Automation of Windows Applications

with Object Rexx

Florian Helmecke

Bachelor of Science in Business Administration

UNIVERSITY OF AUGSBURG

COMPUTER SCIENCE IN Economics Il AND NEw MEDIA

Table of Content

List of Figures
List of Tables
List of Object Rexx Scripts
List of other Scripts
Acronyms
Preamble
1. Object Rexx
2. The Component Object Model
2.1. COM Interfaces
2.2. The COM Library
2.3. Further Iltems
2.3.1. Process
2.3.2. Thread
2.3.3. Apartment
2.3.3.1. Single-Threaded Apartment
2.3.3.2. Multi-Threaded Apartment
2.3.4. Monikers
2.4. COM Clients and Server
2.4.1. COM Client Getting a Pointer to an Object
2.4.2. The CLSID

2.4.2.1. Creation of CLSID with Uuidgen.EXE

15

19

20

23

24

29

31

33

33

35

35

35

36

36

36

36

36

37

37

38

39

3

2.4.2.2. Creation of CLSID with GUIDGen.EXE
2.4.3. Communication of Objects
2.5. Defining COM Interfaces
2.6. The Registry
2.6.1. The Registry Editor
2.6.2. The OLE/COM Object Viewer
2.6.3. The WindowsRegistry Class
2.7. Distributed COM (DCOM)
2.7.1. COM Components in different Processes
2.7.2. COM Components on different Machines
2.7.3. Features of DCOM
2.8. COM+ (Component Service)
2.8.1. New Features of COM+
2.8.2. Features for Creating Applications
ActiveX
3.1. History of OLE/ActiveX
3.2. Object Linking and Embedding
3.2.1. Linking
3.2.2. Embedding
3.2.3. The Class ID (CLSID) of the OLE object
3.2.4. Features of ActiveX

3.3. ActiveX Control

40

41

41

42

44

46

47

49

49

50

50

52

52

53

55

55

56

56

57

57

57

58

3.3.1.

3.3.2.

Interfaces

Further Characteristics

3.3.2.1. Licensing

3.3.2.1.1. Design-Time Licensing

3.3.2.1.2. Run-Time Licensing

3.3.2.2. Initialization Security

3.3.2.3. Compression

3.3.2.4. Self-Registration

3.3.2.5. Digital Signature and Certification

4. ActiveX Automation

4.1. ActiveX Client

4.2. ActiveX Object

4.3. Important Interfaces

4.4. Interaction of Objects and Clients

4.4.1.

4.4.2.

4.4.3.

4.4.4.

4.4.5.

4.4.6.

4.4.7.

Dual Interface

Object Access with the IDispatch Interface
ID Binding

Late Binding

Object Access with the VTBL
Out-of-Process Servers

In-Process Servers

4.5. Exposing ActiveX Objects

59

61

61

61

61

62

62

62

63

64

65

65

67

69

71

72

72

73

73

73

73

73

5

45.1.

45.2.

4.5.3.

45.4.

Initializing of exposed Objects
Implementation of the exposed Objects
Implementation of the Class Factory

The Application Object

Registration

4.5.6.

45.7.

4.5.8.

4.5.9.

4.5.10.

Registration of Classes

Releasing of the exposed Objects and OLE
Retrieving of the Objects

The Returning of Objects

Termination of Objects

4.6. Design of an Application which is Automated

4.6.1.

4.6.2.

4.6.3.

4.6.4.

4.6.5.

4.6.6.

IlUnknown Interface
IDispatch Interface

Dual Interface
Registration of Interfaces
Creation of a CLSID

IEnumVARIANT Interface

4.7. Type Library

4.7.1.

4.7.2.

4.7.3.

Creation of a Type Library
Registration of a Type Library

Error Handling

4.8. Access of ActiveX Objects

74

75

75

76

76

77

79

79

80

80

80

80

80

81

81

82

82

82

83

84

85

85

5. How to Get Script Code 86
5.1. Trial and Error 86
5.2. Macro Recorder Tool 86
5.3. Converting Visual Basic Script Code to Object Rexx 89
5.4. Other Sources 90

6. OLE and Object Rexx with OLEODbject Class 94
6.1. Methods of the OLEODbject Class 95
6.2. Type Conversion 95
6.3. Init 97

6.3.1. Init with ProgID 98
6.3.2. Init with CLSID 98
6.3.3. Init with WITHEVENTS 99
6.4. UnKnown 100
6.4.1. Unknown without Arguments 100
6.4.2. Unknown with Arguments 101
6.4.3. Unknown with identical Method Names 102
6.5. GetObject 105
6.6. GetConstant 106
6.6.1. GetConstant with the Name of the Constant 107
6.6.2. GetConstant without the Name of the Constant 109
6.7. GetKnownEvents 110

6.8. GetKnownMethods 114

6.9. GetOutParameters
Tools

7.1. METHINFO.rex

7.2. OLElInfo.rex

7.3. RGF_OLElInfo.hta

Useful Object Rexx Classes

8.1.

8.2.

8.3.

WindowObject

MenuObject

Object Rexx Classes Remoting the User Interface

8.3.1. WindowsProgramManager

8.3.2. WindowsManager

8.3.3. WindowsClipboard

8.3.4. WindowsRegistry

8.3.5. WindowsEventLog

Embedding Object Rexx in HTML or XML

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

Tag

Document Type Definition (DTD)
HTML (Hypertext Markup Language)
XML (eXtensible Markup Language)
Cascading Style Sheets (CSS)
Document Object Model (DOM)

Microsoft Internet Explorer (MSIE)

118

120

120

120

121

124

124

124

124

124

124

125

125

125

126

126

126

126

127

127

127

128

9.7.1. Embedding an Object Rexx Script in HTML
9.7.2. MSIE and Error
10. WMI
10.1. Win32_Service
10.2. Win32_OperatingSystem
10.3. Win32_DiskPartition
10.4. Win32_LogicalDisk
10.5. Win32_Process
10.6. Win32Shutdown
11. Automation of Microsoft Agent Technology
11.1. Introduction to MS Agent Technology
11.2. Overview of MS Agent Technology
11.3. MS Agent and Events
12. Automation of Microsoft Speech
12.1. Text-To-Speech Synthesis (TTS)
12.1.1. Introduction to MS Speech TTS
12.1.2. MS Speech TTS embedded in HTML
12.1.3. Reading a MS Word Document
12.2. Speech Recognition
12.2.1. Dictation Recognition
12.2.2. Command and Control Recognition

12.2.2.1. C&C Recognition with Configuration File

129

131

133

133

135

136

136

138

139

141

141

143

151

154

155

156

158

162

165

166

168

168

12.2.2.2. C&C and the Creation of a new Grammar Rule 170

13. Windows Script Host 173
13.1. Scripting 174
13.1.1. Script Basics 174
13.1.2. Server-Side Scripting 175
13.2. Object Rexx and Windows Script Host 176
13.2.1. Basics 176
13.2.2. COM Interfaces 176
13.3. Host and Engine 177
13.3.1. Script Host and Script Engine Basics 177
13.3.2. Interaction between Scripting Host and Engine 178
13.4. Types of Script File 179
13.4.1. WSF File Using Windows Script Files (.wsf) 179
13.4.2. WSH File 180
13.4.3. REX File 180
13.4.4. RXS File 180
13.5. Running a Script 181
13.5.1. CScript 181
13.5.2. WScript 181
13.5.3. Embedding a Script in a HTML File 182
13.5.4. Other Possibilities to Run a Script 182

13.6. Instantiating of Objects 182

10

13.7. WSH Object Model
13.7.1. WshArguments Object
13.7.2. WshController
13.7.2.1. 'WSHController on the local Machine
13.7.2.2. WSHController on multiple Machines
13.7.2.3. WSHController and Events
13.7.3. WshNetwork Object
13.7.4. WshShell
13.7.4.1. Run Method and SendKeys Method
13.7.4.2. Accessing the Registry
13.7.4.3. Creation of Shortcuts
13.7.4.3.1. Creation of a Shortcut
13.7.4.3.2. Creation of an UrlShortcut
13.7.4.3.3. Deletion of a Shortcut
13.7.4.4. 'WshEnvironment
13.7.4.5. WshScriptExec
13.8. FileSystemObject Object
13.8.1. The AvailableSpace Property
13.8.2. DriveType Property
13.8.3. Creation of a Folder with a WSF File
13.8.4. Creating a Text File

13.8.5. Attribute Property

183

184

186

188

189

194

195

198

198

200

201

201

202

203

204

205

206

206

207

208

209

209

11

13.8.6. Copying a File
13.8.7. Deleting Files and Folders
13.9. Dictionary Object
13.10. Security in Windows Script Host
13.10.1. SignFile and VerifyFile Methods
13.10.2. Sign and Verify methods
13.11. Starting Applications with WSH
13.12. Windows Script Components
13.12.1. Windows Script Components Basics
13.12.2. Structure of Windows Script Components
13.12.2.1. The Registration
13.12.2.2. Exposing the Functions
13.12.2.3. The Script Code
13.12.2.4. Accessing the Functions of the Component
13.12.2.5. Remote Instantiation of a Script Component
13.12.2.6. Windows Script Component Wizard
14. MS.NET
14.1. Smart Devices
14.2. Web Services
14.2.1. Simple Object Access Protocol
14.2.2. Web Services Description Language

14.2.3. Universal Discovery Description and Integration

210

210

211

211

214

218

221

222

223

223

224

226

227

229

230

233

234

235

235

236

236

236

12

14.2.4. Difference of Web Site and XML Web Service
14.3. NET Framework
14.3.1. Common Language Runtime
14.3.2. The Assembly
14.3.3. Metadata
14.3.4. Cross-Language Interoperability
14.3.5. .NET Framework Class Library
14.4. Programming with the .NET Framework
14.4.1. ADO.NET
14.4.1.1. Objects of ADO.NET
14.4.1.2. ADO.NET Architecture
14.4.2. .NET Remoting
14.4.3. Accessing the Internet
14.4.4. Active Directory-Components
14.4.5. CodeDOM
14.4.6. Components Development
14.4.7. Developing World-Ready Applications
14.4.8. Asynchronous Calls
14.4.9. Creation of Messaging Components
14.4.9.1. Basic Knowledge of Messaging
14.4.9.2. Types of Queues

14.4.10. Windows Management Instrumentation

236

237

237

239

243

244

245

247

247

247

248

249

251

252

253

254

255

256

257

258

258

259

13

14.4.11. Processing Transactions 259
14.4.12. Security 260
14.4.12.1. Basic Security Terms 260
14.4.12.2. Access Security 261
14.4.12.3. Role-based Security 261
14.4.12.4. Cryptography 261
14.4.12.5. Security Policy Management 263
14.4.12.6. Security Tools 263
14.4.13. System Monitoring Components 263
14.4.14. Microsoft .NET Passport 264
14.5. Building Applications 265
14.5.1. ASP.NET 265
14.5.2. Windows Service Applications 266
14.5.3. Windows Forms 267
14.5.4. Design-Time Support 267
14.6. Object Rexx and MS.NET 268

14.6.1. Exposing of .NET Framework Components for Usage with COM 269

14.6.2. Assembly Registration Tool (Regasm.exe) 270
14.6.3. COM Interop 273
14.6.3.1. COM Wrappers 273
14.6.3.2. COM Callable Wrapper 274

14.6.4. Conclusion 279

14

15. Examples of Use
15.1. Doner Dome Restaurant
15.2. High Value Customers Consultancy
15.3. Tourplanning
Summary
Bibliography
MS Library Sources
Microsoft Library .NET Framework Sources
Other Sources:
System Administration Scripting Guide Sources

Microsoft Speech SDK 5.1 Documentation Sources

280

280

281

282

285

288

289

300

307

311

312

15

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Figure 20:

History of Rexx

Snapshot of the MS-DOS shell with uuidgen.exe

Snapshot of GUIDGen.EXE

Snapshot of the window of Start->Run

Snapshot of the Registry Editor

Snapshot of OLE/COM Object Viewer

Snapshot of the Registry Editor with the new key “TestKey”

COM components in different processes

DCOM: COM components on different machines
Timeline of ActiveX
Relations among ActiveX objects and ActiveX clients
Some objects of MS Excel
VTBL with | Unknown and | Di spat ch interface.
Dispatch interface is not supported
Accessing an Object Through the IDispatch Interface
Interfaces that should be implemented to expose ActiveX
Interaction of ActiveX components, CLSIDs and ProgIDs.
IEnumVARIANT interface
Macro Recorder tool

MS Word macro, which recorded that a text is typed.

32

40

40

45

45

46

48

50

50

56

65

66

70

71

72

75

78

82

87

88

16

Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:

Outlook Express 6 with the newsgroup microsoft.public.msagent.

Interaction of OLE object, OLEObject and Script
Snapshot of MS Excel

Snapshot of MS Word

Object Rexx Workbench with the command line
Snapshot of MS Excel

Snapshot of MS Excel

OLE/ActiveX Object Viewer with functions of Qualcomm Eudora
Snapshot of the start page of “rgf_oleinfo.hta”
Snapshot of “RGF_OLEInfo.hta” with compact listing.
Example for DOM

Snapshot of Embedding Object Rexx in HTML.htm.
Error handling with the MSIE.

Snapshot of MSAgents

Snapshot of Merlin

Snapshot of Agent_Overview.rex

Snapshot of the MS Speech SDK 5.1 Help

Speech recognition process flow

Snapshot of MSSpeech_TTS_2.hta

Snapshot of the IBM Object Rexx Workbench with command line.

Speech recognition process

Interaction between Scripting Host and Engine

93

94

105

109

111

114

118

121

122

123

128

131

132

141

143

151

155

156

162

163

166

178

17

Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:

Figure 64:

WSH Object Model

Snapshot of the MS-DOS Shell

Snapshot of the registry with regedit.exe

Snapshot of the Security Policy console.

Snapshot of the start page of the User Accounts
Snapshot of the form for creating a password
WSHNetwork1l.JPG:\\Server =Antares\Public=Eigene Daten
WSHNetwork2.JPG: Shows the new network drive” Z:”
WSHNetwork3.JPG: Shows the network printer
Creation of a certificate

Certificate Snap-In

Signed source code of code 50

MSDOS Shell with the command to sign the script
Message box to verify the script.

Dialog box which occurs after the Verify method is invoked.
Snapshot of Registration field.

ITypelnfo Viewer of the OLE/COM Object Viewer
Microsoft Windows Script Component Wizard.
Differences between Web Site and Web Service

All elements are united in a single file.

Multifile assembly

Single-file assembly and multifile assembly

183

185

188

191

192

193

196

196

197

212

213

216

217

218

221

224

229

233

237

241

241

242

18

Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:

Figure 82:

ADO.NET architecture
Remotingprocess
Messagerouting between sites
Levels of design-time support

lllustration of a registry entry with a reference to Mscoree.dll

249

251

258

268

271

RGF_OLEINFO.HTA with the new created ProgIDs of .NET classes272

Principle of RCW and CCW
Access of a CCW

COM interfaces for the CCW
CCW method call

RGF_OLEInfo.hta: New ProgID “AndyMc.CSharpCOMServer”

274

275

275

276

278

User interface of the cash registering system of project Doner Dome281

User interface of High-Value Customers consultancy
Tourplanning

Microsoft Document Explorer

Microsoft Document Explorer

System Administration Scripting Guide

Microsoft Speech SDK 5.1 Documentation

282

284

289

300

311

312

19

List of Tables

Table 1: OLE Control interfaces

Table 2: Important interfaces for OLE Automation.
Table 3: VBScript code to Object Rexx

Table 4. Methods of the OLEODbject class

Table 5: Type conversion

60

69

90

95

97

20

List of Object Rexx Scripts

Code 1:

Code 2:

Code 3:

Code 4:

Code 5:

Code 6:

Code 7:

Code 8:

Code 9:

Code 10:

Code 11:

Code 12:

Code 13:

Code 14:

Code 15:

Code 16:

Code 17:

Code 18:

Code 19:

Code 20:

Code 21:

WindowsRegistryClass.REX

Init_Instantiation of Word with ProgID.REX

Init_Instantiation of Word with CLSID.REX

Init. WITHEVENTS.rex

UnKnown_without_Arguments.rex

UnKnown_with_Arguments.rex

UnKnown_ldentical_Methodnames.rex

GetObject.rex

GetConstant_GetConstant with name of Constant.REX
GetConstant_GetConstant without name of Constant.REX
GetKnownEvents_AllEventsOfAnApplication.rex
GetKnownMethods_AllIMethodsOfAnApplication.rex
Embedding Object Rexx in HTML.htm
WMI_ListAllServicesOnTheSystem.rex
WMI_Win32_OperatingSystem.rex
WMI_Win32_DiskPartition.rex
WMI_Win32_LogicalDisk.rex
WMI_LaunchANewProcess.rex
WMI_Win32Shutdown.rex
Agent_Intro.rex

Agent_Overview.rex

48

98

99

100

101

102

104

106

108

110

114

118

130

135

136

136

138

139

140

143

150

21

Code 22:

Code 23:

Code 24:

Code 25:

Code 26:

Code 27:

Code 28:

Code 29:

Code 30:

Code 31:

Code 32:

Code 33:

Code 34:

Code 35:

Code 36:

Code 37:

Code 38:

Code 39:

Code 40:

Code 41:

Code 42:

Code 43:

Agent_Events.rex

MSSpeech_TTS_1.rex
MSSpeech_TTS_ 2.hta
MSSpeech_TTS_3_Word.rex
MSSpeech_SR_1 Dictation.rex
MSSpeech_SR_2 CommandAndControl.rex
MSSpeech_SR_3 CommandAndControl_2.rex
WSH_Arg.rxs

WSHController_ OnTheSameMachine.rex
WSHRemoteCalc.rxs
WshController_OnMultipleMachines.rxs
WshControllerWithEvents.rxs
WSHRemoteCalc.rxs

WshNetwork.REX
RunMethodAndSenkeysMethod.htm
WSHRegistry.rex
CreationOfAShortcut.rex
CreationOfAnUrlShortcut.rex
DeletionOfAShortcut.rex
WshEnvironment.rex

WshScriptExec.rxs

FSOAvailableSpace.rex

153

158

161

165

168

169

172

186

189

189

194

195

195

198

200

201

202

203

204

205

206

207

22

Code 44:

Code 45:

Code 46:

Code 47:

Code 48:

Code 49:

Code 50:

Code 51:

Code 52:

Code 53:

Code 54:

Code 55:

Code 56:

Code 57:

Code 58:

Code 59:

Code 60:

Code 61:

FSODriveType.rex
FSOCreationOfANewFolder.wsf
FSOCreationOfATtextfile.rex
FSOFileAttribute.rex
FSOCopyingAFileWithANewName.rex
FSODeletionOfTheFilesAndFolders.rex
DictionaryObject.rex
ScriptWhichlsToSign.wsf

WSH_ Scripting_Signer_SignFile.rex
Signer_VerifyFile.rxs

WSH_ ScriptingSigner_Sign.rex

WSH_ ScriptingSigner_Verify.rex
WSH_EmbeddingAScriptinHTML.htm
WSH_WSC_Test.wsc
WSH_WSC_TEST.rex
WSH_WSC_Remote.wsc
MS_NET_System_Random.rex

MS_NET_AndyMc_CSharpCOMServer.rex

208

209

209

210

210

211

211

214

215

216

219

220

222

229

230

232

273

279

23

List of other Scripts

OtherScript 1:
OtherScript 2:
OtherScript 3:
OtherScript 4:
OtherScript 5:
OtherScript 6:
OtherScript 7:
OtherScript 8:

OtherScript 9:

OtherScript 10:
OtherScript 11
OtherScript 12:

OtherScript 13:

Excel macro for UnKnown_ldentical Methodnames.rex
MS Word macro for code 9

VBS script code for Win32_Service

VBS script code for Win32_LogicalDisk

VBS script code for Win32_Process

VBS script for the demonstration of Win32Shutdown
Macro for MSSpeech_TTS_3_ Word.rex.

solx.xml

Remote.vbs

Sign method with Visual Basic Script

Verify method with Visual Basic Script
RemoteWSC.vbs

testcomserver.cs

103

108

133

137

138

139

164

170

194

219

219

233

277

24

Acronyms

ACF Application Configuration File

ADO ActiveX Data Object

ADSI Active Directory Service Interfaces

API Application Programming Interface

ASCII American Standard Code for Information Interchange
ASP Active Server Pages

ATL ActiveX Template Library

BAT MS DOS batch file extension

CATID CATegory ID

CCW COM Callable Wrapper

CLS Common Language Specification

CLSID CLaSs IDentifier

CodeDOM Code Document Object Model

COM Component Object Model

CORBA Common Object Request Broker Architecture
CRL Certification Revocation List

CSS Cascading Style Sheets

CTL Certificate Trust List

DB DataBase

DCERPC Distributed Computer Environment Remote Procedure Call
DCOM Distributed COM

DDE Dynamic Data Exchange

DEF module-DEFinition file

DHTML Dynamical HTML

25

DISPID DISPatch IDentifier

DLL Dynamic Linked Library

DNS Domain Name Service

DOM Document Object Model

DOS DOS

DTD Document Type Definition

EXE Executable program

FTC Federal Trade Commission

GUI Graphical User Interface

GUID Globally Unique IDentifier

HTA HTML Application

HTML Hypertext Markup Language
HTML HTML file extension

HTTP HyperText Transfer Protocol

I/O0 Input/Output

IBM International Business Machines
ID IDentifier

IDL Interface Definition Language
1D Interface IDentifier

IS Internet Information Services
IPX/SPX Internet Packed Exchange/Sequenced Packed Exchange
IT Information Technology

JIT Just-In-Time

JPEG Joint Photographic Expert Group
JS Jscript file extension

L&H Lernout&Hauspie

26

LAN Local Area Network

LCID LoCal IDentifier

LDAP Lightweight Directory Access Protocol
LPC Local Procedure Call

LPK License PacKage file

MDI Multiple Document Interface
MemberlD Member IDentifier

MFC Microsoft Foundation Classes
MIDL Microsoft Interface Definition Language
MS MicroSoft

MSDN Microsoft Developer Network
MS-DOS MicroSoft-Disk Operating System
MSIE Microsoft Internet Explorer

MSIL MicroSoft Intermediate Language
MTS Microsoft Transaction Server

MVP Most Valuable Professional
NetBIOS Network Basic Input/Output System
OCX ActiveX file extension

ODL Object Description Language

OLE Object Linking and Embedding
PDF Portable Document Format

PE Portable Executable

ProgID Program IDentifier

RAD Rapid Application Development

RC Resource Compiler

RCW Runtime Callable Wrapper

27

RegDB Registration DataBase

REX Object REXx file extension

Rexx REstructured eXtended eXecutor

ROT Running Object Table

RPC Remote Procedure Call

RXS ObjectRexxScriptFile extension

SAPI Speech Application Programming Interface
SDK Software Development Kit

SGML Standard Generalized Markup Language
SOAP Simple Object Access Protocol

SP3 Service Pack 3

SQL Structured Query Language

SR Speech Recognition

SSI Single Sign In

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol
TLB Type Library file extension

TTS Text-To-Speech

UDDI Universal Discovery Description and Integration
UDP User Datagram Protocol

ubDT Uniform Data Transfer

uDT User-Defined Type

UNIX UNIpleXed Information and Computing System
URI Uniform Resource Identifier

URL Uniform Resource Locator

)

United States

28

uuiD Universally Unique ID

VB Visual Basic

VBA Visual Basic for Applications

VBS Visual Basic Script file extension
VBScript Visual Basic® Scripting Edition
VTBL Virtual function TaBL

WAN Wide Area Network

WAV Wave file extension

Win Windows

Windows Me Windows Millennium Edition
Windows NT Windows New Technology
Windows SE Windows Standard Edition

Windows XP Windows eXPerience

WMI Windows Management Instrumentation
WSC Windows Script Components

WSC Windows Script Component file extension
WSDL Web Services Description Language
WSE Windows Script Engine

WSF Windows Script Host file extension
WSH Windows Script Host

WSH Windows Script Host file extension
WYSIWIG What You See Is What You Get
XML eXtensible Markup Language

29

Preamble

This master thesis with the subject “Automation of Windows Applications with Object
Rexx” is a reference work. It will help in obtaining solutions to Automation problems
with Object Rexx. Object Rexx code examples explain many fields of the Automation
technology. This paper was written for the Associate Professorship of Computer
Science in Economics Ill and New Media of Prof. Dr. Rony G. Flatscher at the

University of Augsburg.

First, there is an introduction to the Component Object Model. After that, the ActiveX
Automation technology is explained theoretically and then practically with Object
Rexx samples. Often the Object Rexx samples are explained with the source code of
another language like Visual Basic Script. It will help solve Automation problems with
Object Rexx through the comparative analysis of possible solutions. This is
necessary because in the most cases there is only Visual Basic Script and no Object
Rexx instruction available. Also included in this paper is a list of sources for more
information, a description of tools and an introduction of the embedding of Object
Rexx in HTML/XML. The Object Rexx OLEChj ect class is described with examples.
The Automation technology is explained by Microsoft Office components, the MS
Agent technology, MS Speech technology, Windows Management Instrumentation
(WMI) and Windows Script Host (WSH). These technologies are described
theoretically and then practically with Object Rexx scripts. Then there is an
introduction to MS.NET and a description of access possibilities of MS.NET functions
with Object Rexx or other languages via OLE. This is significant because Object
Rexx has no language compiler for the .NET Framework. In the end are some
examples, which describe how to use this technology in the economical environment.

The terms ActiveX and OLE are used synonym. All Object Rexx scripts have Visual
Basic, Visual Basic Script or JScript codes as draft. Each Object Rexx script can also

be written with these languages.

The scripts in this master thesis were programmed with Object Rexx version 2.1.2.
on a MS Windows XP Home machine (German). New OREXXOLE.DLL files are
needed for some chapters. MS Word 2002 (German), MS Excel 2000 (German), and

30

MS Internet Explorer 6.0 (German) were used. Further software, which is necessary,

is described in the sections.

The author says thank-you to Times L. Richardson for marking this paper, and to the
development office of the language Object Rexx that supported the author patiently

and competently.

Send comments to this address: Florian.Helmecke@Web.DE

Document Conventions:

In this paper Object Rexx script code is written in a framed field:

| Obj ect Rexx script code |

Comments have a green font colour.

‘Ooj ect Rexx script code conment |

Text, written between quotation marks, is written in blue font colour.

‘Ooj ect Rexx script code text witten between quotation nmarks |

Other script codes like Visual Basic Script code is used to explain the Object Rexx

code. It is written with a coloured background.

' Qher script code |
Folder specifications or commands like method names, which are written in the

normal text, are written with Couri er New.

Sometimes in the lettering of a figure “Snapshot” is written. That means that the

content of the display was copied to the clipboard by pressing Ctrl, Al't and Pri nt.

31

1.0Dbject Rexx

In 1979 Rexx (REstructured eXtended eXecutor) was developed by Mike F.
Cowlishaw (IBM-Fellow). It was the successor for the cryptical script language EXEC

for IBM mainframes. It has a simple and easy to learn syntax.

Since the beginning of the 90s an object-orientated version of Rexx was developed.
This language Object Rexx is fully compatible with the classic Rexx and is internally
built object-orientated. Procedural commands are internally converted to object-
orientated commands. Object Rexx has a powerful object model and is available for a
lot of operating systems like OS/2, AIX, Linux or Windows. Object Rexx uses an

interpreter and is interactive. [Fla02]

Object Rexx also supports messaging, polymorphism, classes, objects, methods,

inheritance and multiple inheritance. [IBM03]

Figure 1 gives a survey of the history of Rexx.

32

BEH L W =P ysignd) prepusys
| MY @ pancidde wya W
4300 24U PEPnoU g o

W3S A 3 pue
SavgaN U0y QR Y

CODS 104 e
PUS 334 U PERNSU KT Y

History of REXX

30 pue
O30 Ul PEpnioul woxg

TR =R [l Tl e |

J/0S LY PERNCU W T o

=ben Buey
FINPEI0] WD) 2 Wy PEUnoU e [yg|

dnoug Bnsnayod pERSIS A9 300024
UD e T Y IEUSR S uape S duy g uou 13 g

SoFETWaRE SOLU IO SER SO

1= J30A Y PERNEOUL 3 Y

__.“..__

re-

(] L
] Ll

__.__.__ fp=urEqu gl AgEEEns SpEw uoREpuEw Sdw| 3 4

[T
=y S0 SR A PRy signd uogeoyoads 1 4

1383 1383 1330 1333 1334 1935

History of Rexx ™

1385 1327
Figure 1:

1353

1373

! Taken from [IBMO3]

33

2.The Component Object Model

This chapter describes the Component Object Model with its interfaces, the COM
Library, some basic concepts, COM clients and server, the CLSID and how to get
one, the registry and ways to modify it, DCOM and COM+. This chapter concerns

elements which are used for technologies described later in this document.

The Component Object Model (COM) is a technology from Microsoft that is object-
based, RPC-based [Fla03], distributed and platform-independent. COM offers an
object model that makes it possible for objects to interact with other objects. The
objects could be in the same process, in another process or on a remote machine.
COM is also a binary-standard, which means that the objects can be written in
different object-orientated languages and differ in their structure. Examples for such
languages are C, Basic, Java or Object Rexx. COM is the basis for OLE (Object
Linking and Embedding) or later called ActiveX?. [MLCOMa]

Since Windows 2000 COM supports asynchronous calling, the control returns without
delay after a given command and the client can continue its work while the command
is worked on. [MLMMGa]

COM objects can be created with the Windows Script Components of Windows Script
Host® [IBMO2].

2.1. COM Interfaces

Interfaces are important because they enable the access of objects [MLCOMb].
Because it is the most important interface, the Unknown interface is also contained in
this item. [MLCOMe]

Methods are the functions of the interfaces [MLCOMc]. Interface means in this case
that it pertains to a group of functions [MLCOMb]. Clients can access the COM objects
(also-called COM components [MLCOMa]) with a pointer to an interface. In this way

the client can use the methods of the interface [MLCOMb]. The object must support all

2c.p. 3.
%c.p.13.12.

34

methods of that interface. Otherwise, there is an error message if a method is used
that is not supported by the object [MLCOMc].

The COM interfaces are unchangeable and each of them has its own interface
identifier (1ID), a subset of GUID (Globally Unique IDentifier), which allows checking

an object if it supports an interface and makes it unique [MLCOMd].

All interfaces inherit their functions from the | Unknown interface. Inheritance means

that the following interfaces include all methods of the parent interface.

The | Unknown interface has three core methods: Queryl nterface, AddRef, and
Rel ease [MLCOMe].

The Queryl nterface method makes it possible for the client to access other

interfaces and to navigate in an object [MLCOM(].

There are four conditions for this method:

It must be transitive, which means that if a query from one interface to a second
interface is successful and if a query from that second interface to a third interface
is successful then a query from the first interface to the third interface must be also

successful.

* The second requirement is that it is reflexive, which means that it must be
successful if a pointer is held on an object and queried to that interface.

* It must be symmetric. If a query with a pointer to one interface is successful for
another, a query through the obtained pointer must be successful for the first

interface.

» It is static. That means if a call to Queryl nt er f ace for a pointer has success in

pointing an interface the first time, it is successful the second time again.

In a decentralized system, it is not always known, if an object is still needed or not
because there could be several clients who access an object. To solve this problem
COM uses the reference count [MLCOMg].

By an access, the reference count for an interface on an object is raised with the
AddRef method [MLCOMnh]. Otherwise, the Rel ease method reduces the reference

35

count. The memory is freed from the object if the reference count is zero and no

client accesses this object [MLCOMi].

2.2. The COM Library’

The Library is initialized, respectively uninitialized, through each process that uses
COM.

The COM library consists of DLL (dynamic linked library) and EXE files and it

contains data about the following topics.

* A unique class identifier (CLSID) helps to locate the server that implements a

class and where it is located.

» A standard mechanism makes it possible for applications to control the memory of

their processes.

* In the library are API (application programming interfaces) functions that enable

the programming of COM applications for clients and server.

* Remote procedure calls when an object is running in a remote server or local

server.

2.3. Further Iltems®

This chapter describes some basic concepts to support the understanding of COM.

These concepts are process, thread, apartment and monikers.

2.3.1. Process

A process is a collection of virtual data, memory space, code and system resources.
The operating system makes it possible for processes to operate with the Microsoft’s

Remote Procedure Call (RPC) to communicate with each other.

* This section uses [MLCOM;]
®>The following definitions refer to [MLCOMK]

36

2.3.2. Thread

A thread is an executed code in a process. Multithreaded applications are in danger
of races (one thread has finished faster than another thread which depends on it) and

deadlocks (each thread is waiting for another thread).

2.3.3. Apartment

A COM object is contained in one apartment. There are two types of apartments.

2.3.3.1. Single-Threaded Apartment

COM objects contained in the apartment can only receive method calls from that

thread that pertains to the apartment. The method calls are synchronized.

2.3.3.2. Multi-Threaded Apartment

COM objects contained in the apartment can receive method calls from one or more
threads that pertain to the apartment. The model is called free-threading and the calls

are synchronized by the objects.

2.3.4. Monikers

A moniker is used to identify an object. It is an object which enables a component to
get a pointer to an object and the moniker functions as a name which unambiguously
identifies a COM object [MLGLOd]. This is called binding. A moniker is contained in a
DLL and implements the | Moni ker interface. There are moniker provider and
moniker clients. The first is a component that supplies monikers identifying its objects
to moniker clients and the second is a component that accesses a moniker to obtain

a pointer to another object [MLCOMah].
There are the following monikers [MLCOMai]:
* Monikers used for almost any object in any location:

* File monikers are used to identify any object that is contained in its own file
[MLCOMaj].

» Composite monikers are monikers that can characterize the relation among

other monikers and that are a composition of other monikers [MLCOMak].

37

e Item monikers identify an object that is included in another object
[MLCOMal].

* Monikers that are mainly used inside OLE:

* Anti-monikers are used for the generation of new moniker classes
[MLCOMam].

» Pointer-monikers are used for the identification of an object that can occur

only in the running or active state [MLCOMan].

» A so-called Class moniker can identify classes. They bind to the class object of the
class [MLCOMao].

2.4. COM Clients and Server®

This item describes the interaction of COM server and client. Initially this paper
explains how to get a pointer to an object. A basic element of COM is the CLSID. The
properties of the CLSID and how to create it are explained. Finally the

communication of objects is discussed.

A COM server supplies services to clients, which can be demanded with a pointer on
the COM interfaces. There are two kinds of servers, the out-of-process and the in-
process server. The out-of-process server runs in an EXE file in a remote machine or
in a local machine. The in-process server runs in a dynamic linked library and is able

to be implemented within an EXE process to use it for remote machines.
COM allows the employment within networks.

2.4.1. COM Client Getting a Pointer to an Object’
This section shows the possibilities how an object can be instantiated.

A client uses the services of a COM server. This is enabled by the methods of the

interface of the server [MLCOMI].

®This section uses [MLCOMI|
"This section uses [MLCOMmM]

38

There are four ways how clients can instantiate an object:

* Objects pass their interface pointer to the client directly with the implemented

interface of another object for bidirectional communication.
* An object is called with its CLSID (CLaSs IDentifier).

* An API function in the COM Library is called to create an object of a

predetermined type

» The method of an interface is called to create another object. Then an interface
pointer on that other object is returned

2.4.2. The CLSID

The CLSID is an important basic concept that is used very often in further chapters.

For this reason an explanation of how to create a CLSID, is included.

The CLSID (Class identifier) is a globally unique identifier (GUID). It is compounded
with an OLE class object. For a server application it is recommended that the CLSID
be registered if a class object generates more than one instance of the object.
[MLCOMN]

COM enables a client to launch a server and to have access to the interfaces
methods through its CLSID. The server is like a COM class. This class is an
implementation of a group of interfaces and can be used by different applications.
The code is stored in DLL's or in executable files. The CLSID identifies the COM
class and contains information of the location of the DLL or EXE code. If the server
and the client are on the same system, the CLSID is the only thing needed. On
distributed machines, a registry helps the server to be used by a client. A server
signs on its location in the registry and can be called with the CLSID [MLCOMo].

The server is responsible for implementing the code for a class object. He is also

responsible for registering its CLSID and for security [MLCOMp].
A class can be registered in the registry in the following ways: [MLCOM(q]

* Registering at installation,

39

» self-registration,

 registering of objects in the ROT (running object table),
* installing as a user account or as a Win 32 service,

* registering a running EXE server.

A CLSID is a GUID (Globally Unique IDentifier). That means that there is no other
class with the same CLSID and in this way there cannot be any software collisions.

As well if there are the same names for a class, the CLSID’s are different [MLCOMr].

2.4.2.1. Creation of CLSID with Uuidgen.EXE®

This utility is part of the Visual Studio and helps to create unique CLSID’s to prevent
name collisions. The command uui dgen /n5 in the shell prompt® like in figure 2
offers five CLSIDs.

® This section uses [MLCOMT]
? Start->Run->Command

40

B Fingabeaufforderung -3 ﬂ

C:sTest uuidgen ~nbS

A6622d58—eBdS—4d32-h387-e2eP6523fchbh
254bh8b43-2210-45%a8-h4dde—af37f75e653
63631hA6—4824—-4826—-hb5c—18%hif4ed503
4805cicB-dace—4344-9e@8—eBelllbbabd
2Ehffcb5—Bc?7-458e—8c35—cf567253cafd

C:nTest>

Figure 2: Snapshot of the MS-DOS shell™ with uuidgen.exe'
2.4.2.2. Creation of CLSID with GUIDGen.EXE

Another tool to generate CLSID’s is GUIDGen.EXE which is part of the Visual Studio.
Figure 3 shows the user interface of GUIDGen.EXE creating a new CLSID [MLMMGDb].

Create GUID =] o/Ed

Chooze the desired format belaw, then zelect "Copi* to Copy |
copy the rezultz to the clipboard [the results can then be

pasted inta pour zource code). Choose "ExiE when -
e Few GUID

GUIE Farmat E st

(™ 1, IMPLEMEMT OLECREATE]..]
~ 2 DEFINE_GUIDL.]
" 3 ztabic const shuct GUID =4 .}

&+ 4 Fegisty Format [ie. {ummems-nes . s H

Fesult

{ES50F337-CCBC-47fc-AB 38-ADB2F2CEBR1 A}

Figure 3: Snapshot of GUIDGen.EXE"

1 part of MS WindowsXP
M part of MS Visual Studio

41

2.4.3. Communication of Objects™

If a client wants to call an object this object could be in-process or out-of-process.

In the case of in-process the client reaches the object directly. In the other case, out-
of-process, it reaches only a proxy object supplied by the original object or COM.
This proxy object implements the procedure call for the original object with all
necessary parameters including the pointers. This procedure is called marshalling
(coding [Fla03]). Marshalling means the packaging and the sending of interface

method calls across process or thread boundaries [MLGLOa].

In the case of an in-process, the caller for an object is for the server the client. In the
case of an out-of-process situation, the caller is a stub. This stub gets its instruction

from the proxy. It unmarshals (decoding [Fla03]) the information and calls the object.

2.5. Defining COM Interfaces™

COM supplies many interfaces the developer can use. But if the supplied interfaces
do not satisfy the requirements of an application the developer has to program its
interface by himself. This chapter shows the prerequisites for programming an

interface and which properties an interface must have.

The | Unknown interface is the interface from which all interfaces are deducible. After
defining an interface it is described in MIDL (Microsoft Interface Definition Language),
compiled and registered. To define interfaces the following things are required: MS
Windows NT version 4.0 or later or Windows 95. A 32-bit C/C++ compiler with the

MS Platform Software Development Kit is also required.
The following steps are necessary to program an interface:
» Decision about a type-library-driven marshalling or a proxy/stub DLL.

» Write a description of the interface in an interface definition language (IDL) file. In

an application configuration file (ACF) specific details about the interface are

'2 part of MS Visual Studio
3 This section uses [MLCOMSs]
““This section uses [MLCOMt]

42

written. In the case of a type-library-driven marshalling a library statement is
added.

With the MIDL compiler type library and header file, or interface identifier file, DLL

data file and header file and proxy/stub files are generated.

Dependent on the chosen marshalling method, a module definition (DEF) file is
written. The MIDL-generated files are compiled and linked into a single proxy DLL.

The interface is registered in the system registry or the type library is registered.

Interfaces must have the following features: [MLCOMu]

They must be unchangeable. That means that after creation no part of the
interface might be mutated.

HRESULT must be returned for all methods. HRESULT shows if an action was a

success or a failure™.
The interfaces have a unique interface identifier (1ID)

The data types have to be remotable. If this isn't possible, marshalling and
unmarshalling routines have to be created. If needed, a pointer to the | Unknown

interface is created.

The string parameters in interface methods have to be Unicode.

Remotable interfaces are important because of the distributed COM. MIDL makes it

possible that the interfaces are used outside of the machine, process or the thread.
[MLCOMV]

Important for an efficient interface is the quantity of the data that is transferred in a

method call and the rate of method calls across the interface border. [MLCOMv]

2.6. The Reqistry

The registry is the system database for the operating system with data about a lot of

areas of the system. First it is briefly described and then several access possibilities

®cp.4.7.3.

43

are shown with tools like the Registry Editor, the OLE/COM Object Viewer or via an
Object Rexx script.

The registry of Windows contains information about the users of a system, software
and hardware configuration. The registry is searched by a client for information about

components. Any application can read from and insert data to the registry [MLCOMw].

There is also information about the COM objects. When the registry is asked for a
ProgID (Program IDentifier) or the CLSID, the location of the EXE or DLL is given
back. Then the server is either loaded into the process space of the client application
in case of in-process components or in case of remote or local servers the server is
started in its own process space. The server returns a reference to one interface of

the components after he created an instance of this component [MLCOMw].

The hierarchy of the registry is structured as named values or single default values,
subkeys and keys. The keys get the name by backslash-delimited strings and can
have one or more values consisting of binary data integral values or strings
[MLCOMx]. The registry of Windows XP has the following root keys:
HKEY CLASSES ROOT, HKEY CURRENT USER, HKEY LOCAL_MACHI NE,
HKEY_USERS and HKEY_ CURRENT_CONFI G which can be seen with the Registry
Editor and the root key HKEY PERFORMANCE DATA (access of performance data)
which can’t be seen with the Registry Editor [MLWSIa].

Before information can be added to the registry a key must be opened. For this, it is
necessary to offer a handle to a key that is open. There are, through the system,
predefined keys. It is possible that the usage of the handles differ from platform to
platform. [MLWSIa]

The HKEY_CLASSES ROOT contains HKEY that is responsible to switch to a registry
key. The whole phrase allows the configuration of the CLSID by the user in the path
HKEY_CLASSES ROOT\ CLSI D. The information that is stored under this key, is used
by Shell and COM. Another key is HKEY_CURRENT_USER. With this key, the
preferences of the user can be changed. These preferences could be colors, network
connections, application preferences or environment variables.
HKEY_LOCAL_MACHI NE sets the physical state of the computer including the current

configuration data and system information. HKEY_USERS describes the default user

44

configuration for the current user and new users. The HKEY_CURRENT _CONFI G key
is an alias for HKEY_ _LOCAL_MACHI NE\ Syst em Cur r ent Cont r ol Set \ Har dwar e

Profil es\ Current and offers information of the current hardware profile. [MLWSIa]

COM supports the self-registration with the functions Dl | Regi st er Ser ver and

D | Unregi st er Server for the DLL. [MLCOMy]

Each time an application is loaded, it should control whether the CLSID and the
application's CLSID are present in the registry. If this is not the case, it should be
registered as the original setup. It is also checked if the path containing server entries

and points to the location where the application is installed are correct. [MLCOMZz]

Container applications that permit linking to embedded objects, server applications
and container/server applications installed on the system must sign on their data into
the registry. [MLCOMaa]

It is very time-consuming to check each component if it supports the interface. To
solve that problem component categories are installed which are allocated with a
GUID named CATID (Category ID). Components that support each interface of a
component category could register themselves as member of that category. It is also

possible that a component supports various categories [MLCOMab].

2.6.1. The Registry Editor®®

With the Registry Editor it is possible to edit and view the registry.

Dependent on the operating system the file regedt 32. exe (Windows NT) or
regedi t. exe (Windows 95, Windows 98 and Windows XP) is used. Open the
St art menu, select Run and insert Regedi t on a Windows XP machine to launch
the Registry Editor. The editor contains information about the registry and its
organization including the CLSID’s. The CLSID’s are presented in the form

{XXXXXXXX- XXXX= XXXX- XXXX- XXXXXXXXXXXX} .

Figure 4 shows the “Run” window of a Windows XP machine where the file name of

the Registry Editor is inserted.

'®This section uses [MLCOMac]

45

Ausfiihren Bx)

A Geben Sie den Mamen eines Programms, Ordnets,
- Dokuments oder einer Internetressource an.

Offrien: | regedit| i v]

[o) 4] [abbrechen] Lgurchsuchen...]

Figure 4: Snapshot of the window of Start->Run®’

The figure 5 contains a snapshot of the Registry Editor with some opened keys.

|8 Registrierungs-Editor 1=/=kd

Datei Bearbeiten Ansicht Favoriten 2

= B} arbeitsplatz Mame Typ Whert
@ (2 HKEY_CLASSES_ROGT [aB)¢5tandard) REG_SZ {wert nicht gesetzt)
(] HKEY_CURRENT_USER. [&#]ProxyEnable REG_D,., 000000000 (03

(2] HKEY_LOCAL_MACHINE
(#-(Z HKEY_USERS
=[] HKEY_CURRENT_CONFIG
=] {2 Software
i D Fonts
= D Microsoft
i =3 windows
=23 cun

=21 system
= CurrentControlSet
=] [:I Control
=1 Enum
@[3 pal
-1 ROOT
@] sw
[EREE R
= MIC1394
[1001417140CADL

%] ()
ArbeitsplatzlHKEY_CURRENT COMFIG)SoftwarelMicrosoftiwindawsiCurrentersioniInternet Settings

Figure 5: Snapshot of the Registry Editor*®

Y part of MS Windows XP
18 part of MS Windows XP

46

2.6.2. The OLE/COM Object Viewer™

Another more comfortable possibility to watch the registry is the OLE/COM Object
Viewer. It shows the CLSIDs and the COM classes in the registry on the machine.

COM classes and other settings can be configured including DCOM and security
settings. The COM classes can also be tested, activated remotely or locally and the
supported interfaces can be shown. The content of the type library can be seen. The
OLE/COM Obiject Viewer can be downloaded from the Microsoft Homepage® and
installed on the machine. The figure 6 shows the OLE/COM Object Viewer with the

_Wor kbook interface of Excel with interface, CLSID and Type Library information.

[OLE/COM Object Viewer
File ©Object Wiew Help

2|7 & Bl daf

=1 [&] Object Classes || | ieerface A\Afarkbook
=1 [&] Grouped by Companent Category [| 1 {0002080.4-0000-0000-C000-000000000046}
+ @] MET Category
4 é Absolute Mode Capable Touch
+ Eﬁ] Active Scripting Engine with A
+-[&] Automation Objects |
+-[&] Contral
+-(&] Desktop Bands
+-[&] Document Chjects
-1 [&] Embeddable Objects
+ ﬁn {00030000-0000-0000-C0
@ {00044551-0000-0000-C0
+ él {000495C4-0000-0000-C0
@ {EATBAETO-FEEE-11CD-A
+ él {EATBAET1-FE3E-11C0-A%
£ ég{ Audiorecorder
] égi Bitmap

Fegigty]

Interface =
400020804-0000-0000-_000-000000000046} = _Waorkbook
ProxyStubClsid = {00020424-0000-0000-C000-000000000046¢
ProseyStubClsid32 = {00020424-0000-0000-C000-000000000046}
TypeLib [<no name =] = {0002081 3-0000-0000-C000-000000000046}
Typelib [Wersion] = 1.3
CLSID =
400020424-0000-0000-C000-000000000046} = PSOAINterface
InprocServer = oleZdisp.dll
InprocServer3Z2 [<no name =] = oleaut32.dll
InprocServer3Z [ThreadingModel] = Both
InprocServer32 [InprocServer3Z] = KeGCIRUSi=+W=msky_tIMAIN_FEA =MEKDYSURFIHA*L xel)y
Typelib =

2 ﬁ GeEmheddetvindatlCla 1000208 13-0000-0000-CO00-000000000046}
2 Link Bar 1.0 = Microsoft Excel 5.0 Object Library
+- 00X List Wiew w7
a ’2(?% Lt Buntirne Conteral win3Z = CAProgramme!Microsoft Office|Officelx1Sde32 . olb
+ éﬁ Mediendip)
(T IR

+I @ Medendip win3Z = C:\Programme’\Microsoft OFficel Officel XLSEN3Z. OLE
+ IE?; MetastreamCtl Class CELAGS =0
*_ g MfataStraam.CtI Class - HELPDIR = C:\ProgrammeiMicrosoft OFficel Office),
+ @&, Microsoft Clip Gallery 1.3 = Microsoft Excel 9.0 Object Library
-8 Microsoft DDS 0

BT I :
= é?% Microeotk Dfsming-1 .01 win32 = Ci\ProgrammeiMicrosoft OfficelOffice)\ EXCELS, OLE
#-@ Microsoft Excel 4.0-Makro ~FLAGS =0

@I Microsoft Excel-Arbeit:

- HELPDIR = C:\ProgrammeiMicrosoft OFficel OFfice),

? IClientSecurity
? IConneckionPointCont:
© IDataobiect

? IDispatch
? IHlinkTarget
? IMarshal
% IMsolnplacsPrintPresvie |
£:| | (>
Ready
" Micrasoft wiard - H DataBook Universa, . | a visual Studio (NET ..o | @ The Microsoft OLE]. ., [5E E.‘!‘g %:B 11:50

Figure 6: Snapshot of OLE/COM Object Viewer®

% This section uses [MS98]
20 http://www.microsoft.com/com/resources/oleview.asp

%L can be downloaded from the Microsoft Homepage

47

2.6.3. The WindowsRegistry Class**

The W ndowsRegi stry class enables Object Rexx to modify and query the
Windows registry and to delete or add items. Code 1 demonstrates some features of

the W ndowsRegi st ry Class.

First the Regi st ry object is created. Then the handles of the root key and of the
current key are shown. The key “TestKey” is generated in the key
HKEY_CURRENT USER with the Creat e method and some values and types are
defined with the Set Val ue method. After that these values and types are taken with
the Get Val ue method and its suffixes Dat a and Type. The Del et eVal ue method
deletes the named value “Nanel” und the Del et e method erases the whole key
“Test key”. At least the directive : : REQUI RES W nsystm cl s is needed because
the W ndowsRegi stry class is not a built-in class and the W ndowsRegi stry

class information is therein contained.

reg = . WndowsRegi stry~New -- Creation of the registry object
SAY "The handl e of the root key is: " reg~CLASSES ROOT
SAY "The handl e of the current key is: " reg~CURRENT_KEY
SAY oo "
reg~Create(reg~Current_User, "Test Key") -- The key "TestKey" is created
reg~Setval ue(,"", "Keyval ue") -- Default val ue
-- Other values are added
reg~Set val ue(, "Nanmel", " 0", " Bl NARY")
reg~Set val ue(, "Nanme2", "1234", " NUVBER")
reg~Set val ue(, "Nane3", "Val ue3", " EXPAND")

-- Messagebox
CALL RxMessageBox "Start the Registration Editor to watch the " -
"created entries!", "Information", "OK', "I NFORVATI ON'

-- Show t he val ues and types
Stem = reg~Getvalue(,"")
SAY "Default value:" stem data
SAY "Default type: " stemtype
Stem = reg~CGetval ue(, "Nanel")
SAY "Nanel val ue:" stem data
SAY "Nanel type: " stemtype

2 This section uses [IBMO1, p249ff]

% This section uses [IBM01a]

48

Stem = reg~Cetval ue(, "Nanme2")
SAY "Nane2 val ue:" stem data
SAY "Nane2 type: " stemtype

Stem = reg~CGetval ue(, "Nane3")
SAY "Nane3 val ue:" stem data
SAY "Nane3 type: " stemtype

reg~Del et eVal ue(, "Nanel") -- Nanel is deleted
-- Messagebox
CALL RxMessageBox "Nanel is deleted!™, "Information", "OK", "I NFORVATI ON
reg~Del ete(reg~Current _User, "Test Key") -- The Key "TestKey" is deleted
-- Messagebox
CALL RxMessageBox "The Key TestKey is deleted!", "Information", "OK", -
" | NFORVATI ON"
;P REQUI RES "wi nsystmcls" -- Loads the WndowsRegistry class definition
Code 1: WindowsRegistryClass.REX*

Figure 7 shows the Registry Editor with the new created key “Test key” (small circle)

and its values (big circle).

o Registrierungs-Editor E]@

Datei Bearbeiten Ansicht Fawariten 7

= B prbeitsplatz Typ
- [[1 HKEY_CLASSES_ROOT L_a,l}j(standard) REG_SZ Keyvalue
(=1 HKEY_CURRENT_USER RE]Mame1 REG_EINARY 30
z :
; L+. g EESDIEE;'B”“ [B]namez REG_DWORD 00000044z (1234)
- [ab
: Names3 REG_EXPAND_SZ Yalued
[Console L-'_:l Ame 3 E e

@[Control Panel

: D Environment

- @[] Identities
[InstallLocationsMRL
- [kevboard Layout

: CI Metwork

- @[] note-Tt

- [Printers

([RemoteAccess

- -[] sessionInformation

Program Eroups
| Volatlle Environment

: L+I D Windows 3.1 Migration Status
(2 [:l HKEY_LOCAL_MACHIME

-3 HKEY_USERS

-2 HKEY_CURRENT_CONFIG

|
2 B

arbeitsplatzHKEY CURRENT_USER)Testkey

Figure 7: Snapshot of the Registry Editor with the new key “ TestKey” *

** Modelled after [IBMO1a]
% part of MS Windows XP

49

2.7. Distributed COM (DCOM)?°

DCOM is an extension of COM. It enables data transfer between objects which are
located on machines which are distributed in a LAN, WAN or over the Internet. This
section contains comments on DCOM, CORBA, and COM components in different

processes, to COM components on different machines and to the features of DCOM.

Distributed COM supports the communication of objects in networks like the Internet,
WAN or LAN. It adds on COM and extends it. DCOM is available for Windows, Apple
Macintosh and all major UNIX platforms. The ActiveX Consortium manages DCOM.

DCE RPC (Distributed Computer Environment — Remote Procedure Call) is the
fundament of DCOM. In this way, DCOM is able to be adapted to other DCE RPC
platforms. Virtual machine environments like Java or platform-neutral development

frameworks can be integrated with DCOM .
CORBA and DCOM

The Common Object Request Broker Architecture (CORBA) is a further standard for
distributed object computing. It has an abstract object model with components and
interfaces. Like DCOM it has standard mappings from the abstract object definition to

programming languages.

The so-called Object Request Broker of CORBA transmits and supervises messages
between the objects. CORBA is unlike DCOM platform-independent. Both models

can be used as server-side component model [Br02].

2.7.1. COM Components in different Processes?’

If a client wants to communicate with a component in another process, COM
intercepts the call and passes it on to the other process according to the security
provider and DCE RPC with a LPC (Local Procedure Call).

% This section uses [MLDCOa]
" This section uses [MLDCOa]

50

This is illustrated in figure 8.

COhd

COhd

Cliert run-time run-time Componert
Security Security
Provider BIEE (RG Provider BIEE (RG
LPC - LPC

2.7.2.

Figure 8:

COM components in different processes®

COM Components on different Machines?®

In the case of different machines for the client and the component, DCOM

communicates with a network protocol by using a protocol stack. This is illustrated in

figure 9.
Cliert cor_m cor_m Component
run-time run-time
security | nee ppe security | nee ppe
Provider Provider
FProtocol Stack FProtocol Stack
.,
=,
™ DO metark-
protocal
Figure 9: DCOM: COM components on different machines®
31
2.7.3. Features of DCOM

COM tools and components can be used for DCOM and reduce the expense on
development. It is also possible that components developed for distributed use can

be reused in the future. This section describes the features of DCOM.

% Taken from [MLDCOa]
This section uses [MLDCOa]
% Taken from [MLDCOa]
% This section uses [MLDCOa]

51

DCOM ensures that a client connects to a component and it does not matter if the
component is in the same process or anywhere in the Internet. There are no changes
in the source code and it is not necessary that the program is recompiled.

Languages like Java, C, Delphi or Basic can be used for DCOM. Unfortunately
DCOM is not supported by Object Rexx [IBM01lb,p154] and there is actually
(December 2002) no planning to change this [Doe02].

To check if a client is still active, DCOM uses a pinging protocol. The machine of the
client sends a periodic message and if there are three ping periods without receiving
a ping message the connection is interrupted. The reference count is reduced to zero

and the component is freed.

DCOM enables unidirectional and interactive symmetric communication between

peers and between servers and clients.

DCOM offers scalability, which means the possibility for a distributed application to
grow if data and the number of users grow. If the number of users and the amount of
data is reduced, the distributed application could be small.

DCOM uses UDP (User Datagram Protocol) as transport protocol, which is part of the
TCP/IP (Transmission Control Protocol/Internet Protocol). There are also other
protocols supported like IPX/SPX (Internet Packed Exchange/Sequenced Packed
Exchange) or NetBIOS. To reduce the number of network round trips DCOM

supports batching to bundle several method calls.

If the number of users and data grows, possibly it is necessary to distribute the load
among multiple server machines. That is called load balancing. It is called static load
balancing if there are always the same users who run on the same machine the
same application. DCOM’s location independence makes it possible that different
servers are chosen for different users. Another kind of load balancing is the dynamic
load balancing. That means that the referral component uses information about
statistics, network topology and server load to allocate transparently the client to the

most adequate server.

52

2.8. COM+ (Component Service)*

COM+ is a development of the Microsoft Transaction Server (MTS) (technology for
distributed applications [MLMTSa]) and the Component Object Model. Content of this
section are the new features of COM+ and the new features with regard to the

creation of applications.

COM+ is based on MS Windows 2000 and able to program distributed, enterprise-
wide and mission-critical applications, which can also run on Windows 95, Windows
98 and Windows NT systems. DCOM is flowed into COM+ and both are then not

supported by Object Rexx and there is actually no planning to change this [Doe02].

2.8.1. New Features of COM+33

With installation of COM+ new features are offered which are listed below:

» COMH+ library or server applications can be enabled and disabled and COM+

server applications can be paused and resumed.

* COM+ supports COM+ partitions. With this technique, it is possible that various
versions of COM+ applications are configured and installed on the same machine.

» Private components can be created so that private applications cannot be
accessed from outside the application. Nevertheless, they still take part in all

COM+ services.

» Application Recycling enables the automatically shutting down of a process and
restarting it if there are problems with this process.

» COM+ enables components to be moved and copied, which means that a single
physical implementation of a component can be configured for many different

times.

* COM+ application recycling integrates with COM+ application pooling service and

adds scalability for single-threaded processes.

¥ This section uses [MLCO+a]
* This section uses [MLCO+b]

53

» Corresponding to performance, scalability, helping to increase concurrency and

need, an application's isolation level can be configured.

» COM+ allows its applications to be implemented as NT service. In this way the
application's dependent services can be started automatically, the COM+
application can run as local system and the server can be automatically started or

restarted.

« The Component Services checks if there is enough memory before creating an

object to improve the reliability.

* Process dumping allows an administrator to dump a process without ending the

process.
2.8.2. Features for Creating Applications**
COM+ offers new features for creating distributed, component-based applications.

« COM+ Events is a system with so-called subscribers and publishers. The
subscribers are COM+ objects that run the methods on the event interface. The

publishers are COM+ objects calling an event object.
» With COM+ transactional multi-tier applications can be created.

» COM+ allows execution of objects on any thread type. This new model is called
neutral threading.

» All Microsoft Transaction Server (MTS) 2.0 semantics are supported by COM+.

* With object pooling objects can be pooled and generated by an application

according to applications requirements.

» Instead of the system registry, the registration database (RegDB) is installed. The

scriptable and transactional interface COM+ catalog accesses the RegDB.

% This section uses [MLCO+c]

54

* With the COM+ queued components service components can be executed

instantaneously if server and client are linked or the implementation is suspended
until there is a link.

* Process access permission security and role-based security are supported by
COM+

55

3.ActiveX

This section discusses ActiveX with its history, the meaning of linking and
embedding, the features of ActiveX and ActiveX Controls. The basics of Object

Linking and Embedding, which is the basis of OLE Automation, are explained.

ActiveX is another name for OLE (Object Linking and Embedding) [En01,p.7]. ActiveX
is based on COM. COM and OLE offer the possibility for interacting of different
objects programmed by different people. OLE is an object-based technology
[MLOLEa].

3.1. History of OLE/ActiveX™

In the 1980s Microsoft developed the dynamic data exchange (DDE) protocol to ease
the creation of compound documents. A compound document contains data of
different formats like spreadsheets, bitmaps, text or sound clips, generated by
different applications. Later in 1991 the DDE was extended and became to OLE
version 1.0. The objects were linked or embedded to reference them. The objects are
a kind of software component that can be integrated in an application to enlarge its
functionality. With version 2.0 (1993) OLE was improved and was given a huge
infrastructure to sustain the component software. In 1996 ActiveX was introduced to
use interactive software that is Internet-enabled [MS96]. The figure 10 contains a

timeline of ActiveX.

% [MLOLEa]

56

Breadth of
Technologies

Distributed GOM
Activex

Directx

Industry Solutions

OLE Controls
Industry Solutions
OLE 2.0 & OLE Automation

Tirne

Figure 10: Timeline of ActiveX®®

3.2. Object Linking and Embedding®’

OLE makes it possible that different elements and different programs are linked in a

single document. T

his could be elements like text, pictures, tables or sounds. The

sections 3.2.1. to 3.2.3. were taken from [He02,p5f].

There are two methods: Embedding and Linking.

3.2.1. Link

ing®

Information can be linked with other files. All changes in the source document can be

transferred automat

Disadvantage:

Advantage:

ically to the target document.

There is a gap in the target document if data in the source file is
erased.

Changes of data in the source file are immediately transferred to

the target document.

% Taken from [MLOLEa]

3" Taken from [He02,p5]
% Taken from [He02,p5]

57

3.2.2. Embedding®**

An embedded object is a copy from information of the source file that is inserted into
the target document. Data and document are linked fix. The application which
contains the embedded data can start the source application for working with the
data via OLE. Afterwards the worked data is saved [Fla03f].

Advantage: Data is part of the target document.

3.2.3. The Class ID (CLSID) of the OLE object™

Each application supporting OLE can be identified with its class ID. For example the
CLSID of the Microsoft Internet Explorer (Version 5.00.2014.0216) is:

"{ 0002DF01- 0000- 0000- C0O00- 000000000046} "
Alternatively, the Program ID can be used:

ProgID of Microsoft Internet Explorer: "I nt er net Expl or er. Appl i cati on".

3.2.4. Features of ActiveX

An application that can embody linked or embedded objects into its own document is
called a container application [MLGLOb]. A container application is used to access
and store compound documents [MLAUTa]. A component or server application is

used to generate OLE document components for container applications [MS03].

OLE allows data transfer with the clipboard’s Copy&Paste and with drag and drop
[MLOLED]. The Uniform Data Transfer (UDT) is the presupposition for drag and drop,
clipboard and Automation and replaced DDE [MLGLOc].

Copy&Paste or drag and drop are used to insert data from a server application to a
container application. Server and container communicate through the OLE system
dynamic-link library (DLL). It is also possible that an application is a container and a

server at the same time [MS03].

% Taken from [He02,p5]
0 Section uses [Ar03]
*1 Taken from [He02,p6]

58

There are three primary type specifications: [MLOLE4Q]
» Creation and management of custom controls is described with OLE Controls.

» For scripting and programmability, there is the OLE Automation specification.
Automation controller and Automation object are there explained.

» For the management and the generating of compound documents, there are OLE
Documents. The creation of containers and embeddable or linkable objects is

there explained.

With OLE Automation an application can be driven by another application. OLE
enables development, design and deployment of component software and
asynchronous and decentralized innovation [MLOLEa].

3.3. ActiveX Control

This chapter gives an overview of ActiveX Control. Thereby the interfaces are listed
and explained and features like digital signature and certification, design-time
licensing, run-time licensing, initialization security, compression, self-registration and

licensing are discussed.

An ActiveX Control is an OLE control or respectively a former OCX control with extra
characteristics [MLAXCa]. Integrated in a Microsoft Internet Explorer an ActiveX
Control can improve Web pages with features like text boxes or buttons. HTML
pages can be automated with the properties, events and methods provided by
controls [MLAXCb]. With the HTML <OBJECT> tag ActiveX Controls can be inserted
to web pages [MLAXCal].

ActiveX Controls can also be installed in applications programmed in many
languages. In this way it is possible to reuse packaged functionality. With Visual C++
and one of the ActiveX Control frameworks like BaseCtl framework, the ActiveX
Template Library (ATL) or Microsoft Foundation Class Library (MFC), controls can be
written [MLAXCa].

59

3.3.1. Interfaces*

This part provides an overview over important interfaces that are used for ActiveX

controls. A table gives a short description about the interfaces.

An OLE control is a COM object. In this way it supports the interfaces | Unknown,
| Cl assFactory and the | O assFactory2. The | C assFactory interface is
used to register a class in the system registry and must be implemented
[MLCOMad].The |1 C assFact ory2 interface is optional and makes it possible that
object creation can be controlled by a class factory object through licensing. It is an
extension to the |1 C assFact ory interface [MLCOMae]. Normally, an OLE control
supports other interfaces that enable, for example, the support for a user interface for

the control, the support of Automation or the writing of persisting information to disk.

The table 1llists the interfaces that are also supported by an OLE control [MLAXCDb]:

| Connect i onPoi nt Cont ai ner | Responsible for connection points for
connectable objects [MLCOMaf].

| Dat a(hj ect Notification of changes in data and data transfer
[MLCOMag].

| Di spat ch Access to the control's methods and properties.

| Ext er nal Connecti on Support of external connections.

| d eCache2 In order to cache a control's data, this interface

supports the functions that a container calls.

| A eContr ol This interface is used to support ambient

properties and mnemonics.

| A el nPl aceObj ect Responsible for the in-place activation. In-place
activation means the skill to activate an object

from within an OLE control and to link a verb

2 [IMLAXCh]

60

like Edi t or Pl ay with that activation. [MLAUTb]

| A e(bj ect

This interface is used for the communication

between control and container.

| Per Propert yBr owsi ng

Access of the data in the property pages

provided by an object.

| Per si st *

Provide six interfaces that allow that a control
can write or read its persistent data to stream,
file or storage. The “*” is a place-marker for the

six different | Per si st interfaces.

| Provi ded assl nf 02

Allows getting a pointer to the type information

of the control.

| Runnabl eCbj ect

Determination whether a control is in a "loaded"

and a "running" state.

| Speci f yPr opert yPages

Offers a list of property page CLSID's
supported by the object [MLAUTDbf].

| Vi ewObj ect 2

Allows a container to render a control.

Table 1:

OLE Control interfaces®

COM objects which can save their internal state are in a so-called “persistent state”.

Objects with a “persistent state” must implement one | Per si st * interface. Either

| Persi stStream nit orl Persi st St reammust be implemented.

The first interface is employed when a control wants to know when it is generated

new as opposed to reloaded from an existing persistent state. The second interface

has not this “generated new” ability [MLAXCc].

Controls do not need properties or methods and in this case, they do not need to

implement the | Di spatch interface. If a control does have any methods or

*3 Modeled after [MLAXCb]

61

properties, then there are no requirements for which methods or properties a control
must expose [MLAXCd].

It is not necessary for controls to have events. If there are not any events then it is
not necessary to implement the | Connecti onPoi nt Contai ner interface
[MLAXCe].

3.3.2. Further Characteristics

This chapter discusses further characteristics of ActiveX Controls. These
characteristics are licensing, initialization security, digital signature and certification,

compression and self-registration.

3.3.2.1. Licensing®

There are two kinds of licensing for the most ActiveX Controls, run-time licensing and

design-time licensing.

3.3.2.1.1. Design-Time Licensing

Design-time licensing guarantees that the application or web page is built with a
legally acquired control. Control containers like Microsoft Access or Visual Basic
verify controls by calling | Cl assFactory2: : Creat el nst ancelLi ¢ [MLAXCf] and
allow a developer to place a control in an application or web page after the control is

licensed.

3.3.2.1.2. Run-Time Licensing

Run-time licensing guarantees that the application or a web page contains a legally
acquired control. Control containers also call functions in the control to confirm the
license. Therefore the | Cl assFact or y2 interface is needed. Run-time licensing can
be used with a HTML page by using the Obj ect object to include the so-called
license package file (LPK).

* This section uses [MLAXCb]

62

3.3.2.2. Initialization Security®

There is a potential security hazard because a control can receive data from an
untrusted source. That is because it is possible that a control can obtain data from

any | Per si st * interface if the control is initialized.
There are two possibilities to ensure that an ActiveX Control is safe for initialization.

The first possibility is to work with the interface | Obj ect Saf ety. If the control
includes the | Obj ect Saf ety interface then the Internet Explorer calls a method
named | Qbj ect Safety:: SetlnterfaceSafetyOpti ons before loading the

control to check the security of the initialization.

The second possibility is to use the Component Categories Manager to create the
correct entries in the system registry. The registry is probed by the Internet Explorer

before loading the control, whether these entries exist.

Another problem solved in the same way is the scripting security. The problem is that
a control that is known to be safe is not safe when a non-reliable script automates it.
An example is the MS Office with its Automation model that can be abused to delete

files on a machine.

3.3.2.3. Compression®

ActiveX Controls can be downloaded faster over an intranet or the Internet with data-
compression. Therefore the .cab file format is used. Foundation for this non-

proprietary compression format is the Lempel-Ziv-compression algorithm.

3.3.2.4. Self-Registration®’

An ActiveX Control is also a Component Object Model (COM) object. In this way it
supports the | Unknown interface and is self-registering. With the functions

D | Regi sterServer and DI | Unregi sterServers ActiveX Controls support

> [MLAXCh]
*® This section uses [MLAXCb]
*" This section uses [MLAXCb]

63

self-registration. To register as control the Component Categories API (application

programming interfaces) must be used [MLAPIa].

3.3.2.5. Digital Signature and Certification®®

Microsoft Authenticode Technology allows digital signatures and digital certification
for ActiveX Controls. With a digital signature a unique public key and the software

vendor’'s name are linked with the file which contains an ActiveX object.

*® This section uses [MLAXCb]

64

4.ActiveX Automation

This part discusses the technical background of the Automation technology that is
used in sections 6 and 8 to 13. Here are individualized the ActiveX client, the ActiveX
object, the interaction of objects and clients, the exposing of ActiveX objects, the

design of an application which is automated and the access of ActiveX objects.

With ActiveX Automation it is possible for applications to expose their functionality to
interpreted and scripting languages. It can be used on Windows 95, Windows 98,
Windows SE, Windows Me, Windows 2000 and Windows XP systems [MLAUTCc].

Automation allows the changing and creation of objects that are exposed in one
application from another application, the creation of tools that can contain compilers,
object browser, external programming tools and macro languages to change and
access objects, and the creation of programming tools and applications that expose
objects [MLAUTA].

» ActiveX objects are exposed objects of programming tools or applications.
» ActiveX clients are programming tools or applications that use the ActiveX objects.

» ActiveX components are e.g. DLL or EXE files which contain classes, which define
the ActiveX objects. The exposed objects are described by type information. Type
information can be accessed either at run time or at compile time by the ActiveX
components [MLAUTd].

65

Figure 11 illustrates the relation among ActiveX client, the application and type

information.

. ActiveX Client [Hj[=] E3

Paossible actions:

Create new object
Getan existing object
Getor set properties
Invaoke methods

Dispatches Maps names
action tointerface
Type information
Describes programmable objects.

(vay be part of DLL or compound

n. Application [_ | document).

Defines and exposes
Actives ohjects.

Figure 11: Relations among ActiveX objects and ActiveX clients*

4.1. ActiveX Client

ActiveX clients are programming tools or applications that access and use ActiveX

objects or create new ActiveX objects.

The client implements properties and methods of the object and generates new
instances of the object. It is possible that the object occurs in another or in the same
application. Clients can be generated by writing a new application capable of
Automation, by redesigning a present programming tool to extend it for Automation or
by writing code in an application that allows implementation of another application's
objects through Automation. An ActiveX client is for example a programming tool like
Visual Basic or Object Rexx [MLAUTEe].

4.2. ActiveX Object

The member functions events, properties and methods are exposed to ActiveX

clients by an ActiveX object.

* Taken from [MLAUTd]

66

ActiveX objects support COM. The member functions of an ActiveX object make the
object programmable by ActiveX clients. Activities that an object can execute are
called methods. Properties allow using data about the state of an object. Activities
acknowledged by an object are Events. Several instances of an object are together a
collection object. If there are several instances of an object, all instances can be
addressed with the collection object.

Figure 11 shows a part of the object model of Microsoft Excel [MLAUTI].

[:ﬁ!«pplicati an)

|—(Workbook Addin |

[

Worksheet

I Debug

DialogShest

PageSetup

Dialog

D

MernuB ar

W i e

Menultem

Pare I —| Toolbar

—| Marme I |—| ToolbarButton

Foutingslip L oy

Pagesetup
Ohject and collecdon

(irfo windowe only)

Figure 12: Some objects of MS Excel®

The object names can remain consistent in the further versions of an application. The
objects can be used from any macro language or programming tool that implements
Automation. In this way, it is possible for system integrators to select a suited macro
language or programming tool. Exposed objects from many applications are available

for developers to create solutions that extend over applications [MLAUT(g].

* Taken from [MLAUTf]

67

4.3. Important Interfaces

Table 2 lists important interfaces for OLE Automation.

| Gl assFactory

This interface must be implemented for every class that is
registered in the system registry and to which a CLSID is
assigned, so objects of that class can be created.

Taken from [MLAUTaw]

| CreateErrorlnfo

Error information is set with this interface.
Taken form [MLAUTav]

| Creat eTypel nfo

This type information interface provides the tools for
creating and administering the type information defined
through the type description.

Taken from [MLAUTau]

| Creat eTypel nf 02

This is a type information interface which adds methods
for erasing items that have been added with
| Cr eat eTypel nf o.
Taken from [MLAUTau]

| Creat eTypelLi b

Supplies methods for managing and creating the
component or file that includes type information.
Taken from [MLAUTau]

| Creat eTypelLi b2

Used for the administration and creation of type
descriptions and type libraries.
Taken from [MLAUTau]

| Dat aObj ect Used for specification of methods that enable data
transfer and notification of changes in data.
Taken from [MLAUTax]

| Di spat ch Supplies a late-bound mechanism to access and retrieve

information about the properties and methods of an

object.

68

Taken from [MLAUTae]

| Enuniar i ant

Provides a standard way for ActiveX clients to iterate over
collection objects™*.
Taken from [MLAUTaj]

| Errorinfo Gives back information from an error object.
Taken from [MLAUTav]
| Font Di sp Exposes a font object's properties through Automation.

Taken form [MLAUTbd]

A edientSite

Primary means by which an embedded object gets
information about the extent and location of its moniker,
its display site, its user interface, and other resources
which are provided by its container.

Taken from [MLAUTbc]

| A eCont ai ner

Enumerates objects in a compound document or locks a
container in the running state.
Taken from [MLAUTbb]

| Picture Manages a picture object and its properties.
Taken from [MLAUTba]
| Pi ctureDi sp Exposes the picture object's properties through

Automation.
Taken from [MLAUTaz]

| Recordl nfo

Describes the structure of a particular UDT (user-defined

type).
Taken from [MLAUTbe]

| Servi ceProvi der

Generic access mechanism to locate a globally unique
identifier (GUID) identified service.
Taken from [MLAUTay]

| SupportErrorlnfo

Identifies an object as supporting the | Errorinfo

interface.
Taken from [MLAUTav]

| TypeConp

Provides type lookup and binding methods.
Taken from [MLAUTat]

*Lc.p. 4.6.6.

69

| Typel nfo This interface reads the type information within the type
library.
Taken from [MLAUTat]

| Typel nf 02 This interface offers additional type information retrieval
actions.
Taken from [MLAUTat]

| TypeLi b Gets back information about a type library.
Taken from [MLAUTat]

| TypeLi b2 Supplies further type library retrieval actions.
Taken from [MLAUTat]

| Unknown The | Unknown interface defines three member functions

(Queryl nterface, AddRef and Rel ease) that must be

implemented for each object that is exposed.
Taken from [MLAUTad]

Table 2:

Important interfaces for OLE Automation.

4.4. Interaction of Objects and Clients™

The interaction of objects and clients is a notable area of Automation. Part of this

area is different items like VTBL, dual interface, object access with the | Di spat ch®3

interface, ID binding, late binding, object access with the VTBL, in-process Servers

and out-of-process Servers.

ActiveX clients in two ways can use objects. They can be accessed by implementing

the member functions like the properties and methods directly in the virtual function

table (VTBL) of the object. They can also be accessed with the | Di spat ch interface

that derives from the | Unknown interface. Additionally there is the possibility to use

both procedures together. This is called a dual interface.

So-called Custom interfaces are user-defined interfaces and they are COM interfaces

that are not defined as part of OLE.

2 [MLAUTHh]
3 c.p. 4.3.

70

With a type library or an | Di spat ch interface, the interfaces, with its members, an

object can use, can be seen by a programming tool or an ActiveX client.

All methods and properties of an object and the supported interfaces are itemized in
the VTBL. The three member functions of the | Unknown interface® are the first three
entries in the VTBL. Afterward the member functions of the other interfaces follow
[MLAUTh].

The figure 13 illustrates a VTBL with | Unknown and | Di spat ch interface.

IUnknown: Querylnterface

IUnknowen: AddRef

IUnknown: Release

IDispatch: GetlDsCfMames

IDispatch: GetTypelnfo

[Dispatch: GetTypelnfolCournt

IDispatch: Invoke

Figure 13: VTBL with | Unknown and | Di spat ch interface. *

*cp. 2.1,
*° Taken from [MLAUTh]

71

The member functions of the custom interface, in this case called | Myl nt er f ace,
follow the | Unknown shown in the figure 14 if an | Di spatch interface is not

supported.

IUnknown: AddRef

IUnknown: Release

IMyInterface: Memberl

IMyInterface: Memberz

Fermaining rermbers
of IMyInterface

Figure 14: Dispatch interface is not supported®

4.4.1. Dual Interface®’

The first three items in a VTBL of a dual interface are functions of | Unknown®®, the
next four items are members of | Di spat ch®® and the following entries are members
of the dual interface. Here the dual interface is called | Myl nt er f ace. Figure 15

demonstrates a VTBL for an object with dual interface.

*® Taken from [MLAUTh]
" [MLAUTHh]

Bcp. 2.1,

¥ c.p. 4.3.

72

IUnknown: Querylnterface

IUnknown: AddRef

IUnknown: Release

[Dispatch: GetIDsCiarmes

IDispatch: GetTypelnfo
IDispatch: GetTypelnfoCount

[IDispatch: Invoke

IMyInterface: Memberl

IMyInterface: Member?

Rernaining rmemmbers
of IMyInterface

Figure 15: Accessing an Object Through the IDispatch Interface®

4.4.2. Object Access with the IDispatch Interface®

To approach an object with the | Di spat ch interface, the object must first be
generated. After that, the | Unknown interface is queried for a pointer to the

| Di spat ch interface.

With the DISPID (dispatch identifier) parameters, data members, methods and
properties are approached internally [MLAUTbg].

The function | Di spat ch: : | nvoke enables the use of member functions. Thereby
the parameters of the member functions are bundled into the | Di spat ch: : | nvoke
parameters. After that, the parameters are unbundled by the object’s implementation
of I D spatch::1nvoke, the member function is executed and errors are
managed. Through an | Di spat ch: : | nvoke parameter, the return value of the

object is given back to the client.

4.4.3. ID Binding

ID binding is another possibility to obtain the DISPID. Thereby the DISPID is obtained
from the type library during compilation [MLAUTI].

® Taken from [MLAUTh]
&1 [MLAUTI]

73

4.4.4, Late Binding

Late binding enables the client to obtain the DISPIDs at run time with the
| Di spat ch: : Get | DsOF Nanes function. It is only half as fast as ID binding
[MLAUTI].

4.4.5. Object Access with the VTBL

During the compile time the client gets the type information from the type library and
calls the functions and methods directly. Because the approach to the member
functions is without using the | Di spat ch interface, the VTBL binding is faster than

late binding and 1D binding [MLAUT]].

4.4.6. Out-of-Process Servers

Out-of-process servers are executed in a separate process space. They are
implemented in an EXE file [MLAUTK].

4.47. In-Process Servers

In-process servers are executed in the process space of their controller. They are

stored in a dynamic-link library. It is faster as an out-of-process server [MLAUTK].

4.5. Exposing ActiveX Objects

To access ActiveX objects it is necessary to expose them. This section lists all
necessary steps for exposing ActiveX objects. Exposed objects can be accessed by

other programming tools and applications [MLAUTI].

ActiveX objects are exposed in several steps. The first is to initialize the objects.
Thereby OLE is initialized, the class factories of the exposed objects are registered
and the active object is registered. Then the exposed objects are implemented by
using the virtual function (VTBL), | Unknown and | Di spat ch interfaces and by
implementing the methods and properties of the object. When the application ends,
OLE is released by cancelling the active object and the registration of the class
factories, and by uninitializing of OLE. Therewith other users can use the active
objects, an IDL or ODL file with information about the methods and properties of the
objects is generated with the Interface Definition Language (IDL), respectively, the

74

Object Description Language (ODL). Both files are compiled with the Microsoft
Interface Definition Language (MIDL) compiler. It is also a registration file generated
for the application [MLAUTm].

45.1. Initializing of exposed Objects®

To initialize the exposed objects and OLE the functions O elnitialize,

CoRegi st er C asshj ect, and Regi st er Acti veQbj ect, are used.

With A elnitialize, the COM library is initialized on the present apartment and
the concurrency model is identified as single thread apartment [MLAUTO].
CoRegi st er C asshj ect, registers the class factory of the object. Then it can be
used by other applications to generate new objects. Regi st er Acti veQbj ect

allows other applications to join to a present object by registering the active object.

The object is scheduled in the ROT (running object table) [MLAUTp]. A moniker®
enables the identification of the objects [MLAUTq]. Thereby it identifies a COM object
in the same kind, as a file is identified by a path in the file system [MLGLOd].**

82 [IMLAUTN]
8 c.p. 2.3.4.
®c.p. 2.3.4.

75

4.5.2. Implementation of the exposed Objects

The figure 16 shows the interfaces with their member functions that should be

implemented to expose ActiveX objects [MLAUTT].

IUnknowm
Y Query Inberface

Addref
Release
Yol Class
1 IClassFactory
Createlnstance
LockServer
IUnknowm
Y Duery Interface
Adddref
Release
IMyInterface
GeflDsCfMames
GetTypelnfo
GetTypelrfoCourt
Invoke
Memberl
Member2
Figure 16: Interfaces that should be implemented to expose Activex®
4.5.3. Implementation of the Class Factory

The class factory of the object is a COM object and it is necessary to generate one or
more instances of an object. Therefore, the CLSID and the | assFactory

interface are used [MLGLOe].

The |1 C assFact ory interface has the two member functions Cr eat el nst ance
and LockServer that provide services for OLE APl functions. With the
Creat el nst ance method an instance of the object’'s class is generated. The
existing instance, listed in the running object table, of the Application object is given
back. The LockServer method avoids the shutting down of the object's server
when the last instance of the object is released. The class factory uses apart from the
| Gl assFact ory interface also the | Unknown interface. In this way it is possible for

the client to check what interfaces the object can use [MLAUTS].

® Taken from [MLAUTY]

76

It is possible to generate instances of a class with the class factory. The interfaces of
the object are the | Unknown and | Myl nt er f ace interfaces. The | Myl nt erf ace
allows early binding with the VTBL and late binding (I Di spat ch) with the functions
Get | DsOF Nanes, Cet Typel nfo, Get Typel nfoCount, and | nvoke. In this way
the dual interface | Myl nt er f ace offers two kinds of using the member functions.
Menber 1 and Menber 2 can be used to implement the object directly through the
VTBL or they can also be used with the | Di spat ch: : | nvoke function. To handle
errors of exposed objects in the case of a dual interface the | Er r or | nf o interface is
used [MLAUTS].

Implementation of objects requires also a registrations file (location information for
OLE and the operating system) and a type library. The object is described in the
library section of an .idl file or an .odl file is generated. The .odl file is compiled with
the MIDL compiler. A .tlb file (type library) and a header (.h) file are generated
[MLAUTSs]. The header file includes function declarations and type definitions that are
based on the interface definition in the IDL file [MLMIDLa].

4.5.4. The Application Object

When a user-interactive, document-based, ActiveX objects exposing application runs,
the first object that is initialized should be the top-level Appl i cati on object. With
this root object it is possible for the ActiveX client to connect to the application's
exposed objects [MLAUTH].

455, RegistrationoLE objects have to be registered with the user's

system registration database. This enables the location of remoting code for the
interfaces, the location of the type libraries for Automation tools and it enables the

generation of instances of the objects with CoCr eat el nst ance.

The DLLRegi st er Server method signs on the type library, the ProgID for each
application and the CLSID for each object in the DLL [MLAUTU].

The registration connects the ProgID of the application with a CLSID. It is possible to

generate instances of the application by name [MLAUTV].

77

Syntax of the registration file [MLAUTV]:
\ Z AppNane. Obj ect Nane[. Ver si onNunber] = human_r eadabl e_string
\ Z AppNane. Obj ect Nane\ CLSI D = {UUl D}

AppNare describes the name of the application, Qbj ect Nane includes the name of
the object which should be registered, Versi onNunber is not obligatory and
contains the number of the version of the object, human_r eadabl e_stri ng offers
a short instruction of the application and UUl D contains the universally unique
identifier created with Guidgen.exe®® [MLAUTV].

4.5.6. Registration of Classes®’

Objects generated with CoCr eat el nst ance must be registered by transferring a

CLSID to the Automation component file.

The CLSID maps the ActiveX object to the ProgID and application. Figure 17 shows
an ActiveX component with its ProgID and CLSID.

% cp.24.2.2.
®" This section uses [MLAUTwW]

78

ProglD{*My&pplication™)

ProgID maps nameto CLSID TCLSID maps ohject to application

CLSID(ARCDEFO1-23-45-57 39-04BCDEFO1234)

CLSID maps ohject to server

Actives component

“OBJECTRUS.EXE”

Figure 17: Interaction of ActiveX components, CLSIDs and ProgIDs.68

Syntax and description of the Registry Entries:

This human_r eadabl e_stri ng offers a short instruction of the application. The

human_r eadabl e_stringishereHell o 2.0 Applicati on.
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1} = Hello 2.0 Application

The ProgID is written in the form AppNane. Cbj ect Nane. Ver si onNunber . Its

single parts are described above®.
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\ProgID = Hello.Application.2

The Ver si onl ndependent Pr ogl D is written in the form AppNane. Obj ect Nane.

The single parts are described above.
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\VersionindependentProgID = Hello.Application

Local Server[32] means the usage of an EXE file as ActiveX component which is
executed in another process as the ActiveX client. “32“ means the usage on 32-bit
Windows platforms and is not obligatory. This entry has the syntax
filepath[/Autonmation] with name and path of the file which hosts the object.
/ Aut ormat i on is not obligatory and means that it can be used for Automation. If the
ActiveX component is executed in the same process as the ActiveX client and if itis a

DLL, instead of Local Server[32] | nProcServer[32] isused.

% Taken from [MLAUTW]
% ¢.p. 4.5.5.

79

HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\LocalServer32 = hello.exe /Automation

This entry offers the CLSID of the type library:
HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE 1)\ TypeLib = {F37C8060-4AD5-101B-B826-00DD01103DE1}

This entry shows that it is an ActiveX component:

HKEY_CLASSES_ROOT\CLSID\{F37C8061-4AD5-101B-B826-00DD01103DE1}\Programmable

457. Releasing of the exposed Objects and OLE™

The functions that are described in this section are used to release exposed objects
and OLE.

RevokeActi ve(Obj ect terminates the active status of an object. OLE is informed
with the CoRevokeCl assObj ect function that a class factory cannot be longer
accessed by other applications. OLEUni niti al i ze releases OLE by ending any
class factory, the COM library, other COM objects or servers and make RPC
impracticable on the apartment [MLAUTY].

4.5.8. Retrieving of the Objects

The following functions enable the retrieving of the objects.

With Regi st er Acti veQbj ect the active object for an application is set when the
application is launched. At the termination of an application, the function
RevokeAct i ve(bj ect cancels the active object. A pointer to the active object is

returned with the function Get Acti veQbj ect .

The Appl i cati on object is always listed as active and it is possible that there is
more than one active object in an application. An active object requires a class
factory and that class factory is identified by a ProglD in the system registry,

registered with the Regi st er Acti veObj ect function [MLAUTZ].

" This section uses [MLAUTX]

80

4.5.9. The Returning of Objects

The application returns a pointer to the | Di spat ch interface, to return an object
from a method or property. The data type is VT _DI SPATCH in the case if | Di spat ch
can be used; otherwise, the data type is VT_UNKNOAN [MLAUTaa].

4.5.10. Termination of Objects

Here is described how to shut down an object.

An application that is controlled by an ActiveX client and that is visible becomes
invisible if the user ends it. Nevertheless, it is still possible to control the object until
the application is ended when there is no further external reference to the object. In
the case that the application is visible the object ends if the ActiveX client or if the
user gives command to shut down. In the case, if the application is invisible the
application ends if the last external reference is closed [MLAUTab].

4.6. Design of an Application which is Automated

If an application is created which is automated, several items must be taken in
consideration. Significant are the | Unknown interface, the | Di spat ch interface, the
dual interface, the registration of interfaces, the creation of CLSID’s and the
| EnumVARI ANT interface.

Generating a programmable interface with its events, methods and properties is like

an object-orientated framework for the application [MLAUTac].

4.6.1. IlUnknown Interface’

The prototype for the member functions of the | Unknown interface is in the header

file A e2. h. With this fundamental interface, it is possible to use objects [MLAUTad)].

4.6.2. IDispatch Interface

The | Di spat ch interface uses a late-bound mechanism to use information of the

member functions of an object. The following functions should also be used:

"ep. 2.1

81

CGet Typel nf oCount gives back the amount of type descriptions for the object.
CGet Typel nf o details the programmable interface. The Get | DsOf Narmes function
maps the name of a function to a DISPID. It is possible to use a member function of

an object with the function | nvoke [MLAUTae].

4.6.3. Dual Interface’

Dual interfaces have advantages over VTBL-only or | Di spat ch—only interfaces.
There is better performance for ActiveX clients who use the VTBL interface. Clients
using the | D spat ch interface may carry on their activity. It is possible to bind

during run time (I Di spat ch) or during compile time (VTBL) [MLAUTaf].

4.6.4. Registration of Interfaces”

So that OLE can locate the appropriate remoting code for interprocess
communication, an interface must be registered. This data can be watched with the
OLE/COM Object Viewer™,

Syntax of the registered information:
This term describes the universally unique ID and the name of the interface:
\Interface\{UU D} = InterfaceNane

This phrase offers the universally unique ID for the type library with the interface

description:

\Interface\{UU D}\ Typelib = LIBID

This entry connects an IID (Interface IDentifier) to a CLSID in a 32-bit proxy DLL
[MLAUTah]:

\Interface\{UU D}\ ProxyStubC sid[32] = CLSID

Zcp.4.4.1.
" [MLAUTag]
“cp. 2.6.2.

82

4.6.5. Creation of a CLSID

CLSIDs are so-called universally unique identifiers (UUIDs). UUIDs are created with
GUIDGen.exe’. The CLSID is registered by installing an application. Each object
which is exposed for creation has to have a unique CLSID [MLAUTai].

4.6.6. IEnumVARIANT Interface

ActiveX clients can iterate over collection objects with the | EnunVARI ANT interface.

With the _NewEnumproperty, which sends back an enumeration object that supports
the | EnunVARI ANT interface, the object signals that iteration can be used. With the
member function Ski p of the | EnunVARI ANT interface one or more parts in a
collection are skiped, Reset enables that the actual element is reset to the first
element in the collection, one or more elements in a collection are retrieved with the
Next function and the current state of the enumeration is duplicated with Cl one
[MLAUTaj]. The | EnumVARI ANT interface is illustrated in figure 18.

IDispatch

Collection Ohject

(_NEWEFIUI‘I‘I Property BTUMETE T

Ohyect

) IEnumVYariant

Figure 18: IEnumVARIANT interface’®

The _NewEnumproperty must give back a pointer to the | Unknown interface of the
enumerator object, it must include DI SPI D = DI SPI D_NEVENUM - 4) and it has to

have the name _NewEnumand it is not allowed to be localized [MLAUTak].

4.7. Type Library

Type libraries are an essential part for the Automation technology because they store
information about one or more ActiveX objects, their characteristics and their

interfaces with member functions.

®cp.24.22.
® Taken from [MLAUTaj]

83

In this way the objects are available to other programmers. The creation of a type

library, the registration of a type library and the error handling are explained.

The objects are written in an object description language file (.odl), and then
compiled with the MIDL’” compiler [MLAUTal].

Exposed objects that use VTBL binding” have to be described in a type library,
because VTBL references are bound at compile time. Each set of exposed objects
must be described in a type library.

The main characteristic of type libraries is its ability to check the type during the
compile time. An interface is described with type information. DISPIDs can be stored
at compile time to enhance the run time capability by ActiveX clients that cannot use
VTBL. Local server access is possible. With the Regi ster TypeLi b function
exposed objects can be listed in the registration database. To uninstall an application
the UnRegi ster TypeLi b function is used. The library can be seen with type
browsers [MLAUTam].

4.7.1. Creation of a Type Library

This section provides information about the creation of a Type Library.

Type libraries are usable at run time and at compile time. They contain function-
specific documentation strings, help file names and contexts as well as type
information like the description of the methods, properties and objects. To generate a
type library an object description script is written first in the ODL format. After that, a
class description header (.h) file and a type library file (.tlb) is created with a MIDL

compiler.

A type library can be built-in in an EXE or DLL file or as a stand-alone file (.tlb file)
[MLAUTan].

c.p. 2.5.
Bep. 4.4,

84

With the following command a type library with the name out put.tl b and the

header file out put . h is generated from the description script inscript.odl:
M DL /TLB output.tlb /H output.h inscript. odl

In order for Automation to locate the type library it is necessary to register the library
in the application’s registration file. A type library is built by adding the header file in
the project. The whole project is compiled. It is also possible to join the type library

with the compiled project thanks to the Resource Compiler (RC) [MLAUTao].

4.7.2. Registration of a Type Library79

The information that is exposed by applications and tools must be registered. Then
the information can be used by programming tools and type browser.

With the Regi st er TypelLi b function the registration entries for the type library are

created.
The data about the type library is stored in the following manner:

» The universally unique ID of the type library is written as follows.

\ TypeLi b\ {I i bUUI D}

* Maj or. m nor is the version number of the type library. A changing of the major
version number requires a recompilation of code that was compiled against the
type library. If only the minor version number rises, it results in support of all
characteristics of the prior type library. human_r eadabl e_st ri ng offers a short

instruction of the type library.
\ TypeLi b\ {Ii bUUI D}\ mgj or. m nor = human_readabl e_string
* The hel pfil e_pat h offers the location of the Help file of the type library.

\ TypeLi b\ {I'i bUUI D}\ maj or. mi nor\HELPDI R = [hel pfil e_pat h]

" [MLAUTap]

85

* typelib_fl ags is a hexadecimal description of the type library flags.
\ TypeLi b\ {Ii bUUI D}\ mgj or. m nor\Fl ags = typelib_flags

* | cid means local identifier which is described as a hexadecimal string. With
platform the target operating system platform is presented.

| ocal i zed_typelib_fil enaneis the name of the localized type library.

\ TypeLi b\ {li bUUI D}\ maj or. mnor\lcid\platform= | ocalized typelib_filenane.

4.7.3. Error Handling

If there is an error, ActiveX objects give back a message of the error, an error
number and the location of a Help file. Otherwise, it is possible to give back an
HRESULT (return value with severity code, context information, facility code and

status code [MLAUTaq]) with data of the error [MLAUTar].

4.8. Access of ActiveX Objects

To use ActiveX objects it is necessary to initialize OLE and to generate an instance of
the object. After obtaining information about the member functions of the object the
functions are called. When the application ends the active object is withdrawn and
OLE is uninitialized [MLAUTas].

86

5.How to Get Script Code

For a developer there is often a problem to get the script code. In the most cases,
there is no explanation of an Automation issue for Object Rexx. Here some ways are
demonstrated to get the script code. This section is also interesting for non-Object
Rexx developer. The Automation technology is a technology from Microsoft and in
this way many examples are available for Automation. If you want to program an
Object Rexx script, first try it with a Visual Basic Script, if it works, and then convert it
to Object Rexx script code. Proceedings like trial and error or the macro recorder tool
are included in this section as well as a table that help to convert Visual Basic Script

code to Object Rexx code and many further information sources like Internet links.

5.1. Trial and Error

Trial and Error is an important hint. Often there is no documentation available and
then the developer has to understand the system by trial and error. Attention should
also be paid to “small” things like a dot. The author took a long time to program the
Veri fy method of the Scri pting. Si gner object with Object Rexx but it did not
work®. Sometime the author tried to invoke this method with the tool OLEInfo.rex®
and recognized that there was small dot before the phrase “.true”. This was the

solution to the problem. It is very important to be tenacious.

5.2. Macro Recorder Tool

A helpful tool to get the source code for a script, is the "Macro Recorder Tool" of the
Microsoft Office applications, that creates Visual Basic code of the actions that are

performed manually by the user [IBM02a,p1].

8 ¢.p. 13.10.2.
8cp. 7.2

87

Figure 19 illustrates the macro recorder tool of MS Word.

at | Tool= Table ‘window Help
Ee W Grammar... F7

Language b

an
e Word Count.. .

% BUbOSUMMAriEs.
AutacCarrect, ..

Track Changes 3
Merge Documents. ..

Proteck Documnent. ..

Mail Merge. ..
=] Envelopes and Labels .,
Letter Wizard. ..

Templates and Add-Ins. .. j Record Mew Macra. ..
Custamize, .. 2
_ visual Basic Editor Al-+F11
Opkions. .. i
Figure 19: Macro Recorder tool®

Microsoft Word, Microsoft Power Point or Microsoft Excel have such a macro
recorder. To use it look up in the menu Tool s / Macro.... Then the actions are
made manually. After that, the recording is stopped, the macro is selected and the
Visual Basic Script code can be seen by pressing the Edit code button like in

figure 20 [IBM02a,p1].

A macro recorder tool is also available for some non-Microsoft applications.

8 Taken from [IBMO02a,p1]

88

lﬁ Microsoft Visual Basic - Normal - [NewMacros (Code]]

% Datei Bearbeiten Ansicht

Enfilgen Format Debuggen Ausfiihren Extras Add-Ins Fenster §

- F X

i R = LB o y o1 omB BEE T Q)21 -
FRQJERE SR x| |[Allgemein) =] 1Makrn1
B = ke Sub Makroli)
= &% Normal Y
+ [Microsoft Ward Objekte ' Makrod Makro
=] 55 Module ' Makro aufgezeichnet em 15.02.2003 wvon
i 2 (3& MewMacros
= @ Project {OLE_Entwurf_1) AetiveWindow. hetivePane. SwallScrall Down:=12
=125 Microsaft Ward Objekte Selection. MoveDown Unit:=wdlLine, Count:=4
H @ ThisDocument Selection.MoveRight Unit:=wdCharacter, Count:=1
+-[] Werweise Selection.MoveDown Unit:=wdLine, Count:=1
Selection. TypeText Text:="Hello World"™
End Sub
&l I
[NewMacros Modul =
Alphabetisch | Mach Kategarien]
(MName) MewMacros
== <l
: . : . 83
Figure 20: MS Word macro, which recorded that a text is typed.

A Visual Basic Script macro also contains information that is not required for the

Object Rexx source code.

All of the information is not contained in the macro which is needed to program such
a script with Object Rexx like the Vi si bl e property of MS Word. More information
for automating MS Office can be obtained in the Microsoft Library VBA Language

Reference®.

% part of MS Word 2002
8 http://msdn.microsoft.com/nhp/default.asp?contentid=28000550

89

5.3. Converting Visual Basic Script Code to Object Rexx

Table 3 helps to translate Visual Basic Script code to Object Rexx code.

Visual Basic Script Edition

Object Rexx

Method operator

. (point)

~ (twiddle)

Continuation character

_ (underscore)

, (comma) or — (hyphen)

String concatenation

& (ampersand)

| | (two vertical lines) or
(two blank characters)

Definition of variables

DI M var _nanen

Give any name

Line comments

‘ (apostrophe)

REM(if no statement before)
: ZREM(with statement
before)

- - (two hyphens)

Multiple line comments

[*.*] (can span several
lines and can be nested)

Procedure calling

CALL procl(al, a2, a3)
or

procl al, a2, a3

CALL procl al, a2, a3

Function calling a=procl(al, a2, a3) gr:pr ocl(al, a2, a3)
CALL procl al, a2, a3
a=resul t
Function calling a=procl(al, a2, a3) a=procl(, , a3)
Calling with named or
arguments, e.g.: CALL procl , , a3
a=proc1(a3 := "The 3. Argument!") a=result
. Sub procl(al, a2, a3) procl: procedure
Defining a procedure MsgBox "al=" & al _ parse al, a2, a3
" az2=" & a2 _ say "al="al "a2="a2 -
" a3=" & a3 "a3="a3
End Sub return
or

::routine procl
say "al="arg(1l) -

"a2="arg(2) -
"a3="arg(3)
.) Func procl(al, a2, a3) procl: procedure
Defining a function procl=al & a2 & a3 parse al, a2, a3
End Func return al || a2 || a3
or

c:routine procl
return arg(l) || -
arg(2) || arg(3)

90

, Wth MyLabel MyLabel ~Hei ght = 2000
W t h command Hei ght = 2000 MyLabel ~W dth = 2000
' Wdth = 2000 MyLabel ~Capt i on="MyLabel "
. Caption ="MyLabel "
End Wth
Table 3: VBScript code to Object Rexx®

5.4. Other Sources

There are many other information sources, which are here listed. These are Object

Rexx, Microsoft, general and other sources. There are some links with a short

description of newsgroups provided.

Object Rexx:

» This link contains a detailed tutorial of Object Rexx from Prof. Flatscher (German):

http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/

The samples in the path Cbj REXX/ Sanpl es contain some examples scripts for
OLE and WSH that could be helpful.

In the folder .\ W ndows\ Versi on 2.1\ books on the Object Rexx CD are

some e-books. To emphasize are RexxRef.pdf and RexxPg.pdf.

In the section 7 are some valuable tools described which show interesting

information like the member functions of an automated application.

The IBM Object Rexx site offers some suitable links: http://www-

3.ibm.com/software/ad/obj-rexx/

This IBM Object Rexx support site contains some helpful hints and links:

http://www-3.ibm.com/software/ad/obj-rexx/support.html

There is a link to the developer team of Object Rexx:

http://www.ibm.com/software/ad/obj-rexx/service-orexx.html

Homepage of the Rexx Language Association: http://www.RexxLA.org/

% Taken from [Fla02b,p21ff]

91

* This site offers a lot of links to Rexx sites: http://www?2.hursley.ibm.com/rexx/

* Site with information about NetRexx: http://www?2.hursley.ibm.com/netrexx/

Microsoft:

e The MSDN Library offers a lot of documents for Microsoft technologies:

http://msdn.microsoft.com/library/

* Here is an introduction to DHTML:

http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/dhtml.asp

General:

* A good search engine is Google (http://www.google.com) or MetaGer

(http://lwww.metager.de)

* Here is a reference book about many items of information technology (German):
http://www.glossar.de

Newsgroups:

» The Dbforums (http://dbforums.com) is a starting page for many newsgroups. To

emphasize is the forum conp. | ang. r exx (http://dbforums.com/f135/) for Object

Rexx. A forum for scripting is mcrosoft. public.scripting
(http://dbforums.com/f194/) with two forums for JScript and VBScript. It is not

important in which of these two forums a thread is posted. There is also a forum
for Microsoft.NET (http://dbforums.com/f235/). But there are very less postings in
the MS.NET forum.

* The Developersindex (http://www.developersdex.com/newsgroups.asp) offers

many newsgroups. There are several newsgroups for scripting
(microsoft.public.scripting.jscript; microsoft.public.scripting.vbscript;

microsoft.public.scripting.wsh). For MS.NET many newsgroups are provided.

92

* A newsgroup for the Microsoft Speech technology is located at:

http://communities.microsoft.com/newsgroups/messagelList.asp?ICP=MSCOM&sL

CID=US&NewsGroup=microsoft.public.speech tech&iPageNumber=1

A newsgroup for the MS Agent technology can be found at this location:

news://msnews.microsoft.com/microsoft.public.msagent

» Startpage for a lot of XP newsgroups:

http://www.microsoft.com/windowsxp/expertzone/newsqgroups/default.asp

The newsgroups are monitored by so-called MVPs (Most Valuable Professionals).
The MVPs are IT specialists from Microsoft. They answer to requests of users to
Microsoft technologies [Onl02].

Newsgroups can be accessed via a “normal” Internet Homepage or via the phrase
news://. In the second case the URL of the newsgroup is inserted like the “normal”
Internet Homepage to the MS Internet Explorer of Windows XP and then
automatically Outlook Express 6 is started (figure 21) where the newsgroup
news://msnews.microsoft.com/microsoft.public. msagent was typed into the command
line of the MSIE®®.

% Implemented with MS Windows XP Home

93

|L'$] microsoft. public.msagent - Outlook Express

Datei Bearbeiten Ansicht Extras Machricht 2

o] s & 3 - \ Tt = ’“-_
F . ¥) 8 . %] : g & . iF =
Meuer Me... I wrken felkerlelen D Abbreche Sendsn Adressen Suchen Mewsgroups Kopfzeilen
| Ordner X 8 ¥ | Betreff Yon Gesendet - Grife “.
|55 cutlook Express & [¥ Creating a charictor Brandon Dohner 17.01.2003 17:09 1 KB |
= Lokale Ordner ¥ Re: Idle Time of MS Agents Agent Fan 26.02.2003 0126 2 KB
- @ Posteingang (1} E Lj Re: XP and MSagent error DR80040202 Agent Fan 26.02.2003 01:31 4 KB =
@ Postausgang = ﬁ Re: Smoothing out the edges Bob Norris 26.02.2003 01:46 2KB
S Gesendete Objekke ﬁ test Linda Cohen 26.02.2003 15:51 1LKB
{3 Geloschte Objekte = '.',5 Y¥ord Tutorial Help Linda Cohen 26.02.2003 15:55 1KB
5B} Entwirfe j Re: agent crashes when running wizard 27.02.2003 00:18 1KB
=] @ msnews , micrasoft.cam ﬁ Re: Installing spanish giveme error wizard 27.02.2003 00:36 1KB
@ microsoft, public, msagent = d Which nice character is free for use in de... Robert Rozman 27.02.2003 13:47 1 KB
= 'lj Sometimes, it is better to be scene and ... QUASI/YARIOUS/BOB §... 27.02.2003 14:37 83 KB
= [j Positioning agent Julia 27.02.2003 17:26 1KB
= d Microsoft Agent.net msnews.microsoft.com 27.02.2003 20:17 1KB
ez d whoa man, look at the colors. QUASI/YARIOUS/BOB §... 28.02.2003 14:19 10KB
jex] ':j Six Heads Are Better Than One QUASI/¥ARIOUS/BOB §.... 28.02.2003 19:03 24 KB
[ez] j Re: ITHAYE A COMPLAINT. DaveH 28.02.2003 20:54 2KB [
[N PR Y oL N4 00 annn aa.an 4 vn &
Yon: An:
Betreff:
Keine Machricht ausgewshlt,
| Kontakie > X
Keine Kontakke vorhanden. Klicken Sie
auf "Kontakte", um einen neuen Konktakk
2u erstellen,
297 Machrichb{en), 297 ungelesen, 2743 nicht dbertragen g Online arbeiten
. . : : . 87
Figure 21: Outlook Express 6 with the newsgroup microsoft.public.msagent™.

Other Links:

* Here is the very rich resource for HTML “SelfHTML” located (German):

http://selfhtml.teamone.de

* Link to the World Wide Web Consortium (W3C): http://www.w3c.org

» Cascading Style Sheets Homepage of W3C: http://www.w3c.org/Style/CSS/

» Document Object Model Homepage of W3C: http://www.w3c.org/DOM/

* HyperText Markup Language (HTML) Home Page of WS3C:
http://www.w3c.org/MarkUp/

» Javascript-based tutorial: http://people.freenet.de/JavaScript/javap00.htm

» ActiveX site for Object Rexx of Lee Peedin: http://pragmaticlee.safedataisp.net/

87 part of MS Windows XP

94

6.0LE and Object Rexx with OLEObject Class

This part contains the OLEODbject class. This class is the core interface of Object
Rexx for OLE. The methods Init, Unknown, GetKnownEvents,
Get KnownMet hods, Get Qbj ect and Get Qut Par anet er s of the OLEChj ect class
and the type conversion are represented. The methods are always explained with a
code example. Thereby the Microsoft Internet Explorer or parts of the Microsoft Office
like MS Word or MS Excel are automated with Object Rexx. Sometimes Visual Basic
Script code is used to clarify how to program the Object Rexx code.

Object Rexx supports OLE Automation. Object Rexx is an OLE Automation client.
Therefore, the OLEQbj ect class is used. The Rexx OLEODbiject class is not a built-in
class [IBM01,p284].

In earlier Object Rexx versions the directive : : REQUI RES " OREXXOLE. CLS" was
needed. In the newest versions Object Rexx automatically loads it. In this way the
directive : : REQUI RES " OREXXOLE. CLS" with the class definition is not needed
[Fla03a]. OREXXOLE. DLL contains the library with the code [En01,p9]. For the OLE
object with its properties and methods the Rexx OLE object is like a proxy object. The
Rexx OLE object is used like all other objects in Rexx. It transfers invocations of

property get and property put operations and methods on to the real object
[En01,p12].

|IE = .OLEObject~New("InternetExplorer.Application")

OLEODbject

Figure 22: Interaction of OLE object, OLEObject and Script®®

Figure 22 illustrates the interaction of OLE object, OLEObj ect and the Object Rexx

script.

% Modeled after [En01,p12]

95

6.1. Methods of the OLEODbject Class

The table 4 contains a short reference over all OLEObject class methods and

describes them.

The OLEOhj ect class provides the following methods [IBM01,p285ff]:

Method Description

INIT With a CLSID or a ProgID an OLE object is
instantiated.

UNKNOWN Methods of the OLE object are called with this
central mechanism.

GETCONSTANT The value of a constant that is linked with an OLE
object is retrieved.

GETKNOWNEVENTS Returns a .stem with information on the events an
OLE object can generate.

GETKNOWNMETHODS Returns a .stem with information on the methods an

OLE object offers.

GETOBJECT(Class method)

With a moniker® or nickname (a string) an OLE
object can be accessed.

GETOUTPARAMETERS This method returns an array, which contains the
results of the single out parameters of the OLE
object.

Table 4: Methods of the OLEObject class®

6.2. Type Conversion

OLEODbject supports an automatic conversion to and from types. Thereby OLE uses,

in opposition to Rexx, a strict typing of data. OLE types are named variants. That is

because the OLE types are stored in one structure that gets flagged with the type it
stands for [IBM01,p291f].

8 c.p. 2.3.4.
9 IBMO1,p285ff]

96

Table 5 illustrates the type conversion of VARIANT types and Rexx object
[IBMO1,p291f], [MLSRIa]:

VARIANT type Rexx object
VT_EMPTY Indicates a value was | .NIL
not specified.
VT_NULL Indicates a null NIL
reference
VT_VA D Indicates a C style .NIL
void
VT |1 Indicates a char value | REXX string A whole number
VT |2 Indicates a short REXX string A whole number
integer
VT 14 Indicates a long REXX string A whole number
integer
VT_I8 Indicates a 64-bit REXX string A whole number
integer
VT _U 1 Indicates a byte REXX string A whole, positive
number
VT_Ul 2 Indicates an unsigned | REXX string A whole, positive
short number
VT_U 4 Indicates an unsigned | REXX string A whole, positive
long number
VT_U 8 Indicates an 64-bit REXX string A whole, positive
unsigned integer number
VT_R4 Indicates a float value | REXX string A real number
VT_R8 Indicates a double REXX string A real number
value
VT_CY Indicates a currency REXX string A fixed-point number
value with 15 digits to the left
of the decimal point and
4 digits to the right

97

VT_DATE Indicates a DATE REXX string
value

VT_BSTR Indicates a BSTR REXX string
string

VT_DI SPATCH Indicates an IDispatch | REXX

pointer OLEODbject
VT _BOOL Indicates a Boolean .TRUE or
value .FALSE

VT_VARI ANT Indicates a VARIANT | Any REXX

far pointer object that can
be
represented as
a VARIANT
VT _PTR Indicates a pointer See
type VT_VARIANT
VT_SAFEARRAY Indicates a REXX Array

SAFEARRAY. Not
valid in a VARIANT

Table 5: Type conversion®19?

6.3. Init>

| NI T is the most important method of the OLECbj ect class. | NI T instantiates an
OLE object. The code examples demonstrate the | NI T method when it is used with

a ProgID, with a CLSID or with events.

Therefore, the CLSID or the ProgID is used. For the usage of events it is optionally
possible to enable events (W THEVENTS) or to disable events (NOEVENTS) which is
the default setting. The CLSID respectively ProgID can be found out by looking up

1 Taken from [IBMO1,p291f]
9 Taken from [MLSRIa]
% Section uses [IBM01,p285]

98

the registry with the Registry Editor® or the documentation of the application or with
tools like RGF_OLEI NFO. HTA®®, Microsoft OLEViewer® or OLEI NFO. REX®’.

Syntax:

| NI T(CLSI DY Pr ogl D, [NOEVENTS/ W THEVENTS])

6.3.1. Init with ProgID

Code 2 demonstrates the instantiation of an OLE object with the example of MS
Word with the ProgID. The syntax is “Wor d. Appl i cati on” because Rexx doesn’t
run “inside” Word and so first the Application object has to be generated

[IBM02a,p2].

- Instantiation of the MS Word with the ProglD
Wrd = . OLEChj ect ~New("Wor d. Appl i cation™)

- The Visible property is set on true®. Wrd can be seen on the display
Word~Vi si ble = . TRUE

Code 2: Init_Instantiation of Word with ProgID.REX

6.3.2. Init with CLSID

The code 3 demonstrates the instantiation of an OLE object with the CLSID. This
script runs with MS Word 2002.

*cp.26.1.
®cp7.3.
®cp.2.6.2.
ep. 7.2
% [MS03a]

- Instantiation of the MS Word with the ProglD
Word = . OLEOhj ect ~New(" { 000209FF- 0000- 0000- CO00- 000000000046} ")

- The Visible property is set on true®. Wrd can be seen on the display
Word~Vi si ble = . TRUE

Code 3: Init_Instantiation of Word with CLSID.REX

6.3.3. Init with WITHEVENTS!®

Code 4 shows the usage of the parameter “W THEVENTS”. An instance of the
Microsoft Internet Explorer is created with the class Event sWt hl E that is derived
from OLEQhj ect . In this class the method OnVi si bl e is contained which is called if
the event OnVi si bl e is fired.

It is important that the directive : : CLASS Event sWt hl E gets the additional remark
SUBCLASS OLEMnj ect. The class EventsWthl E is a class below the class

OLEObj ect and inherits from the superclass OLECbj ect all methods and variables
[IBMO1,p8].

The directive : : CLASS generates a Rexx class. This Rexx class is now available
through the Rexx environmental symbol “. Event sWt hl E’ (note the dot). In this
way all methods like the method OnVi si bl e which are defined by the : : METHOD

directive and that come subsequent to the :: CLASS directive can be accessed
[IBMO1,p87].

The phrase SUBCLASS causes that the class Event sW t hl E to become a subclass
of the class OLE(hj ect [IBMO1,p88]

- An instance of the InternetExplorer is generated. Here with the
- paraneter "W THEVENTS"

|E = . EventsWthl E~new("I nt ernet Expl orer. Application","W THEVENTS")
- The InternetExplorer is shown®? This invokes the firing of the

% [MS03a]
1% 1BMO1b]

100

- OnVisible event

| E~visible = .true
- Class which derives from OLEObj ect

: 1 CLASS EventsWt hl E SUBCLASS OLEMhj ect
- Method which is called if the event OnVisible is fired in case
- if the window is shown or hidden.

:METHOD OnVisible — intercepts the Visible event

say "The Mcrosoft InternetExplorer is visible"

Code 4: Init. WITHEVENTS.rex'%

6.4. UnKnown'®

The UNKNOAN method is, as well as the | NI T method'®, a very important part of the
OLEObj ect class of Object Rexx. It is a fundamental instrument, through which the

d.!®. The code examples explain the

methods of an OLE object are accesse
UNKNOWN method with arguments, without arguments and with identical method

names.

The UNKNOWN message passes on all unknown messages to the OLE program
[Fla02a,p13]. Methods of the OLE objects are called with this method. If the names of
methods of the OLE object and OLECbj ect are equal, then the method must be
called over the UNKNOWN method'®. The problem occurs in the most cases with
Copy or Cl ass messages [Fla02a,p13]. The UNKNOWN method has two arguments.
The first argument is the name of the method that is to call. The second argument

contains the arguments of the method that is to call.
Syntax:
UNKNOWN(messagenarne, nessagear gs)

6.4.1. Unknown without Arguments

Code 5 demonstrates the UNKNOAN method without message arguments.

101 (MS03b]

192 Modeled after [IBMO1b]

193 This section uses [IBM01,p290]
1% ¢ p.6.3.

15 ¢ p. 2.1.

1% ¢ p. 12.1.3.

101

At first, the selection of a cell in MS Excel is implemented with the Sel ect method in
a direct way. In the next step a cell is selected with the UNKNOAN method. Thereby
the Sel ect method is given over to the UNKNOAN method.

-- Instantiation of Excel
Excel = . OLEOhj ect ~new(" Excel . Application")
-- A workbook with a worksheet is added. "1" is the index of
-- the worksheet %’
Wor ksheet = Excel ~Wor kbooks~Add~Wr ksheet s[1]
-- The Visible property is set on true so that excel can be seen on the
-- di spl ay'°®
Excel ~Visible = .true
-- The cell A7 is selected direct with the Sel ect nethod!®®
Wor kSheet ~Range(" A7") ~Sel ect
-- Handover of the value "This cell was selected" to the cell?®
Wor kSheet ~Range(" A7")~Val ue = "This cell was sel ected"
-- Message box with information
CALL RxMessageBox "The next cell is selected over the UNKNOMN net hod", -
“I'nformation", "OK", "ASTERI SK"
-- The cell C7 is selected indirect over the UNKNOM net hod with
-- the Sel ect nmethod. Because there are no argunents, .NIL is set
Wor kSheet ~Range(" C7") ~UNKNOWN(" Sel ect ", . ni |)

Code 5: UnKnown_without_Arguments.rex

6.4.2. Unknown with Arguments

Code 6 shows the UNKNOWN method with message arguments.

For the demonstration, the CheckSpel | i ng method of MS Excel is used. First, the
method is used in the normal, direct use whereby arguments are hand over too. Then
the method is implemented indirect over the UNKNOAN method, whereby an array is
used to hand over the arguments. This script was programmed for the German

version of MS Excel 2000™**. For other versions the phrase “Benut zer . Di ¢” must

197 IMS03c]
198 IMS03d]
199 (MS03h]
19 1MS03f]
1 part of MS Office

102

be replaced. Probably instead of “Benut zer. Di ¢” “Benut zer Di ¢” is used. Make a

macro to get it.

Excel = .OLEObj ect ~New "Excel . Application") -- Instantiation of Excel
Wor dToCheckl = "Test" -- Wrd to check
-- Calls the nmethod CheckSpelling and hands over the argunent
-- with the text to check and the nane of the optional paraneter
-- CustonDictionary. The argument |gnoreUppercase is left free.
-- This version of the CheckSpelling nmethod is used with the
-- Application object?!?
Resul t OF CheckSpel | i ngW t hQut Unknown =Excel ~CheckSpel | i ng(Wr dToCheck1, Benut zer. Di ¢)
-- Checks the result and tells if the spelling is correct
| F Resul t O CheckSpel | i ngW t hQut Unknown = 1 then -
SAY "The spelling of" WrdToCheckl" is correct."
ELSE SAY "The spelling of" WrdToCheckl" is NOT correct."
Wr dToCheck2 = "Teest" --Wrd to check
-- Array which is hand over to the variabl e ArrayFor UnKnown
-- with the word which is to check, the optional CustonDictionary
-- "BenutzerDi c" and the optional paraneter |gnoreUppercase is |eft
-- free.
ArrayFor UnKnown = . array~of (Wr dToCheck?2, Benut zer. Di c,)
-- The nethod CheckSpelling is used indirect over the UNKNOM net hod.
-- Thereby the arguments of array ArrayFor UnKnown are used. The
-- result is hand over to the variabl e ResultO CheckSpel li ngWt hUnknown
Resul t OF CheckSpel | i ngW t hUnknown = Excel ~UNKNOWN(" CheckSpel |i ng", ArrayFor UnKnown)
-- Checks the result and tells if the spelling is correct
| F Resul t OF CheckSpel I i ngW t hUnknown = 1 then SAY "The spelling of"
WordToCheck2 " is correct.”
ELSE SAY "The spelling of" WrdToCheck2 " is NOT correct."

Code 6: UnKnown_with_Arguments.rex

6.4.3. Unknown with identical Method Names

Code 7 demonstrates an UNKNOWN method that is used in a situation when the name

of an OLE object method is equal to one of OLEQhj ect .

This script creates a chart in an MS Excel sheet and copies this chart. The Copy
method would not be transmitted to MS Excel 2000 but to the Object Rexx class
object. The UNKNOWN method of OLECDhj ect solves this problem [He02,p17ff].

12 1MS03i]

103

First a macro (OtherScript 1) with the macro recorder tool of MS Excel is generated;
this helps to get the Object Rexx code. It is obvious that not all of the macro code is
necessary for the Object Rexx code. This macro contains a code that creates a chart
with data from the cell Al. In the Object Rexx script code 7 there is, additionally to

the macro, the chart selected and copied to the clipboard.

Sub Makrol()
' Makro2 Makro
' Makro am 03. 03. 2003 von FH auf gezei chnet

ActiveCel | . Formul aR1C1 = "10"
Range("Al"). Sel ect
Charts. Add
Acti veChart. Chart Type = x|l Col umdC ustered
Acti veChart. Set Sour ceDat a Sour ce: =Sheet s(" Tabel | e1"). Range("Al"), PlotBy:= _
x| Rows
ActiveChart. Locati on Were: =xl Locati onAsObj ect, Nane: ="Tabel | el”
Wth ActiveChart
.HasTitle = Fal se
. Axes(xl Category, xlPrimary).HasTitle = Fal se
. Axes(xl Val ue, xIPrimary).HasTitle = Fal se
End Wth
End Sub

OtherScript 1: Excel macro for UnKnown_Identical_Methodnames.rex

Code 7 uses the information of the macro OtherScript 1.

Excel = . OLEObj ect ~new("Excel . Application"”) -- Instantiation of Exce
-- A workbook with a worksheet is added. "1" is the index of the
-- wor ksheet 113
Wor ksheet = Excel ~Wor kbooks~Add~Wr ksheet s[1]
-- The Visible property is set on true so that Excel can be seen
-- on the display!*
Excel ~Visible = . TRUE
Wor ksheet ~Range(A1) ~Value = 10 -- The value of the cell Al is set on "10"
Excel ~Charts~Add -- The Add nethod places a new chart sheet

13 (MS03c]
114 1IMS03d]

104

-- The Location nmethod enbeds the chart with the constant
-- "Xl LocationAsObject" in the sheet "Tabellel"!*®

Excel ~Acti veChart ~Locat i on(Excel ~Get Const ant (" Xl Locati onAsChj ect"), " Tabel | el")
-- Ofers the source of data for the chart

Excel ~Act i veChart ~Set Sour ceDat a(Wr ksheet ~Range(" Al"))
-- The chart area in the active chart is selected

Excel ~Acti veChart ~Chart Ar ea~sel ect
-- Here the chart is copied to the clipboard. The Copy nethod
-- cannot be used in the nornmal way because this Copy nethod
-- wouldn't be sent to Excel but to the Object Rexx class. The
-- UNKNOWN net hod sol ves this problem

Excel ~Acti veChart ~Char t Ar ea~UNKNOAN(" Copy", .nil)

Code 7: UnKnown_ldentical_Methodnames.rex*'®

Figure 23 illustrates the result of code 7.

15 ¢.p. 6.6.
18 [He02,p17ff]

| Microsoft Excel - Mappe1 L:.‘LE‘U
Datei Bearbeiten Ansicht Einfigen Format Extras Diagramm Eenster 2 = §J
Dl sy iaas & sl |l @ 2| sl - - F XU ==FE |3 €|E=E|5-D A~ 7

|Diagrammﬂéc j =

B (62 D E E G H J K 1% =

-

A

00|~ | O 7 O B | —

: [@Raet]

H[4]» M Tabellel / Tabele2 / Tabeles / [4]
Bereit

Figure 23: Snapshot of MS Excel™’

6.5. GetObject™®

The GETOBJECT method enables to get an active OLE object. This method is similar
dllg.

to the | ni t metho
Therefore a moniker is used which informs OLE of the type of object that is
necessary. The moniker*®® determines which object has to be generated or to be
addressed in the case if the object is running. A moniker of the type file moniker is for
example the name and location of a MS Word document like
“C.\ Test\ Test Wor dDocunent . DOC’ [MLCOMaj]. Other monikers can be seen in

section 10.

17 part of MS Office
18 1BMO1,p289f]
19¢.p. 6.3.

120 ¢.p. 2.3.4.

106

The parameter C ass is not obligatory. It is employed to install a subclass of

OLEObj ect or to get an OLE object, which supports events (“W THEVENTS”).
Syntax:

GETOBJECT(Moni ker, d ass)

Code 8 shows the implementation of the GETOBJECT method.

- Opening of the Wrd file "TestWrdDocunent" and get an OLE obj ect
Wor dOLEChj ect = . OLEChj ect ~CGet Obj ect (" C: \ Test\ Test Wor dDocunent . DOC")

Code 8: GetObject.rex

6.6. GetConstant'*

The Get Const ant method returns the value of a constant. There are applications
that have many constants. MS Word 2002 for example has 2682 constants'?. The
Get Const ant method is represented in the example scripts with and without the

name of a constant.

A constant is associated with an OLE object. The . NI L object is given back if the

constant does not exist.
Syntax:

GETCONSTANT(Const ant namne)

It is possible for you to define constants with a programming language like Visual
Basic for Applications. The Microsoft Office contains built-in constants. Their values
are predefined. The application, to which an MS Office constant refers, can be
determined by the constant prefix. For example the prefix “Wi” for Word or the prefix
“XlI " for Excel [MS01].

2L This section uses [IBM01,p286]
122 ooked up with RGF_OLEInfo.hta c.p. 7.3.

107

6.6.1. GetConstant with the Name of the Constant

This method is demonstrated with a script that writes several different texts in MS
Word.

First, a macro is recorded in MS Word*?3. This macro is shown in OtherScript 2. It is
obvious that there is much more data recorded than is needed by the Object Rexx

script.

' Makro aufgezei chnet am 03.03. 2003 von
Docunent s. Add Docurent Type: =wdNewBl ankDocunent
Sel ection. TypeText Text:="Hello Wrl d"
Sel ection. Font . Col or = wdCol or Red
Sel ection. TypeText Text:="Hello Wrl d"
If Sel ection. Font. Underline = wdUnderlineNone Then
Sel ection. Font. Underline = wdUnderlineSingle
El se
Sel ection. Font . Underl i ne = wdUnder| i neNone
End If
Sel ection. TypeText Text:="Hello World"
Wth Sel ection. ParagraphFor nat
Wt h . Shadi ng
. Texture = wdText ur eNone
. ForegroundPat t er nCol or = wdCol or Aut omati c
. BackgroundPat t er nCol or = wdCol or Yel | ow
End Wth
. Border s(wdBor der Left). Li neStyl e = wdLi neStyl eNone
. Bor der s(wdBor derRi ght). Li neStyl e = wdLi neSt yl eNone
. Bor der s(wdBor der Top) . Li neStyl e = wdLi neSt yl eNone
. Bor der s(wdBor der Bott om) . Li neStyl e = wdLi neStyl eNone
Wth .Borders
. Di stanceFronifop = 1
. Di stanceFronmLeft = 4
. Di stanceFronmBottom = 1
. Di stanceFronRi ght = 4
. Shadow = Fal se
End Wth
End Wth

12 ¢p.5.2.

108

Wth Options
. Def aul t BorderLi neStyl e = wdLi neStyl eSi ngl e
. Def aul t Bor der Li neW dt h = wdLi neW dt h050pt
. Def aul t Bor der Col or = wdCol or Aut ormati c
End Wth
End Sub

OtherScript 2: MS Word macro for code 9

In code 9 is the Get Const ant method with the name of the constant demonstrated.

-- Instantiation of the M5 Wrd with its ProglD
Wrd = . OLEChj ect ~New("Wor d. Appl i cation")
Wrd~Visible = .TRUE -- Wrd is visible'
Wor d~Docunent s~Add -- A new word docunent is added
Wor d~Sel ecti on~TypeText("Hello Wrld ") -- Wites the text "Hello World "
-- Changes the Color of the Font to Red with the Constant "wdCol or Red"
Wor d~Sel ecti on~Font ~Col or = Wor d~CGet Const ant (' wdCol or Red')
-- Wites the text "Hello World " which has now the col or red.
Wor d~Sel ecti on~TypeText("Hello Wrld ")
-- Underlines the text. The value of the constant "wdUnderlineSi ngle"
-- is "1". The value is |looked up with rgf_ol einfo.hta'?®
Wor d~Sel ecti on~Font ~Underline = 1
-- Wites the text "Hello World " which is red and underli ned
Wor d~Sel ecti on~TypeText ("Hel lo World ")
-- The vari abl e Const ant Val ueOf WACol or Yel | ow t he val ue of the
-- constant "wdCol orYel | ow' i s handed over.
Const ant Val ueOf WiCol or Yel | ow = Wor d~Get Const ant (' wdCol or Yel | ow)
-- The backgroundcol or of the paragraph gets the color yellow
-- which is indicated by variabl e Constant Val ueO WiCol or Yel | ow
Wor d~Sel ect i on~Par agr aphFor mat ~Shadi ng~Backgr oundPat t er nCol or -
= Const ant Val ueO WiCol or Yel | ow

Code 9: GetConstant_GetConstant with name of Constant.REX

Figure 24 illustrates the result of code 9.

124 IMS03a]
125 ¢p. 7.3.

109

®] Dokument1 - Microsoft Word

- Datei Bearbeiten Ansicht Enflgen Format Extras Tabele Fenster 7

D5 = AR e - s Il % D@ EE;.@ [l # - Times New Roman - 12
: Endaiiltige Yersion enthalt Markups + fAnzeigen * E} i? \'f:} - @ - |_3 - J

L] o N W I W RS ST S SST I SO IR R PRI EM S - SRS RN Ry | =
= Hello-World-Hello Wotld Hello World ff

-+

? 3
. o
o 3
=0 e =4 x
Zeichnen ~ Q AutoFarmen = ™ Ca DO«‘Q:ITQJ &'ivévfiﬁ.i-',

Seite ab Bal e Sp 37 WAL AND ERW LB Englschier [

Figure 24: Snapshot of MS Word*®
6.6.2. GetConstant without the Name of the Constant

Code 10 shows all constants of MS Excel 2000 with their values.

All names have a “ !” symbol at their beginning because the name of the constant is

left out and a stem collection is built.

-- Get Constant_Get Constant w thout name of Constant.rex --
-- Instantiation of the M5 Excel with its ProglD

Excel = .OLEObj ect ~new " Excel . Application")
-- A workbook with a worksheet is added. "1" is the index of the
-- wor ksheet 1?7

Wor ksheet = Excel ~Wor kbooks~Add~Wr ksheet s[1]
-- The Visible property is set on true so that excel can be seen
-- on the display

Excel ~Visible = .true

126 part of MS Office
127 (MS03c]

110

constant. = Excel ~GetConstant -- Creation of a stem collection
-- The start value of counter = 1. The counter is needed that
-- each entry is in a new cell.

counter =1
-- DO function over the collection of all constants

DO const ant nane OVER const ant .

DO counter UNTIL counter > 0 -- DO function which never ends
-- Description of the cell. "A" stands for the colum and
-- "counter" for the row "||" prevents a blank character
a ="A" ||counter
-- Description of the cell. "B" stands for the colum and
-- "counter" for the row "||" prevents a blank character
b ="B" ||counter

-- Cells with the constant nanes
Wor ksheet ~Range(a) ~val ue = const ant nane
Wor ksheet ~Range(b) ~val ue = const ant. const ant nane
counter = counter + 1 -- Increnent of the counter
END -- End of the second DO function
END -- End of the first DO function
-- This command adapts automatically the breadth of the A colum.
Wor ksheet ~Col utms (" A: A") ~Ent i r eCol unm~Aut oFi t

Code 10: GetConstant_GetConstant without name of Constant.REX*?®

6.7. GetKnownEvents'?®

This method helps to get an overview over all events that are supplied from an

application.

The method GETKNOANEVENTS returns a stem with data about the events of an OLE
object. This data with arguments of the belonging methods, types and names is

contained in the type library of the object.
Syntax:
GETKNOANNEVENTS

Code 11 lists all events of an OLE object in an Excel sheet. Therefore, the ProglID of
the OLE object must be inserted to the command line like demonstrated in figure 25.

128 Modeled after [IBMO1,p286]
129 1BMO1,p286f]

111

|H Object REXX for Windows - [running - Output of C:\Dokumente und Einstellungen\FH\Eigene Dateien\Datem\Studium\Diplomarbeit\CD\Scripte\Auto. .. u@]ﬂ

File View ‘Workspace Execution Trace ‘Window Tools Help (
D1H]H’1 H;L_,j i® f’z | ik ; ! 2] ’Q_] Pi j | |Exce|AppIicaliUd & EJJ :

[= =1 %2
]
Lo
2. l | 2]
e
lae}
<] | £
| Exposed Yariable | Mariable alus] || "atched Yariable “Wariable Yalue |
.R.Bac!y i {\.vvaiting..‘ -. Cmt__ |
Figure 25: Object Rexx Workbench with the command line'®

Code 11 writes data about all events. The name of an event, the description of the
event, the number of parameters and name, type and flags of the parameter are
written to an MS Excel sheet. If there is no information about events the . NI L object

is given back and the function Ter m nat i on is called.

-- Message box with the invitation to insert the ProglD
CALL RxMessageBox "Insert the ProglD'", "Information", "OK"', "ASTERI SK"
PARSE PULL PROA D -- Hand over of the ProglD in the command w ndow
-- Instantiation of the Application with its ProglD with the
-- paraneter "NOEVENTS' and hand over to the variable "App"
App = . OLEObj ect ~New(PROG D, " NOEVENTS")
event. = App~Get KnownEvents -- Stem creation
-- Checks if information is available. If not then the .NL object
-- is given back and Termination is called. If the information is
-- avail able the program goes on.

139 1BM Object Rexx Workbench

112

IF event. == .NIL then CALL Term nation ELSE
Excel = . OLEObj ect ~new("Excel . Application"”) -- Instantiation of Exce
-- A workbook with a worksheet is added."1"is the index of the
-- wor ksheet 3!
Wor ksheet = Excel ~Wor kbooks~Add~Wr ksheet s[1]
-- The Visible property is set on true so that Excel can be seen
-- on the display®
Excel ~Visible = .true
-- Handover of val ue "Event number
Wor ksheet ~Range(“Al”) ~val ue = "Event nunber”
-- Handover of value "Nane of the Event"
Wor ksheet ~Range(“B1”) ~val ue = "Nanme of the Event™
-- Handover of val ue "Eventdescription®
Wor ksheet ~Range(“ C1") ~val ue = "Eventdescri ption"
-- Handover of val ue "Nunber of Paraneters of the Event
Wor ksheet ~Range(“D1”) ~val ue = "Nunber of Paraneters of the Event"
-- Handover of value “Nane of the Paraneter”
Wor ksheet ~Range(“EL1") ~val ue = "Nane of the Paraneter"
-- Handover of value "Type of the Paraneter”
Wor ksheet ~Range(“F1”) ~val ue = "Type of the Paraneter”
-- Handover of value "Flags of the Paraneter"
Wor ksheet ~Range(“GL”) ~val ue = "Fl ags of the Paraneter”
-- The cells Al to GL get the backgroundcol or bright yell ow
Wor kSheet ~Range(" Al: GL") ~I nteri or~Col or | ndex = 36
-- The start value of counter = 2 so that the first line is free
-- for the description. The CounterCell counter is needed that
-- each entry is in a new cell.
CounterCell = 2
DOi =1 TO event.0 -- DO function over all events
-- The nunber of parameters is hand over to the variable
-- Nunber O Par anet er s
Nunber Of Par aneters = event.i.! PARAVS. O
DO CounterCell UNTIL CounterCell > 0 -- DO function which never ends
-- Description of the cells. "A B, C, D' stands for the colum

n 133

-- and "counter" for the row "||" prevents a blank character
a ="A" ||countercel
b = "B" ||countercel
c ="C" ||countercel
d = "D" ||countercel
Wor ksheet ~Range(a) ~val ue = event.i -- Handover of the eventnunber
-- Handover of the name of the event
Wor ksheet ~Range(b) ~val ue = event.i.! NAMVE
-- Handover of the description of the event
Wor ksheet ~Range(c) ~val ue = event.i.!DOC

131 (MS03c]
132 IMS03d]
133 IMS03f]

113

-- Handover of the number of paraneter
Wor ksheet ~Range(d) ~val ue = event.i.! PARAMS. 0
-- Start value of the counter variabl e CounterNunmber Of Paranet ers
-- is set on "1"
Count er Nunber Of Paraneters = 1
-- DO function that is executed until the Variable
-- Count er Number O Paraneters is | ess than Nunber Of Paranmerters + 1
DO VWH LE Count er Nunmber O Par anmet ers < Nunber Of Paranmeters + 1
-- Description of the cell. "E'" stands for the columm and "counter”
-- for the row. "||" prevents a blank character
e = "E"|| (CounterCell + CounterNunmber Of Paraneters - 1)
-- Cell with the name of the paraneter

Wor ksheet ~Range(e) ~val ue = event.i.! PARAMS. Count er Nunber Of Par anet er s. | NAME
-- Description of the cell. "F' stands for the colum and "counter"
-- for the row. "||" prevents a blank character

f ="F"|| (CounterCell + CounterNunberOf Paraneters - 1)
-- Cell with the type of the paraneter

Wor ksheet ~Range(f) ~val ue = event.i.! PARAMS. Count er Nunber Of Par anet ers. ! TYPE
-- Description of the cell. "G stands for the columm and "counter” for
-- the row. "||" prevents a blank character

g = "G'|| (CounterCell + CounterNunberOf Paraneters - 1)
-- Cell with the flag of the paraneter

Wor ksheet ~Range(g) ~val ue = event.i.! PARAMS. Count er Nunber O Par anet er s. ! FLAGS
-- Increment of counter CounterNunber O Paraneters

Count er Nunber Of Par armet ers = Count er Nunber O Paraneters + 1

END -- End conmand for the third DO function
-- Increment of the counter CounterCell

CounterCell = CounterCell + NunberO Paraneters

END -- End conmand for the second DO function

END -- End conmand for the first DO function
-- These comuands adapts automatically the breadth of the
-- A B, C D E F and G col unms. 1341%

Wor ksheet ~Col ums (" A: A") ~Ent i r eCol umm~Aut oFi t

Wor ksheet ~Col utms (" B: B") ~Ent i r eCol unm~Aut oFi t

Wor ksheet ~Col utms(" C: C") ~Ent i r eCol unm~Aut oFi t

Wor ksheet ~Col ums (" D: D') ~Ent i r eCol umm~Aut oFi t

Wor ksheet ~Col utms (" E: E") ~Ent i r eCol unm~Aut oFi t

134 IMS03g]
135 [MS03e]

114

Wor ksheet ~Col ums("F: F") ~Ent i r eCol umm~Aut oFi t
Wor ksheet ~Col ums(" G G') ~Ent i r eCol umm~Aut oFi t

EXIT -- Term nation of the program
Term nation: -- Target if the .NIL object is given back
SAY "There are NO events!"
EXIT -- Term nation of the program
Code 11: GetKnownEvents_AllEventsOfAnApplication.rex

Figure 26 shows a MS Excel sheet with all events of MS Excel.

| Microsoft Excel - Mappe1 L:_‘LEIU
Datei Bearbeiten Ansicht Einfiigen Format Extras Daten Fenster 7 __]QJ!J
DEE ERY $ BB @ £8 @D 3w rucrru|SSEE@ e |F|E-S4A
| Al _'J = Eventnurnber
A 5 [D C . F _ g =

1 |Eventnumbertame of the Event Eventdescription Mumber of Parameters of the Event RMame of the Parameter Type of the Parameter Flags of the Parameter =
2 1/SheetFallowHyperlink {null) 2/ 5h ST _DISPATCH [in]

a2 Target YT _PTR [in]

4 2 WindowDeactivate (nully 2 Wb WT_PTR [in]

| Wi WT_PTR [in]

B 3 WindowActivate (nully 2'Wh YT _PTR [in]

= Wh YT_PTR [in]

8| 4 WindowResize {nully 2 Wb T _PTR [in]

9 Wh WT_PTR [in]

10 5 WorkbookAddinUningtall | (null) 11¥Wh WT_PTR [in]

Ll B WarkbookAddininstall {nully 1 Wh T _PTR [in]

12 7 WorkbookMNewSheet (nully 2 Wb T _PTR [in]

13 Sh WT_DISPATCH [in]

14 | 8 WoarkbookBeforePrint {nully 21%¥h WT_PTR [in]

18 Cancel T _PTR [in]

16 | 9 WorkbookBeforeSave (nully 3 Wb WT_PTR [in]

17| SavedsUl WT_BOOL [in]

18 Cancel WT_PTR [in]

19 | 10 ‘WarkbookBeforeClose |inull) 2%h WT_PTR [in]

20 Cancel WT_PTR [in]

21 11 WorkbookDeactivate {nully 1 Wh WT_PTR [in]

22| 12 "WorkbookActivate (nully 1¥Wh WT_PTR [in]

231 13 WoarkbookOpen {null) 1Wh “T_PTR [in]

24 14 SheetChangs (nully 25h WT_DISPATCH [in]

26| Target T _PTR [in]

26| 15 SheetCalculate {null) 1/5h WT_DISPATCH [in]

27 16| SheetDeactivate {nully 1.5h WT_DISPATCH [in]

28 | 17 | SheetActivate (nully 1/8h WT_DISPATCH [in]

29| 18 SheetBeforeRightClick | {null) 3 5h WT_DISPATCH [in]

30 Target WT_PTR [in]

31 Cancel T _PTR [in]

32 19 SheetBeforeDoubleClick |(null) 3.Sh ST _DISPATCH [in]

S Target WT_PTR [in]

34 | Cancel T _PTR [in]

4741 [M\ Tabelle1 { Tabeie? 7 Tabeies /=" S b atisalits

Bereit

136

Figure 26: Snapshot of MS Excel

6.8. GetkKnownMethods®’

This method helps to get an overview over all methods that are supplied from an

application.

The method GETKNOWNMETHCDS gives back a stem with data about the methods of

an OLE object. This data with arguments, types and names is contained in the type

136 part of MS Office
137 IBMO1,p287ff]

115

library of the object. Not all the data can be used directly. The . NI L object is given
back if the data is not available. Some methods, which are only used internally, are

hidden and not shown to the user.

Syntax:
GETKNOANVETHODS

The following code 12 allows looking at all methods of an OLE object. Therefore the
ProgID of the OLE object must be inserted to the command line**®. The script writes
data about all methods with their name, description of the method, name and
description of the type library, return type of the method, MemberID, kind of
invocation (normal method call, property or property put), number of parameters and
name, type and flags of the parameter to an MS Excel sheet. If there is no
information about methods the . NI L object is given back and the function

Ter m nati on is called.

-- Message box with the invitation to insert the ProglD
CALL RxMessageBox "lInsert the ProglD", "Information", "OK', "ASTERI SK"
PARSE PULL PROA D -- Hand over of the ProglD in the command w ndow
-- Instantiation of the Application with its Progl D and hand over to
App = . OLEObj ect ~-New(PROA D) -- the variable "App"
met hod. = App~Cet KnownMet hods -- Stem creation
-- Checks if information is available. If not then the .NIL object is
-- given back and Termination is called. If the information is
-- avail abl e the program goes on.
IF nmethod. == .nil then call Term nation else
Excel = .OLEObj ect ~New "Excel . Application") -- Instantiation of Excel
-- A workbook with a worksheet is added. "1" is the index of the
Wor ksheet = Excel ~Wor kbooks~Add~Wor ksheet s[1] -- wor ksheet 139
-- The Visible property is set on true so that Excel can be seen on
Excel ~Visible = .true -- the displayl40
-- Handover of val ue "Methodnunber "
Wor ksheet ~Range(“Al”) ~val ue = "Met hodnumnber”

138 ¢c.p. 6.7
139 (MS03c]
140 (MS03d]
141 IMS03f]

116

-- Handover of value "Nanme of the nethod"
Wor ksheet ~Range(“Bl1”) ~val ue = "Nane of the method"
-- Handover of value "Methoddocunentation”
Wor ksheet ~Range(“ C1”) ~val ue = " Met hoddocunent ati on"
-- Handover of value "Name of the type library"”
Wor ksheet ~Range(“D1”) ~val ue = "Nanme of the type library”
-- Handover of value "Docunentation of the type library"
Wr ksheet ~Range(“ E1") ~val ue = "Docunentation of the type library"
-- Handover of value "Returntype of the method"
Wor ksheet ~Range(“F1”) ~val ue = "Returntype of the nethod”
-- Handover of value "Menberl D of the nethod"
Wor ksheet ~Range(“GL”) ~val ue = "Menber | D of the method"
-- Handover of value "Kind of invocation of the nethod"
Wr ksheet ~Range(“H1") ~val ue = "Kind of invocation of the method"
-- Handover of value "Nunber of Paraneters of the nethod
Wor ksheet ~Range(“11”) ~val ue = "Nunber of Paranmeters of the nethod”
-- Handover of value "Nanme of the Paraneter"
Wor ksheet ~Range(“J1") ~val ue = "Nane of the Paraneter"
-- Handover of value "Type of the Paraneter”
Wor ksheet ~Range(“K1”) ~val ue = "Type of the Paraneter”
-- Handover of value "Flags of the Paraneter”
Wor ksheet ~Range(“L1”)~val ue = "Fl ags of the Paraneter”
-- The cells Al to Gl get the backgroundcol or with the index "35"
Wor kSheet ~Range(" Al: L1") ~I nteri or~Col or I ndex = 35
-- The start value of counter = 2 so that the first line is free for
-- the description. The CounterCell counter is needed that each entry
CounterCell =2 -- is in a newcell.
DO x =1 TO nmethod.0 -- DO function over all nethods
-- The nunber of parameters is hand over to the variable
Nunber Of Par anet ers = net hod. x. ! PARAMS. 0 -- Nunber Of Par anet er s
DO CounterCell UNTIL CounterCell > 0 -- DO function which never ends

= "G ||countercel

= "H" || countercel

i "I" |]countercell

Wor ksheet ~Range(a) ~val ue = nethod.x -- Cell with the nmethodnunber
-- Cell with the nanme of the nethod

Wor ksheet ~Range(b) ~val ue = net hod. x. ! NAME
-- Cell with the docunmentation of the nethod

Wor ksheet ~Range(c) ~val ue = net hod. x. ! DOC
-- Cell with the nane of the type library

Wor ksheet ~Range(d) ~val ue = net hod. ! LI BNAVE

-- Description of the cells. "A, B, C, D E F, G H |" stands for
-- the colum and "counter” for the row "||" prevents a blank character
a ="A" ||countercel
b ="B" ||countercel
c ="C" ||countercel
d ="D" ||countercel
e = "E" ||countercel
f ="F" |]|countercel
g
h

117

-- Cell with the docunmentation of the type library
Wor ksheet ~Range(e) ~val ue = net hod. ! LI BDOCC
-- Cell with the returntype of the nethod
Wor ksheet ~Range(f) ~val ue = net hod. x. ! RETTYPE
-- Cell with the Menber| D of the nethod
Wor ksheet ~Range(g) ~val ue = net hod. x. ! MEM D
-- Checks the kind of invocation because of the nunmber presented wth
-- method.i.!lI NVKIND und sel ects the appropriate docunentation.
SELECT
WHEN net hod. x. ' INVKIND = 1 THEN Ki ndOF I nvocati on = "Nornmal nethod call”
VWHEN net hod. x. ' NVKIND = 2 THEN Ki ndOf | nvocation = "Property get”
WHEN et hod. x. ' I NVKIND = 4 THEN Ki ndOfF I nvocation = "Property put”
END
-- Cell with the kind of invocation of the nethod
Wor ksheet ~Range(h) ~val ue = Ki ndOf | nvocati on
-- Cell with the number of paraneter
Wr ksheet ~Range(i) ~val ue = met hod. x. ! PARAMS. 0
-- Start value of the counter variabl e CounterNunber Of Paraneters is
Count er Nunber Of Par aneters = 1 -- set on "1"
-- DO function that is executed until the Variable
-- Count er Number O Paraneters is | ess than Nunber Of Paranmerters + 1
DO whil e CounterNunmber O Paranmeters < Nunmber O Parameters + 1

-- Description of the cell. "J" stands for the columm and "counter”
-- for the row. "||" prevents a blank character
j ="J3"||] (CounterCell + CounterNunberCf Paraneters - 1)

-- Cell with the name of the paraneter
Wor ksheet ~Range(j) ~val ue = net hod. x. ! PARAMS. Count er Nunber Of Par anet er s. | NAME
-- Description of the cell. "K' stands for the colum and "counter"
-- for the row. "||" prevents a blank character
k = "K'|| (CounterCell + CounterNunberOf Paraneters - 1)
-- Cell with the type of the paraneter
Wor ksheet ~Range(k) ~val ue = net hod. x. ! PARAMS. Count er Nunmber Of Par anet ers. ! TYPE
-- Description of the cell. "L stands for the colum and "counter"” for
-- the row. "||" prevents a blank character
I ="L"||] (CounterCell + CounterNurmberCf Paraneters - 1)
-- Cell with the flag of the paraneter
Wor ksheet ~Range(|) ~val ue = net hod. x. ! PARAMS. Count er Nurmber Of Par anet er s. ! FLAGS
-- Increment of counter CounterNunber Of Par aneters
Count er Nunber O Par anet ers = Count er Nunber Of Paraneters + 1
END -- End conmand for the third DO function
-- Increment of the counter CounterCell
CounterCell = CounterCell + Nunber O Paraneters
END -- End conmand for the second DO function
END -- End conmand for the first DO function
-- List objects with the colum |IDs which are accessed in a fix order.
ColumiD = .list ~of("A', "B, "C, "D, "E, "F, "G, "H, "I", "J", "K', "L")
-- DO function which uses all objects of the |ist
DO Col umAut oFit OVER Col ummli D
-- Autofit is used for all colums which are provided in the list. The
-- breadth of the colums A B, C D, E F and G are autonmatically

118

-- adapt ed. 142143

Wor ksheet ~Col ums(Col umAutoFit || ":" || Col umAutoFit)~EntireCol utmm~Aut oFi t
END -- End of Do function
EXIT -- Termi nation of the program
Term nation: -- Target if the .NIL object is given back
SAY "There are NO net hods!"
EXIT -- Term nation of the program
Code 12: GetKnownMethods_AlIMethodsOfAnApplication.rex

Figure 27 shows a MS Excel sheet with all methods of MS Word.

Microsoft Excel - Mappe1 L:_‘LE‘U

Datei Bearbeiten Ansicht Einfiigen Format Extras Daten Fenster # __|5'_J§J
DeE SRy iza L AT R - - F XU E BH 9e = E-9-A 7
| Al j =| tlethadnumber
| A B E D E F G —
1_{Methodnumber iName of the method Methoddocurmentation Mame of the type library Documentation of the type library Returntype of the method MemberlD of th—
2 28 Visible 25.100C _Application ILIEDOC WT_W0ID
3 31 Screenlpdating 31.1D0C _Application ILIBDOC ST VOID 0000001 a
4 33 PrintPreview 3a.1Doc _Application ILIBDOC WT_V0ID 0000001 b
5 36 DisplayStatusBar 36.100C _Application ILIBDOC T _W0ID 0000001 d
B 42 International 42.1D0C _Application ILIBDOC ST VARIANT 0000002e
7 47 UserMame 47.1D0C _Application ILIBDOC YT O0ID
8 | 48 Userlnitials 49.100C _Application ILIBDOC T W0ID
g4 51 UserAddress 51.1D0C _Application ILIBDOC ST VOID
10 54 DisplayRecentFiles 54.100C _Application ILIBDOC ST Y0ID
flalial 56 Synaonyminfo 86.100C _Application ILIBDOC WT_PTR 00000030
12
13| 59 DefaultSaveF ormat 59.100C _Application ILIBDOC ST Y0ID
14 | B2 ActivePrinter B2.100C _Application ILIBDOC T WOID
| 65 CustomnizationContesxt B5.100C _Application ILIBDOC ST V0ID
18 | E7 KeysBoundTo B7.1D0OC _Application ILIBDOC T PTR
17
(El
19 B8 Findiey 63.100C _Application ILIEDOC YT _PTR
20
21 70 Caption 70.100C _Application ILIBDOC ST _VOID
22| 73 DisplayScrollBars 73.100C _Application ILIBDOC YT YO0ID
23| 75 StartupPath 75.100C _Application ILIEDOC YT _W0ID
24 | 79 Left 79.100C _Application ILIBDOC YT _W0ID
25| a1 Top g1.100C _Application ILIEDOC W1 W0ID
26 | 83 Width g3.100C _Application ILIEDOC WT_VOID
27 | 85 Height g5.100C _Application ILIBDOC YT _W0ID 0000005a
28 87 WindowState g7.100c _Application ILIEDOC YT V0D 0000005k
29 | 89 DisplayAutoCompleteTips 89.100C _Application ILIBDOC ST _V0ID 0000005c
I 92 DisplayAlerts 92.100C _Application ILIBDOC YT _W0ID 0000005
31| 95 StatusBar 95.1D0OC _Application ILIBDOC YT VOID
32| 95 DisplayScreenTips 95.100C _Application ILIBDOC ST V0ID
33 100 EnableCancelkey 100.100C _Application ILIBDOC ST 0ID
34 | 105 DefaultTableSeparatar 105.100C _Application ILIBDOC YT VOID
-1 — ANT ClheoddanalDeniaCalitor A0T A0 LIS EER LA (W1 =]nTale
M 4]» M} Tabelle1 ,\7 Tabele2 £ Tabelles / [4]
Bereit

Figure 27: Snapshot of MS Excel***

6.9. GetOutParameters®

The GETOUTPARAMETERS method offers an array with the results of the single out

parameters of the OLE object.

12 IMS03e]

143 [MS03g]

144 part of MS Office
15 1IBMO1,p290]

119

If there are no out parameters, the . NI L object is given back. An out parameter is an
argument to the OLE object which is filled in by the OLE object. If this is impossible in
Rexx due to data encapsulation, the results are positioned in the array. The order in

the out array is from left to right.

Syntax:

GETOQUTPARAMETERS

120

7.Tools

There are several tools, which support the work with Automation. These tools offer
for example information about the member functions of objects. The three tools
METHINFO.rex, OLEInfo.rex and RGF_OLEInfo.hta are represented.

7.1. METHINFO.rex

The tool MVETHI NFO. r ex that is contained in the path
.\ Obj REXX\ SAMPLES\ OLE\ METHI NFO offers information about the methods of an
OLE object. Therefore, the script MAI N. r ex must be executed and the ProgID must

be inserted.

7.2. OLEInfo.rex*

The tool OLEI nf 0. rex is contained in the path
.\ Obj REXX\ SAMPLES\ OLE\ OLEI NFO. It is a Rexx OLE/ActiveX object viewer. It
offers information about the automated OLE objects with its ProglD and with its
exposed methods, events and properties. Information about the method signature
with flags, types and memberID and the method documentation is available and the
method can be invoked. Figure 28 illustrates the graphical user interface of the IBM

OLE/ActiveX object viewer.

148 Taken from METHINFO.rex
47 1IBMO2b]

121

REXX OLE/ActiveX Object Viewer
FroglD | ﬂ Loak up |
Mame | Ewpplication

Documentation || Eudpplication Interface

Progress

Lizt af methods, properties and events-

& Application Ca= Height= = Parent

= Caption = nBow & Path

= Captioh= Z== | nteractive B QJueueMess
L EhecTc;h-Talll O | eft 2= A ootFaolder
@ ClozeEudora Ca=Left= @ Sendlueues
M CompactFolders [Fe=Mame & StatuzBar
B EmptyTrazh li*l OrCheckhailComplete &= StatuzBar=
M Folder li#fl OrCloze = Top

@ FolderBylD i#) OnCompactFoldersComplete (= Top=

= Falders #) OrErmptyT razhComplete = "YerzionBuil
& FulM ame %) OrFolderChange = Versionhd ajc
& Height li#l OnSendtailCarmplete = erzionhdine
£ | | ?

Detailz

Methad signature. [F0D000018'%] WT_v0ID CheckMailin,opt] ¥T_VARIANT Passw

Documentation fmethod CheckMail

Shoe v Types v Flags W MemberlD

E wit Help |

Figure 28: OLE/ActiveX Object Viewer with functions of Qualcomm Eudora****°

For more information look up in the HELP. TXT file in the same directory.

7.3. RGF_OLEInfo.hta™

This tool created by Prof. Dr. Rony G. Flatscher offers a rich set of information about
the installed OLE/ActiveX-COM objects.

There is data about the CLSID, ProgID, LocalServer32, InProcHandler32, the version
independent ProgID, a short description of OLE object and the date of the registry

18 User-interface of the IBM OLE/ActiveX Object Viewer

19 To automate Qualcomm Eudora 5.2, enable in the menu Tools->Options Automation

%0 Taken from RGF_OLEInfo.hta

122

entry. It offers information about the methods with documentation, arguments and
return value. Information is available for read-only properties with documentation and
return value and for write-only and read/write properties with documentation,
arguments and return value. Methods with unknown invocation type properties and
events are also described with documentation, arguments and return values. All

constants with their name and value are shown.

Figure 29 illustrates the start page of this tool. If the box in the red circle is clicked the

user gets a compact listing.

1 Click or enter application PROGID/CLSID to reveal OLFObject properties L:_J@JW
lad]

Automatable (OLE/ActiveX) Applications

. Access.Application (MS)
« Excel.Application (MS)

« Freelance.Application (IBM)

« InternetExplorer.Application (MS):
. Lotus123.Workhook (IBM)

Notes.NotesSession (IBM)
Qutlook.Application (MS)
Word.Application (MS)
WordPro.Application (IBM)

Enter Application Manually

Lockup

™ Generate compact listings

Lizt all available PROGIDs Generate a list of all installed OLE/AC W objects (may
Listinitial apps Generate the list of apps, shown upon startup.

CREATED WITH OBJECT REXX ("RGF_OLEINFOLHTML ") ON [20030117 15:13:54] run &Y [FHIFHLAPTOP 1@\FHLAPTOP 1]

Mé] - ®Boie., | @rudo. | Proco. | @oin. [

|l nData..‘ " D’E@A i?

el

& 2T S 5 154t

» 151

Figure 29: Snapshot of the start page of “rgf_oleinfo.hta

Such a compact listing of the MS Word member functions is shown in Figure 30.

31 User interface of RGF_OLEInfo.hta

123

#70LE/ActiveX Automation Interfaces for "Word.Application™ - Microsoft Internet Explorer E]@
Datei Eearbeiten Ansicht Favoriten Extras 7 :;‘
2 m : z »
|ﬂ @ _;\J / ! Suchen '“’ Favariten wMadien Qz‘f & A= @ Links

Name
Activate
AddAddress
AutomaticChange
V% BuildKeyCode
¥R CentimetersToPoints

O o o ho @

V800t CheckGrammar
¥T.500 CheckSpelling

9 VIBSR CleanString

10 DDEExecute
14 Vi DDEInitiate
12 DDEPoke

13 V55" DDERequest

Definitions from typelib: [_Application] with the brief documentation: [n/a]

ChangeFileOpenDirectory (Path V7557)

|
—_

Word.Application

[20030704 10.25:97

[Microsoft Word-Amwendung

[{000209F F-0000-0000-CO00-000000000046)

Wurd .Ap p-\'i'é éfi-on

[word Application. 10

[CAPROGRA~ TIMICROS~\Office | OWVINWORD EXE fAutomation
[2002-06-23 04:39:39] {10, 506,696 Byies]

[ole32 i

62 Method]s]

,.Ar‘J ‘{: Dor
(TaglD V-F® | Value V7.F/R)

(A[g‘l ¥T_USERDEFNED i !Arqz \d'.'_PTRji 2 [Arg_‘,l V'.'_PTRF ; IA!M '/T_P'.'P‘f)
{ Centimeters "7}

(String 75577

(Word VI557% | [CustomDictionary '"-#'% |, [IgnorelUppercase V"-F'7 | | [MamDictionary *"-*™ |, [CustomDictionary2 V7. |,
{ CustomDictionary3 V'R | { CustomDictionary4 " | , [CustomDictionary5 '"."7 | , [CustomDictionary6 "™ |,

[CustomDictionary7 V77" } | | CustomDictionary8 777 |, [CustomDictionary9 V7R | | [CustomDictionary 10 VT.F'? [}

(String 75577)

(Channel V"# , Command "72577)

(App V=57, Topic V7257

(Channel *™-#, ltem "85 , Data \7-557R)

(Channel Y™, ltem Y7557)

Figure 30:

Snapshot of “RGF_OLEInfo.hta” with compact listing.

To use this OLE-/Active-X Query Tool Object Rexx must be updated to version 2.1.2

152

. Probably it is necessary to decrease the security level™® of the MS Internet

Explorer (version 6.0 or higher required).

Look up the readme.html file to get more information about this tool and how to get

14154
|

[Fla02a,p33].

After installing execute the file “RGF_OLEI nfo.hta” to run the tool **°

152 http://www-

1.ibm.com/support/docview.wss?rs=0&q=0bject+Rexx&uid=swg24003624&loc=en_US&cs=ut

f-8&cc=us&lang=en

153

154

15 ¢.p.9.1.3.

MS IE (English version): Go to menu Tools->InternetOptions->SecurityLevel->CustomLevel
http://wi.wu-wien.ac.at/rgf/rexx/orx13/tmp/readme.html

124

8.Useful Object Rexx Classes

Object Rexx provides some useful Object Rexx classes, which facilitate the work with
Automation. These classes enable the access of the registry, access of windows,
managing of program groups, access of menus, using the clipboard and managing of
event log data. In this section the classes WindowObject, MenuObiject,
WindowsProgramManager, WindowsManager, WindowsClipboard, WindowsRegistry
and WindowsEventLog are discussed. These classes are also described in the

Object Rexx Online Reference™®.

8.1. WindowObject

Definition of properties of Window objects that are available for Object Rexx
programs. This class enables the sending of Windows messages (e.g.
WM_COWVAND), mouse clicks, texts, keys etc.. Menus can be queried and Windows

can be increased, moved, represented or put in the foreground [Fla02a,p2].

8.2. MenuObject

This class enables the locating of menus, submenus, menu position, menu ID etc
[Fla02a,p2].

8.3. Object Rexx Classes Remoting the User Interface

The following classes support the remoting of user interfaces.

8.3.1. WindowsProgramManager

This Object Rexx class requires the directive : : REQUI RES “W NSYSTM CLS”. It
shows program groups. It enables the definition and deletion of program groups and

the contained files [Fla02a,p3]

8.3.2. WindowsManager

This Object Rexx class requires the directive : : REQUI RES “W NSYSTM CLS”. This

class enables the pressing of buttons, choosing of menu items and the sending of

1% Object Rexx Workbench menu: Help->Online Reference

125

text in a Window. It is also possible to find Windows by the text of the title or by

coordinates and to choose the active Window [Fla02a,p3]

8.3.3. WindowsClipboard

This Object Rexx class requires the directive : : REQUI RES “W NSYSTM CLS" . This

class enables the usage of the clipboard to for example transmitting text'>’ [Fla02a,p4]

8.3.4. WindowsRegistry

This Object Rexx class requires the directive : : REQUI RES “ W NSYSTM CLS” . With

this class it is possible to query, define or delete Windows registry entries'*®
[Fla02a,p4].

8.3.5. WindowsEventLog

This Object Rexx class requires the directive : : REQUI RES “W NSYSTM CLS" . This
class enables reading, deleting and writing of event log data on Windows machines

or across machine border [Fla02a,p4].

7 ¢cp. 12.1.3.
198 ¢.p. 2.6.3.

126

9.Embedding Object Rexx in HTML or XML

It is possible to insert Object Rexx code in so-called markup language like HTML or
XML. Thereby the tags <Script Language = “Object Rexx”> and
</ Scri pt > include the Object Rexx script code [Fla02a,p46]. This chapter describes
some basic concepts. These are Tag, Document Type Definition, HTML, XML,

Cascading Style Sheets, Document Object Model and the Microsoft Internet Explorer.

For older Object Rexx versions the directive “: : REQUI RES OREXXOLE. CLS’ is not
necessary in this case, because Object Rexx embedded in HTML is running over
ActiveX Scripting [En02].

Commands can be put at each position in the document. The execution of
commands ensues the document order. Public routines can be called from each
location in the script. Commands with attributes for events are executed if the event
is fired [Fla02a,p48].

9.1. Tag

A tag encloses a text. There is first an opening tag <some_t ag_nane> and after the
text comes a closing tag </ some_t ag_nane>. This enables the analysis of texts
because in this way it is possible to ascertain which text parts are enclosed from
which tags [Fla02a,p36].

9.2. Document Type Definition (DTD)

The Document Type Definition defines tags and their attributes. A content model
regulates the hierarchical structure, how the tags are fit into each other and how often
an element can be used. An instance of a DTD is a document that is marked up due

to the DTD rules. Such a document is called “validated” [Fla02a,p37].

9.3. HTML (Hypertext Markup Language)

HTML is a markup language for the WWW.

A so-called HTML-browser parses a HTML document and formats the text due to the
tags. For DTD version 4.01 is used and it is SGML-based (Standard Generalized

Markup Language [Mu01]). Thereby it is possible to use the names of tags and

127

attributes irrespective of capitalization and to define exclusion rules. In some cases it

is possible to leave end-tags if they are set clearly because of DTD rules [Fla02a,p38].

The content of a HTML is enclosed into the tags <ht m > and </ ht ml > which is the
root element of a HTML file. The HTML file consists of the two parts <head> with the
head data like the title of the file and the <body> with the content which is shown in

the browser window. A comment is used as follows: <! —This is a comment -->
[Mii01a]

If the file extension is not named .ht M but . ht a (HTML Application) a secure, local

execution is enabled™® [Fla02a,p51].

9.4. XML (eXtensible Markup Language)

XML is a simplified version of SGML (Standard Generalized Markup Language).

XML enables the definition of DTD for markup languages. It is necessary to always
set the end tag. The values of attributes can be enclosed with apostrophes and
double quotation marks. Empty elements can be marked and the names must be
marked exactly in the defined capitalization [Fla02a,p39]. It is possible to omit DTDs.
The DTD can be derived if it is wellformed. The opening tags must have adequate
end-tags. All tags have to fit into each other and the tags needn’t overlap'®
[Fla02a,p40].

9.5. Cascading Style Sheets (CSS)

CSS enables the definition of formatting rules for elements [Fla02a,p40].

9.6. Document Object Model (DOM)

The Document Object Model (DOM) is a norm of the W3 Consortium. Thanks to
DOM it is possible to change the elements of a web site dynamically [Mi01b]. In the
Microsoft context DOM is called DHTML [Fla02c,p12]].

19 ¢p.7.3.and 12.1.2.
180 ¢ p. 13.8.3.

128

A HTML/XML file is parsed and a parse tree is generated with the elements as nodes
as demonstrated in figure 31. There are Application Programming Interfaces (API) for
creation, querying, changing or deleting of nodes in the tree and for intercepting
events including the attributes of the tags. These APIs catch the events which occur if
there are keyboard- or mouse-actions or if there are events which are created by the

application like “document loaded” [Fla02a,p44].

<html=>
<head=>
<titlesThis is my HTML file</titles
<link rel="stylesheet" type="text/css" href="exampleZ.css":=>
< /head=>
<body=>
<hl>Important Heading</hl=s
<p>This <span class="verb"=is the
first paragraph.

<hl >Anether Important Heading</hls

«p id="xyzl"sAnother paragraph. ht |
<p 1d="9876">This <span class="verb"sis</spans it. m

< /body=>
< /html = I
head body
—

HEHEEME

Figure 31: Example for DOM™*

9.7. Microsoft Internet Explorer (MSIE)

The MS Internet Explorer is a Windows Scripting Host. It offers the OLE-object
“Wwi ndow’ which is a COM object for the implementation of DCOM (DHTML —
dynamic HTML). All OLE-object-properties of “wi ndow’ like “docunent ” are used by

the MSIE. In this way functions and methods like “al | ” or “t abl es” can be used.

181 Taken from [Fla02a,p45]

129

Elements can be added, changed or erased. The MS Internet Explorer controls the

execution of embedded scripts*®® [Fla02a,p47].

9.7.1. Embedding an Object Rexx Script in HTML

Code 13 demonstrates the embedding of Object Rexx in HTML.

Thereby a text input is shown. If the button is clicked an event is fired and the text is
transferred to the head where a routine is called. In this routine the essential Object
Rexx code is contained. There the text is hand over. After that, this script code runs

Word and writes the text.

<htm >

<head>

<title>Denpnstration of OLE with Object Rexx</title>
<l-- Beginning of the script code -->

<script |anguage="0bj ect Rexx">

-- Enbeddi ng hject Rexx in HTM. --
-- Beginning of the routine doTheWrk. It is referenced fromthe body
-- if the button is pressed or clicked."Public" enables the transfer-
-- ring of the data fromthe input area in the body to the routine
c:routine doTheWdrk public
-- Transfer of data to the variable text. Thereby refers the docunent
-- object to the content which is shown in a browser w ndow. "All" is
-- an object which enables the access to single elenents and content
-- of HTML docunents. This is part of DHTM.. "Text" is the
-- identifier."Value" is the content of the identifier
text = docunent ~al | ~t ext ~val ue
Wor d . OLEOhj ect ~New("Wor d. Application") -- Instantiation of Wrd
-- The visibility of Word is set on true so that Wrd can be seen
Wrd~Visible = . TRUE -- on the display
Docurment = Word~Docunents~Add -- A new Wrd docunent is added

Wor d~Sel ecti on~TypeText (text) -- The inserted text is witten to Wrd

-- End of the script code

</script>
<l-- End of the head -->

</ head>
<l-- Beginning of the body with the backgroundcolor red -->

<body bgcol or="red" >
<l-- The content after that text is centred -->

<center>

182 ¢ p.13.7.4.1.

130

<l-- The font has the size 5 and the text"Enbeddi ng of Object Rexx in
HTM.” is witten -->
Enbeddi ng of Object Rexx in HIM

<!-- End of centring -->
</center>
<l-- Seven line breaks -->

<pbr >
<pbr >

<pbr >
<pbr >
<l-- Text with the demand to insert a text -->
<nane>Pl ease insert a text</nane>
<pbr >
<l-- Input area of the type text with the internal name "Text". -->
<l-- The length of the area which is visible is "60".The internal -->
<l-- length is"70".To reference to this object the id"text"is used-->
<i nput nanme="Text" size=60 maxl ength=70 i d="text">

<pbr >
<center>
<l-- Input area of the type button. The text on the button is"press or

click". The phrase"l anguage="0bj ect Rexx"enbeds Object Rexx.|f
one of the two event handl er "onnouseup”"or "onkeypress" is
executed the routine doTheWork is called -->
<i nput type=button value="press or click"
| anguage="Chj ect Rexx"
onmouseup="cal |l doTheWor k"
onkeypress="cal |l doTheWrk">
</ center>
</ body>
</htm >

Code 13: Embedding Object Rexx in HTML.htm

Figure 32 shows the MS Internet Explorer with the user interface of the file
Enbeddi ng Obj ect Rexx in HTM.. ht m

131

[€] Demonstration of OLE with Object Rexx - Microsoft Internet Fxplorer BEx
Datei Bearbeiten Ansicht Favoriten Extras 7
T) o [Al @ . ; : e e
g Zurich d |ﬂ Iﬁ |) Suchen “EI\S’ Favoriten @Medlen Q] [I__--_-._.v (=] [@ i __J @

Adresse I@ C:\Dokumente und EinstellungenFH|Eigene Dateien\Daten|Shudium'Diplomarbeit\ EntwurFLOLE AutomationtScripte\HTMUHTML_L . htm

=

|

Wechselnzu Lirks

press ar click

a Ferkig :‘ Arbeitsplatz

m‘-l (5 Cr\Dokummen.. ".‘ Microsaf, .. '" 'DataBook ddyys "3 Embedding ... 7} Demonstrati.. oE 7] ‘ﬂ%&@o%%ﬁ%!@ 19024

Figure 32: Snapshot of Embedding Object Rexx in HTML.htm.*®®
9.7.2. MSIE and Error

If there is an error in an Object Rexx script that is embedded in HTML, then in the left
lower corner of the browser window is an alert sign (small red circle in figure 33).
Double click this sign to get more information about the error (big red circle in figure
33).

183 part of MS Windows XP

132

FE‘Fe‘Fnonstrﬂhn of OLE with Object Rexx - Microsoft Internet Explorer - [Offlinebetrieb] ™ L@ﬁ‘
Datel Bearbelten Ansicht Faveriten Extras 7 : F-.

Qo QW [B G P Srramn @uim @22 B - B

_Bat‘e__sse @'._C:'I.Dolﬂ.lmente.und EinstellungeniFHiEigene Dateien'l,Daten\,Studl'u_m'l.Dib\omarbar'ﬂEntwur‘E'r.Ol.‘.E Automation Scriptel Test|Embedding Object R in HTML.hkm

Figure 33: Error handling with the MSIE."®

%4 part of MS Windows XP

133

10. WMI*®®

The Windows Management Instrumentation (WMI) offers control and management
information in an enterprise environment. It is a component of Microsoft Windows
operating system [MLWMIa]. The scripts show for example all services running on the

machine or shutting down the machine.

There are some examples for the implementation of WMI with Object Rexx in the
folder ..\ Obj REXX\ SAMPLES\ OLE\ WM .

. . 1
10.1. Win32_Service™®
The first example shows all services in an MS Excel sheet which are on the machine.

Therefore, an object of the WMI class is obtained with the GETOBJECT method. First,
there is the Visual Basic Script code OtherScript 3 which handles this subject.

Set ServiceSet = _

Get Qbj ect ("wi nmgnt s: {i npersonati onLevel =i npersonate}").
I nstancesOf ("W n32_Service")

for each Service in ServiceSet
W5cri pt. Echo Service. Description

Next

OtherScript 3: VBS script code for Win32_Service'®’

Code 14 contains the Object Rexx script which writes service name and service
description to an MS Excel sheet additional to the VBS code.

As moniker'®® is wi nngnt s used. That moniker tells Windows Script Host to use the
WMI objects [MLWMIj].

185 ¢.p. 2.3.4. and 6.5.

185 IMLWMIDb]

187 Taken from [MLWMIb]
188 ¢ p. 2.3.4.

Excel = .OLEObj ect ~new "Excel . Application") -- Instantiation of Exce
-- A workbook with a worksheet is added."1" is the index of the
-- wor ksheet 6°
Wor ksheet = Excel ~Wor kbooks~Add~Wr ksheet s[1]
-- The Visible property is set on true so that excel can be seen on the
-- displ ay!™
Excel ~Visible = .true
-- Hands over the val ue "Servicenane"
Wor ksheet ~Range(Al) ~val ue = "Servi cenang"
-- Hands over the value "Servicedescription”
Wor ksheet ~Range(B1) ~val ue = "Servi cedescri ption"
-- Sets the counter variable a on "2" because it starts in the Exce
-- sheet in the second |ine

-- Sets the counter variable b on "2" because it starts in the Exce
-- sheet in the second |line

-- Get an object fromthe WM service (WnMnt). The phrase
-- "{inpersonationLevel =i npersonate}"” inforns the systemto treat the
-- current login credentials as those which are used for data or
-- executing methods.
VWM Obj ect =. OLEQhj ect ~GETOBJECT("w nngnt s: {i nper sonati onLevel =i npersonate}")

-- DO functions over all instances of the wi n32_Service cl ass

DO servi ce OVER WM hj ect ~I nst ancesOf ("wi n32_Ser vi ce")
-- Used for the location of the cell. || is necessary that there is no
-- enpty space between the colum identifier and the |ine nunber.

aa = "A" || a

bb = "B" || b

-- Inserts to the adequate cell the name of the service
Wor ksheet ~Range(aa) ~val ue = servi ce~nane

-- Inserts to the adequate cell the description of the service
Wor ksheet ~Range(bb) ~val ue = servi ce~description

-- Increment the counters a and b
a=a+1
b=Db+1
END -- End of the DO functions

-- This command adapts automatically the breadth of the A colum
Wor kSheet ~Col utms (" A: A") ~Ent i r eCol unm~Aut oFi t

189 (MS03c]
170 (MS03d]

135

-- The width of colum B is set on 100
Wor kSheet ~Col ums (" B") ~Col umW dt h = 100

-- Al cells of the columm B wap their text
Wor kSheet ~Col ums("B") ~W apText = .true

-- Sets the font type on bold in the cells Al and Bl
Wor kSheet ~Range(" Al: B1") ~Font ~Bol d = .true

Code 14: WMI_ListAllServicesOnTheSystem.rex

10.2. Win32_OperatingSystem

Code 15 is a short demonstration of the W n32_Oper at i ngSyst emclass.

Therefore, some properties of the operating system are shown. The Windows
version, the Windows directory, the description of the machine, the encryption level

and the serial number are listed [MLWMic].

171

As moniker~'~ is wi nngnt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMI]j].

-- Get an object fromthe WM service (WnMymt). The phrase
-- "{inpersonationLevel =i npersonate}" inforns the systemto treat the
-- current login credentials as those which are used for data or
-- executing nethods.
WM Cbj ect =. OLEOhj ect ~GETOBJECT("wi nngnt s: {i nper sonat i onLevel =i nper sonate}")

-- DO functions over all instances of the wi n32_OperatingSystem cl ass
DO a OVER WM Obj ect ~I nst ancesOf ("W n32_Oper ati ngSyst ent')
SAY "The W ndows Version is: " a~Version

SAY "W ndowsdirectory: " a~WndowsDirectory
SAY "Description: " a~Description

" cp. 2.3.4.

136

SAY "Encryption Level: " a~EncryptionLevel
SAY "Serial nunber: " a~Serial Number
END
Code 15: WMI_Win32_OperatingSystem.rex'"

10.3. Win32_DiskPartition

Code 16 shows some properties of the Wn32_Di skPartition class that offers

information about a partition with index number, name and description [MLWMId].

173

As moniker-"? is wi nmgmt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMIj].

-- Get an object fromthe WM service (WnMymt). The phrase
-- "{inpersonationLevel =i npersonate}"” inforns the systemto treat the
-- current login credentials as those which are used for data or
-- executing methods.

VWM Cbj ect =. OLEQhj ect ~GETOBJECT("wi nngnt s: {i nper sonat i onLevel =i nper sonate}")
-- DO functions over all instances of the Wn32 DiskPartition class

DO dp OVER WM bj ect ~I nstancesCOf ("W n32_Di skPartition")
-- Wites sonme properties of the Wn32_Di skPartition class

SAY "I ndex nunber: " dp~lndex " Nanme: " dp~name " Description: " -
dp~descri ption
END
Code 16: WMI_Win32_DiskPartition.rex'"

10.4. Win32_LogicalDisk =

The class W n32_Logi cal D sk is demonstrated with the following script. The
guantity of free space on a local drive is determined. The properties which can be
used in this example are accurately selected with the ExecQuery method. This

script shows all drives that have less than 20 free space.

72 IMLWMIc]
13 ¢c.p. 2.3.4.
14 IMLWMId]
15 1BM02c]

176 IMLWMIe]

137

OtherScript 4 is a Visual Basic Script code script that handles also this subject.

Set Di skSet = Get Obj ect("w nngnts: {i npersonationLevel =i npersonate}") _
. ExecQuery("sel ect FreeSpace, Si ze, Name from Wn32_Logi cal Di sk where DriveType=3")
for each Disk in D skSet
If (D sk.FreeSpace/Di sk. Si ze) < 0.20 Then
Wscri pt. Echo "Drive " + Disk.Name + " is |ow on space."
End If
Next

OtherScript 4: VBS script code for Win32_LogicalDisk'"”’

Code 17 also lists the name and volume name of disks, which have enough space for

contrast to OtherScript 4, which only tells the data of disks, which are low of space.

178

As moniker~™ is wi ngnt s used. That moniker tells Windows Script Host to use the

WMI objects [MLWMIj].

-- Get an object fromthe WM service (WnMymt). The phrase
-- "{inpersonationLevel =i npersonate}" inforns the systemto treat the
-- current login credentials as those which are used for data or
-- executing nethods.

VWM Cbj ect =. OLEQhj ect ~GETOBJECT("wi nngnt s: {i nper sonat i onLevel =i nper sonate}")
-- The properties FreeSpace, Size, Nane and Vol unreNane fromthe cl ass
-- Wn32_Logical Disk are sel ected. The command”"where"al |l ows only drives
-- of the type "3" which are |ocal discs”.
-- Only the selected properties can be used for queries.

Di skSet = WM Obj ect ~ExecQuery("sel ect FreeSpace, Si ze, Nane, Vol uneNanme "
"from Wn32_Logi cal Di sk where DriveType=3")
-- DO function over all instances of the Wn32_Logi cal Di sk cl ass

DO Di sk OVER Di skSet
-- The percentage of free space is checked if it is less than 20%

" Taken from [MLWMIe]
18 ¢.p. 2.3.4.
179 [MLWMI]

138

I F (D sk~FreeSpace/ Di sk~Si ze) < 0.20 THEN
SAY "Drive " Disk~Nane " with vol unme name
Di sk~Vol uneNane " is | ow on space.”
ELSE SAY "Drive " Disk~Name " with volune nane "
Di sk~Vol umeNanme " has enough space."
END

Code 17: WMI_Win32_LogicalDisk.rex

10.5. Win32_Process™

This script shows how to start a new process.

In this file the calculator is started. Therefore, a COM moniker'® notation is used to
reference the class. Then the class object is called itself because a new instance of
the W n32_Pr ocess class must be generated if a new process is generated. In this
context a so-called static method is used which is referenced to the class definition
itself. The methods in the foregoing scripts are so-called dynamic methods which are

referenced to the individual instances.

The OtherScript 5 which contains Visual Basic Script code handles also this subject.

set process = _
Cet Obj ect ("W nngnt s: {i npersonati onLevel =i npersonat e}! Wn32_Process")

result = process. Create ("notepad.exe",null,null, processid)
Wscri pt. Echo "Method returned result =" & result
WEcri pt. Echo "Id of new process is " & processed

OtherScript 5: VBS script code for Win32_Process'®

Code 18 doesn’t launch the notepad like OtherScript 5 and doesn't tell the returned
result the ID of the new process, but it launches the calculator.

-- Get an object fromthe WM service (WnMymt). The phrase
-- "{inpersonationLevel =i npersonate}" inforns the systemto
-- treat the current login credentials as those which are
-- used for data or executing nethods. A COM noni ker

-- notation (!Wn32_Process) is used to reference the

180 IMLWMIg]
18l cp. 2.3.4.
182 Taken from [MLWMIg]

139

-- Wn32_Process cl ass.
Process = -
. OLEObj ect ~GETOBJECT("wi nngnt s: {i nper sonati onLevel =i nper sonat e}! Wn32_Process")
-- Launches the cal cul ator by using the Wn32_Process cl ass
-- object itsself. "Create" is a so-called static nethod.
Process~Create("cal c")

Code 18: WMI_LaunchANewProcess.rex

10.6. Win32Shutdown®®

The following script demonstrates the W n32Shutdown method of the
W n32_QOper ati ngSyst em class.

This script will shut down the local machine. Caution: Close respectively save all

running processes before running this script.

First the OtherScript 6, a Visual Basic Script code script, handles also this subject.

Set col Operati ngSystens = _
Get Obj ect ("w nmgnt s: {(Shut down) }") . ExecQuery(" Sel ect * from W n32_CQOper ati ngSyst ent')
For Each obj OperatingSystemin col OperatingSystens
Obj Oper ati ngSyst em W n32Shut down(1)
Next

OtherScript 6: VBS script for the demonstration of Win32Shutdown'®*

Code 19 is the Object Rexx version of this item.

As moniker'®®

WMI objects [MLWMI]j].

IS w nmgnt s used. That moniker tells Windows Script Host to use the

-- CGet an object fromthe WM service (WnMnt). The phrase
-- "{(Shutdown)}" offers the privilege to performa renote!s®,
VWM Cbj ect = . OLEQhj ect ~GETOBJECT("wi nmgnt s: { (Shut down) })

-- Al instances are selected fromthe Wn32_OperatingSystem cl ass
col OperatingSystenms = WM Cbj ect ~ExecQuery("sel ect * from Wn32_OperatingSystent)
-- DO function over all instances of the Wn32_QperatingSystem cl ass
183 [SGa]
184
Taken from [SGa]
1% ¢.p. 2.3.4.

185 IMLWMIh]

140

DO col Operati ngSystem OVER col Oper ati ngSyst ens
-- The W n32Shutdown nmethod is executed with the flag 1 which neans
-- "Shutdown". The flag "2" e.g. neans "Reboot ",

col Oper ati ngSyst em~W n32Shut down(1)

END -- End of DO function

Code 19: WMI_Win32Shutdown.rex

187 IMLWMI]

141

11. Automation of Microsoft Agent Technology

The Microsoft Agent technology enables a new user interface to L S 4

communicate with the computer. Thereby it is possible to embed
animated characters to Web pages and applications. These agents
can be accessed by speech recognition to receive spoken
commands. This section introduces the MS Agent technology, an

overview over many functions and it the usage of events is shown.

s

Figure 34 illustrates the characters Peedy and Merlin that are part of
the MS Agent technology. .

Figure 34: Snapshot of MSAgents'®®

The agents can also speak. This is possible with recorded audio or via a text-to-
speech (TTS) engine [MLAGTa].Such a TTS engine can be downloaded for several
languages from the Microsoft Agent download page'®®. The Microsoft Agent
technology is already installed on Microsoft Windows XP, Windows and Windows Me
systems. For other systems, the Microsoft Agent technology has to be downloaded
from the Microsoft Agent download page. On this page are also some other
characters downloadable. There is the SAPI 4.0 runtime support available that is
necessary for Windows XP machines. For using the speech recognition the speech
recognition engine must be downloaded. There is only an US English speech

recognition engine available [MS01a].

To access the agent technology with Object Rexx the new Or exxol e. dl | from the
13.1.2003 is needed [Fla03hb].

11.1. Introduction to MS Agent Technology

Code 20 shows the instantiation of an agent, shows a short animation and lets the
agent speak. Therefore, the text-to-speech engine US English is needed.

18 Characters Merlin and Peedy which are part of the MS Agent technology

189 http://microsoft.com/products/msagent/downloads.htm

142

-- Instantiation of the agent object
Agent Obj ect = . OLEChj ect ~New(" Agent . Control . 1")

-- Connects the current control to the Mcrosoft Agent server %
Agent Qbj ect ~Connected = . True

-- The character is |oaded into the Characters collection. The

-- first paranmeter is the characterID. It is required and refers

-- to the character data. The second paraneter is the provider

-- with the location of the character’s definition file!
Agent Obj ect ~Char act ers~Load("Merlin", "Merlin.acs")
Merlin = Agent Qbj ect ~Characters("Merlin") -- Decreases the witing expense

-- The Top property sets the agent "300"'% pixel fromthe top.
Merlin~Top = 300

-- The Left property sets the agent "450" pixel fromthe |eft?!%
Merlin~Left = 450

-- The Languagel D property determ nes the | anguage of the speech

-- recognition engine, the commands of character’s pop-up nmenu and

-- the word balloon text. In this case the | anguage is US English®®*
Mer | i n~Languagel D = x2d(409)

-- The Show nmet hod mekes the agent visible. It starts also the Show ng
Mer | i n~Show - - ani mat i on'®.
CALL SysSleep 1 -- The system sleeps for 1 second

-- The Play method inplements the animation "GetAttention"?.
Merlin~Play("GetAttention")

-- The Speak nethod speaks the text inside the brackets!. The reason

-- for"objStatus ="is explained with the procedure CkStatus at the end.
obj Status = Merlin~Speak("Hello, ny nane is Merlin. | aman agent!")

-- Calls the procedure "CkStatus"”
CALL CKkSt atus

-- The Play nethod inplenents the animation "G eet".
obj Status = Merlin~Play("Geet")
CALL CkStatus -- Calls the procedure "CkStatus"
CALL SysSleep 2 --The system sleeps for 2 second

-- The nenory is freed fromthe agent "Merlin"?1%,

199 IMLAGTD]
L IMLAGTC]
192 IMLAGTd]
1% IMLAGTe]
194 IMLAGT]
195 IMLAGT(]
19 IMLAGTh]
197 IMLAGTI]
198 IMLAGT]]

143

Agent Cbj ect ~Char act er s~Unl oad(" Merlin")
EXIT -- The program termn nates.
-- The procedure "CkStatus" is needed to prevent that the program
-- continues to execute while the agent is speaking or playing.
-- Syssleep nakes a short del ay®°.
CkSt at us:
DO UNTIL obj Status~Status = 0
CALL SysSleep 1
END
RETURN

Code 20: Agent_Intro.rex

Figure 35 illustrates the execution of code 20.

|H Object REXX for Windows - [running - Output of C:\Dok te und Einstellungen\FH\Eigene Dateie n\Daten\Studium\Diplomarbeit\CD\Scripte\Agen... L.__J@Jﬂ
."E?Ie .Eiew Wor!g:lace E.;fa.cution lrace ._win.dow .T_g.ols mﬂglp
| D] £ |@|F|=| 5 =@ | =1 =]

4 el o = e o I B e | .:_gji\,\forkbench Help ~] w2

Hella, my name is Merlin. | am an
agent

il (2

Ready] it EOutput |
Figure 35: Snapshot of Merlin®*®

11.2. Overview of MS Agent Technology

Code 21 gives an overview of the agent’s possibilities like animations, methods,

speech engines, speech recognition or some windows.

199 Pe03]

2% part of MS Agent Technology

144

For this file the US English, German and French TTS engines are required. The
agents Merlin, Peedy, Robby and Genie are used in this file. It is necessary to
download them from the MS agent download page®*. Probably Merlin is already
installed on your machine. There is a .wav file (audio file) used for a short
demonstration. This is the Tada. wav file and it is normally installed with Windows. It
is located in the path \ wi ndows\ nmedi a. Ensure that this location is correct. At the
end of this script speech recognition is demonstrated. Therefore a microphone is
needed and the speech recognition engine must be downloaded. There are ten
seconds to speak to the computer. Nevertheless, this file should also run without
error if there is no microphone or if speech recognition is not installed or deactivated.

This script uses the methods Speak, Pl ay, Load, Show, H de, MoveTo, UnLoad
and Thi nk. Properties, which are used, are the Connect ed, Top, Hei ght, Left,
GUI D and Speed property. The script tells how to get the HotKey for speech
recognition and demonstrates the windows with the properties of the characters, the
popup menu and how to make there an entry, the MS Agent property sheet and the
voice command window. Note that if you are working with other windows on your
machine during the runtime of this script, it is possible that some windows described

in the last part of the script will not occur.

-- Instantiation of the Agent object
Agent Cbj ect = . OLEChj ect ~New(" Agent . Control . 1")
-- Connects the current control to the Mcrosoft Agent server?2°2
Agent Qbj ect ~Connected = . True
-- The character is |oaded into the Characters collection. The
-- first paranmeter is the characterID. It is required and refers
-- to the character data. The second paraneter is the provider
-- with the location of the character’s definition fil e,
Agent Cbj ect ~Char act ers~Load("Merlin", "Merlin.acs")
Merlin = Agent Qbj ect ~Characters("Merlin") -- Decreases the witing expense
-- The Top property sets the top edge of the position of the agent
Merlin~Top = 250 -- to "250"2%

21 http://microsoft.com/products/msagent/downloads.htm

292 IMLAGTDb]
23 IMLAGTC]

145

-- The Left property sets the left edge of the position of the agent

Merlin~Left = 700 -- to "700"20,

-- The Languagel D property determ nes the | anguage of the speech
-- recognition engine, the commands of character’s pop-up nmenu and
-- the word balloon text. In this case the |anguage is US English®%®

Mer | i n~Languagel D = x2d(409)

-- The Show net hod nakes the agent visible. It starts also the Show ng

Mer | i n~Show -- ani mati on?%’.

CALL SysSleep 1 -- The system sl eeps for one second

-- The Speak nethod speaks the text inside the brackets?°®

-- Sends the agent, the action and the argunent to the routine Act.
CALL Act Merlin, "Speak", "Hello, | amMerlin and | am an agent!"”

-- The Play nethod inplenents the ani mati on "Expl ai n"?2%°
CALL Act Merlin, "Play", "Explain"

-- Content refers to?'

CALL Act Merlin, "Speak"”, "I want to tell you sonething about "

"agents. Agents can be controlled with Object Rexx thanks to ActiveX "

CALL Act Merlin, "Play", "Suggest"

CALL Act Merlin, "Speak","Firstly the Agent object nust be created. After",
"that the Connected property is set on true."

CALL Act Merlin, "Play", "Blink"

CALL Act Merlin, "Speak"”, "Then the agent with its character is |oaded. ",
"Let us try that. I will conjure up another agent. He will be ",
"positioned at the coordinates 250 and 250.",

" | set his Languagel D on US English and then | will show him"

CALL Act Merlin, "Play", "DoMagicl"

-- The agent Genie is |oaded, positioned and got its |anguage and is

Agent Obj ect ~Char act er s~Load(" Geni e", "GCenie.acs") -- shown.

Ceni e = Agent Ohj ect ~Char acters("Geni e")

Ceni e~Top = 250

Geni e~Left = 250

Ceni e~Languagel D = "&H0409" -- US English | anguage ID

Geni e~Show

CALL Act Cenie, "Play", "GetAttention"

CALL Act Cenie, "Speak", "Hallo | am Genie! | can nmake you look like a ",
" dwarf with the Hei ght property!"”

CALL Act Cenie, "Play", "GestureLeft™

Merlin~Height = 50 -- The agent Merlin is set on height "50" 2%

2% IMLAGTd]
2% IMLAGTe]
2% IMLAGT]
27 IMLAGTg]
28 IMLAGTI]
299 IMLAGTHh]
20 17099]

2L IMLAGTI]

146

CALL Act Merlin, "Speak"”, "Do not nmake ne angry!"
CALL Act Genie, "Play", "GestureUp"
Mer |l i n~Hei ght = 128
CALL Act Merlin, "Play", "LookRi ght"
CALL Act Merlin, "Speak", "That is enough! It was a mistake to fetch you."
-- The agent Merlin is nmoved to the position 350, 10022
CALL Act Merlin, "MveTo", 350,100
CALL Act Merlin, "Speak", "I will invoke the H de nethod!"
CALL Act Merlin, "Play", "DoMagic2"
CALL SysSleep 1 -- The system sleeps for "1" second
Geni e~Hi de -- The Hide nethod hides the agent "Genie"?3,
-- The agent Peedy is |oaded, positioned, got its |anguage and is
Agent Qbj ect ~Char act er s~Load(" Peedy", "Peedy.acs") -- shown.
Peedy = Agent Obj ect ~Char act er s(" Peedy")
Peedy~Top = 100
Peedy~Left = 750
Peedy~Languagel D = "&H0407" -- GCerman | anguage |D
Peedy~Show
CALL Act Peedy, "Play", "CetAttention”
CALL Act Merlin, "Play", "LookLeft™
-- The text is witten in thought ball oon?.
CALL Act Merlin, "Think", "Such an ugly crow "
CALL Act Peedy, "Speak", "Hallo ich bin Peedy." -- Peedy speaks Gernman
CALL Act Merlin, "Speak", "I can not understand you. ",
"What did you say? Cone on change your Languagel D!'"
CALL Act Peedy, "Play", "Sad"

CALL Act Peedy, "Speak", "lch versteh den nicht. Ich probiere "
"es einfach nmit einer neuen TTS Maschine."
Peedy~Languagel D = "&H040C" -- Changing to the French | anguage I D

-- Peedy is speaking French
CALL Act Peedy, "Speak", "Salut. Je suis Peedy. Est-ce que tu nme conprend?"
CALL Act Merlin, "Play", "LookLeft™
CALL Act Merlin, "Play", "LookRi ght"
CALL Act Merlin, "Play", "LookLeft"
CALL Act Merlin, "Play", "LookRi ght"
CALL Act Merlin, "Play", "LookLeft™
CALL Act Peedy, "Play", "Pleased"
Peedy~Languagel D = x2d(409) -- Changing to US English | anguage ID
-- Now Peedy is speaking English
CALL Act Peedy, "Speak", "Ckay that is the |ast |anguage | had ",
"downl oaded fromthe M5 Agent downl oad page. | hope it works."
CALL Act Merlin, "Play", "LookLeft™
CALL Act Merlin, "Speak"”, "Fine! What do you know about us agents?"
CALL Act Peedy, "Play", "Explain"

2 IMLAGTm]
23 IMLAGTN]
24 IMLAGTO]

147

-- Content refers to?®

CALL Act Peedy, "Speak", "Okay. W can be used for conversati onal

"interfaces for Wb pages and applications. W are interactive
"and we can nake ani nations. We can speak via a text-to-speech ",
"engi ne and recorded audio."
-- Content refers to 21°

CALL Act Peedy, "Speak", "We are able to accept voice commands ",
"which are spoken. We are a further user interface."

CALL Act Merlin, "Speak"”, "That is right. Instead of speaking we ",
"can use a .wav file like... "

-- It is also possible to output .wav files with the Speak met hod®’

CALL Act Merlin, "Speak"”, "","\w ndows\nedi a\tada. wav"
CALL Act Peedy, "Play", "ldlel_2"
CALL Act Peedy, "Speak", "It is also possible to position your PopupMenu ",

"with the Hi de function at the coordinates 500 and 200."
-- Shows the popup menu at the position 500, 200%8

Mer | i n~ShowPopupMenu(500, 500)

CALL Act Peedy, "Play", "LookRight"

CALL Act Merlin, "Speak"”, "Ch, | would have it alnpbst forgotten. Before "
"I have hidden Genie! Thank you for remenbering. Do you know how to ",
"show himafter hiding hinmP"

CALL Act Peedy, "Play", "ldle2_2"

CALL Act Peedy, "Speak", "No."

CALL Act Merlin, "Play", "GestureLeft"

CALL Act Merlin, "Speak", "That is not good.Have you seen Robby?He knows ",
"it probably."

CALL Act Peedy, "Play", "Search"

CALL Act Peedy, "Speak", "No."

-- The agent Robby is | oaded, positioned, got its |anguage and is

Agent Qbj ect ~Char act er s~Load(" Robby", "Robby.acs") -- shown.

Robby = Agent Obj ect ~Char act er s(" Robby")

Robby~Top = 100

Robby~Left = 50

Robby~Languagel D = x2d(409) -- US English ID

Robby~Show

CALL Act Robby, "Play", "CetAttention”

CALL Act Robby, "Speak", "Ho, ho. | heard ny nane! | am Robby."

-- Shows with Speed property the speech out put?'®
CALL Act Robby, "Speak","M/ speech speed is "Agent Obj ect ~Char act er s(" Robby") ~Speed". "
CALL Act Robby, "Speak", "That is not bad for a robot."

-- Shows the unique identifier of Robby??°

% IMLAGTa]
2% IMLAGTa]
27 IMLAGTI]
28 IMLAGTp]
29 IMLAGT(]

148

CALL Act Robby, "Speak", "My QU D is " Agent Cbject~Characters("Robby")~GU D"."
CALL Act Robby, "Speak", "Wat is your problenf"

CALL Act Robby, "Play", "GCGestureLeft™

CALL Act Peedy, "Speak", "Do you know how to show an agent ?"

CALL Act Peedy, "Play", "Idlel 1"

CALL Act Robby, "Play", "Explain"

CALL Act Robby, "Speak", "Use the Show nethod!"

CALL Act Robby, "Play", "Suggest"

Geni e~Show
-- Content refers to?!
CALL Act Cenie, "Speak", "I want you to note that for XP, it is "

"required to download SAPI 4.0 runtinme binaries fromthe M5 Agent",
" downl oad page to make speech engi nes work!"

CALL Act Robby, "Play", "ldle3_1"

CALL Act Robby, "Speak", "That is enough work for today. But before I",
" wll change ny font."

Robby~Bal | oon~Font Nane = Andy -- Changes the font type to "Andy"??2

CALL Act Robby, "Speak", "I will go hone. Bye."

CALL Act Robby, "Play", "ldle2_2"

CALL Act Genie, "Speak", "Do not forget. Free the space fromyou. ",
"Therefore you have to use the UnLoad met hod"

Agent Qbj ect ~Char act er s~Unl oad(" Robby") -- Robby is freed fromthe menory???
CALL Act CGenie, "Play", "ldle3_1"
CALL Act Genie, "Speak", "I amgoing voluntarily. Bye."

Agent Qbj ect ~Char act er s~Unl oad(" Geni e")
CALL Act Merlin, "Speak", "Ckay. Let us talk about the Command ",
"collections. It is possible to add a Cormand object with the ",
"Add nmethod. | will add a command which is named Test Conmand. "
-- The Add nethod of the Commands object adds a new conmand with
-- its nane as ID, the caption with "T" as shortcut determ ned by
-- the"&"string and voice string to be recogni zed by a speech engi ne.
Mer | i n~Commands~Add(" Test Command", " &Test ", " Test")
-- The PopupMenu is shown. The SYSSLEEP call and the second
-- ShowPopupMenu command are needed because there is stil
-- a PopupMenu (Hide) on the display and otherwi se it doesn’t work.
Mer | i n~ShowPopupMenu(500, 300)
CALL SysSleep 2
Mer | i n~ShowPopupMenu(500, 300)
-- Shows the caption with the Caption property
CALL Act Merlin, "Speak", "Here the caption is "Merlin~Commands(" Test Conmand")~Capti on

224

225

20 IMLAGTY]
221 [MS01a]

222 IMLAGTS]
23 IMLAGTY]
224 IMLAGTU]
2 IMLAGTV]

149

CALL SysSleep 1
-- Shows the voice string with the Voice property??®
CALL Act Merlin, "Speak", "The voice value is " Merlin~Commands(" Test Conmand") ~Voi ce
CALL Act Merlin, "Speak","This voice value enables to access this comuand”,
" with speech recognition”
-- Shows the MSAgent Property Sheet wi ndow with the Visible property??,
Agent Obj ect ~PropertySheet ~Visible = .true
CALL Act Peedy, "Play", "GestureRight"
CALL Act Peedy, "Speak", "The Ms Agent Property Sheet w ndow shows "
"current settings of output, speech input and copyright. You can",

" al so change these settings, like for exanple if speech ",
"recognition is enabled or not, with this instrunment."
CALL SysSleep 3 -- The system sleeps for "3" seconds to watch the w ndow.

-- The MsS Agent Property Sheet wi ndow i s hidden.
Agent Obj ect ~PropertySheet ~Visible = .fal se
-- Shows the Conmands W ndow with setting the Visible property
Agent Obj ect ~ConmandsW ndow~Vi sible = .true -- on true?®.
CALL Act Peedy, "Play", "LookDown"
CALL Act Peedy, "Speak", "Another wi ndow is the Voice Comands W ndow. ",
" It shows the commands whi ch are voice-enabl ed for speech recognition."
CALL SysSleep 3
-- Closes the Cormands W ndow by setting the Visible property on fal se.
Agent Qbj ect ~CommandsW ndow~Vi sible = .fal se
CALL Act Merlin, "Play", "LookLeft"
CALL Act Merlin, "Speak", "Ch, Peedy, that is a good heading. Speech ",
"Recognition. To use Speech Recognition you have to downl oad fromthe",
" MS Agent downl oad page the U. S. English speech recognition engine.”
CALL Act Peedy, "Play", "Acknow edge"
-- Checks if on the machine in speech input is enabled. If this is the
-- case then the first DO function is inplenented®®
| F Agent Obj ect ~Speechl nput ~Enabl ed = 1 THEN
-- Beginning of the DO function which is inplenented if speech input is
DO -- avail abl e on the nachi ne.
CALL Act Merlin, "Speak","On your nmachine is speech recognition enabled."
-- Ofers the shortcut with the HotKey property with that speech input
-- can be accessed.
CALL Act Merlin, "Speak", "The HotKey is " Agent Cbject~Speechl nput ~Hot Key "."
CALL Act Merlin, "Speak", "Press this HotKey to execute speech recognition"
CALL Act Peedy, "Play", "StartListening"
CALL Act Merlin, "Play", "StartListening"
CALL Act Merlin, "Speak", "Ckay let us nake a test. Wait until | ended ",
"speaki ng. Take your microphone and speak therein the word *hide*. "
"This will nmake Peedy di sappear. Press the HotKey " |,

220 IMLAGTwW]
27 IMLAGTX]
228 IMLAGTY]
229 IMLAGTZ]

150

Agent Cbj ect ~Speechl nput ~Hot Key " and then a small nessage box cones.",
" During this box displayed you can speak. This box should be "
"referenced to Peedy. If not, first say *Peedy* and then *hide*.",

" Come on."

-- The system sleeps for "10" seconds so that the user has tinme to
CALL SysSleep 10 -- inplenment the speech recognition
END -- End of the DO function
ELSE DO -- If speech recognition is not enabled this DO function is used.

CALL Act Merlin, "Speak","On your machine is speech recognition NOT enabled.”
CALL Act Peedy, "Play", "Surprised"
CALL Act Peedy, "Play", "ldle3_1"
CALL Act Peedy, "Speak", "Bye"
CALL Act Peedy, "MveTo", 50,500
Peedy~H de
END
CALL Act Merlin, "Speak"”, "At last | want to show you a w ndow whi ch”
" shows the properties of each character."”
-- Shows a window with that the default properties of the agents are
Agent Obj ect ~ShowDef aul t Char act er Properties -- described?®
CALL Act Merlin, "Play", "Surprised”
CALL syssleep 3
CALL Act Merlin, "Play", "ldle3 1"
CALL Act Merlin, "Speak"”, "That is all we wanted to tell you. Bye."
Agent Cbj ect ~Char act er s~Unl ocad(" Merlin")
Agent Obj ect ~Char act er s~Unl oad(" Peedy")
EXIT -- Term nates the program
-- send agent object (arg #1) the nmessage given as arg #2; if there are
-- additional arguments, pass themas an array object (function arg()
:ROUTINE Act -- has to create an array-object starting with arg #3)
obj St at us= . nessage~new(arg(1), arg(2), "A", arg(3,"Array"))~send
DO UNTI L obj St at us~st at us=0
CALL SysSleep 1
END
RETURN

Code 21: Agent_Overview.rex

Figure 36 illustrates a scene of Agent Overvi ew. rex with Peedy, Merlin and

Genie.

20 IMLAGTaa]

151

|'ﬂ Object REXX for Windows - [Agent_Overview. rex] u@_]ﬂ
R

@File Edit View ‘Workspace Execution Trace ‘Window Tools Help

| Diz|=|c@] £|o[F[=| KB ==l | _ = =])
] =1 2| g olo] =] I| [7 |E|%8| | @] workbench Help - w2
_ilsl@lolnial | -|E

E AgentObject = .QLEChject~New|"igent.Control.1”
' Tt Server
\f

E—— Connects the current control to the Microsg 1
i—-— ms-help://N3.VSCC/ NS, HSDNVS/ msagent / pacon s, 1110
iAgentObject~Connected = .True
E—— The character is loaded into the Characterdj X tion. The
\—— first parameter is the characterID. It is regquired and refers
E—— to the character data. The second parsmeter is the provider
E—— with the location of the charac definition file.

\== ms-help://N3.VICC/ N3 . HIDNVI/ msagl
iAgentobject~Characters~Load(“Heti1ﬁ
E—— Decreases the writing expense
‘Merlin = AgentObject~Characters (™%
E—— The Top property sets the top Eq the position of the agent

i-= to "259".ms-help://HS.VSCC/ NS HEDN W meagent/ pacontrol 3luy.htm

!Merlin~Top = 250 !

i—— The Left property sets the left edge of the position of the agent

E—— to "700".ms-help://M3.VICC/ NS, NIDNVI/ msagent,/ pacontrol S5re.htm

|Merlin~Left = 700

E—— The LanguagelIDd property determines the language of the speech

E—— recognition engine, the commands of character’s pop-up menu and

i—— the word balloon text. In this case the language is U3 English.

i—— ws-help://HS.VICC/ NS, MSDNVE/weagent/ pacontrol 4w2y. htm

EMErlin~LanguagEID = xZd (409

i —— The Zhow method makes the agent wisible. It starts also the Showing

E—— animation.ws-help://M3. V3CC/ M3 . M3DNVS/ msagent/ pacontrol_S7ca.htm

i Merlin~Show

i—— The sytem sleeps for one second

{CALL SvsSleep (1) [ne]

pacontrol Oodm. htm
1

Merlin.acs™)

ExposedVanable] Wariable W alue || W atched Variable Wariable Yalug]

Ci\Dokumente und EinstelungenFH|Eigene Dateisn|Daten' StudiumiDiplomarbeitiC04 Scripte [N Line 31, Calumn 35] ;(:.)utpuf ER

M' @Endfas‘.. n: @ visuzl 5. ﬂ @http:ﬁ... n: |53 C\poke v {i nDataBo... _J_"-;i‘~‘bw2"n DE » Q\k‘%:&oqgg@!@@h 2022

Figure 36: Snapshot of Agent_Overview.rex**

11.3. MS Agent and Events

Code 22 demonstrates how to use events with the MS Agent technology.

In this script an event is fired if the agent is shown with the Show method. Then the
Show method of the class DenoOf Event s, which is a subclass of OLEQbj ect, is
launched?®. There the arguments are hand over and their values are printed to the
display. To run this script the new OREXXOLE. DLL from the 17.2.2003 is needed.
Without this DLL events of MS Agent can't be handled. This is because in some
situations the events are hand over to Object Rexx in another kind as described in
the MS Agent documentation [Doe03a]. The DLL is changed in two steps.

%1 |BM Object Rexx Workbench with MS Agents characters

22 ¢.p.6.3.3.

152

First rename the old OREXXOLE. DLL with the following command: ren
c: \ Programe\ Cbj REXX\ or exxol e. dl | orexxole.dll.bkp and then copy
the new DLL to the folder c: \ pr ogr amme\ Cbj REXX [Fla03c].

-- Instantiation of the agent object
Agent Cbj ect = . DenoOF Event s~New(" Agent . Control . 2", "W THEVENTS")

-- Connects the current control to the Mcrosoft Agent server
Agent Qbj ect ~Connected = . True

-- The character is loaded into the Characters collection. The

-- first paranmeter is the characterID. It is required and refers

-- to the character data. The second paraneter is the provider

-- with the location of the character’s definition file?*
Agent Cbj ect ~Char acters~Load("Merlin", "Merlin.acs")
Merlin = Agent Cbj ect ~Characters("Merlin") -- Decreases the witing expense

-- The Top property sets the agent "250" pixel fromthe top®®
Merlin~Top = 250

-- The Left property sets the agent "250" pixel fromthe |eft?®,
Merlin~Left = 250

-- The Languagel D property determi nes the | anguage of the speech

-- recognition engine, the commands of character’s pop-up nmenu and

-- the word balloon text. In this case the | anguage is US English®’
Mer | i n~Languagel D = x2d(409)

-- The Show nmet hod mekes the agent visible. It starts also the Show ng

-- ani mation®® Here the Show event is fired

233

Mer | i n~Show
-- The Speak nethod speaks the text inside the brackets?®
-- The reason for "objStatus =" is explained with the procedure

obj Status = Merlin~Speak("Hello | am Merlin.") -- CkStatus at the end.
CALL CkStatus -- Calls the procedure "CkStatus"”
EXIT -- The program tern nates.
-- The procedure "CkStatus" is needed to prevent that the program
-- continues to execute while the agent is speaking or playing.
-- Syssleep nakes a short del ay?*

% IMLAGTb]
2% IMLAGTCc]
% [MLAGTd]
2% IMLAGTe]
7 IMLAGT]
28 IMLAGT(]
29 IMLAGTI]
240 1Pe03]

153

CkSt at us:
DO UNTIL obj Status~Status = 0
CALL SysSleep 1
END
RETURN
-- Class which derives from OLEObj ect
: 1 CLASS Demof Event s SUBCLASS OLEMhj ect
-- Method which is called if the event Show is fired when the
: METHOD Show -- agent occurs on the display?™.
-- Hands over the argunents Characterl D and Cause
USE ARG Characterl D, Cause
-- Prints a text and the content of the argument Cause to the display.
-- Cause = 4 neans that the client application showed the agent.
SAY "The cause is: " Cause
-- Prints a text and the content of the argument CharacterlID to the
SAY "The CharacterI D is: "CharacterlID -- display
SAY "There was an Show event." -- Prints a text to the display

Code 22: Agent_Events.rex

21 IMLAGTK]

154

12. Automation of Microsoft Speech

The Microsoft Speech SDK 5.1 is a new user interface. It lets the computer speak
and enables speech recognition. This section discusses the text to speech synthesis
with an introduction to TTS (text-to-speech), an Object Rexx script with the speech
technology is embedded in a HTML file and then there is a script that reads a MS
Word document. The possibility to use speech recognition with Object Rexx is also
explained.

The Microsoft Speech SDK (software development kit) contains the Microsoft speech
synthesis (or text-to-speech) engine, the Microsoft speech recognition engine and the
speech application programming interface (SAPI) which supports Automation. It can
be downloaded from the Microsoft Homepage?®*.

It includes the documentation, which can also be single downloaded from the same
page. The menu “St art - >Pr ogr ans- >M cr osoft Speech SDK 5. 1" offers the
documentation, tutorials, samples and tools [SPa]. Figure 37 shows this

documentation.

There is a newsgroup for Microsoft Speech where questions are answered?*,

42 http://www.microsoft.com/speech/download/sdk51/

243

http://communities.microsoft.com/newsgroups/messageList.asp?ICP=MSCOM&sLCID=US&NewsGro

up=microsoft.public.speech_tech&iPageNumber=1

155

||_?Q Microsoft Speech SDK (SAP15.1)

! =) A & = i
Ausblenden Suchen Vorherges Machste: Zuridizk Worwaits Abbrechen Aklualisiersn Startzeite Schuiftart Ducken Optionen

Inhalt]Index | §uchan] Favorten |

!E ielcome to Microsoft Speech SDIC
2] Getting Started
Ig System Fequirements
[2] End User License Agreement
(] About This SDK
(23] 54P1 5 Introduction
(] Application-Level Interfaces

(7] Engine-Level Interfaces s

[Z] Structures M I roso‘ftdt

(23] Enumerations

(] Helper Functions

(7] 54PI Object Classes

= !;| Error Codes Version 5.1

[Miscellanea

(] 5DK Samples. Tools, and Tutarials
(7] White Papers

(] Automation

Welcame to the Microzoft Speech SOK, version 5.1

ETT | wdd 2 AmQUeE

M Groipe | Boe. | Pacen. | Bloata | B omssee. | Toem.. [BE

244

Figure 37: Snapshot of the MS Speech SDK 5.1 Help

12.1. Text-To-Speech Synthesis (TTS)

Text-To-Speech synthesis is a further output possibility which signification will
increase in the future. This section introduces MS Speech TTS with the technical
background. It is also demonstrated how to embed MS Speech TTS in HTML and
how to read a MS Word document with Object Rexx.

Speech Synthesis converts text into spoken language. As shown in the figure 38 the
words are converted to phonemes. Thereby an audio stream is created which is

transformed by the sound card and emitted by a speaker [MS02].

44 part of MS Speech SDK 5.1

156

SPEECH
APPLICATION
ENGINE
WAHN : E One o' dock:.
ONE O CLOCK oW ,_&' -
ELAOQKD

Application generates Soeech syrthesis engine converts Sound card converts to
words as text output. words into phonetic and prosodic acoustical signal and

symbols and generates digital arrplifies through
audio streanm. spea kars.
Figure 38: Speech recognition process flow**

The TTS technology is only available from Microsoft in US English and Chinese.
Third party vendors for further TTS machines can be found on the Microsoft
Homepage?*° [MS02].

The registry entry HKEY LOCAL_MACHI NE\ SOFTWARE\ M cr osof t \ Speech\

Voi ces\ Tokens shows which voices are installed on the machine [SPb].

L&H TTS engine for the MS Agent Technology can’t be used with MS Speech SDK
5.1 because they are based on SAPI4 [NGSO03].

12.1.1. Introduction to MS Speech TTS

Code 23 demonstrates Microsoft Speech synthesis. Thereby the four voices Sample
TTS Voice (says “blah” for all unknown words [MS03j]), Microsoft Mary, Microsoft
Mike and Microsoft Sam are used. The changing of the volume and of the speech

speed is shown. At the end, all available voices on the machine are enumerated.

2% Taken from [MS02]

4% http://www.microsoft.com/speech/evaluation/thirdparty/engines.asp

157

SpO=. OLEQbj ect ~New(" SAPI . SpVoi ce") -- Instantiation of a TTS object?
-- The voice is set with the Voice property®® Therefore the GetVoices
-- net hod?*®. Get Voi ces chooses the voice by the variable voicex.
SpO~Voi ce = SpO~Cet Voi ces(" name=Sanpl eTTSVoi ce", "")[0]
-- The Speak nethod speaks the inserted text??°,
SpO~Speak(" Sanmpl e TTS Voi ce, hello")
SpO~Voi ce = SpO~CGet Voi ces("name=M crosoft M ke","")[0]
SpO~-Speak("Hello. | amthe voice Mke")
-- The voice is set with the Voice property. Therefore the GetVoices
-- net hod chooses the voice by the variable voicex and the | anguage
-- (here English) 2122
SpO~Voi ce = SpO~Cet Voi ces(" name=M crosoft Sant',"Language=409")[0]
SpO~-Speak("Hello.1 amthe voice Sanl ")
SpO~Voi ce = SpO~Cet Voi ces(" name=M crosoft Mary", "Language=409")[0]
SpO~-Speak("Hello. | amthe voice Mary!")
SpO~Vol une = 80 -- The volume is set with the Vol ume property?®
SpO~Speak(" The volume is set on " SpO~Vol une)
SpO~Vol unre = 100
SpO~-Speak("Now the volume is set on 100. That is the nmaxi num vol une.")
SpO-Rate = -10 -- The speech speed is set with the Rate property?®
SpO~-Speak("This is the slowest speaking rate. The rate is " SpO-Rate)
SpO~Rate = 10
SpO~-Speak("This is the fastest speaking rate. The rate is " SpO-Rate)
SpO~Rate = -2
SpO~-Speak("This is the speaking rate " SpO-Rate)
SpO~Speak(" Now t he avail abl e voices are enunerated. ™)

47 ooked up with RGF_OLEInfo.hta c.p. 7.3.
8 [SPc]
9 [SPc]
20 [5pc]
1 [SPd]
2 [SPp]
%3 [SP¢]
4 [SPc]

158

DO a OVER SpO~Cet Voi ces -- DO function which enunerates all voices
-- Ofers the nane of a voice and hands it over to the variable
-- "strvoice"?®

strvoi ce = a~Cetdescription

SpO~-Speak(" The voice " strvoice

SAY strvoice

END -- End of DO function

is availablel")

Code 23: MSSpeech_TTS_1.rex

12.1.2. MS Speech TTS embedded in HTML

The next file embeds an Object Rexx script in a HTML document. This HTML
document is stored with an .HTA (HTML Application) extension. This ensures a local

and save execution®® [Fla02a,p51].

Code 24 speaks a text which can be inserted by the user. The user can vary the

volume, the speech speed (rate) and the voice. Press the Speak button to start the

speech.
<htnm >
<l-- Beginning of the head -->
<head>
<l-- Text of the title -->
<title>Denpnstration of Speech with Object Rexx</title>
<!-- Beginning of the Cbject Rexx source code -->

<script |anguage="0bject Rexx">

-- Beginning of the routine doTheWrk. It is referenced fromthe

-- body if the button is pressed or clicked."Public"enables the

-- transferring of the data fromthe input area in the body to the
c:routine doTheWrk public -- routine

-- Transfer of data to the variabl es"speechtext”, "volunme"and"rate".

-- Thereby refers the docunent object to the content which is shown

-- in a browser window. "All" is an object which enables the access
-- to single elenents and content of HTM. docunents. This is part of
-- DHTM.. "speechtext", "volune" and "rate" are the identifiers.

-- "Value" is the content of the identifier
speecht ext = docunent ~al | ~speecht ext ~val ue
vol une = docunent ~al | ~vol ume~val ue
rate = docunent ~al | ~r at e~val ue

2 [SPd]
20 ¢p.9.1.3.

159

-- The radi obuttons are evaluated with a SELECT function. The button
SELECT -- which is selected hands over its voice to the variable vx.
WHEN document ~al | ~M cr osof t M ke~checked = 1 THEN vx = "M crosoft M ke"
WHEN docunent ~al | ~M cr osof t Mar y~checked 1 THEN vx "M crosoft Mary"
WHEN docunent ~al | ~M cr osof t Sam~checked = 1 THEN vx = "M crosoft Sanf
END
SpO=. OLEQhj ect ~new(" SAPI . SpVoi ce") -- Instantiation of a TTS object?’
SpO-Vol une = volune -- The volune is set with the Vol ume property?®®
SpO-Rate = rate -- The speech speed is set with the Rate property?®

-- The voice is set with the Voice property. Therefore the GetVoices

-- nmethod chooses the voice by the variable vx and the | anguage?® 26

SpO~Voi ce = SpO~Cet Voi ces(" nanme="vx, "Language=409")[0] -- (here English)
-- The Speak nmethod speaks the inserted text which is hand over by
SpO-Speak(speechtext) -- the speechtext variabl e?®?
-- End of the Object Rexx code
</script>
<l-- End of head -->
</ head>

<l-- Beginning of the body with the backgroundcol or "gold" -->
<body bgcol or="gol d">

<l-- Al after that tag is centred -->

<center>
<I-- Atext is witten with the font size "7" -->

Denonstration of Mcrosoft Speech with Object Rexx

<!-- End of center tag -->

</ center>
<l-- Two line breaks -->

<pbr >
<l -- Beginning of marquee text -->

<mar quee>
<l-- Text with the font color "red", font size "5" and font type

"Andy" is witten -->
Chj ect Rexx can speak!
</ font>
</ mar quee>

<pbr >
<pbr >

257

Looked up with RGF_OLEInfo.hta c.p. 7.3.
8 [SPc]
9 [SPc]
280 [sPd]
%81 [SPb]
262 [SP¢]

160

<center>
<l-- Atext is witten -->
<x>Text which is to be spoken: </ x>

<I-- Input area of the type text with the internal nanme"SpeechText".

The length of the area which is visible is "100". The interna
length is"150". To reference to this object the id "speechtext"
is used -->
<i nput type=text name="SpeechText" size=100 maxl engt h=150
i d="speechtext">

<x>Vol une (a value between 0 and 100) :</x>

<l-- Input area of the type text with the internal nane"Volune". The
I ength of the area which is visible is"3".The internal |ength
is "3". To reference to this object the id "volunme" is used -->
<i nput nane="Vol une" si ze=3 naxl ength=3 i d="vol une">

<x>Rate (a value between -10 and 10) : </x>

<I-- Input area of the type text with the internal name "Rate". The
| ength of the area which is visible is"3".The internal |ength
is"3". To reference to this object the id "rate" is used -->
<i nput nanme="Rate" size=3 maxl ength=3 id="rate">

<x>Voi ces: </ x>

<l-- Input area of the type radio button with the internal nane
“voi cek”. Value determines the internal value "M crosoftM ke"
of the radio button. The identifier is “McrosoftMke”. There
is also the text "Mcrosoft Mke" is witten. -->
<i nput type="radi 0" nane="voi ceK" val ue="M crosoftM ke"
i d="M crosoftM ke"> M crosoft M ke

161

<l-- Input area of the type radio button with the sanme interna

“voi cek”. This neans that the radio buttons are nenbers of the
sanme group. Value determ nes the internal value "M crosoftMary"”
of the radio button. The identifier is “McrosoftMary”. There is

also the text "M crosoft Mary" is witten. -->
<i nput type="radi 0" nane="Voi ceK" val ue="M crosoft Mary"
i d="M crosoftMary"> M crosoft Mary

<l-- Input area of the type radio button with the sanme interna

“voi cek”. This neans that the radio buttons are nembers of the
same group. Value determ nes the internal value "M crosoft Sant
of the radio button. The identifier is “McrosoftSani. There is

also the text "Mcrosoft Sam' is witten. -->
<i nput type="radi 0" nanme="Voi ceK" val ue="M crosoft Sant
i d="M crosoftSant> M crosoft Sam

<l-- Input area of the type button. The text on the button is"Speak".
The phrase "l anguage="0hj ect Rexx" enbeds (bject Rexx.If one of
the two event handl er"onnouseup"or "onkeypress" is executed the

routi ne doTheWrk is called -->
<i nput type=button val ue="Speak"
| anguage="0Obj ect Rexx"
onnouseup="cal | doTheWr k"
onkeypress="cal | doTheWrk" >

</ center>
<l-- End of the body -->
</ body>
<l-- End of the HTM. file -->
</htm >

Code 24: MSSpeech_TTS_2.hta

Figure 39 illustrates the user-interface of MSSpeech_TTS 2. ht a.

162

Figure 39: Snapshot of MSSpeech_TTS_2.hta®®®

12.1.3. Reading a MS Word Document

Code 25 reads a Word document. The user is asked to insert the location and the
name of a Word document that should be read to the Object Rexx Workbench
command line as shown in figure 40.

253 part of MS Windows XP

163

|1'al Object REXX for Windows - [running - Output of C:\Dokumente und Finstellungen\FH\Eigene Dateien\Date n\Studium\Diplomarbeit\EntwurfOLE Aut... u@ﬂ

| Dis(=|u@| £|o[F[=| &5 |-
] o M 1 e e e M

cihtesthhelloWorld. doo |
vl

< | 2]
||
el

s [
Exposed Y ariable J Wariable Walue] || watched Yariahle] “ariable Yalug]

.Raady fdutbuﬁ |

& 2@ S @ oy 1158

‘u (5 Cr\Dokummen.. ; @ CLE_ Enbiir, ., I @ hellotorld.d... ; - DataBookl., | :l_".’]j::ih{g:h-ﬁf&i}—:'...... DE @ ?

Figure 40: Snapshot of the IBM Object Rexx Workbench with command line.

After that, the Word document is opened and its content is copied to the clipboard.

This part is recorded by the macro recorder of Microsoft Word to get information
about the required source code (OtherScript 7). The MS Word document
“Hel | oWbr | d. doc” is loaded, the whole document is selected and copied to the

clipboard. The MS Word document should contain an English text.

164

Sub Makrol()

' Makrol Makro
' Makro aufgezei chnet am 05.02. 2003 von
ChangeFi | eOpenDi rectory "C:\Test\"
Docurent s. Open Fil eNane: ="Hel | owbr | d. doc", Confi rnConver si ons: =Fal se,
ReadOnl y: =Fal se, AddToRecent Fi |l es: =Fal se, PasswordDocunent:="",
Passwor dTenpl ate: ="", Revert:=Fal se, WitePasswordDocunent:="",
WitePasswordTenpl ate: ="", Format: =wdQpenFor nat Aut o
Sel ecti on. \WWol eSt ory
Sel ecti on. Copy
End Sub

OtherScript 7: Macro for MSSpeech_TTS_3_ Word.rex.

Additionally in code 25 is the content of the clipboard pasted by the Object Rexx
class W ndowsCl i pboar d to the Microsoft Speech object SpVoi ce. Therefore the
directive : : REQUI RES “W NSYSTEM CLS’ is needed®®*. Then the text is spoken.

The script also works if there is a graphic included in the selection.

-- Message box with the invitation to insert the path and file name.
CALL RxMessageBox "lInsert the file nane with the path", "Information",,

"OK", "ASTERI SK"

-- Hand over of the path and file name in the command w ndow to the
PARSE PULL docu -- variable "docu"

Wrd = . OLEQhj ect ~New("Word. Application”) -- Instantiation of Wrd
Wrd~Visible = .TRUE -- The visibility of Word is set on true
Docunment = Wbr d~Documnent s~Open(docu) -- The docunent is opened

Wor d~Sel ecti on~Whol eStory -- Al of the Whrd docunent is selected
-- Here the selected text is copied to the clipboard. The Copy nethod
-- cannot be used in the nornal way because this Copy nethod woul dn’tbe
-- sent to Wrd but to the Object Rexx class. The UNKNOWN net hod sol ves
Wor d~Sel ect i on~Unknown(" Copy", .nil) -- this problent®.
cb = . WndowsCl i pboard~New -- A clipboard object is created®®
-- The Paste nethod hands over the content of the clipboard?®”’
wor dt ext = ch~Paste

%4 cp.8.3.3.

% ¢c.p. 6.4.

2 11BMO1c]

27 1IBM01,p283]

165

SpO=. OLEQhj ect ~New(" SAPI . SpVoi ce") -- Instantiation of a TTS object 258
-- The voice is set with the Voice property. Therefore the GetVoices
-- net hod chooses the voice by the variable voicex and the | anguage
-- (here Engl i sh) 269270

SpO~Voi ce = SpO~Get Voi ces(" name=M crosoft Sanl',"Language=409")[0]
-- The Speak nethod speaks the text of the Whrd docunent which is hand
-- over by the variabl e?™,

SpO~Speak(wor dt ext)
-- Loads definition of the WndowsC i pboard cl ass

: REQUI RES "W NSYSTM CLS"

Code 25: MSSpeech_TTS_3 Word.rex

12.2. Speech Recognition

Speech recognition is a further input possibility which signification will increase in the
future. This section provides information about the technical background, the

possibilities and problems with Object Rexx.

Speech recognition (speech-to-text) digitizes sound waves. These sound waves are
transformed to phonemes or basic language units. From these phonemes are words
constructed which are contextually analyzed to check the correct spelling of a word

(right and write). Figure 41 shows this recognition process.

%8| ooked up with RGF_OLEInfo.hta c.p. 7.3.
289 [SPd]
270 [Spb]
271 [SPC]

166

SPEECH
RECOGNITION SPEECH-AV/ARE
USER MCROPHOME SOUND CARD ENGINE APPLICATION
cvg' WAATD
TAYM
HS WHAT TIME
IH IT ISIT

&
) -

Ll=er speaks into hicrophone captures sound card opeech recognition Anplication

the micraphone. sound waves and conwerts engine coverts processes
generates electical acoustical signal digital signal to miord = as texd
impulses, todigital signal. phonermes, then input.
wiords.
Figure 41: Speech recognition process®’

So-called speech recognition engines are software drivers. These software drivers
transform the acoustical signal to a digital signal. Continuous speech means that the
speaker can talk to the microphone without pause. There are two modes for
continuous speech recognition engines. The one is Command and Control (speaking
commands and asking questions) and the other is Dictation (enables the dictating of

letters, memos or e-mail messages) [MS02].

12.2.1. Dictation Recognition

Code 26 is a dictation recognition example.

It should enable free dictation. If there is not spoken to the microphone after the
invitation to speak then the program terminates. If there is spoken to the microphone
after the invitation to speak, then the program runs so long it is spoken to the
microphone. Only if speaking is stopped the program terminates. There is no error
message. Nevertheless, there is no event fired. The problem is that Object Rexx
does not support the events of MS Speech. The reason therefore is that the events of

MS Speech are not hand over to Object Rexx via the generic interfaces | Di spat ch

22 Taken from [MS02]

167

and | Unknown. The events are hand over via special ID’s. These ID’s are not

gueried with Object Rexx [Doe03c].

-- Instantiates the SR object. Here is a an object used which enables
-- shared context to allow resources to be used by other recognition
-- contexts or applications??® Events are enabl ed.
SO = . Event sW t hSO-New(" SAPI . SpShar edRecoCont ext ", "W THEVENTS")
-- The CreateGrammar net hod creates an object based on
SGranmmar = SO-Creat eGrammar -- | SpeechRecoG ammar 27
-- The DictationSetState nethod sets the dictation topic state on
SGramar ~Di ct ati onSet State(1) -- active?”®
-- Creates a nessage box with invitation to speak
CALL RxMessageBox "Speak", "Information",,
"OK", "ASTERI SK"
-- Class which derives from OLEQbj ect 27®
. CLASS Event sWt hSO SUBCLASS OLEObj ect
-- Method which is called if the Recognition event?” is fired. This
-- occurs when the speech recognition(SR)engine produces a recognition.
. METHOD Recogni tion
USE arg Streammunber, Streamnposition, RecognitionType, Result
say Result ~Phrasel nf o~Get Text
say "l have recognized s.th."
-- The Fal seRecognition event?”® occurs when the speech recognition (SR
-- engi ne produces a false recognition.
. METHOD Fal seRecogni tion
USE arg Streanmunber, Streamnposition, Result

273 [SPe]
274 [Spﬂ
275 [Spg]
2% c.p.6.3.3.
277 [Sph]
278 [sPi]

168

SAY "No recognition”
-- If the SR engine encounters the start of an audio input streamthen
::METHOD StartStream -- the StartStreamevent is fired??®.
use arg Streamunber, Streanposition
SAY St reammunber

Code 26: MSSpeech_SR_1_Dictation.rex”®

12.2.2. Command and Control Recognition

Code 27 and code 28 demonstrate the Command and Control (C&C) recognition.

12.2.2.1. C&C Recognition with Configuration File

Code 27 describes the Command and Control Recognition with a configuration file.

Therefore a second file is used which contains the grammar with the recognizable
text. The file name is sol x. xm and the text is “one”. If the program is started it runs
without error. If it is spoken the word “one” or not there is no event fired. The problem
is that Object Rexx does not support the events of MS Speech. The reason therefore
is that the events of MS Speech are not hand over to Object Rexx via the generic
interfaces | Di spat ch and | Unknown. The events are hand over via special ID’s.

These ID’s are not queried with Object Rexx [Doe03c].

-- Instantiates the SR object. Here is a an object used which enables
-- shared context to allow resources to be used by other recognition
-- contexts or applications?! Events are enabl ed.

SO = . Event sW t hSO-New(" SAPI . SpShar edRecoCont ext ", "W THEVENTS")
-- The CreateGramar net hod creates an object based on

SGrammar = SO~Creat eGrammar -- | SpeechRecoG ammar 282
-- The CndLoadFronfFile method?® | oads a command and control grammar
-- fromthe file "solx.xm"."1" means that the grammar is | oaded

-- dynam cally, neaning that rules can be nodified and commtted at run

279 [SPJ]
280 Modelled after [SPK]
81 [sPe]
282 [SPf]
8 [P

169

SGr ammar ~CrrdLoadFronFi | e("c:\ Test\sol x. xml ", 1) -- tine?8,
-- The CndSet Rul el dSt at e net hod?®® activates or deactivates a rule by

SGrammar ~CnmdSet Rul el dState(0, 1) -- its rule ID
-- Message box with the invitation to speak.
CALL RxMessageBox "Speak", "Infornmation",,

"OK", "ASTERI SK"
-- Class which derives from OLEQbj ect 28
: 1 CLASS Event sWt hSO SUBCLASS OLEMhj ect
-- Method which is called if an event is fired. The Recognition event
-- occurs when the speech recognition (SR)engine produces a
. METHOD Recognition -- recognition?’.
use arg Streanmmunber, Streanposition, RecognitionType, Result
Resul t ~Phr asel nf o~Get Text

say "l have recognized s.th."
-- The Fal seRecognition event occurs when the speech recognition (SR
: METHOD Fal seRecognition -- engine produces a false recognition?s,

use arg Streamnmunber, Streanposition, Result
SAY "No recognition"
-- If the SR engine encounters the start of an audio input streamthen
. METHOD StartStream -- the StartStreamevent is fired?®
use arg Streammunber, Streanposition
SAY St reammunber

Code 27: MSSpeech_SR_2_CommandAndControl.rex*®

OtherScript 8 contains the file sol x. xm with the grammar with the recognizable

text. This file is taken from [SPo]. Instead of “new +game” is “one” used.

284 [SPm]

%85 [SPn]

%% ¢p.6.3.3.

287 [Sph]

2% [SPi]

289 [SPJ]

2% Modeled after [SPo]

170

<GRAMMAR LANG D="409" >
<DEFI NE>
<I D NAME="RI D_NewGane" VAL="101"/>
</ DEFI NE>

<RULE NAME="newgane" |D="RI D NewGane" TOPLEVEL="ACTI VE">
<P> new +gane </ P>

</ RULE>
</ GRAMVAR>
OtherScript 8: solx.xm!***
12.2.2.2. C&C and the Creation of a new Grammar Rule

Code 28 was modeled after an example from Inigo Surguy that was programmed

292

with the language Python It should create a new grammar rule and fire the

Recogni ti on event if the word “Hello” is said. This example doesn’t work correctly.

There comes always the following error message:
28 *-* SG anmar ~Rul es~Commi t
Error 92 running C\...\SR 1.rex line 28: OLE error

Error 92. 906: OLE exception: Code: 80045062 Sour ce:
unavai |l abl e Descri ption: unavail abl e

-- Instantiates the SR object. Here is a an object used which enables
-- shared context to allow resources to be used by other recognition
-- contexts or applications?3 Events are enabl ed.

SpeechCbj ect = . Event sWthSO-new(" SAPI . SpShar edRecogni zer ", "W THEVENTS")
-- The CreateRecoContext nethod?®* creates a recognition context object
-- fromthe recogni zer.

SCont ext = SpeechObj ect ~Cr eat eRecoCont ext
-- The CreateG anmar net hod?®® creates an object based on

SGrammar = SCont ext ~Creat eGramar -- | SpeechRecoG anmar
--The DictationSetState method sets the dictation topic state?®.

1 Taken from [SPo]

http://www.surguy.net/articles/speechrecognition.xml
2% [SPe]
294 [SPp]
295 [SPf]

292

171

SGr anmmar ~Di ct ati onSet State(0) -- Here inactive?’
-- The Add net hod?®® creates a new | SpeechG anmar Rul e obj ect in an
-- |1 SpeechG ammar Rul es col | ecti on.
-- "wordsRule" is the rule name, "33" neans "SRATopLevel = 1" +
-- "SRADynanmic = 32" and "0" is the rule | D*.
Wor dsRul e = SGammar ~Rul es~Add(" wor dsRul e", 33, 0)
-- The Clear method®® clears a rule, leaving only its initial state.
Wor dsRul e~Cl ear
-- The AddWordTransition nmethod*®! adds a word transition fromthis rule
-- state to another rule state in the sane rule. The AddState met hod3®?
-- adds a state to a speech rul 3%,
WordsRul e~I ni ti al st at e~AddWor dTr ansi ti on(Wr dsRul e~AddState, "Hell o")
-- The Conmit method conpiles the rules in the rule collection®
SGr ammar ~Rul es~Conmmi t
-- The CndSet Rul eState nethod3®® activates or deactivates a rule by
-- its name. Here it is activated.
SGr ammar ~CnmdSet Rul eSt at e(" wor dsRul e, 1)
-- The Commit nethod conpiles the rules in the rule collection.
SG ammar ~Rul es~Conmi t
-- Creates a nessage box with invitation to speak
CALL RxMessageBox "Speak", "Infornmation",,
"OK", "ASTERI SK"
-- Class which derives from OLEQj ect %7
.1 CLASS Event sWt hSO SUBCLASS OLEMhj ect

“* [sPg]

" [sPa]

28 [SPr]

29 [SPs]

30 [spt]

301 [SpPy]

%02 [5py]

%3 [Doe03d]
34 [SPw]

35 [sPx]

*° [Spy]
97 ¢.p.6.3.3.

172

-- Method which is called if an event is fired.

-- The Recognition event occurs when the speech recognition
: METHOD Recognition -- (SR) engine produces a recognition®,
USE arg Streamnmunber, Streanposition, RecognitionType, Result
Resul t ~Phr asel nf o~Get Text

SAY "1 have recogni zed s.th."

Code 28: MSSpeech_SR_3_CommandAndControl_2.rex

398 1SPh]

173

13. Windows Script Host

A disadvantage of further Windows versions was that they were not able to be used
for automation tasks. There were only MS-DOS Batch files available [Ge03]. This was
changed with the advent of Windows Script Host (WSH) [M098]. WSH enables the
interaction among ActiveX components, the access of the registry, the launching of
applications or the communication with the operating system. It is possible to
generate installation scripts for applications or to automate tasks for the user [Ge03].
Windows Script Host is a Windows administration tool and has the two components
host and engine. For the interaction of these two parts are used the interfaces
| Persi st*, | ActiveScri pt, | ActiveScriptSite, ID spatch and

| connect i onPoi nt .

This section discusses scripting, Object Rexx and Windows Script Host, Windows
Script Host and Windows Script Engine, types of script files, kinds of running a script,
the instantiating of objects, the WSH object model, the Fi | eSyst enObj ect object,
the Di cti onary object, security in Windows Script Host, starting applications with

WSH and Windows Script Components.

Windows Script Host (WSH) is language-independent. It is possible to run scripts
from the command prompt and from the Windows desktop. WSH is the host for a
script. That means that it makes services and objects available for the script
[MLWSHa]. There are three WSH applications known at the point of time this paper
was written: Internet Information Services (lIS) whereat 11S is a WSH host and then
WSH engines can be used for scripting of ASP [Fla03e], MS Internet Explorer and the
WSH Shell which is used as Windows interface [Fla03].

With scripting, variables can be set and stored, and it can be worked with data in
HTML code [MLWSHCc].

WSH makes objects from applications available in the runtime environment of the

scripting language [Fla02c,p8].
WSH objects and services enable [MLWSHa]:

» Connection to printers,

174

» changing of registry keys,

» changing and retrieving of environment variables,

» fundamental functions as Cr eat e(bj ect and Get Obj ect
* printing of messages to the screen,

* mapping network drives and

» remote control of Windows applications.

WSH is included in for example Microsoft Windows 98, 2000 or XP. For Windows 95
the Windows Script Host 5.6 is downloadable from the Microsoft Homepage®®
[MLWSHa]. The Windows Script Host is included and updated with the MS Internet
Explorer [Fla03].

A recommended source for information is the System Administration Scripting Guide.
This guide can be downloaded from the Microsoft Homepage*'°.

13.1. Scripting

This chapter contains information about script basics and server-side scripting to

improve the understanding.

13.1.1. Script Basics*"*

A script is programmed in a scripting language like VBScript, JScript, Python, DOS
Batch language Perl or Object Rexx 32,

Scripting facilitates work with data in HTML code to communicate with the user,

check the browser or the input and to work with controls and applets [MLWSHCc].

Computer systems on a network can be remotely administered.

399 http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28001169

310 http://www.microsoft.com/downloads/release.asp?ReleaselD=38942
31 IMLWSHa]

12 [Fla02d)]

175

A Windows script can be written with an unpretentious text editor. It is only necessary

to save the file with the appropriate extension [MLWSH(d].

A script is normally stored in a file and it is used for remote-control and to automate
applications. Thereby it is a sequence of repetitious commands pointed to shells or

applications [Fla02d].

A script is suited for the following purposes:

» Starting other programs

» Key sequences are transmitted to an application
» Changing the Windows environment

» Logon procedures that are automatic

* Nonrepetitive tasks

» Sequence of tasks

* Response to an event

13.1.2. Server-Side Scripting>*®

Server-side scripting allows the running of scripts on the server for example for data
that can be stored in a database. Active Server Pages (ASP) is used for server-side
scripting with generating an ASP file. There could be a mix of components like Java
applets or ActiveX, scripting and HTML. ASP has the five standard objects
Appl i cation (lifetime control and share application-level information), Server
(Internet Information Server control), Sessi on (settings and information about the
user's present web-server session), Request (information from the user) and
Response (information to the user). ASP events are supported by Object Rexx
[IBMO1,p505].

313 IMLWSHe]

176

13.2. Object Rexx and Windows Script Host>"

This section provides information about the support of Windows Script Host by Object
Rexx. The COM interfaces which Object Rexx supports and basic items are

discussed.

13.2.1. Basics

Object Rexx is a script engine for Windows Script Host.

Object Rexx does not support WSH Script Debugging, which enables to view the
source code, to view and modify property and variable values, to check and view the
script flow and to control the pace of the script execution [MS01b], and DCOM3,

13.2.2. COM Interfaces

Not all of the WSH engines interfaces are supported by Object Rexx. Some
interfaces that are supported are generated dynamically. Not all methods of a
supported interface are implemented although the code for all methods of that

interface is present. Not implemented methods return E- NOTI MPL.

Interfaces with full support:

| ActiveScriptError

| Acti veScri pt Parse

| Acti veScri pt Par seProcedure

| Obj ect Saf ety
e | Unknown
Interfaces that are also supported:

* | ActiveScri pt

314 This section uses [IBMO1c,p152ff]
5 cp.2.7.

177

« Cose

* AddNanedl| t em

* AddTypeLib

e GCetScriptbhi spatch
o CetScriptState

e SetScriptSite

Set Scri pt St at e

* | Dispatch

e (Cet| DsOf Nanes

e | nvoke

* | Di spat chEx

Get Di spl D (no support for dynamic generation of methods or properties)

Get Menber Name

Get Next Di spl D

| nvokeEx (no support for dynamic generation of methods or properties)

13.3. Host and Engine

This section describes script host and engine and their interaction. Script host and

engine are the two kinds of script components.

13.3.1. Script Host and Script Engine Basics

With Windows Script Host VBScript, Jscript, Python, Perl and Rexx can be used as
an engine. .vbs and .js files are already registered in Windows; others have to be

registered before running a file [MLWSHf].

178

There are two kinds of script components. There is a script engine and a script host
[IBMO1,p493].

The script host generates the script engine that is an OLE object and implements the
scripts. A Script host are for example the Shell, Internet authoring tools or the
Microsoft Internet Explorer, CScript and WScript. The script host can add initialized
objects to the runtime environment of the WSE and it is any application that uses one

of the | ActiveScript fam |y interfaces [Fla02d,p9].

The Script engine runs with any run-time or language environment like Microsoft
Visual Basic Scripting Edition, Lisp, Perl or Object Rexx that supports the COM
interfaces | ActiveScri pt, | ActiveScriptParse and |Persist and
OLE/ActiveX Automation. The WSE makes it possible that objects from applications
are obtainable in the runtime environment [Fla02d,p3,p8].

13.3.2. Interaction between Scripting Host and Engine®*®

Script interfaces offer the possibility for an application to use OLE Automation and

scripting skills. The interaction of host and engine is illustrated in figure 42.

1. Create Host Document

2. Create ActiveX ScApting Engine
Host | activex
3. Load the Script il
. - Engine
SC@ IPersist* 1ActiveScriptParse
4, Add Hamed Items -0
IactiveScript
5. Run the Scrpt |
Cre 6. Get Item Information
IhctiveScriptSite
_ 7. Event Advise
Page _O-—_ Code
(Marmed Item) | IConnectionPoint Obiject
& Controls . B. Invoke Properties and Methods for Page
()
1Dispatch
Figure 42: Interaction between Scripting Host and Engine®’

3% IMLWSHg]
37 Taken from [MLWSHg]

179

Creation of a document or project.

Creation of the Windows Script Engine with the CoCr eat el nst ance method.
The script is loaded with an | Per si st * interface.

Named Items (remarkable OLE COM object to the script) are added with the

| ActiveScri pt:: AddNamedl t emmethod.

A w0DN P

o

The script is running.

6. Information about the item with the | Acti veScriptSite:: Getltem nfo
method.

7. Connection of the scripting engine to the events with the | connect i onPoi nt
interface.

8. Methods and properties are called with standard OLE binding mechanisms or

| Di spat ch: : 1 nvoke.

318

13.4. Types of Script File

In the sequent sections there are used several kinds of Windows Script Host files and
several kinds of files which contain Windows Script Host objects. These types of

Windows Script files are described in this section.

The first is the . wsf file, which is a container or project file, and the second is the
. wsh file, which is a property file for a script file. Other types are . vbs (VBScript),
. J s (JScript), . bat (MS DOS batch file), ASP page, . ht m (HTML file) or . r xs and
. r ex (both Object Rexx).

13.4.1. WSF File Using Windows Script Files (.wsf)

This file format is used often in further code examples.

A WSF file (. wsf) is structured in XML. The . wsf format allows multiple-engine
support to join several languages in a .wsf file and can be edited with any XML editor
or any other editor. It is a project or container file. Functions from several languages
can be inserted in the project. Type libraries are used to add constants to the code

318 IMLWSHh]

180

and the code of several jobs can be saved in one file. A WSF file can be programmed

with any script engine®"® [Fla02d,p10].

A script can be split up to several parts. As beginning, a . wsf file is generated and
the other parts referenced by the . wsf file are for example Visual Basic Script or
JScript files [MLWSHI].

13.4.2. WSH File

A WSH file is automatically created by setting the properties for a script file. It is a
text file. With a WSH file the implementation of one or more scripts is handled
[MLWSHK].

13.4.3. REXFile

A REX file is a file with Object Rexx code. It is created with the Object Rexx

Workbench and can contain script code.

13.4.4. RXS File

There are several Object Rexx scripts, which only work with this extension.

A RXS File means ObjectRexxScriptFile. It contains an Object Rexx program that is
started via Windows Script Host [Fla02e]. It is suitable for the usage of
Wscri pt. exe3? or Cscri pt. exe®?! [Fla03]. The . rxs files can be executed with
a double-click in the Windows Explorer or or with the name of the file. Thereby

WScript is launched and the script file is hand over as argument [Fla03e].

9 ¢.p. 13.8.3.
30 ¢.p.135.2.
%1 ¢p. 13.5.1.

181

The following two commands are inserted to the command window*?? [Fla03e]:
C.\ Assoc. rxs

Output:

. rxs=Cbj ect RexxScriptFile

And:

C\ftype ObjectRexxScriptFile

Output:

bj ect RexxScri pt Fi | e=%Byst enRoot % syst enB2\ Wacri pt. exe "%" %

13.5. Running a Script

There are different possibilities how to run a script. This chapter describes these

possibilities.

13.5.1. CScript®*®

With Cscri pt. exe scripts can be started from the command prompt. The command

has the following syntax.
cscript scriptnane. extension [script options and paraneters]

The output of the script is sent to the command window.

13.5.2. WScript

Another possibility to run a script is from Windows. Therefore, Wcri pt. exe is
used. It offers a Windows-based dialog box for the properties. Here the output is a
windowed output [MLWSHm].

322 start->Run->Cmd

323 IMLWSHI]

182

13.5.3. Embedding a Script in a HTML File®*%*

A further possibility of running scripts is to embed them in a HTML file with the
Microsoft Internet Explorer. It is possible to interact in this way with any scripting
engine [Fla02d]. This section was taken from [He02,p10]

There is a head and a body in the HTML file.

The head contains the title and the original source code of the Object Rexx script.
Here are the operations that are running in the background. The body contains what
can be seen on the monitor. There are the headlines, references and the input area
for the data. HTML-files consist of ASCII-text. HTML-commands are written in “tags”.
That means that they are marked with pointed brackets. There is always an opening

tag and a closing tag. All between them is the range of validity of the tag.

Dynamic HTML (DHTML) makes it possible to change elements of a www-site
dynamically. This site behaves like an application. To act in this way event-handlers
are used. Knowledge in script languages like Object Rexx is needed to work with
DHTML®*®,

13.5.4. Other Possibilities to Run a Script

Scripts can also be started with a double-click in the explorer.

13.6. Instantiating of Objects

Here is explained how to instantiate WSH objects with Object Rexx.

There are two possibilities to declare objects with Object Rexx. The one is the WSH
method WScri pt ~Creat eCbj ect () and the other is the Object Rexx method
. OLEObj ect ~New() , in which New generates a new instance of the object®?’. The
first possibility offers the advantage that it supports the events of the object. On the

other side, it is a COM object implementing a function that can be carried out

34 ¢.p.9.1.3.

3 ¢.p.13.7.4.1.

320 Taken from [He02,p10]
%7 ¢c.p. 6.3.

183

internally. If the WScr i pt object is used outside WSH, like for example in a REX file,

328

it does not work. Therefore, a RXS file®* is used. [IBM01,p512].

13.7. WSH Object Model***

This is the broadest section of the WSH chapter. It discusses the whole WSH object
model. It explains for example how to execute a script on another machine in a

network or how to send keystrokes to the active window.

Parts are the WSHArguments object, the WSHController object, the WSHNetwork
object and the WSHShell object.

The WSH consists of 14 objects that are illustrated in Figure 43.

Wseript
Wsharguments
WshMNamed
WshuUnnamed
WshController
WshRemote
WshRemoteErrar
WshMNetwork
WshShell
WshShertcut
WshUrlShoreCut
WshEnviranment
WshSpecialFolders
WshScriptExec

Figure 43: WSH Object Model**°

* WScri pt is the root object of the object model and it is always available from
every script file. It offers information about the host file name and host version, the
name of the script file, command-line arguments and to the default output device.
It enables the creation, connection and disconnection of objects, and sync events

and stops the script's execution programmatically.

38 ¢p. 13.7.1.
329 IMLWSHn]
330 Taken from [MLWSHn]

184

* WshAr gunent s allows accessing the entire set of command-line arguments. With
WshNamed the set of named command-line arguments can be accessed.

WshUnnamed allows accessing the set of unnamed command-line arguments.

* WshControl |l er allows with the method CreateScript(), to generate a
remote script process. WshRenot e allows the manipulation of other scripts and
programs. WshRenot e Error shows the error information in the case of a script

error.

 WhNet wor Kk maps or closes network shares, allows the access to the shared
resources of a network, offers data of a user in the network and makes the

connection and disconnection to network printers and shares.

« WshShel | generates shortcuts, changes the environmental variables, starts a
program locally, accesses the system folder and changes the contents of the
registry. WshShort cut offers a programmatically creation of a shortcut.
WshURLShor t cut creates a shortcut to an Internet URL. WshEnvi r onnment
allows utilization of environmental variables like PATH or PROWPT.
WshSpeci al f ol ders allows accessing “Windows Special Folders” like the
Start Menu folder or the Deskt op folder. WshScri pt Exec offers error and
status information about a script that runs with the Exec method of the WshShel |

object.
The COM interfaces used by the Windows Script Model are based on two categories:
» Helper Functions to perform actions with methods and properties.

» Script Execution and Troubleshooting to perform messages to the screen,
essential COM functions or changing of the Windows Script Host.

13.7.1. WshArguments Object®**

The WshArguments object accesses the command-line arguments that are used.

1 This section uses [MLWSHo]

185

This script has the extension .rxs. To run that script the MS-DOS Shell is used and

the script runs with the command cscri pt wsh_arg.rxs /Wsi

wsh_arg.rxs /Ws:h. Note that the WBcr i pt object runs only if it is dynamically
generated by W5cri pt or CScri pt to pass the pointer to Object Rexx and it is not
registered in the Windows registry [IBM01,p508]. The Argunents property returns
the WshArgunents object. The Argunments property needs the WScri pt
object. The Naned and the Unnaned properties of the W6hAr gunent s object return
the WshNaned respectively the WshUnnamed object. W5cri pt ~Echo creates if the
script is executed with CScri pt an output like the SAY command. If the script is

started with W5cr i pt a pop-up box is generated [IBM01,p494].

Figure 44 illustrates the MS-DOS shell** where the file WSH_Ar g. r xs with the

arguments is executed.

B Fingabeaufforderung -3 ﬂ

C:sTestroscript wsh_arg.rxs W s h
Microsoft <R> Windows Script Host,. Uersion 5.6
i ¢G> Microsoft Corporation 1996-28681. Alle Rechte vorhehalten.

3 Arguments

3 Arguments

1 named arguments.

2 unnamed arguments.
?induws Script Host

5]
C:nTestr_

Figure 44: Snapshot of the MS-DOS Shell®*

Code 29 contains the script WSH_Arg.rxs.

332 start->Run->Command

333 part of MS Windows XP

186

-- Input: cscript wsh_arg.rxs /Ws h
-- or wscript wsh_arg.rxs /Ws h
-- The nunber of Arguments in the command-line is counted with
-- the count property
SAY "There are " wscript~Argunments~count " Argunents"”
-- Stops the execution of the script for 5000 milliseconds®*
Wscri pt ~Sl eep(5000)
-- The nunber of Arguments in the conmand-line is counted with the

SAY "There are " wscript~Argunents~l ength " Arguments" -- |ength property®®
-- The nunber of named Argunents is counted with the [ength
-- property

Wacri pt ~Echo(" There are " Wscri pt ~Ar gunent s~Naned~l ength " nanmed argunents.")

-- The nunber of unnamed Argunents is counted with the Count
336

-- property
Wacri pt ~Echo(" There are " Wscri pt ~Ar gunent s~Unnamed~count " unnaned argunents.")
WEcri pt ~Echo(W5cri pt ~Nane) -- O fers the name of the Wscript object

-- Exists method recognizes if a named argunent exists®¥. 1=true
W5cr i pt ~Echo(W5cr i pt ~Ar gunrent s~Named~Exi st s("W))

-- Unnaned Argunments are not recogni zed.
WEcr i pt ~Echo(W5cr i pt ~Ar gunent s~Nanmed~Exi sts("s"))

Code 29: WSH_Arg.rxs

13.7.2. WshController®3®

This object has the method Cr eat eScri pt that references the WEHRenot e object.
The WEHCont r ol | er object enables the instantiation of script on a remote machine
[Es02]. It is explained how to use this object on the local machine, on multiple

machines and the usage of events.

There are two scripts, the control script and the remote script. The control script
instantiates a WSHCont r ol | er object and connects to the remote machine. The
remote script is copied to the memory of the remote machine. The remote script is
there executed [WSS02].

3 IMLWSHp]
335 [IMLWSH(q]
33 [MLWSHI]
337 IMLWSHS]
338 IMLWSHL]

187

The method Creat eScri pt has the following syntax:
Creat eScri pt (CommandLi ne, [Machi neNane]) . The parameter CormandLi ne
is required and contains the path of the control script seen from the controller
machine. The parameter Machi neNane is optional and contains the name of the
remote machine. If this parameter is left free, the remote script is executed on the
controller machine [MLWSHu].

To use the remote functionality WSH 5.6 has to be installed®*® (for Windows XP or
Internet Explorer 6 or greater WSH 5.6 is already installed), the remote and the local
machine must have Windows NT 4 SP3 or higher and the registry has to be changed.
Thereby for the key HKEY_LOCAL_MACHI NE \ SOFTWARE \ M crosoft \ W ndows
Script Host \Settings an entry must be added. Right-click that subkey in the

30 click on New and choose String Val ue in the Edit menu.

Registry Editor
Insert for value name “Renote” and as data value ,1“ [MS03k]. This key must be
activated on that machine on which the remote script is executed. If the remote script
is executed on a machine other as the source script this key needn’'t be set on “1” in
the source system but it may be set on “1”. It is not necessary to restart the system
after modifying this key. Figure 45 shows in the small circle the key and in the big

circle the new entry.

39 http://msdn.microsoft.com/scripting

30 ¢cp.2.6.1.

188

|ﬂ' Registrierungs-Editor

Datei Bearbeiten Ansicht Favorken 7

Pl I__‘| VS ‘A_|-I Mame Tvp
P (3 vsans || [aB]¢standard) REG_SZ
o =3 vaway | [B)activeDetuigging REG
& | [l B
o] wes | [aBjerEplayLoge REG_52

L B[weem
£ l:l ‘Web Folders
© [Web Service Providers
£ l:l Windows

[Windows CE Services
£ l:l ‘Windows Media Device Manager
. @[Windows Messaging Subsystem

el

mingke
| BUsewInsAFER REG_SZ

R X
© 0 E[3 windowsscript

L w3 works
g E o il l:l ‘Works Suite

C 0 B[wacsve
[[:] Musichatch
© [Hewinet
s nllsoft
. &[] WvIDIA Carporation

. @1 oDEC

i E-{3 Policies

£ oE [:] Program Groups

L {2 QUALCOMM Incorporaked
[[:] Radiate

- @[3 schlumberger

g & [:] Seagate Software

Pl {3 secure

[B

. w7 softshape

[[:] Synapkics

L w3 vepi

. @] weBDE

© @3 whenu E
£ oE [:] ‘Windows 3.1 Migration Status
¢ {3 svsTEM

(#-[Z HKEY_USERS

= HKEY_CURRENT _CONFIG =il
S] <1

/=S

(Wwert nicht gesetzt)

2|

Arbeitsplatz\HKEY _LOCAL MACHINE\SOFTWARE\MicrasofthWindows Script Host)Settings

M {2 Ci\Dokumen. .. !‘. @Gesamt_Ent.‘. I @Gesamt_Ent... !‘. @Spickzette_.‘.

Figure 45:

P D | vl 2asdame e

Snapshot of the registry with regedit.exe®*

For Windows XP machines it is probably necessary to use the command C.\ >

wscript -regserver in the menu Start->Run. This is why there is a

configuration bug which prevents WSH 5.6 from setting up correctly [WSS02].

13.7.2.1.

WSHController on the local Machine

This example shows the WSHControl | er object with a remote script that is

launched on the same machine. For this example, a MS Windows XP Home machine

was used.

The first script code 30 is the control script.

%1 The Registry Editor is part of MS Windows XP c.p. 2.6.1.

-- Instantiation of the Controller Object
Control ler = . OLEChj ect ~New("WSHControl [er™)
-- The nethod CreateScript generates a WSHRenote obj ect 342
Renot eScript = Controll er~CreateScript("C:\Test WsHCt r\ WSHRenot eCal c. r xs")
-- The Status property tells the Status of the renote script
-- In this case the status is 0 which neans that the renote script

SAY RenoteScript~Status -- object is generated but not executed®
-- The Execute nethod begins the execution of the renpte script
Renot eScri pt ~Execute -- obj ect **.

-- In this case the status is 1 which nmeans that the renpte script
SAY RenoteScript~Status -- object is running.
-- DO function which is executed until the value of the status is 2
DO UNTI L RenoteScript~Status = 2
CALL Syssleep 1
END
-- In this case the status is 2 which nmeans that the renpte script
-- object is not still running.
SAY Renot eScri pt ~St at us

Code 30: WSHController_OnTheSameMachine.rex**

Code 31 is the remote script WHRenot eCal c. r xs that is launched by the controller

script. It has the file extension . RXS because it must be a script file. Therein the

calculator is launched with the Exec method3*®.

-- Instantiation of the Shell object

WshShel | = . OLEObj ect ~New("WEcri pt. Shel |)
WshShel | ~Exec("cal c") -- Launches the Cal cul at or

Code 31: WSHRemoteCalc.rxs
13.7.2.2. WSHController on multiple Machines

In the next example the WEHCont r ol | er object with the WBHRenot e object is used

on multiple machines. In this case two MS Windows XP Pro machines were used. It

2 IMLWSHU]

33 IMLWSHV]

344 IMLWSHwW]

%5 Modelled after [WSS02]
30 ¢.p. 13.7.4.5.

190

doesn’t work with MS Windows XP Home machines or if one of the two machines is a
MS Windows XP Home machine [DI03a].

Both the control script and the remote script are on the control machine.

There is a registry changing necessary on the target computer. By default a
For ceCGuest issue is set for Windows XP machines. For ceGuest means that all
that is coming from the network is authenticated as Guest user. To change this,
open the Local Security Policy console located in the folder
Administrative Tools**’. In the Security Policy console choose
Security Settings\Local Policies\Security Options. Then look for
Net wor k Access: Sharing And Security Model For Local Accounts.
Change the setting from Guest to Cl assi ¢ [DI03]. Figure 46 shows the setting in

the Security Policy console.

37 c:\Documents and Settings\All Users\Start Menu\Programs\Administrative Tools

191

File Action view Help

[+ = R 2

@ Security Setkings

(+-18 account Policies

=18 Local Paliciss

¢ L8 audit Palicy

User Rights Assignmen
.
1¥-[L1] Public Eey Folicies
1-([7] Software Restriction Policie
+ g IP Security Policies on Loca

|
w

Falic

] Security Setking

@Interactive logor; Message text f...
Interactive lagan: Message kitle fa. .

Interactlve logon: Mumber of prewi...

Interactive logor; Prompt user ko ...
Interactive lagon: Require Damain. ..
@Interactlve logon: Smart card rem. ..

MicrosoFt niebwiork. client; Digitally s...

MicrosoFt niebwork clien
fig]Microsoft network client
MicrosoFt netwark servg
Microsott nebwork servg
MicrosoFt nebwirk serve
MicrosoFt netwark servg g’-é:
fig]Metwork access: Allow =
Network access: Do noby
Network access: Do noby

Hetwork access: Sharing and security model for local... E|®

Local Security Setting |

Mot defined
10 logons
14 days
Disabled
Mo Actian
Disabled

Metwork access: Sharing and security model for local accounts

¥ Metwork access: Do no | Classic: - local users authenticate as themselves

[B8]metwork access: Let Ev C!

- local u a
Network atEsst Named Guest only - local users authenticate as Guest

Network access: Remok]
Network access: Shared
@Network access: Sharin

Network secutity: Do n
Network security: Force

@Network secutity: LAM Manager a,..

Network security: LDAP client signi...
Network security: Minimum session...
Network securiby: Minimur session.. .

Recovery consale: Allow automati...
@Recovery console: Allow Floppy co...

Shutdown: Allow system to be shu. ..

Shutdown: Clear virtual memory p...
@System cryptography: Use FIPS c...

System ohjects: Default awner far..,
System ohjects: Require case inse. ..
System objects; Strengthen defau. ..

Tend (Mo T re.
Meqgaotiate signing
Mo minimum

Mo minimurn
Disabled
Disabled

Enabled

Disabled
Disabled

Object creatar
Enabled

Enabled

[

3

Figure 46:

Snapshot of the Security Policy console.®*®

A further prerequisite is that the same password must be set on both machines for

the administrator. Without setting a password it doesn’'t work. A password for the

administrator is created by choosing St ar t - >Cont r ol

Double-click the computer administrator like in figure 47 [Sp03].

348 part of MS Windows XP Pro

Panel - >User

Accounts.

192

£ User Accounts
G Ak Q ﬁHome

Learn About

. ?.-' User Accounts
v

a User accounts
@ User account bypes

[2) swicching users Pick a task...

Change ¢ ers [og an or off

or pick an account to change

& Administrati... B cControl Panel [Infosit

Figure 47: Snapshot of the start page of the User Accounts®**

Then click Creat e a passwor d and fulfill the form like in figure 48.

349 part of MS Windows XP Pro

193

£ User Accounts

e Back @ ﬁ Horme

Learn About

Create a password for your account

E] Creating & secure password

E] Ereating a good password Type & new password:
= hink

L_?] Remembering a password [seescees |

Type the new password again ko confirm:

If your password contains capital letters, be sure to tvpe them the same way every time vou log on,

[password

The password hink will be visible ko everyone whio uses this computer,

L Create Password] [.Cancel]

& Adrini B Control Panel [2 Motepad ~ | Br Local Security 5. :E User Accounts DE ? Ay 230

Figure 48: Snapshot of the form for creating a password®®

The control script code 32 contains additionally to the script code 30 the name of the
machine (f hkcn) where the remote script should be executed. There is no folder
specified because the remote script is located in the same folder as the control script
but it is also possible to insert the folder [MS03I]. The control script is on the control
machine in the folder c: \ Test WBHCt r located. That is the same folder specification
as the folder specification where the remote script will create the text file on the
remote machine. If the control script is located in another folder on the control

machine it doesn’t work.

-- Instantiation of the Controller Object
Controller = . OLEOhj ect ~New("WSHControl | er")
-- The nethod CreateScript generates a WSHRenot e obj ect 3%

30 part of MS Windows XP Pro
%1 [MLWSHu]

194

Renmpot eScript = Controll er~CreateScript("wshrenote.vbs","fhkcn")
-- The Execute nethod begins the execution of the renote script
Renot eScri pt ~Execut e -- obj ect %2,
-- DO function which is executed until the value of the status is 2%°
DO UNTI L RenpteScript~Status = 2
CALL Syssleep 1
END

Code 32: WshController_OnMultipleMachines.rxs***

This remote script OtherScript 9 is a Visual Basic Script file which is executed in the
memory of the machine “f hkcn”. If Object Rexx is not installed on the remote
machine an Object Rexx remote script won't work. It creates a textfile with the name
WSHDeno. t xt in the folder C. \ Test WBHCt r of the remote machine. Into this text

file the text “WBHCont r ol | er was her e” is written.

Set fso = CreateCbject("Scripting. Fil eSystenthject")

Set fsoFile = fso.CreateTextFil e("C:\ Test WBHCt r \ WBHDeno. t xt", True)
fsoFile. WiteLine "WsHControl |l er was here."

fsoFile.C ose

OtherScript 9: Remote.vbs**®

13.7.2.3. WSHController and Events

The WSHController object has events. But these events can’'t be used with Object
Rexx. Code 33 shows a control script which runs without error. It executes the
remote script code 34 which launches the calculator on the same machine, but the
Start event is not fired. The reason therefore is that the events of WSHController
are not hand over to Object Rexx via the generic interfaces | Di spat ch and
| Unknown. The events are hand over via special ID’s. These ID’s are not queried

with Object Rexx [Doe03c].

%2 IMLWSHwW]
353 [IMLWSHV]
%4 Modeled after [WSS02]
% Modeled after [WSS02]

-- Instantiation of the Controller Object
Control ler = . Event sWt hWSHCt r ~New(" WSHCont rol | er ", "W THEVENTS")
-- The nethod CreateScript generates a WSHRenote obj ect . 3%
Renot eScri pt = Controll er~CreateScript ("WsHRenot eCal c. rxs")
-- The Connect Cbj ect met hod connects the object's event sources to
-- functions. Therefore the prefix "X' is used. 3%’
WEcr i pt ~Connect Obj ect (RenoteScri pt, "X')
-- The Execute nmethod begins the execution of the renote script 3%,
Renot eScri pt ~Execut e
-- DO function which is executed until the value of the status is 2
DO UNTI L RenpteScript~Status = 2
CALL Syssleep 1
END
-- Class which derives from OLEQbj ect 3%°
.1 CLASS Event sWt hWSHCt r SUBCLASS OLEObj ect
::METHOD XStart -- This nethod is invoked if the Start event is fired.
WEcri pt ~Echo("WsHRenot e Start Event was fired!")

Code 33: WshControllerwithEvents.rxs>®°

The remote script code 34 executes the calculator with the Exec method .

-- Instantiation of the Shell object

WshShel | = . OLEObj ect ~New(" WEcri pt. Shel |)
WshShel | ~Exec("cal c") -- Launches the Cal cul at or
Code 34: WSHRemoteCalc.rxs

13.7.3. WshNetwork Object>®

Code 30 describes the WshNet wor k object. Thereby the computer, user and domain

name are accessed with the equal named properties.

%8 [IMLWSHU]

%7 IMLWSHcz]

%8 [IMLWSHw]

¥9¢.p.6.3.3.

%0 Modeled after [MLWSHda]
%1 ¢.p. 13.7.4.5.

352 IMLWSHX]

196

The available network drives are shown with the EnuniNet wor kDri ves method
[MLWSHy]. The MapNetwor kDrive(“\\Server\Public”) [MLWSHz] and
RenoveNet wor kDr i ve(“nane”) [MLWSHaa] methods create and delete a network
drive. Figure 49 illustrates the network with the two network machines Ant ar es that

is the remote machine and FHLAPTOPL1.

Dabted Boorbeiben Ansicht Favoriben Exbras 7

L::quu'r:k = ? -t Suchen | 155 Ordner || f2223]-

Cedkiar = ‘a 'g
[peskop - %

|} Eigens= Disteien Targa tAntans) FHLAPTCP]
o Aebstsplatz (Fhlaptopl)

- ‘} Bletzaer kumoahiundg
= (@l Gesamtes Netzwark
= Y vicrosoft Windowe-hekzeerk

E .,:l:'. |

s Ake Fobos um 1963

L]
=5
i AR Sepk O ST

W

Figure 49: WSHNetwork1.JPG:\Server =Antares\Public=Eigene Daten 363

Figure 50 shows the created network drive.

=
I‘Jilf\lik i “: - Suchen | i Ordnd
Cdnar =
(& ceskiep
] J Engen= Datmen
= 1§ abeitsplatz
= S BOOTICH)

il Gam DACKUR D)

HECOWER: (Ex)

b DNRICD-R - Laufwerk OF:)

] G Systemsteusrng

i Ssainegme Dokusent
= |} Dabeien won FH

W mezwerkumostung

Figure 50: WSHNetwork2.JPG: Shows the new network drive” z:”%*

The AddW ndowsPr i nt er Connection(“\\printserv\DefaultPrinter”,
"DriverName”) method [MLWSHab] enables the access to a remote network
printer. The EnunPri nt er Connecti ons method [MLWSHac] shows the printers
that are available on the machine or in the network for the user. At last the created
printer connection is deleted with the WshNet wor k~RenovePr i nt er Connecti on

method [MLWSHad]. Figure 51 shows the new printer in the printer menu.

33 part of MS Windows XP
34 part of MS Windows XP

197

-5 Drucker und Fasgerite
Datst Beorbesben Anscht Poworften Extras. 2

@;\mk- > :? j'fswhm b orver | [

i | o
geben @ = = = 5=
[3] trucker Hinautigen CAPTURE FAXEVRP HF Cobr LaserJat Lesmark %74-£75 Canen Bunbk-Jat
, i 5{SHPS BIC-2L05F an ..,

= Fa
2 Faxmstalatcn

Siche auch S

17} Druchprobiembehandung
& Hil'e e Drucken echiaitan

Figure 51: WSHNetwork3.JPG: Shows the network printer365

Code 35 demonstrates the WSHNetwork object.

-- To run this script a network connection is required, otherw se there
-- is an error nmessage. A printer nmust be installed on the renote
-- machine. The printer needn’'t be plugged in.
-- Instantiating of the Network object
WshNet wor k = . OLEObj ect ~New(" WEcr i pt . Net wor k™)

SAY "Conputer Nane = " WshNet wor k~Conput er Name - - Nane of the user’ sdomai n®®
SAY "User Nane = " WshNet wor k~User Name -- Name of a user?’
SAY "Domain = " WshNet wor k~User Domai n -- Nane of the conputer systent®

-- Tells how nuch network drives there are®®°,
SAY "There are " WshNet wor kK~EnunNet wor kDri ves~Length " network drives."

-- Creates a new network drive with drive nane "Z:". Works only if
-- there is really a network connected
WshNet wor k~MapNet wor kDrive("Z:", "\\Antares\Ei gene Daten")

-- Message box
CALL RxMessageBox "Look up in the Wndows Explorer to see the new -
“ network drive!", "Information", "OK", "I|NFORVATI ON'

-- Shows all networkdrives on the machi ne®®
DO i = 0 to WshNet wor k~EnunmNet wor kDr i ves~Length -1
SAY "Network drive: " WhNet wor k~EnunmNet wor kDri ves~lten(i)
END

SAY M "

WshNet wor k~RenoveNet wor kDri ve("Z:") -- Deletes the NetworkDrive
-- Message box

365

Part of MS Windows XP
%8 [IMLWSHae]

37 IMLWSHaf]

38 IMLWSHag]

359 IMLWSHY]

370 IMLWSHY]

198

CALL RxMessageBox "The new network drive is deleted!", "Information", "OK', "I NFORVATI O\
-- Ofers a remote W ndows-based printer connection

WshNet wor k~AddW ndowsPr i nt er Connecti on("\\ ANTARES\ Canon Bubbl e-Jet BJC- 210SP",

"Canon Bubbl e-Jet BJC-210SP")

SAY -- Blank line
-- Ofers with the odd-nunbered itens all networked printer UNC nanes

DOi =1 to WshNetwor k~EnunPri nt er Connecti ons~Length -1 by 2

SAY "Printer UNC names: " WshNetwor K~EnunPri nt er Connecti ons~Itemn(i)

END

SAY -- Blank |ine
-- Ofers all printerports because the even-nunbered itens are the
-- printer ports

371

DOi = 0 to WshNetwor k~EnunPri nt er Connecti ons~Length -1 by 2
SAY "Printerport: " WshNetwor k~EnunPri nt er Connecti ons~Iten(i)
END

-- Message box

CALL RxMessageBox "Look up in the Control Panel to see the new printer!", -
"I nformation”, "OK', "I NFORMATI ON'

-- Deletes the printer connection, .true neans that the connection is
-- renoved whether if the user is connected or not
WshNet wor k~RenovePr i nt er Connecti on("\\ ANTARES\ Canon Bubbl e-Jet BJC-210SP", .true)
SAY "The new printer is deleted.™

Code 35: WshNetwork.REX

13.7.4. WshShell

This section discusses the Run method and the Sendkeys method, the access of the

registry, the creation of shortcuts, WSHEnvi r onnent and WSHScr i pt Exec.

13.7.4.1. Run Method and SendKeys Method***"

Code 36 demonstrates the Run and Sendkeys methods. It is possible to execute

applications and to simulate keystrokes with these methods.

The script is embedded in a HTML file. The file starts in the body. There the red
background colour and a centred text are defined. A button is created. If the button is
pressed the Object Rexx — described by “Il anguage = * Qbj ect Rexx’ ’- routine

“doTheWbr k” in the head is called. The tag
 makes a line break.

371 IMLWSHac]
372 IMLWSHah]
33 ¢.p.9.1.3.

199

In the head the <t i t | e> tag writes the title. With <scri pt | anguage = “ (bj ect

Rexx” > the Object Rexx code begins.

First the command window is opened with the Run method®”*. From this location the
notepad is started with the SendKeys method. The notepad is remoted with the

SendKeys method and then the notepad and the command window are closed.

With </ scri pt > the code ends.

<htm >

<head>

<title>Enbedding a script in HTM.</title>
<script |anguage="0Ohject Rexx">

c:routine doTheWdrk public

-- Instantiation of the Shell Object
Shel | = . OLEOhj ect ~New("W5cri pt. Shel | ")
Shel | ~Run("cmd") -- Opening of the comuand wi ndow with the run nethod

-- The machine is sleeping for 2 seconds to see the command w ndow
CALL SysSleep 2

-- The path and the file name of notepad.exe are sent and pronpted to
Shel | ~Sendkeys("c:\w ndows\ syst en82\ not epad. exe") -- the conmand w ndow

-- The machine is sleeping for 3 seconds for seeing the witten text
CALL SysSleep 3

Shel | ~Sendkeys("~") -- An enter is sent to start the notepad
-- Necessary because otherwi se the machine wites the follow ng text
CALL SysSleep 1 -- still to the conmand w ndow

-- Text sent to the notepad
Shel | ~Sendkeys("This text is witten with the SendKeys net hod")
CALL SysSleep 2 -- Sleeping to read the text
Shel | ~Sendkeys("%l") -- The menu "File" is opened with the shortcut "ALT+d"
CALL SysSleep 2 -- Sleeping to see the file nmenu
-- The itemexit is chosen (in German it is named "Beenden" and so

Shel | ~Sendkeys("+b") -- it has the shortcut SHI FT+b)

CALL SysSleep 2 -- Sleeping to see the field

Shel | ~Sendkeys("{TAB}") -- Wth the tabulator the next button is activated
CALL SysSleep 2 -- Sleeping to see the field

Shel | ~Sendkeys("~") -- Wth the enter command the button is clicked

CALL SysSleep 2 -- Sleeping to see the command w ndow

Shel | ~Sendkeys("exit") -- The exit command is pronpted to the conmandw ndow
CALL SysSleep 2 -- Sleeping to see the command wi ndow with the exit command

374 IMLWSHai]

200

-- The exit command is executed and the command wi ndow i s cl osed
Shel | ~Sendkeys("~")
</script>
</ head>
<body bgcol or="red" >
<center>
Press or click the button to start the script
</center>
</ br>
</ br>
</ br>
</ br>
<center>
<i nput type=button value="press or click"
| anguage="0Obj ect Rexx"
onmouseup="cal | doTheWor k"
onkeypress="cal |l doTheWrk" >

</ center>
</ body>
</htm >
Code 36: RunMethodAndSenkeysMethod.htm
13.7.4.2. Accessing the Registry

Code 37 demonstrates the RegWite [MLWSHaj], RegRead [MLWSHak] and
RegDel et e [MLWSHal] methods. It is possible to access the registry with these

methods.

First a new key and new values are created; after that they are accessed with the

RegRead method and at last they are again erased®”.

-- Instantiating of the Shell object

Shell = . OLEObj ect ~New("WEcri pt. Shel | ")
-- The "TESTKEY" key is created by the RegWite nmethod with the nane
-- keyname and it is specified by the final backslash. HKCR is the
-- abbreviation for HKEY_ CURRENT_ USER

Shel | ~RegW i t e(" HKCW\ TESTKEY\ ", "keynane")
-- The value with the name "nanel" is created and has the value "1".
-- It has the integer data type "REG DWORD'

Shel | ~RegW i t e(" HKCW\ TESTKEY\ nanel", "10", "REG DWORD')

3 ¢.p.2.6.3.

201

-- The value with the nane "nane2" is created and has the val ue
-- "value". It has the string data type "REG SZ".
Shel | ~RegW i t e(" HKCU\ TESTKEY\ nane2", "val ue", "REG SZ")
-- Message box
CALL RxMessageBox "Start the Registration Editor to watch the * —
“created entries!”, "Information", "OK", "I NFORVATI ON'
-- G ves back the default value of the key
SAY Shel | ~RegRead(" HKCU\ TESTKEY\ ")
-- G ves back the value of the val ue-name nanel
SAY Shel | ~RegRead(" HKCUW\ TESTKEY\ nanel")
-- G ves back the value of the val ue-nanme nanme2
SAY Shel | ~RegRead(" HKCUW\ TESTKEY\ nane2")
Shel | ~RegDel et e(" HKCW TESTKEY\ nanel"”) -- The val ue nane "nanmel" is del eted
-- Message box
CALL RxMessageBox "Watch the registry editor to see that "namel" is” -
del eted", "Information", "OK', "I NFORVATI ON'
-- The key "TESTKEY" is deleted and accordingly al so “nane2”
Shel | ~RegDel et e(" HKCW\ TESTKEY\ ")
-- Message box
CALL RxMessageBox "The created registry keys are deleted",

"I nformati on", "OK", "I NFORVATI ON'
Code 37: WSHRegistry.rex
13.7.4.3. Creation of Shortcuts

With the objects WshShortcut [MLWSHam], WshUr | Short cut [MLWSHan] and
WshSpeci al Fol ders [MLWSHao] shortcuts can be managed. The
WshSpeci al Fol der s object offers a comfortable access to folders like for example
the Deskt op, Prograns, Favorites or Recent folder. With the methods of the
Fi | eSyst embj ect 37 object shortcuts can be copied and moved. Use the scripts
in the sections 13.7.4.3.1. to 13.7.4.3.3. sequently, then the machine is in the end in

the same state as in the beginning.

13.7.4.3.1. Creation of a Shortcut

Code 38 creates a shortcut to the notepad and sets some parameters.

It is necessary to use the Save method in the last step, otherwise the changes are

lost.

37° ¢.p. 13.8.

-- Instantiation of the Shell Object
Shel | = . OLEOhj ect ~New("W5cri pt. Shel I ")

-- Accesses the special folder "Desktop"3”
Deskt opPat h = Shel | ~Speci al Fol der s(" Deskt op")

-- Creation of a new shortcut with the description "Notepad"
Shortcut = Shel | ~Cr eat eShort cut (Deskt opPat h*\ Not epad. | nk™)

-- Short description of the shortcut in the coment field®®
Short cut ~Description = "Test Shortcut"

378

Short cut ~Hot Key = "CTRL+ALT+n" -- Key-combination for the shortcut 8

-- Location of the icon of the shortcut and the index of the icon®!
Short cut ~l conLocati on = "not epad. exe, 0"

-- Location of the shortcut’s executable file®?
Shortcut ~Target Path = "c:\w ndows\ not epad. exe"

-- Activates the wi ndow and the value "3" displays it as a naxim zed
Short cut ~W ndowStyle = 3 -- w ndow*®

-- Assigns or identifies the working directory to/of a shortcut 38
Short cut ~Wor ki ngDi rectory = Deskt opPat h

Short cut ~Save -- Saves the shortcut38®
Code 38: CreationOfAShortcut.rex >
13.7.4.3.2. Creation of an UrlShortcut

Code 39 creates an Url Shortcut to the Internet browser and links to the

Homepage of the University of Augsburg.

377 IMLWSHap]

378 IMLWSHagq]

379 IMLW SHar]

%80 [IMLW SHas]

8 [IMLW SHat]

%82 [IMLW SHaul]

383 IMLWSHav]

¥4 IMLWSHaw]

385 IMLWSHagq]

% Modelled after [MLWSHap]

-- Instantiation of the Shell Object
WshShel | = . OLEChj ect ~New("W5cri pt. Shel | ")
-- Accesses the special folder "Desktop"3®
Deskt opPat h = WshShel | ~Speci al Fol der s(" Deskt op")
-- Creation of a new shortcut with the description "Uni-Augsburg
Url Li nk = WshShel | ~Cr eat eShort cut (Deskt opPat h"\ Uni - Augsburg. url ™)
-- Location with the shortcut’s URL3®®
Url Li nk~TargetPath = "http://ww. uni -augsburg. de"
Url Li nk~Save -- Saves the shortcut390

n 388

Code 39: CreationOfAnUrlIShortcut.rex

13.7.4.3.3. Deletion of a Shortcut

The last example code 40 deletes the both generated shortcuts.

Therefore, the Fi | eSyst entbj ect object is used.

-- Instantiation of the FileSystembbject

fso = . OLEOoj ect ~New(" Scri pting. Fi | eSyst emObj ect™)
-- Instantiation of the Shell Object

WshShel | = . OLEChj ect ~New("W5cri pt. Shel | ")

7 IMLW SHap]
%88 [IMLW SHaq]
%89 [IMLW SHau]
390 IMLWSHaq]

204

-- Accesses the special folder "Desktop"3%
Deskt opPat h = WshShel | ~Speci al Fol der s(" Deskt op™)

-- Deletion of the shortcuts "Notepad. | nk” and "Uni-Augsburg.| nk
f so~Del et eFi | e(Deskt opPat h”\ Not epad. | nk")
f so~Del et eFi | e(Deskt opPat h*\ Uni - Augsburg. url ™)

n 392

Code 40: DeletionOfAShortcut.rex

13.7.4.4. WshEnvironment®%

This object allows the access to environment variables. Therefore the Envi r onment

property>** of the WehShel | object is used.

The following code 41 demonstrates the values of several environment variables. In
the end the Length property offers the number of variables in a specific

environment.

-- Instantiation of the Shell Object

Shell = . OLEObj ect ~New("W5cri pt. Shel I")
-- Determination of the location of the environment variable with the
-- Environnment property, here "SYSTEM', and the Environnent variable
-- deternmined with the item property3%®

Envsnop = Shel | ~Envi ronnent (" SYSTEM') ~i t em(" NUVMBER_OF _PROCESSORS")

Envspa = Shel | ~Envi ronment (" SYSTEM') ~i t en(" PROCESSOR_ARCHI TECTURE")

Envspr = Shel | ~Envi ronnment (" SYSTEM') ~i t en(" PROCESSOR_REVI SI ON")

Envspi Shel | ~Envi ronnent (" SYSTEM') ~i t en{ " PROCESSCR_| DENTI FI ER")

Envut np = Shel | ~Envi ronnent (" USER") ~i t en{" TIVP")
-- Results of the environnent variabl es

SAY "There are " envsnop "processors on the machine"

SAY "The processor type is " envspa

SAY "The processor version is: " envspr

SAY "Processor ID: " envspi

SAY "The directory for storing tenporary files is:

envut np

391 IMLW SHap]
392 IMLWSHax]
393 IMLWSHay]
394 IMLWSHaz]
39 [MLWSHba]

205

SAY -- blank line
-- Location of the environment variable. Here "PROCESS"

envp = Shel | ~Envi r onnent (" PROCESS")
-- The length property returns the nunber of variables in the process
-- envi ronment 3%

SAY "There are" envp~length "environnment variables in the PROCESS environnent"

Code 41: WshEnvironment.rex

13.7.4.5. WshScriptExec®”’

Code 42 demonstrates the Exec method [MLWSHbd] with the St at us property
[MLWSHbe]. An application can be launched with the Exec method. The St at us

property shows if the application is running or not.

Note that here the Shel | object is instantiated in another way. The WSH method
W5cr i pt ~Creat eCbj ect (“Wbcri pt. Shel I ") [MLWSHDbf] is used to instantiate
the Shel | object. The script runs the Notepad editor with the Exec method and then
asks if the user wants to close the Notepad or not. With the St at us property the
action of the user is checked and it will be controlled if the Notepad editor is still

running or not.

The first SysSl eep function is required because otherwise the notepad is in front of
the message box. This is because of the asynchronous start of the Notepad editor.
The line that is sequently to the line that starts the notepad, is immediately executed
without waiting for the notepad. But it takes more time to load the notepad than the
message box. Therefore, the message box is earlier on the display and then the
notepad that comes later is in front of it [Doe02a].

-- Instantiation of the Shell Object
WEcri pt ~Creat ebj ect ("W5cri pt. Shel I ™)
Shel | ~Exec("notepad") -- Runs the notepad
-- Needed because otherwi se the notepad is in front of the nmessagebox
CALL syssleep 1
-- A message box occurs on the display
CALL RxMessageBox "You can cl ose the notepad or you can |leave it open!", -

8 (9]
>
D

o —

o —
I n

39 IMLWSHbb]
397 IMLWSHbc]

206

"Result", "OK", "I NFORVATI ON'

CALL syssleep 5 -- The script pauses 5 seconds

OSt at us = OExec~Status -- Handover of the status information
- Analysis if the application is running or not.

IF OStatus = 0 then answer = "The notepad is running"

ELSE answer = "The notepad is cl osed”
- Message with the result

CALL RxMessageBox answer, "Result", "OK", "I NFORVATI ON'

Code 42: WshScriptExec.rxs

13.8. FileSystemObject Object

The Fi | eSyst entbj ect object makes it possible to create or delete folders, to get
information about drives, to create and delete text files and other things. It is used for
script control for applications developed with other languages, to create Web pages
with HTML and for Windows Script Host. The object model is contained in the
Scripting type library (Scrrun.dll) [MLWSHbg] and consist of the Fi | eSyst emObj ect
Drive, Fil e, Fol der and Text St r eam objects [MLWSHbh]. By instantiating, the
Fi | eSyst enthj ect object the name of the type library is Scri pti ng [MLWSHbi].
Execute the scripts demonstrated in the sections 13.8.3 to 13.8.7 sequentially, then

the machine is in the end in the same state as in the beginning.

13.8.1. The AvailableSpace Property

Code 43 demonstrates the Avai | abl eSpace property. The script shows how much

memory is free on the drive [MLWSHbj].

207

-- Instantiation of the Fil eSystenthject
fso = . OLEChj ect ~New(" Scri pting. Fi | eSyst emObj ect")
-- The GetDriveNane nethod®® offers a string with the name of the drive
-- of the folder and the GetDrive nethod®® gives back a Drive object
fso~CGetDrive(fso~GetDriveName("c:\"))
-- The Avail abl eSpace property shows the free space on the drive
e = d~Avai |l abl eSpace
SAY e "bytes" -- The free space is pronpted to the display

o
1

Code 43: FSOAvailableSpace.rex

13.8.2. DriveType Property

Code 44 shows the Dri veType property [MLWSHbm]. The script checks the type of a

drive.

-- Instantiation of the FileSystembbject
fso = . OLEChj ect ~New(" Scri pting. Fi | eSyst emObj ect")
fso~GetDrive("c:\") -- The GetDrive nethod gives back a Drive object*®
a = d~DriveType -- Determning the DriveType Property
SELECT -- Corresponding to the DriveType value the type is deternined*!

(o
1

VWHEN a = 0 THEN b = "Unknown"
VWHEN a = 1 THEN b = "Renovabl e"
WHEN a = 2 THEN b = "Fi xed"

398 [IMLWSHbl]

399 [IMLW SHbK]
490 IMLWSHbK]
01 IMLWSHbm]

208

WHEN a = 3 THEN b = " Net wor k"
WHEN a = 4 THEN b = "CD- ROV
WHEN a = 5 THEN b = "RAM Di sk"
END

SAY "The drive type is " b -- The drive type is pronpted

Code 44: FSODriveType.rex“®

13.8.3. Creation of a Folder with a WSF File*®

Code 45 creates two new folders. It is stored in a WSF file. Therefore it is structured
in XML code*®.

In the first line the XML version is described. Then how to handle errors and
debugging is described. The <package> element implies the <j ob> element, which
includes the script block. The script block starts with <scri pt | anguage=" Cbj ect
Rexx">. Inside the script the <! [CDATA[...]]> section makes the entire
<scri pt > element opaque and ensures that characters in the <scri pt > element
are not handled as XML characters. There is an error message if the folder already

exists.

<?xm version="1.0"7?>

<?job error="true" debug="true" ?>
<package>

<j ob>

<script |anguage="0bject Rexx">

<! [CDATA

-- Instantiation of the FileSystembbject
fso = . OLEObj ect ~New(" Scri pting. Fi | eSyst emObj ect")
fso~CreateFol der("c:\Test1") -- Creation of the new fol der named "Test 1"

92 Modelled after [MLWSHbm]
93 IMLWSHbn]
%4 cp.9.1.4.

209

fso~Creat eFol der("c:\Test2") -- Creation of a second folder names "Test?2"
11>

</script>

</j ob>

</ package>

Code 45: FSOCreationOfANewFolder.wsf

13.8.4. Creating a Text File

Code 46 creates a text file and writes text into this file.

-- Instantiation of the FileSystembject
fso = . OLEOoj ect ~New(" Scri pting. Fi | eSyst enmObj ect™)
-- Creation of the textfile "textfile.txt" in the folder "c:\Test"
-- "2" allows witing the file and ".true" allows the creation of the
-- filename if it doesn’t exist?*®
textfile = fso~Qpentextfile("c:\Test1\Textfile.txt", 2, .True)
-- Witing text into the textfile%®
textfile~Witeline("This is a test text.")

Code 46: FSOCreationOfATtextfile.rex

13.8.5. Attribute Property

The Attribute property [MLWSHbg] shows the type of a file as in code 47

demonstrated.

-- Instantiation of the Fil eSystenthject
fso = . OLEOhj ect ~New(" Scri pti ng. Fi | eSyst enbj ect")
-- The File object is returned and the Attributes are found out
a = fso~getfile("c:\test1l\textfile.txt")~Attributes
SELECT -- Corresponding to the Attribute value the type is determ ned
WHEN a = 0 THEN b “Normal file";
WHEN a = 1 THEN b "Read-only file";
WHEN a = 2 THEN b = "Hi dden file";
WHEN a = 4 THEN b "Systemfile";

407

95 IMLWSHbo]
% IMLWSHbp]
97 IMLWSHbr]

210

WHEN a = 8 THEN b = "Di sk drive vol une | abel";
WHEN a = 16 THEN b = "Fol der or directory";
WHEN a = 32 THEN b = "Archive";
WHEN a = 64 THEN b = "Link or shortcut";
WHEN a = 128 THEN b = "Conpressed file";
END
-- Text message of the file attribute
CALL RxMessageBox b, "Attribute", "OK", "I NFORVATI ON'

Code 47: FSOFileAttribute.rex

13.8.6. Copying a File

This text file is now copied to another folder with a new name with code 48.

-- Instantiation of the Fil eSystenthject
fso = . OLEOhj ect ~New(" Scri pti ng. Fi | eSyst enObj ect™)
filel = "c:\Test1\ Textfile.txt" -- File name with fol der nane
file2 = "c:\Test2\Textfile_newnane.txt" -- Target folder with new file nane
f so~CopyFil e(filel, file2) -- CopyFile nethod to copy the file*®

Code 48: FSOCopyingAFileWithANewName.rex

13.8.7. Deleting Files and Folders

In the last step in code 49 the files and folders are deleted with two different kinds.
First with the Del et eFi | e [MLWSHDbt] and Del et eFol der [MLWSHbu] method, and
then the other folder with the Del et e method [MLWSHbv].

%8 IMLWSHbs]

-- Instantiation of the Fil eSystenthject
fso = . OLEOhj ect ~New(" Scri pti ng. Fi | eSyst enbj ect™)

-- The file "Textfile_newnane.txt" is deleted
fso~DeleteFile("c:\Test2\ Textfil e _newnane. txt")
fso~Del et eFol der("c:\Test2") -- Deletion of the fol der naned "Test2"

-- Returns a folder object with the folder "c:\Test1" named "path"4°%°
path = fso~Get Fol der("c:\Test1")
pat h~Del ete -- The folder "c:\Test1" is deleted inclusive all files

Code 49: FSODeletionOfTheFilesAndFolders.rex

13.9. Dictionary Object*

Item pairs and data keys are associated and stored with that object. Code 50
demonstrates the Add [MLWSHby] and the Exi sts methods [MLWSHbz]. For
instantiating the type library Scri pti ng is used.

-- Instantiation of the Dictionary Object
dic = . OLEChj ect ~New(" Scri pting. Di cti onary")

-- Sone keys e.g."a"and sone itens e.g."Wrtschaftsinformtik"are added
di c~add("a", "Wrtschaftsinformatik")
di c~add("b", "Logistik")

di c~add("c", "Informatinsoekonom k")
a = dic~exists("a") -- The Exist nmethod shows if an array occurs

-- |If the Exist nmethod has the value "1" then the array occurs and the
IFa=1then b = "Array a exists" -- nessage is "Array a exists"

-- If the value is different from"1" then the array doesn’'t exi st
ELSE b = "Array a doesn’t exist"
SAY b -- The nessage "b" is pronpted

Code 50: DictionaryObject.rex

13.10. Security in Windows Script Host

Scripting manifests problems because of destroying, spying or changing of contents
especially if there is an access via network. The problem is that all functions of the

host application are available to a script. There is also the danger of viruses

99 IMLWSHbw]
10 IMLWSHbX]

212

operating with this technique and there is no “sandbox” available for WSH
[Fla02d,p21f]. This section discusses how to create a test certificate and how to use
the Scri pting. Si gner object with the methods Si gn, Verify, SignFil e and
VerifyFile.

The user of a script can prove the authenticity of it [MLWSHca]. With the CryptoAPI
tools certificates, certification revocation lists (CRLs) and certificate trust lists (CTLs)
can be seen and managed and files can be digitally signed and used with Microsoft
Authenticode [MLWSHcb]. To sign a script a certificate by a commercial certification
authority or the administrator is necessary [MLWSHcc].

The Sel f Cert . exe tool**! provided by the Windows SDK or the Microsoft Office
enables the creation of a certificate for test purpose. This certificate has no root

certificate authority [Cl01]. Figure 52 shows the user-interface of Sel f Cert . exe.

a Digitales Zertifikat erstellen

Diezes Programm erstellt ein selbzt signietes digitales Zertifikat mit derm unten
eingegebenen Mamen. Dieze Zertifikatzart Uberpriift nicht [hre ldentitat,

Ein zelbst signiertes Zertifik at kann gefalzcht zein. Benutzer, die ein Dokument, das

ein Makroprojekt mit ginem zelbst signierten Zertifikat enthalt, oifnen, werden daher
eine YW arnting erhalten.

Ein zelbst zigniertes Zertifikat zollte nur zum personlichen Gebrauch venwendet
werden, Falls Sie ein authentifiziertes Zertifikat benohigen, wenden Sie sich an eine
Zertifizierungzstelle; wie sie auf

hittp: # fofficeupdate. microsaft, comdofficedredirectfromOffice3/cert Htm aufgefibt
zind.

1k M arne:
JTestEertificate

K Abbrechen

Figure 52: Creation of a certificate*"?

The Certificate-Snap-In shows in figure 53 the new created own certificate**

11 Start->Search->Files and Folders->Selfcert.exe

“12 part of MS Windows XP

*13 Start->Run->Certmgr.msc

213

Zertifikate =Jo)&3

Datei Akkion Ansicht ?

e @m e 2
[E) Zertifikate - Aktueller Berutzer fusgestellk Fior 7 ausgestellt von | Giilkig bis

= (1 Eigene Zettifikate ETestCertificate TestCertificate 01,01,2009

(L3 vertrauenswiwdige Stammzertifiz
D Organisationsyertrauen

([Zwischenzertifizierungsstellen
(23 Active Directory-Benutzerobjekt
D Vertrauke Herausgeber

(23 Micht vertrausnswiirdige Zertifik:
(23 Drittanbieter-Stammezertifizierunc
D Vertrauenswirdige Personen

Fa I o A R R R

£ i | [141 i} il
Der speicher "Eigene Zertifikate” enthalt 1 Zerkifikat,

Figure 53: Certificate Snap-In***

An administrator can control scripts with so-called Software Restriction Policies. In
this way the scripts can’t implement any illegal activities in the operating system. A
trust level requires the file content, the path from which the script is running, and any

signature information in the script [MLWSHcd].

In the registry key \ HKEY_CURRENT_USER\ SOFTWARE\ M cr osof t \ W ndows
Script Host\ Settings\TrustPolicy the verification policy is placed. With the
verification policy it is defined if the signature verification is turned on or off by the
administrator. If it is turned off, all scripts run on the system. If it is turned on, only
scripts which are correctly signed or which have a special permission run on the
system [MLWSHce].

With the Si gnFi | e method of the Scri pti ng. Si gner object (since WSH 5.6*") it

is possible to sign scripts. The object is with Object Rexx instantiated in the following

14 part of MS Windows XP

5 http://msdn.microsoft.com/library/default.asp?url=/downloads/list/webdev.asp

214

manner. WshSigner = . CLEObj ect~New("Scripting.Signer"). The
Si gnFi | e method has the following syntax: WehSi gner~SignFile(“File to
sign”, “nane of the signing certificate”, “nane of

certification store”). The default store for the certificates is “ny” [Es02].

A digital signature block of comments is written in a script when a script is signed. If

there is an attempt to change the script, the signature is invalidated [MLWSHcc].

13.10.1. SignFile and VerifyFile Methods

This section discusses the SignFile and the VerifyFile methods. The
Si gnFi | e method signs a file and the Ver i f yFi | e method checks if the file can be

verified.

Code 51 is the script, which is to be signed. It is a simple Object Rexx program
structured in XML*'®, which runs the calculator. It is also possible to sign a . vbs

script, but it is not possible to sign an Object Rexx script, which has the extension

.rexor.rxs.

<j ob>

<script |anguage="0bj ect Rexx">

WshShel | = . OLEChj ect ~new("W5cri pt. Shel | ")
WshShel | ~Exec("cal c")

</script>

</ j ob>

Code 51: ScriptWhichlIsToSign.wsf

This script is signed with code 52 using the certificate created before.

"0 ¢cp.9.1.4.

-- Instantiates the Scripting.Signer object
Si gner = . OLEChj ect ~New(" Scri pting. Si gner")
-- Signs the file "ScriptWhichlsToSign" with the certificate
-- "TestCertificate" which is stored in "my"*’
Si gner ~Si gnFi | e(" Scri pt Wi chl sToSi gn. wsf", "TestCertificate", "ny")

Code 52: WSH_Scripting_Signer_SignFile.rex

After signing code 51 the source code of code 51 looks like figure 54.

<j ob>

<script |anguage="0bj ect Rexx">

WshShel | = . OLEChj ect ~new("W5cri pt. Shel | ")
WshShel | ~Exec("cal c")

</script>

<si gnat ur e>

** SIG** M I D AYJKoZl hveNAQcCol | D7 TCCA+k CAQEXD) AMBggq
** S G ** hki GOWOCBQUAMGYGC s GAQMBgj ¢ CAQSgWDBWWVDI GCi sG
** GG ** AQQBgj] c CARAWI Al BAQQQCAVhGs441BG owAQSINCKAI B
** Sl G ** AAI BAAl BAAI BAAI BADAgMAWGCCqGSI b3DQ FBQAEECY3
** SIG ** uzMbFTS6ewTr 6hHRLVngggl hM | CHTCCAYagAW BAgl Q
** G| G ** wXMbsMaLvZ5CyFOl f q2E1DANBgkghki GOwOBAQQFADAa
** S| G ** MRgwFgYDVQQDEWIUZXNOQRVydG maWhd GUwHhc NIVDI x
** SIG** M MM MMDAWhcNVDgxM MkM MMVDAWY AaVRgwgYD
** Sl G ** VQODEWIUZXNOQRVydd maVihd GuwgZ8wbDQYJKoZl hveN
** S G ** AQEBBQADgYOAM GJA0GBAK3Y9YvOkBOkwj ThDeUQ 2P
** SIG ** Fn6Urhpvnqgt 7LSHIt aEO7d7dVGzI r mAhd0CGc QOVCDECW
** S G ** Ef OTGhFRKpy F+RbOQd1v YWDunmDOL3PH7 manCMObr GgRo
** S G** Al M sg+d4M 31RswWLGAX1V] JADK1XRaHUFvsr UknbxY
** S G ** konh81li wHTFMe GMXAgMBAAG ZDBi MBMGAL UdJ QQVMACG
** Sl G ** CCs GAQUFBWIVDIVES GA1 Ud AQREMEKAEPSOgWIWGA XWL Rt f
** Sl G ** 3p8l aHehHDAaMVRgwFgYDVQQDEWIUZXNO2Vydd maVWhh
** Sl G ** dOGACEMFzbDG 72eQshdCHG6t hNQWDQYJKoZI hvc NAQEE
** Sl G ** BQADgYEANX5bZnYOVAFBNiVEt ChmAqOBEG6auRObANX Q74
** Sl G ** MBR+@BWJj | Rf EXKf aC+FgHCdgYpV2zef A14g1k4g21X
** Sl G ** bh60OT+RsSJj saqi nzJD1071 pgdP8nNBTFHz ZKpVXkw8m
** Sl G ** D9glv8FTbPOgl z8gWhagi 8mZwpz V5V22W 9py XcDVSsA
** S G ** UZoxggFFM | BQQ BATAuNMBox GDAWBgNVBAMTDLRI ¢3RD
** Sl G ** ZXJ0aWZpY2F0ZQ QuwXMbs MaLvZ5CyFOI f g2E1DAMBggq
** S G ** hki GOw0CBQUA0 GMVEAYKKWYBBAGCNW BDDECVAAWGQYJ
** S G ** KoZl hve NAQKDMWGC s GAQQBgj ¢ CAQQMHAYKKWYBBAGC
** Sl G ** Nw BCzEOMAWGCH s GAQQBgj ¢ CARUWHWYJKoZI hve NACKE

7 IMLWSHcA]

216

** Sl G ** MRl EEEDXAc3Kwc7F1vi / 5epi XUcwDQYJKoZI hvc NAQEB

** Sl G ** BQAEgYAg2Bi ygKuf wPeFwnel AeC6Nwnt 2i 8Kf Bj nu9Dw

** Sl G ** MYowni JbzuWwF79M szV0oVY2keaHwA\BRod+i OSRTy

** Sl G ** h3Kp9edz9MRubzg42LUW/GSGE8N6W 0GER8KKk Py 6CZ0V

** G| G ** c2Zci CuF/ s2Y+pMXPwj V92Rv/ KhPFzz1Au3nSUi a9vH3j g==
</ si gnat ur e>

</j ob>

Figure 54: Signed source code of code 50

With the Veri fyFi | e method of the Si gner object a script can be verified. This
method checks if the signature is authenticated in the Trusted Publisher List, the

legitimacy of the signature and if the script is manipulated [MLWSHcqg].

The syntax is as follows: WshSi gner ~Veri fyFile(“Fil eNane”, ShowUl).
ShowUl is a boolean value which occurs on some operating systems if a dialog box

is used to offer more trust information [MLWSHch].

Code 53 demonstrates the Veri f yFi | e method.

-- Instantiates the Scripting.Signer object
WSHSi gner = . OLECbj ect ~new(" Scri pting. Si gner")
-- Accesses the argunent with the name file
File = WBcri pt ~Argunent s~Naned("file")
-- Checks if the argument with the name ui is present. Otherw se there
-- is the message that the script is not trusted*?®
U = WBcri pt ~Ar gunent s~Named~Exi sts("ui ")
-- The script is verified and the result is given to "decision"
deci si on = WSHSi gner~VerifyFile(File, U)
-- If decision has the value "1" then the nmessage that the file is
If decision = 1 Then WScri pt~Echo(File " is trusted.") -- trusted is posted
-- Oherw se the nessage that the file is not trusted is posted
El se WBcri pt~Echo(File "™ is untrusted.™)

418

Code 53: Signer_VerifyFile.rxs*°

Figure 55 illustrates the command in the MS-DOS shell** to verify code 51.

18 IMLWSHch]
19 IMLWSHSs]
20 Modelled after [MLWSHch]

2! Start->Run->Command

217

B Fingabeaufforderung -3 ﬂ

C:sTestrSigner_UerifyFile.vrxs AFile:ScriptWhichIzsToSign.wsf ~UI:

C:nTestr_

Figure 55: MSDOS Shell with the command to sign the script422

After that the following question like in figure 56 appears. Here the user can decide

on its own if the certificate is trusted or not.

22 part of MS Windows XP

218

Sicherheitswarnung

Machten Sie "ScriptafhichlsT oSignowsf" installisren und
avsfiihren?

Der Herauzgeber kann aufgrund folgender Probleme
nicht ermittelt werden:

D'as Stammzertifikat wurde nicht als vertrauenswiirdiger
Starnmm aktiviert.

Ja] : Hein] [YWweitere Informationen

Figure 56: Message box to verify the script.*?®

13.10.2. Sign and Verify methods

The next two scripts demonstrate the Si gn method and the Veri fy method. The

Si gn method signs a script that is stored in a string [MLWSHci].

This is shown with OtherScript 10. Prerequisite is that a certificate is created with the
name “TestCertificate™®. First, a Visual Basic Script file is shown which

demonstrates the same issue.

Di m Si gner, UnsignedText, SignedText
Set Signer = CreateQbject("Scripting.Signer")
Unsi gnedText = _

"DmX " & vbCrLf & _

"X = 123" & vbCOrLf & _

2 part of MS Windows XP
24 ¢.p. 13.10.

219

"WBcript. Echo X* & vbCrLf

Si gnedText = Signer.Sign(".VBS', UnsignedText, "Your Certificate Name _
Here")

OtherScript 10: Sign method with Visual Basic Script

Code 54 is the Object Rexx script that signs script text. Here is signed a script text
which contains an Object Rexx script that is structured in XML. Code 54 contains

another script text as OtherScript 10.

-- Instantiates the Scripting.Signer object
Si gner = . OLEChj ect ~New(“ Scri pting. Si gner™)
-- Script text which is to be signed. "ODOA"X is used for |ine break.
Unsi gnedText = ("<job>" "0ODOA"x "<script |anguage="Object Rexx'>" "0DOA"Xx ,
"WshShel | = . OLEObj ect ~new(' WEcri pt. Shell")" "ODOA"X ,
"WshShel | ~Exec('calc')" "ODOA"x "</script>" "ODOA"x "</job>")
-- The Sign nmethod signs the script text. The first paranmeter is the
-- file extension which determ nes the type of the script file.The
-- second paraneter is a string with the script text which is to be
-- signed. The third paraneter contains the certificate name*?.
Si gnedText = Signer~Sign(".WsF", UnsignedText, "TestCertificate")
SAY SignedText -- Prints the signed script code with the hash code

Code 54: WSH_ScriptingSigner_Sign.rex

The next script verifies a script text with the Ver i fy method [MLWSHCcj].

First Visual Basic Script file OtherScript 11 is shown which demonstrates the same

issue.

Di m Si gner, UnsignedText, Trusted
Set Signer = CreateQbject("Scripting.Signer")
Unsi gnedText = _
"DmX " & vbCrLf & _
"X = 123" & vbCrLf & _
"Wocript. Echo X' & vbCrLf
Trusted = Signer.Verify(".VBS", UnsignedText, True)

OtherScript 11: Verify method with Visual Basic Script

Code 55 verifies the script text that contains Object Rexx script code that is
structured in XML. Code 54 contains Object Rexx script text that is structured in XML

and OtherScript 11 contains a VBS script text.

25 IMLW SHci]

-- Instantiates the Scripting.Signer object
Si gner = . OLEChj ect ~New(“ Scri pting. Si gner™)
-- Script text which is to be verify. "ODOA"X is used for |ine break.
Unsi gnedText = ("<job>" "ODOA"x "<script |anguage="(Cbject Rexx'>",
"ODOA"x "WshShel |l = .CLEObj ect~new(' Wscri pt. Shell"')" "ODOA"X |,
"WshShel | ~Exec(' calc')" "ODOA"x "</script>" "ODOA"X "</job>")
-- The Verify nmethod verifies the script text.The first paranmeter is
-- the file extension which deternines the type of the script file.
-- The second paraneter is a string with the script text which is to
-- be verify. The third paraneter contains the ShowJ argunent.
-- If it is set on true, dialog boxes are created if the trust
-- cannot be deterni ned*?®.
Si gner~Veri fy(".WSF", UnsignedText, .true)

Code 55: WSH_ScriptingSigner_Verify.rex

After that the following question, like in figure 57, appears. Here the user can decide
on its own if the certificate is trusted or not.

26 IMLWSHCj]

221

-

Siche rheitswarnung

Maochten Sie"a38 1 WSF instalieren und auzfubren’?

Dier Herausgeber kann aufgrund folgender Probleme
nicht ermittelt werden:

K.eine Authenticode-Signatur gefunden,

Ja] [Hein l [‘Weitere Informationen

Figure 57: Dialog box which occurs after the Verify method is invoked.**’

13.11. Starting Applications with WSH**

Code 56 which is embedded in HTML demonstrates the starting of MS Word
instantiated by . OLECbhj ect ~New(“Wor d. Appl i cati on”). Starting that script

runs the Microsoft Internet Explorer.

First to the second part of the script, to the body. There the yellow background colour
is defined. Then a focused text is written and there are four line breaks. The following
button includes the phrase | anguage="0Cbj ect Rexx". This means that the

phrase contains Object Rexx code, in this case the doTheWor k routine is called.

The head of the file begins with the title. <scri pt | anguage="Cbj ect Rexx” >,
that means that here the script code is starting. Then the routine doTheWor k starts.
In that process MS Word is started, made visible and a new document is opened.
The font name and size are chosen. The Bol d property is set on .true and the
| tal i c property is chosen by switching this property with the constant “wdt oggl e”.

The script ends with the </ scri pt > tag.

27 part of MS Windows XP
%8 ¢.p.9.1.3.

222

<htnm >
<head>
<title>Enbedding a script in HTM.</title>
<script |anguage="0Object Rexx">
::routine doTheWsrk public

Wrd = . OLEChj ect ~New("Wor d. Appl i cation")
Word~Visible = . TRUE
Docurment = Wor d~Docurnent s~Add
Sel ection = Wrd~Sel ecti on
Sel ect i on~Font ~Name="Ari al "
Sel ecti on~Font ~Si ze=" 24"
Sel ecti on~Font ~Bol d = . TRUE
Sel ection~Font~ltalic = Wrd~Cet Const ant (' wdToggl e')
Sel ecti on~TypeText (" Hel o World")
</script>
</ head>
<body bgcol or="yel | ow'>
<center>
Press or click the button to start M5 Wrd
</center>
</ br>
</ br>
</ br>
</ br>
<center>
<i nput type=button val ue="press or click"
| anguage="Chj ect Rexx"
onnouseup="cal | doTheWr k"
onkeypress="cal |l doTheWbrk">
</center>
</ body>
</htm >

Code 56: WSH_EmbeddingAScriptinHTML.htm

13.12. Windows Script Components

This section discusses how to generate own Windows Script components which can

be used like a “normal” component. First the basics of Windows Script components

are explained, then the structure is discussed with information how to register a

component, how to expose the functions, how to excess the created component with

the exposed functions and how to use remote instantiation of a component via a

network. At the end the Windows Script Wizard is described.

223

13.12.1. Windows Script Components Basics

Windows script components make it possible to generate reusable [MLWSHck] COM

components like Automation [MLWSHCcI].

Thereby events, functions and attributes are used and embedded with any WSE
language [Fla02d,p11]. Script components can be installed in applications like the
Microsoft Windows Script Host or the Microsoft Internet Information Services (IIS).
The used scripting language (e.g. Python, PScript, PERLScript, JScript and Microsoft
Visual Basic Scripting Edition (VBScript)) must support the Microsoft ActiveX
Scripting interfaces. The script component technology is extensible with DHTML
behaviour [MLWSHCcI]. The components can also be used via DCOM [Fla02d,p11].

WSC files can be created and be maintained with a simple text editor. The script
components can be used in this way as COM components and all programs can use
them [Fla02d,p11].

The Windows Script technology consists of the following parts [MLWSHcm]:
» Interface handlers to use COM interfaces

* The Script component file (.wsc) implies data about the COM component and it is
in the XML format.

» Script component run-time (Scrobj.dll) to send out COM requests to the script.

13.12.2. Structure of Windows Script Components

WSC files are structured in XML.

The file starts with the declaration of the XML version and a declaration how to
handle errors and debugging. If err or is set on t r ue, error messages are allowed
and if debug is t r ue, debugging is possible [MLWSHco]. The <package> element
implies the <conponent > element, which includes the whole script component
definition. It is possible that there are several <conponent > elements within a

<package> element [MLWSHcn].

A WSC file consists of three parts: The registration, exposing the functions and the

source code.

224

13.12.2.1. The Registration

This section describes the registration of components and how to create a type

library.

The registration needs the ProgID and the CLSID (GUIGEN.EXE or UUIDGEN.EXE)
of the component so that the component can be referenced. A short description and

the version number are specified [MLWSHcp].

The component is registered by right-click on it in the Windows explorer and

Regi st er is chosen as shown in figure 58.

rer | (i3]~

)l &) B
WSH_ASC_TEST.rex WSH_WSC Testth WSHOWSCTT o‘-[o

Tepkibkothok ganarieren
Registrieren
Reegistrierung sufbeban
LEf e

CR7U ZIP hinzufidgan + Sptionen. .
cikomprmeren 2u Wi _WSC_Test 7"

Senden an

Ausschnsden
Fopieren

Werkriiphung ershelen
Lérschien
Urnbenennen

Eigenzchaften

Figure 58: Snapshot of Registration field.**

Another way to register is to use the file Regsvr 32. exe:

regsvr32 file:\\Location\Conponent Nane. wsc

The script component is together with the scrobj . dl | registered on the machine.
To unregister the component the component can be right-clicked in the Windows
explorer and Unr egi st er is chosen or Regsvr32. exe —u from the command

prompt is started [MLWSHcq].

2 part of MS Windows XP

225

Type Library*343!

For some host applications a type library is needed. Even if it is not needed it
facilitates the work with the script and there are less errors. There is information

about the functions and interfaces of the component.

There are two possibilities to create a type library. The first is to right-click in the
explorer and to choose Generate Type Library like in figure 58 or it can be
created dynamically from inside the script. There a file with a . t| b extension is

created and it is registered in the Windows registry.

If the type library is created dynamically in code 57 the routine Regi st er is called
which is set public so that the data is accessible outside the script and an instance of
the Gener at eTypelLi b object is generated. The Shel | object is instanced. Then an
instance of the Conponent . Gener at eTypelLi b object is generated to access the
type library functionality. Next, a message box shows that the registration starts. The
AddUr | method contains the location of the component file. The Doc property stores
information about the component. With the Pat h property, the location and the name
of the library file are stored. The internal name is described with the Nane property.
The Maj or Versi on and M nor Ver si on property contain integer values. The
GUID**? is different from the one for the script component. The Wite method
generates and registers the type library. The Reset method backspaces the settings
so that a further type library can be generated. An additional message box, created

with the Popup method, signals the end of the registering.

A further possibility to generate a type library is to use the file Rundl | 32. exe in the

following manner:

Rundl | 32. exe pat h\scrobj.dl |, Generat eTypeLi b options

To end registration the routine UnRegi st er is called.

30 [IBMO1,p499ff]
31 IMLWSHcr]
2cp.2.4.2.

226

13.12.2.2. Exposing the Functions

This section explains the exposing of properties, methods and events.
This part is bound with the <publ i c> element [MLWSHcs].

Properties that are integrated with the <pr oper t y> element [MLWSHcv] can consist
of simple values (Propertyl) or of functions (Property2). The <get > element allows
the reading of the property and the <put > element allows writing manifested with

internal names [MLWSHCct]. Properties are exposed in the following manner:

<property nane="NaneCf Property">

<get [internal Nane="Cet Nane"] />

<put [internal Nane="Put Nane"] />
</ property>
“NameOf Property” declares the name of the exposed property. “Get Nane” is
obligatory and contains the name of the procedure that reads the value of the
property. If there is only <get > element and no <put > element, the property is read-

only. “Put Nane” is also obligatory. It includes the name of the procedure that writes

the value of the property. If there is only a <put > element, the property is write-only.

Properties can be also declared in the following manner:

<property name=" NameO Property" [internal Name="PropertyVariable"] />

Thereby “Pr opert yVari abl e” is obligatory and it is the name of the global variable

in the scriptlet files <script> element. It holds the value for “NameOf Property”
[MLWSHcv].

With the <met hod> element [MLWSHcw] the methods are defined. They consist of

their name and possibly of parameters [MLWSHcs].

Events are declared with the <event > element [MLWSHcx]. They need a method,
here the method FireTheEvent, to be fired. They are launched with the
Fi r eEvent method. [MLWSHcu]

227

The functions can be used with dispatch identifiers (DISPID). This enables the
functions to always have the same DISPID and the functions can get specific
DISPIDS [MLWSHcu].

13.12.2.3. The Script Code**?

The third part contains the script code of the component in code 57.

It begins with the <scri pt > element where the script language is first mentioned.
Then the default values for the Propertyl and Property?2 are given. The routine
Fi reTheEvent is used to fire the event WBH WSC Event with the Fi reEvent
method. The Propert yPut and PropertyGet routines for Pr operty2 are noted.
In this way the second property can be written and be read. Both methods takeover
their values and calculate their formula. All routines are set on public because data is

taken in from outside the script code. The file has the extension . wsc.

<?xm version="1.0"7?>
<?conponent error="true" debug="true" ?>
<package>
<conponent >
<conment > Part 1 Regi stration</coment>
<regi stration

progi d="W5H W5C Test . WEHW5C"

descripti on="Denonstration of a WSC with Object Rexx"
version="1.0"

cl sid="{1C123B91- 4F3E- 4299- 9064- 26 ACLF980C8A} " >
<script |anguage="0bj ect Rexx"><![CDATA|

;. Routine Register Public

Shell = . OLEObj ect ~New("WEcri pt. Shel | ")

Typelib = . OLEOhj ect ~New(" Scri ptl et. TypeLi b")
Shel | ~Popup("Start of registration")

Typel i b~AddURL(" WSH_WSC Test . wsc")

Typel i b~Doc = "WSH WSC TypelLi b"

Typel i b~Pat h= "WSH WSC Test.t!| b"

Typel i b~Narme = "WSH WSC Typeli b"

Typel i b~Maj orVersion = 1

Typel i b~M norVersion = 0

Typel i b~GUI D = "{ CF53943D- 428D- 48f 9- B8DD- 5B0C4B850D9D} "
Typel i b~Wite()

Typel i b~Reset ()

Shel | ~Popup("End of registering")

33 [IBMO1,p499ff]

228

;. Routine Unregister Public
Shell = . OLEChj ect ~New("WEcri pt. Shel [")
Shel | ~Popup(" Endi ng of registration")
]1></script>
</registration>
<conment > Part 2: Exposing functions</coment>
<public>
<property nanme="propertyl">
</ property>
<property nanme="property2">
<get internal Nane = "propertyGet" />
<put internal Name = "propertyPut" />
</ property>
<met hod nanme="kn2Seani | es" >
<PARAMETER name="kni'/ >
</ met hod>
<met hod nane="FireTheEvent" >
</ met hod>
<met hod nanme="seam | es2kni' >
<PARAMETER name="seam | es"/ >
</ met hod>
<event nanme="WSH WSC Event" >
</ event >
</ public>
<comment > Part3: Script Code </conment>
<script |anguage="0bj ect Rexx">

<! [CDATA[
propertyl = "This is the content of propertyl" -- Value of Propertyl
Property2val ue = "Defaul tval ue” -- Defaultval ue of Property2

-- Routine of the"FireTheEvent"nmethod to fire the event "WSH WSC Event”
-- Public because of transferring data from outside the script
.. Routine FireTheEvent Public
WECEvent = fireEvent ("WsH W5C Event™)
SAY "Event was fired"
-- Routine to wite the value of Property2. "WSHPROPERTY" ensures that
.. Routine propertyPut Public -- the property is global in scope.
use arg NewProperty2Val ue
Ret urn Val ue(" Property2val ue", NewPr operty2Val ue, " WSHPROPERTY")
;. Routine propertyGet Public -- Retrieves the current value of Property2
return Val ue("Property2val ue", , " WSHPROPERTY")
-- Sets the nunber of kilometers and cal culates and retrieves the
: . Routine knRseanmi | es Public -- nunber of seaniles
use arg km
return knf 1. 852
-- Sets the nunber of seaniles and cal culates and retrieves the nunber

229

;. Routine seam | es2km Public -- of kilonmeters
use arg seam |l es
return seamles*1. 852

11>

</script>

</ conmponent >

</ package>

Code 57: WSH_WSC_Test.wsc*®*

Figure 59 illustrates the new generated functions in the OLE/COM Object Viewer.

@" ITypelnfo Viewsr
Fie ¥iew
& o 7
= 3* dutametion [
- (=) Mathods uwid (BIFIEDA 1 =575~ 4 048 -2 26 E-R0 2682943508)
- seomism dizpd face Automaticn
M Frethekver Fepnberiace uromitica {
m kmSeomies nethods:
m o [id(@=00000005%. wararg]
el L w:vz TARIANT seanileskn(
Froperty [in] VARIANT mmamiles,
m propertyl [in] \-'nmnlr Opticnalizas);
M picpetyl [1d{0x00000004}, wararg
VARLANT ::.re'.l'h:l:ve'lt([ln] VARIANT Optionalirgs):
[id{0x00000003), watarg]
VARLART knSeaniles|
[in] VARIANT ka.
[in] VARIANT Opticnalérgs]):
[1d (000000002), propast]
VARLANT propezhyl(}
[1d{0x00000002}, propput]
woid praperty?([in] VARIANT rhs)!
lJ.d.lﬂmJUUUJUQJ." propget]
VARTANT propectvl(),
[Ld{0=00000001), propput]
voad propertylifind Jb‘ithT rhe);
3:
. i . . . 435 436
Figure 59: ITypelnfo Viewer of the OLE/COM Object Viewer

13.12.2.4. Accessing the Functions of the Component

The following Object Rexx script code 58 accesses the methods and properties that

are exposed. Important is that the new component is instanced.

-- WBH WSC Test.rex --
-- Instantiate the WsH WSC Test . WBHWSC obj ect
WSCConponent = . OLEObj ect ~New(" WSH WSC Test . WSHWSC")
-- Access the knRseaniles and seani | es2km nmet hods and hand over of the
-- argunents "17" and "34"
SAY "17 kil ometers corresponds to" WSCConponent ~knRseamni | es(17) "seaniles"
SAY " 34 sean | es corresponds to" WsCConponent ~seani | es2km(34) "kil ometers”
SAY -- blank Iine
SAY wscconponent ~propertyl -- Access the value of propertyl

34 Modelled after [IBMO1,p499ff] and [Ku02,20ff]
®c.p.2.6.2.

%3¢ can be downloaded from the Microsoft Homepage c.p. 2.6.2.

230

- Shows the default value of Property?2
SAY "This is the default value of Property2: " wscconponent~property2
- Sets a new value to Property?2
wscconponent ~property2 = "NewVal ueOf Property2"
- Shows the current value of Property?2
SAY "This is the new val ue of Property2: " wsccomponent~property?2
SAY -- blank Iine
- The FireTheEvent nmethod is called to fire the Event
WECConponent ~Fi r eTheEvent

Code 58: WSH_WSC_TEST.rex

13.12.2.5. Remote Instantiation of a Script Component

It is possible to remote instantiate a script component from another machine via a
network. A script on a local machine accesses a component, which is stored and
registered on a remote machine. The component's remotable attribute of the

<regi strati on> element must be set to "true" [MLWSHdb].

Prerequisite is that the script component is registered on the remote machine. It is
necessary to register this component on the local machine where the script resides,
which accesses this component. Therefore there must be created some registry
entries on the local machine. There must be created this new key:
HKEY_CLASSES ROOT\ conponent Progl D. As conponent Progl D write the
ProgID of the component. In this example it is the ProglD
WEH WEC Test . WBHWSC. Under this key a further key with the name CLSI D must
be generated. The value of the key CLSI D is the CLSID of the component. In this
example the CLSID is { 1C123B91- 4F3E- 4299- 9064- 26 ACLF980C8A} . Insert the
CLSID with the brackets [MLWSHdc].

Code 58 is the script component that is located on the remote machine. The
difference to code 56 is that here the line r enot eabl e="true” > is added (this is
necessary for remote instantiation) and the propertyPut and propertyGet
routines are handled in another kind (this is not necessary for remote instantiation,
but it shows another way to expose the properties that also works if the WSC is used
on the same machine). Therefore, the Local Environment object (. LOCAL) is used. It
is a directory of process-specific objects which are always available [IBM01,p294]. The
default value of property 2 is hand over with .| ocal ~Property2val ue =

"Def aul tval ue". The line .1 ocal ~property2value = arg(1l) defines an

231

entry “property2val ue” in the “LOCAL” directory of the runtime environment.

arg(1) stores the first received argument. The phrase | F
.l ocal ~HasEntry("Property2Vval ue") THEN RETURN . property2val ue

ELSE RETURN .NL offers the value of the property [Fla03d].
HasEntry("“ Property2Val ue”) is a method of the DI RECTORY class and gives
back true if the directory contains an entry with the description “Pr opert y2Val ue”
[IBM01,p129]. The .NIL object is an object which describes the nonexistence of an
object [IBM01,p294].

<?xm version="1.0"7?>
<?conponent error="true" debug="true" ?>
<package>
<conponent >
<conment > Part 1 Regi stration</coment >
<regi stration

progi d="W5sH W5C_ Test . WsHWEC"
description="Denonstration of a WBC with Obj ect Rexx"
version="1.0"

cl sid="{1C123B91- 4F3E- 4299- 9064- 26 ACLF980CBA} "
renot abl e="true">

<script |anguage="0bj ect Rexx"><![CDATA|

;. Routine Register Public

Shel | = . OLEOhj ect ~New("W5cri pt. Shel | ")
Typelib = . OLEOhj ect ~New(" Scri ptl et. TypeLi b")
Shel | ~Popup("Start of registration")

Typel i b~AddURL(" WSH_WSC Test . wsc")
Typel i b~Doc = "WSH WSC TypelLi b"

Typel i b~Pat h= "W5H W5C Test.tl b"

Typel i b~Narme = "WSH WSC Typeli b"

Typel i b~Maj orVersion = 1

Typel i b~M norVersion = 0

Typel i b~GUI D = "{CF53943D- 428D- 48f 9- BBDD- 5B0OC4B850D9D} "
Typel i b~Wite()

Typel i b~Reset ()

Shel | ~Popup("End of registering")

;. Routine Unregister Public

Shell = . OLEObj ect ~New("WEcri pt. Shel | ")

Shel | ~Popup(" Endi ng of registration")
]1></script>

</registration>

<conment > Part 2: Exposing functions</coment>
<public>

<property name="propertyl">

</ property>

<property name="property2">

<get internal Nane = "propertyGet" />

232

<put internal Name = "propertyPut" />
</ property>
<nmet hod nanme="knmR2Seani | es" >
<PARAMETER name="kni'/ >
</ met hod>
<net hod nanme="FireTheEvent ">
</ met hod>
<met hod nane="seam | es2kni' >
<PARAMETER nanme="seam | es"/ >
</ met hod>
<event name="WSH WSC Event" >
</ event >
</ public>
<comment > Part3: Script Code </conment>
<script |anguage="0bject Rexx">

<! [CDATA[
propertyl = "This is the content of propertyl" -- Value of Propertyl
.l ocal ~Property2val ue = "Defaul tval ue" -- Defaul tvalue of Property2

-- Routine of the"FireTheEvent"nmethod to fire the event "WSH WSC Event”
-- Public because of transferring data from outside the script

.. Routine FireTheEvent Public

WECEvent = fireEvent ("WsH W5C Event™)

SAY "Event was fired"

: . Routine propertyPut Public -- Routine to wite the value of Property2.
.l ocal ~property2val ue = arg(1)
.. Routine propertyGet Public -- Retrieves the current value of Property2

I F .local ~HasEntry("Property2Val ue")
THEN return . Property2val ue
ELSE return .NIL
-- Sets the nunber of kiloneters and cal cul ates and retrieves the
.. Routine knm2seanmiles Public -- nunber of seamles
use arg km
return km 1. 852
-- Sets the nunber of seamles and cal cul ates and retrieves the nunber
;. Routine seam | es2km Public -- of kiloneters
use arg seam |l es
return seamil es*1. 852
11>
</script>
</ conmponent >
</ package>

Code 59: WSH_WSC_Remote.wsc**’

On the local machine is the OtherScript 12 located that accesses a method of the

component WBH WEC Test . WBHWSC that is located on the machine with the name

37 ¢.p. code 56

233

FHKCN. OtherScript 12 is written with Visual Basic Script code. This script calculates

the seamiles which corresponds to 17 kilometers.

Set newS = Creat eObj ect ("WBH WSC Test . WBHWEC' , " FHKCN")
WScri pt. Echo "17 kil oneters corresponds to" &newS. knRseamni | es(17) &'seaml es"”

OtherScript 12: RemoteWSC.vbs

13.12.2.6. Windows Script Component Wizard

The Script Component Wizard helps to generate a script component file, create the
registration information, arranges the type of interface handler and helps to generate
the events, methods and properties [MLWSHcy].

The wizard can be downloaded from the Microsoft Homepage*®®. Figure 60 shows

the user interface of the Windows Script Component Wizard.

X Windows Script Component Wizard - Step 1 of 6 =JoEs

=t

Define Windows Script Component object

Whhat iz the general information for your Windows Script
Component?

Harme: I|

Filenarne; I

Frag |D: i-WSE

Yerzion; !1 00

Lacation: !E:'&Dukumente und EinstellungentFHEig

Browse... I

Cancel l CBiach = Firnek

Figure 60: Microsoft Windows Script Component Wizard.***

“3http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/MSDN-
FILES/027/001/788/msdncompositedoc.xml

3% can be downloaded from the Microsoft Homepage

234

14. MS.NET

Microsoft .NET (MS.NET or only called .NET) enables the usage and the generating
of XML Web Services, XML-based applications and processes. The basics of
MS.NET, the fields of application and the possibility to use MS.NET functions with
Object Rexx are explained. This section discusses the items smart devices, Web
Services, NET Framework, programming with the .NET Framework, building
applications as well as Object Rexx with MS.NET.

MS.NET is a programming model that is developed for XML Web Services. It offers a
multi-device support and a multi-language environment for developing and using
XML Web Services [MS02a].

NET can be downloaded from the Microsoft Homepage®. It enables the

development and the usage of XML Web Services [MS02a].

Microsoft claims that MS.NET makes it possible to distribute computing power over
several devices and enables the updating and the reusing of XML Web Services
[MS02a].

MS.NET connects devices, systems and information. Applications can be created
with developer tools like Microsoft Visual Studio .NET. Servers like Microsoft SQL
Server, Microsoft Windows 2000 and Microsoft BizTalk Servers or Client Software
like Microsoft Office XP, Windows CE or Windows XP enable the usage of XML
applications and Web Services [MS02b].

The .NET Framework contains the class libraries and the Common Language
Runtime**!. The .NET Framework started in January 2002. There are compilers
available for over 20 languages. Object Rexx is not part of them, because there is
only an interpreter available for Object Rexx [Doe03b]. This makes it possible for
developers to use the language that is suited for the respective purpose. The .NET

Framework is and component-based [MS02b].

440 http://msdn.microsoft.com/library/default.asp?url=/downloads/list/netdevframework.asp

“1cp. 14.3.1.

235

XML is an open standard technology for data transformation and exchange that
enables integration and operability of services and applications. SOAP**? and XML
offers system interoperability and an administration of services and applications for
NET [MS02a].

For Pocket PCs the .NET Compact Framework is available [MS02e].

14.1. Smart Devices

Smart devices are, for example handheld computers, tablet PCs, game consoles,
smart phones, workstations, laptops or PCs [MS02a]. “Smart” imports the ability to

work with digitally information [Ge00].

They enable the user to access data anywhere and anytime and they use the profile
of the user. They can connect to other devices and interchange data over a network.
They use XML, UDDI and SOAP [MS02a].

14.2. Web Services

This section describes Web Services, the Simple Object Access Protocol, the Web
Services Description Language, the Universal Discovery Description and Integration

as well as the difference of Web Site and XML Web Service

Web Services are reusable and small applications. They are structured in XML. They
facilitate the data exchange over the Internet. Peer2Peer connections are possible
[MS03m].

XML Web Services enable the communication of programs that contain different
languages and that are located on different platforms. They are running with standard
Web protocols like TCP/IP, HTTP and XML [MS01c].

Supplier of Web Service technology are except to Microsoft for example IBM with
IBM WebSphere SDK for Web Services (testing and creating Java-based Web
services), IBM WebSphere Application Server (Web service applications and other e-
business applications; embedded in IBM WebSphere SDK for Web Services) and

IBM WebSphere Studio (deployment and development environment for building,

2 cp.14.2.1.

236

testing and deploying on demand e-business applications) [IBM03], Sun with Sun
Open Net Environment with server-software and development tools for e-commerce
applications and services [BI02] or Apple with .Mac which provides an e-mail service

and personnel services [Mue02].

14.2.1. Simple Object Access Protocol

XML Services use the protocol SOAP (Simple Object Access Protocol) to offer their
features. XML messages are exchanged.

SOAP can be compared with RPC, but HTTP is used as protocol and XML for coding
(arguments, methods, returnvalues) [Fla03e]. Thereby a SOAP-Envelope includes the
SOAP-Header (contains application specific information about the SOAP message
and is optional [WS03]) and the SOAP-Body [MS01c], [Tu02,p231f]

14.2.2. Web Services Description Language

The interfaces of the XML Web Services are described in WSDL (Web Services
Description Language) document. Data types can be defined, messages are
exchanged among so-called end points, these messages are specified, messages
are bundled to operations, the connection to a SOAP message is made and the
service is linked to an URL [MS01c], [Tu02,p234].

14.2.3. Universal Discovery Description and Integration

UDDI (Universal Discovery Description and Integration) enables the registration of
XML Web Services to simplify their discovering. It offers an infrastructure for the
exchange of information about the Web Service. Therefore so-called white papers
(information about the supplier of the service), yellow papers (categorization of the
service) and green papers (technical information) are used. This infrastructure is also
a Web Service [MS01c], [Tu02,p235].

14.2.4. Difference of Web Site and XML Web Service
A Web Site is viewed with a browser and consists of pictures of data.

The XML Web Service can be utilized or joined with a software application or with

another service. It communicates over a network like the Internet and uses therefore

237

standards like SOAP and XML [MS02a]. Figure 61 illustrates the differences of Web
Site and Web Service.

Web sites XML Web services

Figure 61: Differences between Web Site and Web Service**®

14.3. NET Framework

This section discusses the basics of .NET. The items Common Language Runtime,
assembly, metadata, Cross-Language Interoperability and.NET Framework Class

Library are explained.
The .NET Framework offers a platform in a distributed environment.

The .NET Framework consists of two core elements: the .NET Framework class

library and the Common Language Runtime [MLNETa].

14.3.1. Common Language Runtime**

The Common Language Runtime organizes memory, thread and process

management and the language integration [MS02b]. It is distributed via MS Windows

Updates via the Internet since march 2003 [Fla03e]**.

3 Taken from [MS02a]
4 IMLNETa]
5 E.g. MSIE->Extras->Windows Update

238

The Common Language Runtime makes it possible that objects programmed in
different languages can correspond with each other. A Common Type System
enables this cross-language integration [MLNETb].

So-called managed code is code built with a language compiler that addresses the
runtime. It supports a model for component communication, debugging services,
profiling services, cross-language integration, cross-language exception handling,
and versioning. [MLNETb].

Managed data means that the runtime administrates objects. Thereby the references
and releases of objects are organized by it. Managed and unmanaged data can be

used alone or both together in a .NET Framework application [MLNETDb].

The developers can generate its source code with different languages like Visual
Basic or C#. To use the Common Language Runtime, code must be compiled with a

language compiler [MLNETCc]].

This compiler translates the managed code into Microsoft Intermediate Language
(MSIL). MSIL is a CPU-independent set of commands that can be converted to native
code. MSIL provides commands for calling, storing, loading and initializing methods.
It is also possible to use instructions for logical and arithmetic operations, exception
handling, direct memory access or control flow. A just-in-time (JIT) compiler converts
the MSIL to CPU-specific code.

When MSIL is created metadata is also created. Both are contained in a portable
executable (PE) file [MLNETcK].

Metadata is offered by the language compilers and contains information about the
references, types and members in the code. Metadata determinates run-time context
boundaries, invokes methods, offers location of classes and loads them. So-called
portable executable (PE) file includes metadata [MLNETb]. PE files are used for files

to be linked together to form executable programs, and for executable programs
[MLNETcI].

The metadata of the managed components stores information about them and the
resources. State data and registration information are not saved in the registry. This

information is stored as metadata [MLNETD].

239

The perception of features of the runtime can vary from environment to environment

in which a program is written [MLNETb].
Features of the Common Language Runtime:

* Organization of compilation, code safety check, memory, thread and code

execution and other system services

* Interoperability among unmanaged and managed code enables the further usage
of COM components and DLLs.

» Server-side applications like Microsoft Internet Information Services (IIS) and

Microsoft SQL Server can host the runtime

¢ Just-in-time (JIT) compiling makes it possible to run managed code in the native
machine language of the system on which it is started. The memory manager

turns away fragmented memory.

14.3.2. The Assembly

The “Assembly” contains resources and types and it offers information for the
Common Language Runtime**®. Assemblies are the basis for .NET Framework
applications with version control, reuse, security permissions, deployment and
activation scoping [MLNETc]. This section discusses the features of an assembly,

dynamic and static assemblies and the parts of static assemblies.
Features of an assembly [MLNETd]:

It offers a type boundary with the type identity.

447

* Microsoft Intermediate Language (MSIL)™" code can only be used if it is linked

with an assembly

* A deployment unit enables that only these assemblies are present that were

initially called.

0 ¢c.p. 14.3.1.
7 c.p. 14.3.1.

240

* Allows side-by-side execution (several versions of the same assembly run
simultaneously [MLNETEe]).

» It offers a reference scope boundary to identify the resources and types, which are
outside of the assembly.

It offers a version boundary to define the version dependencies for any dependent

assemblies.

» It offers a security boundary because an assembly is a unit at which permissions
are granted and requested

Assemblies can be generated with Common Language Runtime®*® APIs like the
Reflection Emit, with tools contained in the .NET Framework SDK or with
development tools like the Visual Studio .NET [MLNETd].

Assemblies enable an infrastructure to use several software component versions at
the same time (so-called side-by-side execution). Versioning rules can be enforced
[MLNETT].

There are dynamic and static assemblies.

Static assemblies are saved on disk in PE files and they can contain resources for
the assembly like JPEG files or bitmap files and .NET Framework types (classes and
interfaces) [MLNETd].

Dynamic assemblies run directly from the memory and can be saved on disk after
execution [MLNETd].

Normally a static assembly includes four parts like in figure 62 illustrated [MLNETq]:
» The assembly manifest (required),
* The Type metadata,

449

* Microsoft Intermediate Language (MSIL)™™ code to use the types,

8 ¢.p. 14.3.1.

241

* Resources.

MyAssembly.dil

Assembly
rmetadata

Type metadata

MSIL code

Resources

Figure 62: All elements are united in a single file.**

It is also possible to store the elements of an assembly in multiple files. A multifile
assembly allows optimizing downloading of an application and the combination of
different language modules. The different files can be resources like graphic files,
compiled code (.netmodule) or other necessary files. The files are only downloaded if

they are referenced and they are linked by the assembly manifest [MLNETg]. Figure
63 shows a multifile assembly.

MyAssembly.dil Util.netmodule
;S:;E:g | Type metadata
Type metadata \ MSIL code L

]
MSIL code L ".I

Y Graphic.bmp

Resources L

451

Figure 63: Multifile assembly

The assembly manifest includes the assembly metadata, which contains information
about the relationships of the elements, the metadata with the security identity and
the version needs of the assembly. It is saved in a standalone PE file with only

assembly manifest information or in a portable executable PE file with Microsoft

9 ¢c.p. 14.3.1.
%0 Taken from [MLNETg]
1 Taken from [MLNETg]

242

452

Intermediate Language™ [MLNETh]. Figure 64 illustrates a single file assembly and a

multifile assembly.

& single-file assembly —| & multifile assembly —‘
m-m——------------ mm—===—=---—----—---—---—-----=-=-
| : I Gy :
| 1 | 1
| i | i
! FileL.dll : | File2.dll Graphic.ipg Logo.bmp :
! - 1 I b 1
: Manifest 1 : 1
| i . b i
| 1 | 1
e i e e | i

: Manifest :

I b 1

1 1

Figure 64: Single-file assembly and multifile assembly**

In the case of a single-file assembly the manifest is integrated together with the PE
file. In the case of a multifile assembly the manifest can be integrated in one of the
PE files or it can be stand-alone [MLNETh].

The assembly manifest lists all files of the assembly, lists all other related
assemblies, offers a self-description of the assembly and administrates the
references to the resources and types of the assembly. There is information about
the identity of the assembly, namely the language or culture the assembly can use,
the assembly name, the version number and strong name information (the public
key) [MLNETh]. A strong name is a hame that consists of the identity of an assembly.
It is a text name, version number, culture information. This is increased by a digital
signature and by a public key created over the assembly. Assemblies are identical if

they have the same strong name [MLNETcn].

A side-by-side assembly must have a version. The version number has the four parts
maj or . m nor. bui |l d. revi si on. The maj or or m nor parts must be modified if
an assembly is made incompatible with existing versions by a change to the
assembly. An assembly that is backward compatible with prior versions is modified

only in the bui | d or revi si on parts [MLNETcm].

2 ¢.p. 14.3.1.
3 Taken from [MLNETh]

243

14.3.3. Metadata

Metadata offers the possibility that components can communicate because the .NET
Framework enables compilers to give additional declarative information into
assemblies and modules [MLNETi]. Metadata with its features and PE files are

explained.

The metadata is saved in the memory or in a PE file of the Common Language
Runtime®. If the code is compiled the code is translated to the Microsoft
Intermediate Language (MSIL)**°. The metadata and the code are stored in the same
file in separate parts of it. The appropriate metadata is loaded if the code is started.
Metadata contains information about the types (members and description), the
assembly (identity, related assemblies, exported types and security permissions) and
the attributes [MLNET]].

Features of metadata [MLNET]]:

» Microsoft claims that language interoperability enables the generating of any class
in any managed language that can be used by the Common Language

Runtime*®,

» Attributes can be exposed. They are a type of metadata in the compiled file that

can control the program behaviour at run time.
» Description of .NET languages in a language-neutral kind

» Self-describing files enable modules to communicate with each other. The

metadata offers all required information [MLNET]].

Metadata and the common type system together enable cross-language inheritance
[MLNETK].

4 c.p. 14.3.1.
% ¢.p. 14.3.1.
0 ¢.p. 14.3.1.

244

PE File

A PE file (portable executable file) consists of the PE header, the MSIL instructions
and the Metadata. The PE header contains the address of the entry point and the
index of the main sections of the PE file. The code consists of MSIL instructions. The
metadata consists of heaps and tables (information about the elements of the
program). It offers information about custom attributes and security members and it

records data about types to the runtime.

Metadata tokens are used to reference rows of the metadata table [MLNETI].

14.3.4. Cross-Language Interoperability

Content of this section are the cross-language interoperability and the Common
Language Specification. Language interoperability is available for the Common
Language Runtime®’. This is enabled by the Common Language Specification (CLS)

that defines some rules and features for the language [MLNETm].

Language interoperability makes it possible that one code can communicate with a
code that is programmed in another language and the reuse of code is supported.
The Common Language Runtime defines a common type system with rules for types
of all languages and provides metadata with rules for the management of the
information of the types. In this way, it is the basis for language interoperability. This

enables the running of multilanguage applications by the runtime [MLNETN].

Microsoft claims the following advantages of language interoperability for managed
code [MLNETN]:

» Consistent exception handling across languages,

« With metadata and the Microsoft Intermediate Language (MSIL)**® for the
Common Language Runtime only one environment is necessary for profilers,

debugger or other tools,

* Regardless of the language types, objects or methods can be used.

7 ¢c.p. 14.3.1.
8 ¢.p. 14.3.1.

245

Nevertheless, it is possible that the functionality of generated types cannot be fully
used by other languages. The problem is that the language compiler uses the
metadata and the type system to maintain the own language features and that can
differ from other language features. To solve that problem the Common Language

Specification is used. It sets the rules for the language features [MLNETN].
Common Language Specification

The Common Language Specification (CLS) consists of a set of language features to
enable language interoperability. The CLS rules are a subset of the Common Type
System. Components that only apply CLS features in the API are fully available from
CLS supporting languages. These are so-called CLS-complaint components. All
CLS-compliant languages are able to create verifiable code [MLNETO].

The CLSConpliantAttribute function allows characterizing assemblies,
modules, types and members as CLS-compliant or as non-CLS-compliant. A CLS-
compliant assembly is marked as CLS-compliant. If it is not marked, it is considered
as not CLS-compliant. If there is no CLS-compliant attribute to a type, it has the same
CLS-compliant attribute as its assembly. If there is no CLS-compliant attribute to a
member, it has the same CLS-compliant attribute as its type.

Nevertheless if several parts of the assembly, module or type are not CLS-compliant,
assembly, module or type could be CLS-compliant if there is supplied for each non-
CLS-compliant member a comparable CLS-compliant alternative member and if all
parts which are CLS-compliant or non-CLS-compliant are manifested as such a part.
Languages that can access all features that are supplied by CLS-compliant libraries
can be used with languages, which are called CLS-compliant consumer tools.
Languages, which enable to use types that are specified in CLS-compliant libraries,

are called CLS-compliant extender tools [MLNETp].

14.3.5. .NET Framework Class Library

The .NET Framework Class Library is object-orientated, offers the possibility for third-

party components to be used with .NET Framework classes and it is a compilation of

246

reusable types, which are included with the Common Language Runtime*?®
[MLNETa].

Functions of the .NET Framework types:

Performance of 1/0

 Invocation of security checks of the .NET Framework

» Information of loaded types

* Summarize data structures

» Description of base data exceptions and types

» Supply of server-controlled and a client-side GUI and data access

It is possible to use the interfaces and the classes inclusive derivation of the classes
of the .NET Framework.

The .NET Framework naming schema is divided into two parts, the namespace name
and the type name. The namespace name consists of all to the rightmost dot and all
what is right of that dot is the type name. An example is:
System Col | ecti ons. ArrayLi st. Here System Col | ecti ons is the name of
the namespace and ArraylLi st is the name of the type. Library developer should
name their namespaces in the following manner: ConpanyName. Technol ogyNane
like M crosoft.Wrd. Itis possible that one assembly includes types from several

namespaces. One namespace can be split into several assemblies.

The root namespace is the Syst em namespace, which contains classes like for
example Qbj ect, Char, Int32, String, Array and Byte, which are the
fundamental data types for all applications. Furthermore, this namespace includes

approximately 100 classes and many second-level namespaces [MLNET(q].

9 ¢.p. 14.3.1.

247

14.4. Programming with the .NET Framework

This section describes some fields of application of the .NET Framework. Here is
information about the key programming concepts discussed. The following items are
described: Microsoft .NET Passport, .NET Remoting, accessing the Internet, Active
Directory-Components, CodeDOM, components development, developing world-
ready applications, asynchronous calls, creation of messaging components, Windows
Management Instrumentation, processing transactions, security items, system

monitoring components and ADO.NET.

14.4.1. ADO.NET

Content of this section is an introduction to ADO.NET, the objects of ADO.NET and
the ADO.NET architecture. ADO.NET means ActiveX Data Objects for .NET
Framework. It offers classes that allow data access to application data, XML and
relational data. Microsoft claims that it is suited for the creation of data sharing and
distributed applications and for middle-tier business objects and front-end database
clients [MLNETT].

Microsoft also says that with ADO.NET consistent data access is possible and data-

sharing consumer applications can be used to manage data [MLNETSs].

This data access technology is based on the .NET Framework. In this way it offers
communication with a database, a common data representation, integration with XML
and disconnected data architecture. ADO.NET and ADO can exist with each other
and the programming model of ADO.NET is similar to ADO. ADO.NET enables the
usage of disconnected, n-tier programming environments and supports XML
[MLNETt].

ADO.NET enables scalable data access and platform interoperability. With XML
ADO.NET can remote data among clients and tiers. XML supports ADO.NET by
hierarchical queries, data transformation and by validation [Ro01].

14.4.1.1. Objects of ADO.NET

The Dat aReader object offers a quick, read-only, forward-only access to query
results. With the Dat aSet object, an in-memory relational representation of data is

available and a common, completely disconnected data representation is possible.

248

The Dat aAdapt er object is a connection between the data source and the
Dat aSet object. ADO.NET enables the return of results in their native data type
[RoO1].

14.4.1.2. ADO.NET Architecture

The ADO.NET architecture consists of two components. These are the .NET Data
Provider and the Data Set. This section explains the ADO.NET architecture.

The .NET Data Provider manipulates and accesses the data. This is a read-only and
forward-only data access. With the Command object the data can be managed. The
Connect i on object enables the connection to the data source. The Dat aReader
offers from the data source a high-performance data stream. Dat aAdapt er is the
connection among data source and Dat aSet object. The .NET Framework uses the
OLE DB .NET Data Provider and the SQL Server .NET Data Provider. It is possible

to create .NET Data Provider for any data source.

The Dat aSet is the main component. It is possible to use it with XML data, with
managed data local to the application or it can be used with different and several
data sources. The Dat aSet includes the so-called Dat aTabl eCol | ecti on that
contains some objects to manage row, column, relation and constraint information of
data. These objects cannot be moved via XML web services. The Dat aSet is used if
the data is locally cached in the application, if data processing is expanded and an
open connection to the data source is not necessary, if remote data is used from a
XML web service or among tiers or if there is a dynamically data communication. If
this is not the case Microsoft claims that the performance can be increased if
Dat aReader is used [MLNETu]. Figure 65 illustrates the ADO.NET architecture.

MET Data Provider

Connection

O ataset

D ataTableCollection

Datasdapter

| SelectComm and |

|Tran5.a|::ti|:|n | O ataTahble

D ataRow Coll ection

Com mand |Ir'|SErtC|:|mmar‘|d |

D ataColum nCollection

|F‘aram eters |

| UpdateCommand |

ConstraintColl ection

|De|eteCDmm and | ol ---*

D ataReader

D ataRelationCollection

Database

Figure 65: ADO.NET architecture*®

14.4.2. .NET Remoting

.NET Remoting is a generic interprocessing system. It can be used to generate XML
web services. This section provides information about .NET Remoting and its

architecture.

All security features are available for .NET Remoting if an HTTP-based application

that hosts in 1IS (Internet Information Services) is used. Scalability is possible.
Features of .NET Remoting:
* Object lifetimes and activation are checked directly

* Through taking part in the communication process the wanted functionality can be

generated
» Support of third-party protocols and channels

* Presents an object by a reference and gives it back to a definite object in a definite

application domain

%0 Taken from [MLNETu]

250

» Services of each type of application domain are available

« A managed-code type-system integrity in binary formatted communications is kept
[MLNETV]

Microsoft claims that through .NET Remoting different applications can interact with
one another independant of their location and operation system. It is a generic
system of interprocess communication. So-called formatters encrypt and decrypt the
messages before transmitting them. An object that can be handed over by value can
be automatically handed over among applications in variant domains or machines. It
is nearly always possible to interrupt and change the communication process.
Transaction of objects in different application domains and processes is available for
different object generating modes, object lifetimes schemes, serialization formats or

transportation protocols.
Architecture of .NET Remoting

The core component of the remoting is the object reference to interact among server
objects and clients. With the function New a new instance of the remote object is
generated, the client gets a reference to the object and the methods can be called.
So-called proxy objects are stand-in objects, which are generated if the client creates
an instance of the remote type. For the client the proxy object is like the original
object. A call on the proxy object is routed by the remoting system to the server
process where the call is worked on and then the return value is given back to the
client over the proxy. So-called transport channels have the function of a particular
protocol for sending the data and as technology for network connections [MLNETw].

Figure 66 illustrates the remoting process [MLNETw].

251

Remoting system L Remoting system L

N

'

Z

(Server object) (Client object)

Figure 66: Remotingprocess*®

14.4.3. Accessing the Internet

With the .NET Framework an administrated implementation of Internet services is

enabled.

The .NET Framework uses a Uniform Resource Identifier (URI) to locate an Internet
resource. The URI contains the scheme identifier (identification of the communication
protocol), the server identifier (TCP address or DNS host name), the path identifier
(location on the server) and possibly a query string (information from client to the

server).

The .NET Framework offers the Uri class (URI of the Internet resource), the
WebResponse class (container for incoming response) and the WebRequest class
(request for the resource). The WebC i ent class (requires the WebRequest class)
offers methods for up- and downloading of data. The classes TCPLi st ener,
TCPCl i ent and UDPCl i ent of the System Net. Socket s-Namespace enable

functions for creating connections [MLNETX].

Pluggable protocols and an administrated implementation of the Windows socket

interface can be used [MLNETY].

1 Taken from [MLNETw]

252

14.4.4. Active Directory-Components

ADSI (Active Directory Services Interfaces) is an interface that makes the
communication of applications with directories on a network possible. This section
presents the features and components of ADSI.

Features of ADSI [MLNETZz]:

Protocols enable the usage of a single application programming interface (API) to

be carried out on several directory systems.

» Construction of applications which access printers, manage user accounts or back

up databases.
* Insertion of directory information in databases.

» The Active Directory tree structure enables the management of a hierarchical,

single structure for network configurations.
» To handle different directories only one log on is necessary.

* Querying for directory systems is supplied with LDAP (Lightweight Directory
Access Protocol) and SQL.

The two component classes Di rect orySear cher and Di rectoryEntry of the
namespace System Di rectoryServi ces are supplied by the .NET Framework
for the Active Directory Services Interfaces (ADSI) technology. ADSI is a technology

to administrate resources on a network [MLNETaa)].

An Active Directory hierarchy can be searched and queries can be made with the

Di rect orySear cher class by using the Lightweight Directory Access Protocol.

The Di rectoryEntry component supports administrative task like monitoring or
changing of properties. Therefore, this component can be associated with an object

in the directory.

To use ADSI with the components Di rect orySear cher and DirectoryEntry

the ADSI runtime or ADSI SDK are necessary. On Windows NT version 5.0,

253

Windows 2000 and Windows XP ADSI is installed. For other Windows platforms the
ADSI SDK can be downloaded from the Microsoft Homepage*®? [MLNETZ].

Microsoft says that the ADSI is a Windows directory service which decrements the
amount of namespaces and directories that the developer must take in consideration.
The Active Directory is organized like a hierarchical tree. On the one hand, a
directory service is an information source and, on the other hand, it offers the
information to the user. A so-called Active Directory schema contains information
about attributes for directory objects, which is used for searches for members, and
they contain information about network nodes. The Active Directory schema is saved
in the Active Directory hierarchy. Schemas are used by the Di rect oryEntry and

Di rect or ySear cher components to get information.

An alterable ADSI COM object is returned if a valid directory path is offered to the
Di rectoryEnt ry component. The Di rect or yEnt ry component allows including
new nodes to the hierarchy, the properties of a node from a hierarchy can be

managed and an object or service can be found in the Active Directory hierarchy.

With ADSI it is possible to access all directory protocols (so-called service provider)
with a single interface to manage the directories contents. With a service provider,
objects with associated behaviour and data are usable [MLNETab].

14.45. CodeDOM

The CodeDOM (Code Document Object Model) mechanism of the .NET Framework
offers the possibility to have output of source code in several programming

languages at run time.

Therefore, the CodeDOM provides the architecture, classes and interfaces to
manifest the structure of source code. It is possible to use an external compiler for
the compilation of the source code. A so-called CodeDOM graph or tree shows the
structure of the source code and is created with CodeDOM elements. Elements that

describe code elements are provided by the System CodeDom namespace.

2 http://www.microsoft.com/NT Server/nts/downloads/other/ADSI25/default.asp

254

Classes, which support compiling created code at run time, are defined with the

Syst em CodeDOM Conpi | er namespace [MLNETac].

CodeDOM can be used for dynamic compilation, which means code compilation in
single or multiple languages. It can also be used for templated code creation. This is
code creation for code wizards, designers, ASP.NET, XML-based Web services or
other code-emitting mechanism. The core types of elements of programming
languages that can be used with the Common Language Runtime*®® can be used by
CodeDOM [MLNETad].

Source code graphs helps to create source code in supported programming
languages with so-called code generators. With code compilers a source code can

be created in a supported language [MLNETae].

14.4.6. Components Development

This section discusses components in the .NET Framework. A component in the
NET Framework is a class that is used with the
Syst em Conponent Model . | Conponent interface or it is a class that comes
indirect or direct from a class using this interface. A component must be created with
a Common Language Specification*®* compliant language and all members must be
CLS-compliant [MLNETaf].

A characteristic of a component is that it can communicate with other objects and it
can be used again. For .NET Framework components, further features like design-

time support and control over external resources are available.

.NET Framework enables classes that are components to be handled with an rapid
application development (RAD) environment like Visual Studio .NET and enables in

this way a design-time support.

It is possible that a component is hosted by a container and can receive services.

3 ¢.p. 14.3.1.
4 ¢.p. 13.3.4.

255

There are nonremotable and remotable components, remotable components are
marshalled*® by value or by reference. Marshalling by reference means that a proxy
is generated for the interaction. The base class is in this case
Syst em Conponent Model . Conponent. This is recommended for components
which exist as single instance or that summarize system resources. Marshalling by
value means that a serialized copy of the object is transmitted and it is recommended
for components, which simply hold state. The base class is here
Syst em Conponent Model . Mar shal ByVal ueConponent . A nonremotable

component is used directly with the | Conponent interface.

There are two base classes for controls in the .NET Framework from which all
controls derive. The one base class is the ASP.NET server control and the other is
the client-side Windows Forms control. Controls are components and make user-

interface (UI) skills possible.

A container could include only one or multiple components and it is a class using the
Syst em Conponent Model . | Cont ai ner interface [MLNETag].

To display a control and its members at design time so-called design-time attributes

are necessary to show information for visual design tools [MLNETah].

The .NET Framework enables a developer to license its controls to preserve the

intellectual property [MLNETco].

14.4.7. Developing World-Ready Applications

This section defines the term “World-ready applications”. So-called “World-ready
applications” are developed in three steps: Globalization, Localizability and

Localization.

An application that is globalized is language-neutral and culture-neutral and can use

regional data for all users and localized user interfaces [MLNETai].

In the Globalization part the executable code of the application is created [MLNETaj].

% cp. 243,

256

The second step Localizability separates the parts of the application, which need

translation from the rest of the application's code [MLNETai].

That means that the executable code of the application is separated from its
resources. Normally it is not necessary to vary the source code while the localization
[MLNETaj].

Localization means that the application is customized for the particular regions or

cultures [MLNETai]. Here the user interface is translated [MLNETaj].

An application which is really global is language- and culture-neutral. Microsoft claims
that “World-ready applications” help to support new cultures, because the application

can be used in more cultures [MLNETa]j].
The executed code is stored in the main assembly of the application.

Prerequisite for the Localization is the Localizability. The Common Language

Runtime*®®

[MLNETaK].

makes the separation of resources and executable code possible

14.4.8. Asynchronous Calls

This chapter describes so-called asynchronous calls that are supported by MS.NET.

Thereby a .NET class method is called during the runtime of the program, until
blocking or calling away or waiting for the call to complete (if callback is not
provided), or until the particular callback is carried out (if callback is provided)
[MLNETal].

Asynchronous calls are used with .NET in the following cases:
* Poll Completed (offers the | AsyncResul t. | sConpl et ed property)
» Use Callbacks (offers the callback delegate at the start of the asynchronous call)

* Begin Invoke, Wait Handle, End Invoke (waiting for | AsyncResul t)

40 ¢.p. 14.3.1.

257

» Begin Invoke, End Invoke (early finishing of the operation)

With .NET there are two parts for an asynchronous operation. The first part is
responsible for the input from the client that starts the asynchronous operation. This
part returns a waitable object that is used by the server to preserve any state related
with asynchronous operation. The second part offers the results for the client of the

operation by supplying the waitable object [MLNETam].

14.4.9. Creation of Messaging Components

The MessageQueue component makes it possible to generate, delete and explore
gueues and to transmit and receive messages. Content of this section are the
features of messages and messaging, basic knowledge of messaging and types of

queues.

The developer can integrate message-based communication in the application
[MLNETan].

To use this technology Message Queuing must be installed on the client machine*®’
[MLNETao].

It offers a mechanism for interaction among components of a server-based

application.
Features of messages and messaging [MLNETao]:
* Messages stay in a queue until they are guaranteed processed

« The message queuing uses Windows security for access control, encoding,

auditing and authentication

» Messages have an offline capability. That means that they can be transmitted to

temporary queues and stay there until they are sent.
» Transactional messaging allows bundling of messages into one single transaction

» Message prioritization is possible

7 http://www.microsoft.com/msma/

258

14.4.9.1. Basic Knowledge of Messaging

A message queue is like a container that stores messages until they are transmitted.
The so-called Message Queuing enables messaging between Microsoft Windows
machines. Different computers that are able to send messages to each other are
called a Message Queuing network. The single computer in such a network is called
site and the computers are connected with so-called site links. The function of routing
servers is to determine the most efficient and fastest way for sending messages

[MLNETap]. Figure 67 illustrates the message routing between sites.

c-D
routing link

routing link

A-B
routing link

Figure 67: Messagerouting between sites*®®
14.4.9.2. Types of Queues

There are so-called user-created queues and system queues. The user-created
gueues include private queues (only accessible by the local machine), administration
gueues (confirm the receive of a message), response queues (response message
which is sent back to the transmitting application) and public queues (accessible by
all sites). The system queues include private system queues (private queues needed
for process messaging), report queues (show the route of a message or test
messages), dead-letter queues (copies of not sent or expired messages) and journal

gueues (supplies copies of sent and removed messages).

The messages are sent asynchronously [MLNETap].

%8 Taken from [MLNETap]

259

14.4.10. Windows Management Instrumentation

The Windows Management Instrumentation (WMI) offers system management

services for the Microsoft Windows operating systems [MLNETaq].
An administrator can use the WMI for the following features:

» Monitor application because of errors

» Configuration and management of applications

* Implementation of remote or local management operations

» Discover errors and bottlenecks

* Query of the data of the application

The tiers of the WMI architecture are the clients (software components that
implements operations with WMI), the Object Manager (agent among clients and
providers) and the providers (give back live data to the client application, call
methods from the client, associate the client to the administrated infrastructure). For
older Windows versions, WMI has to be installed with the .NET Framework
[MLNETar].

14.4.11. Processing Transactions

Transaction processing systems enables a data-orientated system to be updated
only if all operations are fulfilled. Microsoft claims that this technology can be used for
exchange.

Therefore, some related operations are combined. The transaction succeeds only if
the whole bundle of operations succeeds. Such a system requires a software and a
hardware component. An example is an airline reservation that only succeeds if it is
paid before [MLNETas].

Therewith a transaction can commit, all parts of the system have to ensure that all

modifications of data will be durable; otherwise the whole transaction fails [MLNETat].

260

Automatic and manual transaction models are supported by the Common Language
Runtime*®® [MLNETaul].

A manual transaction enables the developer to determine the start, the result and the
ending of the transaction, to manage each connection and resource enlistment inside

the transaction boundary [MLNETav].

A .NET Framework class, a XML Web service method or an ASP.NET page is
carried out automatically in the range of a transaction if it is declared to join in a

transaction [MLNETaw].

14.4.12. Security

With the .NET Framework and the Common Language Runtime*®

it is possible to
use role-based security and cryptography [MLNETax]. This section discusses security
items with MS.NET. Content are basic security terms, security policy management,

cryptography, role-based security, access security and security tools.

Access security is supplied by the Microsoft .NET Framework. Role-based security

and access security use the Common Language Runtime [MLNETay].

The Common Language Runtime permits only activities for which the code has the
authorization. Thereby the code can demand that its caller has a permission to run,
permission can be given during the runtime or the code itself can demand for the
necessary permission. There are role-based security permissions, identity
permissions and code access permissions [MLNETaz].

14.4.12.1. Basic Security Terms

This section presents some basic security terms.

9 ¢.p. 14.3.1.
40 ¢.p.14.3.1.

261

» Type-safe code means that only that memory location is accessed for which it is
authorized and the Common Language Runtime*’* could isolate assemblies from
each other [MLNETba].

* The security policy is a guideline for the Common Language Runtime that

determines what the code is allowed to do [MLNETDbb].

* A principal is a kind deputy of the user. The .NET Framework offers custom

principals, windows principals and generic principals [MLNETbc].
» The authentication checks the identity of a principal [MLNETbd].

» The authorization checks if a principal has the permission to carry out a requested
action [MLNETDbe].

14.4.12.2. Access Security

The .NET Framework offers the so-called code access security [MLNETbf].

14.4.12.3. Role-based Security

Role-based security is used by the Common Language Runtime*? with the custom
identity or on a Windows account as fundament. Thereby the role of a user is
checked [MLNETbg].

Therefore information about the principal is arranged. In the .NET Framework it is
possible to make authorization decisions for reason of the role membership (group of
principals with the same rights) or of the identity of the principal or both parts. A
principal can be a member of multiple roles. The role is used to check if somebody is
authorized to implement a particular operation. The .NET Framework enables the

usage of the role-based security on a server or on a client [MLNETbh].

14.4.12.4, Cryptography

The task of cryptography is to make communication secure if it is implemented over

insecure channels.

1 c.p.14.3.1.
42 ¢.p. 14.3.1.

262

For this cryptography should lead to authentication (assurance that data comes from
a particular source), data integrity (no data modification) and confidentiality (identity
or data protection). Microsoft claims that the .NET Framework provides cryptographic

random number generators to create unpredictable numbers [MLNETDbi].

To achieve these targets the .NET Framework enables the following cryptographic
core functions [MLNETDbi]:

Cryptographic hashes: Data of any length are classified to a byte-sequence with
fixed length and hashes are statistically unique.

» Cryptographic signing: Assurance that the data comes from a particular source by

making an unambiguous digital signature. Therefore, a hash function is used.

* Public-key encryption: This so-called asymmetric cryptography uses a pair of
private- and public-keys to encode or decode the data to prevent that the data is

seen by unauthorized eyes.

» Private-key encryption: This so-called symmetric cryptography uses a single,
secret key which is commonly used to encode and decode the data to prevent that

the data is seen by unauthorized eyes.

The .NET Framework provides an extendible cryptography model with object

inheritance, cryptographic configuration and stream design.

This object model uses a pattern of derived class inheritance. The top of the
hierarchy is the abstract level algorithm type class. From this class the abstract level
algorithm class is inherited. The next level is fully implemented and is inherited from

the algorithm class.

To employ hash algorithm and symmetric algorithm a stream-orientated design is
used [MLNETDbj].

263

14.4.12.5. Security Policy Management

The so-called security policy are regulations of the Common Language Runtime*®
that settle the permissions for the code. The runtime takes care that the code only

uses sources that are permitted.

Therefore, the security policy arranges code groups that classify code by

characteristics and give them permissions [MLNETbga].

For Microsoft the security policy model consists of the security policy levels
(enterprise, machine, user), the hierarchy of the code groups (inside the enterprise,
machine and user levels), the named permissions sets (classified by the code
groups), the evidence (information about the conformity of the code) and the
application domain hosts (offers evidence to the Common Language Runtime to

check code with regard the code group) [MLNETbha].

14.4.12.6. Security Tools

To check applications and components and to carry out security-related tasks the

.NET Framework SDK offers command-line tools.

These tools enables for example the configuration of the security policy*”, the
management of certificates, the viewing of the assembly’s demanded permissions or

modifying the registry [MLNETbia].

14.4.13. System Monitoring Components

System monitoring components enable the monitoring and modification of system
resources [MLNETbja]. This section provides information about the Process,

Event Log and Ser vi ceCont rol | er components.

Microsoft claims that so-called Windows performance counters enable components
and applications to analyze the performance data like the application performance,
the fine-tune system or system bottlenecks. The .NET Framework offers the

possibility to use performance counters on remote or local machines, to generate

3 c.p. 14.3.1.
4 cp.14.4.12.1.

264

custom counters on Windows systems and to put values to with .NET generated

custom counters on the local machine [MLNETbK].

The Event Log component of the .NET Framework enables the connection to
Windows event logs on a remote or on a local machine to create new usage patterns,

to solve problems and to check the access to the system [MLNETDI].

To monitor Windows services the Servi ceControl | er component is used for
custom commands on the service, to get back lists of available services and to
implement administrative tasks [MLNETbm].

Many Windows process tasks are administrated with the Process component
[MLNETbn].

14.4.14. Microsoft .NET Passport*”

The .NET Passport started in 1999. It offers a Kids Passport, so-called .NET

Passport express purchase and single sign in (SSI).

The single sign in (SSI) is an Internet participation mechanism among Web sites to
protect the integrity of interaction.

The Kids Passport is part of the single sign in of the .NET Passport and is not a web
filter. According to Microsoft it supports the parents by changing profile exceptions
which are detailed in the Passport Privacy Statement and by choosing a consent
level [MS02d].

The .NET Passport express purchase offers a so-called .NET Passport wallet with
shipping and billing data. Therefore, the credit card numbers are protected with a
Triple Data Encryption Standard algorithm and the data transaction uses a SSL
encoding.

It is possible to use the same authentication system for all used sites. The .NET
Passport data can be used with many devices. The password and the sign-in name

have to be inserted per session only one time. It is possible to buy with fewer clicks.

*> This section uses [MS02c]

265

Therefore, with one click the wallet is signed in and with a second click the data with

the shipping and billing information is transmitted to the shop.

Because of a complaint of US-consumer protection organizations the US FTC
(Federal Trade Commission) enacted that for the next 20 years the safety of

Passport will be regularly checked [AP02,p19].

14.5. Building Applications

This section provides an overview of some programming concepts. Content are
ASP.NET, Windows Forms, Windows Service Applications and Design-Time

Support.

14.5.1. ASP.NET

ASP.NET is provided by the .NET Framework and it is a unified Web development

platform [MLNETbo]. This section introduces this theme.

Microsoft claims that applications can be written with any .NET compatible language.
ASP.NET is used in a .NET-based environment that is compiled. ASP.NET is almost
completely syntax compatible with ASP. ASP.NET can co-operate with WYSIWIG
(What You See Is What You Get) editors.

There are two features possible for generating ASP.NET application supported by the
same infrastructure. The features are Web services and Web forms or a combination
of both. A XML Web service has the advantage of being able to use a server
functionality remotely. Web Forms offer the possibility to have forms-based Web
pages [MLNETbp].

Features of ASP.NET [MLNETbq]:
» Database management is possible.

» Custom events can be implemented which take part in every demand to the

application.

* The session-state and application facilities of ASP are still usable with the .NET

Framework.

266

* ASP.NET code is compiled, modules are removable, performance counters are

available and caching of services is possible.
» Custom debug statements are available.
» The configuration settings are saved in XML files.
* ASP.NET is not completely backward compatible.
» Default schemes for authentication and authorization are available.

» To write the logic, implemented at the application level, the code can be written in
a compiled class or in the gl obal . asax text file (includes code for responding to

application level events fired by HTTP modules or by ASP.NET [MLNETcp]).

* Communication with low-level request and response services of the IS Web
server is possible.

14.5.2. Windows Service Applications

The .NET Framework enables to generate sevices by generating an application that
is installed as service. Windows Service Applications can be automatically started.

This part gives a short overview.

They do not contain a user interface and they are suited for the usage on servers.
Services are created by generating the application and then installing them with the
utility I nstal | Uti | . exe. With the so-called Services Control Manager the service

can be administrated and managed.
Characteristics of Windows Service applications:

* On an other Windows station the Windows Service applications are executed than

other application
* Installation components are required which register and install the service.
» A service must be installed and executed.

* The Windows Service applications are executed in an own security context.

267

« The Run method of the Mai n method loads the service into the Services Control

Manager.

There are the following basic states for services: Running, Paused and Stopped
[MLNETbr].

14.5.3. Windows Forms

Windows Forms are a development platform that enables the creation of Windows

applications.

Therefore, the .NET Framework offers object-orientated classes. Windows Forms

can be used as multi-tier distributed function or as local user interface.

A Form is an object with events, properties and methods. It is an instance of a class
and there is the possibility of inheritance. Forms can be dialog boxes, display
surfaces or graphical routines, multiple document interface (MDI) windows or
standard windows. Forms are also controls. Forms are used for communication with
the user [MLNETbs].

14.5.4. Design-Time Support

The design-time support is offered by the .NET Framework through a built-in design-
time architecture. Design-time functionality pertains to the behaviour and display of a
control or component in a visual designer [MLNETDbt].

268

ar
any custom type

Y

| Custom attributes h’

{.’\
Intermediate /fr'r \

Basic ICompaonent (Companent, CDntmI}L

.
TypeConverter L rr'l ITypeEditor L
r
Advanced F’
Designer H Designer services L
Figure 68: Levels of design-time support*’®

With the .NET Framework three levels of design-time support can be offered by
control or component developers [MLNETbu] as shown in figure 68:

» The basic level enables the .NET Framework to offer classes with design-time
functionality can be related with a component and its members.

* The intermediate level enables the usage of classes with type conversion and of

classes with a custom user interface for managing properties.

» The advanced level enables a component developer to use classes (designer) that

adapt the design-time representation of a component.

14.6. Object Rexx and MS.NET

To program the MS.NET classes there is a language specific compiler necessary.
There is no compiler available for Object Rexx [MS02b]. Here is a possibility
described to create .NET components which can be accessed via the ActiveX

interface with Object Rexx or another language that can implements this interface.

This section discusses the exposing of .NET Framework components for usage with
COM, the Assembly Registration Tool (Regasm.exe), COM Interop, COM Wrappers,
COM Callable Wrapper with an example and the conclusion.

*7® Taken from [MLNETbu]

269

14.6.1. Exposing of .NET Framework Components for Usage with COM

.NET Framework Components can be exposed for usage with COM [MLNETbv]. This

section discusses the prerequisites and the possibilities.
Prerequisites for .NET Framework Components when used with COM [MLNETbw]:

* Managed types have to be public so that they are visible to COM because only
public types in an assembly are registered and used with a type library

« Types are not abstract

A public default constructor enables the activation from COM

Fields, properties, methods and events have to be public

Interfaces should be implemented explicitly by classes

Information about managed types for COM developers to package an assembly
[MLNETbx]:

» Versioning instructions

» Deployment instructions describe that unsigned assemblies are installed as private
assembly on the user's machine and by a publisher signed strong-named*’’

assemblies are installed into the global assembly cache.

 List of types which show if the managed types are for COM visible and creatable,
visible but not creatable or invisible. It is possible that an assembly can include

creatable, non-creatable, visible and invisible types

Type library is necessary for the most types

Options for the creation of a type library (only the public types of the assembly are
integrated to the type library) [MLNETbX]:

» Type Library Exporter. Command-line tool which creates a COM type library with

the classes and interfaces of an assembly.

47 ¢c.p. 14.3.2.

270

» TypeLibConverter Class. This tool works like the Type Library Exporter and is

stored in the Syst em Runt i ne. | nt er op namespace.

* .NET Services Installation Tool (Regsvc.exe) can load and register an assembly
and additionally install the type library into a COM+1.0 application.

* Assembly Registration Tool. This tool can create and register a type library with
the option /t| b. If this option is not selected the types are only selected in an

assembly.

14.6.2. Assembly Registration Tool (Regasm.exe)*’®

This tool enables COM to generate .NET Framework classes by reading the
metadata in an assembly and by inserting the entries to the registry. This section

contains a description and an example with Object Rexx of this tool.
Syntax:

regasm assenbl yFil e [opti ons]

With the option / regfil e a. reg file is created. Then the entries are not inserted to
the registry but to this file. With the /t| b option a type library which includes the

types of the assembly is created and registered.

In the registry new entries for the CLSID are inserted to the registry key
HKCR/ CLSI D. Under the key HKCR\ CLSI D\ { 0000..0000} the default value is set to
the ProgID of the class. The values Assenbly and Cl ass are also added. As
subkey of the key HKCR\ CLSI D\ {0000..0000} the key I|InProcServer32 is
generated whose default value is the name of the DLL [MLNETbz]. Figure 69 shows a

registry entry of Mscoree.dll.

"8 IMLNEThby]

271

My Computer
HKEY_CLASSES ROOT
CL3ID
{0000 ... 0000} {Default) = Loan
Implemented Categories
{62CEFE65-4EBB-4527-B440-6E39B2CDBF29}

InProcServer32 ({Default) = mscoree.dll
Class = Loan
Assembly = Loan, Ver = 1.0.0.0...
ThreadingMadel = Both

Progld (Default) = Loan
Laan {Default} = Loan
{0000 ... 0000} {Default} = {0000 ... 0000}
Figure 69: lllustration of a registry entry with a reference to Mscoree.d!l*"

Example:

This command inserted in the command prompt registers all public classes, which
are contained in Mscorlib.dll. This is the DLL of the System Obj ect

namespace, which is the root namespace [MLNETcal].
Regasm exe Mscorlib.dl |

After that, many .NET classes are visible for COM. Only a few can be referenced with

the ActiveX interface of Object Rexx. Most classes are visible but they can’'t be used

via ActiveX*°,

" Taken from [MLNETbz]
0 ¢c.p. 14.6.2.

272

1" Click or enter application PROGID/CLSID to reveal OLEObject properties BEx
9 |System.MissingFieldException |System MissingFieldExceptinn |

12120 |System.MissingMemberException |System MissingMemberException
i-21"2_1_|System.MissingMethodException iSystem.MisswngMethodExceptiun
[2122 [system.MTAThreadAttribute |Systam MTAThreadattrinute
E'm!System.MuIticastNotSupportedException |Syatem MulticastotSupportedException
{2124 |System.Net.WebClient |System et WebClient
i"2_1m2€ISystem.Net.WebHeadercollection iSystem.Net WebHeaderCollection
!ﬁ§System.NonSeriaIizedAttribute |System NonSerializedAttribute
E'ﬁiSystem.NotFiniteNumberException |System NotFiniteNumberException
5"2?_25ESystem.NotlmplementedException |System NotimplementedException
2129 [system.NotSupportedException [Systam NotSupportedException
'ﬁ ystem.NuIIRefeEnQeException |System.NullReferenceExceptmn
52% |system.Object) |System Onject

{2132 |System-ObsetetsAttribute |System.ObsoleteAttribute

5"271 33 |System.OutOfMemoryException iSystem.OutOfMEmuryExceptiun
!m!System.OverﬂowException |System.OverﬂDWExceptiun

2135 ESystem.ParamArrayAttribute |System Paramamrayattribute

36 PIa tSupportedException |System PlatformMotSupportedException
{2137 system.Random) |Systern.Randam
[2138system.RankException |Systam RankException
E'mISystem.Reflection.AmbiguousMatchException |Syatem. Reflection AmbiguoustatchException
{2140 |System.Reflection.AssemblyName |System Reflection. AssembiyName
i"2_1_£_1-1_|System.Reerction.AssemblyNameProxy iSystemReﬂection.AssemblyNameF’ruxy
!mgSystem.Reflection.customAttributeFormatException |SystemReﬂEttiun.CustumAttnbutEFurmatExcEptiun
E'm!System.RefIection.InvaIidFiIterCriteriaException |Systemn. Reflection. nvalidFilterCriteriaException
5"2_1_421-ESystem.Reflection.TargetException |Siystem Reflection. TargetException =
[2145 [system.Reflection.TargetParameterCountException [System.Reflection. TargetParameterCountException
!m5System.Resources.MissingManifestResourceException |SystemResources.MissingManifestResourceExceptiDn
5'21? |system.Runtime.Compilerservices.CaliConvCdecl |System.Runtime CompilerServices CallConvCdecl
4é§System.Runtime.Compi]ﬁeﬁices.(:all(:onvFastcaII |Syatem Runtime CompilerServices CallConyvFastoall
:'E|System.Runtime.CompiIerServices.CaIIConvStdcall iSystemRuntimE.CumpilerSerVicES.CaHCUnvStdcall v
7(7' | PR — - 2 - ET——— = T l_m = i bz = |~ 2 - e " !z|l_

Figure 70: RGF_OLEINFO.HTA with the new created ProgIDs of .NET classes*®!

For example the root class Syst em Cbj ect or the class Syst em Random can be
referenced as illustrated in figure 70. Code 60 demonstrates the access of some
methods of Syst em Random with the methods Next and Next Doubl e which

calculate some random numbers [MLNETch].

“lep. 7.3.

- Instantiation of an object of System Random
NETCbj ect = . OLEObj ect ~New(" Syst em Randont')
SAY NETObj ect ~Next -- Returns a random nunber
SAY NETObj ect ~Next Doubl e -- Returns a random nunber between 0,0 and 1,0

Code 60: MS_NET_System_Random.rex

14.6.3. COM Interop

COM interop enables forward and backward compatibility. Thereby managed code
can be accessed by COM clients. Metadata can be exported from an assembly to a
type library and the managed component can be registered as COM component
[MLNETCcc]. This section explains COM Wrappers and COM Callable Wrappers.

14.6.3.1. COM Wrappers*®

Clients of .NET use reflection to get a description of the functionality of an object,
whereat the clients of COM objects request an interface to get back an interface

pointer or not to get information if a service is available.

The Common Language Runtime*®® administrates the lifetime of objects on the one
side and on the other side the client of COM objects must administrate the lifetime of

those objects.

The .NET objects are in the memory which is administrated by the .NET Framework

execution environment.

So-called wrappers solve these problems by letting unmanaged and managed code
think that they are calling objects that are in the corresponding environment. There
are two kinds of wrapper: The runtime callable wrapper (RCW) which handles calls of
a managed (.NET) client on a COM object and the COM callable wrapper (CCW)
which works in the other direction and handles calls of a COM client on a .NET

object. This principle is explained in figure 71.

82 IMLNETcd]
83 ¢.p. 14.3.1.

274

Unmanaged Managed
”d I
g — o & MET client
| 5 . calling a
COM server
Consumer
0
D_

/_*u— cow

ACOM client o
calling a
MET server 7
Consumer

Figure 71: Principle of RCW and CCW*®

14.6.3.2. COM Callable Wrapper*®

The CCW is a kind of proxy for the managed object. This section defines the term
COM Callable Wrapper and there is an example with Object Rexx that illustrates the

usage of a CCW.

It marshals references between unmanaged and managed code as illustrated in
figure 72. In this way if a COM client wants to reference .NET object the managed
object and a COM callable wrapper are generated by the Common Language
Runtime®®®. The figure 72 shows that there is exactly one CCW generated for a
managed object although there are multiple COM clients that want to reference the
.NET object. The CCW has a single reference to the managed object that is garbage
collected and that implements the interface. It is possible that .NET and COM clients

reference the same object at the same time.

84 Taken from [MLNETcd)]
% IMLNETce]
% ¢.p. 14.3.1.

275

Unmanaged I Managed
o
INew IMew
COM client = O CCW = 0— .MET object
COM client P/A i .NET client
.MET client

Figure 72: Access of a CCW *

The CCW also handles the object lifetime (reference-counted like COM) and object
identity (the Common Language Runtime*®® offers memory to the CCW so that the

COM client can call the wrapper directly) [MLNETce].

The invocation of methods of .NET objects is equal to the invocation of COM object
methods. Therefore, the CCW enables that all public, COM-visible data types, return
values and interfaces are usable for COM clients. In this way the CCW exposes
traditional COM interfaces like the | Unknown and | Di spatch. The figure 73
demonstrates a single reference on the .NET object by the CCW. The .NET object
and the COM client communicate via the CCW stub and proxy construction [MLNETcf]

Unmanaged Managed
T T
/ IUnknown 7
IDispatch INew
COM client = O CCW > O .MET aobject
INew
= 0—]

Figure 73: COM interfaces for the CCW**°

The .NET Framework provides the following implementations of COM interfaces:
| Di spatch, IErrorinfo, [|Unknown, |SupportErrorlinfo, |Typelnfo

and | Pr ovi ded assl nf o.

8" Taken from [MLNETce]
%8 ¢.p. 14.3.1.
89 Taken from [MLNETcf]

276

Managed classes can supply the following COM interfaces: The (_classname) class
interface, | EnunVARI ANT, | D spat chEx, | Connect i onPoi nt and
| Connect i onPoi nt Cont ai ner [MLNETCc].

Each type in an assembly is described by metadata that is created by compiling a
managed project to an assembly DLL. If a COM client references a managed object,
the metadata is uzilized to create a CCW. In the figure 74 the managed types are
transformed to COM with the tool TIbexp.exe [MLNETcg].

Metadata
Tibaxp. axe
COM type Managed
library - MSIL code ~<—| Compiler solUrce code
Assembly
Method o Y
call
COM client |- > CCW
Comman language
Interocp runime

marshaling sarvice

Figure 74: CCW method call*®

The usage of attributes regulated by the interop marshalling service enables the
management of data and interface marshalling behaviour like the controlling if an

assembly is exposed to COM [MLNETcg].
Example [MMO03]:

In this example from the Homepage of Andy McMullan*®* first a .NET component is
created which is then accessed via a CCW with Object Rexx as COM client.

First, this C# file with the name t est conser ver . cs is created (OtherScript 13).

9 Taken from [MLNETcg]

1 http://www.eponymous.eclipse.co.uk/dotnetfag.htm

277

usi ng System
nanmespace AndyM

{
public class CShar pCOVSer ver
{
publ i ¢ CShar pCOvserver() {}
public void SetName(string name) { mnane = nane; }
public string GetName() { return mname; }
private string mnane;
}
}

OtherScript 13: testcomserver.cs

This .cs file is compiled from the command prompt with the following command:

Csc /target:library testconserver.cs

Csc is the compiler [MLNETch] and the option /target: | i brary means that a DLL
is created [MLNETci].

Then a DLL is generated which is then registered with the tool Regasm.exe*®%:

regasmtestconserver.dll /tlb:testconserver.tlb /codebase

Here the option / t | b means that a type library is created and the option / codebase
creates a codebase entry to the registry [MLNETby]. Figure 75 shows the new created
ProgID.

92 ¢.p.14.6.2.

278

] Click or enter application PROGID/CLSID to reveal OL EObject properties ==
[49[ADOX.Table.2.7 [ADOX Tanle.2 7)
| s0/aDOX.User.2.7 |ADOX User 2.7
| 51[ADs |ADs Provider Chject
| 52|ADsDSOOBject |ADsDSOOBject
mlAbsNamespaces |ADs Mamespaces Ohject
| 54 |ADsSecurityutility [%ADS_SECURITY_UTILITY OBJECT%
| 55 |ADSYsteminfo |AD System Info Ohject
’?!Agent.nontrnl |Micmsmft Agent Control 1.5
[57|agent.server [Microsoft Agent Server 2.0
| 58|Alg.AlgSetup [
| 58 [AMOVIE.ActiveMovieControl |activemovieControl Object
l_ toolbar.AMtoolbar |Ahf1t00\bar Class

61 [AndyMc.CSharpCOMServer) [Andyhic CEharpCOmMServer
s/aPHandler.Handler |Hand|er Class
| 63 |appBarcem-AppBarinvocator |AppBarinvocator Class
[64 [AppExport.AppExport |AppExpart Class
|__6-§!Applmport.Applmport |Appimport Class
| 66 [Appwizards.SubWizard |&ppwizards Subwizard
&7 |AppWizards . Wizard |Ap pyYizards Wizard
| 6a/ArticleData.ArticleData |ArticleData Class
I_ES_ |ArticleLayout.ArticleLayout |ArticleLayout Class
ﬁa|A500ntrols.InstaIIEnginectI |InstaIIEnginECtI Object
| 71|ASFsession.ASFSession |ASFSession Class
m|ASFSessinnProp.AEFSessionProp |ASFSESSiDnPer Class
[73|nsP.HostEncode |ASP Host Encode Object
[74 |ATL.Registrar |Registrar Class
[75 [attr.Attr |attr Class
W!AUDIOCONTROL.CurveEditctrI.1 |CurveEdit Caontral
| 77|aUDIOCONTROL.KnobcCtri.1 |knob Cantral
|_7§|AUDIOcoNTROL.LeveISIiderctrm |LevelSlider Contral
| 79[AudiovBScript |Directtusic Audio VB Script Language v
:(| : : I : | |3]

Figure 75: RGF_OLEInfo.hta: New ProgID “ AndyMc.CSharpCOMServer” *%

This newly created .NET component can be referenced with the ActiveX interface of

Object Rexx like in code 61.

S cp. 7.3.

- Instantiation of an object of AndyM:. CShar pCOVServer
NETCbj ect = . OLEObj ect ~New(" AndyMc. CShar pCOVSer ver ")
NETObj ect ~Set Nane("Hell o World") -- Inserts the text "Hello World"
SAY NETObj ect ~GCet Nane -- Prints the content of GetName to the display

Code 61: MS_NET_AndyMc_CSharpCOMServer.rex

Output:

Hello Worl d

14.6.4. Conclusion

This is a self-created component. In the author’s opinion this principle can also be
used to expose .NET namespaces with its classes, methods, properties and events
for COM. In this way these objects can be used via the ActiveX interface of Object

Rexx or another language like Visual Basic Script or JScript.

For example, a COM object XSyst em XConsol e with a method XW i t eLi ne can
simulate the real .NET object System Consol e with the real .NET method
Wit eLi ne. Then in Object Rexx the object XSyst em XConsol e is instantiated.
This object has a method XW i t eLi ne and a text is hand over. This text is then
hand over to the real .NET object Syst em Consol e with the real .NET method
Wit eLi ne over CCW. Then this text is printed to the display.

In this way it should be possible to reference .NET objects via the ActiveX interface of
Object Rexx.

280

15. Examples of Use

This chapter presents some selected projects of a seminar at the University of
Augsburg that show how to use the Automation technology with Object Rexx in a
business. The projects Doner Dome Restaurant, High Value Customers Consultancy
and Tourplanning are described.

15.1. Doner Dome Restaurant***

This project describes a franchise business model with multiple fast food restaurants,
which sell Déner Kebab.

In this project a cash registering system is developed. This system should be cheap,
prevent media breaks, prevent double work, count automatically the daily sales
revenues, implement automatically the late order of the sold products and have a

user-friendly user interface.

This task was solved by a system consisting of PCs with touch screens. The user
interface was implemented with HTML. The daily sales revenues are computed with
Object Rexx, and documented with MS Excel. The automatically late order of the sold

products is transmitted with the e-mail program Eudora to the warehouse.

To apply this concept a PC, a touch screen, the MS Internet Explorer, Qualcomm
Eudora, Object Rexx, MS Office and Windows as an operating system are required.

Figure 76 shows the user interface of the cash registering system.

9 This section uses [HeLu03]

281

#7C:\Dokumente und Einstellungen\FH\Lokale Einstellungen\Temp'\kasse.html - Microsoft Internet Explorer E]@
2
7

Datei Eearbeiten Ansicht Favoriten Extras 7

QZurUck i ?) ﬂ @ _;‘- /-‘Suchen 'l]_l_.;’Favoriten wMadien 6‘-‘ - L= " 2 ';_,}

Advesse @ Cii\Dokumente und EinstellungentFHiLokale Einstelungeni Temp!kasse hkml v Wechsalnzu Links **
[P

Doéner Dome Restaurants

Zwischensumme £
Wechselgeld £
Rickgeld £
neuer Kunde H Daner H Anacalu H Lamacun H Fizza H Cola H Wasser H Bier ‘
[Didnerstamao “ Anadolustomo H Lamacunstarno ” Pizzastama H Colastorno “ ‘Wassaerstarno ” Eierstorno]

== 23 o o [e

‘ Kasse an ‘ Kasse aus ‘

Bediensungzanleitung
Zehn Minuten vor Offtung des Restavrants driicken Sie bitte eirmmaliz "Kasse an"
1. Driscken Sie beijedem neven Kunden "never Kunde"

2. Geben Bie die Bestellung ein: 2B. Daner, Cola, Anadoly; immer mit "ja" bestatigen (evil: Geben Sie die Storniening eit)

2] Fertig J Arbeitsplatz

Figure 76: User interface of the cash registering system of project Déner Dome*®**®

15.2. High Value Customers Consultancy®’

This project shows the possibilities of Automation for a consultant.

The consultant has only a few “High Value Customers”. These customers are stored
in a customer database where the addresses and portfolio of the customers is saved.
The bond department offers recommendations in the intranet. The task of the
consultant is to send the buy or sell recommendations to the customers. The
customer data is stored in an MS Excel sheet. If there is a recommendation, each
customer is informed with a text written with MS Word. The addresses are pasted
with Copy&Paste. The stock history is attached in tabulate form. This takes a lot of
time and there is less time to consult the customers. The letters are sent to the

customers by a central post office.

9 MS Internet Explorer is part of MS Windows XP

% Taken from [HeLu03]

97 This section uses [MeSc03]

282

Automation would increase efficiency.

The user interface, which handles the Automation, is an Object Rexx file, which is

embedded in a HTML document. This interface can access and manage the

customer data by Automation; it can receive the stock tables. The text of a serial

letter can be inserted. This serial letter with the stock data and customer data is sent

automatically via the automated e-mail program Qualcomm Eudora to the central

post office. Figure 77 shows the user interface.

|@ WMS-Kundeninformationssystem - Microsoft Internet Explorer - [Offlinebetrieb]

Datei Eearbeiten Ansicht Favoriten Extras 7

|il| |E’IJ , /.- Suchen L' Favariten w"Medien 67‘ -y i - . L‘?

Adresse @ okumente und EinstellungentFH\Eigene Datsien| Daten|StudiumiDiplomarbeit!Liter atur| dutomatisierung Seminar 0203\Projektel Grupped\ Team@|Oberflaechez himl |+ | E" Wechselnzu Links

L—J@J

»

WMS-Kundeninformationssystem:

) ‘:}‘____M:é::\ [Abktuelle Adressdatenhank anzeigen!
L,:-“;' - - [Meuwen Kunden in Adressdatenbank aufnshmen!
[Kundendaten in Adressdatenbank andernl

Wiihlen Sie hitie den Wert aus, fiir den der Infobriefersielliwerden soll! | [BM

Bitte gehen Sie hier den Texi fiir den Serienbrief ein:

Name des Mitarheiters:

[Serienbrief an Kunden mit ausgewahltem Wer i Depot erstellen!
[Serienbrief an alle Kundan in Datanbank arstellan!
[Serienbrief anzeigen!
Bitte geben Sie hier einen Bearbei i is fiir die P lle ein:
{5 Fertig, s sind Fehler auf der Seite aufgetreten. J Atbeitsplatz
Figure 77: User interface of High-Value Customers consultancy*®**%°

15.3. Tourplanning®®

This project describes an enterprise in the transport and logistic field.

9% MS Internet Explorer is part of MS Windows XP

9 Taken from [MeSc03]

*% This section uses [BuHe03]

.A.

283

The enterprise has each day a varying number of customers and a varying order
amount. In this way it is necessary to create each day new delivery notes, new
delivery certifications, new schedules for the drivers and new computing of the
optimal tour. This problem is now automated. Therefore a user interface is generated
with HTML. All data is stored in MS Excel. The optimal tour is computed with Object
Rexx. The delivery notes and schedules are created with MS Word and the delivery

notes are sent with Qualcomm Eudora as e-mail.

The user interface enables the management of the customers, the management of
the fleet of cars, the registering of the orders, the beginning of the computing and the
presentation of the optimal tour. To compute the optimal tours the savings
proceeding is used in MS Excel. Then a table with all tours is generated. The
required data is read from MS Excel to create the schedules with addresses of the
customers and total load. The delivery notes are also created in this way with the
respective data. A confirmation of order gets its data from MS Excel and is sent via
the e-mail program Qualcomm Eudora.

Figure 78 illustrates the user interface for the tour planning.

284

Datei Bearbeiten Ansicht Favoriten Extras 2 T m

Q- © 1 B 6 Pssim Forom @reim © 35 B~ L)
Adresse |@ Dokumente und EinstellungenFHEigene Dateien\DatenStudiumDiplomarbeit\Literatur Wutomatisierung Seminar 0203\Projekte\Grupped Tourenplanung'jndex him| * Wed‘ls&! 2 | Links =
Tronspart &
29 Mar 2005
22:44:335
Menii Entscheiden Sie bitte jetzt, welche Kunde Sie beliefern michten!
Wenn Sie sich sicher sind, dann klicken Sie auf weiter...
Touren
Kunden
Fubhrpark
Bretg 3 et

Figure 78: Tourplanning501502

%L MS Internet Explorer is part of MS Windows XP

%% Taken from [BuHe03]

285

Summary

First, this paper explained the Component Object Model. Then this master thesis
discussed the usage of ActiveX Automation theoretically and practically with
examples like MS Office components, Windows Management Instrumentation (WMI),
Windows Script Host (WSH), MS Agent technology and MS Speech technology. One
section described how to get Object Rexx code. Other chapters showed some useful
tools, the embedding of Object Rexx in HTML/XML or gave an overview over
MS.NET and the possibility to access MS.NET functions with Object Rexx via so-
called COM Callable Wrappers. The .NET part is to emphasize, because Object
Rexx cannot use .NET in the same kind like so-called .NET languages because there
is no language compiler for the .NET Framework available. At the end there were
some examples which show how to use Automation with Object Rexx in a business

context.

Object Rexx is a very powerful instrument for Automation. Compared with other
Automation codes like Visual Basic Script code, the Object Rexx code is often more
direct. Sometimes Object Rexx code works in another kind as Visual Basic Script.
For example, this problem occurs if the Copy message is used. Then the UNKNOAN
method of OLEChj ect class of Object Rexx must be invoked. Another example is
macros of MS Office tools which are sometimes programmed in another kind. Then it
is necessary to understand the system by trial and error. Helpful is here section 5,
which offers instructions to get the Object Rexx code. Section 6 describes the
OLEObj ect class of Object Rexx with its methods. This class enables the usage of
OLE with Object Rexx.

There were sometimes problems with the implementation of events. These problems
occurred with the WBHCont r ol | er object®™®, the MS Speech technology®®* and the
MS Agent technology>® (for this technology is now a new OREXXOLE. DLL available).
These problems arise because Object Rexx is called in this case with a special ID by

Querylnterface and not like normally by 11D I Unknown respectively

%3 ¢.p.13.7.2.3.
4 cp.12.2.
% ¢.p. 11.3.

286

| 1 D_I Di spat ch. For Object Rexx it is not possible to create for each MS OLE
object a particular call. Probably there will be another solution for Object Rexx in the
future [Doe03].

The documentation for OLE, COM and Windows Script Host from Microsoft is in
some cases wrong [En03] or incomplete [Fla03e]. This makes it more difficult for non-
Microsoft languages to use these parts of Microsoft technologies. This probably is a
reason for some developers not to use these languages, but a Microsoft language.
Object Rexx is for the most part compatible with new user interfaces like the MS
Agent technology®® and the MS Speech technology™®’. These user interfaces can be
used for a help service®®® of an application (MS Agent) or to read out texts like MS

509

Word documents®~ or e-mails (MS Speech technology).

Object Rexx provides access to Windows Script Host. This technology enables for

510

example interaction among ActiveX components, the access of the registry”™ or the

implementation of scripts on another machine in a network®!. WMI (Windows

512

Management Instrumentation)>~ can be also used with Object Rexx and provides

control and management information, for example the free space on a hard disk*®.

A great part takes the chapter over MS.NET. This technology is one of various
technologies that can be used for Web Services. The significance of Web Services
will increase in the future. A market research of Forrester Research has the result
that about 84% of the asked European enterprises plan to increase investments in
the Web Service area in 2003 and Cap Gemini means that standardization for Web
Services will be finished in 2006 [DPAO03]. Unsolved problems are billing systems for
this technology [DPA03a].

506 c.p. 11.

507 C.p. 12.

%% ¢ p. code 21
%9 ¢ p.12.1.3.
0 ¢p.13.7.4.2.
1 ¢p.13.7.2.
2 ¢c.p. 10.

>3 ¢.p. 10.4.

287

The MS.NET technology can be used with Object Rexx. Therefore, a detour via the
COM Callable Wrapper must be gone, because Object Rexx has no language
compiler that converts the data to Microsoft Intermediate Language (MSIL).

For MS.NET is the MSIL an intermediate goal. There will be for .NET named
languages the same semantic [Fla03]. A problem that occurs with .NET is the
compatibility. An example therefore is Visual Basic .NET that is an object-oriented
programming language [MLNETcq]. There are many changes between Visual Basic
6.0 and Visual Basic .NET. A lot of elements of Visual Basic 6.0 are reclassified,
renamed, or combined with other programming elements for Visual Basic .NET
[MLNETcr]. That means that there are problems with the backward compatibility of
Visual Basic.NET to Visual Basic [Dr03]. This can be in the future a lock-in trap
[Fla03]. Not until 2005/2006, there will be pure .NET applications [Fla03].

Finally is to say that Object Rexx has compared with other languages, a simple
syntax and is easy to learn. It is suited for the usage in a business, it is compatible
with other MS technologies and it is an efficient alternative to other programming

languages.

288

Bibliography

The Bibliography consists of five sections. The short references are [MLXXXX]
(Microsoft Library Sources), [MLNETxx] (Microsoft Library .NET Framework
Sources), [SPXX] (Microsoft Speech SDK 5.1 Documentation Sources), [SGX]
(System Administration Scripting Guide Sources). Short references that are not part

of these references are described in the part Other Sources.

289

[MLXXXx]

MS Library Sources

The(folder specifications refer to the MS Library. In this case the MS Library was
installed on the machine as part of Visual Studio .NET. Thereby the Microsoft
er was installed on the machine and the folder specification is

r line.

|@ Visual Studia .NET Combined Collection - Microsoft Agent L:_‘LE‘U
File Edt W¥iew Tools iin Help
4= @ fat o) & DMyS{msagentiagentstartpage_7odh.htm + oF ol A’ .
Contents B X | Microsoft Agent 4 X .
Filtered by: Microsof 7Y) [a]|
f¢no Fiten) | Platform S ;\'J-q_ A Microsoft Agent Start Page |
e |

& Security |
i+ Setup and System ¢
Accessibiity. T

= LQ Microsoft Agent

2 W] SDK Docum

Microsoft Agent
Version 2.0

Qverview

General information about
Microsoft Agent.

Purpose

.D igrosoft Agent versibn 2.0 provides unprecedented technology to create innovative,
= 4, Hi onversational ifterfaces for applications and Web pages. It provides powerful fafeianin . .
- €8 Microsoft IME 2 teractivity, and versatility, with incredible ease of development, Dacumentation of the Microsoft
+ Text Services F . 5 : Agent Control and Server
ent is a teéchnology that provides a foundation for more natural ways for interfaces and methods
H User Intetface = with their computers. It is a set of software services that -
12 Windaws Shell < to {noorporate interactive animated characters into their
Sl 2 applications and blpages. These characters can speak, via a text-to-speech engine Offfine References
[ndex 7 x or recorded audio, any even accept spoken woice commands. Microsoft Agent additional reference materials
e 2 empowers developers|tihgxtend the user interface beyond the conventional mouse about user interfaces and
Laak far: and kevboard interactipns seevalent today, human-computer interaction.
] j Enhancing applications| and Wek pages with a visihle interactive personality will hoth 2lso, much of this content is
Filtered by: broaden and humanize the interasgion between users and thair computars. available in printed form in the
Micrasoft Agent Software
1(!10 filter) x Where Applicable Developrment kit book available

from Microsoft® Press® boaoks

"comment marker character ||| There are a limitless nufnber of roles and fultsfions that developers can create for [ISBM 0-7356-0567-X).
operator A these personalities to pie
-- {comment)
- operator
-(m?nus <ign in Boaks Online) « A welcome host could greet new users and prowge 3 guided tour the first time 2 Ecedbadl
- (negative) computer is turned on, an application is run, or a b site is browsed, Make error reports and feature
- operator requests to the Platform SDK
additive operators in C++ + A friandly tutor coyld lead somaonea through a task or aWeacision trae with group at Microsoft, =
camplex; numbers & el e e T T R E G)
Index Results 7 x
Title | Location \ |

: Ready

Figure 79: Microsoft Document Explorer
The short reference is inserted in brackets. The first two letters are M

for MSDN
Library. The next three or four |etters describe the chapter. After that there fo
or two small letters for the further distinction. In the phrase [MLAGTa] this i
which refers to the chapter “Microsoft Agent”. The description of this short reference
contains if available the name af the author, if not there occurs “N.A.” for “No Author”.

Then the headline of the referenced text is written and at least the location is printed.

N

[MLAGTa] N/A/M_LC.I‘.QSO&—A%QN !
ms-help://IMS.VSCC/MS.MSDNVS/msagent/agentstartpage 7gdh.htm

[MLAGTaa] N.A.: Mic ;
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_4egc.htm

[MLAGTD] N.A.: Microsoft Agent. Connected Property
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol _354c.htm

[MLAGTCc] N.A.: Microsoft Agent. Load Method

290

ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_0odm.htm

[MLAGT] N.A.: Microsoft Agent. Top Property
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_3luy.htm
[MLAGTEe] N.A.: Microsoft Agent. Left Property
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_95re.htm
[MLAGTT] N.A.: Microsoft Agent. LanguagelD Property
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_4w?2y.htm
[MLAGT(q] N.A.: Microsoft Agent. Show Method
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_97ca.htm
[MLAGTNh] N.A.: Microsoft Agent. Play Method
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_3isg.htm
[MLAGTI] N.A.: Microsoft Agent. Speak Method
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_6cbu.htm
[MLAGT]] N.A.: Microsoft Agent. Unload Method
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_4b56.htm
[MLAGTK] N.A.: Microsoft Agent. Show Event
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_7wrw.htm
[MLAGTI] N.A.: Microsoft Agent. Height Property
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_85pm.htm
[MLAGTm] N.A.: Microsoft Agent. MoveTo Method
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_03u2.htm
[MLAGTN] N.A.: Microsoft Agent. Hide Method
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_9eqy.htm
[MLAGTOQ] N.A.: Microsoft Agent. Think Method
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_lalm.htm
[MLAGTp] N.A.: Microsoft Agent. ShowPopupMenu Method
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_3ffu.htm
[MLAGT(q] N.A.: Microsoft Agent. Speed Property
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_55gq.htm
[MLAGTT] N.A.: Microsoft Agent. GUID Property
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_323u.htm
[MLAGTS] N.A.: Microsoft Agent. FontName Property
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol _35uy.htm
[MLAGTT] N.A.: Microsoft Agent. Unload Method
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_4b56.htm
[MLAGTU] N.A.: Microsoft Agent. Add Method
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_8kfe.htm
[MLAGTV] N.A.: Microsoft Agent. Caption Property
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_Owyy.htm
[MLAGTwW] N.A.: Microsoft Agent. Voice Property
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_02gy.htm
[MLAGTX] N.A.: Microsoft Agent. Visible Property
ms-help://MS.VSCC/MS.MSDNVS/msagent/pacontrol_91ii.htm
[MLAGTY] N.A.: Microsoft Agent. Visible Property
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_3ega.htm
[MLAGT?Z] N.A.: Microsoft Agent. Enabled Property
ms-help://IMS.VSCC/MS.MSDNVS/msagent/pacontrol_312i.htm
[MLAPIa] N.A.: What is an API.
ms-help://IMS.VSCC/MS.MSDNVS/modcore/html/deovrwhatisapi.htm
[MLAUTa] N.A.: Platform SDK - Automation. Container Application
ms-
help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obn.htm#_0a96_container_ap
plication
[MLAUTaa] N.A.: Returning Objects
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_Omer.htm
[MLAUTab] N.A.: Shutting Down Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2 8z8z.htm
[MLAUTac] N.A.: Creating the Programmable Interface

ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_0Oaat.htm

[MLAUTad]

N.A.: Creating the IlUnknown Interface

291

ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_97s5.htm

[MLAUTae] N.A.: Creating the IDispatch Interface
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_615x.htm

[MLAUTaf] N.A.: Implementing Dual Interfaces
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_40fn.htm

[MLAUTag] N.A.: Registering Interfaces
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_0dv7.htm

[MLAUTah] N.A.: ProxyStubClsid32
ms-help://IMS.VSCC/MS.MSDNVS/com/reg_83ua.htm

[MLAUTai] N.A.: Creating Class ldentifiers
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9vg3.htm

[MLAUTaj] N.A.: Implementing the IEnumVARIANT Interface
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm _hh2/chap2_7cmd.htm

[MLAUTaK] N.A.: Implementing the _NewEnum Property
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_ 2ws9.htm

[MLAUTal] N.A.: What Is a Type Library?
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl 5mzj.htm

[MLAUTam] N.A.: Type Libraries
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_7jxv.htm

[MLAUTan] N.A.: Creating a Type Library
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_7i49.htm

[MLAUTao0] N.A.: Building a Type Library
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_1xql.htm

[MLAUTap] N.A.: Registering a Type Library
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_8909.htm

[MLAUTaq] N.A.: HRESULT
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obs.htm# 0a96_hresult

[MLAUTar] N.A.: Returning an Error
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9po2.htm

[MLAUTas] N.A.: Accessing ActiveX Objects
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap3_0mlv.htm

[MLAUTat] N.A.: Type Description Interfaces
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap9 49pv.htm

[MLAUTau] N.A: Type Building Interfaces
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap10 725v.htm

[MLAUTav] N.A.: Error Handling Interfaces
ms-help://MS.VSCC/MS.MSDNVS/automat/htm _hh2/chap11 Ofgr.htm

[MLAUTaw] N.A:. IClassFactory
ms-help://MS.VSCC/MS.MSDNVS/com/cmi_c_9mk9.htm

[MLAUTax] N.A.: IDataObject
ms-help://MS.VSCC/MS.MSDNVS/com/oin_d_8cl0.htm

[MLAUTay] N.A.: IServiceProvider Interface
ms-
help://IMS.VSCC/MS.MSDNVS/ICom/workshop/components/com/reference/ifaces/IServ
iceProvider/IServiceProvider.htm

[MLAUTaz] N.A.: IPictureDisp
ms-help://IMS.VSCC/MS.MSDNVS/com/ctin_p_4gfk.htm

[MLAUTD] N.A.: Platform SDK - Automation. In-place activation
ms-
help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obt.htm# 0a96_in_place_acti
vation

[MLAUTDba] N.A.: IPicture
ms-help://MS.VSCC/MS.MSDNVS/com/ctin_p 482t.htm

[MLAUTDbb] N.A.: IOleContainer
ms-help://MS.VSCC/MS.MSDNVS/com/oin_oc_68mgq.htm

[MLAUTbc] N.A.: IOleClientSite
ms-help://MS.VSCC/MS.MSDNVS/com/oin_oc_5I2d.htm

[MLAUTDbd] N.A.: IFontDisp

ms-help://IMS.VSCC/MS.MSDNVS/com/ctin_a20_7mls.htm

[MLAUTbe]

N.A.: IRecordInfo Interface

292

ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap12_69wl.htm

[MLAUTDf] N.A.: ISpecifyPropertyPages
ms-help://IMS.VSCC/MS.MSDNVS/com/ctin_q2z_49ir.htm
[MLAUTDbQ] N.A.: Dispatch identifier (DISPID)
ms-
help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4obo.htm# 0a96_dispatch_ide
ntifier_dispid_
[MLAUTCc] N.A.: Automation
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/autoportal 7145.htm
[MLAUTA] N.A.: Overview of Automation
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl 3rlqg.htm
[MLAUTE] N.A.: What Is An ActiveX Client?
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl 7wtb.htm
[MLAUT] N.A.: What Is An ActiveX Object?
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl 8xr3.htm
[MLAUTQ] N.A.: Why Expose Objects?
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl_4g4f.htm
[MLAUTh] N.A.: How Do Clients and Objects Interact?
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm _hh2/chapl 2bmn.htm
[MLAUTI] N.A.: Accessing an Object Through the IDispatch Interface
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl_7blh.htm
[MLAUT]] N.A.: Accessing an Object Through the VTBL
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl_7ncc.htm
[MLAUTK] N.A.: In-Process and Out-of-Process Server Objects
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chapl_5rw3.htm
[MLAUTI] N.A.: Exposing ActiveX Objects
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9ngr.htm
[MLAUTmM] N.A.: Exposing Objects
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_1d9v.htm
[MLAUTN] N.A.: Initializing Exposed Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_07hv.htm
[MLAUTO] N.A.: Olelnitialize
ms-help://MS.VSCC/MS.MSDNVS/com/ofn_oa2k 7w85.htm
[MLAUTp] N.A.: RegisterActiveObject
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap5 2k38.htm
[MLAUTAq] N.A.: running object table (ROT)
ms-
help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/gloss_4oc2.htm#_0a96_running_obje
ct table ROT
[MLAUTT] N.A.: Implementing Exposed Objects
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_3m2b.htm
[MLAUTS] N.A.: Implementing a Class Factory
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9ng9.htm
[MLAUTL] N.A.: Exposing the Application Object
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_54fo.htm
[MLAUTU] N.A.: Creating a Registration File
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_6msl.htm
[MLAUTV] N.A.: Registering the Application
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_9smm.htm
[MLAUTW] N.A.: Registering Classes
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_7103.htm
[MLAUTX] N.A.: Releasing OLE and Objects
ms-help://IMS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2 5sz7.htm
[MLAUTY] N.A.: OleUninitialize
ms-help://MS.VSCC/MS.MSDNVS/com/ofn_ol2z_13vp.htm
[MLAUTZ] N.A.: Retrieving Objects
ms-help://MS.VSCC/MS.MSDNVS/automat/htm_hh2/chap2_0f77.htm
[MLAXCa] Cluts, Nancy: Microsoft ActiveX Controls Overview

ms-help://MS.VSCC/MS.MSDNVS/dnaxctrl/html/msdn_actxcont.htm

[MLAXCb]

N.A.: ActiveX Control Tutorial

293

ms-help://IMS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/tutorial.htm

[MLAXCc]

N.A.: Introduction to ActiveX Controls. Persistence interfaces

ms-
help://IMS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/intro.htm#Persist
ence_Interface

[MLAXCd]

N.A.: Introduction to ActiveX Controls. Properties, Methods (through IDispatch and
other dispinterfaces)

ms-
help://MS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/intro.htm#Proper
ties

[MLAXCe]

N.A.: Introduction to ActiveX Controls. Events
ms-
help://MS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/intro.htm#Events

[MLAXCH]

N.A.: Licensing ActiveX Controls. Design-Time Licensing

ms-
help://IMS.VSCC/MS.MSDNVS/ActiveX/workshop/components/activex/licensing.htm#de
sign_lic

[MLCO+a]

N.A.: COM+ (Components Service)
ms-help://IMS.VSCC/MS.MSDNVS/cossdk/htm/complusportal 909x.htm

[MLCO+b]

N.A.: What's new in COM+
ms-help://IMS.VSCC/MS.MSDNVS/cossdk/htm/whatsnewcomplus_350z.htm

[MLCO+]

N.A.: COM+ Programming Overview
ms-help://IMS.VSCC/MS.MSDNVS/cossdk/htm/pgintro_programmingoverview_9kjb.htm

[MLCOMa]

N.A.:The Component Object Model.
ms-help://IMS.VSCC/MS.MSDNVS/com/com_757w.htm

[MLCOMaa]

N.A.: Registering Components
ms-help://MS.VSCC/MS.MSDNVS/com/registry_8hrn.htm

[MLCOMab]

N.A: Classifying Components
ms-help://MS.VSCC/MS.MSDNVS/com/registry 5s37.htm

[MLCOMac]

N.A.: Registry Editor
ms-help://MS.VSCC/MS.MSDNVS/com/registry_3pgy.htm

[MLCOMad]

N.A.: IClassFactory
ms-help://MS.VSCC/MS.MSDNVS/com/cmi_c_9mk9.htm.

[MLCOMae]

N.A.: IClassFactory2
ms-help://MS.VSCC/MS.MSDNVS/com/cmi_c_641e.htm

[MLCOMaf]

N.A.: IConnectionPointContainer
ms-help://IMS.VSCC/MS.MSDNVS/com/cmi_c_5h2g.htm

[MLCOMag]

N.A.: IDataObject
ms-help://IMS.VSCC/MS.MSDNVS/com/oin_d_8cl0.htm

[MLCOMah]

N.A.: Monikers
ms-help://IMS.VSCC/MS.MSDNVS/com/monikers_1xpv.htm

[MLCOMai]

N.A.: OLE Moniker Implementations
ms-help://IMS.VSCC/MS.MSDNVS/com/monikers_3boz.htm

[MLCOMaj]

N.A.: File Monikers
ms-help://IMS.VSCC/MS.MSDNVS/com/monikers_5gqc.htm

[MLCOMak]

N.A.: Composite Monikers
ms-help://IMS.VSCC/MS.MSDNVS/com/monikers_0sj7.htm

[MLCOMal]

N.A.: tem Monikers
ms-help://MS.VSCC/MS.MSDNVS/com/monikers_5tgz.htm

[MLCOMam]

N.A.:Anti-Monikers
ms-help://IMS.VSCC/MS.MSDNVS/com/monikers_2lbn.htm

[MLCOMan]

N.A.: Pointer Monikers
ms-help://IMS.VSCC/MS.MSDNVS/com/monikers_1fxv.htm

[MLCOMao]

N.A.: Class Monikers
ms-help://IMS.VSCC/MS.MSDNVS/com/monikers_7r03.htm

[MLCOMD]

N.A.: COM Objects and Interfaces.
ms-help://IMS.VSCC/MS.MSDNVS/com/com_Oalv.htm

[MLCOMC]

N.A.: Interfaces and Interface Implementations.
ms-help://IMS.VSCC/MS.MSDNVS/com/com_ 2r5f.htm

[MLCOM(d]

N.A.: Interface Pointers and Interfaces.

294

ms-help://IMS.VSCC/MS.MSDNVS/com/com_37w3.htm

[MLCOMe] N.A.: lUnknown and Interface Inheritance.
ms-help://IMS.VSCC/MS.MSDNVS/com/com_9v6t.htm
[MLCOM(T] N.A.: IlUnknown::Querylnterface.
ms-help://IMS.VSCC/MS.MSDNVS/com/cmi_q2z_7fvp.htm
[MLCOMg] N.A.: Managing Object Lifetimes Through Reference Counting.
ms-help://IMS.VSCC/MS.MSDNVS/com/com_63fr.htm
[MLCOMN] N.A.: lUnknown::AddRef.
ms-help://IMS.VSCC/MS.MSDNVS/com/cmi_q2z_3rja.htm
[MLCOMI] N.A.: lUnknown::Release
ms-help://MS.VSCC/MS.MSDNVS/com/cmi_g2z_59np.htm
[MLCOM;J] N.A.: The COM Library.
ms-help://MS.VSCC/MS.MSDNVS/com/com_1fuh.htm
[MLCOMK] N.A.: Processes, Threads, and Apartments
ms-help://IMS.VSCC/MS.MSDNVS/com/aptnthrd 8po3.htm
[MLCOMI] N.A.: COM Clients and Servers.
ms-help://MS.VSCC/MS.MSDNVS/com/comext_8p2r.htm
[MLCOMmM] N.A.: Getting a Pointer to an Object.
ms-help://IMS.VSCC/MS.MSDNVS/com/comext_1gvo.htm
[MLCOMN] N.A.: Class identifier (CLSID)
ms-
help://IMS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm# _oleglos_Class_identifier_CL
SID
[MLCOMO] N.A.: COM Class Objects and CLSIDs.
ms-help://IMS.VSCC/MS.MSDNVS/com/comext_2s4z.htm
[MLCOMp] N.A.: COM Server Responsibilities
ms-help://IMS.VSCC/MS.MSDNVS/com/comext_99df.htm
[MLCOM(q] N.A.: Registering COM Servers
ms-help://IMS.VSCC/MS.MSDNVS/com/comext_05pv.htm
[MLCOMTr] N.A.: GUID Creation and Optimizations
ms-help://MS.VSCC/MS.MSDNVS/com/comext_7w1f.htm
[MLCOMSs] N.A.: Inter-Object Communication
ms-help://MS.VSCC/MS.MSDNVS/com/comext_6h7y.htm
[MLCOM{] N.A.: Defining COM Interfaces
ms-help://IMS.VSCC/MS.MSDNVS/com/custintf_1777.htm
[MLCOMu] N.A.:.Interface Design Rules
ms-help://MS.VSCC/MS.MSDNVS/com/custintf_7rn7.htm
[MLCOMV] N.A.: Designing Remotable Interfaces
ms-help://IMS.VSCC/MS.MSDNVS/com/custintf_3103.htm
[MLCOMwW] N.A.: Registering COM Applications
ms-help://MS.VSCC/MS.MSDNVS/com/registry_32er.htm
[MLCOMX] N.A.: Registry Hierarchy
ms-help://IMS.VSCC/MS.MSDNVS/com/registry 9k3d.htm
[MLCOMy] N.A.: Classes and Servers
ms-help://IMS.VSCC/MS.MSDNVS/com/registry 933n.htm
[MLCOMZ] N.A.: Checking Registration
ms-help://IMS.VSCC/MS.MSDNVS/com/registry 5b8u.htm
[MLDCOa] N.A.: DCOM Technical Overview
ms-help://IMS.VSCC/MS.MSDNVS/dndcom/html/msdn_dcomtec.htm
[MLGLOa] N.A.: Glossary
ms-help://IMS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm# oleglos
[MLGLOD] N.A.: Glossary. Container Application
ms-
help://IMS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos_Container_applicatio
n
[MLGLOC] N.A.:Glossary. Uniform Data Transfer

ms-
help://IMS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm#_oleglos_Uniform_data_transf
er

[MLGLOd]

N.A.: Glossary. Moniker

295

ms-help://IMS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm# oleglos_Moniker

[MLGLOe] N.A.: Glossary. Class factory
ms-help://IMS.VSCC/MS.MSDNVS/com/newgloss_8xvd.htm# oleglos Class_factory

[MLMIDLa] N.A.: The Header Files
ms-help://IMS.VSCC/MS.MSDNVS/midl/mi-cmpil_60ofn.htm

[MLMMGa] Prosise, Jeff: Windows 2000: Asynchronous Method Calls Eliminate the Wait for COM
Clients and Servers.
ms-help://IMS.VSCC/MS.MSDNVS/dnmag00/html/async.htm

[MLMMGDb] N.A.: Automating COM+ Administration.
ms-help://IMS.VSCC/MS.MSDNVS/dnmag00/html/instincts0900.htm

[MLMTSa] N.A.: Microsoft Transaction Server)
ms-help://MS.VSCC/MS.MSDNVS/mts/mtsportal_1lwl.htm

[MLOLEa] Brockschmidt, Kraig: What is OLE really about.
ms-help://MS.VSCC/MS.MSDNVS/dnolegen/html/msdn_aboutole.htm

[MLOLED] Brockschmidt, Kraig: OLE Integration Technologies: A Technical Overview
ms-help://MS.VSCC/MS.MSDNVS/dnolegen/html/msdn_ddjole.htm

[MLSRIa] N.A.: VarEnum Enumeration
ms-
help://MS.VSCC/MS.MSDNVS/cpref/html/frirfSystemRuntimelnteropServicesVarEnum
ClassTopic.htm

[MLWMIa] N.A.: About WMI
ms-help://IMS.VSCC/MS.MSDNVS/wmisdk/aboutwmi_1lpl.htm

[MLWMIDb] N.A.: List All Services on the System
ms-help://IMS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic2

[MLWMiIc] N.A.: Win32_OperatingSystem
ms-help://IMS.VSCC/MS.MSDNVS/wmisdk/r_320s4_0h7x.htm

[MLWMId] N.A.: Win32_DiskPartition
ms-help://IMS.VSCC/MS.MSDNVS/wmisdk/r_320s2_9I7y.htm

[MLWMIe] N.A.: Listing All Drive Partitions with Less Than 20 Percent Free Space
ms-help://IMS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic4

[MLWMIf] N.A.: Win32_LogicalDisk
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/r_32hard3 43vv.htm

[MLWMIg] N.A.: Launch Notepad Through WMI
ms-help://MS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic8

[MLWMIh] N.A.: Reboot a Remote Machine
ms-help://MS.VSCC/MS.MSDNVS/dnwmi/html/mngwmi.htm#mngwmi_topic7

[MLWMII] N.A.: Win32Shutdown Method in Class Win32_OperatingSystem
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/r _320s4 5gdp.htm

[MLWMIj] N.A: Creating a WMI Script Using VBScript
ms-help://MS.VSCC/MS.MSDNVS/wmisdk/us_approg_2ruc.htm

[MLWSHa] N.A.: Scripts and Automating Windows
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconWhatlsWSH.htm

[MLWSHaa] N.A.: RemoveNetworkDrive Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthremovenetworkdrive.htm

[MLWSHab] N.A.: AddWindowsPrinterConnection Method
ms-
help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthaddwindowsprinterconnection.htm

[MLWSHac] N.A.: EnumPrinterConnections Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthenumprinterconnections.htm

[MLWSHad] N.A.: RemovePrinterConnection Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthremoveprinterconnection.htm

[MLWSHae] N.A.: ComputerName Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprocomputername.htm

[MLWSHaf] N.A.: UserName Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprousername.htm

[MLWSHag] N.A.:UserDomain Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsprouserdomain.htm

[MLWSHah] N.A.: SendKeys Method

ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsMthSendKeys.htm

[MLW SHai]

N.A.: Run Method

296

ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthrun.htm

[MLWSHaj] N.A.: RegWrite Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsMthRegWrite.htm
[MLWSHak] N.A.: RegRead Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthregread.htm
[MLWSHal] N.A.: RegDelete Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthregdelete.htm
[MLWSHam] | N.A.: WshShortcut Object
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsObjWshShortcut.htm
[MLWSHan] N.A.: WshUrlIShortcut Object
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjWshUrIShortcut.htm
[MLWSHao] N.A.: WshSpecialFolders Object
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsObjWshSpecialFolders.htm
[MLWSHap] N.A.: SpecialFolders Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsprospecialfolders.htm
[MLWSHadq] N.A.: CreateShortcut Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsMthCreate Shortcut.htm
[MLWSHar] N.A.: Description Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProDescription.htm
[MLWSHas] N.A.: Hotkey Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsProHotkey.htm
[MLWSHat] N.A.: IconLocation Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsProlconLocation.htm
[MLWSHau] N.A.: TargetPath Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsProTargetPath.htm
[MLWSHav] N.A.: WindowStyle Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsProWindowStyle.htm
[MLWSHaw] N.A.: WorkingDirectory Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsProW orkingDirectory.htm
[MLWSHax] N.A.: DeleteFile Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthDeleteFile.htm
[MLWSHay] N.A.:WshEnvironment Object
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjWshEnvironment.htm
[MLWSHaz] N.A.: Environment Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsProEnvironment.htm
[MLWSHDb] N.A.: Hosting Environments and Script Engines
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconHostingEnvironments.htm
[MLWSHDba] N.A.: Item Property
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsproitem.htm
[MLWSHDbDb] N.A.:length Property (WshEnvironment object)
ms-
help://IMS.VSCC/MS.MSDNVS/script56/html/wslrflengthpropertywshenvironmentobject.
htm
[MLWSHbc] N.A.: WshScriptExec Object
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfScriptExecObject.htm
[MLWSHbd] N.A.: Exec Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfExecMethod.htm
[MLWSHDbe] N.A.: Status Property (WshScriptExec)
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfStatusProperty.htm
[MLW SHbf] N.A.: CreateObject Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthcreateobject.htm
[MLWSHbg] N.A.: The FileSystemObject Object Model
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/sgFileSystemObjectModel.htm
[MLWSHDbh] N.A.:FileSystemObject Objects
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/sgFileSystemObjects.htm
[MLW SHbi] N.A.:Programming the FileSystemObject
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/sgProgrammingFile SystemObject.htm
[MLW SHDbj] N.A.: AvailableSpace Property

ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsproAvailableSpace.htm

[MLW SHbK]

N.A.: GetDrive Method

297

ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthGetDrive.htm

[MLWSHDbI] N.A.: GetDriveName Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthGetDriveName.htm
[MLWSHbm] | N.A.: DriveType Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsproDriveType.htm
[MLWSHbnN] N.A.: CreateFolder Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthCreateFolder.htm
[MLWSHDbOo] N.A.: OpenTextFile Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthOpenTextFile.htm
[MLWSHbp] N.A.: WriteLine Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthWriteLine.htm
[MLWSHbq] N.A.: Attributes Property
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsproAttributes.htm
[MLWSHbr] N.A.: GetFile Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthGetFile.htm
[MLWSHDbs] N.A.: CopyFile Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/jsmthCopyFile.htm
[MLWSHDbt] N.A.: DeleteFile Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthDeleteFile.htm
[MLWSHbu] N.A.: DeleteFolder Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthDeleteFolder.htm
[MLWSHbv] N.A.: Delete Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthDelete.htm
[MLWSHbw] N.A.: GetFolder Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthGetFolder.htm
[MLWSHDbx] N.A.: Dictionary Object
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsobjDictionary.htm
[MLWSHby] N.A.: Add Method (Dictionary)
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthadddictionary.htm
[MLWSHDbz] N.A.: Exists Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/jsmthexists.htm
[MLWSHCc] Cluts, Nancy: What Scripting Is, and Why and When to Use It
ms-help://IMS.VSCC/MS.MSDNVS/dnscrpt/html/allabout.htm#allabout_topic2
[MLWSHCca] N.A.:Security and Windows Script Host
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconSecurityWindowsScriptHost.htm
[MLWSHCcb] N.A.:CryptoAPI Tools
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconWinTrust.htm
[MLWSHcc] N.A.:Signing a Script
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconSigningScript.htm
[MLWSHcd] N.A.: Software Restriction Policies
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsconWinSafer.htm
[MLWSHCce] N.A.:Signature Verification Policy
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconTrustPolicy.htm
[MLW SHCcf] N.A.: SignFile Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfSignFileMethod.htm
[MLWSHCcqg] N.A.: Verifying a Script:
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconverifyingscript.htm
[MLWSHCch] N.A.: VerifyFile Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslirfverifyfilemethod.htm
[MLW SHci] N.A.: Sign Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfSignMethod.htm
[MLW SHCcj] N.A.: Verify Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfverifymethod.htm
[MLWSHCcK] N.A.:Script Components Overview
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letovervw.htm
[MLWSHCcI] N.A.:Introducing Windows Script Components
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letintro.htm
[MLWSHcm] | N.A.: How Script Components Work

ms-help://MS.VSCC/MS.MSDNVS/script56/html/lethow.htm

[MLWSHcn]

N.A.: Script Component File Contents

298

ms-help://IMS.VSCC/MS.MSDNVS/script56/html/letfilecont.htm

[MLWSHCco] N.A.:<?component?>
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/leteleqgscriptlet.htm
[MLWSHCcp] N.A.: Creating Registration Information
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/letcreatereg.htm
[MLWSHCcq] N.A.:Registering a Script Component
ms-
help://IMS.VSCC/MS.MSDNVS/script56/html/letregS.htm#script_componentsmiscunregi
stering
[MLWSHCcr] N.A.: Creating a Script Component Type Library
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/letcreatetypelib.htm
[MLWSHCcs] N.A.: Exposing Methods
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letexpmth.htm
[MLWSHCct] N.A.: Exposing Properties
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letexppro.htm
[MLWSHCcu] N.A.: Exposing Events
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letexpevt.htm
[MLWSHcv] N.A.: <property> Element
ms-help://MS.VSCC/MS.MSDNVS/script56/html/leteleproperty.htm
[MLWSHcw] N.A.: <method> Element
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/leteleMethod.htm
[MLWSHCcx] N.A.: <event> Element
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/leteleEvent.htm
[MLWSHCcy] N.A.: Using the Script Component Wizard
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/letusingwiz.htm
[MLWSHCcz] N.A.:ConnectObject Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsMthConnectObject.htm
[MLWSH(d] N.A.: Creating Scripts that Can Be Used by WSH
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconCreatingScripts.htm
[MLWSHda] N.A.: Start Event
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfstartevent.htm
[MLWSHdb] N.A.:Using a Script Component in an Application
ms-help://MS.VSCC/MS.MSDNVS/script56/html/letusingapp.htm
[MLWSHdCc] N.A.:Registering a Script Component
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/letregs.htm
[MLWSHe] Cluts, Nancy: Server-Side Scripting
ms-help://MS.VSCC/MS.MSDNVS/dnscrpt/html/allabout.htm#allabout_topic6
[MLW SHf] N.A.: Hosting Environments and Script Engines
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconHostingEnvironments.htm
[MLWSH(g] N.A.: Microsoft Windows Script Interfaces-Introduction
ms-help://MS.VSCC/MS.MSDNVS/script56/html/scripting.htm
[MLWSHh] N.A.: Types of Script Files
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsconScriptFiles.htm
[MLWSHI] N.A.: Dividing Scripts into Reusable Parts
ms-
help://IMS.VSCC/MS.MSDNVS/script56/html/wsconSplittingYourScriptsintoReusabePie
ces.htm
[MLWSH;]] N.A.: Overview of Windows Script Host in Windows 2000
ms-help://IMS.VSCC/MS.MSDNVS/kbwinnt/Source/ntrelease/q232211.htm
[MLWSHK] N.A.: Setting and Customizing Script Properties (.wsh)
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsCreateW SH.htm
[MLWSHI] N.A.: Running Scripts from the Command Prompt
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsRunCscript.htm
[MLWSHmM] N.A.: Running Scripts from Windows
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsRunWscript.htm
[MLWSHnN] N.A.: Windows Script Host Object Model

ms-
help://IMS.VSCC/MS.MSDNVS/script56/html/wsconWindowsScriptHostObjectModel.ht
m

[MLWSHo]

N.A.: WshArguments Object

299

ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsobjWshArguments.htm

[MLWSHp] N.A.: Sleep Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsMthSleep.htm

[MLWSHq] N.A.: length Property (WshArguments object)
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsprolength.htm

[MLWSHTr] N.A.: Count Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfcountmethod.htm

[MLWSHSs] N.A.: Exists Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfexistsmethod.htm

[MLW SHt] N.A.: WshController Object
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfControllerObject.htm

[MLWSHu] N.A.: CreateScript Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfCreateScriptMethod.htm

[MLWSHV] N.A.: Status Property (WshRemote)
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wslrfstatuspropertyremote.htm

[MLW SHw] N.A.: Execute Method
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wslrfexecutemethod.htm

[MLWSHX] N.A.: WshNetwork Object
ms-help://MS.VSCC/MS.MSDNVS/script56/html/wsObjwshNetwork.htm

[MLWSHYy] N.A.: EnumNetworkDrives Method
ms-help://IMS.VSCC/MS.MSDNV S/script56/html/wsmthenumnetworkdrives.htm

[MLWSHZ] N.A.: MapNetworkDrive Method
ms-help://IMS.VSCC/MS.MSDNVS/script56/html/wsmthmapnetworkdrive.htm

[MLWSIa] N.A.: Predefined Keys

ms-help://IMS.VSCC/MS.MSDNVS/sysinfo/regapi_1linn.htm

300

[MLNETXX]
Microsoft Library .NET Framework Sources

refer to the .NET Documentation®**. In this case this

installed on the machine as part of the Visual Studio .NET. It is

the documentation from the Microsoft Homepage °*°.

|ﬂ .NET Framework SDK Documentation \Over\riew of the .NET Framework L:.‘LE‘U #
File Edt W¥iew Tools
{m @ fat o) % Jfcpovrintroductiontonetframeworksdk.htm & fF 4 A: o
Cortents 71 x ey 4k X% [
Filtered by:

|.NET Framewark DK Documaj Overview of the .NET Framework

o _@& NET Framework SOE o The \MET Framewark iz a few computing platform that simplifias application d P in the highly distributed enuiranment of the Intarnat, The .NET 1l
h :

isd d to fUHfll the fellowing objs ctives:
= U Getting Started

NET Framewo
- [2] About the .NEY

B Product Suppa

+ @ Inside the NET Frg
5 Q] Programming with |
+ Q] Building Applicatior

#1 € Debuging and Pre Tha HET Framawstlhias Guslnatn Compensnts| the comment|angitage ramime and the HET Erariavorh.class i brasiTha conmian: anauase e e il

* Ql Deploying Applicati foundation of the \MET Framesork, ¥ou can think of the runtime as an agentthat manages code at enecution time, providing core services such as mermary

i+ 4 Corfiauring Aoolic: ¥ management, thread managenjent, and remoting, while alzo enforcing strict type safety and otherforms of code accuracy that enzure sacurity and
robustness. In fact, the concept of code managementis a fundamental principle of the runtime. Code that targets the runtime iz known a2z managed code,

while code that does not target the runtime is known as unmanaged code. The clazzs library, the other main camponent of the \MET Framewark, is a

| Index I % comprehensive, object-arienteld collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user

= - interface (GUI) applications tolapplications based on the latestinnovations provided by ASP.MET, such as Web Forms and XML Web services,

a

tion i that minimi; software depl and i q conflicts,
To provide a code-exection enviranment that quarantees safe execution of code, including code created by an unknown or semi-trusted third party.

To provide a code-esecution environment that eliminates the performance problems of scripted or interpreted environments,

To make the developer ehiperience consistent across widely varying types of applications, such as Windows-based applications and Web-based
applications,

Ta build all communicatidn en industry standards to ensure that code based on the .MET Framework can integrate with any other code,

Look for: The ,MET Framework can be hokted by unmanaged components that load the common language runtime into their processes and initiate the execution of

J ﬂ managed code, thereby creating a software environment that can enploit both managed and unmanaged features, The .MET Framework not only provides
several runtime hosts, but also pupports the development of third-party runtime hosts,

Filkered by:
].NET Framework SDK Ducumelj

For example; ASP.MET hosts the runtime to provide a scalable, server-side environment for managed code, ASP.MET works directly with the runtime to
enable Web Forms applications §nd XML Web services, both of which are dizcussed later in this topic,

Internet Exploreris an enample bf an unmanaged application that hosts the runtime (in the form of 2 MIME type extension), Using Internet Enplorer to host

" comment marker characker | the runtime enablas you to embel managed components or Windows Forms controls in HTML decurnents. Hosting the runtire in this way makes managed
-- operator | maobile code (similar to Micrasa ActiveX® contralz) possible, but with significant improvements that only managed code can offar, such as zemi-trusted
- operator 1 exacution and secure izolated fil storage.

described The following illustration shows tHe relationship of the commaon language runtime and the class library to vour applications and to the overall system, The

precedence and associativity illustration alse shows how managded code operates within a larger architecture,

synkax

-NET Framework in context
unary operators

=1 C# compiler option

-= operator it V
Index Resulks 7 X
Title Location \
: Ready
Figure 80: Microsoft Document Explorer
514

Start-> All Programs->.NET Framework| SDK Documentation

°15 http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-

files/027/000/976/msdncompositedoc.xml&lrame=true

The short reference is inserted in

Library. The next three or four letters describe the chapter. In the phrase [MLNETa]
this is .NET. After that there follow one or two small letters for the further distinction.
The description of this short reference contains if available the name of the author, if

not there occurs “N.A.” for “No Author”. Then the headline of the referenced text is

written and at least the location is printed.

[MLNETa] | N-A7Overview of the .NET Framework
ms-

. MS.NETFrameworkSDK/cpguidenf/htmI/cpovrintroductiontonetfraW

[MLNETaa] N.A.: Creating Active Directory Components

ms-
help://IMS.NETFrameworkSDK/cpguidenf/hntml/cporilntroductionToActiveDirectoryObject
s.htm

[MLNETab] N.A.: Active Directory Technology Backgrounder

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconWhatYouNeedToKnowAboutActive
DirectoryADSI.htm

[MLNETac] N.A.: Generating and Compiling Source Code Dynamically in Multiple Languages

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpcongeneratingcompilingsourcecodedy
namicallyinmultiplelanguages.htm

[MLNETad] N.A.: Using the CodeDOM
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconusingcodedom.htm

[MLNETae] N.A.: Generating Source Code and Compiling a Program from a CodeDOM Graph

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpcongeneratingsourcecodecompilingpro
gramfromcodedomgraph.htm

[MLNETaf] N.A.: Developing Components

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcomponentprogrammingessentials.
htm

[MLNETag] N.A.: Class vs. Component vs. Control

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconclassvscomponentvscontrol.htm

[MLNETah] N.A.: Design-Time Attributes for Components

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpcondesign-
timeattributesforcomponents.htm

[MLNETai] N.A.: Developing World-Ready Applications

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpcondesigningglobalapplications.htm

[MLNETaj] N.A.: Developing World-Ready Applications Overview

ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpcondevelopingworld-
readyapplicationsoverview.htm

[MLNETaK] N.A.: Localizability
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconlocalizability.htm

[MLNETal] N.A.: Including Asynchronous Calls

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconasynchronousprogramming.htm

302

[MLNETam]

N.A.: Asynchronous Programming Overview

ms-
help://MS.NETFrameworkSDK/cpguidenf/ntml/cpovrasynchronousprogrammingovervie
w.htm

[MLNETan]

N.A.: Creating Messaging Components

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cporilntroductionToMessage-
BasedFrameworkFeatures.htm

[MLNETao0]

N.A.: Introduction to Messaging

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroductionToMessaginginVisualS
tudio.htm

[MLNETap]

N.A.: Message Queues and Messaging Technology Backgrounder

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconWhatYouNeedToKnowAboutMess
ageQueues.htm

[MLNETaq]

N.A.: Managing Applications Using WMI

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconmanagingapplicationsusingwmi.ht
m

[MLNETar]

N.A.: Using WMI with the .NET Framework

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconusingwmiwiththenetframework.htm

[MLNETas]

N.A.: Processing Transactions
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconprocessingtransactions.htm

[MLNETat]

N.A.: Transaction Processing Fundamentals

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpcontransactionprocessingfundamental
s.htm

[MLNETau]

N.A.: Transaction Models
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpcontransactionmodels.htm

[MLNETav]

N.A.: Manual Transactions
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconmanualtransactions.htm

[MLNETaw]

N.A.: Automatic Transactions
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconautomatictransactions.htm

[MLNETax]

N.A.: Securing Applications
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuringyourapplication.htm

[MLNETay]

N.A.: Key Security Concepts
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconkeyconceptsinsecurity.htm

[MLNETaz]

N.A.: Permissions
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconpermissions.htm

[MLNETDb]

N.A.: Common Language Runtime Overview

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcommonlanguageruntimeoverview.
htm

[MLNETba]

N.A.: Type Safety and Security
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpcontypesafetysecurity.htm

[MLNETbb]

N.A.: Security Policy
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconsecuritypolicy.htm

[MLNEThbc]

N.A.: Principal
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconprincipal.htm

303

[MLNETbd]

N.A.: Authentication
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconauthentication.htm

[MLNETbe]

N.A.: Authorization
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconauthorization.htm

[MLNETDbf]

N.A.: Code Access Security
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcodeaccesssecurity.htm

[MLNETbg]

N.A.: Role-Based Security
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconrole-basedsecurity.htm

[MLNETDbga]

N.A.: Security Policy Management
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuritypolicymanagement.htm

[MLNETbh]

N.A.: Introduction to Role-Based Security

ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroductiontorole-
basedsecurity.htm

[MLNETbha]

N.A.: Security Policy Model
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconsecuritypolicymodel.htm

[MLNETbi]

N.A.: Cryptography Overview
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcryptographyoverview.htm

[MLNETbia]

N.A.: Security Tools
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsecuritytools.htm

[MLNETDbj]

N.A.: .NET Framework Cryptography Model

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconnetframeworkcryptographymodel.h
tm

[MLNETbja]

N.A.: Creating System Monitoring Components

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cporilntroductionToMonitoringFramework
Features.htm

[MLNETbK]

N.A.: Monitoring Performance Thresholds

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cporilnstrumentingPerformanceThreshol
dsOnServer.htm

[MLNETDI]

N.A.: Logging Application, Server, and Security Events

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cporiLoggingNTApplicationServerSecurit
yEvents.htm

[MLNETbm]

N.A.: Monitoring Windows Services

ms-
help://MS.NETFrameworkSDK/cpguidenf/ntml/cporiMonitoringWindowsServices.htm

[MLNETbn]

N.A.: Monitoring and Managing Windows Processes

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cporiMonitoringManagingProcesses.htm

[MLNETbo]

N.A.: Creating ASP.NET Web Applications

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcreatingaspwebapplications.htm

[MLNETbp]

N.A.: Introduction to ASP.NET
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroductiontoasp.htm

[MLNETbq]

N.A.: Introduction to ASP.NET
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroductiontoasp.htm

[MLNETbr]

N.A.: Introduction to Windows Service Applications

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroductionTONT ServiceApplicatio

304

ns.htm

[MLNETbs]

N.A.: Introduction to Windows Forms
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroductionToWFCForms.htm

[MLNETDbt]

N.A.: Enhancing Design-Time Support

ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconenhancingdesign-
timesupport.htm

[MLNETbu]

N.A.: Design-Time Architecture

ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconnetframeworkdesign-
timearchitecture.htm

[MLNETbv]

N.A.: Exposing .NET Framework Components to COM

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconexposingnetframeworkcomponents
tocom.htm

[MLNETbw]

N.A.: Qualifying .NET Types for Interoperation

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconqualifyingnettypesforinteroperation.
htm

[MLNETbx]

N.A.: Packaging an Assembly for COM
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconpackagingassemblyforcom.htm

[MLNETby]

N.A.: Assembly Registration Tool (Regasm.exe)

ms-
help://IMS.NETFrameworkSDK/cptools/html/cpgrfassemblyregistrationtoolregasmexe.ht
m

[MLNETbzZ]

N.A.: Registering Assemblies with COM

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconregisteringassemblieswithcom.htm

[MLNETCc]

N.A.: Assemblies
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconassemblies.htm

[MLNETca]

N.A.: Object Class
ms-help://MS.NETFrameworkSDK/cpref/html/frirfsystemobjectclasstopic.htm

[MLNETcb]

N.A.:Random Members
ms-help://MS.NETFrameworkSDK/cpref/html/frirfsystemrandommemberstopic.htm

[MLNETcC]

N.A.: Advanced COM Interop
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconadvancedcominterop.htm

[MLNETcd]

N.A.: COM Wrappers
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcomwrappers.htm

[MLNETce]

N.A.: COM Callable Wrapper
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcomcallablewrapper.htm

[MLNETCcA]

N.A.: Simulating COM Interfaces
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconsimulatingcominterfaces.htm

[MLNETcq]

N.A.: Customizing Standard Wrappers

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcustomizingstandardwrappers.htm

[MLNETch]

N.A.: Building from the Command Line
ms-help://IMS.NETFrameworkSDK/cscomp/html/vcgrfBuildingFromCommandLine.htm

[MLNETCcI]

N.A.: ltarget:library (Create a Code Library)
ms-help://MS.NETFrameworkSDK/cscomp/htmli/vcrefdlicreatedllfile.htm

[MLNETC]]

N.A.: Choosing a Compiler
ms-help://MS.VSCC/MS.MSDNVS/cpguide/html/cpconsourcecodelanguage.htm

305

[MLNETcK]

N.A.: Compiling to MSIL

ms-
help://IMS.VSCC/MS.MSDNVS/cpguide/html/cpconmicrosoftintermediatelanguagemsil.h
tm

[MLNETcI]

N.A.: portable executable (PE) file
ms-help://MS.VSCC/MS.MSDNVS/Netstart/html/cpglop.htm

[MLNETcm]

N.A.: Assembly Versions
ms-help://MS.VSCC/MS.MSDNVS/sbscs/sidebyside_57n7.htm

[MLNETcnN]

N.A.: strong name.
ms-help://IMS.VSCC/MS.MSDNVS/Netstart/html/cpglos.htm

[MLNETco]

N.A.: Licensing Components and Controls

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconlicensingcomponentscontrols.htm

[MLNETcp]

N.A.: The Global.asax File
ms-help://IMS.VSCC/MS.MSDNVS/cpguide/html/cpcontheglobalasaxfile.htm

[MLNETcq]

N.A.: Visual Basic Language Tour
ms-help://IMS.NETFrameworkSDK/vblr7net/html/vaconVisualBasicLanguageTour.htm

[MLNETcr]

N.A.: Programming Element Support Changes Summary

ms-
help://MS.NETFrameworkSDK/vblr7net/html/vaconProgrammingElementsChangesinVB
7.htm

[MLNETd]

N.A.: Assemblies Overview
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconassembliesoverview.htm

[MLNETEe]

N.A.: Side-by-Side Execution
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconsidebysideexecution.htm

[MLNETT]

N.A.: Assembly Benefits
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconwhyuseassemblies.htm

[MLNETQ]

N.A.: Assembly Contents
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconcontentsofassembly.htm

[MLNETh]

N.A.: Assembly Manifest
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconassemblymanifest.htm

[MLNETI]

N.A.: Metadata and Self-Describing Components

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconmetadataselfdescribingcomponent
s.htm

[MLNET]]

N.A.: Metadata Overview
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconmetadataoverview.htm

[MLNETK]

N.A.: Run-Time Use of Metadata
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconruntimeuseofmetadata.htm

[MLNETI]

N.A.: Metadata and the PE File Structure
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconmetadatapefilestructure.htm

[MLNETmM]

N.A.: Cross-Language Interoperability

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconcommonlanguagespecification.htm

[MLNETN]

N.A.: Language Interoperability Overview

ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconcross-
languageinteroperability.htm

[MLNETO]

N.A.: What is the Common Language Specification?

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconwhatiscommonlanguagespecificati

306

on.htm

[MLNETp]

N.A.: Writing CLS-Compliant Code
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconwritingcls-compliantcode.htm

[MLNETq]

N.A.: Introduction to the .NET Framework Class Library

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconthenetframeworkclasslibrary.htm

[MLNETY]

N.A.: Accessing Data with ADO.NET
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconaccessingdatawithadonet.htm

[MLNETS]

N.A. Overview of ADO.NET:
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconoverviewofadonet.htm

[MLNET{]

N.A. Design Goals for ADO.NET:
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconwhyadonet.htm

[MLNETU]

N.A.: ADO.NET Architecture
ms-help://MS.NETFrameworkSDK/cpguidenf/html/cpconadonetarchitecture.htm

[MLNETV]

N.A.:Choosing Communication Options in .NET

ms-
help://MS.NETFrameworkSDK/cpguidenf/html/cpconchoosingcommunicationoptionsinn
et.htm

[MLNETW]

N.A...NET Remoting Overview
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconnetremotingoverview.htm

[MLNETX]

N.A.: Introducing Pluggable Protocols

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroducingpluggableprotocols.htm

[MLNETY]

N.A.: Accessing the Internet
ms-help://IMS.NETFrameworkSDK/cpguidenf/html/cpconaccessinginternet.ntm

[MLNETZ]

N.A.: Introduction to Active Directory Objects

ms-
help://IMS.NETFrameworkSDK/cpguidenf/html/cpconintroductionToADSIObjectsInVisua
IStudio.htm

307

Other Sources:

[APO2] AP: Mindelheimer Zeitung. Revolutionen lassen noch auf sich warten, p.19. 02-12-31

[Ar03] Archmatic: ARCHmatic-Glossar E.
http://www.glossar.de/glossar/amglos_e.htm, retrieval 03-03-07

[BlO2] Blakely, Beth: Microsoft gegen Sun: Krieg in der Web-Services-Arena
http://techupdate.zdnet.de/story/0,,52109366,00.html, 2002, retrieval 03-03-17

[Bro2] Brissau, Kai: Komponenten bei der Softwareerstellung. In: WISU. Das Wirtschaftsstudium
10/02 (2002), p.1216.

[BuHe03] Bucher, Martin; Herlicska, Michael et. Al.: Tourenplanung. Seminarpaper, University of
Augsburg, 2003.
http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/aufgaben/Projekte/G-08-
Tourenplanung.zip, retrieval 03-03-01

[ClO1] Clinick, Andrew: Providing a Secure eXPerience
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnclinic/html/scripting10082001.asp, 2001, retrieval 03-03-13

[DIO3] Newsgroup Develpoersindex: WSHController.
http://www.developersdex.com/asp/message.asp?p=593&ID=%3COuLkrGm2CHA%2E22
64%40TK2MSFTNGP11%2Ephx%2Egbl%3E , 2003, retrieval 03-02-28

[DI03a] Newsgroup Develpoersindex: WSHController.
http://www.developersdex.com/asp/message.asp?p=593&ID=%3CeGDE5r03CHA%2E16
40%40TK2MSFTNGP10%2Ephx%2Eghl%3E, 2003, retrieval 03-03-12

[DI03b] Newsgroup Develporsindex: Accessing .NET Framework classes as COM objects with or
without "dm.net Moniker"
http://www.developersdex.com/vb/message.asp?p=2920&ID=%3C0ePO45NwCHA%2E2
124%40TK2MSFTNGP11%3E, 2003, retrieval 03-03-14

[DMOOQ] Developmentor: The dm.net COM Moniker
http://staff.develop.com/jasonw/clr/readme.htm, 2000, retrieval 03-03-14

[Doe02] E-Mail from Stefan Dérsam. 02-12-11. Content: DCOM and COM+

[Doe02a] E-Mail from Stefan Dérsam. 02-12-02. Content: .RxMessageBox hidden

[Doe03] E-Mail from Stefan Dérsam. 03-02-28. Content: Problems with events of OLE objects.

[Doe03a] E-Mail from Stefan Dérsam. 03-02-17. Content: MS Agent Technology and Events

[Doe03b] E-Mail from Stefan Dérsam. 03-01-16. Content: MS.NET und Object Rexx

[Doe03c] E-Mail from Stefan Dérsam. 03-03-10. Content: MS Speech SDK 5.1 - Events

[Doe03d] E-Mail from Stefan Dérsam. 03-03-26. Content: Speech Recognition

[DPAO3] DPA EB: "Web Services" hauchen Internet-Wirtschaft neuen Atem ein
http://www.pcwelt.de/news/internet/29697/index.html, 2003, retrieval 03-03-21

[DPAO3a] | DPA EB:Anwendungen fir den Endverbraucher?
http://www.pcwelt.de/news/internet/29697/2.html, 2003, retrieval 03-03-21

[DrO3] Driver , Mark: This Isn't Your Father's Visual Studio.
http://www.fawcette.com/dotnetmag/2002_03/magazine/columns/strategy/default_pf.asp,
retrieval 03-03-21

[EnO1] Engehausen, Jan: Rexx on Windows. The Power of OLE/ActiveX Automation. IBM Corp.
http://www.share.org/proceedings/sh96/data/S8312.PDF, 2001, retrieval 03-03-19

[En02] E-Mail from Jan Engehausen. 02-01-28. Content: Embedding of Object Rexx in HTML.

[En03] Engehausen, Jan: Uber mich:
http://home.arcor.de/jan.engehausen/refer.html, retrieval 03-03-21

[EsO2] Espostio, Dino: Windows Script Host 5.6 Boasts Windows XP Integration, Security, New
Object Model
http://msdn.microsoft.com/msdnmag/issues/02/05/wsh/default.aspx, 2002, retrieval 03-03-
12

[Fla02] Rony G. Flatscher: Automatisierung von Windows Anwendungen. http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/Automatisierung_01.pdf, retrieval 02-11-12

[Fla02a] Rony G. Flatscher: Automatisierung von Windows Anwendungen.
http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/Automatisierung_07.pdf,
retrieval 02-11-12

[Fla02b] Rony G. Flatscher: Automatisierung von Windows Anwendungen.
http://www.wiwi.uni-augsburg.de/wi3/2002ws/Automatisierung/Automatisierung_08.pdf ,
retrieval 02-11-12

[Fla02c] Rony G. Flatscher: "Overview of the Document Object Model (DOM) a.k.a.DHTML Under

Windows"

308

http://wi.wu-wien.ac.at/rgf/rexx/orx13/2002_DOM.pdf, 2002, retrieval November 2002

[Fla02d] Rony G. Flatscher: "Applying the Object REXXWindows Scripting Engine with Windows
Scripting Host "
http://wi.wu-wien.ac.at/rgf/rexx/orx13/2002_WSH.pdf, 2002, retrieval 02-11-19

[Fla02e] E-Mail from Prof. Rony G. Flatscher. 02-12-2. Content: .rxs Format

[Fla03] Conversation with Prof.Dr.Rony G. Flatscher. 03-03-05. Content: Discussion of master
thesis.

[Fla03a] E-Mail from Prof. Rony G. Flatscher. 03-02-10. Content: MS Agent, MS.NET, MS Speech,
OREXXOLE.CLS

[Fla03b] E-Mail from Prof. Rony G. Flatscher. 03-01-16. Content: New OREXXOLE.DLL

[Fla03c] Rony G. Flatscher: Read.me.
Part of http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/things/agent_upd_ole.zip, 2003, retrieval 03-01-
20

[Fla03d] E-Mail from Prof. Rony G. Flatscher. 03-03-28. Content: .local und WSC

[Fla03e] E-Mail from Prof. Rony G. Flatscher. 03-03-29. Content: Correcting of master thesis

[Fla03f] E-Mail from Prof. Rony G. Flatscher. 03-03-29. Content: Embedding

[Ge00] Gellersen, Hans-W.: Ubiquitous Computing.
http://www.teco.edu/lehre/ubigws0001/skript/04.pdf, 2000, retrieval 03-03-15

[Ge03] Geocity: Windows Scripting Host is more powerful than AppleScript
http://www.geocities.com/siliconvalley/sector/9295/pc-advantage/advantage-scripting.html,
retrieval 03-03-29

[He02] Helmecke, Florian: Remote Control for MS Word and MS Excel with Object Rexx.
Seminarpaper, University of Augsburg, 2002.

[HeLuO03] Herzog, Thomas; Lutz, Niko et. Al.: Doner Dome Restaurants. Seminarpaper, University of
Augsburg, 2003.
http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/aufgaben/Projekte/Autowin_Abschlussarbeit_ T
eama3.zip, retrieval 03-03-01

[IBMO1] IBM: Object Rexx Reference. 1. Ed.. IBM Corp. 2001
(Location: ...\Windows\Version 2.1\books\RexxRef.PDF on the Object Rexx CD)

[IBMO1a] IBM: REGISTRY.REX.IBM Corp. 2001
(Location: ... \ObJREXX\SAMPLES)

[IBMO1b] IBM: Object Rexx Programming Guide. 1. Ed.. IBM Corp. 2001
(Location: ...\Windows\Version 2.1\books\RexxPG.PDF on the Object Rexx CD)

[IBMO1b] IBM: SAMPLE12.rex. IBM Corp. 2001
(Location: ...\ObjJREXX\SAMPLES\OLE\APPS\

[IBMO1c] IBM: USEWMGR.REX. IBM Corp. 2001
(Location: ... \ObjJREXX\SAMPLES)

[IBMO1c] IBM: Object Rexx Programming Guide 1. Ed.. IBM Corp. 2001
(Location: ...\Windows\Version 2.1\books\RexxPg.PDF on the Object Rexx CD)

[IBMO2] IBM: Writing a COM object in Object REXX. http://www-
1.ibm.com/support/docview.wss?rs=22&context=SS8PLL&uid=swg21008846, 04.08.2002,
retrieval 03-02-24

[IBMO02a] IBM: From another script language to Object REXX. (activex_convert.pdf).
http://www-
1.ibm.com/support/retmgr.wss?rs=22&rt=0&0org=SW&doc=1044475, retrieval 02-03-10

[IBMO2b] IBM: OLEINFO Help File. Part of Object Rexx installation.
...\ObjREXX\SAMPLES\OLE\OLEINFO\HELP.TXT, 2002

[IBMO2c] IBM:Terminating a process
http://www-1.ibm.com/support/docview.wss?uid=swg21039851, 2002, retrieval 03-01-13

[IBMO3] IBM: Where do we stand today, traditional or classic rexx. http://www-
3.ibm.com/software/ad/obj-rexx/section2.html, retrieval 03-02-28

[IBMO3] IBM: IBM WebSphere SDK for Web Services (WSDK)
http://www-106.ibm.com/developerworks/webservices/wsdk/wsdkfags.html, retrieval 03-
03-17

[Ku02] Kurzweil, Andreas: Windows Scripting Host - Definieren von COM-Interfaces (Object

Rexx)
http://www.wu-wien.ac.at/usr/h96a/h9651692/wi_sem.pdf, 2002, retrieval 03-03-13

[MeSc03]

Mengele, Markus; Schuhwerket, Christoph. Al.: High Value Customers consultancy.

309

Seminarpaper, University of Augsburg, 2003.

http://www.wiwi.uni-
augsburg.de/wi3/2002ws/Automatisierung/aufgaben/Projekte/AutoWin%20Team9.zip,
retrieval 03-03-01

[MMO3]

McMullan, Andy:.NET Framework Frequently Asked Questions
http://www.eponymous.eclipse.co.uk/dotnetfag.htm, 2003, retrieval 03-03-14

[M098]

Moss, Julian: Understanding the Windows Script Host.
http://www.itp-journals.com/sasample/T1205.pdf, 1998, retrieval 03-03-14

[MS01]

Microsoft: Constant names
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/modcore/html/deconConstantNames.asp, 2001, retrieval 03-03-08

[MS01a]

Microsoft: Microsoft Agent Downloads
http://microsoft.com/products/msagent/downloads.htm, 2001, retrieval 03-02-14

[MS01b]

N.A.: Debugging Scripts
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sdbug/Html/sdbug_2.asp,
2001, retrieval 03-03-12

[MSO01c]

Microsoft: XML Web Services Basics
http://msdn.microsoft.com/library/?url=/library/en-
us/dnwebsrv/html/webservbasics.asp?frame=true, 2001, retrieval 03-03-14

[MS02]

Microsoft: What Is Speech Technology?
http://www.microsoft.com/speech/evaluation/techover/, 2002, retrieval 03-02-04

[MS02a]

Microsoft:What .NET Means for Users
http://www.microsoft.com/net/basics/faq.asp, 2002, retrieval 03-03-14

[MS02b]

N.A.:What Is Microsoft .NET?
Microsoft: http://msdn.microsoft.com/netframework/productinfo/overview/default.asp,
2002, retrieval 03-03-14

[MS02c]

Microsoft: .NET Passport
http://www.microsoft.com/netservices/passport/overview.asp , 2002, retrieval 02-12-31

[MS02d]

Microsoft: :NET Passport Review Guide
http://www.microsoft.com/net/downloads/passport_reviewguide.doc, 2002, retrieval 02-12-
31

[MS02e]

Microsoft:. NET Compact Framework Overview.
http://msdn.microsoft.com/vstudio/device/compactfx.asp, 2002, retrieval 03-03-17

[MS03]

Microsoft: OLE Background: Containers and Servers
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vccore98/HTML/ _core_ole_background.3a_.containers_and_servers.asp, retrieval
2003-01-06

[MS03a]

Microsoft: Visible Property of MS Word
http://msdn.microsoft.com/library/en-us/vbawd10/html/woproVisible.asp?frame=true, 2003,
03-03-08

[MS03D]

Microsoft: Visible Property of MS Internet Explorer
http://msdn.microsoft.com/library/default.asp?url=/workshop/browser/webbrowser/referenc
el/properties/visible.asp, 2003, retrieval 03-03-08

[MS03c]

Microsoft: WorkSheet object
http://msdn.microsoft.com/library/en-us/vbax|10/html/xlobjWorksheet.asp?frame=true,
2003, retrieval 03-03-08

[MS03d]

Microsoft: Visible Property of MS Excel
http://msdn.microsoft.com/library/en-us/vbax|10/html/xIproVisible.asp?frame=true, 2003,
03-03-09

[MS03e]

Microsoft: EntireColumn of MS Excel
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xIproEntireColumn.asp?frame=true,
2003, retrieval 03-03-09

[MS03f]

Microsoft: Range Collection of Excel
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xlobjRange.asp?frame=true, 2003,
retrieval 03-03-09

[MS03g]

Microsoft: Autofit of MS Excel
http://msdn.microsoft.com/library/en-us/vbaxl10/html/xImthAutoFit.asp?frame=true, 2003,
retrieval 03-03-09

[MS03h]

Microsoft: Select of MS Excel

310

http://msdn.microsoft.com/library/en-us/vbaxl10/html/xImthSelect.asp?frame=true, 2003,
retrieval 03-03-09

[MS03i]

Microsoft: Checkspelling of MS Word
http://msdn.microsoft.com/library/en-
us/vbawd10/html/womthCheckSpelling.asp?frame=true, 2003, retrieval 03-01-11

[MS03]]

Microsoft: MKkCEVoice
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wcesapi/htm/cesamMkCEVoice.asp, 2003, retrieval 03-02-04

[MS03K]

Microsoft: Setting up Remote WSH
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/wstsksetupofremotewsh.asp, 2003, retrieval 03-03-12

[MSO03I]

Microsoft: Running Scripts on Remote
Computershttp://www.microsoft.com/technet/treeview/default.asp?url=/technet/scriptcenter
/scrguide/sas_wsh_wwgn.asp, 2003, retrieval 03-03-12

[MS03m]

Microsoft: Defining the Basic Elements of .NET
http://www.microsoft.com/net/basics/whatis.asp, 2003, retrieval 03-03-14

[MS03n]

Microsoft: .NET Passport
http://www.microsoft.com/net/services/passport/, 2003, retrieval 03-03-14

[MS96]

Redmond lll, Frank: Client/Server ActiveX: Activate the Internet with ODBC
http://www.microsoft.com/mind/0796/ODBC/ODBC.asp, Sept. 1996, retrieval 2003-3-1

[MS98]

Microsoft: The OLE/COM Obiject Viewer
http://www.microsoft.com/com/resources/oleview.asp, 6.11.1998, retrieval 03-02-25

[MUi01]

Minz, Stefan: SelfHTML. HTML als Auszeichnungssprache.
http://selfhtml.teamone.de/intro/technologien/html.htm#auszeichnungssprache, 2001,
retrieval 03-03-10

[Mi01a]

Minz, Stefan: SelfHTML. Kommentare und Credits.
http://selfhtml.teamone.de/html/allgemein/kommentare.htm#nicht_angezeigt, 2001,
retrieval 03-03-10

[MU01Db]

Munz, Stefan: SelfHTML. Das Document Object Model (DOM).
http://selfhtml.teamone.de/dhtml/modelle/dom.htm#allgemeines, 2001, retrieval 03-03-10

[Mue02]

Mueller, Dietmar: Apple startet eigene Web Service-Initiative
http://news.zdnet.de/story/0,,t101-s2119357,00.html, 2002, retrieval 03-03-17

[NGS03]

Newsgroup microsoft.public.speech_tech: L&H TTS engine of MS Agent and SDK 5.1
http://communities.microsoft.com/newsgroups/previewFrame.asp?ICP=cddgall&sLCID=U
S&sgroupURL=microsoft.public.speech_tech&sMessagelD=%253C3e504db8%25241@n
ews.microsoft.com%253E, retrieval 03-02-18

[Onl02]

Online GmbH: Was sind MVPs?.
http://www.ms-mvp.de/, 2002, retrieval 03-03-08

[Pe03]

E-Mail from Lee Peedin. 03-01-21. Content: Agent and the procedure CkStatus

[Ro01]

Rothous, Doug: ADO.NET for the ADO Programmer
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/adonetprogmsdn.asp, 2001, retrieval 02-12-19

[SpO3]

Conversation with Tohi Specht. 2003-03-05. Content: Windows XP Pro and network.

[To99]

Tower, Tandy: Uncork the Power of Microsoft Agent 2.0
http://www.microsoft.com/mind/0499/agent/agent.asp, 1999, retrieval 03-01-23

[Tu02]

Turowsky, Klaus; Krammer, Andreas: Beiblattsammlung zur Vorlesung Web Engineering,
2002

[WS03]

W3Schools:The SOAP Header Element
http://www.w3schools.com/soap/soap _header.asp, 2003, retrieval 03-03-15

[WSS02]

Windows Scripting Solutions: Rem: Getting the WshController Object to Work
http://www.winscriptingsolutions.com/Articles/Index.cfm?ArticleID=23607, 2002, retrieval
03-02-23

311

[SGX]

System Administration Scripting Guide Sources
The System Administration Scripting Guide Version 1.1, August 2002 can be
downloaded from the Microsoft Homepage:

http://www.microsoft.com/downloads/release.asp?ReleaselD=38942

||__9Q System Administration Scripting Guide L'._JLE.T]_J
Auzblenden Suchen Zuriick Worarts Starteeite Drucken Optionen

Inkalt. Suchen]Eavurilen]

bl endes Scl jwart:
|32 hutdown

Thema zur fAinzeige a&éhlen:
Shut Down the Local Computer

Shut Diown the Local Computer

Description
Shuts down the local computer.

Script Code

Set colOperatingSystemns = GetObject("wihmgmes: ! (Shutdowm) }™).ExecQuery(“Select * from
Win32_ Operatingiysten”)
For Each obhjOperatingSysten in colOperatingSystens
ObiOperatingSysten. Tndzshucdowm (1)
Next

The Systen Administration Scpting Guide, part of the Windows .MET Server Ressurce Kit. Far mare on, contact seripter com.

Anzeigen

Figure 81: System Administration Scripting Guide

To get a text referring to the short teference get the keyword from the reference

description and insert it into the Sear ch line.

The short reference is inserted in brackets. The first two letters are SG for Scripting

Guide. After that there follow one small lettex for the further distinction.

The description of this short reference contais the headline of the referenced text
and the keyword, which is inserted into the Seax ch field. If there are several results

the resulthnumber describes which result has to be ‘selected.

| [SGa] | Shut Down the Local Computer. Keyword; Win32Shutdown. Resultnumber: 1

312

[SPXX]

Microsoft Speech SDK 5.1 Documentation Sources

The Microsoft Speech SDK 5.1 Documentation is part of the MS Speech SDK and is
located in the menu “St ar t - >Pr ogr ans- >M crosoft Speech SDK 5.1. Itcan
be also single downloaded from http://www.microsoft.com/speech/download/sdk51/.

||__%' Microsoft Speech SDK (SAP15.1) L:_‘LE‘U
) & & & o

Ausblenden Suchen Vorherges Machste: Zuriick Worwa Abbrechen Aklualisiersn Startzeite Schiiftart Diucken Optionen
Inkal | i
nhalt =] eh f
. = 4 Microsoft Speech SDK ~
ch.begnff[e] glngel?en: : e Ny
Getting Started for First-Time Users ﬂ
Themen auflisten zeigen . . .
Getting Started for First-Time Users
Thema wahlen Gemden}ﬂ The follawing topics introduce the Microsoft Speech SDK (SDK) to fifStotime USErE and enplain its contents and featuras:
Tie | Pasifon | Fiaha| ||| o whtis she spo
SR Parting Gulde_ M!crnsoft S0 1 & Whitcsh Diswithha oDK
Tokens and Fegisty Microsoft 5. 2
Grammar Format Tags Microsoft 5. 3 ® lhatis coveredinthe SOK docurnentation?
Compliance Tests icrozoft 5 4 ® Programmer's Guide
Speech Telephary ... Microzoft 5., & "
2 Whatis not covered by the SDK?
TTS Cookboak Microsoft 5. B g
Using Events with T... Microsoft 5. 7
Spi oConiex.. Microsolt S
peechRecoContex... Microzoft 5. 3
Dezigning grammar r... Microsoft 5., 10 L
Welcome tothe Micr. Microsalt S0 11 i
- What is'the SDK?
eechFecoConte.. Micosolt 5. 12
SpeE i Microsoft Speech SDK iz a software development kit far building speech engines and applications for Microsoft Windows, Designed primarily for
: R Cont o Wi it S'" 14 the desktop sheech developer, the SDK contains the Microsoft® Win32®-compatible speech application programming interface (SAPI), the
N et W Microsoft contihunus speech recognition engine and Microsoft concatenated speech synthesis (or tent-to-speech) engine, a collection of speech-
Welcome to the Micr,. Microsoft 5. 15 oriented developigent tools fof compiling source code and executing commands, sample application and tutarials that demonstrate the use of
SpeechRecognizer..\ Microsoft 5., 16 Speech with other\engine technologies, sample speech recognition and speech synthesis engines faf testing with speech-enabled applications,
SpeechRecoContex.) Microsoft 5. 17 and documentation\n the most important SDK features,
|SpeechFecoResult .\ Microsoft 5.0 18 \
|SpeechRecoResult... \ Microsoft 5., 19 What can I do with the SDK?
|SpeechRecoResult. .. \Microsoft 5 20 Wou can use the SDK cofponents and redistributable SAPIfengine run-time to build applications that incorporate speech recognition and speech
synthesis,
Automation Support
SAPL 5.1 supports OLE autdnation, That means languages other than C/C++ may now use SAPI fof application development, The languages
themselves need to support OLE automation, Commen languages which may be used includes Wisual Basic, C#, and JScript, See Automation
Interfaces and Objects far addifjonal information, Guerviews for automation and understanding the API zuite for SAPT is found at Automation
Crverview, This is alse a good St8gEing point for programmers new to OLE sutomation programming.
Speech Components and Services
Included in the Speech API architectdye is a collection of speech components for directly managing the audia, training wizard, events, grammar
compiler, resources, speech recognitio manager, and TTS manager fof low-level contral and greater flesibility. The Speech APT also enables
support and manages shared recognition\events far running rultiple speech-enabled applications,
SDK Tools
w “orherige Ergebnisse suche The tools in the Tools directory assist with thy verification and testing of SAPI development, This directory contains source code and project
o Bk e soehon for compliance testing and may be modified to ¢ your needs,
[~ Mur Titel suchen
SDK Samples bl

Figure 82: Microsoft Speech SDK 5.1 Documentation

To get a text referring to the short reference get the keyword from the reference

description and\insert it into the Sear ch line. The short reference is inserted

brackets. The first two letters are SP for Speech. After that there follow one or two
small letters for the further distinction. The description of this short reference contains
the headline of th

the Sear ch field. |

has to be selected.

[SPa] First-Time Users. Keyword:(Getting Started for First-Time Users.
Resultnumber: 11

[SPD] Object—Tokens—and Registry Settings. Keyword: Object Tokens and Registry
Settings. Resulthumber: 1

[SPc] SpVoice. Keyword: SpVoice. Resulthumber: 7

[SPd] GetVoices Method. Keyword: GetDescription. Resulthumber: 6

[SPe] What is a Recognition Context?: Keyword: SpSharedRecoContext. Resulthumber: 3
[SPA] CreateGrammar Method. Keyword: CreateGrammar. Resultnumber: 1

referenced text and the keyword/sentence, which is inserted in

there are several results the resulthumbex describes which result

313

[SPg] DictationSetState Method. Keyword: DictationSetState. Resultnumber: 1

[SPh] Recognition Event. Keyword: Recognition Event. Resulthumber: 12

[SPi] FalseRecognition Event. Keyword: FalseRecognition Event. Resulthumber: 3

[SPj] StartStream Event. Keyword: StartStream Event. Resulthumber: 7

[SPK] VB Application Sample: Dictation Recognition (Shared). Keyword: VB Application
Sample: Dictation Recognition (Shared). Resulthumber: 2

[SPI] CmdLoadFromFile Method. Keyword: CmdLoadFromFile. Resulthumber: 1

[SPm] SpeechLoadOption Enum. Keyword: SpeechLoadOption Enum. Resulthumber: 1

[SPn] CmdSetRuleldState Method. Keyword: CmdSetRuleldState. Resulthumber: 1

[SPo] VB Application Sample: Command and Control Recognition. Keyword: VB
Application Sample: Command and Control Recognition. Resulthnumber: 3

[SPp] CreateRecoContext Method. Keyword: CreateRecoContext. Resultnumber: 1

[SPq] SpeechRuleState Enum. Keyword: SpeechRuleState. Resultnumber: 1

[SPr] Add Method. Keyword: Add Method. Resultnumber: 17

[SPs] SpeechRuleAttributes Enum. Keyword: SpeechRuleAttributes Enum. Resultnumber:
1

[SPt] Clear Method. Keyword: Clear Method. Resulthumber: 8

[SPu] AddWordTransition Method. Keyword: AddWordTransition Method. Resulthnumber: 3

[SPV] AddState Method: Keyword: AddState Method. Resultnumber: 1

[SPw] Commit Method. Keyword: Commit Method. Resulthumber: 10

[SPX] CmdSetRuleState Method: Keyword: CmdSetRuleState Method.Resulthumber: 1

[Spy]

SpeechRuleState Enum: Keyword: SpeechRuleState Enum. Resultnumber: 1

