c3RD

* * SI G * * ZXJ0aWZpY2F0ZQI QwXM5sMaLvZ5CyF0I f q2E1DAMBggq

* * SI G * * hki G9w0CBQUAoGwwEAYKKwYBBAGCNwI BDDECMAAwGQYJ

* * SI G * * KoZI hvcNAQkDMQwGCi sGAQQBgj cCAQQwHAYKKwYBBAGC

* * SI G * * NwI BCzEOMAwGCi sGAQQBgj cCARUwHwYJKoZI hvcNAQkE

417 [MLWSHcf]

216

* * SI G * * MRI EEEDXAc3Kwc7F1vi / 5epi XUcwDQYJKoZI hvcNAQEB

* * SI G * * BQAEgYAg2Bi yqKuf wPeFwneI AeC6Nwnt 2i 8Kf Bj nu9Dw

* * SI G * * MYoWvni JbzuWvF79M/ szV0oVY2keaHwmWSRod+i 0SRTy

* * SI G * * h3Kp9edz9MRubzq42LUWVG5GE8N6Wv0G6R8KkPy6CZ0V

* * SI G * * c2Zci CuF/ s2Y+pMXPwj V92Rv/ KhPFzz1Au3nSUi a9vH3j g==

</ s i gnat ur e>

</ j ob>

Figure 54: Signed source code of code 50

With the Ver i f yFi l e method of the Si gner object a script can be verified. This

method checks if the signature is authenticated in the Trusted Publisher List, the

legitimacy of the signature and if the script is manipulated [MLWSHcg].

The syntax is as follows: WshSi gner ~Ver i f yFi l e(“ Fi l eName” , ShowUI) .

ShowUI is a boolean value which occurs on some operating systems if a dialog box

is used to offer more trust information [MLWSHch].

Code 53 demonstrates the Ver i f yFi l e method.

-

- - Si gner _Ver i f yFi l e. r xs - -

-

 - - I nst ant i at es t he Scr i pt i ng. Si gner obj ect

WSHSi gner = . OLEObj ect ~new(" Scr i pt i ng. Si gner ")

 - - Accesses t he ar gument wi t h t he name f i l e418

Fi l e = WScr i pt ~Ar gument s~Named(" f i l e")

 - - Checks i f t he ar gument wi t h t he name ui i s pr esent . Ot her wi se t her e

 - - i s t he message t hat t he scr i pt i s not t r ust ed419

UI = WScr i pt ~Ar gument s~Named~Exi st s(" ui ")

 - - The scr i pt i s ver i f i ed and t he r esul t i s gi ven t o " deci s i on"

deci s i on = WSHSi gner ~Ver i f yFi l e(Fi l e, UI)

 - - I f deci s i on has t he val ue " 1" t hen t he message t hat t he f i l e i s

I f deci s i on = 1 Then WScr i pt ~Echo(Fi l e " i s t r ust ed. ") - - t r ust ed i s post ed

 - - Ot her wi se t he message t hat t he f i l e i s not t r ust ed i s post ed

El se WScr i pt ~Echo(Fi l e " i s unt r ust ed. ")

Code 53: Signer_VerifyFile.rxs420

Figure 55 illustrates the command in the MS-DOS shell421 to verify code 51.

418 [MLWSHch]
419 [MLWSHs]
420 Modelled after [MLWSHch]
421 Start->Run->Command

217

Figure 55: MSDOS Shell with the command to sign the script422

After that the following question like in figure 56 appears. Here the user can decide

on its own if the certificate is trusted or not.

422 Part of MS Windows XP

218

Figure 56: Message box to verify the script.423

13.10.2. Sign and Verify methods

The next two scripts demonstrate the Si gn method and the Ver i f y method. The

Si gn method signs a script that is stored in a string [MLWSHci].

This is shown with OtherScript 10. Prerequisite is that a certificate is created with the

name “Test Cer t i f i cat e”424. First, a Visual Basic Script file is shown which

demonstrates the same issue.

Di m Si gner , Unsi gnedText , Si gnedText

Set Si gner = Cr eat eObj ect (" Scr i pt i ng. Si gner ")

Unsi gnedText = _

 " Di m X " & vbCr Lf & _

 " X = 123" & vbCr Lf & _

423 Part of MS Windows XP
424 c.p. 13.10.

219

 " WScr i pt . Echo X" & vbCr Lf

Si gnedText = Si gner . Si gn(" . VBS" , Unsi gnedText , " Your Cer t i f i cat e Name _
Her e")

OtherScript 10: Sign method with Visual Basic Script

Code 54 is the Object Rexx script that signs script text. Here is signed a script text

which contains an Object Rexx script that is structured in XML. Code 54 contains

another script text as OtherScript 10.

-

- - WSH_Scr i pt i ngSi gner _Si gn. r ex - -

-

 - - I nst ant i at es t he Scr i pt i ng. Si gner obj ect

Si gner = . OLEObj ect ~New(“ Scr i pt i ng. Si gner ”)

 - - Scr i pt t ext whi ch i s t o be s i gned. " 0D0A" x i s used f or l i ne br eak.

Unsi gnedText = (" <j ob>" " 0D0A" x " <scr i pt l anguage=' Obj ect Rexx' >" " 0D0A" x ,

 " WshShel l = . OLEObj ect ~new(' WScr i pt . Shel l ') " " 0D0A" x ,

 " WshShel l ~Exec(' cal c ') " " 0D0A" x " </ scr i pt >" " 0D0A" x " </ j ob>")

 - - The Si gn met hod s i gns t he scr i pt t ext . The f i r s t par amet er i s t he

 - - f i l e ext ensi on whi ch det er mi nes t he t ype of t he scr i pt f i l e. The

 - - second par amet er i s a st r i ng wi t h t he scr i pt t ext whi ch i s t o be

 - - s i gned. The t hi r d par amet er cont ai ns t he cer t i f i cat e name425.

Si gnedText = Si gner ~Si gn(" . WSF" , Unsi gnedText , " Test Cer t i f i cat e")

SAY Si gnedText - - Pr i nt s t he s i gned scr i pt code wi t h t he hash code

Code 54: WSH_ScriptingSigner_Sign.rex

The next script verifies a script text with the Ver i f y method [MLWSHcj].

First Visual Basic Script file OtherScript 11 is shown which demonstrates the same

issue.

Di m Si gner , Unsi gnedText , Tr ust ed

Set Si gner = Cr eat eObj ect (" Scr i pt i ng. Si gner ")

Unsi gnedText = _

 " Di m X " & vbCr Lf & _

 " X = 123" & vbCr Lf & _

 " WScr i pt . Echo X" & vbCr Lf

Tr ust ed = Si gner . Ver i f y(" . VBS" , Unsi gnedText , Tr ue)

OtherScript 11: Verify method with Visual Basic Script

Code 55 verifies the script text that contains Object Rexx script code that is

structured in XML. Code 54 contains Object Rexx script text that is structured in XML

and OtherScript 11 contains a VBS script text.

425 [MLWSHci]

220

-

- - WSH_Scr i pt i ngSi gner _Ver i f y . r ex - -

-

 - - I nst ant i at es t he Scr i pt i ng. Si gner obj ect

Si gner = . OLEObj ect ~New(“ Scr i pt i ng. Si gner ”)

 - - Scr i pt t ext whi ch i s t o be ver i f y . " 0D0A" x i s used f or l i ne br eak.

Unsi gnedText = (" <j ob>" " 0D0A" x " <scr i pt l anguage=' Obj ect Rexx' >" ,

 " 0D0A" x " WshShel l = . OLEObj ect ~new(' WScr i pt . Shel l ') " " 0D0A" x ,

 " WshShel l ~Exec(' cal c ') " " 0D0A" x " </ scr i pt >" " 0D0A" x " </ j ob>")

 - - The Ver i f y met hod ver i f i es t he scr i pt t ext . The f i r s t par amet er i s

 - - t he f i l e ext ensi on whi ch det er mi nes t he t ype of t he scr i pt f i l e.

 - - The second par amet er i s a st r i ng wi t h t he scr i pt t ext whi ch i s t o

 - - be ver i f y . The t hi r d par amet er cont ai ns t he ShowUI ar gument .

 - - I f i t i s set on t r ue, di al og boxes ar e cr eat ed i f t he t r ust

 - - cannot be det er mi ned426.

Si gner ~Ver i f y(" . WSF" , Unsi gnedText , . t r ue)

Code 55: WSH_ScriptingSigner_Verify.rex

After that the following question, like in figure 57, appears. Here the user can decide

on its own if the certificate is trusted or not.

426 [MLWSHcj]

221

Figure 57: Dialog box which occurs after the Verify method is invoked.427

13.11. Starting Applications with WSH428

Code 56 which is embedded in HTML demonstrates the starting of MS Word

instantiated by . OLEObj ect ~New(“ Wor d. Appl i cat i on”) . Starting that script

runs the Microsoft Internet Explorer.

First to the second part of the script, to the body. There the yellow background colour

is defined. Then a focused text is written and there are four line breaks. The following

button includes the phrase l anguage=" Obj ect Rexx" . This means that the

phrase contains Object Rexx code, in this case the doTheWor k routine is called.

The head of the file begins with the title. <scr i pt l anguage=” Obj ect Rexx” >,

that means that here the script code is starting. Then the routine doTheWor k starts.

In that process MS Word is started, made visible and a new document is opened.

The font name and size are chosen. The Bol d property is set on .t r ue and the

I t al i c property is chosen by switching this property with the constant “wdt oggl e”.

The script ends with the </ scr i pt > tag.

427 Part of MS Windows XP
428 c.p. 9.1.3.

222

<ht ml >

<head>

<t i t l e>Embeddi ng a scr i pt i n HTML</ t i t l e>

<scr i pt l anguage=" Obj ect Rexx" >

 : : r out i ne doTheWor k publ i c

 -

 - - WSH_Embeddi ngAScr i pt I nHTML. ht m - -

 -

 Wor d = . OLEObj ect ~New(" Wor d. Appl i cat i on")

 Wor d~Vi s i bl e = . TRUE

 Document = Wor d~Document s~Add

 Sel ect i on = Wor d~Sel ect i on

 Sel ect i on~Font ~Name=" Ar i al "

 Sel ect i on~Font ~Si ze=" 24"

 Sel ect i on~Font ~Bol d = . TRUE

 Sel ect i on~Font ~I t al i c = Wor d~Get Const ant (' wdToggl e')

 Sel ect i on~TypeText (" Hel l o Wor l d")

</ scr i pt >

</ head>

<body bgcol or =" yel l ow" >

<cent er >

<f ont s i ze=5>Pr ess or c l i ck t he but t on t o st ar t MS Wor d</ f ont >

</ cent er >

</ br >

</ br >

</ br >

</ br >

<cent er >

<i nput t ype=but t on val ue=" pr ess or c l i ck"

 l anguage=" Obj ect Rexx"

 onmouseup=" cal l doTheWor k"

 onkeypr ess=" cal l doTheWor k" >

</ cent er >

</ body>

</ ht ml >

Code 56: WSH_EmbeddingAScriptInHTML.htm

13.12. Windows Script Components

This section discusses how to generate own Windows Script components which can

be used like a “normal” component. First the basics of Windows Script components

are explained, then the structure is discussed with information how to register a

component, how to expose the functions, how to excess the created component with

the exposed functions and how to use remote instantiation of a component via a

network. At the end the Windows Script Wizard is described.

223

13.12.1. Windows Script Components Basics

Windows script components make it possible to generate reusable [MLWSHck] COM

components like Automation [MLWSHcl].

Thereby events, functions and attributes are used and embedded with any WSE

language [Fla02d,p11]. Script components can be installed in applications like the

Microsoft Windows Script Host or the Microsoft Internet Information Services (IIS).

The used scripting language (e.g. Python, PScript, PERLScript, JScript and Microsoft

Visual Basic Scripting Edition (VBScript)) must support the Microsoft ActiveX

Scripting interfaces. The script component technology is extensible with DHTML

behaviour [MLWSHcl]. The components can also be used via DCOM [Fla02d,p11].

WSC files can be created and be maintained with a simple text editor. The script

components can be used in this way as COM components and all programs can use

them [Fla02d,p11].

The Windows Script technology consists of the following parts [MLWSHcm]:

• Interface handlers to use COM interfaces

• The Script component file (.wsc) implies data about the COM component and it is

in the XML format.

• Script component run-time (Scrobj.dll) to send out COM requests to the script.

13.12.2. Structure of Windows Script Components

WSC files are structured in XML.

The file starts with the declaration of the XML version and a declaration how to

handle errors and debugging. If er r or is set on t r ue, error messages are allowed

and if debug is t r ue, debugging is possible [MLWSHco]. The <package> element

implies the <component > element, which includes the whole script component

definition. It is possible that there are several <component > elements within a

<package> element [MLWSHcn].

A WSC file consists of three parts: The registration, exposing the functions and the

source code.

224

13.12.2.1. The Registration

This section describes the registration of components and how to create a type

library.

The registration needs the ProgID and the CLSID (GUIGEN.EXE or UUIDGEN.EXE)

of the component so that the component can be referenced. A short description and

the version number are specified [MLWSHcp].

The component is registered by right-click on it in the Windows explorer and

Regi st er is chosen as shown in figure 58.

Figure 58: Snapshot of Registration field.429

Another way to register is to use the file Regsvr 32. exe:

r egsvr 32 f i l e: \ \ Locat i on\ Component Name. wsc

The script component is together with the scr obj . dl l registered on the machine.

To unregister the component the component can be right-clicked in the Windows

explorer and Unr egi st er is chosen or Regsvr 32. exe –u from the command

prompt is started [MLWSHcq].

429 Part of MS Windows XP

225

Type Library430431

For some host applications a type library is needed. Even if it is not needed it

facilitates the work with the script and there are less errors. There is information

about the functions and interfaces of the component.

There are two possibilities to create a type library. The first is to right-click in the

explorer and to choose Gener at e Type Li br ar y like in figure 58 or it can be

created dynamically from inside the script. There a file with a . t l b extension is

created and it is registered in the Windows registry.

If the type library is created dynamically in code 57 the routine Regi st er is called

which is set public so that the data is accessible outside the script and an instance of

the Gener at eTypeLi b object is generated. The Shel l object is instanced. Then an

instance of the Component . Gener at eTypeLi b object is generated to access the

type library functionality. Next, a message box shows that the registration starts. The

AddUr l method contains the location of the component file. The Doc property stores

information about the component. With the Pat h property, the location and the name

of the library file are stored. The internal name is described with the Name property.

The Maj or Ver si on and Mi nor Ver si on property contain integer values. The

GUID432 is different from the one for the script component. The Wr i t e method

generates and registers the type library. The Reset method backspaces the settings

so that a further type library can be generated. An additional message box, created

with the Popup method, signals the end of the registering.

A further possibility to generate a type library is to use the file Rundl l 32. exe in the

following manner:

Rundl l 32. exe path\ scr obj . dl l , Gener at eTypeLi b options

To end registration the routine UnRegi st er is called.

430 [IBM01,p499ff]
431 [MLWSHcr]
432 c.p. 2.4.2.

226

13.12.2.2. Exposing the Functions

This section explains the exposing of properties, methods and events.

This part is bound with the <publ i c> element [MLWSHcs].

Properties that are integrated with the <pr oper t y> element [MLWSHcv] can consist

of simple values (Property1) or of functions (Property2). The <get > element allows

the reading of the property and the <put > element allows writing manifested with

internal names [MLWSHct]. Properties are exposed in the following manner:

<pr oper t y name=" NameOf Pr oper t y" >

<get [i nt er nal Name=" Get Name"] / >

<put [i nt er nal Name=" Put Name"] / >

</ pr oper t y>

“NameOf Pr oper t y ” declares the name of the exposed property. “Get Name” is

obligatory and contains the name of the procedure that reads the value of the

property. If there is only <get > element and no <put > element, the property is read-

only. “Put Name” is also obligatory. It includes the name of the procedure that writes

the value of the property. If there is only a <put > element, the property is write-only.

Properties can be also declared in the following manner:

<property name=" NameOf Pr oper t y" [i nt er nal Name=" Pr oper t yVar i abl e"] / >

Thereby “Pr oper t yVar i abl e” is obligatory and it is the name of the global variable

in the scriptlet files <script> element. It holds the value for “NameOf Pr oper t y ”

[MLWSHcv].

With the <met hod> element [MLWSHcw] the methods are defined. They consist of

their name and possibly of parameters [MLWSHcs].

Events are declared with the <event > element [MLWSHcx]. They need a method,

here the method Fi r eTheEvent , to be fired. They are launched with the

Fi r eEvent method. [MLWSHcu]

227

The functions can be used with dispatch identifiers (DISPID). This enables the

functions to always have the same DISPID and the functions can get specific

DISPIDS [MLWSHcu].

13.12.2.3. The Script Code433

The third part contains the script code of the component in code 57.

It begins with the <scr i pt > element where the script language is first mentioned.

Then the default values for the Pr oper t y1 and Pr oper t y2 are given. The routine

Fi r eTheEvent is used to fire the event WSH_WSC_Event with the Fi r eEvent

method. The Pr oper t yPut and Pr oper t yGet routines for Pr oper t y2 are noted.

In this way the second property can be written and be read. Both methods takeover

their values and calculate their formula. All routines are set on public because data is

taken in from outside the script code. The file has the extension . wsc .

<?xml ver s i on=" 1. 0" ?>

<?component er r or =" t r ue" debug=" t r ue" ?>

<package>

<component >

<comment > Par t 1 Regi st r at i on</ comment >

<r egi st r at i on

 pr ogi d=" WSH_WSC_Test . WSHWSC"

 descr i pt i on=" Demonst r at i on of a WSC wi t h Obj ect Rexx"

 ver s i on=" 1. 0"

 c l s i d=" { 1C123B91- 4F3E- 4299- 9064- 26AC1F980C8A} " >

<scr i pt l anguage=" Obj ect Rexx" ><! [CDATA[

: : Rout i ne Regi st er Publ i c

 Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 Typel i b = . OLEObj ect ~New(" Scr i pt l et . TypeLi b")

 Shel l ~Popup(" St ar t of r egi st r at i on")

 Typel i b~AddURL(" WSH_WSC_Test . wsc")

 Typel i b~Doc = " WSH_WSC_TypeLi b"

 Typel i b~Pat h= " WSH_WSC_Test . t l b"

 Typel i b~Name = " WSH_WSC_TypeLi b"

 Typel i b~Maj or Ver si on = 1

 Typel i b~Mi nor Ver si on = 0

 Typel i b~GUI D = " { CF53943D- 428D- 48f 9- B8DD- 5B0C4B850D9D} "

 Typel i b~Wr i t e()

 Typel i b~Reset ()

 Shel l ~Popup(" End of r egi st er i ng")

433 [IBM01,p499ff]

228

: : Rout i ne Unr egi st er Publ i c

 Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 Shel l ~Popup(" Endi ng of r egi st r at i on")

]] ></ scr i pt >

</ r egi st r at i on>

<comment > Par t 2: Exposi ng f unct i ons</ comment >

<publ i c>

<pr oper t y name=" pr oper t y1" >

</ pr oper t y>

<pr oper t y name=" pr oper t y2" >

 <get i nt er nal Name = " pr oper t yGet " / >

 <put i nt er nal Name = " pr oper t yPut " / >

</ pr oper t y>

<met hod name=" km2Seami l es" >

 <PARAMETER name=" km" / >

</ met hod>

<met hod name=" Fi r eTheEvent " >

</ met hod>

<met hod name=" seami l es2km" >

 <PARAMETER name=" seami l es" / >

</ met hod>

<event name=" WSH_WSC_Event " >

</ event >

</ publ i c>

<comment > Par t 3: Scr i pt Code </ comment >

<scr i pt l anguage=" Obj ect Rexx" >

<! [CDATA[

pr oper t y1 = " Thi s i s t he cont ent of pr oper t y1" - - Val ue of Pr oper t y1

Pr oper t y2val ue = " Def aul t val ue" - - Def aul t val ue of Pr oper t y2

 - - Rout i ne of t he" Fi r eTheEvent " met hod t o f i r e t he event " WSH_WSC_Event "

 - - Publ i c because of t r ansf er r i ng dat a f r om out s i de t he scr i pt

: : Rout i ne Fi r eTheEvent Publ i c

 WSCEvent = f i r eEvent (" WSH_WSC_Event ")

 SAY " Event was f i r ed"

 - - Rout i ne t o wr i t e t he val ue of Pr oper t y2. " WSHPROPERTY" ensur es t hat

: : Rout i ne pr oper t yPut Publ i c - - t he pr oper t y i s gl obal i n scope.

 use ar g NewPr oper t y2Val ue

 Ret ur n Val ue(" Pr oper t y2val ue" , NewPr oper t y2Val ue, " WSHPROPERTY")

: : Rout i ne pr oper t yGet Publ i c - - Ret r i eves t he cur r ent val ue of Pr oper t y2

 r et ur n Val ue(" Pr oper t y2val ue" , , " WSHPROPERTY")

 - - Set s t he number of k i l omet er s and cal cul at es and r et r i eves t he

: : Rout i ne km2seami l es Publ i c - - number of seami l es

 use ar g km

 r et ur n km/ 1. 852

 - - Set s t he number of seami l es and cal cul at es and r et r i eves t he number

229

: : Rout i ne seami l es2km Publ i c - - of k i l omet er s

 use ar g seami l es

 r et ur n seami l es* 1. 852

]] >

</ scr i pt >

</ component >

</ package>

Code 57: WSH_WSC_Test.wsc434

Figure 59 illustrates the new generated functions in the OLE/COM Object Viewer.

Figure 59: ITypeInfo Viewer of the OLE/COM Object Viewer435 436

13.12.2.4. Accessing the Functions of the Component

The following Object Rexx script code 58 accesses the methods and properties that

are exposed. Important is that the new component is instanced.

-

- - WSH_WSC_Test . r ex - -

-

 - - I nst ant i at e t he WSH_WSC_Test . WSHWSC obj ect

WSCComponent = . OLEObj ect ~New(" WSH_WSC_Test . WSHWSC")

 - - Access t he km2seami l es and seami l es2km met hods and hand over of t he

 - - ar gument s " 17" and " 34"

SAY " 17 k i l omet er s cor r esponds t o" WSCComponent ~km2seami l es(17) " seami l es"

SAY " 34 seami l es cor r esponds t o" WSCComponent ~seami l es2km(34) " k i l omet er s"

SAY - - bl ank l i ne

SAY wsccomponent ~pr oper t y1 - - Access t he val ue of pr oper t y1

434 Modelled after [IBM01,p499ff] and [Ku02,20ff]
435 c.p. 2.6.2.
436 Can be downloaded from the Microsoft Homepage c.p. 2.6.2.

230

 - - Shows t he def aul t val ue of Pr oper t y2

SAY " Thi s i s t he def aul t val ue of Pr oper t y2: " wsccomponent ~pr oper t y2

 - - Set s a new val ue t o Pr oper t y2

wsccomponent ~pr oper t y2 = " NewVal ueOf Pr oper t y2"

 - - Shows t he cur r ent val ue of Pr oper t y2

SAY " Thi s i s t he new val ue of Pr oper t y2: " wsccomponent ~pr oper t y2

SAY - - bl ank l i ne

 - - The Fi r eTheEvent met hod i s cal l ed t o f i r e t he Event

WSCComponent ~Fi r eTheEvent

Code 58: WSH_WSC_TEST.rex

13.12.2.5. Remote Instantiation of a Script Component

It is possible to remote instantiate a script component from another machine via a

network. A script on a local machine accesses a component, which is stored and

registered on a remote machine. The component's remotable attribute of the

<r egi st r at i on> element must be set to "true" [MLWSHdb].

Prerequisite is that the script component is registered on the remote machine. It is

necessary to register this component on the local machine where the script resides,

which accesses this component. Therefore there must be created some registry

entries on the local machine. There must be created this new key:

HKEY_CLASSES_ROOT\ component Pr ogI D. As component Pr ogI D write the

ProgID of the component. In this example it is the ProgID

WSH_WSC_Test . WSHWSC. Under this key a further key with the name CLSI D must

be generated. The value of the key CLSI D is the CLSID of the component. In this

example the CLSID is { 1C123B91- 4F3E- 4299- 9064- 26AC1F980C8A} . Insert the

CLSID with the brackets [MLWSHdc].

Code 58 is the script component that is located on the remote machine. The

difference to code 56 is that here the line r emot eabl e=” t r ue” > is added (this is

necessary for remote instantiation) and the pr oper t yPut and pr oper t yGet

routines are handled in another kind (this is not necessary for remote instantiation,

but it shows another way to expose the properties that also works if the WSC is used

on the same machine). Therefore, the Local Environment object (. LOCAL) is used. It

is a directory of process-specific objects which are always available [IBM01,p294]. The

default value of property 2 is hand over with . l ocal ~Pr oper t y2val ue =

" Def aul t val ue" . The line . l ocal ~pr oper t y2val ue = ar g(1) defines an

231

entry “pr oper t y2val ue” in the “LOCAL” directory of the runtime environment.

ar g(1) stores the first received argument. The phrase I F

. l ocal ~HasEnt r y(" Pr oper t y2Val ue") THEN RETURN . pr oper t y2val ue

ELSE RETURN . NI L offers the value of the property [Fla03d].

HasEnt r y(“ Pr oper t y2Val ue”) is a method of the DI RECTORY class and gives

back true if the directory contains an entry with the description “Pr oper t y2Val ue”

[IBM01,p129]. The .NIL object is an object which describes the nonexistence of an

object [IBM01,p294].

<?xml ver s i on=" 1. 0" ?>

<?component er r or =" t r ue" debug=" t r ue" ?>

<package>

<component >

<comment > Par t 1 Regi st r at i on</ comment >

<r egi st r at i on

 pr ogi d=" WSH_WSC_Test . WSHWSC"

 descr i pt i on=" Demonst r at i on of a WSC wi t h Obj ect Rexx"

 ver s i on=" 1. 0"

 c l s i d=" { 1C123B91- 4F3E- 4299- 9064- 26AC1F980C8A} "

 r emot abl e=" t r ue" >

<scr i pt l anguage=" Obj ect Rexx" ><! [CDATA[

: : Rout i ne Regi st er Publ i c

 Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 Typel i b = . OLEObj ect ~New(" Scr i pt l et . TypeLi b")

 Shel l ~Popup(" St ar t of r egi st r at i on")

 Typel i b~AddURL(" WSH_WSC_Test . wsc")

 Typel i b~Doc = " WSH_WSC_TypeLi b"

 Typel i b~Pat h= " WSH_WSC_Test . t l b"

 Typel i b~Name = " WSH_WSC_TypeLi b"

 Typel i b~Maj or Ver si on = 1

 Typel i b~Mi nor Ver si on = 0

 Typel i b~GUI D = " { CF53943D- 428D- 48f 9- B8DD- 5B0C4B850D9D} "

 Typel i b~Wr i t e()

 Typel i b~Reset ()

 Shel l ~Popup(" End of r egi st er i ng")

: : Rout i ne Unr egi st er Publ i c

 Shel l = . OLEObj ect ~New(" WScr i pt . Shel l ")

 Shel l ~Popup(" Endi ng of r egi st r at i on")

]] ></ scr i pt >

</ r egi st r at i on>

<comment > Par t 2: Exposi ng f unct i ons</ comment >

<publ i c>

<pr oper t y name=" pr oper t y1" >

</ pr oper t y>

<pr oper t y name=" pr oper t y2" >

 <get i nt er nal Name = " pr oper t yGet " / >

232

 <put i nt er nal Name = " pr oper t yPut " / >

</ pr oper t y>

<met hod name=" km2Seami l es" >

 <PARAMETER name=" km" / >

</ met hod>

<met hod name=" Fi r eTheEvent " >

</ met hod>

<met hod name=" seami l es2km" >

 <PARAMETER name=" seami l es" / >

</ met hod>

<event name=" WSH_WSC_Event " >

</ event >

</ publ i c>

<comment > Par t 3: Scr i pt Code </ comment >

<scr i pt l anguage=" Obj ect Rexx" >

<! [CDATA[

pr oper t y1 = " Thi s i s t he cont ent of pr oper t y1" - - Val ue of Pr oper t y1

. l ocal ~Pr oper t y2val ue = " Def aul t val ue" - - Def aul t val ue of Pr oper t y2

 - - Rout i ne of t he" Fi r eTheEvent " met hod t o f i r e t he event " WSH_WSC_Event "

 - - Publ i c because of t r ansf er r i ng dat a f r om out s i de t he scr i pt

: : Rout i ne Fi r eTheEvent Publ i c

 WSCEvent = f i r eEvent (" WSH_WSC_Event ")

 SAY " Event was f i r ed"

: : Rout i ne pr oper t yPut Publ i c - - Rout i ne t o wr i t e t he val ue of Pr oper t y2.

 . l ocal ~pr oper t y2val ue = ar g(1)

: : Rout i ne pr oper t yGet Publ i c - - Ret r i eves t he cur r ent val ue of Pr oper t y2

 I F . l ocal ~HasEnt r y(" Pr oper t y2Val ue")

 THEN r et ur n . Pr oper t y2val ue

 ELSE r et ur n . NI L

 - - Set s t he number of k i l omet er s and cal cul at es and r et r i eves t he

: : Rout i ne km2seami l es Publ i c - - number of seami l es

 use ar g km

 r et ur n km/ 1. 852

 - - Set s t he number of seami l es and cal cul at es and r et r i eves t he number

: : Rout i ne seami l es2km Publ i c - - of k i l omet er s

 use ar g seami l es

 r et ur n seami l es* 1. 852

]] >

</ scr i pt >

</ component >

</ package>

Code 59: WSH_WSC_Remote.wsc437

On the local machine is the OtherScript 12 located that accesses a method of the

component WSH_WSC_Test . WSHWSC that is located on the machine with the name

437 c.p. code 56

233

FHKCN. OtherScript 12 is written with Visual Basic Script code. This script calculates

the seamiles which corresponds to 17 kilometers.

Set newS = Cr eat eObj ect (" WSH_WSC_Test . WSHWSC" , " FHKCN")

WScr i pt . Echo " 17 ki l omet er s cor r esponds t o" &newS. km2seami l es(17) &" seami l es"

OtherScript 12: RemoteWSC.vbs

13.12.2.6. Windows Script Component Wizard

The Script Component Wizard helps to generate a script component file, create the

registration information, arranges the type of interface handler and helps to generate

the events, methods and properties [MLWSHcy].

The wizard can be downloaded from the Microsoft Homepage438. Figure 60 shows

the user interface of the Windows Script Component Wizard.

Figure 60: Microsoft Windows Script Component Wizard.439

438http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/MSDN-

FILES/027/001/788/msdncompositedoc.xml
439 Can be downloaded from the Microsoft Homepage

234

14. MS.NET

Microsoft .NET (MS.NET or only called .NET) enables the usage and the generating

of XML Web Services, XML-based applications and processes. The basics of

MS.NET, the fields of application and the possibility to use MS.NET functions with

Object Rexx are explained. This section discusses the items smart devices, Web

Services, NET Framework, programming with the .NET Framework, building

applications as well as Object Rexx with MS.NET.

MS.NET is a programming model that is developed for XML Web Services. It offers a

multi-device support and a multi-language environment for developing and using

XML Web Services [MS02a].

.NET can be downloaded from the Microsoft Homepage440. It enables the

development and the usage of XML Web Services [MS02a].

Microsoft claims that MS.NET makes it possible to distribute computing power over

several devices and enables the updating and the reusing of XML Web Services

[MS02a].

MS.NET connects devices, systems and information. Applications can be created

with developer tools like Microsoft Visual Studio .NET. Servers like Microsoft SQL

Server, Microsoft Windows 2000 and Microsoft BizTalk Servers or Client Software

like Microsoft Office XP, Windows CE or Windows XP enable the usage of XML

applications and Web Services [MS02b].

The .NET Framework contains the class libraries and the Common Language

Runtime441. The .NET Framework started in January 2002. There are compilers

available for over 20 languages. Object Rexx is not part of them, because there is

only an interpreter available for Object Rexx [Doe03b]. This makes it possible for

developers to use the language that is suited for the respective purpose. The .NET

Framework is and component-based [MS02b].

440 http://msdn.microsoft.com/library/default.asp?url=/downloads/list/netdevframework.asp
441 c.p. 14.3.1.

235

XML is an open standard technology for data transformation and exchange that

enables integration and operability of services and applications. SOAP442 and XML

offers system interoperability and an administration of services and applications for

.NET [MS02a].

For Pocket PCs the .NET Compact Framework is available [MS02e].

14.1. Smart Devices

Smart devices are, for example handheld computers, tablet PCs, game consoles,

smart phones, workstations, laptops or PCs [MS02a]. “Smart” imports the ability to

work with digitally information [Ge00].

They enable the user to access data anywhere and anytime and they use the profile

of the user. They can connect to other devices and interchange data over a network.

They use XML, UDDI and SOAP [MS02a].

14.2. Web Services

This section describes Web Services, the Simple Object Access Protocol, the Web

Services Description Language, the Universal Discovery Description and Integration

as well as the difference of Web Site and XML Web Service

Web Services are reusable and small applications. They are structured in XML. They

facilitate the data exchange over the Internet. Peer2Peer connections are possible

[MS03m].

XML Web Services enable the communication of programs that contain different

languages and that are located on different platforms. They are running with standard

Web protocols like TCP/IP, HTTP and XML [MS01c].

Supplier of Web Service technology are except to Microsoft for example IBM with

IBM WebSphere SDK for Web Services (testing and creating Java-based Web

services), IBM WebSphere Application Server (Web service applications and other e-

business applications; embedded in IBM WebSphere SDK for Web Services) and

IBM WebSphere Studio (deployment and development environment for building,

442 c.p. 14.2.1.

236

testing and deploying on demand e-business applications) [IBM03], Sun with Sun

Open Net Environment with server-software and development tools for e-commerce

applications and services [Bl02] or Apple with .Mac which provides an e-mail service

and personnel services [Mue02].

14.2.1. Simple Object Access Protocol

XML Services use the protocol SOAP (Simple Object Access Protocol) to offer their

features. XML messages are exchanged.

SOAP can be compared with RPC, but HTTP is used as protocol and XML for coding

(arguments, methods, returnvalues) [Fla03e]. Thereby a SOAP-Envelope includes the

SOAP-Header (contains application specific information about the SOAP message

and is optional [WS03]) and the SOAP-Body [MS01c], [Tu02,p231f]

14.2.2. Web Services Description Language

The interfaces of the XML Web Services are described in WSDL (Web Services

Description Language) document. Data types can be defined, messages are

exchanged among so-called end points, these messages are specified, messages

are bundled to operations, the connection to a SOAP message is made and the

service is linked to an URL [MS01c], [Tu02,p234].�

14.2.3. Universal Discovery Description and Integration

UDDI (Universal Discovery Description and Integration) enables the registration of

XML Web Services to simplify their discovering. It offers an infrastructure for the

exchange of information about the Web Service. Therefore so-called white papers

(information about the supplier of the service), yellow papers (categorization of the

service) and green papers (technical information) are used. This infrastructure is also

a Web Service [MS01c], [Tu02,p235].�

14.2.4. Difference of Web Site and XML Web Service

A Web Site is viewed with a browser and consists of pictures of data.

The XML Web Service can be utilized or joined with a software application or with

another service. It communicates over a network like the Internet and uses therefore

237

standards like SOAP and XML [MS02a]. Figure 61 illustrates the differences of Web

Site and Web Service.

Figure 61: Differences between Web Site and Web Service443

14.3. NET Framework

This section discusses the basics of .NET. The items Common Language Runtime,

assembly, metadata, Cross-Language Interoperability and.NET Framework Class

Library are explained.

The .NET Framework offers a platform in a distributed environment.

The .NET Framework consists of two core elements: the .NET Framework class

library and the Common Language Runtime [MLNETa].

14.3.1. Common Language Runtime444

The Common Language Runtime organizes memory, thread and process

management and the language integration [MS02b]. It is distributed via MS Windows

Updates via the Internet since march 2003 [Fla03e]445.

443 Taken from [MS02a]
444 [MLNETa]
445 E.g. MSIE->Extras->Windows Update

238

The Common Language Runtime makes it possible that objects programmed in

different languages can correspond with each other. A Common Type System

enables this cross-language integration [MLNETb].

So-called managed code is code built with a language compiler that addresses the

runtime. It supports a model for component communication, debugging services,

profiling services, cross-language integration, cross-language exception handling,

and versioning. [MLNETb].

Managed data means that the runtime administrates objects. Thereby the references

and releases of objects are organized by it. Managed and unmanaged data can be

used alone or both together in a .NET Framework application [MLNETb].

The developers can generate its source code with different languages like Visual

Basic or C#. To use the Common Language Runtime, code must be compiled with a

language compiler [MLNETcj].

This compiler translates the managed code into Microsoft Intermediate Language

(MSIL). MSIL is a CPU-independent set of commands that can be converted to native

code. MSIL provides commands for calling, storing, loading and initializing methods.

It is also possible to use instructions for logical and arithmetic operations, exception

handling, direct memory access or control flow. A just-in-time (JIT) compiler converts

the MSIL to CPU-specific code.

When MSIL is created metadata is also created. Both are contained in a portable

executable (PE) file [MLNETck].

Metadata is offered by the language compilers and contains information about the

references, types and members in the code. Metadata determinates run-time context

boundaries, invokes methods, offers location of classes and loads them. So-called

portable executable (PE) file includes metadata [MLNETb]. PE files are used for files

to be linked together to form executable programs, and for executable programs

[MLNETcl].

The metadata of the managed components stores information about them and the

resources. State data and registration information are not saved in the registry. This

information is stored as metadata [MLNETb].

239

The perception of features of the runtime can vary from environment to environment

in which a program is written [MLNETb].

Features of the Common Language Runtime:

• Organization of compilation, code safety check, memory, thread and code

execution and other system services

• Interoperability among unmanaged and managed code enables the further usage

of COM components and DLLs.

• Server-side applications like Microsoft Internet Information Services (IIS) and

Microsoft SQL Server can host the runtime

• Just-in-time (JIT) compiling makes it possible to run managed code in the native

machine language of the system on which it is started. The memory manager

turns away fragmented memory.

14.3.2. The Assembly

The “Assembly” contains resources and types and it offers information for the

Common Language Runtime446. Assemblies are the basis for .NET Framework

applications with version control, reuse, security permissions, deployment and

activation scoping [MLNETc]. This section discusses the features of an assembly,

dynamic and static assemblies and the parts of static assemblies.

Features of an assembly [MLNETd]:

• It offers a type boundary with the type identity.

• Microsoft Intermediate Language (MSIL)447 code can only be used if it is linked

with an assembly

• A deployment unit enables that only these assemblies are present that were

initially called.

446 c.p. 14.3.1.
447 c.p. 14.3.1.

240

• Allows side-by-side execution (several versions of the same assembly run

simultaneously [MLNETe]).

• It offers a reference scope boundary to identify the resources and types, which are

outside of the assembly.

• It offers a version boundary to define the version dependencies for any dependent

assemblies.

• It offers a security boundary because an assembly is a unit at which permissions

are granted and requested

Assemblies can be generated with Common Language Runtime448 APIs like the

Reflection Emit, with tools contained in the .NET Framework SDK or with

development tools like the Visual Studio .NET [MLNETd].

Assemblies enable an infrastructure to use several software component versions at

the same time (so-called side-by-side execution). Versioning rules can be enforced

[MLNETf].

There are dynamic and static assemblies.

Static assemblies are saved on disk in PE files and they can contain resources for

the assembly like JPEG files or bitmap files and .NET Framework types (classes and

interfaces) [MLNETd].

Dynamic assemblies run directly from the memory and can be saved on disk after

execution [MLNETd].

Normally a static assembly includes four parts like in figure 62 illustrated [MLNETg]:

• The assembly manifest (required),

• The Type metadata,

• Microsoft Intermediate Language (MSIL)449 code to use the types,

448 c.p. 14.3.1.

241

• Resources.

Figure 62: All elements are united in a single file.450

It is also possible to store the elements of an assembly in multiple files. A multifile

assembly allows optimizing downloading of an application and the combination of

different language modules. The different files can be resources like graphic files,

compiled code (.netmodule) or other necessary files. The files are only downloaded if

they are referenced and they are linked by the assembly manifest [MLNETg]. Figure

63 shows a multifile assembly.

Figure 63: Multifile assembly451

The assembly manifest includes the assembly metadata, which contains information

about the relationships of the elements, the metadata with the security identity and

the version needs of the assembly. It is saved in a standalone PE file with only

assembly manifest information or in a portable executable PE file with Microsoft

449 c.p. 14.3.1.
450 Taken from [MLNETg]
451 Taken from [MLNETg]

242

Intermediate Language452 [MLNETh]. Figure 64 illustrates a single file assembly and a

multifile assembly.

Figure 64: Single-file assembly and multifile assembly453

In the case of a single-file assembly the manifest is integrated together with the PE

file. In the case of a multifile assembly the manifest can be integrated in one of the

PE files or it can be stand-alone [MLNETh].

The assembly manifest lists all files of the assembly, lists all other related

assemblies, offers a self-description of the assembly and administrates the

references to the resources and types of the assembly. There is information about

the identity of the assembly, namely the language or culture the assembly can use,

the assembly name, the version number and strong name information (the public

key) [MLNETh]. A strong name is a name that consists of the identity of an assembly.

It is a text name, version number, culture information. This is increased by a digital

signature and by a public key created over the assembly. Assemblies are identical if

they have the same strong name [MLNETcn].

A side-by-side assembly must have a version. The version number has the four parts

maj or . mi nor . bui l d. r evi s i on. The maj or or mi nor parts must be modified if

an assembly is made incompatible with existing versions by a change to the

assembly. An assembly that is backward compatible with prior versions is modified

only in the bui l d or r evi s i on parts [MLNETcm].

452 c.p. 14.3.1.
453 Taken from [MLNETh]

243

14.3.3. Metadata

Metadata offers the possibility that components can communicate because the .NET

Framework enables compilers to give additional declarative information into

assemblies and modules [MLNETi]. Metadata with its features and PE files are

explained.

The metadata is saved in the memory or in a PE file of the Common Language

Runtime454. If the code is compiled the code is translated to the Microsoft

Intermediate Language (MSIL)455. The metadata and the code are stored in the same

file in separate parts of it. The appropriate metadata is loaded if the code is started.

Metadata contains information about the types (members and description), the

assembly (identity, related assemblies, exported types and security permissions) and

the attributes [MLNETj].

Features of metadata [MLNETj]:

• Microsoft claims that language interoperability enables the generating of any class

in any managed language that can be used by the Common Language

Runtime456.

• Attributes can be exposed. They are a type of metadata in the compiled file that

can control the program behaviour at run time.

• Description of .NET languages in a language-neutral kind

• Self-describing files enable modules to communicate with each other. The

metadata offers all required information [MLNETj].

Metadata and the common type system together enable cross-language inheritance

[MLNETk].

454 c.p. 14.3.1.
455 c.p. 14.3.1.
456 c.p. 14.3.1.

244

PE File

A PE file (portable executable file) consists of the PE header, the MSIL instructions

and the Metadata. The PE header contains the address of the entry point and the

index of the main sections of the PE file. The code consists of MSIL instructions. The

metadata consists of heaps and tables (information about the elements of the

program). It offers information about custom attributes and security members and it

records data about types to the runtime.

Metadata tokens are used to reference rows of the metadata table [MLNETl].

14.3.4. Cross-Language Interoperability

Content of this section are the cross-language interoperability and the Common

Language Specification. Language interoperability is available for the Common

Language Runtime457. This is enabled by the Common Language Specification (CLS)

that defines some rules and features for the language [MLNETm].

Language interoperability makes it possible that one code can communicate with a

code that is programmed in another language and the reuse of code is supported.

The Common Language Runtime defines a common type system with rules for types

of all languages and provides metadata with rules for the management of the

information of the types. In this way, it is the basis for language interoperability. This

enables the running of multilanguage applications by the runtime [MLNETn].

Microsoft claims the following advantages of language interoperability for managed

code [MLNETn]:

• Consistent exception handling across languages,

• With metadata and the Microsoft Intermediate Language (MSIL)458 for the

Common Language Runtime only one environment is necessary for profilers,

debugger or other tools,

• Regardless of the language types, objects or methods can be used.

457 c.p. 14.3.1.
458 c.p. 14.3.1.

245

Nevertheless, it is possible that the functionality of generated types cannot be fully

used by other languages. The problem is that the language compiler uses the

metadata and the type system to maintain the own language features and that can

differ from other language features. To solve that problem the Common Language

Specification is used. It sets the rules for the language features [MLNETn].

Common Language Specification

The Common Language Specification (CLS) consists of a set of language features to

enable language interoperability. The CLS rules are a subset of the Common Type

System. Components that only apply CLS features in the API are fully available from

CLS supporting languages. These are so-called CLS-complaint components. All

CLS-compliant languages are able to create verifiable code [MLNETo].

The CLSCompl i ant At t r i but e function allows characterizing assemblies,

modules, types and members as CLS-compliant or as non-CLS-compliant. A CLS-

compliant assembly is marked as CLS-compliant. If it is not marked, it is considered

as not CLS-compliant. If there is no CLS-compliant attribute to a type, it has the same

CLS-compliant attribute as its assembly. If there is no CLS-compliant attribute to a

member, it has the same CLS-compliant attribute as its type.

Nevertheless if several parts of the assembly, module or type are not CLS-compliant,

assembly, module or type could be CLS-compliant if there is supplied for each non-

CLS-compliant member a comparable CLS-compliant alternative member and if all

parts which are CLS-compliant or non-CLS-compliant are manifested as such a part.

Languages that can access all features that are supplied by CLS-compliant libraries

can be used with languages, which are called CLS-compliant consumer tools.

Languages, which enable to use types that are specified in CLS-compliant libraries,

are called CLS-compliant extender tools [MLNETp].

14.3.5. .NET Framework Class Library

The .NET Framework Class Library is object-orientated, offers the possibility for third-

party components to be used with .NET Framework classes and it is a compilation of

246

reusable types, which are included with the Common Language Runtime459

[MLNETa].

Functions of the .NET Framework types:

• Performance of I/O

• Invocation of security checks of the .NET Framework

• Information of loaded types

• Summarize data structures

• Description of base data exceptions and types

• Supply of server-controlled and a client-side GUI and data access

It is possible to use the interfaces and the classes inclusive derivation of the classes

of the .NET Framework.

The .NET Framework naming schema is divided into two parts, the namespace name

and the type name. The namespace name consists of all to the rightmost dot and all

what is right of that dot is the type name. An example is:

Syst em. Col l ect i ons. Ar r ayLi st . Here Syst em. Col l ect i ons is the name of

the namespace and Ar r ayLi st is the name of the type. Library developer should

name their namespaces in the following manner: CompanyName. Technol ogyName

like Mi cr osof t . Wor d. It is possible that one assembly includes types from several

namespaces. One namespace can be split into several assemblies.

The root namespace is the Syst em namespace, which contains classes like for

example Obj ect , Char , I nt 32, St r i ng, Ar r ay and Byt e, which are the

fundamental data types for all applications. Furthermore, this namespace includes

approximately 100 classes and many second-level namespaces [MLNETq].

459 c.p. 14.3.1.

247

14.4. Programming with the .NET Framework

This section describes some fields of application of the .NET Framework. Here is

information about the key programming concepts discussed. The following items are

described: Microsoft .NET Passport, .NET Remoting, accessing the Internet, Active

Directory-Components, CodeDOM, components development, developing world-

ready applications, asynchronous calls, creation of messaging components, Windows

Management Instrumentation, processing transactions, security items, system

monitoring components and ADO.NET.

14.4.1. ADO.NET

Content of this section is an introduction to ADO.NET, the objects of ADO.NET and

the ADO.NET architecture. ADO.NET means ActiveX Data Objects for .NET

Framework. It offers classes that allow data access to application data, XML and

relational data. Microsoft claims that it is suited for the creation of data sharing and

distributed applications and for middle-tier business objects and front-end database

clients [MLNETr].

Microsoft also says that with ADO.NET consistent data access is possible and data-

sharing consumer applications can be used to manage data [MLNETs].

This data access technology is based on the .NET Framework. In this way it offers

communication with a database, a common data representation, integration with XML

and disconnected data architecture. ADO.NET and ADO can exist with each other

and the programming model of ADO.NET is similar to ADO. ADO.NET enables the

usage of disconnected, n-tier programming environments and supports XML

[MLNETt].

ADO.NET enables scalable data access and platform interoperability. With XML

ADO.NET can remote data among clients and tiers. XML supports ADO.NET by

hierarchical queries, data transformation and by validation [Ro01].

14.4.1.1. Objects of ADO.NET

The Dat aReader object offers a quick, read-only, forward-only access to query

results. With the Dat aSet object, an in-memory relational representation of data is

available and a common, completely disconnected data representation is possible.

248

The Dat aAdapt er object is a connection between the data source and the

Dat aSet object. ADO.NET enables the return of results in their native data type

[Ro01].

14.4.1.2. ADO.NET Architecture

The ADO.NET architecture consists of two components. These are the .NET Data

Provider and the Data Set. This section explains the ADO.NET architecture.

The .NET Data Provider manipulates and accesses the data. This is a read-only and

forward-only data access. With the Command object the data can be managed. The

Connect i on object enables the connection to the data source. The Dat aReader

offers from the data source a high-performance data stream. Dat aAdapt er is the

connection among data source and Dat aSet object. The .NET Framework uses the

OLE DB .NET Data Provider and the SQL Server .NET Data Provider. It is possible

to create .NET Data Provider for any data source.

The Dat aSet is the main component. It is possible to use it with XML data, with

managed data local to the application or it can be used with different and several

data sources. The Dat aSet includes the so-called Dat aTabl eCol l ect i on that

contains some objects to manage row, column, relation and constraint information of

data. These objects cannot be moved via XML web services. The Dat aSet is used if

the data is locally cached in the application, if data processing is expanded and an

open connection to the data source is not necessary, if remote data is used from a

XML web service or among tiers or if there is a dynamically data communication. If

this is not the case Microsoft claims that the performance can be increased if

Dat aReader is used [MLNETu]. Figure 65 illustrates the ADO.NET architecture.

249

Figure 65: ADO.NET architecture460

14.4.2. .NET Remoting

.NET Remoting is a generic interprocessing system. It can be used to generate XML

web services. This section provides information about .NET Remoting and its

architecture.

All security features are available for .NET Remoting if an HTTP-based application

that hosts in IIS (Internet Information Services) is used. Scalability is possible.

Features of .NET Remoting:

• Object lifetimes and activation are checked directly

• Through taking part in the communication process the wanted functionality can be

generated

• Support of third-party protocols and channels

• Presents an object by a reference and gives it back to a definite object in a definite

application domain

460 Taken from [MLNETu]

250

• Services of each type of application domain are available

• A managed-code type-system integrity in binary formatted communications is kept

[MLNETv]

Microsoft claims that through .NET Remoting different applications can interact with

one another independant of their location and operation system. It is a generic

system of interprocess communication. So-called formatters encrypt and decrypt the

messages before transmitting them. An object that can be handed over by value can

be automatically handed over among applications in variant domains or machines. It

is nearly always possible to interrupt and change the communication process.

Transaction of objects in different application domains and processes is available for

different object generating modes, object lifetimes schemes, serialization formats or

transportation protocols.

Architecture of .NET Remoting

The core component of the remoting is the object reference to interact among server

objects and clients. With the function New a new instance of the remote object is

generated, the client gets a reference to the object and the methods can be called.

So-called proxy objects are stand-in objects, which are generated if the client creates

an instance of the remote type. For the client the proxy object is like the original

object. A call on the proxy object is routed by the remoting system to the server

process where the call is worked on and then the return value is given back to the

client over the proxy. So-called transport channels have the function of a particular

protocol for sending the data and as technology for network connections [MLNETw].

Figure 66 illustrates the remoting process [MLNETw].

251

Figure 66: Remotingprocess461

14.4.3. Accessing the Internet

With the .NET Framework an administrated implementation of Internet services is

enabled.

The .NET Framework uses a Uniform Resource Identifier (URI) to locate an Internet

resource. The URI contains the scheme identifier (identification of the communication

protocol), the server identifier (TCP address or DNS host name), the path identifier

(location on the server) and possibly a query string (information from client to the

server).

The .NET Framework offers the Ur i class (URI of the Internet resource), the

WebResponse class (container for incoming response) and the WebRequest class

(request for the resource). The WebCl i ent class (requires the WebRequest class)

offers methods for up- and downloading of data. The classes TCPLi st ener ,

TCPCl i ent and UDPCl i ent of the Syst em. Net . Socket s -Namespace enable

functions for creating connections [MLNETx].

Pluggable protocols and an administrated implementation of the Windows socket

interface can be used [MLNETy].

461 Taken from [MLNETw]

252

14.4.4. Active Directory-Components

ADSI (Active Directory Services Interfaces) is an interface that makes the

communication of applications with directories on a network possible. This section

presents the features and components of ADSI.

Features of ADSI [MLNETz]:

• Protocols enable the usage of a single application programming interface (API) to

be carried out on several directory systems.

• Construction of applications which access printers, manage user accounts or back

up databases.

• Insertion of directory information in databases.

• The Active Directory tree structure enables the management of a hierarchical,

single structure for network configurations.

• To handle different directories only one log on is necessary.

• Querying for directory systems is supplied with LDAP (Lightweight Directory

Access Protocol) and SQL.

The two component classes Di r ect or ySear cher and Di r ect or yEnt r y of the

namespace Syst em. Di r ect or ySer vi ces are supplied by the .NET Framework

for the Active Directory Services Interfaces (ADSI) technology. ADSI is a technology

to administrate resources on a network [MLNETaa].

An Active Directory hierarchy can be searched and queries can be made with the

Di r ect or ySear cher class by using the Lightweight Directory Access Protocol.

The Di r ect or yEnt r y component supports administrative task like monitoring or

changing of properties. Therefore, this component can be associated with an object

in the directory.

To use ADSI with the components Di r ect or ySear cher and Di r ect or yEnt r y

the ADSI runtime or ADSI SDK are necessary. On Windows NT version 5.0,

253

Windows 2000 and Windows XP ADSI is installed. For other Windows platforms the

ADSI SDK can be downloaded from the Microsoft Homepage462 [MLNETz].

Microsoft says that the ADSI is a Windows directory service which decrements the

amount of namespaces and directories that the developer must take in consideration.

The Active Directory is organized like a hierarchical tree. On the one hand, a

directory service is an information source and, on the other hand, it offers the

information to the user. A so-called Active Directory schema contains information

about attributes for directory objects, which is used for searches for members, and

they contain information about network nodes. The Active Directory schema is saved

in the Active Directory hierarchy. Schemas are used by the Di r ect or yEnt r y and

Di r ect or ySear cher components to get information.

An alterable ADSI COM object is returned if a valid directory path is offered to the

Di r ect or yEnt r y component. The Di r ect or yEnt r y component allows including

new nodes to the hierarchy, the properties of a node from a hierarchy can be

managed and an object or service can be found in the Active Directory hierarchy.

With ADSI it is possible to access all directory protocols (so-called service provider)

with a single interface to manage the directories contents. With a service provider,

objects with associated behaviour and data are usable [MLNETab].

14.4.5. CodeDOM

The CodeDOM (Code Document Object Model) mechanism of the .NET Framework

offers the possibility to have output of source code in several programming

languages at run time.

Therefore, the CodeDOM provides the architecture, classes and interfaces to

manifest the structure of source code. It is possible to use an external compiler for

the compilation of the source code. A so-called CodeDOM graph or tree shows the

structure of the source code and is created with CodeDOM elements. Elements that

describe code elements are provided by the Syst em. CodeDom namespace.

462 http://www.microsoft.com/NTServer/nts/downloads/other/ADSI25/default.asp

254

Classes, which support compiling created code at run time, are defined with the

Syst em. CodeDOM. Compi l er namespace [MLNETac].

CodeDOM can be used for dynamic compilation, which means code compilation in

single or multiple languages. It can also be used for templated code creation. This is

code creation for code wizards, designers, ASP.NET, XML-based Web services or

other code-emitting mechanism. The core types of elements of programming

languages that can be used with the Common Language Runtime463 can be used by

CodeDOM [MLNETad].

Source code graphs helps to create source code in supported programming

languages with so-called code generators. With code compilers a source code can

be created in a supported language [MLNETae].

14.4.6. Components Development

This section discusses components in the .NET Framework. A component in the

.NET Framework is a class that is used with the

Syst em. Component Model . I Component interface or it is a class that comes

indirect or direct from a class using this interface. A component must be created with

a Common Language Specification464 compliant language and all members must be

CLS-compliant [MLNETaf].

A characteristic of a component is that it can communicate with other objects and it

can be used again. For .NET Framework components, further features like design-

time support and control over external resources are available.

.NET Framework enables classes that are components to be handled with an rapid

application development (RAD) environment like Visual Studio .NET and enables in

this way a design-time support.

It is possible that a component is hosted by a container and can receive services.

463 c.p. 14.3.1.
464 c.p. 13.3.4.

255

There are nonremotable and remotable components, remotable components are

marshalled465 by value or by reference. Marshalling by reference means that a proxy

is generated for the interaction. The base class is in this case

Syst em. Component Model . Component . This is recommended for components

which exist as single instance or that summarize system resources. Marshalling by

value means that a serialized copy of the object is transmitted and it is recommended

for components, which simply hold state. The base class is here

Syst em. Component Model . Mar shal ByVal ueComponent . A nonremotable

component is used directly with the I Component interface.

There are two base classes for controls in the .NET Framework from which all

controls derive. The one base class is the ASP.NET server control and the other is

the client-side Windows Forms control. Controls are components and make user-

interface (UI) skills possible.

A container could include only one or multiple components and it is a class using the

Syst em. Component Model . I Cont ai ner interface [MLNETag].

To display a control and its members at design time so-called design-time attributes

are necessary to show information for visual design tools [MLNETah].

The .NET Framework enables a developer to license its controls to preserve the

intellectual property [MLNETco].

14.4.7. Developing World-Ready Applications

This section defines the term “World-ready applications”. So-called “World-ready

applications” are developed in three steps: Globalization, Localizability and

Localization.

An application that is globalized is language-neutral and culture-neutral and can use

regional data for all users and localized user interfaces [MLNETai].

In the Globalization part the executable code of the application is created [MLNETaj].

465 c.p. 2.4.3.

256

The second step Localizability separates the parts of the application, which need

translation from the rest of the application's code [MLNETai].

That means that the executable code of the application is separated from its

resources. Normally it is not necessary to vary the source code while the localization

[MLNETaj].

Localization means that the application is customized for the particular regions or

cultures [MLNETai]. Here the user interface is translated [MLNETaj].

An application which is really global is language- and culture-neutral. Microsoft claims

that “World-ready applications” help to support new cultures, because the application

can be used in more cultures [MLNETaj].

The executed code is stored in the main assembly of the application.

Prerequisite for the Localization is the Localizability. The Common Language

Runtime466 makes the separation of resources and executable code possible

[MLNETak].

14.4.8. Asynchronous Calls

This chapter describes so-called asynchronous calls that are supported by MS.NET.

Thereby a .NET class method is called during the runtime of the program, until

blocking or calling away or waiting for the call to complete (if callback is not

provided), or until the particular callback is carried out (if callback is provided)

[MLNETal].

Asynchronous calls are used with .NET in the following cases:

• Poll Completed (offers the I AsyncResul t . I sCompl et ed property)

• Use Callbacks (offers the callback delegate at the start of the asynchronous call)

• Begin Invoke, Wait Handle, End Invoke (waiting for I AsyncResul t)

466 c.p. 14.3.1.

257

• Begin Invoke, End Invoke (early finishing of the operation)

With .NET there are two parts for an asynchronous operation. The first part is

responsible for the input from the client that starts the asynchronous operation. This

part returns a waitable object that is used by the server to preserve any state related

with asynchronous operation. The second part offers the results for the client of the

operation by supplying the waitable object [MLNETam].

14.4.9. Creation of Messaging Components

The MessageQueue component makes it possible to generate, delete and explore

queues and to transmit and receive messages. Content of this section are the

features of messages and messaging, basic knowledge of messaging and types of

queues.

The developer can integrate message-based communication in the application

[MLNETan].

To use this technology Message Queuing must be installed on the client machine467

[MLNETao].

It offers a mechanism for interaction among components of a server-based

application.

Features of messages and messaging [MLNETao]:

• Messages stay in a queue until they are guaranteed processed

• The message queuing uses Windows security for access control, encoding,

auditing and authentication

• Messages have an offline capability. That means that they can be transmitted to

temporary queues and stay there until they are sent.

• Transactional messaging allows bundling of messages into one single transaction

• Message prioritization is possible

467 http://www.microsoft.com/msmq/

258

14.4.9.1. Basic Knowledge of Messaging

A message queue is like a container that stores messages until they are transmitted.

The so-called Message Queuing enables messaging between Microsoft Windows

machines. Different computers that are able to send messages to each other are

called a Message Queuing network. The single computer in such a network is called

site and the computers are connected with so-called site links. The function of routing

servers is to determine the most efficient and fastest way for sending messages

[MLNETap]. Figure 67 illustrates the message routing between sites.

Figure 67: Messagerouting between sites468

14.4.9.2. Types of Queues

There are so-called user-created queues and system queues. The user-created

queues include private queues (only accessible by the local machine), administration

queues (confirm the receive of a message), response queues (response message

which is sent back to the transmitting application) and public queues (accessible by

all sites). The system queues include private system queues (private queues needed

for process messaging), report queues (show the route of a message or test

messages), dead-letter queues (copies of not sent or expired messages) and journal

queues (supplies copies of sent and removed messages).

The messages are sent asynchronously [MLNETap].

468 Taken from [MLNETap]

259

14.4.10. Windows Management Instrumentation

The Windows Management Instrumentation (WMI) offers system management

services for the Microsoft Windows operating systems [MLNETaq].

An administrator can use the WMI for the following features:

• Monitor application because of errors

• Configuration and management of applications

• Implementation of remote or local management operations

• Discover errors and bottlenecks

• Query of the data of the application

The tiers of the WMI architecture are the clients (software components that

implements operations with WMI), the Object Manager (agent among clients and

providers) and the providers (give back live data to the client application, call

methods from the client, associate the client to the administrated infrastructure). For

older Windows versions, WMI has to be installed with the .NET Framework

[MLNETar].

14.4.11. Processing Transactions

Transaction processing systems enables a data-orientated system to be updated

only if all operations are fulfilled. Microsoft claims that this technology can be used for

exchange.

Therefore, some related operations are combined. The transaction succeeds only if

the whole bundle of operations succeeds. Such a system requires a software and a

hardware component. An example is an airline reservation that only succeeds if it is

paid before [MLNETas].

Therewith a transaction can commit, all parts of the system have to ensure that all

modifications of data will be durable; otherwise the whole transaction fails [MLNETat].

260

Automatic and manual transaction models are supported by the Common Language

Runtime469 [MLNETau].

A manual transaction enables the developer to determine the start, the result and the

ending of the transaction, to manage each connection and resource enlistment inside

the transaction boundary [MLNETav].

A .NET Framework class, a XML Web service method or an ASP.NET page is

carried out automatically in the range of a transaction if it is declared to join in a

transaction [MLNETaw].

14.4.12. Security

With the .NET Framework and the Common Language Runtime470 it is possible to

use role-based security and cryptography [MLNETax]. This section discusses security

items with MS.NET. Content are basic security terms, security policy management,

cryptography, role-based security, access security and security tools.

Access security is supplied by the Microsoft .NET Framework. Role-based security

and access security use the Common Language Runtime [MLNETay].

The Common Language Runtime permits only activities for which the code has the

authorization. Thereby the code can demand that its caller has a permission to run,

permission can be given during the runtime or the code itself can demand for the

necessary permission. There are role-based security permissions, identity

permissions and code access permissions [MLNETaz].

14.4.12.1. Basic Security Terms

This section presents some basic security terms.

469 c.p. 14.3.1.
470 c.p. 14.3.1.

261

• Type-safe code means that only that memory location is accessed for which it is

authorized and the Common Language Runtime471 could isolate assemblies from

each other [MLNETba].

• The security policy is a guideline for the Common Language Runtime that

determines what the code is allowed to do [MLNETbb].

• A principal is a kind deputy of the user. The .NET Framework offers custom

principals, windows principals and generic principals [MLNETbc].

• The authentication checks the identity of a principal [MLNETbd].

• The authorization checks if a principal has the permission to carry out a requested

action [MLNETbe].

14.4.12.2. Access Security

The .NET Framework offers the so-called code access security [MLNETbf].

14.4.12.3. Role-based Security

Role-based security is used by the Common Language Runtime472 with the custom

identity or on a Windows account as fundament. Thereby the role of a user is

checked [MLNETbg].

Therefore information about the principal is arranged. In the .NET Framework it is

possible to make authorization decisions for reason of the role membership (group of

principals with the same rights) or of the identity of the principal or both parts. A

principal can be a member of multiple roles. The role is used to check if somebody is

authorized to implement a particular operation. The .NET Framework enables the

usage of the role-based security on a server or on a client [MLNETbh].

14.4.12.4. Cryptography

The task of cryptography is to make communication secure if it is implemented over

insecure channels.

471 c.p. 14.3.1.
472 c.p. 14.3.1.

262

For this cryptography should lead to authentication (assurance that data comes from

a particular source), data integrity (no data modification) and confidentiality (identity

or data protection). Microsoft claims that the .NET Framework provides cryptographic

random number generators to create unpredictable numbers [MLNETbi].

To achieve these targets the .NET Framework enables the following cryptographic

core functions [MLNETbi]:

• Cryptographic hashes: Data of any length are classified to a byte-sequence with

fixed length and hashes are statistically unique.

• Cryptographic signing: Assurance that the data comes from a particular source by

making an unambiguous digital signature. Therefore, a hash function is used.

• Public-key encryption: This so-called asymmetric cryptography uses a pair of

private- and public-keys to encode or decode the data to prevent that the data is

seen by unauthorized eyes.

• Private-key encryption: This so-called symmetric cryptography uses a single,

secret key which is commonly used to encode and decode the data to prevent that

the data is seen by unauthorized eyes.

The .NET Framework provides an extendible cryptography model with object

inheritance, cryptographic configuration and stream design.

This object model uses a pattern of derived class inheritance. The top of the

hierarchy is the abstract level algorithm type class. From this class the abstract level

algorithm class is inherited. The next level is fully implemented and is inherited from

the algorithm class.

To employ hash algorithm and symmetric algorithm a stream-orientated design is

used [MLNETbj].

263

14.4.12.5. Security Policy Management

The so-called security policy are regulations of the Common Language Runtime473

that settle the permissions for the code. The runtime takes care that the code only

uses sources that are permitted.

Therefore, the security policy arranges code groups that classify code by

characteristics and give them permissions [MLNETbga].

For Microsoft the security policy model consists of the security policy levels

(enterprise, machine, user), the hierarchy of the code groups (inside the enterprise,

machine and user levels), the named permissions sets (classified by the code

groups), the evidence (information about the conformity of the code) and the

application domain hosts (offers evidence to the Common Language Runtime to

check code with regard the code group) [MLNETbha].

14.4.12.6. Security Tools

To check applications and components and to carry out security-related tasks the

.NET Framework SDK offers command-line tools.

These tools enables for example the configuration of the security policy474, the

management of certificates, the viewing of the assembly’s demanded permissions or

modifying the registry [MLNETbia].

14.4.13. System Monitoring Components

System monitoring components enable the monitoring and modification of system

resources [MLNETbja]. This section provides information about the Pr ocess ,

Event Log and Ser vi ceCont r ol l er components.

Microsoft claims that so-called Windows performance counters enable components

and applications to analyze the performance data like the application performance,

the fine-tune system or system bottlenecks. The .NET Framework offers the

possibility to use performance counters on remote or local machines, to generate

473 c.p. 14.3.1.
474 c.p. 14.4.12.1.

264

custom counters on Windows systems and to put values to with .NET generated

custom counters on the local machine [MLNETbk].

The Event Log component of the .NET Framework enables the connection to

Windows event logs on a remote or on a local machine to create new usage patterns,

to solve problems and to check the access to the system [MLNETbl].

To monitor Windows services the Ser vi ceCont r ol l er component is used for

custom commands on the service, to get back lists of available services and to

implement administrative tasks [MLNETbm].

Many Windows process tasks are administrated with the Pr ocess component

[MLNETbn].

14.4.14. Microsoft .NET Passport475

The .NET Passport started in 1999. It offers a Kids Passport, so-called .NET

Passport express purchase and single sign in (SSI).

The single sign in (SSI) is an Internet participation mechanism among Web sites to

protect the integrity of interaction.

The Kids Passport is part of the single sign in of the .NET Passport and is not a web

filter. According to Microsoft it supports the parents by changing profile exceptions

which are detailed in the Passport Privacy Statement and by choosing a consent

level [MS02d].

The .NET Passport express purchase offers a so-called .NET Passport wallet with

shipping and billing data. Therefore, the credit card numbers are protected with a

Triple Data Encryption Standard algorithm and the data transaction uses a SSL

encoding.

It is possible to use the same authentication system for all used sites. The .NET

Passport data can be used with many devices. The password and the sign-in name

have to be inserted per session only one time. It is possible to buy with fewer clicks.

475 This section uses [MS02c]

265

Therefore, with one click the wallet is signed in and with a second click the data with

the shipping and billing information is transmitted to the shop.

Because of a complaint of US-consumer protection organizations the US FTC

(Federal Trade Commission) enacted that for the next 20 years the safety of

Passport will be regularly checked [AP02,p19].

14.5. Building Applications

This section provides an overview of some programming concepts. Content are

ASP.NET, Windows Forms, Windows Service Applications and Design-Time

Support.

14.5.1. ASP.NET

ASP.NET is provided by the .NET Framework and it is a unified Web development

platform [MLNETbo]. This section introduces this theme.

Microsoft claims that applications can be written with any .NET compatible language.

ASP.NET is used in a .NET-based environment that is compiled. ASP.NET is almost

completely syntax compatible with ASP. ASP.NET can co-operate with WYSIWIG

(What You See Is What You Get) editors.

There are two features possible for generating ASP.NET application supported by the

same infrastructure. The features are Web services and Web forms or a combination

of both. A XML Web service has the advantage of being able to use a server

functionality remotely. Web Forms offer the possibility to have forms-based Web

pages [MLNETbp].

Features of ASP.NET [MLNETbq]:

• Database management is possible.

• Custom events can be implemented which take part in every demand to the

application.

• The session-state and application facilities of ASP are still usable with the .NET

Framework.

266

• ASP.NET code is compiled, modules are removable, performance counters are

available and caching of services is possible.

• Custom debug statements are available.

• The configuration settings are saved in XML files.

• ASP.NET is not completely backward compatible.

• Default schemes for authentication and authorization are available.

• To write the logic, implemented at the application level, the code can be written in

a compiled class or in the gl obal . asax text file (includes code for responding to

application level events fired by HTTP modules or by ASP.NET [MLNETcp]).

• Communication with low-level request and response services of the IIS Web

server is possible.

14.5.2. Windows Service Applications

The .NET Framework enables to generate sevices by generating an application that

is installed as service. Windows Service Applications can be automatically started.

This part gives a short overview.

They do not contain a user interface and they are suited for the usage on servers.

Services are created by generating the application and then installing them with the

utility I nst al l Ut i l . exe. With the so-called Services Control Manager the service

can be administrated and managed.

Characteristics of Windows Service applications:

• On an other Windows station the Windows Service applications are executed than

other application

• Installation components are required which register and install the service.

• A service must be installed and executed.

• The Windows Service applications are executed in an own security context.

267

• The Run method of the Mai n method loads the service into the Services Control

Manager.

There are the following basic states for services: Running, Paused and Stopped

[MLNETbr].

14.5.3. Windows Forms

Windows Forms are a development platform that enables the creation of Windows

applications.

Therefore, the .NET Framework offers object-orientated classes. Windows Forms

can be used as multi-tier distributed function or as local user interface.

A Form is an object with events, properties and methods. It is an instance of a class

and there is the possibility of inheritance. Forms can be dialog boxes, display

surfaces or graphical routines, multiple document interface (MDI) windows or

standard windows. Forms are also controls. Forms are used for communication with

the user [MLNETbs].

14.5.4. Design-Time Support

The design-time support is offered by the .NET Framework through a built-in design-

time architecture. Design-time functionality pertains to the behaviour and display of a

control or component in a visual designer [MLNETbt].

268

Figure 68: Levels of design-time support476

With the .NET Framework three levels of design-time support can be offered by

control or component developers [MLNETbu] as shown in figure 68:

• The basic level enables the .NET Framework to offer classes with design-time

functionality can be related with a component and its members.

• The intermediate level enables the usage of classes with type conversion and of

classes with a custom user interface for managing properties.

• The advanced level enables a component developer to use classes (designer) that

adapt the design-time representation of a component.

14.6. Object Rexx and MS.NET

To program the MS.NET classes there is a language specific compiler necessary.

There is no compiler available for Object Rexx [MS02b]. Here is a possibility

described to create .NET components which can be accessed via the ActiveX

interface with Object Rexx or another language that can implements this interface.

This section discusses the exposing of .NET Framework components for usage with

COM, the Assembly Registration Tool (Regasm.exe), COM Interop, COM Wrappers,

COM Callable Wrapper with an example and the conclusion.

476 Taken from [MLNETbu]

269

14.6.1. Exposing of .NET Framework Components for Usage with COM

.NET Framework Components can be exposed for usage with COM [MLNETbv]. This

section discusses the prerequisites and the possibilities.

Prerequisites for .NET Framework Components when used with COM [MLNETbw]:

• Managed types have to be public so that they are visible to COM because only

public types in an assembly are registered and used with a type library

• Types are not abstract

• A public default constructor enables the activation from COM

• Fields, properties, methods and events have to be public

• Interfaces should be implemented explicitly by classes

Information about managed types for COM developers to package an assembly

[MLNETbx]:

• Versioning instructions

• Deployment instructions describe that unsigned assemblies are installed as private

assembly on the user’s machine and by a publisher signed strong-named477

assemblies are installed into the global assembly cache.

• List of types which show if the managed types are for COM visible and creatable,

visible but not creatable or invisible. It is possible that an assembly can include

creatable, non-creatable, visible and invisible types

• Type library is necessary for the most types

Options for the creation of a type library (only the public types of the assembly are

integrated to the type library) [MLNETbx]:

• Type Library Exporter. Command-line tool which creates a COM type library with

the classes and interfaces of an assembly.

477 c.p. 14.3.2.

270

• TypeLibConverter Class. This tool works like the Type Library Exporter and is

stored in the Syst em. Runt i me. I nt er op namespace.

• .NET Services Installation Tool (Regsvc.exe) can load and register an assembly

and additionally install the type library into a COM+1.0 application.

• Assembly Registration Tool. This tool can create and register a type library with

the option / t l b. If this option is not selected the types are only selected in an

assembly.

14.6.2. Assembly Registration Tool (Regasm.exe)478

This tool enables COM to generate .NET Framework classes by reading the

metadata in an assembly and by inserting the entries to the registry. This section

contains a description and an example with Object Rexx of this tool.

Syntax:

r egasm assembl yFi l e [opt i ons]

With the option / r egf i l e a . r eg file is created. Then the entries are not inserted to

the registry but to this file. With the / t l b option a type library which includes the

types of the assembly is created and registered.

In the registry new entries for the CLSID are inserted to the registry key

HKCR/ CLSI D. Under the key HKCR\ CLSI D\ { 0000…0000} the default value is set to

the ProgID of the class. The values Assembl y and Cl ass are also added. As

subkey of the key HKCR\ CLSI D\ { 0000…0000} the key I nPr ocSer ver 32 is

generated whose default value is the name of the DLL [MLNETbz]. Figure 69 shows a

registry entry of Mscoree.dll.

478 [MLNETby]

271

Figure 69: Illustration of a registry entry with a reference to Mscoree.dll479

Example:

This command inserted in the command prompt registers all public classes, which

are contained in Mscor l i b. dl l . This is the DLL of the Syst em. Obj ect

namespace, which is the root namespace [MLNETca].

Regasm. exe Mscor l i b. dl l

After that, many .NET classes are visible for COM. Only a few can be referenced with

the ActiveX interface of Object Rexx. Most classes are visible but they can’t be used

via ActiveX480.

479 Taken from [MLNETbz]
480 c.p. 14.6.2.

272

Figure 70: RGF_OLEINFO.HTA with the new created ProgIDs of .NET classes481

For example the root class Syst em. Obj ect or the class Syst em. Random can be

referenced as illustrated in figure 70. Code 60 demonstrates the access of some

methods of Syst em. Random with the methods Next and Next Doubl e which

calculate some random numbers [MLNETcb].

481 c.p. 7.3.

273

-

- - MS_NET_Syst em_Random. r ex - -

-

 - - I nst ant i at i on of an obj ect of Syst em. Random

NETObj ect = . OLEObj ect ~New(" Syst em. Random")

SAY NETObj ect ~Next - - Ret ur ns a r andom number

SAY NETObj ect ~Next Doubl e - - Ret ur ns a r andom number bet ween 0, 0 and 1, 0

Code 60: MS_NET_System_Random.rex

14.6.3. COM Interop

COM interop enables forward and backward compatibility. Thereby managed code

can be accessed by COM clients. Metadata can be exported from an assembly to a

type library and the managed component can be registered as COM component

[MLNETcc]. This section explains COM Wrappers and COM Callable Wrappers.

14.6.3.1. COM Wrappers482

Clients of .NET use reflection to get a description of the functionality of an object,

whereat the clients of COM objects request an interface to get back an interface

pointer or not to get information if a service is available.

The Common Language Runtime483 administrates the lifetime of objects on the one

side and on the other side the client of COM objects must administrate the lifetime of

those objects.

The .NET objects are in the memory which is administrated by the .NET Framework

execution environment.

So-called wrappers solve these problems by letting unmanaged and managed code

think that they are calling objects that are in the corresponding environment. There

are two kinds of wrapper: The runtime callable wrapper (RCW) which handles calls of

a managed (.NET) client on a COM object and the COM callable wrapper (CCW)

which works in the other direction and handles calls of a COM client on a .NET

object. This principle is explained in figure 71.

482 [MLNETcd]
483 c.p. 14.3.1.

274

Figure 71: Principle of RCW and CCW484

14.6.3.2. COM Callable Wrapper485

The CCW is a kind of proxy for the managed object. This section defines the term

COM Callable Wrapper and there is an example with Object Rexx that illustrates the

usage of a CCW.

It marshals references between unmanaged and managed code as illustrated in

figure 72. In this way if a COM client wants to reference .NET object the managed

object and a COM callable wrapper are generated by the Common Language

Runtime486. The figure 72 shows that there is exactly one CCW generated for a

managed object although there are multiple COM clients that want to reference the

.NET object. The CCW has a single reference to the managed object that is garbage

collected and that implements the interface. It is possible that .NET and COM clients

reference the same object at the same time.

484 Taken from [MLNETcd]
485 [MLNETce]
486 c.p. 14.3.1.

275

Figure 72: Access of a CCW 487

The CCW also handles the object lifetime (reference-counted like COM) and object

identity (the Common Language Runtime488 offers memory to the CCW so that the

COM client can call the wrapper directly) [MLNETce].

The invocation of methods of .NET objects is equal to the invocation of COM object

methods. Therefore, the CCW enables that all public, COM-visible data types, return

values and interfaces are usable for COM clients. In this way the CCW exposes

traditional COM interfaces like the I Unknown and I Di spat ch. The figure 73

demonstrates a single reference on the .NET object by the CCW. The .NET object

and the COM client communicate via the CCW stub and proxy construction [MLNETcf]

Figure 73: COM interfaces for the CCW489

The .NET Framework provides the following implementations of COM interfaces:

I Di spat ch, I Er r or I nf o, I Unknown, I Suppor t Er r or I nf o, I TypeI nf o

and I Pr ovi deCl assI nf o.

487 Taken from [MLNETce]
488 c.p. 14.3.1.
489 Taken from [MLNETcf]

276

Managed classes can supply the following COM interfaces: The (_classname) class

interface, I EnumVARI ANT, I Di spat chEx, I Connect i onPoi nt and

I Connect i onPoi nt Cont ai ner [MLNETcf].

Each type in an assembly is described by metadata that is created by compiling a

managed project to an assembly DLL. If a COM client references a managed object,

the metadata is uzilized to create a CCW. In the figure 74 the managed types are

transformed to COM with the tool Tlbexp.exe [MLNETcg].

Figure 74: CCW method call490

The usage of attributes regulated by the interop marshalling service enables the

management of data and interface marshalling behaviour like the controlling if an

assembly is exposed to COM [MLNETcg].

Example [MM03]:

In this example from the Homepage of Andy McMullan491 first a .NET component is

created which is then accessed via a CCW with Object Rexx as COM client.

First, this C# file with the name t est comser ver . cs is created (OtherScript 13).

490 Taken from [MLNETcg]
491 http://www.eponymous.eclipse.co.uk/dotnetfaq.htm

277

usi ng Syst em;

namespace AndyMc

{

 publ i c c l ass CShar pCOMSer ver

 {

 publ i c CShar pCOMSer ver () { }

 publ i c voi d Set Name(st r i ng name) { m_name = name; }

 publ i c st r i ng Get Name() { r et ur n m_name; }

 pr i vat e st r i ng m_name;

 }

}

OtherScript 13: testcomserver.cs

This .cs file is compiled from the command prompt with the following command:

Csc / t ar get : l i br ar y t est comser ver . cs

Csc is the compiler [MLNETch] and the option / t ar get : l i br ar y means that a DLL

is created [MLNETci].

Then a DLL is generated which is then registered with the tool Regasm.exe492:

r egasm t est comser ver . dl l / t l b: t est comser ver . t l b / codebase

Here the option / t l b means that a type library is created and the option / codebase

creates a codebase entry to the registry [MLNETby]. Figure 75 shows the new created

ProgID.

492 c.p. 14.6.2.

278

Figure 75: RGF_OLEInfo.hta: New ProgID “ AndyMc.CSharpCOMServer” 493

This newly created .NET component can be referenced with the ActiveX interface of

Object Rexx like in code 61.

493 c.p. 7.3.

279

-

- - MS_NET_AndyMc_CShar pCOMSer ver . r ex - -

-

 - - I nst ant i at i on of an obj ect of AndyMc. CShar pCOMSer ver

NETObj ect = . OLEObj ect ~New(" AndyMc. CShar pCOMSer ver ")

NETObj ect ~Set Name(" Hel l o Wor l d") - - I nser t s t he t ext " Hel l o Wor l d"

SAY NETObj ect ~Get Name - - Pr i nt s t he cont ent of Get Name t o t he di spl ay

Code 61: MS_NET_AndyMc_CSharpCOMServer.rex

Output:

Hel l o Wor l d

14.6.4. Conclusion

This is a self-created component. In the author’s opinion this principle can also be

used to expose .NET namespaces with its classes, methods, properties and events

for COM. In this way these objects can be used via the ActiveX interface of Object

Rexx or another language like Visual Basic Script or JScript.

For example, a COM object XSyst em. XConsol e with a method XWr i t eLi ne can

simulate the real .NET object Syst em. Consol e with the real .NET method

Wr i t eLi ne. Then in Object Rexx the object XSyst em. XConsol e is instantiated.

This object has a method XWr i t eLi ne and a text is hand over. This text is then

hand over to the real .NET object Syst em. Consol e with the real .NET method

Wr i t eLi ne over CCW. Then this text is printed to the display.

In this way it should be possible to reference .NET objects via the ActiveX interface of

Object Rexx.

280

15. Examples of Use

This chapter presents some selected projects of a seminar at the University of

Augsburg that show how to use the Automation technology with Object Rexx in a

business. The projects Döner Dome Restaurant, High Value Customers Consultancy

and Tourplanning are described.

15.1. Döner Dome Restaurant494

This project describes a franchise business model with multiple fast food restaurants,

which sell Döner Kebab.

In this project a cash registering system is developed. This system should be cheap,

prevent media breaks, prevent double work, count automatically the daily sales

revenues, implement automatically the late order of the sold products and have a

user-friendly user interface.

This task was solved by a system consisting of PCs with touch screens. The user

interface was implemented with HTML. The daily sales revenues are computed with

Object Rexx, and documented with MS Excel. The automatically late order of the sold

products is transmitted with the e-mail program Eudora to the warehouse.

To apply this concept a PC, a touch screen, the MS Internet Explorer, Qualcomm

Eudora, Object Rexx, MS Office and Windows as an operating system are required.

Figure 76 shows the user interface of the cash registering system.

494 This section uses [HeLu03]

281

Figure 76: User interface of the cash registering system of project Döner Dome495496

15.2. High Value Customers Consultancy497

This project shows the possibilities of Automation for a consultant.

The consultant has only a few “High Value Customers”. These customers are stored

in a customer database where the addresses and portfolio of the customers is saved.

The bond department offers recommendations in the intranet. The task of the

consultant is to send the buy or sell recommendations to the customers. The

customer data is stored in an MS Excel sheet. If there is a recommendation, each

customer is informed with a text written with MS Word. The addresses are pasted

with Copy&Paste. The stock history is attached in tabulate form. This takes a lot of

time and there is less time to consult the customers. The letters are sent to the

customers by a central post office.

495 MS Internet Explorer is part of MS Windows XP
496 Taken from [HeLu03]
497 This section uses [MeSc03]

282

Automation would increase efficiency.

The user interface, which handles the Automation, is an Object Rexx file, which is

embedded in a HTML document. This interface can access and manage the

customer data by Automation; it can receive the stock tables. The text of a serial

letter can be inserted. This serial letter with the stock data and customer data is sent

automatically via the automated e-mail program Qualcomm Eudora to the central

post office. Figure 77 shows the user interface.

Figure 77: User interface of High-Value Customers consultancy498499

15.3. Tourplanning500

This project describes an enterprise in the transport and logistic field.

498 MS Internet Explorer is part of MS Windows XP
499 Taken from [MeSc03]
500 This section uses [BuHe03]

283

The enterprise has each day a varying number of customers and a varying order

amount. In this way it is necessary to create each day new delivery notes, new

delivery certifications, new schedules for the drivers and new computing of the

optimal tour. This problem is now automated. Therefore a user interface is generated

with HTML. All data is stored in MS Excel. The optimal tour is computed with Object

Rexx. The delivery notes and schedules are created with MS Word and the delivery

notes are sent with Qualcomm Eudora as e-mail.

The user interface enables the management of the customers, the management of

the fleet of cars, the registering of the orders, the beginning of the computing and the

presentation of the optimal tour. To compute the optimal tours the savings

proceeding is used in MS Excel. Then a table with all tours is generated. The

required data is read from MS Excel to create the schedules with addresses of the

customers and total load. The delivery notes are also created in this way with the

respective data. A confirmation of order gets its data from MS Excel and is sent via

the e-mail program Qualcomm Eudora.

Figure 78 illustrates the user interface for the tour planning.

284

Figure 78: Tourplanning501502

501 MS Internet Explorer is part of MS Windows XP
502 Taken from [BuHe03]

285

Summary

First, this paper explained the Component Object Model. Then this master thesis

discussed the usage of ActiveX Automation theoretically and practically with

examples like MS Office components, Windows Management Instrumentation (WMI),

Windows Script Host (WSH), MS Agent technology and MS Speech technology. One

section described how to get Object Rexx code. Other chapters showed some useful

tools, the embedding of Object Rexx in HTML/XML or gave an overview over

MS.NET and the possibility to access MS.NET functions with Object Rexx via so-

called COM Callable Wrappers. The .NET part is to emphasize, because Object

Rexx cannot use .NET in the same kind like so-called .NET languages because there

is no language compiler for the .NET Framework available. At the end there were

some examples which show how to use Automation with Object Rexx in a business

context.

Object Rexx is a very powerful instrument for Automation. Compared with other

Automation codes like Visual Basic Script code, the Object Rexx code is often more

direct. Sometimes Object Rexx code works in another kind as Visual Basic Script.

For example, this problem occurs if the Copy message is used. Then the UNKNOWN

method of OLEObj ect class of Object Rexx must be invoked. Another example is

macros of MS Office tools which are sometimes programmed in another kind. Then it

is necessary to understand the system by trial and error. Helpful is here section 5,

which offers instructions to get the Object Rexx code. Section 6 describes the

OLEObj ect class of Object Rexx with its methods. This class enables the usage of

OLE with Object Rexx.

There were sometimes problems with the implementation of events. These problems

occurred with the WSHCont r ol l er object503, the MS Speech technology504 and the

MS Agent technology505 (for this technology is now a new OREXXOLE. DLL available).

These problems arise because Object Rexx is called in this case with a special ID by

Quer yI nt er f ace and not like normally by I I D_I Unknown respectively

503 c.p. 13.7.2.3.
504 c.p. 12.2.
505 c.p. 11.3.

286

I I D_I Di spat ch. For Object Rexx it is not possible to create for each MS OLE

object a particular call. Probably there will be another solution for Object Rexx in the

future [Doe03].

The documentation for OLE, COM and Windows Script Host from Microsoft is in

some cases wrong [En03] or incomplete [Fla03e]. This makes it more difficult for non-

Microsoft languages to use these parts of Microsoft technologies. This probably is a

reason for some developers not to use these languages, but a Microsoft language.

Object Rexx is for the most part compatible with new user interfaces like the MS

Agent technology506 and the MS Speech technology507. These user interfaces can be

used for a help service508 of an application (MS Agent) or to read out texts like MS

Word documents509 or e-mails (MS Speech technology).

Object Rexx provides access to Windows Script Host. This technology enables for

example interaction among ActiveX components, the access of the registry510 or the

implementation of scripts on another machine in a network511. WMI (Windows

Management Instrumentation)512 can be also used with Object Rexx and provides

control and management information, for example the free space on a hard disk513.

A great part takes the chapter over MS.NET. This technology is one of various

technologies that can be used for Web Services. The significance of Web Services

will increase in the future. A market research of Forrester Research has the result

that about 84% of the asked European enterprises plan to increase investments in

the Web Service area in 2003 and Cap Gemini means that standardization for Web

Services will be finished in 2006 [DPA03]. Unsolved problems are billing systems for

this technology [DPA03a].

506 c.p. 11.
507 C.p. 12.
508 c.p. code 21
509 c.p. 12.1.3.
510 c.p. 13.7.4.2.
511 c.p.13.7.2.
512 c.p. 10.
513 c.p. 10.4.

287

The MS.NET technology can be used with Object Rexx. Therefore, a detour via the

COM Callable Wrapper must be gone, because Object Rexx has no language

compiler that converts the data to Microsoft Intermediate Language (MSIL).

For MS.NET is the MSIL an intermediate goal. There will be for .NET named

languages the same semantic [Fla03]. A problem that occurs with .NET is the

compatibility. An example therefore is Visual Basic .NET that is an object-oriented

programming language [MLNETcq]. There are many changes between Visual Basic

6.0 and Visual Basic .NET. A lot of elements of Visual Basic 6.0 are reclassified,

renamed, or combined with other programming elements for Visual Basic .NET

[MLNETcr]. That means that there are problems with the backward compatibility of

Visual Basic.NET to Visual Basic [Dr03]. This can be in the future a lock-in trap

[Fla03]. Not until 2005/2006, there will be pure .NET applications [Fla03].

Finally is to say that Object Rexx has compared with other languages, a simple

syntax and is easy to learn. It is suited for the usage in a business, it is compatible

with other MS technologies and it is an efficient alternative to other programming

languages.

288

Bibliography

The Bibliography consists of five sections. The short references are [MLXXXx]

(Microsoft Library Sources), [MLNETxx] (Microsoft Library .NET Framework

Sources), [SPXX] (Microsoft Speech SDK 5.1 Documentation Sources), [SGX]

(System Administration Scripting Guide Sources). Short references that are not part

of these references are described in the part Other Sources.

289

[MLXXXx]

MS Library Sources

The folder specifications refer to the MS Library. In this case the MS Library was

installed on the machine as part of Visual Studio .NET. Thereby the Microsoft

Document Explorer was installed on the machine and the folder specification is

inserted in the folder line.

Figure 79: Microsoft Document Explorer

The short reference is inserted in brackets. The first two letters are ML for MSDN

Library. The next three or four letters describe the chapter. After that there follow one

or two small letters for the further distinction. In the phrase [MLAGTa] this is AGT

which refers to the chapter “Microsoft Agent”. The description of this short reference

contains if available the name of the author, if not there occurs “N.A.” for “No Author”.

Then the headline of the referenced text is written and at least the location is printed.

[MLAGTa] N.A.: Microsoft Agent
ms-help://MS.VSCC/MS.MSDNVS/msagent/agentstartpage_7gdh.htm

[MLAGTaa] N.A.: Microsoft Agent. ShowDefaultCharacterProperties Method
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_4egc.htm

[MLAGTb] N.A.: Microsoft Agent. Connected Property
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_354c.htm

[MLAGTc] N.A.: Microsoft Agent. Load Method

290

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_0odm.htm
[MLAGTd] N.A.: Microsoft Agent. Top Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_3luy.htm
[MLAGTe] N.A.: Microsoft Agent. Left Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_95re.htm
[MLAGTf] N.A.: Microsoft Agent. LanguageID Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_4w2y.htm
[MLAGTg] N.A.: Microsoft Agent. Show Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_97ca.htm
[MLAGTh] N.A.: Microsoft Agent. Play Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_3isq.htm
[MLAGTi] N.A.: Microsoft Agent. Speak Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_6cbu.htm
[MLAGTj] N.A.: Microsoft Agent. Unload Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_4b56.htm
[MLAGTk] N.A.: Microsoft Agent. Show Event

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_7wrw.htm
[MLAGTl] N.A.: Microsoft Agent. Height Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_85pm.htm
[MLAGTm] N.A.: Microsoft Agent. MoveTo Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_03u2.htm
[MLAGTn] N.A.: Microsoft Agent. Hide Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_9eqy.htm
[MLAGTo] N.A.: Microsoft Agent. Think Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_1alm.htm
[MLAGTp] N.A.: Microsoft Agent. ShowPopupMenu Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_3ffu.htm
[MLAGTq] N.A.: Microsoft Agent. Speed Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_55gq.htm
[MLAGTr] N.A.: Microsoft Agent. GUID Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_323u.htm
[MLAGTs] N.A.: Microsoft Agent. FontName Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_35uy.htm
[MLAGTt] N.A.: Microsoft Agent. Unload Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_4b56.htm
[MLAGTu] N.A.: Microsoft Agent. Add Method

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_8kfe.htm
[MLAGTv] N.A.: Microsoft Agent. Caption Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_0wyy.htm
[MLAGTw] N.A.: Microsoft Agent. Voice Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_02qy.htm
[MLAGTx] N.A.: Microsoft Agent. Visible Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_91ii.htm
[MLAGTy] N.A.: Microsoft Agent. Visible Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_3ega.htm
[MLAGTz] N.A.: Microsoft Agent. Enabled Property

ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_3l2i.htm
[MLAPIa] N.A.: What is an API.

ms-help://MS.VSCC/MS.MSDNVS/modcore/html/deovrwhatisapi.htm
[MLAUTa] N.A.: Platform SDK - Automation. Container Application

ms-
help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obn.htm#_oa96_container_ap
plication

[MLAUTaa] N.A.: Returning Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_0mer.htm

[MLAUTab] N.A.: Shutting Down Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_8z8z.htm

[MLAUTac] N.A.: Creating the Programmable Interface
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_0aat.htm

[MLAUTad] N.A.: Creating the IUnknown Interface

291

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_97s5.htm
[MLAUTae] N.A.: Creating the IDispatch Interface

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_6l5x.htm
[MLAUTaf] N.A.: Implementing Dual Interfaces

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_40fn.htm
[MLAUTag] N.A.: Registering Interfaces

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_0dv7.htm
[MLAUTah] N.A.: ProxyStubClsid32

ms-help://MS.VSCC/MS.MSDNVS/com/reg_83ua.htm
[MLAUTai] N.A.: Creating Class Identifiers

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9vg3.htm
[MLAUTaj] N.A.: Implementing the IEnumVARIANT Interface

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_7cmd.htm
[MLAUTak] N.A.: Implementing the _NewEnum Property

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_2ws9.htm
[MLAUTal] N.A.: What Is a Type Library?

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_5mzj.htm
[MLAUTam] N.A.: Type Libraries

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_7jxv.htm
[MLAUTan] N.A.: Creating a Type Library

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_7i49.htm
[MLAUTao] N.A.: Building a Type Library

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_1xq1.htm
[MLAUTap] N.A.: Registering a Type Library

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_89o9.htm
[MLAUTaq] N.A.: HRESULT

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obs.htm#_oa96_hresult
[MLAUTar] N.A.: Returning an Error

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9po2.htm
[MLAUTas] N.A.: Accessing ActiveX Objects

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap3_0mlv.htm
[MLAUTat] N.A.: Type Description Interfaces

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap9_49pv.htm
[MLAUTau] N.A: Type Building Interfaces

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap10_725v.htm
[MLAUTav] N.A.: Error Handling Interfaces

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap11_0fqr.htm
[MLAUTaw] N.A:. IClassFactory

ms-help://MS.VSCC/MS.MSDNVS/com/cmi_c_9mk9.htm
[MLAUTax] N.A.: IDataObject

ms-help://MS.VSCC/MS.MSDNVS/com/oin_d_8cl0.htm
[MLAUTay] N.A.: IServiceProvider Interface

ms-
help://MS.VSCC/MS.MSDNVS/ICom/workshop/components/com/reference/ifaces/IServ
iceProvider/IServiceProvider.htm

[MLAUTaz] N.A.: IPictureDisp
ms-help://MS.VSCC/MS.MSDNVS/com/ctin_p_4gfk.htm

[MLAUTb] N.A.: Platform SDK - Automation. In-place activation
ms-
help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obt.htm#_oa96_in_place_acti
vation

[MLAUTba] N.A.: IPicture
ms-help://MS.VSCC/MS.MSDNVS/com/ctin_p_482t.htm

[MLAUTbb] N.A.: IOleContainer
ms-help://MS.VSCC/MS.MSDNVS/com/oin_oc_68mq.htm

[MLAUTbc] N.A.: IOleClientSite
ms-help://MS.VSCC/MS.MSDNVS/com/oin_oc_5l2d.htm

[MLAUTbd] N.A.: IFontDisp
ms-help://MS.VSCC/MS.MSDNVS/com/ctin_a2o_7mls.htm

[MLAUTbe] N.A.: IRecordInfo Interface

292

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap12_69wl.htm
[MLAUTbf] N.A.: ISpecifyPropertyPages

ms-help://MS.VSCC/MS.MSDNVS/com/ctin_q2z_49ir.htm
[MLAUTbg] N.A.: Dispatch identifier (DISPID)

ms-
help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obo.htm#_oa96_dispatch_ide
ntifier_dispid_

[MLAUTc] N.A.: Automation
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/autoportal_7l45.htm

[MLAUTd] N.A.: Overview of Automation
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_3r1q.htm

[MLAUTe] N.A.: What Is An ActiveX Client?
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_7wtb.htm

[MLAUTf] N.A.: What Is An ActiveX Object?
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_8xr3.htm

[MLAUTg] N.A.: Why Expose Objects?
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_4g4f.htm

[MLAUTh] N.A.: How Do Clients and Objects Interact?
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_2bmn.htm

[MLAUTi] N.A.: Accessing an Object Through the IDispatch Interface
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_7b1h.htm

[MLAUTj] N.A.: Accessing an Object Through the VTBL
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_7ncc.htm

[MLAUTk] N.A.: In-Process and Out-of-Process Server Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap1_5rw3.htm

[MLAUTl] N.A.: Exposing ActiveX Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9nqr.htm

[MLAUTm] N.A.: Exposing Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_1d9v.htm

[MLAUTn] N.A.: Initializing Exposed Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_07hv.htm

[MLAUTo] N.A.: OleInitialize
ms-help://MS.VSCC/MS.MSDNVS/com/ofn_oa2k_7w85.htm

[MLAUTp] N.A.: RegisterActiveObject
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap5_2k38.htm

[MLAUTq] N.A.: running object table (ROT)
ms-
help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4oc2.htm#_oa96_running_obje
ct_table_ROT_

[MLAUTr] N.A.: Implementing Exposed Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_3m2b.htm

[MLAUTs] N.A.: Implementing a Class Factory
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9ng9.htm

[MLAUTt] N.A.: Exposing the Application Object
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_54fo.htm

[MLAUTu] N.A.: Creating a Registration File
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_6msl.htm

[MLAUTv] N.A.: Registering the Application
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9smm.htm

[MLAUTw] N.A.: Registering Classes
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_71o3.htm

[MLAUTx] N.A.: Releasing OLE and Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_5sz7.htm

[MLAUTy] N.A.: OleUninitialize
ms-help://MS.VSCC/MS.MSDNVS/com/ofn_ol2z_13vp.htm

[MLAUTz] N.A.: Retrieving Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_0f77.htm

[MLAXCa] Cluts, Nancy: Microsoft ActiveX Controls Overview
ms-help://MS.VSCC/MS.MSDNVS/dnaxctrl/html/msdn_actxcont.htm

[MLAXCb] N.A.: ActiveX Control Tutorial

293

ms-help://MS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/tutorial.htm
[MLAXCc] N.A.: Introduction to ActiveX Controls. Persistence interfaces

ms-
help://MS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/intro.htm#Persist
ence_Interface

[MLAXCd] N.A.: Introduction to ActiveX Controls. Properties, Methods (through IDispatch and
other dispinterfaces)
ms-
help://MS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/intro.htm#Proper
ties

[MLAXCe] N.A.: Introduction to ActiveX Controls. Events
ms-
help://MS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/intro.htm#Events

[MLAXCf] N.A.: Licensing ActiveX Controls. Design-Time Licensing
ms-
help://MS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/licensing.htm#de
sign_lic

[MLCO+a] N.A.: COM+ (Components Service)
ms-help://MS.VSCC/MS.MSDNVS/cossdk/htm/complusportal_9o9x.htm

[MLCO+b] N.A.: What’s new in COM+
ms-help://MS.VSCC/MS.MSDNVS/cossdk/htm/whatsnewcomplus_350z.htm

[MLCO+c] N.A.: COM+ Programming Overview
ms-help://MS.VSCC/MS.MSDNVS/cossdk/htm/pgintro_programmingoverview_9kjb.htm

[MLCOMa] N.A.:The Component Object Model.
ms-help://MS.VSCC/MS.MSDNVS/com/com_757w.htm

[MLCOMaa] N.A.: Registering Components
ms-help://MS.VSCC/MS.MSDNVS/com/registry_8hrn.htm

[MLCOMab] N.A: Classifying Components
ms-help://MS.VSCC/MS.MSDNVS/com/registry_5s37.htm

[MLCOMac] N.A.: Registry Editor
ms-help://MS.VSCC/MS.MSDNVS/com/registry_3pgy.htm

[MLCOMad] N.A.: IClassFactory
ms-help://MS.VSCC/MS.MSDNVS/com/cmi_c_9mk9.htm.

[MLCOMae] N.A.: IClassFactory2
ms-help://MS.VSCC/MS.MSDNVS/com/cmi_c_641e.htm

[MLCOMaf] N.A.: IConnectionPointContainer
ms-help://MS.VSCC/MS.MSDNVS/com/cmi_c_5h2q.htm

[MLCOMag] N.A.: IDataObject
ms-help://MS.VSCC/MS.MSDNVS/com/oin_d_8cl0.htm

[MLCOMah] N.A.: Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_1xpv.htm

[MLCOMai] N.A.: OLE Moniker Implementations
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_3boz.htm

[MLCOMaj] N.A.: File Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_5gqc.htm

[MLCOMak] N.A.: Composite Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_0sj7.htm

[MLCOMal] N.A.: Item Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_5tgz.htm

[MLCOMam] N.A.:Anti-Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_2lbn.htm

[MLCOMan] N.A.: Pointer Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_1fxv.htm

[MLCOMao] N.A.: Class Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_7r03.htm

[MLCOMb] N.A.: COM Objects and Interfaces.
ms-help://MS.VSCC/MS.MSDNVS/com/com_0alv.htm

[MLCOMc] N.A.: Interfaces and Interface Implementations.
ms-help://MS.VSCC/MS.MSDNVS/com/com_2r5f.htm

[MLCOMd] N.A.: Interface Pointers and Interfaces.

294

ms-help://MS.VSCC/MS.MSDNVS/com/com_37w3.htm
[MLCOMe] N.A.: IUnknown and Interface Inheritance.

ms-help://MS.VSCC/MS.MSDNVS/com/com_9v6t.htm
[MLCOMf] N.A.: IUnknown::QueryInterface.

ms-help://MS.VSCC/MS.MSDNVS/com/cmi_q2z_7fvp.htm
[MLCOMg] N.A.: Managing Object Lifetimes Through Reference Counting.

ms-help://MS.VSCC/MS.MSDNVS/com/com_63fr.htm
[MLCOMh] N.A.: IUnknown::AddRef.

ms-help://MS.VSCC/MS.MSDNVS/com/cmi_q2z_3rja.htm
[MLCOMi] N.A.: IUnknown::Release

ms-help://MS.VSCC/MS.MSDNVS/com/cmi_q2z_59np.htm
[MLCOMj] N.A.: The COM Library.

ms-help://MS.VSCC/MS.MSDNVS/com/com_1fuh.htm
[MLCOMk] N.A.: Processes, Threads, and Apartments

ms-help://MS.VSCC/MS.MSDNVS/com/aptnthrd_8po3.htm
[MLCOMl] N.A.: COM Clients and Servers.

ms-help://MS.VSCC/MS.MSDNVS/com/comext_8p2r.htm
[MLCOMm] N.A.: Getting a Pointer to an Object.

ms-help://MS.VSCC/MS.MSDNVS/com/comext_1gvo.htm
[MLCOMn] N.A.: Class identifier (CLSID)

ms-
help://MS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos_Class_identifier_CL
SID_

[MLCOMo] N.A.: COM Class Objects and CLSIDs.
ms-help://MS.VSCC/MS.MSDNVS/com/comext_2s4z.htm

[MLCOMp] N.A.: COM Server Responsibilities
ms-help://MS.VSCC/MS.MSDNVS/com/comext_99df.htm

[MLCOMq] N.A.: Registering COM Servers
ms-help://MS.VSCC/MS.MSDNVS/com/comext_05pv.htm

[MLCOMr] N.A.: GUID Creation and Optimizations
ms-help://MS.VSCC/MS.MSDNVS/com/comext_7w1f.htm

[MLCOMs] N.A.: Inter-Object Communication
ms-help://MS.VSCC/MS.MSDNVS/com/comext_6h7y.htm

[MLCOMt] N.A.: Defining COM Interfaces
ms-help://MS.VSCC/MS.MSDNVS/com/custintf_1777.htm

[MLCOMu] N.A.:Interface Design Rules
ms-help://MS.VSCC/MS.MSDNVS/com/custintf_7rn7.htm

[MLCOMv] N.A.: Designing Remotable Interfaces
ms-help://MS.VSCC/MS.MSDNVS/com/custintf_31o3.htm

[MLCOMw] N.A.: Registering COM Applications
ms-help://MS.VSCC/MS.MSDNVS/com/registry_32er.htm

[MLCOMx] N.A.: Registry Hierarchy
ms-help://MS.VSCC/MS.MSDNVS/com/registry_9k3d.htm

[MLCOMy] N.A.: Classes and Servers
ms-help://MS.VSCC/MS.MSDNVS/com/registry_933n.htm

[MLCOMz] N.A.: Checking Registration
ms-help://MS.VSCC/MS.MSDNVS/com/registry_5b8u.htm

[MLDCOa] N.A.: DCOM Technical Overview
ms-help://MS.VSCC/MS.MSDNVS/dndcom/html/msdn_dcomtec.htm

[MLGLOa] N.A.: Glossary
ms-help://MS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos

[MLGLOb] N.A.: Glossary. Container Application
ms-
help://MS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos_Container_applicatio
n

[MLGLOc] N.A.:Glossary. Uniform Data Transfer
ms-
help://MS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos_Uniform_data_transf
er

[MLGLOd] N.A.: Glossary. Moniker

295

ms-help://MS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos_Moniker
[MLGLOe] N.A.: Glossary. Class factory

ms-help://MS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos_Class_factory
[MLMIDLa] N.A.: The Header Files

ms-help://MS.VSCC/MS.MSDNVS/midl/mi-cmpil_6ofn.htm
[MLMMGa] Prosise, Jeff: Windows 2000: Asynchronous Method Calls Eliminate the Wait for COM

Clients and Servers.
ms-help://MS.VSCC/MS.MSDNVS/dnmag00/html/async.htm

[MLMMGb] N.A.: Automating COM+ Administration.
 ms-help://MS.VSCC/MS.MSDNVS/dnmag00/html/instincts0900.htm

[MLMTSa] N.A.: Microsoft Transaction Server)
ms-help://MS.VSCC/MS.MSDNVS/mts/mtsportal_1lwl.htm

[MLOLEa] Brockschmidt, Kraig: What is OLE really about.
ms-help://MS.VSCC/MS.MSDNVS/dnolegen/html/msdn_aboutole.htm

[MLOLEb] Brockschmidt, Kraig: OLE Integration Technologies: A Technical Overview
ms-help://MS.VSCC/MS.MSDNVS/dnolegen/html/msdn_ddjole.htm

[MLSRIa] N.A.: VarEnum Enumeration
ms-
help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfSystemRuntimeInteropServicesVarEnum
ClassTopic.htm

[MLWMIa] N.A.: About WMI
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/aboutwmi_1lpl.htm

[MLWMIb] N.A.: List All Services on the System
ms-help://MS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic2

[MLWMIc] N.A.: Win32_OperatingSystem
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/r_32os4_0h7x.htm

[MLWMId] N.A.: Win32_DiskPartition
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/r_32os2_9l7y.htm

[MLWMIe] N.A.: Listing All Drive Partitions with Less Than 20 Percent Free Space
ms-help://MS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic4

[MLWMIf] N.A.: Win32_LogicalDisk
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/r_32hard3_43vv.htm

[MLWMIg] N.A.: Launch Notepad Through WMI
ms-help://MS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic8

[MLWMIh] N.A.: Reboot a Remote Machine
ms-help://MS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic7

[MLWMIi] N.A.: Win32Shutdown Method in Class Win32_OperatingSystem
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/r_32os4_5gdp.htm

[MLWMIj] N.A: Creating a WMI Script Using VBScript
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/us_approg_2ruc.htm

[MLWSHa] N.A.: Scripts and Automating Windows
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconWhatIsWSH.htm

[MLWSHaa] N.A.: RemoveNetworkDrive Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthremovenetworkdrive.htm

[MLWSHab] N.A.: AddWindowsPrinterConnection Method
ms-
help://MS.VSCC/MS.MSDNVS/script56/html/wsmthaddwindowsprinterconnection.htm

[MLWSHac] N.A.: EnumPrinterConnections Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthenumprinterconnections.htm

[MLWSHad] N.A.: RemovePrinterConnection Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthremoveprinterconnection.htm

[MLWSHae] N.A.: ComputerName Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprocomputername.htm

[MLWSHaf] N.A.: UserName Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprousername.htm

[MLWSHag] N.A.:UserDomain Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprouserdomain.htm

[MLWSHah] N.A.: SendKeys Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsMthSendKeys.htm

[MLWSHai] N.A.: Run Method

296

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthrun.htm
[MLWSHaj] N.A.: RegWrite Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsMthRegWrite.htm
[MLWSHak] N.A.: RegRead Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthregread.htm
[MLWSHal] N.A.: RegDelete Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthregdelete.htm
[MLWSHam] N.A.: WshShortcut Object

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjWshShortcut.htm
[MLWSHan] N.A.: WshUrlShortcut Object

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjWshUrlShortcut.htm
[MLWSHao] N.A.: WshSpecialFolders Object

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjWshSpecialFolders.htm
[MLWSHap] N.A.: SpecialFolders Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprospecialfolders.htm
[MLWSHaq] N.A.: CreateShortcut Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsMthCreateShortcut.htm
[MLWSHar] N.A.: Description Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProDescription.htm
[MLWSHas] N.A.: Hotkey Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProHotkey.htm
[MLWSHat] N.A.: IconLocation Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProIconLocation.htm
[MLWSHau] N.A.: TargetPath Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProTargetPath.htm
[MLWSHav] N.A.: WindowStyle Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProWindowStyle.htm
[MLWSHaw] N.A.: WorkingDirectory Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProWorkingDirectory.htm
[MLWSHax] N.A.: DeleteFile Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthDeleteFile.htm
[MLWSHay] N.A.:WshEnvironment Object

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjWshEnvironment.htm
[MLWSHaz] N.A.: Environment Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProEnvironment.htm
[MLWSHb] N.A.: Hosting Environments and Script Engines

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconHostingEnvironments.htm
[MLWSHba] N.A.: Item Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsproitem.htm
[MLWSHbb] N.A.:length Property (WshEnvironment object)

ms-
help://MS.VSCC/MS.MSDNVS/script56/html/wslrflengthpropertywshenvironmentobject.
htm

[MLWSHbc] N.A.: WshScriptExec Object
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfScriptExecObject.htm

[MLWSHbd] N.A.: Exec Method
 ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfExecMethod.htm

[MLWSHbe] N.A.: Status Property (WshScriptExec)
 ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfStatusProperty.htm

[MLWSHbf] N.A.: CreateObject Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthcreateobject.htm

[MLWSHbg] N.A.: The FileSystemObject Object Model
ms-help://MS.VSCC/MS.MSDNVS/script56/html/sgFileSystemObjectModel.htm

[MLWSHbh] N.A.:FileSystemObject Objects
ms-help://MS.VSCC/MS.MSDNVS/script56/html/sgFileSystemObjects.htm

[MLWSHbi] N.A.:Programming the FileSystemObject
ms-help://MS.VSCC/MS.MSDNVS/script56/html/sgProgrammingFileSystemObject.htm

[MLWSHbj] N.A.: AvailableSpace Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsproAvailableSpace.htm

[MLWSHbk] N.A.: GetDrive Method

297

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthGetDrive.htm
[MLWSHbl] N.A.: GetDriveName Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthGetDriveName.htm
[MLWSHbm] N.A.: DriveType Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsproDriveType.htm
[MLWSHbn] N.A.: CreateFolder Method

 ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthCreateFolder.htm
[MLWSHbo] N.A.: OpenTextFile Method

 ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthOpenTextFile.htm
[MLWSHbp] N.A.: WriteLine Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthWriteLine.htm
[MLWSHbq] N.A.: Attributes Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsproAttributes.htm
[MLWSHbr] N.A.: GetFile Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthGetFile.htm
[MLWSHbs] N.A.: CopyFile Method

 ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthCopyFile.htm
[MLWSHbt] N.A.: DeleteFile Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthDeleteFile.htm
[MLWSHbu] N.A.: DeleteFolder Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthDeleteFolder.htm
[MLWSHbv] N.A.: Delete Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthDelete.htm
[MLWSHbw] N.A.: GetFolder Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthGetFolder.htm
[MLWSHbx] N.A.: Dictionary Object

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsobjDictionary.htm
[MLWSHby] N.A.: Add Method (Dictionary)

 ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthadddictionary.htm
[MLWSHbz] N.A.: Exists Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthexists.htm
[MLWSHc] Cluts, Nancy: What Scripting Is, and Why and When to Use It

ms-help://MS.VSCC/MS.MSDNVS/dnscrpt/html/allabout.htm#allabout_topic2
[MLWSHca] N.A.:Security and Windows Script Host

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconSecurityWindowsScriptHost.htm
[MLWSHcb] N.A.:CryptoAPI Tools

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconWinTrust.htm
[MLWSHcc] N.A.:Signing a Script

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconSigningScript.htm
[MLWSHcd] N.A.: Software Restriction Policies

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconWinSafer.htm
[MLWSHce] N.A.:Signature Verification Policy

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconTrustPolicy.htm
[MLWSHcf] N.A.: SignFile Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfSignFileMethod.htm
[MLWSHcg] N.A.: Verifying a Script:

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconverifyingscript.htm
[MLWSHch] N.A.: VerifyFile Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfverifyfilemethod.htm
[MLWSHci] N.A.: Sign Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfSignMethod.htm
[MLWSHcj] N.A.: Verify Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfverifymethod.htm
[MLWSHck] N.A.:Script Components Overview

 ms-help://MS.VSCC/MS.MSDNVS/script56/html/letovervw.htm
[MLWSHcl] N.A.:Introducing Windows Script Components

ms-help://MS.VSCC/MS.MSDNVS/script56/html/letintro.htm
[MLWSHcm] N.A.: How Script Components Work

ms-help://MS.VSCC/MS.MSDNVS/script56/html/lethow.htm
[MLWSHcn] N.A.: Script Component File Contents

298

ms-help://MS.VSCC/MS.MSDNVS/script56/html/letfilecont.htm
[MLWSHco] N.A.:<?component?>

ms-help://MS.VSCC/MS.MSDNVS/script56/html/leteleqscriptlet.htm
[MLWSHcp] N.A.: Creating Registration Information

ms-help://MS.VSCC/MS.MSDNVS/script56/html/letcreatereg.htm
[MLWSHcq] N.A.:Registering a Script Component

ms-
help://MS.VSCC/MS.MSDNVS/script56/html/letregS.htm#script_componentsmiscunregi
stering

[MLWSHcr] N.A.: Creating a Script Component Type Library
 ms-help://MS.VSCC/MS.MSDNVS/script56/html/letcreatetypelib.htm

[MLWSHcs] N.A.: Exposing Methods
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letexpmth.htm

[MLWSHct] N.A.: Exposing Properties
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letexppro.htm

[MLWSHcu] N.A.: Exposing Events
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letexpevt.htm

[MLWSHcv] N.A.: <property> Element
ms-help://MS.VSCC/MS.MSDNVS/script56/html/leteleproperty.htm

[MLWSHcw] N.A.: <method> Element
ms-help://MS.VSCC/MS.MSDNVS/script56/html/leteleMethod.htm

[MLWSHcx] N.A.: <event> Element
ms-help://MS.VSCC/MS.MSDNVS/script56/html/leteleEvent.htm

[MLWSHcy] N.A.: Using the Script Component Wizard
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letusingwiz.htm

[MLWSHcz] N.A.:ConnectObject Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsMthConnectObject.htm

[MLWSHd] N.A.: Creating Scripts that Can Be Used by WSH
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconCreatingScripts.htm

[MLWSHda] N.A.: Start Event
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfstartevent.htm

[MLWSHdb] N.A.:Using a Script Component in an Application
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letusingapp.htm

[MLWSHdc] N.A.:Registering a Script Component
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letregs.htm

[MLWSHe] Cluts, Nancy: Server-Side Scripting
ms-help://MS.VSCC/MS.MSDNVS/dnscrpt/html/allabout.htm#allabout_topic6

[MLWSHf] N.A.: Hosting Environments and Script Engines
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconHostingEnvironments.htm

[MLWSHg] N.A.: Microsoft Windows Script Interfaces-Introduction
ms-help://MS.VSCC/MS.MSDNVS/script56/html/scripting.htm

[MLWSHh] N.A.: Types of Script Files
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconScriptFiles.htm

[MLWSHi] N.A.: Dividing Scripts into Reusable Parts
ms-
help://MS.VSCC/MS.MSDNVS/script56/html/wsconSplittingYourScriptsIntoReusabePie
ces.htm

[MLWSHj] N.A.: Overview of Windows Script Host in Windows 2000
ms-help://MS.VSCC/MS.MSDNVS/kbwinnt/Source/ntrelease/q232211.htm

[MLWSHk] N.A.: Setting and Customizing Script Properties (.wsh)
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsCreateWSH.htm

[MLWSHl] N.A.: Running Scripts from the Command Prompt
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsRunCscript.htm

[MLWSHm] N.A.: Running Scripts from Windows
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsRunWscript.htm

[MLWSHn] N.A.: Windows Script Host Object Model
ms-
help://MS.VSCC/MS.MSDNVS/script56/html/wsconWindowsScriptHostObjectModel.ht
m

[MLWSHo] N.A.: WshArguments Object

299

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsobjWshArguments.htm
[MLWSHp] N.A.: Sleep Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsMthSleep.htm
[MLWSHq] N.A.: length Property (WshArguments object)

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprolength.htm
[MLWSHr] N.A.: Count Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfcountmethod.htm
[MLWSHs] N.A.: Exists Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfexistsmethod.htm
[MLWSHt] N.A.: WshController Object

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfControllerObject.htm
[MLWSHu] N.A.: CreateScript Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfCreateScriptMethod.htm
[MLWSHv] N.A.: Status Property (WshRemote)

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfstatuspropertyremote.htm
[MLWSHw] N.A.: Execute Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfexecutemethod.htm
[MLWSHx] N.A.: WshNetwork Object

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjWshNetwork.htm
[MLWSHy] N.A.: EnumNetworkDrives Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthenumnetworkdrives.htm
[MLWSHz] N.A.: MapNetworkDrive Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsmthmapnetworkdrive.htm
[MLWSIa] N.A.: Predefined Keys

ms-help://MS.VSCC/MS.MSDNVS/sysinfo/regapi_1inn.htm

300

 [MLNETxx]

Microsoft Library .NET Framework Sources

The folder specifications refer to the .NET Documentation514. In this case this

documentation was installed on the machine as part of the Visual Studio .NET. It is

possible to download the documentation from the Microsoft Homepage 515.

Thereby the Microsoft Document Explorer was installed on the machine and the

folder specification is inserted in the folder line.

Figure 80: Microsoft Document Explorer

514 Start-> All Programs->.NET Framework SDK Documentation
515 http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-

files/027/000/976/msdncompositedoc.xml&frame=true

301

The short reference is inserted in brackets. The first two letters are ML for MSDN

Library. The next three or four letters describe the chapter. In the phrase [MLNETa]

this is .NET. After that there follow one or two small letters for the further distinction.

The description of this short reference contains if available the name of the author, if

not there occurs “N.A.” for “No Author”. Then the headline of the referenced text is

written and at least the location is printed.

[MLNETa] N.A.: Overview of the .NET Framework

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpovrintroductiontonetframeworksdk.htm

[MLNETaa] N.A.: Creating Active Directory Components

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cporiIntroductionToActiveDirectoryObject
s.htm

[MLNETab] N.A.: Active Directory Technology Backgrounder

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconWhatYouNeedToKnowAboutActive
DirectoryADSI.htm

[MLNETac] N.A.: Generating and Compiling Source Code Dynamically in Multiple Languages

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpcongeneratingcompilingsourcecodedy
namicallyinmultiplelanguages.htm

[MLNETad] N.A.: Using the CodeDOM

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconusingcodedom.htm

[MLNETae] N.A.: Generating Source Code and Compiling a Program from a CodeDOM Graph

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpcongeneratingsourcecodecompilingpro
gramfromcodedomgraph.htm

[MLNETaf] N.A.: Developing Components

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconcomponentprogrammingessentials.
htm

[MLNETag] N.A.: Class vs. Component vs. Control

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconclassvscomponentvscontrol.htm

[MLNETah] N.A.: Design-Time Attributes for Components

 ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpcondesign-
timeattributesforcomponents.htm

[MLNETai] N.A.: Developing World-Ready Applications

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpcondesigningglobalapplications.htm

[MLNETaj] N.A.: Developing World-Ready Applications Overview

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpcondevelopingworld-
readyapplicationsoverview.htm

[MLNETak] N.A.: Localizability

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconlocalizability.htm

[MLNETal] N.A.: Including Asynchronous Calls

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconasynchronousprogramming.htm

302

[MLNETam] N.A.: Asynchronous Programming Overview

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpovrasynchronousprogrammingovervie
w.htm

[MLNETan] N.A.: Creating Messaging Components

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cporiIntroductionToMessage-
BasedFrameworkFeatures.htm

[MLNETao] N.A.: Introduction to Messaging

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconIntroductionToMessagingInVisualS
tudio.htm

[MLNETap] N.A.: Message Queues and Messaging Technology Backgrounder

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconWhatYouNeedToKnowAboutMess
ageQueues.htm

[MLNETaq] N.A.: Managing Applications Using WMI

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconmanagingapplicationsusingwmi.ht
m

[MLNETar] N.A.: Using WMI with the .NET Framework

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconusingwmiwiththenetframework.htm

[MLNETas] N.A.: Processing Transactions

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconprocessingtransactions.htm

[MLNETat] N.A.: Transaction Processing Fundamentals

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpcontransactionprocessingfundamental
s.htm

[MLNETau] N.A.: Transaction Models

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpcontransactionmodels.htm

[MLNETav] N.A.: Manual Transactions

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconmanualtransactions.htm

[MLNETaw] N.A.: Automatic Transactions

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconautomatictransactions.htm

[MLNETax] N.A.: Securing Applications

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuringyourapplication.htm

[MLNETay] N.A.: Key Security Concepts

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconkeyconceptsinsecurity.htm

[MLNETaz] N.A.: Permissions

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconpermissions.htm

[MLNETb] N.A.: Common Language Runtime Overview

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconcommonlanguageruntimeoverview.
htm

[MLNETba] N.A.: Type Safety and Security

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpcontypesafetysecurity.htm

[MLNETbb] N.A.: Security Policy

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuritypolicy.htm

[MLNETbc] N.A.: Principal

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconprincipal.htm

303

[MLNETbd] N.A.: Authentication

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconauthentication.htm

[MLNETbe] N.A.: Authorization

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconauthorization.htm

[MLNETbf] N.A.: Code Access Security

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcodeaccesssecurity.htm

[MLNETbg] N.A.: Role-Based Security

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconrole-basedsecurity.htm

[MLNETbga] N.A.: Security Policy Management

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuritypolicymanagement.htm

[MLNETbh] N.A.: Introduction to Role-Based Security

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconintroductiontorole-
basedsecurity.htm

[MLNETbha] N.A.: Security Policy Model

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuritypolicymodel.htm

[MLNETbi] N.A.: Cryptography Overview

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcryptographyoverview.htm

[MLNETbia] N.A.: Security Tools

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuritytools.htm

[MLNETbj] N.A.: .NET Framework Cryptography Model

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconnetframeworkcryptographymodel.h
tm

[MLNETbja] N.A.: Creating System Monitoring Components

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cporiIntroductionToMonitoringFramework
Features.htm

[MLNETbk] N.A.: Monitoring Performance Thresholds

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cporiInstrumentingPerformanceThreshol
dsOnServer.htm

[MLNETbl] N.A.: Logging Application, Server, and Security Events

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cporiLoggingNTApplicationServerSecurit
yEvents.htm

[MLNETbm] N.A.: Monitoring Windows Services

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cporiMonitoringWindowsServices.htm

[MLNETbn] N.A.: Monitoring and Managing Windows Processes

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cporiMonitoringManagingProcesses.htm

[MLNETbo] N.A.: Creating ASP.NET Web Applications

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconcreatingaspwebapplications.htm

[MLNETbp] N.A.: Introduction to ASP.NET

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconintroductiontoasp.htm

[MLNETbq] N.A.: Introduction to ASP.NET

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconintroductiontoasp.htm

[MLNETbr] N.A.: Introduction to Windows Service Applications

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconIntroductionToNTServiceApplicatio

304

ns.htm

[MLNETbs] N.A.: Introduction to Windows Forms

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconIntroductionToWFCForms.htm

[MLNETbt] N.A.: Enhancing Design-Time Support

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconenhancingdesign-
timesupport.htm

[MLNETbu] N.A.: Design-Time Architecture

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconnetframeworkdesign-
timearchitecture.htm

[MLNETbv] N.A.: Exposing .NET Framework Components to COM

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconexposingnetframeworkcomponents
tocom.htm

[MLNETbw] N.A.: Qualifying .NET Types for Interoperation

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconqualifyingnettypesforinteroperation.
htm

[MLNETbx] N.A.: Packaging an Assembly for COM

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconpackagingassemblyforcom.htm

[MLNETby] N.A.: Assembly Registration Tool (Regasm.exe)

ms-
help://MS.NETFrameworkSDK/cptools/html/cpgrfassemblyregistrationtoolregasmexe.ht
m

[MLNETbz] N.A.: Registering Assemblies with COM

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconregisteringassemblieswithcom.htm

[MLNETc] N.A.: Assemblies

 ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconassemblies.htm

[MLNETca] N.A.: Object Class

ms-help://MS.NETFrameworkSDK/cpref/html/frlrfsystemobjectclasstopic.htm

[MLNETcb] N.A.:Random Members

ms-help://MS.NETFrameworkSDK/cpref/html/frlrfsystemrandommemberstopic.htm

[MLNETcc] N.A.: Advanced COM Interop

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconadvancedcominterop.htm

[MLNETcd] N.A.: COM Wrappers

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcomwrappers.htm

[MLNETce] N.A.: COM Callable Wrapper

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcomcallablewrapper.htm

[MLNETcf] N.A.: Simulating COM Interfaces

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsimulatingcominterfaces.htm

[MLNETcg] N.A.: Customizing Standard Wrappers

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconcustomizingstandardwrappers.htm

[MLNETch] N.A.: Building from the Command Line

ms-help://MS.NETFrameworkSDK/cscomp/html/vcgrfBuildingFromCommandLine.htm

[MLNETci] N.A.: /target:library (Create a Code Library)

ms-help://MS.NETFrameworkSDK/cscomp/html/vcrefdllcreatedllfile.htm

[MLNETcj] N.A.: Choosing a Compiler

ms-help://MS.VSCC/MS.MSDNVS/cpguide/html/cpconsourcecodelanguage.htm

305

[MLNETck] N.A.: Compiling to MSIL

ms-
help://MS.VSCC/MS.MSDNVS/cpguide/html/cpconmicrosoftintermediatelanguagemsil.h
tm

[MLNETcl] N.A.: portable executable (PE) file

ms-help://MS.VSCC/MS.MSDNVS/Netstart/html/cpglop.htm

[MLNETcm] N.A.: Assembly Versions

ms-help://MS.VSCC/MS.MSDNVS/sbscs/sidebyside_57n7.htm

[MLNETcn] N.A.: strong name.

ms-help://MS.VSCC/MS.MSDNVS/Netstart/html/cpglos.htm

[MLNETco] N.A.: Licensing Components and Controls

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconlicensingcomponentscontrols.htm

[MLNETcp] N.A.: The Global.asax File

ms-help://MS.VSCC/MS.MSDNVS/cpguide/html/cpcontheglobalasaxfile.htm

[MLNETcq] N.A.: Visual Basic Language Tour

ms-help://MS.NETFrameworkSDK/vblr7net/html/vaconVisualBasicLanguageTour.htm

[MLNETcr] N.A.: Programming Element Support Changes Summary

ms-
help://MS.NETFrameworkSDK/vblr7net/html/vaconProgrammingElementsChangesInVB
7.htm

[MLNETd] N.A.: Assemblies Overview

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconassembliesoverview.htm

[MLNETe] N.A.: Side-by-Side Execution

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsidebysideexecution.htm

[MLNETf] N.A.: Assembly Benefits

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconwhyuseassemblies.htm

[MLNETg] N.A.: Assembly Contents

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcontentsofassembly.htm

[MLNETh] N.A.: Assembly Manifest

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconassemblymanifest.htm

[MLNETi] N.A.: Metadata and Self-Describing Components

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconmetadataselfdescribingcomponent
s.htm

[MLNETj] N.A.: Metadata Overview

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconmetadataoverview.htm

[MLNETk] N.A.: Run-Time Use of Metadata

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconruntimeuseofmetadata.htm

[MLNETl] N.A.: Metadata and the PE File Structure

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconmetadatapefilestructure.htm

[MLNETm] N.A.: Cross-Language Interoperability

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconcommonlanguagespecification.htm

[MLNETn] N.A.: Language Interoperability Overview

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcross-
languageinteroperability.htm

[MLNETo] N.A.: What is the Common Language Specification?

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconwhatiscommonlanguagespecificati

306

on.htm

[MLNETp] N.A.: Writing CLS-Compliant Code

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconwritingcls-compliantcode.htm

[MLNETq] N.A.: Introduction to the .NET Framework Class Library

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconthenetframeworkclasslibrary.htm

[MLNETr] N.A.: Accessing Data with ADO.NET

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconaccessingdatawithadonet.htm

[MLNETs] N.A. Overview of ADO.NET:

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconoverviewofadonet.htm

[MLNETt] N.A. Design Goals for ADO.NET:

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconwhyadonet.htm

[MLNETu] N.A.: ADO.NET Architecture

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconadonetarchitecture.htm

[MLNETv] N.A.:Choosing Communication Options in .NET

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconchoosingcommunicationoptionsinn
et.htm

[MLNETw] N.A.:.NET Remoting Overview

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconnetremotingoverview.htm

[MLNETx] N.A.: Introducing Pluggable Protocols

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconintroducingpluggableprotocols.htm

[MLNETy] N.A.: Accessing the Internet

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconaccessingInternet.htm

[MLNETz] N.A.: Introduction to Active Directory Objects

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconIntroductionToADSIObjectsInVisua
lStudio.htm

307

Other Sources:

[AP02] AP: Mindelheimer Zeitung. Revolutionen lassen noch auf sich warten, p.19. 02-12-31
[Ar03] Archmatic: ARCHmatic-Glossar E.

http://www.glossar.de/glossar/amglos_e.htm, retrieval 03-03-07
[Bl02] Blakely, Beth: Microsoft gegen Sun: Krieg in der Web-Services-Arena

http://techupdate.zdnet.de/story/0,,s2109366,00.html, 2002, retrieval 03-03-17
[Br02] Brüssau, Kai: Komponenten bei der Softwareerstellung. In: WISU. Das Wirtschaftsstudium

10/02 (2002), p.1216.
[BuHe03] Bucher, Martin; Herlicska, Michael et. Al.: Tourenplanung. Seminarpaper, University of

Augsburg, 2003.
http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/aufgaben/Projekte/G-08-
Tourenplanung.zip, retrieval 03-03-01

[Cl01] Clinick, Andrew: Providing a Secure eXPerience
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnclinic/html/scripting10082001.asp, 2001, retrieval 03-03-13

[DI03] Newsgroup Develpoersindex: WSHController.
http://www.developersdex.com/asp/message.asp?p=593&ID=%3COuLkrGm2CHA%2E22
64%40TK2MSFTNGP11%2Ephx%2Egbl%3E , 2003, retrieval 03-02-28

[DI03a] Newsgroup Develpoersindex: WSHController.
http://www.developersdex.com/asp/message.asp?p=593&ID=%3CeGDE5r03CHA%2E16
40%40TK2MSFTNGP10%2Ephx%2Egbl%3E, 2003, retrieval 03-03-12

[DI03b] Newsgroup Develporsindex: Accessing .NET Framework classes as COM objects with or
without "dm.net Moniker"
http://www.developersdex.com/vb/message.asp?p=2920&ID=%3COePO45NwCHA%2E2
124%40TK2MSFTNGP11%3E, 2003, retrieval 03-03-14

[DM00] Developmentor: The dm.net COM Moniker
http://staff.develop.com/jasonw/clr/readme.htm, 2000, retrieval 03-03-14

[Doe02] E-Mail from Stefan Dörsam. 02-12-11. Content: DCOM and COM+
[Doe02a] E-Mail from Stefan Dörsam. 02-12-02. Content: .RxMessageBox hidden
[Doe03] E-Mail from Stefan Dörsam. 03-02-28. Content: Problems with events of OLE objects.
[Doe03a] E-Mail from Stefan Dörsam. 03-02-17. Content: MS Agent Technology and Events
[Doe03b] E-Mail from Stefan Dörsam. 03-01-16. Content: MS.NET und Object Rexx
[Doe03c] E-Mail from Stefan Dörsam. 03-03-10. Content: MS Speech SDK 5.1 - Events
[Doe03d] E-Mail from Stefan Dörsam. 03-03-26. Content: Speech Recognition
[DPA03] DPA EB: "Web Services" hauchen Internet-Wirtschaft neuen Atem ein

http://www.pcwelt.de/news/internet/29697/index.html, 2003, retrieval 03-03-21
[DPA03a] DPA EB:Anwendungen für den Endverbraucher?

http://www.pcwelt.de/news/internet/29697/2.html, 2003, retrieval 03-03-21
[Dr03] Driver , Mark: This Isn't Your Father's Visual Studio.

http://www.fawcette.com/dotnetmag/2002_03/magazine/columns/strategy/default_pf.asp,
retrieval 03-03-21

[En01] Engehausen, Jan: Rexx on Windows. The Power of OLE/ActiveX Automation. IBM Corp.
http://www.share.org/proceedings/sh96/data/S8312.PDF, 2001, retrieval 03-03-19

[En02] E-Mail from Jan Engehausen. 02-01-28. Content: Embedding of Object Rexx in HTML.
[En03] Engehausen, Jan: Über mich:

http://home.arcor.de/jan.engehausen/refer.html, retrieval 03-03-21
[Es02] Espostio, Dino: Windows Script Host 5.6 Boasts Windows XP Integration, Security, New

Object Model
http://msdn.microsoft.com/msdnmag/issues/02/05/wsh/default.aspx, 2002, retrieval 03-03-
12

[Fla02] Rony G. Flatscher: Automatisierung von Windows Anwendungen. http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/Automatisierung_01.pdf, retrieval 02-11-12

[Fla02a] Rony G. Flatscher: Automatisierung von Windows Anwendungen.
http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/Automatisierung_07.pdf,
retrieval 02-11-12

[Fla02b] Rony G. Flatscher: Automatisierung von Windows Anwendungen.
http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/Automatisierung_08.pdf ,
retrieval 02-11-12

[Fla02c] Rony G. Flatscher: "Overview of the Document Object Model (DOM) a.k.a.DHTML Under
Windows"

308

http://wi.wu-wien.ac.at/rgf/rexx/orx13/2002_DOM.pdf, 2002, retrieval November 2002
[Fla02d] Rony G. Flatscher: "Applying the Object REXXWindows Scripting Engine with Windows

Scripting Host "
http://wi.wu-wien.ac.at/rgf/rexx/orx13/2002_WSH.pdf, 2002, retrieval 02-11-19

[Fla02e] E-Mail from Prof. Rony G. Flatscher. 02-12-2. Content: .rxs Format
[Fla03] Conversation with Prof.Dr.Rony G. Flatscher. 03-03-05. Content: Discussion of master

thesis.
[Fla03a] E-Mail from Prof. Rony G. Flatscher. 03-02-10. Content: MS Agent, MS.NET, MS Speech,

OREXXOLE.CLS
[Fla03b] E-Mail from Prof. Rony G. Flatscher. 03-01-16. Content: New OREXXOLE.DLL
[Fla03c] Rony G. Flatscher: Read.me.

Part of http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/things/agent_upd_ole.zip, 2003, retrieval 03-01-
20

[Fla03d] E-Mail from Prof. Rony G. Flatscher. 03-03-28. Content: .local und WSC
[Fla03e] E-Mail from Prof. Rony G. Flatscher. 03-03-29. Content: Correcting of master thesis
[Fla03f] E-Mail from Prof. Rony G. Flatscher. 03-03-29. Content: Embedding
[Ge00] Gellersen, Hans-W.: Ubiquitous Computing.

http://www.teco.edu/lehre/ubiqws0001/skript/04.pdf, 2000, retrieval 03-03-15
[Ge03] Geocity: Windows Scripting Host is more powerful than AppleScript

http://www.geocities.com/siliconvalley/sector/9295/pc-advantage/advantage-scripting.html,
retrieval 03-03-29

[He02] Helmecke, Florian: Remote Control for MS Word and MS Excel with Object Rexx.
Seminarpaper, University of Augsburg, 2002.

[HeLu03] Herzog, Thomas; Lutz, Niko et. Al.: Döner Dome Restaurants. Seminarpaper, University of
Augsburg, 2003.
http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/aufgaben/Projekte/Autowin_Abschlussarbeit_T
eam3.zip, retrieval 03-03-01

[IBM01] IBM: Object Rexx Reference. 1. Ed.. IBM Corp. 2001
(Location: …\Windows\Version 2.1\books\RexxRef.PDF on the Object Rexx CD)

[IBM01a] IBM: REGISTRY.REX.IBM Corp. 2001
(Location: … \ObjREXX\SAMPLES)

[IBM01b] IBM: Object Rexx Programming Guide. 1. Ed.. IBM Corp. 2001
(Location: …\Windows\Version 2.1\books\RexxPG.PDF on the Object Rexx CD)

[IBM01b] IBM: SAMPLE12.rex. IBM Corp. 2001
(Location: …\ObjREXX\SAMPLES\OLE\APPS\

[IBM01c] IBM: USEWMGR.REX. IBM Corp. 2001
(Location: … \ObjREXX\SAMPLES)

[IBM01c] IBM: Object Rexx Programming Guide 1. Ed.. IBM Corp. 2001
(Location: …\Windows\Version 2.1\books\RexxPg.PDF on the Object Rexx CD)

[IBM02] IBM: Writing a COM object in Object REXX. http://www-
1.ibm.com/support/docview.wss?rs=22&context=SS8PLL&uid=swg21008846, 04.08.2002,
retrieval 03-02-24

[IBM02a] IBM: From another script language to Object REXX. (activex_convert.pdf).
http://www-
1.ibm.com/support/retmgr.wss?rs=22&rt=0&org=SW&doc=1044475, retrieval 02-03-10

[IBM02b] IBM: OLEINFO Help File. Part of Object Rexx installation.
…\ObjREXX\SAMPLES\OLE\OLEINFO\HELP.TXT, 2002

[IBM02c] IBM:Terminating a process
http://www-1.ibm.com/support/docview.wss?uid=swg21039851, 2002, retrieval 03-01-13

[IBM03] IBM: Where do we stand today, traditional or classic rexx. http://www-
3.ibm.com/software/ad/obj-rexx/section2.html, retrieval 03-02-28

[IBM03] IBM: IBM WebSphere SDK for Web Services (WSDK)
http://www-106.ibm.com/developerworks/webservices/wsdk/wsdkfaqs.html, retrieval 03-
03-17

[Ku02] Kurzweil, Andreas: Windows Scripting Host - Definieren von COM-Interfaces (Object
Rexx)
http://www.wu-wien.ac.at/usr/h96a/h9651692/wi_sem.pdf, 2002, retrieval 03-03-13

[MeSc03] Mengele, Markus; Schuhwerket, Christoph. Al.: High Value Customers consultancy.

309

Seminarpaper, University of Augsburg, 2003.
http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/aufgaben/Projekte/AutoWin%20Team9.zip,
retrieval 03-03-01

[MM03] McMullan, Andy:.NET Framework Frequently Asked Questions
 http://www.eponymous.eclipse.co.uk/dotnetfaq.htm, 2003, retrieval 03-03-14

[Mo98] Moss, Julian: Understanding the Windows Script Host.
http://www.itp-journals.com/sasample/T1205.pdf, 1998, retrieval 03-03-14

[MS01] Microsoft: Constant names
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/modcore/html/deconConstantNames.asp, 2001, retrieval 03-03-08

[MS01a] Microsoft: Microsoft Agent Downloads
http://microsoft.com/products/msagent/downloads.htm, 2001, retrieval 03-02-14

[MS01b] N.A.: Debugging Scripts
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sdbug/Html/sdbug_2.asp,
2001, retrieval 03-03-12

[MS01c] Microsoft: XML Web Services Basics
http://msdn.microsoft.com/library/?url=/library/en-
us/dnwebsrv/html/webservbasics.asp?frame=true, 2001, retrieval 03-03-14

[MS02] Microsoft: What Is Speech Technology?
http://www.microsoft.com/speech/evaluation/techover/, 2002, retrieval 03-02-04

[MS02a] Microsoft:What .NET Means for Users
http://www.microsoft.com/net/basics/faq.asp, 2002, retrieval 03-03-14

[MS02b] N.A.:What Is Microsoft .NET?
Microsoft: http://msdn.microsoft.com/netframework/productinfo/overview/default.asp,
2002, retrieval 03-03-14

[MS02c] Microsoft: .NET Passport
http://www.microsoft.com/netservices/passport/overview.asp , 2002, retrieval 02-12-31

[MS02d] Microsoft: :NET Passport Review Guide
http://www.microsoft.com/net/downloads/passport_reviewguide.doc, 2002, retrieval 02-12-
31

[MS02e] Microsoft:.NET Compact Framework Overview.
http://msdn.microsoft.com/vstudio/device/compactfx.asp, 2002, retrieval 03-03-17

[MS03] Microsoft: OLE Background: Containers and Servers
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/HTML/_core_ole_background.3a_.containers_and_servers.asp, retrieval
2003-01-06

[MS03a] Microsoft: Visible Property of MS Word
http://msdn.microsoft.com/library/en-us/vbawd10/html/woproVisible.asp?frame=true, 2003,
03-03-08

[MS03b] Microsoft: Visible Property of MS Internet Explorer
http://msdn.microsoft.com/library/default.asp?url=/workshop/browser/webbrowser/referenc
e/properties/visible.asp, 2003, retrieval 03-03-08

[MS03c] Microsoft: WorkSheet object
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xlobjWorksheet.asp?frame=true,
2003, retrieval 03-03-08

[MS03d] Microsoft: Visible Property of MS Excel
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xlproVisible.asp?frame=true, 2003,
03-03-09

[MS03e] Microsoft: EntireColumn of MS Excel
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xlproEntireColumn.asp?frame=true,
2003, retrieval 03-03-09

[MS03f] Microsoft: Range Collection of Excel
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xlobjRange.asp?frame=true, 2003,
retrieval 03-03-09

[MS03g] Microsoft: Autofit of MS Excel
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xlmthAutoFit.asp?frame=true, 2003,
retrieval 03-03-09

[MS03h] Microsoft: Select of MS Excel

310

http://msdn.microsoft.com/library/en-us/vbaxl10/html/xlmthSelect.asp?frame=true, 2003,
retrieval 03-03-09

[MS03i] Microsoft: Checkspelling of MS Word
http://msdn.microsoft.com/library/en-
us/vbawd10/html/womthCheckSpelling.asp?frame=true, 2003, retrieval 03-01-11

[MS03j] Microsoft: MkCEVoice
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcesapi/htm/cesamMkCEVoice.asp, 2003, retrieval 03-02-04

[MS03k] Microsoft: Setting up Remote WSH
 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/wstsksetupofremotewsh.asp, 2003, retrieval 03-03-12

[MS03l] Microsoft: Running Scripts on Remote
Computershttp://www.microsoft.com/technet/treeview/default.asp?url=/technet/scriptcenter
/scrguide/sas_wsh_wwgn.asp, 2003, retrieval 03-03-12

[MS03m] Microsoft: Defining the Basic Elements of .NET
http://www.microsoft.com/net/basics/whatis.asp, 2003, retrieval 03-03-14

[MS03n] Microsoft: .NET Passport
 http://www.microsoft.com/net/services/passport/, 2003, retrieval 03-03-14

[MS96] Redmond III, Frank: Client/Server ActiveX: Activate the Internet with ODBC
http://www.microsoft.com/mind/0796/ODBC/ODBC.asp, Sept. 1996, retrieval 2003-3-1

[MS98] Microsoft: The OLE/COM Object Viewer
http://www.microsoft.com/com/resources/oleview.asp, 6.11.1998, retrieval 03-02-25

[Mü01] Münz, Stefan: SelfHTML. HTML als Auszeichnungssprache.
http://selfhtml.teamone.de/intro/technologien/html.htm#auszeichnungssprache, 2001,
retrieval 03-03-10

[Mü01a] Münz, Stefan: SelfHTML. Kommentare und Credits.
http://selfhtml.teamone.de/html/allgemein/kommentare.htm#nicht_angezeigt, 2001,
retrieval 03-03-10

[Mü01b] Münz, Stefan: SelfHTML. Das Document Object Model (DOM).
http://selfhtml.teamone.de/dhtml/modelle/dom.htm#allgemeines, 2001, retrieval 03-03-10

[Mue02] Mueller, Dietmar: Apple startet eigene Web Service-Initiative
http://news.zdnet.de/story/0,,t101-s2119357,00.html, 2002, retrieval 03-03-17

[NGS03] Newsgroup microsoft.public.speech_tech: L&H TTS engine of MS Agent and SDK 5.1
http://communities.microsoft.com/newsgroups/previewFrame.asp?ICP=cddgall&sLCID=U
S&sgroupURL=microsoft.public.speech_tech&sMessageID=%253C3e504db8%25241@n
ews.microsoft.com%253E, retrieval 03-02-18

[Onl02] Online GmbH: Was sind MVPs?.
http://www.ms-mvp.de/, 2002, retrieval 03-03-08

[Pe03] E-Mail from Lee Peedin. 03-01-21. Content: Agent and the procedure CkStatus
[Ro01] Rothous, Doug: ADO.NET for the ADO Programmer

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/adonetprogmsdn.asp, 2001, retrieval 02-12-19

[Sp03] Conversation with Tobi Specht. 2003-03-05. Content: Windows XP Pro and network.
[To99] Tower, Tandy: Uncork the Power of Microsoft Agent 2.0

http://www.microsoft.com/mind/0499/agent/agent.asp, 1999, retrieval 03-01-23
[Tu02] Turowsky, Klaus; Krammer, Andreas: Beiblattsammlung zur Vorlesung Web Engineering,

2002
[WS03] W3Schools:The SOAP Header Element

http://www.w3schools.com/soap/soap_header.asp, 2003, retrieval 03-03-15
[WSS02] Windows Scripting Solutions: Rem: Getting the WshController Object to Work

http://www.winscriptingsolutions.com/Articles/Index.cfm?ArticleID=23607, 2002, retrieval
03-02-23

311

 [SGX]

System Administration Scripting Guide Sources

The System Administration Scripting Guide Version 1.1, August 2002 can be

downloaded from the Microsoft Homepage:

http://www.microsoft.com/downloads/release.asp?ReleaseID=38942

Figure 81: System Administration Scripting Guide

To get a text referring to the short reference get the keyword from the reference

description and insert it into the Sear ch line.

The short reference is inserted in brackets. The first two letters are SG for Scripting

Guide. After that there follow one small letter for the further distinction.

The description of this short reference contains the headline of the referenced text

and the keyword, which is inserted into the Sear ch field. If there are several results

the resultnumber describes which result has to be selected.

[SGa] Shut Down the Local Computer. Keyword: Win32Shutdown. Resultnumber: 1

312

 [SPXX]

Microsoft Speech SDK 5.1 Documentation Sources

The Microsoft Speech SDK 5.1 Documentation is part of the MS Speech SDK and is

located in the menu “St ar t - >Pr ogr ams- >Mi cr osof t Speech SDK 5. 1. It can

be also single downloaded from http://www.microsoft.com/speech/download/sdk51/.

Figure 82: Microsoft Speech SDK 5.1 Documentation

To get a text referring to the short reference get the keyword from the reference

description and insert it into the Sear ch line. The short reference is inserted in

brackets. The first two letters are SP for Speech. After that there follow one or two

small letters for the further distinction. The description of this short reference contains

the headline of the referenced text and the keyword/sentence, which is inserted in

the Sear ch field. If there are several results the resultnumber describes which result

has to be selected.

[SPa] Getting Started for First-Time Users. Keyword: Getting Started for First-Time Users.
Resultnumber: 11

[SPb] Object Tokens and Registry Settings. Keyword: Object Tokens and Registry
Settings. Resultnumber: 1

[SPc] SpVoice. Keyword: SpVoice. Resultnumber: 7
[SPd] GetVoices Method. Keyword: GetDescription. Resultnumber: 6
[SPe] What is a Recognition Context?: Keyword: SpSharedRecoContext. Resultnumber: 3
[SPf] CreateGrammar Method. Keyword: CreateGrammar. Resultnumber: 1

313

[SPg] DictationSetState Method. Keyword: DictationSetState. Resultnumber: 1
[SPh] Recognition Event. Keyword: Recognition Event. Resultnumber: 12
[SPi] FalseRecognition Event. Keyword: FalseRecognition Event. Resultnumber: 3
[SPj] StartStream Event. Keyword: StartStream Event. Resultnumber: 7
[SPk] VB Application Sample: Dictation Recognition (Shared). Keyword: VB Application

Sample: Dictation Recognition (Shared). Resultnumber: 2
[SPl] CmdLoadFromFile Method. Keyword: CmdLoadFromFile. Resultnumber: 1
[SPm] SpeechLoadOption Enum. Keyword: SpeechLoadOption Enum. Resultnumber: 1
[SPn] CmdSetRuleIdState Method. Keyword: CmdSetRuleIdState. Resultnumber: 1
[SPo] VB Application Sample: Command and Control Recognition. Keyword: VB

Application Sample: Command and Control Recognition. Resultnumber: 3
[SPp] CreateRecoContext Method. Keyword: CreateRecoContext. Resultnumber: 1
[SPq] SpeechRuleState Enum. Keyword: SpeechRuleState. Resultnumber: 1
[SPr] Add Method. Keyword: Add Method. Resultnumber: 17
[SPs] SpeechRuleAttributes Enum. Keyword: SpeechRuleAttributes Enum. Resultnumber:

1
[SPt] Clear Method. Keyword: Clear Method. Resultnumber: 8
[SPu] AddWordTransition Method. Keyword: AddWordTransition Method. Resultnumber: 3
[SPv] AddState Method: Keyword: AddState Method. Resultnumber: 1
[SPw] Commit Method. Keyword: Commit Method. Resultnumber: 10
[SPx] CmdSetRuleState Method: Keyword: CmdSetRuleState Method.Resultnumber: 1
[Spy] SpeechRuleState Enum: Keyword: SpeechRuleState Enum. Resultnumber: 1

