
Bernhard Hoisl
Reg. No. 0252748

bernhard.hoisl@wu-wien.ac.at

Automating Subversion
An Open Object Rexx Approach

Bachelor Course Paper

Vienna University of Economics and Business Administration

Department of Business Information Systems

Prof. Dr. Rony G. Flatscher

23 July 2005

Contents Page 3

Contents

 1 Introduction.. 9

 1.1 About this paper..9

 1.2 Research questions... 10

 1.3 Software automation and code reuse.. 10

 1.4 Big picture.. 11

 2 Technical requirements.. 13

 2.1 Overall concept...13

 2.2 Subversion.. 14

 2.2.1 General information and architecture... 14

 2.2.2 Using Subversion ... 16

 2.2.3 Problem of file-sharing... 16

 2.3 Java... 18

 2.3.1 JavaSVN... 19

 2.4 ooRexx..20

 2.5 BSF4Rexx...21

 2.6 Apache and Mod_Rexx.. 22

 2.6.1 Mod_Rexx.. 22

 2.7 Tomcat.. 23

 3 Installation.. 24

 3.1 Installation guide.. 24

 3.1.1 Subversion.. 24

 3.1.2 Java and JavaSVN.. 26

 3.1.3 ooRexx with BSF4Rexx support.. 27

 3.1.4 Apache with Mod_Rexx... 27

 3.1.5 Tomcat.. 29

 3.2 Common pitfalls... 30

 4 Concepts of automating Subversion...32

 4.1 General information..32

 4.2 Use of JavaSVN..33

 4.3 Java approach... 34

 4.3.1 Working with workspaces...34

Contents Page 4

 4.3.2 Working with repositories...35

 4.4 ooRexx approach.. 36

 4.4.1 Loading needed classes...36

 4.4.2 Setting environmental variables..37

 4.4.3 Working with workspaces...39

 4.4.4 Working with repositories...40

 5 Developed examples...41

 5.1 Standalone examples.. 41

 5.1.1 Example 1 – Simple command-line wrapper..41

 5.1.2 Example 2 – Variation of the command-line wrapper......................................44

 5.1.3 Example 3 – Last modification property...46

 5.1.4 Example 4 – Self defined keywords... 47

 5.1.5 Example 5 – Listing repositories.. 49

 5.1.6 Example 6 – Charting file activity.. 51

 5.1.7 Example 7 – Repository listing standalone server.. 53

 5.1.8 Example 8 – HTML repository log information... 57

 5.1.9 Example 9 – XML repository log information... 59

 5.1.10 Example 10 – Editing revision properties...61

 5.1.11 Example 11 – File information... 63

 5.1.12 Example 12 – Repository information..64

 5.1.13 Example 13 – Checkout revisions.. 66

 5.1.14 Example 14 – Shut down script.. 67

 5.1.15 Example 15 – Start up script...69

 5.1.16 Example 16 – Virus check.. 70

 5.1.17 Example 17 – Working with different repositories...72

 5.2 Hook scripts..74

 5.2.1 General information.. 74

 5.2.2 Example 18 – post-revprop-change logging modifications.............................. 75

 5.2.3 Example 19 – post-commit sending email..77

 5.3 Example using Apache with Mod_Rexx.. 80

 5.3.1 Example 20 – Repository listing...80

 5.4 Example using Tomcat... 84

 5.4.1 Example 21 – Subversion HTTP manager..84

Contents Page 5

 6 Conclusion..89

 6.1 Further work... 89

List of Figures Page 6

List of Figures

Figure 1: Overall concept of Subversion automation..13

Figure 2: Subversion's architecture, source [Coll05].. 15

Figure 3: The file-sharing problem to avoid, source [Coll05]...17

Figure 4: Architecture of BSF4Rexx, source [Flat05b].. 21

Figure 5: Process phases of Apache, source [Ashl05a]...22

Figure 6: Possible output of example 5... 51

Figure 7: Chart showing creation date of files.. 53

Figure 8: ooRexx standalone server.. 56

Figure 9: Repository listing using standalone server...57

Figure 10: Detailed log entries example..59

Figure 11: Generated XML structure out of repository's log information.............................61

Figure 12: Example output of script 12_repository-info.rex...66

Figure 13: Example output of several revision checkouts...67

Figure 14: Possible log file for a repository.. 76

Figure 15: Communication schema of example 20...81

Figure 16: Communication schema of Subversion HTTP manager......................................85

List of Source codes Page 7

List of Source codes

Source code 1: A simple Java program... 18

Source code 2: A simple Object Rexx script...20

Source code 3: Working with workspaces (Java)..35

Source code 4: Working with repositories (Java)... 36

Source code 5: File 99_utils.rex.. 37

Source code 6: File 00_set-paths-minimalistic.bat..38

Source code 7: File 00_set-paths.rex...39

Source code 8: Working with workspaces (ooRexx).. 40

Source code 9: Working with repositories (ooRexx).. 40

Source code 10: File 01_simple-cmd-line.rex...43

Source code 11: File 02_simple-cmd-line-variation.rex... 46

Source code 12: File 03_last-modified-property.rex...47

Source code 13: File 04_self-defined-keywords.rex... 49

Source code 14: File 05_repository-listing.rex... 50

Source code 15: File 06_charting-file-activity.rex.. 52

Source code 16: File 07_repository-listing-standalone-server.rex.. 56

Source code 17: File 08_repository-log-information-html.rex..59

Source code 18: File 09_repository-log-information-xml.rex...61

Source code 19: File 10_editing-revision-properties.rex.. 62

Source code 20: File 11_file-info.rex..64

Source code 21: File 12_repository-info.rex... 65

Source code 22: File 13_checkout-revisions.rex...67

Source code 23: File 14_shutdown.rex... 69

Source code 24: File 15_startup.rex.. 70

Source code 25: File 16_virus-check.rex.. 72

Source code 26: File 17_working-with-different-repositories.rex.. 74

Source code 27: File <path to repository>\hooks\post-revprop-change.bat.......................... 76

Source code 28: File <path to repository>\hooks\post-revprop-change-rexx.rex................. 76

Source code 29: File <path to repository>\hooks\post-commit.bat.......................................77

Source code 30: File <path to repository>\hooks\post-commit-rexx.rex.............................. 78

Source code 31: File <path to repository>\hooks\post-commit-rexx2.rex............................ 80

List of Source codes Page 8

Source code 32: File <path to Apache>\htdocs\<any sub-directory>\index.rsp....................82

Source code 33: File <path to Apache>\htdocs\<any sub-directory>\server.rex...................84

Source code 34: File <path to Tomcat>\webapps\<application name>\subversion\WEB-

INF\classes\Update.java..87

Source code 35: File <path to Tomcat>\webapps\<application name>\subversion\WEB-

INF\classes\update.rex.. 88

Introduction Page 9

 1 Introduction

 1.1 About this paper

This bachelor course paper has been written for the last course of the specializing field e-

commerce at the Vienna University of Economics and Business Administration. Course lec-

turer is Prof. Dr. Rony G. Flatscher with assistants. The paper is the second of two bachelor

papers which have to be written in the bachelor's program Information Systems.

The document in hand is about the automation of Subversion using Open Object Rexx

(ooRexx) as scripting language1. Chapter 1 gives a brief introduction to the topic along with

some general information.

The technical requirements needed for realizing my approach are described in chapter 2. I

will give an overview of the version control system Subversion and the programming lan-

guages Java and ooRexx. Needed Java libraries, like JavaSVN (for communicating with

Subversion) or dom4j (for working with XML2) are explained. The use of the Bean Script-

ing Framework (BSF) is described, especially BSF4Rexx, the BSF for Object Rexx. Fur-

thermore, the two web-servers Apache and Tomcat, which are also involved in my later in-

troduced “nutshell-examples” and their interaction with ooRexx, are explained.

Chapter 3 is a how-to guide for installing all required programs and components. Common

pitfalls are depicted as well as their solutions.

Concepts of automating Subversion using Java and ooRexx are described in chapter 4. Dif-

ferences between the two languages will be shown and their close interaction using

BSF4Rexx. After this chapter it should be clear how one can write a Java or ooRexx pro-

gram which communicates with Subversion. This is necessary for understanding the nut-

1 “A scripting language differentiates itself from other typical languages in that they are usually simpler to
learn and use as well as not needing to be compiled. The language is interpreted at run-time so you can
execute instructions immediately.” [see Goul05]

2 “XML (Extensible Markup Language) is a standard for creating markup languages which describe the
structure of data. It is not a fixed set of elements like HTML, but rather, it is like SGML (Standard
Generalized Markup Language) in that it is a metalanguage, or a language for describing languages. XML
enables authors to define their own tags. XML is a formal specification of the World Wide Web
Consortium.” [see Tere05]

Introduction Page 10

shell-examples following in chapter 5.

This chapter shows several examples of useful programs for automating Subversion using

ooRexx. Source codes with a detailed description of the scripts are serving as proof of

concept. Screen shots of possible program outputs are made available so you get an idea of

the results without executing a script yourself.

The last chapter (number 6) gives a conclusion of the work described in this paper as well

as an outlook of further work. Some maybe interesting ideas are described whose realiza-

tion could be worth noting.

 1.2 Research questions

I have defined two main research questions, which will be answered in this paper:

• Is it possible to automate Subversion with ooRexx?

• Can the automation be used to generate an advantage in comparison to Subversion's

build-in functions?

Question two needs question one to be answered positively.

The first main goal will be to check if Subversion has the capability to be automated by

third party components. If it is possible, this will raise the question about the usefulness of

such automation. Therefore the second main goal is the creation of helpful programs gener-

ating a visible benefit regarding the use of Subversion as versioning system.

Readers who are familiar with the technical details described in chapter 2 on page 13 and

who want the first research question to be answered should read chapter 4 starting on page

32. If you are interested in the answer of research question two and want to see some ex-

amples, just go to chapter 5 beginning on page 41.

 1.3 Software automation and code reuse

Two of the main goals when writing software are automation and code reuse. You will not

want to do the same routine over and over again if it is possible to hook up things by writ-

Introduction Page 11

ing an automation script. In this context automation is understood as the ability to perform

standardized operations without human interaction. It is just a way to save time and man-

power and therefore money.

You also speak of automation if you extend program's build-in functions with your own

customized operations. That can be grouping or rearranging already existing functions in a

way that makes sense or building completely new ones. Every time you miss some func-

tionality (maybe something the author has not thought about) and implement your own

solution for the problem by using third-party tools, you automate the original software.

There is a connection between software automation and code reuse. If you have written a

software program (maybe a long time ago) which works fine and you need similar beha-

viour in another context, it would be great to reuse the already written code of the old pro-

gram. In other words there is no use of reinventing the wheel. Code reuse means that you in-

tegrate an already working code into a new program. As already mentioned, this is another

way to save time and money.

Object oriented programming languages like Java or ooRexx are making allowance for the

paradigm of code reuse by implementing the permission to split up programs to many small

pieces. So there are many small software pieces, each representing another functionality

which can be implemented as often as needed.

 1.4 Big picture

Subversion is a version control system for any type of data. Subversion manages files and

directories over time. It is designed for several operating systems and handles multiple

users, as well as network connections. Therefore it is perfectly fitted to handle projects

where many developers work together.

Java is a platform independent, object oriented programming language which has become

one of the most used languages worldwide. There are huge libraries for nearly every func-

tionality wanted. For interacting with Subversion there is a library called JavaSVN which I

used for generating the examples described in chapter 4 and 5.

Introduction Page 12

The object oriented Version of Rexx – Object Rexx – is a scripting language with a human-

oriented syntax which is easy to learn. The Bean Scripting Framework (BSF) is a set of Java

classes which provides scripting language support within Java applications. BSF4Rexx is

the BSF implementation for Object Rexx. Therefore it is possible to use any Java Object

from Object Rexx and even vice versa.

As for now it is only important to know that programs written in Object Rexx can automate

Subversion using Java as an interface. A detailed view of the topics described here is given

in the next chapter.

In chapter 5 I make use of the very well known HTTP server (so called web-server) Apache.

“Apache has been the most popular web server on the Internet since April of 1996.” [see

Apac05a] There are many modules which allow software to integrate into Apache – also for

Subversion and Object Rexx.

Another web- and application-server3 is Tomcat, which acts as a servlet container for Java

Servlets and Java Server Pages. There is also an example of a Java Servlet application inter-

acting with Subversion.

All used and described software have something in common: The various programs are dis-

tributed under any well known open source license, therefore free of charge and can be ex-

tended by anybody.

3 “An application server is a server program in a computer within a distributed network that provides the
business logic for an application program. The application server is frequently viewed as part of a three-
tier application, consisting of a graphical user interface (GUI) server, an application (business logic)
server, and a database and transaction server.” [see Lany05]

Technical requirements Page 13

 2 Technical requirements

In this chapter I am going to give a short overview of the used software programs, program-

ming languages and their components. It is important to say that this section cannot be un-

derstood as a tutorial for a programming language or a handbook/reference for any software

described. In every sub-chapter there will be references to further material dealing with the

topic. If you are not familiar with any techniques, you may have a look at the references

mentioned.

If you want to try out anything of the software described in this chapter, I recommend read-

ing chapter 3 starting on page 24, which deals with the installation of the components and

the problems likely to arise during installation.

 2.1 Overall concept

Figure 1 below shows the main interaction between used components for automating Sub-

version.

“Subversion has a modular design, implemented as a collection of C libraries. Each library

has a well-defined purpose and interface, and most modules are said to exist in one of three

main layers – the Repository Layer, the Repository Access (RA) Layer, or the Client

Layer.” [see Coll05, 143]

If you are interested in using the Subversion libraries in conjunction with something differ-

ent than a C program – say a Python script or a Java application – Subversion has some ini-

tial support for this via the Simplified Wrapper and Interface Generator (SWIG). These

bindings allow you to call Subversion API4 functions indirectly, using wrappers that trans-

4 Application Programming Interface - A formalized set of software calls and routines that can be referenced
by an application program in order to access a particular set of services. [cp. Alli05]

Figure 1: Overall concept of Subversion automation

Subversion
libraries

Python,
Perl, Java etc. BSF4Rexx ooRexx

Technical requirements Page 14

late the data types native to your scripting language into the data types needed by Subver-

sion's C libraries.

There is an obvious benefit of accessing the Subversion APIs via a language binding – sim-

plicity. Generally speaking, languages such as Python and Perl (and ooRexx) are much

more flexible and easy to use than C or C++. The sort of high-level data types and context-

driven type checking provided by these languages are often better at handling information

that comes from users. As you know, humans are proficient at botching up input to a pro-

gram, and scripting languages tend to handle that misinformation more gracefully. Of

course, often that flexibility comes at the cost of performance. That is why using a tightly-

optimized, C-based interface and library suite combined with a powerful, flexible binding

language, is so appealing. [cp. Coll05, 152]

With the use of BSF4Rexx any Java application can use (Object) Rexx as a scripting lan-

guage. Hence, (Object) Rexx can use Java as a huge operating system independent function

library. The Object Rexx support enabled with BSF.CLS makes Java look like a huge Object

Rexx class library. [cp. Flat05a].

 2.2 Subversion

 2.2.1 General information and architecture

Subversion is a free/open-source version control system. That is, Subversion manages files

and directories over time. A tree of files is placed into a central repository. The repository is

much like an ordinary file server, except that it remembers every change ever made to your

files and directories. This allows you to recover older versions of your data or examine the

history of how your data changed.

Subversion can access its repository across networks, which allows it to be used by people

on different computers. At some level, the ability for various people to modify and manage

the same set of data from their respective locations fosters collaboration. Progress can occur

more quickly without a single channel through which all modifications must occur. And be-

cause the work is versioned, you need not fear that quality is the trade-off for losing that

Technical requirements Page 15

conduit – if some incorrect change is made to the data, just undo that change. [cp. Coll05,

1]

Figure 2 illustrates Subversion's architecture as a diagram. If you obtain Subversion, you

have to handle everything through a command-line because there is no such thing like a

Graphical User Interface (GUI). But as mentioned before you can easily write your own

software – for example a GUI – which was done many times in the past (just have a look at

[Coll05, 274 ff]).

On the – let us say – server side there is the Subversion repository – a container for all files

for a specific project. The files can be stored in a Berkeley DB or as FSFS5. The repository

can be accessed over the local file system if repository and client are on the same computer

5 FSFS (Fairly Secure File System) is a versioned file system implementation that uses the native operating
system file system to store data (ordinary flat files using a custom format).

Figure 2: Subversion's architecture, source [Coll05]

Technical requirements Page 16

or over a network. There are two protocols for which Subversion has standard implementa-

tions6: DAV and SVN. The SVN (for Subversion) protocol communicates with Subver-

sion's own server svnserve, “a lightweight server, capable of speaking to clients over

TCP/IP using a custom, stateful protocol” [see Coll05, 96]. The WebDAV/DeltaV protocol

is an extension to HTTP 1.1. Via a custom module Apache's web-server makes Subversion

repositories available to clients.

 2.2.2 Using Subversion

Along with starting a new project an administrator has to create a repository and eventually

has to import already existing files. Not everybody who knows of the address of the reposit-

ory should have read and/or write privileges, so there have to be set up user authentications.

Using the SVN protocol the administrator has to set up read and write rights through svn-
serve. With the integration in Apache user rights can be managed using Apache's httpd.-
conf and/or .htaccess files.

At first every client has to do a checkout once. This means to transfer all files in the repos-

itory to a local copy. After doing that users can add, move, delete, edit etc. files – whatever

they want to do with them. To copy the modified files back to the repository a commit is

needed along with a commit message describing changes made. With each commit a new

revision is created (starting at 0; new revision = old revision + 1). If the user wants

to edit the files at a later point in time, he has to do an update which copies only needed

files (=modified files since his workspace's revision) into his local workspace. The proced-

ure is the same for every user working with the repository.

As Subversion is a version control system, everybody has the ability to revert changes.

Every modification made is logged and can be reverted at any time. By means of Subver-

sion it is also comprehensible which files and which content of files where altered at which

point in time and by whom.

 2.2.3 Problem of file-sharing

All version control systems have to solve the same fundamental problem: how will the sys-

6 You can even write your own protocol and make it available through Subversion.

Technical requirements Page 17

tem allow users to share information, but prevent them from accidentally stepping on each

other's feet? It is all too easy for users to accidentally overwrite each other's changes in the

repository.

Consider the scenario shown in figure 3: Suppose we have two co-workers, Harry and

Sally. They each decide to edit the same repository file at the same time. If Harry saves his

changes to the repository first, it is possible that (a few moments later) Sally could accident-

ally overwrite them with her own new version of the file. While Harry's version of the file

will not be lost forever (because the system remembers every change), any changes Harry

made will not be present in Sally's newer version of the file because she never saw Harry's

changes to begin with. Harry's work is still effectively lost – or at least missing from the

latest version of the file. [cp. Coll05, 9]

Subversion, like other version control systems (e.g. CVS7), use a copy-modify-merge model.

In this model every user creates a personal working copy – local reflection of the reposit-

ory's files and directories. Users then work in parallel, modifying their private copies. Fi-

nally the private copies are merged together into a new, final version. The version control

system often assists with the merging, but ultimately a human being is responsible for mak-

ing it happen correctly. [cp. Coll05, 11]

7 “Concurrent Versioning System. CVS is an open source version control and collaboration system.” [see
Naud05]

Figure 3: The file-sharing problem to avoid, source [Coll05]

Technical requirements Page 18

The reason why I wanted to explain briefly the problem of file-sharing is not only because it

is a very fundamental one. It is also because some of my examples and ideas described in

later chapters have the goal to provide information about a repository and its status to avoid

problems of file-sharing and loss of data.

Subversion itself and lots of information with further references and links can be found at

[Fitz05]. If your are looking for a good introduction to Subversion, I suggest reading

[Coll05].

 2.3 Java

Java is an object-oriented programming language primarily developed by James Gosling

and colleagues at Sun Microsystems. The language, initially called Oak (named after the

oak trees outside Gosling's office), was intended to replace C++, although the feature set

rather resembles that of Objective C. Java should not be confused with JavaScript, which

shares only the name and a similar C-like syntax. Sun Microsystems currently maintains

and updates Java regularly. [cp. Wiki05a]

Java is platform independent and has Internet-ability – summarized in the slogan: Write

once – run everywhere. From the source code the Java-Compiler generates a so-called byte

code which is independent of the operating system used and can be executed, wherever a

Java Virtual Machine (JVM) is installed. Today a JVM is available for every well known

operating system. [cp. Abts04, 3 f] and [cp. Ulle05, 52]

Writing programs for the Internet means developing Java Servlets or Java Server Pages

(JSP). Servlets are the basis for JSPs – at runtime every JSP is translated into a Servlet.

To have an idea what the simplest Java program looks like see source code 1 below:

class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World");
 }
}

Source code 1: A simple Java program

1
2
3
4
5

Technical requirements Page 19

If you want to save these five lines to a file, it has to be named after the class – Hello-
World.java. Then you have to compile the code making use of javac HelloWorld.java
at the command-line. Execution of the program is done by typing java HelloWorld. If

everything worked fine, then there must be the output Hello World at the command-line.

Java can be obtained from [SunM05a]. If you are searching for tutorials, books, links, user

groups, forums etc., Sun's website is the place to go to. An absolute must for Java program-

mers is the Java API at [SunM05b] (latest version 5). For a quick overview and a lot of

links I recommend [Wiki05a]. Books which (I think) can be useful are [Abts04] and

[Ulle05] (both in German). If you are new to Java and want to have a look at some code

samples, go to [SunM05c].

 2.3.1 JavaSVN

JavaSVN is a pure Java Subversion client library (see also figure 2 on page 15). This means

that users of the library, e.g. Java applications do not have to include Subversion native bin-

aries or javahl bindings8 to work with Subversion repositories. JavaSVN library is not only

a 100% Java replacement for javahl bindings, but also a library that provides high level of

control over Subversion repository operations.

Major features of JavaSVN:

• No external binaries or libraries are needed.

• Supports HTTP, HTTPS9, SVN and SVN+SSH10 connection protocols.

• Default implementation provides support for default Subversion working copy files.

• Low level API allows to work directly with repository, without file system overhead.

• Extensible design – every part of implementation could be extended or replaced.

• May be used as a transparent javahl replacement. [cp. Tmat05a]

JavaSVN can be obtained from [Tmat05a]. The JavaDoc11 is located here [Tmat05b] and a

couple of example programs are published at the following address [Tmat05c].

8 Javahl is the language binding library (like JavaSVN) contributed from the same authors as Subversion.
9 Secure HTTP – Protocol enabling the secured transmission of web pages.
10 Secure Shell - A command-line interface used to securely access a remote computer.
11 Java documentation of classes, interfaces and their methods which are made available (=API).

Technical requirements Page 20

 2.4 ooRexx

Rexx (Restructured Extended Executor) is a programming language which was developed

at IBM, and several implementations are available under open source licenses. It is a struc-

tured high-level programming language which was designed to be both easy to learn and

easy to read. Both commercial and open source Interpreters for Rexx are available on a

wide range of computing platforms. [cp. Wiki05b]

Object Rexx is the object-oriented version of Rexx developed in the early 90s. Object Rexx

is fully compatible to Rexx, but has a complete internal object oriented structure and a

powerful object model (meta-classes, multiple inheritance). [cp. Flat05b, 8]

“Open Object Rexx (ooRexx) is an Open Source project managed by Rexx Language Asso-

ciation (RexxLA) providing a free implementation of Object Rexx.” [see Rexx05]

Source code 2 shows the Object Rexx variation of the same example as it was realized in

Java in source code 1.

say “Hello World”

Source code 2: A simple Object Rexx script

Saved to hello_world.rex the script can be executed using the command-line rexx
hello_world.rex. If you are using Microsoft's Windows, you can alternatively run the

script by doing a double click on the specific file in the Windows Explorer12.

Downloading ooRexx can be done from the official RexxLA website [Rexx05]. IBM's pro-

gramming guide and reference to Object Rexx can be found on [Ibm01a] and on[Ibm01b].

The course slides by Prof. Dr. Rony G. Flatscher (in German) provide a good introduction

to Object Rexx, as well as a tutorial and sample scripts for automating Windows and Java

applications (download available on [Flat05b] and on [Flat05c]).

12 Attention: Execution of scripts shown in this chapter requires needed software to be installed (see chapter
3).

1

Technical requirements Page 21

 2.5 BSF4Rexx

The Bean Scripting Framework (BSF) was an open source project developed at IBM. In

2003 the code was handed out to Apache's Jakarta project. BSF is a framework that allows

Java to execute scripting languages very easily. Defined interfaces give scripting languages

the possibility to interact with Java objects.

BSF4Rexx is the Bean Scripting Framework for Object Rexx. Developed by Prof. Dr. Rony

G. Flatscher and a former student of his, Peter Kalender, in 2000/01. Up to now there have

been three major versions: the Essener, the Augsburger and the Wiener version13. The cur-

rent Wiener version is in an ongoing development status.

Figure 4 demonstrates the architecture of the latest BSF4Rexx (Wiener version).

Further information on BSF can be found on [Apac05b]. Any material concerning

BSF4Rexx is available at [Flat05a].

13 Version names are the cities where Prof. Dr. Rony G. Flatscher worked as a university professor and at that
point in time developed the version.

Figure 4: Architecture of BSF4Rexx, source [Flat05b]

Technical requirements Page 22

 2.6 Apache and Mod_Rexx

The Apache HTTP Server Project is an attempt to develop and maintain an open-source

HTTP server14 for modern operating systems including UNIX and Windows NT. The goal

of this project is to provide a secure, efficient and extensible server which provides HTTP

services that match current HTTP standards. [cp. Apac05a]

The Apache HTTP Server Project is a collaborative effort aimed at creating a robust, com-

mercial-grade and freely-available source code implementation of an HTTP (web) server.

The project is jointly managed by a group of volunteers located around the world, using the

Internet and the Web to communicate, plan, and develop the server and its related docu-

mentation. This project is part of the Apache Software Foundation. [cp. Apac05c]

Apache is commonly used in combination with Linux or Windows as an operating system,

MySQL as the database system and PHP as the scripting language15.

Apache's official site is accessible at [Apac05a].

 2.6.1 Mod_Rexx

Mod_Rexx is an Apache loadable module for integrating

Object Rexx into Apache's web-server. All phases of an

Apache request can be processed with Mod_Rexx (see fig-

ure 5). That means that each of these phases can have an

Object Rexx script assigned to it. In most cases you will

only assign a script to the response phase (when data is

sent back to the client).

HTTP requests are handled through Apache's web-server.

If a client requests an Object Rexx script (noticeable, for

example through the file extension .rex), the Object Rexx

script is executed (if Apache's httpd.conf is configured

14 If you know nothing about TCP/IP networks, the Domain Name System (DNS), HTTP-client-server
communication etc., you may read the very short introduction at [Hois05, 27 ff] (in German) or do an
Internet search on these topics – there are many good resources available.

15 LAMP – Linux, Apache, MySQL, PHP or WAMP – Windows, Apache, MySQL, PHP

Figure 5: Process phases of

Apache, source [Ashl05a]

Technical requirements Page 23

correctly, see chapter 3) and the returned data is sent to the client. With Mod_Rexx it is also

possible to write Rexx Server Pages (RSP)16, which means writing Object Rexx code inside

a HTML17 file (like JSP or PHP files)18. This allows HTML pages to be created dynamically

at runtime.

The version of Mod_Rexx used works only with Apache 2.

The Homepage of Mod_Rexx containing all information is available on [Ashl05b] – down-

load is possible at SourceForge.net [Sour05].

 2.7 Tomcat

As described before Tomcat (in fact it is called Apache Tomcat) “is the servlet container

that is used for the official Reference Implementation of the Java Servlets and JSPs techno-

logy” [see Apac05d]. That means writing Java programs which are called through an HTTP

request and executed with Tomcat. Generated HTML code is sent back to the client (prob-

ably a web-browser).

[Apac05d] comprises a link to Tomcat's official website.

16 An allusion to Java Server Pages.
17 HyperText Markup Language – The document format language used on the World Wide Web.
18 An example is given in chapter 5.

Installation Page 24

 3 Installation

The following chapter contains an installation guide for the software described in chapter 2.

As I used Microsoft Windows for developing my examples, this guide is written for that op-

erating system. If you are using another operating system, the installation will certainly

more or less differ from this guide, but correspond in principle.

This chapter assumes that you have already downloaded the software to install. For links

and information concerning the download of needed components see the specific sub-

chapters in chapter 2.

 3.1 Installation guide

 3.1.1 Subversion

Installation of Subversion should be straight forward. After execution of the Windows In-

staller program you should have installed Subversion to a directory like
C:\Program Files\Subversion

For creating a new repository open a command-line shell by clicking on the left sided but-

ton Start and then Execute. In the text field enter cmd and then press Ok. A Windows

command-line window will appear. Enter the following:
svnadmin create <path to repository>
svnadmin is Subversion's administration program for creating, dumping, recovering etc. re-

positories. The command create creates a new repository under the path specified in <path
to repository> (e.g. C:_repository which I used in my examples).

Now that you have created a new repository at the path declared at <path to repository>
let us have a closer look at the directory structure:

• <path to repository>\conf\ – Containing repository configuration files.

• <path to repository>\dav\ – Provided to Apache and mod_dav_svn19 for the private

housekeeping data.

19 Subversion's Apache module for authorization. Subversion users are authorised by Apache's user
configuration files.

Installation Page 25

• <path to repository>\db\ – Where all the versioned data resides (stored either as

Berkeley DB or FSFS).

• <path to repository>\hooks\ – Directory for hook scripts20. Important to know be-

cause there are examples of hook scripts in chapter 5.

• <path to repository>\locks\ – For locking data, used for tracking accessors to the

repository.

I suggest creating another directory as the workspace – the data to work with. In my ex-

amples I use C:_checkouts. The sub-directories are the different working copies of repos-

itories.

Once changed to <path to workspace> (e.g. by typing cd <path to workspace>) you

can do an initial checkout by typing
svn checkout <url to repository>
<url to repository> can be accessed locally (with file:///<path to repository>21),

via the HTTP protocol (with http://<url to repository>22) or via the SVN protocol

(with svn://<url to repository>23).

If the repository is accessed over HTTP or SVN protocol, <url to repository> must be

either the IP address or the full qualified domain name (FQDN) followed by the local path

to the repository.

If the checkout was successful, there is a message like Checked out, Revision 0. Now

your repository and workspace are set up and you are free to work with Subversion, which

is best described in [Coll05, 19 ff].

For using the svn command24 not only in Subversion's binary directory (where svn.exe
resides) but also in any other directory, Subversion on its own sets following environmental

variable:
PATH=%PATH%;<path to Subversion>\bin

20 Hook scripts are programs triggered by some repository event, such as the creation of a new revision or the
modification of an unversioned property.

21 Notice the forward slashes, e.g. file:///c:/_repository
22 Needs Apache to be set up and running.
23 Needs svnserve to be set up and running.
24 And svnadmin and svnlook and svnserve and so on ...

Installation Page 26

Command %PATH% inserts the value of the environmental variable PATH itself, so that Sub-

version's path to its binary directory is appended.

You can have a look at all environmental variables in the system control centre or by typing

the following at the command-line:

echo %<environmental variable>% (e.g. echo %PATH%)

Setting of environmental variables is done either in the system control centre or by typing:

set <environmental variable>=<value>25

Latest Subversion version for Windows is 1.2.0, which I used for my examples.

 3.1.2 Java and JavaSVN

Install, for example, the Java 2 Standard Edition (J2SE) Development Kit to a directory

similar to C:\Program Files\j2sdk.

Make sure that the following environmental variables are set:
PATH=%PATH%;<path to Java>\bin
PATH=%PATH%;<path to Java>\jre\bin\client

Test your installation by typing java -version, which prints out used Java version.

After that install JavaSVN to any directory you want, for example C:\Program
Files\javasvn.

You have to set the following environmental variable to make JavaSVN work:
set CLASSPATH=%CLASSPATH%;<path to JavaSVN>\javasvn.jar

For my examples I used Java in version 1.4.2_01 and JavaSVN in version 0.8.8.1.

25 You have to set environmental variables to be able to access resources located elsewhere than in the
current directory. The resources are made available system wide.

Installation Page 27

 3.1.3 ooRexx with BSF4Rexx support

Open Object Rexx installation is as easy as installing Subversion or Java – just follow the

instructions on the screen. After exiting the installation wizard you should have installed

ooRexx to a directory like C:\Program Files\ooRexx.

The environmental variables REXX_HOME and PATH are set to <path to ooRexx>.

Test your ooRexx installation by typing rexx -v at the command-line prompt to see

ooRexx' version number and license.

After finishing the installation of ooRexx unzip the downloaded bsf4rexx.zip to a direct-

ory of your choice, e.g. C:\Program Files\bsf4rexx.

You have to set the following environmental variables:
set CLASSPATH=%CLASSPATH%;<path to BSF4Rexx>
set PATH=%PATH%;<path to BSF4Rexx>\bin

The used ooRexx version for my examples is 3.0.0 in connection with BSF4Rexx in the

version of 2005-07-09.

 3.1.4 Apache with Mod_Rexx

You only have to install Apache with Mod_Rexx if you want to try out examples requiring

this web-server and the module (see chapter 5.3).

Installing Apache 2 (And only Apache 2 if you want to use Mod_Rexx!), for example, with

the Windows Installer to a directory similar to C:\Program Files\Apache
Group\Apache226.

Test your installation by starting Apache's web-server and typing http://localhost in the

address field of your preferred web-browser. You should see a confirmation page that the

web-server has been installed successfully.

26 Generally speaking it is better to use directories not containing white spaces.

Installation Page 28

In Apache's home directory you will find a sub-directory called conf – the central configur-

ation directory. If you want to configure Apache to work with Subversion, edit the file ht-
tpd.conf and do the following:

If necessary uncomment the following line:
LoadModule dav_module modules/mod_dav.so

Insert this line in the LoadModule section:

LoadModule dav_svn_module <path to Subversion>\bin\mod_dav_svn.so27

This will load the needed Subversion support module when Apache starts.

The only thing left is to tell Apache where to find repositories. This is done by inserting the

following lines:
<Location /<name of repository>>
 DAV svn
 SVNPath <path to repository>
</Location>

You can access your repository by typing http://<url to host>/<name of reposit-
ory> in the address field of your web-browser.

If you need authorization, the following lines may be interesting:
<Location /<name of repository>>
 DAV svn
 SVNPath <path to repository>
 AuthType Basic
 AuthName <name of repository>
 AuthUserFile <path to .htpasswd>28

 require valid-user
</Location>

After an Apache restart your repository is accessible via HTTP. For a more detailed instruc-

tion read [Coll05, 102 ff].

27 Or you copy the mod_dav_svn.so to the directory <path to Apache>\modules where all modules are
located.

28 Look at [Coll05, 105] for information about Apache user authorization.

Installation Page 29

If you want to install Mod_Rexx, do the following after downloading it:
Copy <path to Mod_Rexx>\bin\mod_rexx.dll to <path to Apache>\modules
Copy <path to Mod_Rexx>\rspcomp\rspcomp.rex to <path to Apache>\bin
Copy <path to Mod_Rexx>\rexscripts\Apache.cls to <path to Apache>

Edit httpd.conf again and add the following:
LoadModule rexx_module modules/mod_rexx.dll

In the AddType section add:

AddType application/x-httpd-rexx-script .rex .rexx29

AddType application/x-httpd-rexx-rsp .rsp30

and
RexxTempFileNameTemplate <path to any temp directory>execrsp?????.rex
RexxRspCompiler <path to Apache>\bin\rspcomp.rex

As Mod_Rexx transfers every RSP into an Object Rexx Script at runtime31, the last two

lines specify (1) a temporary Object Rexx file to write the transformed code to and (2) the

executed transformation script.

At last restart Apache again – now Object Rexx support is enabled. For further information

have a look at [Ashl05b].

I am using Apache 2.0.54 with Mod_Rexx 2.1.0.

 3.1.5 Tomcat

You only have to install Tomcat if you want to try out examples requiring this application-

server (see chapter 5.4).

Install Tomcat in a directory like C:\Program Files\Tomcat.

29 Tells Apache to forward files with specified extension to Object Rexx for execution.
30 HTML files with Object Rexx code inside must have the extension specified here. That is the only way for

Apache to recognize that files not only have HTML but also Object Rexx code inside (which must be
executed).

31 Think of JSPs translated to Java Servlets.

Installation Page 30

Be sure that you configure Tomcat running on a different port than Apache. Only one of the

two web-servers can be invoked to handle a request made on a specific port. The value of

the standard HTTP port is 80. I configured my system as follows: Apache on port 80 and

Tomcat on port 808032. Configuration can be made using Apache's httpd.conf and Tomc-

at's server.xml.

Test your installation by browsing to http://localhost:8080/33. You should see Tomc-

at's standardized welcome page.

I am using Tomcat's version 5.0.19 (scripts were also tested on Tomcat 5.5.9).

 3.2 Common pitfalls

Here I am going to give some hints on common pitfalls during installation and configura-

tion.

• Be sure to download the latest software release available.

• Check if all paths described in chapter 3.1 are set correctly. This is one of the main prob-

lems because you must not have any typing errors.

• If a directory contains any spaces, they must be between two quotation marks. Usually it

does not matter if you use “ or ‘.

• Subversion URLs accept only forward slashes. For example only file:///c:/_repos-
itory is valid.

• On windows machines Subversion paths can be written with both forward and backward

slashes. Just pay attention if you mix them up.

• If you set environmental variables on the command-line prompt (with set
<name>=<value>), these settings only apply to the window opened and only last as long

as the window stays open. If you want to modify the variables for every session, you

have to set them in the system control centre.

• Every .jar file is a compressed container that comprises Java classes. If you do not want

to set any environmental variables for accessing these classes, just unpack them in the

same folder as your script is located.
32 Be sure to specify a port greater than 1023 because these well known ports are reserved for other usage.
33 Or whatever you set the port to.

Installation Page 31

• You cannot set Apache's directory index to any RSP. You have to do a workaround like

putting an index.html file forwarding to the RSP in the same directory.

• You cannot include BSF4Rexx' BSF.CLS into an Object Rexx Script or RSP34 and let it

execute through an Apache process. If anyone manages this, please let me know.

• If you are using Tomcat 5.5.x with Java 1.4.x, you have to download a compatibility

package from the following address http://apache.mirror.netmonic.com/jakarta/tomcat-

5/v5.5.9/bin/jakarta-tomcat-5.5.9-compat.zip.

• You have to ensure that Tomcat's process has access to BSF4Rexx classes. The simplest

way is to copy the <path to BSF4Rexx>\org directory to <path to
Tomcat>\webapps\<application name>\WEB-INF\classes.

• Also JavaSVN libraries must be accessible. You have to copy <path to
JavaSVN>\javasvn.jar either to <path to Tomcat>\common\lib or to <path to
Tomcat>\webapps\<application name>\WEB-INF\lib depending if you want to grant

access to the JavaSVN classes for all web-applications or only a specific one.

34 And therefore you cannot use any provided BSF4Rexx functions.

Concepts of automating Subversion Page 32

 4 Concepts of automating Subversion

This chapter deals with concepts of automating Subversion. Where are the weak points and

how can they be improved? Furthermore, there is a description of the Java library JavaSVN,

which makes automating Subversion possible. The last two sub-chapters are dealing with

the basic Java and ooRexx implementation concepts of Subversion automation.

 4.1 General information

By means of Subversion one can version control any sort of data. You do not even have to

share files to benefit from using Subversion. If you work on any written document (an art-

icle, a book etc.), source code, images and so on, it could be helpful to version any changes

made. You for yourself can realize that you have done something wrong and then you will

praise Subversion to be able to revert easily to a former version. Subversion is also an ex-

cellent tool for backing up data (if the repository is located at another computer and ac-

cessed over a network). At any time you can retrieve any revision ever made. Subversion

only stores the differences between revisions, so it uses the smallest amount of disc space.

When people work together, mistakes can occur very easily and following Murphy's law

mistakes certainly will occur. The use of Subversion cannot prevent errors to happen, but

they are so much easier to solve. Subversion generates a benefit when many people work on

a project sharing any data. With a central repository any person has access to the latest revi-

sion. There is no need to send modified documents to every person involved in the project

by email. This circumstance reduces network traffic as well as Subversion's ability to up-

date only needed data on the client's workspace.

As good as Subversion is at managing data and revisions of data over time, as bad it is at

managing collaboration between members in a project – it is just not designed for that.

Working only with the Subversion standard command-line interface can easily lead to a

lack of information. That is because the command-line is limited to show only very small

text information with no accentuation available. It is not a good idea to display such a great

amount of information – as it is the case in Subversion – on such a limited medium like the

command-line. For sure, when more than twenty, fifty or hundred people are working on a

Concepts of automating Subversion Page 33

project at the same time, there is certainly so much information that no one has a clear over-

view anymore.

Another negative aspect is that nobody knows who is currently working on a specific file.

By means of Subversion you can see who has modified what and you also have a log mes-

sage with the user's comments, but you have no chance to see modifications right on time.

So if anybody forget to commit their changes, nobody will ever know. Then it can happen

that another user modifies the same (work was done twice) or that an idea has already been

discarded (work was in vain). So it would be a benefit if there was a central contact point

where current information about modifications done by users is collected.

Some of my examples are targeting at these negative behavioural patterns of Subversion by

generating clear reports, better summaries and user notifications. I will also introduce an

idea for a better solution for collaborative work. Further examples will show how to im-

prove functions by a new behaviour, which I think can be useful. Furthermore, there are im-

plementations of missing functionality, which can be advantageous as well.

 4.2 Use of JavaSVN

The main packages used from JavaSVN are org.tmatesoft.svn.core (for working with

workspaces) and org.tmatesoft.svn.core.io (for working with repositories) [cp.

Tmat05b]. That separation allows the user to work only with a repository or only with

workspaces, for example.

In the org.tmatesoft.svn.core.io package the main class to work with is called SVNRe-
pository. It declares all the basic interface methods as well as implements commonly used

ones to work with a Subversion repository. It is the skeleton of the low-level mechanism of

accessing a repository. In the model of the Subversion distributed system of versioning and

sharing data, this mechanism corresponds to the Repository Access (RA) Layer. This low-

level API itself knows nothing about working copies.

The high-level library API rests upon this basis: for example, manipulations with a working

copy (which need an access to a repository), say, committing it, uses an appropriate imple-

Concepts of automating Subversion Page 34

mentation (depending on the protocol that is chosen to access the repository) of SVNRepos-
itory as an engine that carries out the commit itself. [cp. Tmat05b]

In the org.tmatesoft.svn.core package there is an interface called ISVNWorkspace
providing more or less all methods for working with a workspace. This package relies on

the low-level API org.tmatesoft.svn.core.io when an access to a repository is needed.

 4.3 Java approach

My first approach to automating Subversion was using Java. For those who are familiar

with the language it will be easier to understand the ooRexx examples if the basic concepts

are also shown in Java. Exactly the same examples will be shown in chapter 4.4 using

ooRexx.

 4.3.1 Working with workspaces

Source code 3 shows the Java setup for working with Subversion workspaces. Assuming

that you have already checked out a revision to a workspace defined in path35, this program

prints out the corresponding URL of the repository. There is no need to access the reposit-

ory. Used packages for working with workspaces are imported in line 1 and 2. With the

called method in line 10 the working copy storage is initialized and configured (default is

file system). Then a new workspace is created using the SVNWorkspaceManager.create-
Workspace method. Using file type to create workspace, results in creating workspaces

that use file system to store working copy files and administrative info. The only implemen-

ted and therefore possible type is file. workspace.getLocation() returns a SVNReposit-
oryLocation object which is printed out36. Code for accessing workspaces must be

between a try-catch block or declared to be thrown.

import org.tmatesoft.svn.core.internal.ws.fs.*;
import org.tmatesoft.svn.core.*;

35 If you have a look at line 7 where variable path is defined, you will notice forward slashes in place of
backward slashes. The reason is that Java notices a backward slash as an escape character which itself must
be escaped. Therefore I use forward slashes to bypass that problem. Windows does not care about using
forward or backward slashes.

36 There is no need to apply the toString() method to the SVNRepositoryLocation object because
System.out.println() does that for us.

1
2

Concepts of automating Subversion Page 35

public class Workspace {
 public static void main(String[] args) {
 String path = "C:/_checkouts/repos";
 try {
 FSEntryFactory.setup();
 ISVNWorkspace workspace = SVNWorkspaceManager.createWorkspace("file", path);
 System.out.println(workspace.getLocation());
 } catch (Exception e) {
 System.err.println(e);
 }
 }
}

Source code 3: Working with workspaces (Java)

Output will be something like http://localhost/repos.

 4.3.2 Working with repositories

You can see by means of source code 4 a sample implementation of accessing a repository

over HTTP and printing out repository's latest revision. If you want to use SVN as protocol,

you have to replace the first line with import org.tmatesoft.svn.core.intern-
al.io.svn.*; for importing the needed package. Also line 10 must be substituted for SVN-
RepositoryFactoryImpl.setup(); which sets up connection protocol support. To get a

repository instance having a repository URL is shown on lines 11 and 12. The behaviour of

method getLatestRevision() should be obvious – the result is printed out. As in source

code 3, code for accessing repositories must be between a try-catch block or declared to be

thrown.

import org.tmatesoft.svn.core.internal.io.dav.*;
import org.tmatesoft.svn.core.io.*;
public class Repository {
 public static void main(String[] args) {
 String url = "http://localhost/repos";
 try {
 DAVRepositoryFactory.setup();
 SVNRepositoryLocation location = SVNRepositoryLocation.parseURL(url);
 SVNRepository repository = SVNRepositoryFactory.create(location);
 System.out.println(repository.getLatestRevision());
 } catch (Exception e) {
 System.err.println(e);
 }

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Concepts of automating Subversion Page 36

 }
}

Source code 4: Working with repositories (Java)

 4.4 ooRexx approach

All examples shown in chapter 5 are written in ooRexx. At this point I will display the dif-

ferences between Java and ooRexx on the one hand and demonstrate the basic syntax for

working with Subversion workspaces and repositories using ooRexx on the other hand.

Compared to Java you will see that you need less ooRexx code for the same functionality.

As ooRexx is a scripting language you also do not have to compile the written source code.

Variables used in ooRexx need not be declared – there is no strict typing. These all are reas-

ons for using ooRexx and not Java as programming language in my examples.

 4.4.1 Loading needed classes

As I use Subversion classes in every example there is a routine37 (starting at line 13 in

source code 5) which loads all needed classes. In my examples in chapter 5 I import the file

99_utils.rex and call the defined routine loadClasses to load the Java classes. There-

fore I do not have to copy the import function to every single of my example files. For some

examples I also need dom4j (for working with XML files) and jfee.chart (for generating

graphical charts) packages and some Java specific classes.

In source code 5 a variable classes is defined and filled up with classes to load (line 14).

Delimiter between the text strings is a single blank character. The comma treats the follow-

ing line as if all was written in one single line. After that there is a loop over the number of

words (returned by words(classes)) in variable classes (line 49 to 53). At each pass the

variable class contains the word (=package) at position i. The variable rexxClass is

filled up with only those characters found after the last “.”, e.g. at the first cycle rexxClass
has the value DAVRepositoryFactory. The last thing to do is to import the Java classes us-

ing BSF4Rexx (BSF4Rexx support is loaded in line 10 using the requires directive). The

Java class is now accessible through the name defined in rexxClass.

37 The routine is declared public to be accessible from everywhere.

20
21

Concepts of automating Subversion Page 37

/*
 * 99_utils.rex, 2005-06-12
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Methods which could be useful (yet only loadClasses)
 * -> some idea of code-reuse.
 *
 */
::requires BSF.CLS
-- Do it rgf's way
::routine loadClasses public
 classes = "org.tmatesoft.svn.core.internal.io.dav.DAVRepositoryFactory" ,
 "org.tmatesoft.svn.core.internal.io.svn.SVNRepositoryFactoryImpl" ,
 "org.tmatesoft.svn.core.internal.ws.fs.FSEntryFactory" ,
 "org.tmatesoft.svn.core.io.SVNRepositoryLocation" ,
 "org.tmatesoft.svn.core.io.SVNRepositoryFactory" ,
 "org.tmatesoft.svn.core.io.SVNDirEntry" ,
 "org.tmatesoft.svn.core.io.SVNNodeKind" ,
 "org.tmatesoft.svn.core.io.SVNLogEntry" ,
 "org.tmatesoft.svn.core.io.SVNLogEntryPath" ,
 "org.tmatesoft.svn.core.io.ISVNWorkspaceMediator" ,
 "org.tmatesoft.svn.core.io.ISVNEditor" ,
 "org.tmatesoft.svn.core.io.SVNRevisionProperty" ,
 "org.tmatesoft.svn.core.io.SVNFileRevision" ,
 "org.tmatesoft.svn.core.ISVNWorkspace" ,
 "org.tmatesoft.svn.core.SVNWorkspaceManager" ,
 "org.tmatesoft.svn.core.SVNProperty" ,
 "org.tmatesoft.svn.core.ISVNEntryFactory" ,
 "org.tmatesoft.svn.core.SVNStatus" ,
 "org.tmatesoft.svn.util.SVNUtil" ,
 "org.tigris.subversion.javahl.SVNClient" ,
 "org.jfree.chart.ChartFactory" ,
 "org.jfree.chart.ChartUtilities" ,
 "org.jfree.chart.JFreeChart" ,
 "org.jfree.data.general.DefaultPieDataset" ,
 "org.dom4j.Document" ,
 "org.dom4j.DocumentHelper" ,
 "org.dom4j.Element" ,
 "org.dom4j.io.OutputFormat" ,
 "org.dom4j.io.XMLWriter" ,
 "java.util.HashMap" ,
 "java.util.Vector" ,
 "java.io.FileWriter" ,
 "java.io.ByteArrayOutputStream" ,
 "java.io.File"
 do i = 1 to words(classes)
 class = word(classes,i)
 rexxClass = substr(class,lastpos('.',class)+1)
 .bsf~bsf.import(class,rexxClass)
 end

Source code 5: File 99_utils.rex

 4.4.2 Setting environmental variables

As described in chapter 3 you have to set a lot of environmental variables for the installed

software. Some of them are set automatically along with the installation, some you have to

set on your own. Source code 6 shows an executable BAT-file38 which adapts my environ-

mental variable CLASSPATH according to my system settings39. By executing the file variable

38 A batch file for DOS.
39 Caution: Not every environmental variable needed by the installed software described in chapter 3 is set by

the batch file, only those required according to my system configuration.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Concepts of automating Subversion Page 38

CLASSPATH is set to Java archives (.jar-files) from JavaSVN, JfreeChart40 and dom4j41. If

you want to use the script, just adopt the paths to your system settings.

If you have not set environmental paths (or not all of them) in the system control centre, you

can use this script by running it every time you open a new command-line window. The

variables are available as long as the window stays open. You can easily extend the script

by setting more variables you need. It is also possible to call batch files from ooRexx scripts

using the address cmd directive. Therefore you can set environmental variables every time

you execute an ooRexx script needing those paths to be set.

rem 00_set-paths-minimalistic.bat, 2005-06-12
rem Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
rem Adapts CLASSPATH according to my environmental settings.
set CLASSPATH=%CLASSPATH%;C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\javasvn-0.8.8.1\javasvn.jar
set CLASSPATH=%CLASSPATH%;C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\jfreechart-1.0.0-rc1\lib\jfreechart-1.0.0-rc1.jar
set CLASSPATH=%CLASSPATH%;C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\jfreechart-1.0.0-rc1\lib\jcommon-1.0.0-rc1.jar
set CLASSPATH=%CLASSPATH%;C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\dom4j-1.6.1\dom4j-1.6.1.jar
set CLASSPATH=%CLASSPATH%;C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\dom4j-1.6.1\lib\jaxen-1.1-beta-6.jar

Source code 6: File 00_set-paths-minimalistic.bat

Source code 7 below is an ooRexx script which sets more or less every environmental vari-

able needed for executing my examples shown in the next chapter42. Therefore a new vari-

able paths of type directory43 is created (line 14) and filled up with the name of environ-

mental variables as keys and the corresponding paths as values. Lines 41 to 45 loop over the

variable and execute the DOS command for setting environmental variables (using address
cmd). The next line prints out the directly set variable (DOS command echo) and a blank

row (statement say without a value).

It is possible to load this script using the requires directive to set environmental variables

40 JfreeChart is a free Java class library for generating charts and can be obtained from [Gilb05].
41 “dom4j is an easy to use, open source library for working with XML [...] on the Java platform” [see

Meta05] and can be downloaded from [Meta05].
42 Here environmental variables are available as long as the execution of the script lasts.
43 “A directory is a collection with unique indexes that are character strings representing names.” [see

Ibm01b, 127]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Concepts of automating Subversion Page 39

before execution of other parts of an ooRexx program is taking place. Hook scripts (de-

scribed in chapter 5.2) are executed by the system where no environmental variables are set

and therefore need the file 00_set-paths.rex to be loaded first.

/*
 * 00_set-paths.rex, 2005-06-12
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Sets all required paths which are needed by the following
 * sample programs. On a Windows machine your paths should look
 * pretty the same or slightly different. Just adopt it for
 * your type of system and configuration. Maybe some of these
 * required paths are already set. If that is the case just
 * comment these lines.
 *
 */
paths = .directory~new
-- Set ooRexx' home directory, if needed
paths["REXX_HOME"] = "C:\Programme\ooRexx"
-- Set classpath to BSF4Rexx, JFreeChart, dom4j and the current directory (.), if needed
paths["CLASSPATH"] = "C:\Programme\bsf4rexx;",
 || "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\javasvn-0.8.8.1\javasvn.jar;",
 || "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\jfreechart-1.0.0-rc1\lib\jfreechart-1.0.0-rc1.jar;",
 || "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\jfreechart-1.0.0-rc1\lib\jcommon-1.0.0-rc1.jar;",
 || "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\dom4j-1.6.1\dom4j-1.6.1.jar;",
 || "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion\dom4j-1.6.1\lib\jaxen-1.1-beta-6.jar;",
 || "."
-- Set path to Subversion's bin directory, to ooRexx, to BSF4Rexx' binaries,
-- to Java's JRE client binaries and to the current directory, if needed
paths["PATH"] = "C:\Programme\Subversion\bin;",
 || "C:\Programme\ooRexx;",
 || "C:\Programme\bsf4rexx\bin;",
 || "C:\Programme\j2sdk1.4.1_01\jre\bin\client;",
 || "."
do path over paths
 address cmd "set" path || " = %" || path || "%;" || paths[path]
 address cmd "echo" path || " = %" || path || "%"
 say
end

Source code 7: File 00_set-paths.rex

 4.4.3 Working with workspaces

Source code 8 does exactly the same as source code 3 described earlier in chapter 4.3.1, but

this time it is implemented in ooRexx.

On line 10 and 11 BSF4Rexx support and the file 99_utils.rex (whose method load-
Classes is called in the first line of the program) are loaded. Lines 3 to 6 are setting up the

workspace while in line 8 the repository location is printed out. This time the method to-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Concepts of automating Subversion Page 40

String44 is invoked because otherwise we would print out an object and not a text string.

call loadClasses
path = "C:_checkouts\repos"
.FSEntryFactory~setup
workspace = .SVNWorkspaceManager~createWorkspace("file", path)
say workspace~getLocation~toString
::requires BSF.CLS
::requires 99_utils.rex

Source code 8: Working with workspaces (ooRexx)

 4.4.4 Working with repositories

Source code 9 below is an ooRexx copy of Source code 4 in chapter 4.3.2 and itself prints

out the latest revision retrieved from a repository. I think the example is self-explanatory

and does not need any further explanations.

call loadClasses
url = "http://localhost/repos"
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(url)
repository = .SVNRepositoryFactory~create(location)
say repository~getLatestRevision

::requires BSF.CLS
::requires 99_utils.rex

Source code 9: Working with repositories (ooRexx)

44 As you can see there is no need for brackets like in Java when executing a method without having
parameter values.

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11
12
13

Developed examples Page 41

 5 Developed examples

The following chapter shows the source code of my developed examples together with a de-

tailed description. All examples are made available with the publication of this paper.

 5.1 Standalone examples

 5.1.1 Example 1 – Simple command-line wrapper

The first example is an implementation of the Subversion command-line client with only

the checkout and commit commands implemented. The script has nearly the same beha-

viour as Subversion's build-in client. Executing the script you have to specify the connec-

tion protocol (HTTP or SVN) and after that the URL of the repository to communicate with.

There is an inquiry to be sure that the given FQDN is correct. After specifying the work-

space directory you can work using svn checkout or svn commit as statements. By check-

ing out a revision you must submit user name and password. Matching user name with

password will only be checked if there is authentication needed. After the checkout you can

edit files you want using your preferred editor. Committing changes is done by entering svn
commit with the optional parameter -m [commit message]. Again you have to specify user

name and password. This is a wanted behaviour because you can commit revisions with

user names other than the standard user chosen by Subversion (e.g. currently logged in user

in Windows). Exiting program is done by typing svn exit.

If you have a look at source code 10, you will see that on line 61 file BSF.CLS is loaded

(BSF4Rexx support)45. This example is the only one having routine loadClasses imple-

mented by itself46. The first lines calling some routines defined later in the script for setting

connection protocol, repository location and workspace directory. Then a loop is defined

which waits for user input (line 22). Possible input is svn checkout, svn commit, svn
help and svn exit. On checkout and commit the user has to authenticate himself. Be-

sides, there is an inquiry if checkout was already done because you can checkout a reposit-

ory only once into one specific directory. The help routine prints out only one single line

(line 13) and is actually an example of how to extend the program with more functionality.

45 After invoking an ooRexx script requires directives are executed first.
46 As mentioned earlier all other scripts require file 99_utils.rex.

Developed examples Page 42

If you look at the routine setup (for connection protocol configuration; line 79), you will

see that there are two different methods called depending on the protocol you specified.

/*
 * 01_simple-cmd-line.rex, 2005-06-12
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Command-line tool for simple interaction. Protocol, repository and
 * workspace must be defined. Simple "checkout" and "commit" functions are
 * implemented including authentication. Authentication has to be done
 * on each "checkout" or "commit" event.
 *
 */
call loadClasses
protocol = setup()
location = setLocation(protocol)
workspace = setWorkspace()
say ">> Setup completed"

quit = false
checkedout = false
do while quit = false
 parse pull cmd
 parse var cmd svn command option
 if (svn! = "svn") then call help(cmd)
 else do
 select
 when command = "checkout" then
 do
 if (checkedout = false) then
 do
 -- Authentication works only if user must be authenticated against repository
 auth = authentication(workspace)
 say ">> Checking out"
 -- For getting latest revision
 head = .bsf~bsf.getStaticValue("org.tmatesoft.svn.core.ISVNWorkspace", "HEAD")
 revision = workspace~checkout(location,head,.false)
 checkedout = true
 say ">> Checked out revision" revision
 say ">> Edit needed files now..."
 end
 else say ">> Already checked out, use 'svn update' instead"
 end
 when command = "commit" then
 do
 -- Authenticate again for submit changes as different user
 auth = authentication(workspace)
 -- Only message argument is implemented
 parse var option "-m " msg
 revision = workspace~commit(msg)
 say ">> Committed revision" revision
 end
 when command = "help" then call help
 when command = "exit" then quit = true
 otherwise call error(cmd)
 end
 end
end
exit
::requires BSF.CLS
::routine loadClasses public
 classes = "org.tmatesoft.svn.core.internal.io.dav.DAVRepositoryFactory" ,
 "org.tmatesoft.svn.core.internal.io.svn.SVNRepositoryFactoryImpl" ,
 "org.tmatesoft.svn.core.internal.ws.fs.FSEntryFactory" ,
 "org.tmatesoft.svn.core.io.SVNRepositoryLocation" ,
 "org.tmatesoft.svn.core.ISVNWorkspace" ,
 "org.tmatesoft.svn.core.SVNWorkspaceManager" ,
 "org.tigris.subversion.javahl.SVNClient" ,
 "java.io.File"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Developed examples Page 43

 do i = 1 to words(classes)
 class = word(classes,i)
 rexxClass = substr(class,lastpos('.',class)+1)
 .bsf~bsf.import(class,rexxClass)
 end
::routine setup
 quit = false
 do while (quit = false)
 say ">> connection over 'http' or 'svn': ('file' not yet implemented)"
 parse pull conn
 if (conn = "http") then
 do
 .DAVRepositoryFactory~setup
 quit = true
 end
 else if (conn = "svn") then
 do
 .SVNRepositoryFactoryImpl~setup();
 quit = true
 end
 else call error(conn)
 end
 .FSEntryFactory~setup();
 say ">> Connection type set"
 return conn
::routine setLocation
 parse arg prot
 quit = false
 do while (quit = false)
 say ">> set repository location:"
 parse pull loc
 if (loc = "") then call error(loc)
 else
 do
 parse var loc protocol "://" domain "." toplevel_plus_port "/" path
 if (prot = protocol & domain <> "" & toplevel_plus_port <> "") then
 do
 location = .SVNRepositoryLocation~parseURL(loc)
 quit = true
 end
 else call error(loc)
 end
 end
 say ">> Location of repository set"
 return location
::routine setWorkspace
 say ">> set workspace directory: (blank for "||directory()||")"
 parse pull ws
 if (ws = "") then ws = directory()
 workspace = .SVNWorkspaceManager~createWorkspace("file",ws)
 say ">> workspace set"
 return workspace
::routine authentication
 use arg workspace
 say ">> User:"
 parse pull user
 say ">> Password:"
 parse pull pw
 workspace~setCredentials(user,pw);
 return 1
::routine help
 say ">> help yourself :)"
::routine error
 parse arg cmd
 say ">> unknown command: '"||cmd||"'"
 say ">> type 'svn help' for help"

Source code 10: File 01_simple-cmd-line.rex

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

Developed examples Page 44

 5.1.2 Example 2 – Variation of the command-line wrapper

Example 2 is a variation of the first example with some minor changes and improvements

in functionality. Now one can also update existing checkouts using svn update and every

functionality is implemented as a single routine. On lines 59 to 62 you can see that the con-

nection protocol must not explicitly be specified, but it is detected by entering only reposit-

ory's URL. On line 20 the static variable head is specified which consists of an integer (here

-247) referring to the revision number to be checked out or updated. A routine which is also

implemented in example 1 showed earlier is named error (line 17). When a user types a

command the program does not recognize, this routine is called with the unknown com-

mand as an argument to be printed out. If one tries to commit a new revision without having

changed anything, the returned revision number is -1 (lines 103 and 104). This indicates

that nothing has changed and no new revision was committed (else the new revision num-

ber is returned).

/*
 * 02_simple-cmd-line-variation.rex, 2005-06-12
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Command-line tool for simple interaction. Protocol, repository and
 * workspace must be defined. Simple "checkout", "commit" and "update"
 * functions are implemented including authentication. Authentication
 * has only to be done once.
 * Improvement towards 01_simple-cmd-line.rex: Protocol is detected
 * through repository URL and must not be defined separately. Each
 * functionality is implemented as a routine. Also there are some minor
 * improvements...
 *
 */
call loadClasses
location = setLocation()
workspace = setWorkspace()
auth = authentication(workspace)
head = .bsf~bsf.getStaticValue("org.tmatesoft.svn.core.ISVNWorkspace", "HEAD")
say ">> Setup completed"
quit = false
checkedout = false
do while quit = false
 parse pull cmd
 parse var cmd svn command option
 if (svn! = "svn") then call help(cmd)
 else do
 select
 when command = "checkout" then do
 if checkedout = false then checkedout = checkout(workspace,location,head)
 else say ">> Already checked out, use 'svn update' instead"
 end
 when command = "commit" then committed = commit(workspace,option)
 when command = "update" then updated = update(workspace,head)
 when command = "help" then call help
 when command = "exit" then quit = true

47 A negative integer indicates that the latest revision is going to be checked out.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Developed examples Page 45

 otherwise call error(cmd)
 end
 end
end
exit
::requires BSF.CLS
::requires 99_utils.rex
::routine setLocation
 quit = false
 do while (quit = false)
 say ">> set repository location:"
 parse pull loc
 if (loc = "") then call error(loc)
 else do
 parse var loc protocol "://" domain "." toplevel_plus_port "/" path
 if ((protocol = "http" | protocol = "svn") & domain <> "" & toplevel_plus_port <>
"") then do
 if (protocol = "http") then .DAVRepositoryFactory~setup
 else if (protocol = "svn") then .SVNRepositoryFactoryImpl~setup();
 else call error(conn)
 .FSEntryFactory~setup();
 location = .SVNRepositoryLocation~parseURL(loc)
 quit = true
 end
 else call error(loc)
 end
 end
 say ">> Location of repository set"
 return location
::routine setWorkspace
 say ">> set workspace directory: (blank for "||directory()||")"
 parse pull ws
 if (ws = "") then ws = directory()
 workspace = .SVNWorkspaceManager~createWorkspace("file",ws)
 say ">> workspace set"
 return workspace
::routine authentication
 use arg workspace
 say ">> User:"
 parse pull user
 say ">> Password:"
 parse pull pw
 workspace~setCredentials(user,pw);
 return 1
::routine checkout
 use arg workspace,location,head
 say ">> Checking out"
 revision = workspace~checkout(location,head,.false)
 say ">> Checked out revision" revision
 say ">> Edit needed files now..."
 return true
::routine commit
 use arg workspace,option
 -- Only message argument is implemented
 parse var option "-m " msg
 revision = workspace~commit(msg)
 if (revision = -1) then say ">> Nothing to commit..."
 else say ">> Committed revision" revision
 return 1
::routine update
 use arg workspace,head
 revision = workspace~update(head)
 say ">> Updated to revision" revision
 return 1
::routine help
 say ">> help yourself :)"

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Developed examples Page 46

::routine error
 parse arg cmd
 say ">> unknown command: '"||cmd||"'"
 say ">> type 'svn help' for help"

Source code 11: File 02_simple-cmd-line-variation.rex

 5.1.3 Example 3 – Last modification property

The following example inserts a last-modified timestamp property (retrieved from the oper-

ating system48) for every directory and file found in a given workspace. Again routine

loadClasses is called and the repository and workspace location are defined. Then there

are the common configuration lines (lines 18 to 22) for setting up repository and workspace.

On lines 25 and 26 RexxUtilites functions are loaded for getting a file-tree and the last-

modified timestamp from a local file. The workspace's file-tree is retrieved on line 30 – re-

turned are file and directory names (including any sub-directories). There are some inquiries

regarding system's memory status and file system and Subversion's .svn configuration dir-

ectory (which is excluded). For every directory and file found the last-modified timestamp

is added as the property defined in variable property (here “Last-Modified”). The func-

tionality is implemented using JavaSVN's setPropertyValue method on the workspace

(line 43). As a comment there is also an alternative solution getting help from Subversion's

command-line client. As editing properties is also a change recognized by Subversion a

commit has to be done to generate a new revision (line 53).

/*
 * 03_last-modified-property.rex, 2005-06-20
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Script inserts a last-modified timestamp retrieved from
 * the operating system. Works only on none FAT file systems.
 * There are two implementations: Command-line (brutal) and
 * through the JavaSVN interface (smart).
 *
 */
call loadClasses
path = "C:_checkouts\repos"
property = "Last-Modified"
-- Repository and working directory configuration
 .DAVRepositoryFactory~setup
 .FSEntryFactory~setup
 workspace = .SVNWorkspaceManager~createWorkspace("file",path)
-- If authorization is needed
 workspace~setCredentials("alex","alex");
-- Register RexxUtilities functions

48 This cannot be done on FAT file systems.

117
118
119
120

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Developed examples Page 47

call RxFuncAdd 'SysLoadFuncs', 'rexxutil', 'SysLoadFuncs'
call SysLoadFuncs
-- Find both files and directories (B), search in sub-directories (S) and return only
the
filename (O)
filetree = SysFileTree(path || "*.*",file,"BSO")
if filetree = 0 then do
 do i = 1 to file.0
 if file.i~lastpos('.svn') = 0 then do
 if SysFileSystemType("C:") <> "FAT" then do
 -- SysGetFileDateTime options: CREATE (C), ACCESS (A), WRITE (W)
 -- Alternative solution: get help from the command-line
 -- address cmd "cd " || path
 -- address cmd 'svn propset ' || property || ' "' || SysGetFileDateTime
(file.i,"W") || '" ' || file.i
 relative = .SVNUtil~getWorkspacePath(workspace,file.i)
 workspace~setPropertyValue(relative,property,SysGetFileDateTime(file.i,"W"))
 say relative "set" property "-" workspace~getPropertyValue(relative,property)
 end
 else say SysFileSystemType("C:") "doesn't support this function!"
 end
 end
end
else say "Not enough memory."
-- Commit changes
workspace~commit("Added Last-Modified Property")
::requires BSF.CLS
::requires 99_utils.rex

Source code 12: File 03_last-modified-property.rex

 5.1.4 Example 4 – Self defined keywords

With the example shown below it is possible to place self defined keywords inside files,

which will be replaced with a certain text specified by a property value with the same name

as the keyword. Executing program assumes that Subversion's file and directory properties

which will be replaced have already been set.

On line 24 to 27 stem variables are defined containing the keywords to replace (and the

number of keywords). If the script is invoked specifying update as an argument, at first the

workspace is updated to the latest revision (-1). Every file found in the workspace is

opened and it is searched for properties specified in variable property delimited by charac-

ters defined in variable delimiter. If a text string equals that configuration, it is replaced

by the value of the equally named file property. A variable show of type boolean has to be

set to indicate if the content of the file has to be printed out (line 32).

If the script is invoked with cleanup or commit as arguments, the former replaced text

string is reverted (that is, replacing the string a second time with the value specified in the

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Developed examples Page 48

corresponding property variable). This behaviour has the effect that one can specify a cer-

tain text string which will be inserted at checkout time. Therefore a user has the ability to

checkout the same files with different property values inserted (e.g. if he wants to set differ-

ent copyright texts). If a commit is done, the replaced text should be reverted, so that the

next user can do the same. For the reversion each file is opened and text strings delimited

by specified delimiters are replaced. The difference between cleanup and commit is that

on commit the changed files are committed to the repository.

/*
 * 04_self-defined-keywords.rex, 2005-06-20
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Running "update" script replaces self defined
 * keywords inside files with values of properties.
 * "cleanup" reverts all keywords in files.
 * "commit" does the same as "cleanup" but commit
 * changes at the end.
 *
 */
call loadClasses
path = "C:_checkouts\repos"
-- Repository and working directory configuration
 .DAVRepositoryFactory~setup
 .FSEntryFactory~setup
 workspace = .SVNWorkspaceManager~createWorkspace("file",path)
-- If authorization is needed
 workspace~setCredentials("alex","alex");
property.0 = 3
property.1 = "Last-Modified"
property.2 = "Author"
property.3 = "Date"

delimiter = "$"
-- Show content of files?
show = .false
if arg(1) = "update" then do
 -- Latest revision = any negative integer
 revision = workspace~update(-1)
 say "Updated to revision" revision
 filetree = SysFileTree(path || "*.*",file,"FSO")
 do i = 1 to file.0
 if file.i~lastpos('.svn') = 0 then do
 relative = .SVNUtil~getWorkspacePath(workspace,file.i)
 do j = 1 to property.0
 if workspace~getPropertyValue(relative,property.j) <> .NIL then do
 say "---"
 say file.i property.j workspace~getPropertyValue(relative,property.j)
 say "----------------"
 f = .stream~new(file.i)
 f~open
 text = f~charin(1,f~chars)
 text = text~changestr(delimiter||property.j||delimiter,delimiter||
roperty.j||": "||workspace~getPropertyValue(relative,property.j)||delimiter)
 f~charout(text,1)
 if show = .true then say text
 f~close
 end
 end
 end
 end
end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Developed examples Page 49

else if arg(1) = "cleanup" | arg(1) = "commit" then do
 filetree = SysFileTree(path || "*.*",file,"FSO")
 do i = 1 to file.0
 if file.i~lastpos('.svn') = 0 then do
 relative = .SVNUtil~getWorkspacePath(workspace,file.i)
 do j = 1 to property.0
 if workspace~getPropertyValue(relative,property.j) <> .NIL then do
 say "---"
 say file.i property.j workspace~getPropertyValue(relative,property.j)
 say "----------------"
 f = .stream~new(file.i)
 f~open
 text = f~charin(1,f~chars)
 text_clean = text~changestr(delimiter||property.j||": "||
workspace~getPropertyValue(relative,property.j)||delimiter,delimiter||property.j||
delimiter)
 f~charout(text_clean,1)
 if (text~length-text_clean~length)>0 then do
 text_append = ""
 do l = text_clean~length to text~length
 text_append = text_append||" "
 end
 f~charout(text_append,text_clean~length+1)
 end
 if show = .true then say text_clean
 f~close
 end
 end
 end
 end
 if arg(1) = "commit" then do
 revision = workspace~commit("")
 say "Commited revision" revision
 end
end
else say "Please submit 'update', 'cleanup' or 'commit' as an argument."
::requires BSF.CLS
::requires 99_utils.rex

Source code 13: File 04_self-defined-keywords.rex

 5.1.5 Example 5 – Listing repositories

Example 5 generates an HTML file containing interesting information about a repository.

There is a routine called getTree (starting at line 46) which digs into the whole repository

file tree. By means of the method repository~getDir (line 51) a Java collection is re-

turned containing all directory entries found in a specific directory. Therefore for getting all

files and directories (even in sub-directories) the method getTree has to call itself recurs-

ively (line 73). From each directory entry the creation date, the author, the revision of the

last modification and the size in bytes are retrieved (lines 58 to 61) and an HTML string is

created (lines 66 to 70) which is returned. The returned HTML string is then embedded in

another string representing an HTML framework for a web-site (lines 25 to 31). The com-

plete HTML site is written to a file (lines 34 to 37) which is finally opened (with your

standard web-browser) using the command on line 40.

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Developed examples Page 50

/*
 * 05_repository-listing.rex, 2005-06-22
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Generates an HTML file for a specified repository
 * containing information which may be interesting.
 *
 */
call loadClasses
repos = "http://localhost/repos"
outputFile = "05_repository.html"
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
-- Recursive call in routine for building directory tree
tree = getTree(repository,"",revision,"")
-- Creating html output
out = "<html><head><title>"repos" - revision" revision "</title></head>"
out = out"<body><h2>"repos" - revision" revision "</h2>"
out = out"<table width = 100%><tr><th align = left>Path</th><th align =
left>CreationDate</th><th align = left>Author</th><th align =
left>LastModifiedRevision</th><th align = left>Size (byte)</th></tr>"
out = out tree
out = out"</table></body></html>"
-- Writing html file
f = .stream~new(outputFile)
f~open("replace")
f~charout(out,1)
f~close
-- Opening html file
address cmd outputFile
::requires BSF.CLS
::requires 99_utils.rex
-- Routine for building directory tree
::routine getTree
 use arg repository,path,revision,tree
 m = .HashMap~new
 v = .Vector~new
 -- Don't need 'm' and 'v' but have to be declared
 c = repository~getDir(path,revision,m,v);
 i = c~iterator
 do while i~hasNext
 dir = i~next
 dirName = dir~getName
 dirKind = dir~getKind~toString
 dirPath = path || dirName
 dirCreationDate = dir~getDate~toString
 dirAuthor = dir~getAuthor
 dirLastModifiedRevision = dir~getRevision
 dirSize = dir~size
 if dirAuthor = .Nil then dirAuthor = "[no author]"
 -- Generates html output string
 tree = tree "<tr><td>"dirPath"</td>"
 tree = tree "<td>"dirCreationDate"</td>"
 tree = tree "<td>"dirAuthor"</td>"
 tree = tree "<td>"dirLastModifiedRevision"</td>"
 tree = tree "<td>"dirSize"</td></tr>"
 -- Recursive call
 if dirKind = "<dir>" then tree = getTree(repository,path||dirName|
"/",revision,tree)
 end
 return tree

Source code 14: File 05_repository-listing.rex

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Developed examples Page 51

Figure 6 shows an example HTML site created with source code 14.

 5.1.6 Example 6 – Charting file activity

The next example generates a graphical chart which is built up on repository file activity

data using JfreeChart libraries. Again there is the routine getTree (starting at line 51)

which gets all directory entries for the whole repository. This time the creation date of a dir-

ectory entry is retrieved (line 61), parsed (line 62), transformed in a moderate format (line

68) and saved in a variable of type directory. The creation date of a directory entry is the

key for the directory variable d while the value is set to 1. If another file was created on the

same date, the variable d on the position of the date is increased by 1. So routine getTree
counts the number of directory entries created on a specific date and saves the data into

variable d. Another example is the revision number a directory entry was last modified. If

you want to display a chart representing that kind of information, uncomment line 67 (and

comment the following line). On line 29 a JfreeChart chart type is chosen whose dataset

values are filled on lines 32 to 34 (with the numbers count in routine getTree and saved to

variable d). After that on line 38 the title of the chart is set. In lines 41 to 43 the chart is

generated and saved to a JPG file named after outputFile. Some parameters are set includ-

ing charts dimensions (here: 800 pixel width and 500 pixel height). At last the chart is

opened using the default picture viewer for JPG files (line 46).

/*
 * 06_charting-file-activity.rex, 2005-06-22
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Retrieves data from a repository and generates a
 * chart using JFreeChart (http://www.jfree.org/jfreechart)

Figure 6: Possible output of example 5

1
2
3
4
5
6

Developed examples Page 52

 * showing creation date of files or revision number of
 * last modification.
 *
 */
call loadClasses
repos = "http://localhost/repos"
outputFile = "06_chart.jpg"
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
d = .directory~new
-- Recursive call in routine for building directory tree
tree = getTree(repository,"",revision,"",d)
-- JFreeChart chart type
dataset = .DefaultPieDataset~new
-- Save data in dataset
do item over d
 dataset~setValue(item,d[item])
end
-- Whatever you set 'option' to
-- title = "Last modification of files"
title = "Creation date of files"
-- Generate chart and write outputFile
chart = .ChartFactory~createPieChart3D(title,dataset,.true,.true,.false)
chartFile = .File~new(outputFile)
.ChartUtilities~saveChartAsJPEG(chartFile,chart,800,500)
-- Have a look at the chart
address cmd outputFile
::requires BSF.CLS
::requires 99_utils.rex
::routine getTree
 use arg repository,path,revision,tree,d
 m = .HashMap~new
 v = .Vector~new
 c = repository~getDir(path,revision,m,v);
 i = c~iterator
 do while i~hasNext
 dir = i~next
 dirName = dir~getName
 dirKind = dir~getKind~toString
 dirCreationDate = dir~getDate~toString
 parse var dirCreationDate nameOfDay month day time timeZone year
 dirPath = path || dirName
 dirLastModifiedRevision = dir~getRevision
 -- Revision number or date?
 -- option = "revision" dirLastModifiedRevision
 option = day||"-"||month||"-"||year time
 if d[option] = .NIL then d[option] = 1
 else d[option] = d[option]+1
 if dirKind = "<dir>" then tree = getTree(repository,path||dirName|
|"/",revision,tree,d)
 end
 return tree

Source code 15: File 06_charting-file-activity.rex

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Developed examples Page 53

Figure 7 below displays a possible chart generated with JfreeChart and data retrieved from a

repository.

 5.1.7 Example 7 – Repository listing standalone server

Example 7 is a minimalistic HTTP standalone server written in ooRexx. The program

listens on a specific host and port waiting for a client to connect. On connection the script

contacts the defined Subversion repository and retrieves the same data as in example 5

(chapter 5.1.5), creates an HTML table and sends an HTTP answer back to the client con-

taining this information. As the implementation of HTTP is a little lazy, I recommend using

Mozilla's Firefox, Opera or Netscape's Navigator 7.x as web-browser49.

First on line 17 to 20 the ooRexx socket functions are loaded which are needed to handle

any connection type. On line 24 the host address is set to the IP address which the method

SockGetHostId() returns50. If you know what you are doing, you can set the host IP ad-

dress on your own (see next line). On the IP address specified, the created socket will be

bound. That means the program will be listening on this IP address and the port defined on

49 The Script does not really work with Microsoft's Internet Explorer or Netscape's Navigator 4.x.

Figure 7: Chart showing creation date of files

Developed examples Page 54

line 28 (here 8081) for incoming connections. There is an endless loop waiting for clients to

connect (line 33). If a client establishes a connection, the string transmitted from the client

is saved to the variable InString (line 39). After that the string is parsed and the repository

with an optional defined revision is saved. The HTML output is generated and saved in a

variable called out. First an HTML form is defined (lines 54 to 60) enabling a user to sub-

mit a repository location and a revision number. If the user has already requested a resource

from this server by submitting this form (checked in line 62), the routine listFiles is

called which generates the same information as example 5 and returns an HTML formatted

string (lines 103 to 109). The response from the server is saved in a variable called Out-
String. The first three lines (lines 66 to 68) containing HTTP header information (HTTP

status code, content-type and content-length) are followed by an empty line. Then the HTTP

body is attached – the variable out, containing the HTML string which will be displayed in

the user's web-browser. At last OutString is sent back to the client (line 72) and the client's

connection is closed. After that the server is able to handle another client connection (syn-

chronous web-server).

/*
 * 07_repository-listing-standalone-server.rex, 2005-06-22
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * A HTTP standalone server written in ooRexx. Program listens
 * on a specific host and port and waits for a client connection.
 * On connection the program contacts the specified Subversion
 * repository and retrieves some data, creates an HTML table and
 * sends an HTTP answer back to the client.
 * Do not really work with Microsoft's Internet Explorer and
 * Netscape's Navigator 4.x because of a very lazy interpretation
 * of the HTTP. I recommend using Mozilla's Firefox, Opera or
 * Netscape's Navigator 7.x.
 *
 */
if RxFuncQuery("SockLoadFuncs") then do
 call RxFuncAdd "SockLoadFuncs","RXSOCK","SockLoadFuncs"
 call SockLoadFuncs
end
socket = SockSocket("AF_INET","SOCK_STREAM","0")
host.!addr = SockGetHostId()
-- host.!addr = 127.0.0.1
host.!family = "AF_INET"
host.!port = 8081
call sockbind socket,"host.!"
call SockListen socket, 1

50 If you are not connected to the Internet or to an Ethernet, the method will return 127.0.0.1 representing
your local computer. If your computer is in a network, it is likely to happen that the specified network IP
address is returned (maybe something like 192.168.0.x). If you are connected to the Internet without being
in a local network, your Internet provider will assign you an IP address which then is returned using
SockGetHostId().

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Developed examples Page 55

do forever
 say "------------------------"
 say "Waiting at" host.!addr || ":" || host.!port "for a client to connect..."
 ClientSocket = SockAccept(socket)
 say "Client has established connection."
 call SockRecv ClientSocket, "InString", 256
 say
 Say "String read from client: '" || InString || "'"
 repository = ""
 revision = ""
 parse var InString "GET /" path "?repository = " repository "&revision = " revision "
" else
 repository = repository~changestr("%3A",":")
 repository = repository~changestr("%2F","/")
 out = ""
 out = out||"<html><head><title>List repository</title></head><body>"
 out = out||"<form action = / method = get>"
 out = out||"Repository (URL): <input type = text name = repository value = "
repository "> "
 out = out||"Revision: <input type = text name = revision value = " revision
"> "
 out = out||"<input type = submit value = 'List repository >>'>"
 out = out||"</form>"
 if repository <> "" then out = out||listFiles(repository,revision)
 -- out = out||"

<small><i>"InString"</i></small>
 out = out||"</body></html>"
 OutString = "HTTP/1.0 200 OK" || "0D0A"x -- Represents '\r\n'
 OutString = Outstring||"Content-Type: text/html" || "0D0A"x
 Outstring = Outstring||"Content-Length:" out~length || "0D0A"x
 Outstring = Outstring || "0D0A"x
 OutString = Outstring || out
 call SockSend ClientSocket, OutString
 say
 say "An answer was send back to the client (" || OutString~length "bytes)..."
 call SockShutDown ClientSocket, 2
 call SockClose ClientSocket
 say "Client connection closed."
end
::requires BSF.CLS
::requires 99_utils.rex
::routine listFiles
 use arg repos,revision
 call loadClasses
 -- Repository configuration
 .DAVRepositoryFactory~setup
 location = .SVNRepositoryLocation~parseURL(repos)
 repository = .SVNRepositoryFactory~create(location)
 rev = repository~getLatestRevision
 if revision = "" | revision>rev then revision = rev
 -- Recursive call in routine for building directory tree
 tree = getTree(repository,"",revision,"")
 -- Creating html output
 out = "<h2>"repos" - revision" revision "</h2>"
 out = out"<table width = 100%><tr><th align = left>Path</th><th align
=left>CreationDate</th><th align = left>Author</th><th align =
left>LastModifiedRevision</th><th align = left>Size (byte)</th></tr>"
 out = out tree
 out = out"</table>"

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

Developed examples Page 56

 return out
 -- Routine for building directory tree
 ::routine getTree
 use arg repository,path,revision,tree
 m = .HashMap~new
 v = .Vector~new
 -- Don't need 'm' and 'v' but have to be declared
 c = repository~getDir(path,revision,m,v);
 i = c~iterator
 do while i~hasNext
 dir = i~next
 dirName = dir~getName
 dirKind = dir~getKind~toString
 dirPath = path || dirName
 dirCreationDate = dir~getDate~toString
 dirAuthor = dir~getAuthor
 dirLastModifiedRevision = dir~getRevision
 dirSize = dir~size
 if dirAuthor = .Nil then dirAuthor = "[no author]"
 -- Generates html output string
 tree = tree "<tr><td>"dirPath"</td>"
 tree = tree "<td>"dirCreationDate"</td>"
 tree = tree "<td>"dirAuthor"</td>"
 tree = tree "<td>"dirLastModifiedRevision"</td>"
 tree = tree "<td>"dirSize"</td></tr>"
 -- Recursive call
 if dirKind = "<dir>" then tree = getTree(repository,path||dirName|
|"/",revision,tree)
 end
 return tree

Source code 16: File 07_repository-listing-standalone-server.rex

Figure 8 displays a running server with some clients connected.

User's view is shown in figure 9. There you can see the HTML form on top and beneath the

corresponding repository entries listed.

Figure 8: ooRexx standalone server

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

Developed examples Page 57

 5.1.8 Example 8 – HTML repository log information

The next example generates an HTML site out of repository's log information. You can spe-

cify a range of revisions within several information like date, author, commit message or

changed paths are printed out. After the typical repository configuration lines, a Java array

of type string (line 24) and a vector (line 27) are created because later called method needs

parameters of these types. Then you can define from which revision to start and where to

end (lines 30 to 31). All log entries of a certain revision range are returned (as a Java collec-

tion) using method log with parameters shown in line 36. After that the creation of the

HTML site begins. First the HTML framework and head are defined (lines 39 to 42), then

HTML links pointing to the detailed log entry of a certain revision which is created later

(because file can become extremely large). There is a loop over all found log entries gener-

ating detailed revision information (lines 58 to 96). The changed paths of a certain log entry

are returned as a Java map using getChangedPaths. There must be another loop (lines 81

to 92) printing out changed paths (if exists). In the end the HTML code (variable out) is

written to a file (lines 101 to 104) named after variable outputFile defined at the start of

the script. Then the saved file is opened using address cmd.

/*
 * 08_repository-log-information-html.rex, 2005-07-07
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Generates an HTML file for a repository containing
 * several log information (revision, date, author,
 * commit-message and changed paths) of a specified
 * revision range (Attention: File could be huge).
 *
 */
call loadClasses
repos = "http://localhost/repos"
outputFile = "08_repository.html"
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision

Figure 9: Repository listing using standalone server

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Developed examples Page 58

-- creating a JAVA array with 1 element (and leave it null because we don't need it)
s = .bsf~bsf.createArray(.bsf4rexx~string.class,1)
-- Method 'log' needs a collection as parameter that's why we define a vector here
v = .vector~new
-- Checks all revisions from 0 to revision
startRevision = 0
endRevision = revision
-- Gets a collection with all the log entries
-- logEntries = repository~bsf.invokeStrict
("log","obj",s,"obj",v,"long",startRevision,"long",endRevision,"bo",.true,"bo",.true)
logEntries = repository~log(s,v,startRevision,endRevision,.true,.true)
entries = logEntries~iterator
out = "<html><head><title>Repository "repos"</title></head><body>"
out = out||"<h2>Repository "repos"
Revision "startRevision" to
"endRevision"</h2>"
out = out||"<center>Revision "
-- Creates html links over all entries
i = 0
do while entries~hasNext
 logEntry = entries~next
 out = out || "" || logEntry~getRevision |
|""
 if i <> endRevision then out = out||" | "
 i = i+1
end
out = out||"</center>"
-- Creates detailed revision information over all entries
entries = logEntries~iterator
do while entries~hasNext
 logEntry = entries~next
 date = logEntry~getDate
 author = logEntry~getAuthor
 message = logEntry~getMessage
 if date = .nil then date = "[no date]"
 else date = date~toString
 if author = .nil then author = "[no author]"
 if message = .nil then message = "[no message]"
 out = out || "<h3>Revision " ||
logEntry~getRevision || "</h3>"
 out = out || "Date:" date "
"
 out = out || "Author:" author "
"
 out = out || "Message:" message "
"
 if logEntry~getChangedPaths~size>0 then do
 out = out || "
Changed paths:
"
 changedPathSet = logEntry~getChangedPaths~keySet
 changedPaths = changedPathSet~iterator
 do while changedPaths~hasNext
 -- invokeStrict here because method need a string as argument
 entryPath = logEntry~getChangedPaths~bsf.invokeStrict("get", "st",
changedPaths~next)
 out = out || "" || entryPath~getType
 out = out || "" || entryPath~getPath
 if entryPath~getCopyPath <> .nil then do
 out = out || " (from" entryPath~getCopyPath || ", revision"
entryPath~getCopyRevision || ")"
 end
 out = out || "
"
 end
 end
 out = out || "
back to top<hr>"
end
out = out||"</body></html>"

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Developed examples Page 59

-- Writing html file
f = .stream~new(outputFile)
f~open("replace")
f~charout(out,1)
f~close
address cmd outputFile
::requires BSF.CLS
::requires 99_utils.rex

Source code 17: File 08_repository-log-information-html.rex

The following figure 10 shows examples of detailed log entries. They are written beneath

each other separated by a horizontal line. That fact and the large number of revisions are

reasons why the generated file tends to be extremely large. This is why there is a linked list

containing all revision numbers at the top of the file, where a user can hop easily to one re-

vision and back to the beginning.

 5.1.9 Example 9 – XML repository log information

Example 9 is a copy of example 8 showing repository's log information as an XML struc-

ture. If you compare examples 8 and 9, you will find many matching lines. The difference

starts on line 38, where a new XML document named document is generated (using dom4j

Figure 10: Detailed log entries

example

99
100
101
102
103
104
105
106
107
108
109

Developed examples Page 60

packages). In the following four lines the root element is created and added to the XML

document. In line 46 a loop over all log entries is defined, information about a certain log

entry is saved to variables (lines 49 to 51), inquires if a variable contains no value are set51

and the elements are added to the XML document. For not getting a too big file, informa-

tion about changed paths are not retrieved. After the loop and therefore after the generation

of the XML document, it is saved to a file (lines 72 to 74) using dom4j's XMLWriter class.

Just before that the method createPrettyPrint (for generating a decent output format) is

invoked and the encoding-type of the document is set. Finally the XML document is opened

(probably in your standard web-browser).

/*
 * 09_repository-log-information-xml.rex, 2005-07-06
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Generates an XML file with some log information (revision,
 * date, author and commit-message) from a specified range of
 * revisions. Uses dom4j (http://www.dom4j.org) for the XML
 * structure and dom4j's XMLWriter class for writing the file.
 *
 */
call loadClasses
repos = "http://localhost/repos"
outputFile = "09_repository.xml"
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
-- Creates a JAVA array with 1 element (and leave it null because we don't need it)
a = .bsf~bsf.createArray(.bsf4rexx~string.class,1)
-- Method 'log' needs a collection as parameter that's why we define a vector here
v = .vector~new
-- Checks all revisions from 0 to head
startRevision = 0
endRevision = revision
-- Gets a collection with all the log entries
logEntries = repository~log(a,v,startRevision,endRevision,.true,.true)
entries = logEntries~iterator
-- Creates an xml-document and a root element
document = .DocumentHelper~createDocument
root = document~addElement("repository"),
 ~addAttribute(" xmlns","http://yourdomain.com/whatever/namespace"),
 ~addAttribute("xmlns:xsi","http://www.w3.org/2001/XMLSchema-instance"),
 ~addAttribute("xsi:schemaLocation","http://yourdomain.com/whatever/schema.xsd")
-- Creates xml structure
entries = logEntries~iterator
do while entries~hasNext
 logEntry = entries~next
 date = logEntry~getDate
 author = logEntry~getAuthor

51 The object .nil does not contain any data. It usually represents the absence of an object, as a null string
represents a string with no characters (equivalent to Java's null value).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Developed examples Page 61

 message = logEntry~getMessage
 if date = .nil then date = "[no date]"
 else date = date~toString
 if author = .nil then author = "[no author]"
 if message = .nil then message = "[no message]"
 element_revision = root~addElement("revision")
 element_revision_nr = element_revision~addElement("revision_nr"),
 ~addText(logEntry~getRevision)
 element_date = element_revision~addElement("date"),
 ~addText(date)
 element_author = element_revision~addElement("author"),
 ~addText(author)
 element_message = element_revision~addElement("message"),
 ~addText(message)
end
-- Writing xml file
format = .OutputFormat~createPrettyPrint
format~setEncoding("ISO-8859-1")
writer = .XMLWriter~new(.FileWriter~new(outputFile),format)
writer~write(document)
writer~close
address cmd outputFile
::requires BSF.CLS
::requires 99_utils.rex

Source code 18: File 09_repository-log-information-xml.rex

Look at figure 11 if you want to have an idea of the generated XML document.

 5.1.10 Example 10 – Editing revision properties

This example allows the user to add and edit new properties for a specified revision of a re-

pository. Standard settings of Subversion prevent editing revision properties because there

is no logging of the modifications made. You have to enable the hook script called pre-re-
vprop-change in repository's hooks directory, which is executed before a change to a revi-

Figure 11: Generated XML structure out of repository's log information

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Developed examples Page 62

sion property is made (for more information on hook scripts see chapter 5.2).

On line 30 a Java map is returned containing unversioned properties associated with the

given revision. In the next few lines all found properties and their values are printed out.

Then the user has to enter a property name for editing and the new value. If a property does

not exist, a new one is created. In line 46 the property is set using method setRevision-
PropertyValue with the revision, the property name and value as parameters. At last the

new or edited property with its value is printed out.

/*
 * 10_editing-revision-properties.rex, 2005-07-07
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Script allows to edit (and even add) new properties
 * for a specified revision of a repository.
 * Attention: Hook script 'pre-revprop-change' must be
 * activated because by default Subversion doesn't
 * allow modifications of revision properties.
 * If the hook scripts did something at runtime of this
 * script, then you should have a look at the 'hooks'
 * directory of the specific repository.
 *
 */
call loadClasses
repos = "http://localhost/repos"
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
say "Properties of repository '" || repos || "' revision '" || revision || "'"
say "--------------------------"

m = .HashMap~new
c = repository~getRevisionProperties(revision,m)
e = c~keySet~iterator
do while e~hasNext
 property = e~next
 say property "=" repository~getRevisionPropertyValue(revision,property)
end
say "--------------------------"
say "Enter property name for editing:"
parse pull prop
say "New value for property '" || prop || "':"
parse pull value
repository~setRevisionPropertyValue(revision,prop,value)
say "--------------------------"
say "Property '" || prop || "' has now value '" || repository~getRevisionPropertyValue
(revision,prop) || "'."
::requires BSF.CLS
::requires 99_utils.rex

Source code 19: File 10_editing-revision-properties.rex

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Developed examples Page 63

 5.1.11 Example 11 – File information

Example 11 displays information about a text file and its content at a certain revision of a

repository. Method checkPath on line 25 returns the kind of a node defined by file at a

revision. If it is a file, the script fetches the properties and content of the file (lines 27 and

28). In the next lines there is an inquiry if the file fetched is a text file. As the script prints

out the content of the file using the command-line only text characters can be shown. There

is no use of printing out binary data. All file properties are printed out in lines 43 to 47. The

content of the file was written to a variable baos of type ByteArrayOutputStream52 (with

method getFile) which is printed out using the toString method on line 52.

/*
 * 11_file-info.rex, 2005-07-08
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Displays information about a text file and
 * its content at a certain revision in a
 * repository.
 *
 */
call loadClasses
repos = "http://localhost/repos"
file = "anyDirectory/anyFile.txt"
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
fileProperties = .HashMap~new
baos = .ByteArrayOutputStream~new
nodeKind = repository~checkPath(file,revision)
if nodeKind~toString = "<file>" then do
 repository~getFile(file,revision,fileProperties,baos)
 mT = .bsf~bsf.getStaticValue("org.tmatesoft.svn.core.SVNProperty", "MIME_TYPE")
 mimeType = fileProperties~bsf.invokeStrict("get","st",mT)
 isTextType = .SVNProperty~isTextType(mimeType);
 if isTextType = 1 then do
 say
 say file
 say "---------------------"
 say "File properties:"
 say "---------------------"
 iterator = fileProperties~keySet~iterator
 do while iterator~hasNext
 propertyName = iterator~next
 propertyValue = fileProperties~bsf.invokeStrict("get","st",propertyName)
 say propertyName " = " propertyValue
 end
 say
 say "File contents:"

52 This class implements an output stream in which the data is written into a byte array.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Developed examples Page 64

 say "---------------------"
 say baos~toString
 end
 else say "No textfile."
end
else say "File not found."
::requires BSF.CLS
::requires 99_utils.rex

Source code 20: File 11_file-info.rex

 5.1.12 Example 12 – Repository information

Example 12 uses some already mentioned routines for generating a complete list of reposit-

ory's files, their properties, and values. Saving of data is done by creating an HTML file

(which can be extremely large – depending on repository's number of files and content).

The well known getTree method is used for digging into the complete directory tree of a

repository. For each file entry (inquiry on line 51) the same information is retrieved as in

example 11. This time an HTML formatted string (variable tree) is created saving all data.

We want to display the information in an HTML document, so characters < and > of files

content must be replaced (line 76), so that they are not interpreted by the web-browser. On

lines 26 to 29 the HTML framework is generated and saved to a file in lines 32 to 35.

/*
 * 12_repository-info.rex, 2005-07-08
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Displays the same file information like
 * '11_file-info.rex' but now for all files in
 * a repository. Generates an HTML output
 * (Attention: File could be huge).
 *
 */
call loadClasses
repos = "http://localhost/repos"
file = "12_repository.html"
path = ""
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
tree = getTree(repository,path,revision,"")
out = "<html><head><title>" repos "revision" revision "</title><head>"
out = out||"<body><h2>" repos "revision" revision "</h2>
"
out = out||tree
out = out||"</body></html>"
-- Writing html file

51
52
53
54
55
56
57
58
59

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Developed examples Page 65

f = .stream~new(file)
f~open("replace")
f~charout(out,1)
f~close
::requires BSF.CLS
::requires 99_utils.rex
::routine getTree
 use arg repository,path,revision,tree
 m = .HashMap~new
 v = .Vector~new
 c = repository~getDir(path,revision,m,v);
 i = c~iterator
 do while i~hasNext
 dir = i~next
 dirName = dir~getName
 dirKind = dir~getKind~toString
 if dirKind = "<file>" then do
 fileProperties = .HashMap~new
 baos = .ByteArrayOutputStream~new
 repository~getFile(path||dirName,revision,fileProperties,baos)
 mT = .bsf~bsf.getStaticValue("org.tmatesoft.svn.core.SVNProperty", "MIME_TYPE")
 mimeType = fileProperties~bsf.invokeStrict("get","st",mT)
 isTextType = .SVNProperty~isTextType(mimeType);
 if isTextType = 1 then do
 tree = tree "<h3>" path||dirname "</h3>"
 tree = tree||"Property list:
"
 iterator = fileProperties~keySet~iterator
 do while iterator~hasNext
 propertyName = iterator~next
 propertyValue = fileProperties~bsf.invokeStrict("get","st",propertyName)
 tree = tree||propertyName " = " propertyValue "
"
 end
 tree = tree||"
File contents:
"
 -- Need to replace '<' and '>' so that they aren't interpreted because we're
writing a HTML file
 tree = tree||baos~toString~changestr("<","<")~changestr(">",">") "<hr>"
 end
 end
 if dirKind = "<dir>" then tree = getTree(repository,path||dirName|
|"/",revision,tree)
 end
 return tree

Source code 21: File 12_repository-info.rex

Figure 12 below displays a small part of an example output generated by the script. As you

can see the content of the file is not interpreted even though there is HTML code, as well.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Developed examples Page 66

 5.1.13 Example 13 – Checkout revisions

This example checks out a defined revision range and measures needed time. The range is

set using variables startRevision and endRevision on lines 15 and 16. In line 25 a start

point of time keeping is set. There is an inquiry to check if

• startRevision is smaller than 0,

• endRevision is smaller than 0,

• endRevision is greater than revision (which is repository's latest revision) and

• startRevision is greater than endRevision.

If one or more of the statements above are true, there will be an error message, otherwise

the script starts with the checkout for every revision in range. On line 36 there is also an in-

quiry if a workspace already exists in a directory. The revisions are checked out to the path

specified by path and its subdirectory containing the current revision number. After the

checkout needed execution time is saved in variable endTime. On the first call to time
(“E”), the elapsed time clock is started and returns 0. From then on, calls to time(“E”) re-

turn the elapsed time since that first call. At last a message including needed time is printed

out.

Figure 12: Example output of script 12_repository-info.rex

Developed examples Page 67

/*
 * 13_checkout-revisions.rex, 2005-07-08
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Script checks out repositories from a defined
 * start to a defined end revision and measures
 * needed time.
 *
 */
call loadClasses
repos = "http://localhost/repos"
path = "C:_checkouts\repos"
startRevision = 1
endRevision = 2
-- Repository and workspace configuration
.DAVRepositoryFactory~setup
.FSEntryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
startTime = time("E")
say "Checking out" repos ||"."
-- Checks if start and end revision are set correct
if startRevision<0 | endRevision<0 | endRevision>revision | startRevision>endRevision
then say "Revision start and/or end are set incorrect."
else do
 do while startRevision< = endRevision
 pathToWS = path||"\"||startRevision
 -- Checks if workspace already exists
 if SysGetFileDateTime(pathToWS) = -1 then do
 workspace = .SVNWorkspaceManager~createWorkspace("file",pathToWS)
 revision = workspace~checkout(location,startRevision,.false)
 say "Checked out revision" revision "to" pathToWS || "."
 end
 else say "Workspace" pathToWS "already exists."
 startRevision = startRevision+1
 end
end
endTime = time("E")
-- Only endTime is needed (time between the two time("E") calls)
say "Finished checkout in" endTime "seconds."
::requires BSF.CLS
::requires 99_utils.rex

Source code 22: File 13_checkout-revisions.rex

 5.1.14 Example 14 – Shut down script

As I have already mentioned there is the problem that people often forget to commit

changes they have made. This example which is an approach for Microsoft Windows (but

Figure 13: Example output of several revision checkouts

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Developed examples Page 68

can easily be transformed for any other platform) substitutes the normal shut down pro-

cess53. Before the computer is turned off, it is checked if the local workspace revision is

smaller than the revision of the repository. If so, the workspace will be updated. Also a

commit statement is executed (with an automated commit message) if the user has local

modifications which are not yet submitted. After updating workspace and repository the

computer is shut down either by the user (normal shut down screen) or automatically. The

script has to be invoked as a replacement of the normal shut down process.

On line 18 a new OLE-object54 is instantiated (Wscript.Network55) from which the name

of the computer and the logged-in user are retrieved and saved (next two lines). This in-

formation is inserted in a variable generating the automated commit message in lines 23 and

24. In lines 24 and 39 both workspace's and repository's revisions are saved. In line 41 there

is a check if the revision of the repository is smaller than the revision of the workspace. If

this is true, the workspace is being updated. The next thing is the commit of eventually

done modifications containing a status message. Commented line 60 would shut down the

computer without human interaction. In the example an instance of the Shell.Applica-
tion56 OLE-object is created and the method ShutdownWindows is invoked which shuts

down Windows using normal shut down screen (on Windows XP, for example, with

choices Standby, Turn off and Reboot).

If you copy the script, e.g. on your desktop for easier execution, some required paths have

to be set absolutely. Have a look at lines 66 to 69 where full paths to 00_set-paths.rex
(for setting environmental variables) and 99_utils.rex (for loading Java classes) are set.

Path to BSF.CLS need not contain the full path because an environmental variable is point-

ing to that directory.

/*
 * 14_shutdown.rex, 2005-07-09
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *

53 For example, clicking on the Start button and choosing Shutdown.
54 “Object Linking and Embedding developed by Microsoft. Allows objects from one application to be

embedded within another” [see Envi05].
55 “The WScript.Network object provides access to Windows networking methods to easily control functions

such as adding and displaying network shares and printers. It also exposes several networking properties
including the current user name, domain and computer name.” [see Guid05]

56 The shell automation service for managing operating system wide functions, e.g. starting/stopping services,
search for files and folders, get system information and so on.

1
2
3
4

Developed examples Page 69

 * Script is a substitute for the normal Windows
 * shut down process. It checks if a working copy
 * is up to date and commits changes made to the
 * working copy. You can choose if you want no
 * user interaction or the normal Windows shut down
 * screen.
 *
 */
call loadClasses
path = "C:_checkouts\repos"
WshNetObj = .OLEObject~new("WScript.Network")
computer = WshNetObj~ComputerName
user = WshNetObj~UserName
-- Generates commit message
commit_message = user "committed this revision on" date() time() "from the computer"
computer || "."
-- Repository and workspace configuration
.DAVRepositoryFactory~setup
.FSEntryFactory~setup
workspace = .SVNWorkspaceManager~createWorkspace("file",path)
repos = workspace~getLocation~toString
-- Workspace's revision
ws_status = workspace~status("",.true)
ws_revision = ws_status~getWorkingCopyRevision
-- Repository's revision
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
repos_revision = repository~getLatestRevision
if ws_revision<repos_revision then do
 say "Workspace revision" ws_revision "is not up to date (newest" repos_revision || ")!
"
 update_revision = workspace~update(repos_revision)
 say "Updated to revision" update_revision || "."
end
else say "Workspace is up to date."
commit_revision = workspace~commit(commit_message)
if commit_revision <> "-1" then do
 say "Committed revision" commit_revision || "."
 update_revision = workspace~update(commit_revision)
 say "Updated workspace to revision" update_revision || "."
end
else say "Nothing to commit."
say "Shutting down computer ..."
-- Shut down for Windows XP - no user interaction
-- address cmd "shutdown -s -t 0"
-- Or if you want the normal shut down screen
objshell = .OLEObject~new("Shell.Application")
objshell~ShutdownWindows
::requires "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion_examples\00_set-paths.rex"
::requires "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion_examples\99_utils.rex"
::requires BSF.CLS

Source code 23: File 14_shutdown.rex

 5.1.15 Example 15 – Start up script

If you do not want to update your working copy (or copies) by hand, you can handle the

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Developed examples Page 70

script shown below to be executed automatically at system start up57. As in example 14 the

script checks if the local workspace revision is smaller than the revision of the repository. If

that is the case, the workspace will be updated. The location of the repository is retrieved by

using getLocation on the workspace object (line 22).

If you copy the script, e.g. to the Autostart folder, again full paths have to be set for the

same reason as in example 14 (lines 41 to 44).

/*
 * 15_startup.rex, 2005-07-09
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Script for automated update of a working copy.
 * Checks if a newer revision exists and if so
 * updates the working copy.
 * For Windows user: Put this in your 'Autostart'
 * directory for automatic execution every time
 * Windows is starting up.
 *
 */
call loadClasses
path = "C:_checkouts\repos"
-- Repository and workspace configuration
.DAVRepositoryFactory~setup
.FSEntryFactory~setup
workspace = .SVNWorkspaceManager~createWorkspace("file",path)
repos = workspace~getLocation~toString
-- Workspace's revision
ws_status = workspace~status("",.true)
ws_revision = ws_status~getWorkingCopyRevision
-- Repository's revision
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
repos_revision = repository~getLatestRevision
if ws_revision<repos_revision then do
 say "Workspace revision" ws_revision "is not up to date (newest" repos_revision || ")!
"
 update_revision = workspace~update(repos_revision)
 say "Updated to revision" update_revision || "."
end
else say "Workspace is up to date."
::requires "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion_examples\00_set-paths.rex"
::requires "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion_examples\99_utils.rex"
::requires BSF.CLS

Source code 24: File 15_startup.rex

 5.1.16 Example 16 – Virus check

Example 16 does a virus check before committing a new revision using a command-line

57 For Windows: Just put it in the folder called Autostart.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Developed examples Page 71

virus scanner58. This can be very useful because a central repository, where many users

share files, is an enormous threat for spreading viruses. The path which the virus scanner

has to scan is translated in 8.359 format (line 20) because the program is executed through

the DOS command-line. On lines 31 to 33 the path to the virus scanner with some paramet-

ers60 is generated and executed on the following line. A log file is written which contains in-

formation about found viruses. The directly generated log file is examined for a certain line

(line 42) which tells the program that no viruses were found. If no virus was found, a mes-

sage is printed out, the log file is deleted and the revision is committed. Else the program

tells the user that a virus was found (and that the revision was not committed) and that he

has to have a look at the log message for further information.

/*
 * 16_virus-check.rex, 2005-07-09
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Script checks for viruses before committing a new
 * revision. DOS command-line scanner F-Prot from
 * FRISK Software International is used here as an
 * example. After scanning, the log message is
 * investigated for reports about viruses. If none
 * is found, the revision is committed, else there is
 * a warning message and no files are being
 * transferred.
 *
 */
call loadClasses
path = "C:_checkouts\repos"
-- Scanner needs 8.3 file format
path_8.3 = "C:_check~1\repos"
logfile = "log.txt"
commitMessage = "A message"
-- Repository and workspace configuration
.DAVRepositoryFactory~setup
.FSEntryFactory~setup
workspace = .SVNWorkspaceManager~createWorkspace("file",path)
repos = workspace~getLocation~toString
-- Scan for viruses and create log file
f_prot = "C:\Programme\F-Prot\"
scan = '"' || f_prot || 'F-PROT.EXE" "'path_8.3'" /ARCHIVE = 10 /AUTO /DELETE /DUMB /
NOBOOT /NOFLOPPY /NOMEM /PACKED /SILENT /REPORT='logfile
address cmd scan
-- Checking log file
f = .stream~new(logfile)
f~open("read")
lines = f~lines
virus = .true
do i = 1 to lines
 if f~linein(i) = "No viruses or suspicious files/boot sectors were found." then virus=
.false

58 You can use any virus scanner you want. I automate the program using the command-line because there is
no good implementation of OLE automation.

59 That means eight characters for the file name and three for the extension, including the dot as delimiter
there is a maximum of twelve characters.

60 For example /DELETE deletes viruses found automatically or /REPORT specifies the file to write the log
message to.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Developed examples Page 72

end
f~close
-- Do something if a virus was found or commit revision if not
if virus = .false then do
 say "No virus found."
 address cmd "del" logfile
 revision = workspace~commit(commitMessage)
 if revision <> "-1" then say "Committed revision" revision || "."
 else say "Nothing to commit."
end
else say "A virus was found - revision was not committed. Please check logfile named '"
|| logfile || "'."
::requires BSF.CLS
::requires 99_utils.rex

Source code 25: File 16_virus-check.rex

 5.1.17 Example 17 – Working with different repositories

By means of example 17 it is possible to define several different repositories (and revisions)

and checkout only needed files in one directory. After editing files a commit statement up-

dates the files in exactly the repositories they belong to.

First the submitted arguments while executing the script are parsed. The variable

working_path acts as the main directory for working with the different repositories – there

the needed files will be checked out to. The different repositories and revisions to work

with and their checkout-paths relative to working_path are defined from line 31 to 36 in

variables repositories and paths61. The program can handle as many repositories as you

want – just extend the list like it is shown in lines 39 and 40. Then the files of each reposit-

ory are defined (variable files) which will be checked out to working_path (again there is

no limit). If you submit the arguments checkout or update on script's execution, the repos-

itories (which are saved as keys in variable paths) will be checked out (or updated) to the

corresponding path defined in paths. After that the files from each repository specified in

variable files will be copied from the directly created (or updated) workspace to the work-
ing_path directory. There files from different repositories are saved and you can do the

modifications you want. After editing the files, running the script with the argument commit
[commit message] will copy edited files back to the workspace they belong to. Then the

changes made to the workspaces are committed (lines 100 to 113). The commit statement

used by JavaSVN does not update the local workspace to the latest revision, so eventually

61 Checkout of repositories will be done using following path: <working_path>_data\<paths
[repository_url]>.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Developed examples Page 73

the working copy has to be updated (only if a new revision was committed).

/*
 * 17_working-with-different-repositories.rex, 2005-07-09
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Here it is possible to define several different
 * repositories (and revisions) and checkout only
 * needed files in one directory. After editing
 * files a commit statement updates edited files
 * in the right repositories they belong to.
 * Attention: All files are copied in a specified
 * directory with no sub-directories. Therefore
 * all files must have different names (otherwise
 * files could be committed to wrong repositories).
 *
 */
args = arg(1)
parse var args command commit_message
call loadClasses

working_path = "C:_checkouts\repos"
repositories = .directory~new
paths = .directory~new
files = .directory~new
-- Set repositores[repository_url] = revision
-- and paths[repository_url] = workspace_path
repositories["http://localhost/repos"] = -1
-- Set path relative to working_path
paths["http://localhost/repos"] = "repos"
repositories["http://localhost/repos2"] = -1
paths["http://localhost/repos2"] = "repos2"
-- etc. etc. etc.
-- repositories[""] = -1
-- paths[""] = ""
-- Specify files["repository_url"] = file
-- These files will be copied to 'working_path' and are free to edit
files["http://localhost/repos"] = "anyDirectory\anyFile.txt"
files["http://localhost/repos2"] = "otherDirectory\otherFile.txt"
-- files[""] = "" -- and so on
-- Repository and workspace configuration
.DAVRepositoryFactory~setup
.FSEntryFactory~setup
if command = "checkout" | command = "update" then do
 -- Do a checkout or update for all repositories specified
 say
 say "Begin checkout or update."
 say "-----------------"
 do repos over paths
 path = working_path || "_data\" || paths[repos]
 workspace = .SVNWorkspaceManager~createWorkspace("file",path)
 location = .SVNRepositoryLocation~parseURL(repos)
 if SysGetFileDateTime(path) = -1 then do
 revision = workspace~checkout(location,repositories[repos],.false)
 say "Checked out" repos "revision" revision "to" path || "."
 end
 else do
 revision = workspace~update(repositories[repos])
 say "Updated workspace at" path "to revision" revision || "."
 end
 end
 -- Copy specified files to working directory ('working_path')
 say
 say "Begin copying of files."

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Developed examples Page 74

 say "-----------------"
 do repos over files
 file = working_path || "_data\" || paths[repos] || "\" || files[repos]
 address cmd "copy " || file || " " || working_path
 say "Copied" file "to" working_path || "."
 end
 say "-----------------"
 say "Feel free to edit files now!"
 say "After editing execute script with arguments 'commit [message]'."
end
else if command = "commit" then do
 say
 say "Begin copying edited files back to workspace."
 say "-----------------"
 do repos over files
 lastpos = files[repos]~lastpos("\")
 file = files[repos]~substr(lastpos+1,files[repos]~length)~strip
 destination = files[repos]~substr(1,files[repos]~length-file~length-1)
 copy_file = working_path || "\" || file
 destination_path = working_path || "_data\" || paths[repos] || "\" || destination
 address cmd "copy " || copy_file || " " || destination_path
 say "Copied" copy_file "to" destination_path || "."
 end
 say
 say "Begin committing revisions."
 say "-----------------"
 do repos over paths
 path = working_path || "_data\" || paths[repos]
 workspace = .SVNWorkspaceManager~createWorkspace("file",path)
 revision = workspace~commit(commit_message)
 update = .false
 if revision = -1 then say "Nothing to commit."
 else do
 say "Committed repository" repos "revision" revision || "."
 update = .true
 end
 end
 if update = .true then do
 say
 say "Updating working copies."
 say "-----------------"
 do repos over paths
 path = working_path || "_data\" || paths[repos]
 workspace = .SVNWorkspaceManager~createWorkspace("file",path)
 revision = workspace~update(repositories[repos])
 say "Updated workspace at" path "to revision" revision || "."
 end
 end
end
else say "Please submit 'checkout', 'update' or 'commit' [message] as an argument."
::requires BSF.CLS
::requires 99_utils.rex

Source code 26: File 17_working-with-different-repositories.rex

 5.2 Hook scripts

 5.2.1 General information

Hook scripts are programs executed by some repository event. Each hook is handed enough

information to tell what that event is, what target(s) it is operating on, and the user name of

the person who triggered the event. Depending on the hook's output or return status, the

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Developed examples Page 75

hook program may continue the action, stop it, or suspend it in some way.

Subversion implements the following hooks (excerpt):

• start-commit – This is run before the commit transaction is even created.

• pre-commit – This is run when the transaction is complete, but before it is committed.

• post-commit – This is run after the transaction is committed, and a new revision is cre-

ated.

• pre-revprop-change – This is run before a revision (=unversioned) property is

changed.

• post-revprop-change – This is run after a revision property has been changed. This

script will not run unless the pre-revprop-change hook exists. [cp. Coll05, 70 f]

Hook scripts have to be placed in the directory <path to repository>\hooks and must

be executable by the operating system. For Windows that means the hook must have an ex-

tension like .bat or .exe. Enabling a hook is done by putting an executable file named

after the hook into the hooks folder (e.g. pre-commit.bat). Unfortunately I could not man-

age Subversion to execute an ooRexx script directly. That is why there is always a batch file

(.bat) named after the hook which calls the ooRexx script and submits the arguments. For

security reason, the Subversion repository executes a hook script with an empty environ-

ment – that means no environmental variables are set at all. For that reason there will be full

paths to required and loaded ooRexx scripts.

 5.2.2 Example 18 – post-revprop-change logging

modifications62

The batch file shown in source code 27 executes an ooRexx script (with four parameters)

where the functionality is implemented. In batch files comments are written using rem as

start of line. The four parameters are: the path to the repository, the revision, the property

being set on the revision and the action (property is being 'A'dded, 'M'odified, or 'D'eleted).

rem post-revprop-change.bat, 2005-07-07
rem Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)

62 Remember that for the execution pre-revprop-change hook must exist (and even if it is only a blank
executable file).

1
2

Developed examples Page 76

rem Wrapper file calling an ooRexx script and passing some arguments
rem because direct execution of .rex seems not working.
rexx C:_repository\hooks\post-revprop-change-rexx.rex %1 %2 %3 %4

Source code 27: File <path to repository>\hooks\post-revprop-change.bat

The ooRexx script called is shown in source code 28. For each repository the modifications

are written line-by-line in a text file named after the repository. An administrator has for

each repository the ability to see when a property was modified (or added or deleted). As

mentioned earlier paths must always be set in an absolute way (line 19).

/*
 * post-revprop-change-rexx.rex, 2005-07-07
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Hook script for logging modifications of revision
 * properties. Arguments are passed by
 * 'post-revprop-change.bat'. For each repository the
 * modifications are written line-by-line in a
 * text file named after the repository.
 *
 */
args = arg(1)
file = args~word(1)~changestr("/","")~changestr(":","")~changestr(" ","_") || ".txt"
out = date() time() args
f = .stream~new("c:_repository\hooks\" || file)
f~open
text = f~charin(1,f~chars)
out = out || "0D0A"x || text
f~charout(out,1)
f~close

Source code 28: File <path to repository>\hooks\post-revprop-change-rexx.rex

Figure 14 shows what a possible log file for a repository having hook post-revprop-
change-rexx.rex activated may look like.

Figure 14: Possible log file for a repository

3
4
5
6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Developed examples Page 77

 5.2.3 Example 19 – post-commit sending email

Again there is a batch file executing an ooRexx script with the following parameters: the

path to the repository and the number of the revision just committed.

rem post-commit.bat, 2005-07-09
rem Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
rem Wrapper file calling an ooRexx script and passing some arguments
rem because direct execution of .rex seems not working.
rem rexx C:_repository\hooks\post-commit-rexx.rex %1 %2

Source code 29: File <path to repository>\hooks\post-commit.bat

The hook script for sending a notification email after a successful commit was made is

shown in source code 30. The recipients are set on lines 14 and 15. There are two imple-

mentations of sending email: the first using CDO63 and the second using Microsoft's Out-

look (in comments). If we have a look at the first method an OLE-object (a CDO.Message)

is instantiated. Then a SMTP server, the port of the server and the server's time out are con-

figured (lines 24 to 36). The message sender, subject and body are defined on lines 39 to 41.

After that a loop sends an email to all specified recipients.

The Outlook sending method uses the standard account specified in Outlook for sending

emails. A new OLE-object is instantiated (an Outlook.Application) on line 55. A loop is

creating the message to send (recipient, subject and body64) and sends it at last. In the end

Outlook is being closed as shown in line 67.

There are some commented lines, e.g. for attaching a file to the email or sending a (blind)

carbon-copy. If you want to use these functions, just uncomment the lines.

/*
 * post-commit-rexx.rex, 2005-07-10
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Hook script for sending notification mail after
 * a successful commit was made. Showing implementation
 * of sending mail through CDO and Outlook. Recipients
 * are defined in a stem variable.

63 Collaboration Data Objects – The library provides developers with an easy way to create, manipulate, and
send Internet messages.

64 There is no sender defined because the default Outlook account is being used, where the sender's name and
email address are saved.

1
2
3
4
5
6

1
2
3
4
5
6
7
8

Developed examples Page 78

 *
 */
-- Setting recipients
recipient.0 = 2
recipient.1 = "bernhard.hoisl@wu-wien.ac.at"
recipient.2 = "h0252748@wu-wien.ac.at"
args = arg(1)
repository = args~word(1)
revision = args~word(2)
-- Sending mail using CDO
msg = .OLEObject~new("CDO.Message")
smtpServer = "smtp.chello.at"
smtpServerport = 25
smtpTimeout = 60
-- Configuration
f = msg~configuration~fields
f~Item("http://schemas.microsoft.com/cdo/configuration/sendusing")~value = 2
f~Item("http://schemas.microsoft.com/cdo/configuration/smtpserver")~value = smtpServer
f~item("http://schemas.microsoft.com/cdo/configuration/smtpserverport")~value =
smtpServerport
f~Item("http://schemas.microsoft.com/cdo/configuration/smtpconnectiontimeout")~value =
smtpTimeout
f~update
-- Generate message
msg~from = "Bernhard Hoisl" "<bernhard.hoisl@wu-wien.ac.at>"
msg~subject = "Commit notification from" repository
msg~textbody = "There is a new revision" revision "on repository" repository "from" date
() time() || "."
-- msg~addAttachment("") -- If attaching files is needed
-- Loop over all recipients
do i = 1 to recipient.0
 msg~to = recipient.i
 -- msg~cc = "" -- If needed
 -- msg~bcc = "" -- If needed
 msg~send
end
-- Sending mail using Outlook
/*
outlook = .OLEObject~new('Outlook.Application')
do i = 1 to recipient.0
 mail = outlook~CreateItem(0)
 mail~To = recipient.i
 mail~Subject = "Commit notification from" repository
 mail~Body = "There is a new revision" revision "on repository" repository "from" date
() time() || "."
 -- mail~Attachments~Add(); -- If needed
 mail~Send
end
outlook~Quit
*/

Source code 30: File <path to repository>\hooks\post-commit-rexx.rex

A small modification of the script is shown in source code 31. This time the script contacts

a repository to find out to whom sending a notification email is necessary. In the root direct-

ory of the repository properties beginning with notification65 (like notification1, no-
tification2 etc.) have to be set. The value is the email address to which a notification has

65 Or whatever you set variable property to (line 25).

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Developed examples Page 79

to be sent if a new commit occurs. The sending method of the email uses CDO. The loop

over the properties found is shown on lines 63 to 74. If the trimmed property name found

equals the value of variable property, an email is sent to the recipient defined as the prop-

erty's value. Again no environmental variables are set and full paths have to be used (lines

77 to 83).

/*
 * post-commit-rexx2.rex, 2005-07-10
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Hook script for sending notification mail after
 * a successful commit was made. This is another
 * implementation which slightly differs from
 * 'post-commit-rexx.rex'. This time the script
 * contacts the repository to find out to whom
 * sending a notification email is necessary. In
 * the root directory of the repository there has
 * to be set properties beginning with
 * 'notification' (like 'notification1',
 * 'notification2' etc.). The value is the email
 * address to which a notification has to be sent
 * if a new commit occurs.
 *
 */
call loadClasses
repos = "http://localhost/repos"
path = ""
-- Beginning chars to find property
property = "notification"
-- Repository configuration
.DAVRepositoryFactory~setup
location = .SVNRepositoryLocation~parseURL(repos)
repository = .SVNRepositoryFactory~create(location)
revision = repository~getLatestRevision
-- Mail configuration
msg = .OLEObject~new("CDO.Message")
smtpServer = "smtp.chello.at"
smtpServerport = 25
smtpTimeout = 60
f = msg~configuration~fields
f~Item("http://schemas.microsoft.com/cdo/configuration/sendusing")~value = 2
f~Item("http://schemas.microsoft.com/cdo/configuration/smtpserver")~value = smtpServer
f~item("http://schemas.microsoft.com/cdo/configuration/smtpserverport")~value =
smtpServerport
f~Item("http://schemas.microsoft.com/cdo/configuration/smtpconnectiontimeout")~value =
smtpTimeout
f~update
-- Generate message
msg~from = "Bernhard Hoisl" "<bernhard.hoisl@wu-wien.ac.at>"
msg~subject = "Commit notification from" repos
msg~textbody = "There is a new revision" revision "on repository" repos "from" date()
time() || "."
-- msg~addAttachment("") -- If attaching files is needed
m = .HashMap~new
v = .Vector~new
-- Get property list from repository's root directory
c = repository~getDir(path,revision,m,v);
i = m~keySet~iterator
do while i~hasNext

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Developed examples Page 80

 propertyName = i~next
 propertyValue = m~bsf.invokeStrict("get","st",propertyName)
 propertyNameTrimmed = propertyName~left(property~length)
 -- If trimmed property name equals property set, send email (recipient = property
value)
 if propertyNameTrimmed = property then do
 msg~to = propertyValue
 msg~send
 end
end
-- Requires needed paths to be set
::requires "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion_examples\00_set-paths.rex"
-- Requires loading needed java classes
::requires "C:\Dokumente und Einstellungen\Berni\Eigene
Dateien\Temp\subversion_examples\99_utils.rex"
-- Requires BSF4Rexx
::requires "C:\Programme\bsf4rexx\bin\BSF.CLS"

Source code 31: File <path to repository>\hooks\post-commit-rexx2.rex

 5.3 Example using Apache with Mod_Rexx

 5.3.1 Example 20 – Repository listing

Example 20 is doing the same as example 7 – showing a list of files and directories of a re-

pository at a specific revision. This time I am making use of the web-server Apache for

handling HTTP requests. The module Mod_Rexx integrates ooRexx support for Apache.

As you can see in source code 32 there is an RSP printing an HTML form (lines 23 to 39).

If a user submits this form, transmitted variables are saved in the stem variable WWWARGS
(lines 28 to 31). If the form has been submitted and there has been an entry for the input

field repository, an ooRexx server is called (with the parameters repository and revi-
sion) which handles the connection to the Subversion repository (see source code 33). An

HTML formatted text string will return from the server.rex script which is printed out

(line 65). So this is just another way of printing the directory entries of a repository, graph-

ically shown in figure 15.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Developed examples Page 81

The user contacts the web-server using a web-browser. By submitting the HTML form the

RSP contacts the ooRexx server (both must be configured for working together – IP address

and port number). The running ooRexx server contacts Subversion's repository, retrieves

the information and generates an HTML formatted string which is returned to the RSP.

There the string is sent to the client and displayed in his web-browser.

The reason why we do not contact Subversion's repository out of an RSP is that in my tests

it was simply not possible. As I mentioned before in chapter 3.2 BSF4Rexx cannot be

loaded from an RSP or an ooRexx script executed within an Apache process.

<?rexx
/*
 * index.rsp, 2005-06-22
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * This script has two functions: (1) Handle
 * HTTP requests and presents data in HTML in a
 * browser (GUI). (2) Perform as a client, which
 * connects to the server instantiated by
 * 'server.rex'. Submits repository's URL and
 * revision (optional) as arguments. Expects a
 * string as return result.
 *
 */
?>
<html>
<head>
<title>List repository</title>
</head>
<body>
<form action=index.rsp method=post>
<?rexx
 repository = ""

Figure 15: Communication schema of example 20

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Developed examples Page 82

 revision = ""
 if WWWARGS.1.!NAME = 'repository' then do
 repository = WWWARGS.1.!VALUE
 if WWWARGS.2.!NAME<>"" then revision = WWWARGS.2.!VALUE
 end
 say "Repository (URL): <input type=text name=repository value=" repository
"> "
 say "Revision: <input type=text name=revision value=" revision "> "
 say "<input type=submit value='List repository >>'>"
?>
</form>
<?rexx
if WWWARGS.1.!NAME = 'repository' then do
 if RxFuncQuery("SockLoadFuncs") then do
 call RxFuncAdd "SockLoadFuncs","RXSOCK","SockLoadFuncs"
 call SockLoadFuncs
 end
 server = 192.168.0.3 -- 127.0.0.1
 InString = repository||","||revision
 socket = SockSocket("AF_INET", "SOCK_STREAM", "0")
 Call SockGetHostByName server, "host.!"
 host.!family = "AF_INET"
 host.!port = 1508
 call SockConnect socket, "host.!"
 call SockSend socket, InString
 call SockRecv socket, "OutString", 51200 -- character length
 call SockShutDown socket, 2
 call SockClose socket
 say OutString
end
?>
</body>
</html>

Source code 32: File <path to Apache>\htdocs\<any sub-directory>\index.rsp

If we take a closer look at source code 33, we will not see anything new. The ooRexx sock-

et functions are loaded (lines 14 to 17), the program listens on a defined IP address and port

1508 (configured on lines 21 and 25) and the server waits for a client to connect (line 33). If

a connection has been established, the parameters are parsed (line 39) and a routine list-
Files is called. This routine we already knew generates a list consisting of every directory

entry in the defined repository. The produced string is then returned to the client (the RSP)

in line 43.

/*
 * server.rex, 2005-06-22
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Waits on specified port for client connections. Apache's
 * web-server and Mod_Rexx are handling HTTP requests. A
 * Rexx Server Page submits the URL of a Subversion

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

1
2
3
4
5
6
7

Developed examples Page 83

 * repository and the revision number (optional) through
 * a Rexx socket connection. This script executes a few
 * routines and sends back an HTML formatted string.
 *
 */
if RxFuncQuery("SockLoadFuncs") then do
 call RxFuncAdd "SockLoadFuncs","RXSOCK","SockLoadFuncs"
 call SockLoadFuncs
end
socket = SockSocket("AF_INET", "SOCK_STREAM", "0")
host.!addr = SockGetHostId()
-- host.!addr = 127.0.0.1
host.!family = "AF_INET"
host.!port = 1508
call SockBind Socket, "host.!"
call SockListen Socket, 1
do forever
 say "------------------------"
 say "Waiting at" host.!addr || ":" || host.!port "for a client to connect..."
 ClientSocket = SockAccept(Socket)
 say "Client has established connection."
 call SockRecv ClientSocket, "InpString", 256
 say "String read from client: '" || InpString || "'"
 parse var InpString repository "," revision
 OutString = listFiles(repository,revision)
 call SockSend ClientSocket, OutString
 say "An answer was send back to the client (" || OutString~length "bytes)..."
 call SockShutDown ClientSocket, 2
 call SockClose ClientSocket
 say "Client connection closed."
end
::requires BSF.CLS
::routine listFiles
 use arg repos,revision
 call loadClasses
 -- Repository configuration
 .DAVRepositoryFactory~setup
 location = .SVNRepositoryLocation~parseURL(repos)
 repository = .SVNRepositoryFactory~create(location)
 rev = repository~getLatestRevision
 if revision = "" | revision>rev then revision = rev
 -- Recursive call in routine for building directory tree
 tree = getTree(repository,"",revision,"")
 -- Creating html output
 out = "<h2>"repos" - revision" revision "</h2>"
 out = out"<table width = 100%><tr><th align = left>Path</th><th align =
left>CreationDate</th><th align = left>Author</th><th align =
left>LastModifiedRevision</th><th align = left>Size (byte)</th></tr>"
 out = out tree
 out = out"</table>"
 return out
 -- Routine for building directory tree
 ::routine getTree
 use arg repository,path,revision,tree
 m = .HashMap~new

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Developed examples Page 84

 v = .Vector~new
 -- Don't need 'm' and 'v' but have to be declared
 c = repository~getDir(path,revision,m,v);
 i = c~iterator
 do while i~hasNext
 dir = i~next
 dirName = dir~getName
 dirKind = dir~getKind~toString
 dirPath = path || dirName
 dirCreationDate = dir~getDate~toString
 dirAuthor = dir~getAuthor
 dirLastModifiedRevision = dir~getRevision
 dirSize = dir~size
 if dirAuthor = .Nil then dirAuthor = "[no author]"
 -- Generates html output string
 tree = tree "<tr><td>"dirPath"</td>"
 tree = tree "<td>"dirCreationDate"</td>"
 tree = tree "<td>"dirAuthor"</td>"
 tree = tree "<td>"dirLastModifiedRevision"</td>"
 tree = tree "<td>"dirSize"</td></tr>"
 -- Recursive call
 if dirKind = "<dir>" then tree = getTree(repository,path||dirName|
|"/",revision,tree)
 end
 return tree
 ::routine loadClasses public
 classes = "org.tmatesoft.svn.core.internal.io.dav.DAVRepositoryFactory" ,
 "org.tmatesoft.svn.core.internal.io.svn.SVNRepositoryFactoryImpl" ,
 "org.tmatesoft.svn.core.internal.ws.fs.FSEntryFactory" ,
 "org.tmatesoft.svn.core.io.SVNRepositoryLocation" ,
 "org.tmatesoft.svn.core.io.SVNRepositoryFactory" ,
 "org.tmatesoft.svn.core.io.SVNDirEntry" ,
 "org.tmatesoft.svn.core.io.SVNNodeKind" ,
 "org.tmatesoft.svn.core.io.SVNLogEntry" ,
 "org.tmatesoft.svn.core.ISVNWorkspace" ,
 "org.tmatesoft.svn.core.SVNWorkspaceManager" ,
 "org.tmatesoft.svn.util.SVNUtil" ,
 "org.tmatesoft.svn.core.ISVNEntryFactory" ,
 "org.tigris.subversion.javahl.SVNClient" ,
 "java.util.HashMap" ,
 "java.util.Vector" ,
 "java.io.File"
 do i = 1 to words(classes)
 class = word(classes,i)
 rexxClass = substr(class,lastpos('.',class)+1)
 .bsf~bsf.import(class,rexxClass)
 end

Source code 33: File <path to Apache>\htdocs\<any sub-directory>\server.rex

 5.4 Example using Tomcat

 5.4.1 Example 21 – Subversion HTTP manager

The Subversion HTTP manager is a substitute for Subversion's build-in client. As a user

you do not have to install Subversion because all of the communication is managed by us-

ing only a web-browser.

By means of the Subversion HTTP manager you can checkout, update, commit and edit

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

Developed examples Page 85

files using your preferred web-browser. First you have to specify a repository and (if re-

quired) authenticate yourself by submitting your user name and password. By doing a

checkout a workspace is created in a defined directory on the server side. Then it is possible

to list and edit files. The file to edit is loaded and displayed in an HTML textarea whose

content is saved back to the file. After modifications are made you can commit your revi-

sion and add a commit message66. Update of the server sided workspace is done using the

update link.

Using Tomcat as web-server a Java Servlet calls an ooRexx script which interacts with Sub-

version (using Java). The ooRexx script returns a code which is implemented in the Java

Servlet. Hence generated HTML code is sent to the client's web-browser where it is dis-

played.

This method can be a little confusing because we do not really need ooRexx here. There is

the qualified question why not interact with Subversion using Java only. The reason is that I

wanted to prove that Java can use ooRexx and ooRexx Java. Java Servlets are calling

ooRexx scripts and ooRexx scripts are using Java to interact with Subversion. The de-

scribed communication is best shown in figure 16 below.

66 As I presented the Subversion HTTP manager in a course at university, there was also a function that
notifies a student by sending a SMS that a new revision was committed. That function used the in-house
SMS gateway and therefore I do not distribute it here with my examples.

Figure 16: Communication schema of Subversion HTTP

manager

Developed examples Page 86

As there is too much source code for displaying all interacting files, I will only show two

examples which represent the communication between a Java Servlet and an ooRexx script.

Source code 34 below displays a Java Servlet importing needed classes and generating

HTML output. The call to the ooRexx script is done on line 63 and returned string is printed

out in the next line.

/*
 * Update.java, 2005-06-21
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Handles HTTP-requests and generates the HTML output.
 * Calls 'update.rex' with repository URL, user and
 * password as arguments. Gets back the status code.
 *
 */
import org.tmatesoft.svn.core.internal.io.dav.DAVRepositoryFactory;
import org.tmatesoft.svn.core.internal.io.svn.SVNRepositoryFactoryImpl;
import org.tmatesoft.svn.core.internal.ws.fs.FSEntryFactory;
import org.tmatesoft.svn.core.io.*;
import org.tmatesoft.svn.core.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import org.apache.bsf.*;
import org.rexxla.bsf.engines.rexx.*;
import org.apache.bsf.util.BSFEngineImpl;
public class Update extends HttpServlet {
 public void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html; charset=ISO-8859-1");
 PrintWriter out = response.getWriter();
 HttpSession session = request.getSession(true);
 String repository = session.getAttribute("repository").toString();
 String user = session.getAttribute("user").toString();
 String pw = session.getAttribute("pw").toString();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Subversion HTTP Manager</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<table width=100% height=100% cellspacing=0 cellpadding=0
border=0>");
 out.println("<tr><td valign=center align=center>");
 String pathToHere = "C:/Programme/Apache Group/Tomcat/webapps/subversion/WEB-
INF/classes/";
 BufferedReader in = new BufferedReader(new FileReader(pathToHere+"update.rex"));
 String rexxScript = "";
 String thisLine = "";
 while ((thisLine = in.readLine()) != null) {
 rexxScript += thisLine+"\n";
 }
 BSFManager mgr = new BSFManager();
 Vector v1 = new Vector();
 Vector v2 = new Vector();
 v2.add(0,repository);
 v2.add(1,user);
 v2.add(2,pw);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Developed examples Page 87

 String returnCode = mgr.apply("rexx","",0,0,rexxScript,v1,v2).toString();
 out.println("<h2>"+returnCode+"</h2>");
 out.println("</td></tr>");
 out.println("</table>");
 out.println("</body>");
 out.println("</html>");
 } catch (Exception e) {
 out.print(e+"");
 }
 }
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
}

Source code 34: File <path to Tomcat>\webapps\<application name>\subversion\WEB-
INF\classes\Update.java

The corresponding ooRexx script is shown below. Submitted arguments are retrieved (lines

13 to 15). If the workspace exists (line 23) the normal Subversion configuration is done and

the workspace is updated (line 30). A string defined in line 31 is returned to the Java Servlet

(where it is displayed). As you can see in lines 17 and 18 you have to set variable path in

an abolute way.

/*
 * update.rex, 2005-06-21
 * Bernhard Hoisl (bernhard.hoisl@wu-wien.ac.at)
 *
 * Updates the working copy. Needs the repository
 * URL, user and password as arguments, returns
 * a status message.
 *
 */
call loadClasses
repos = arg(1)
user = arg(2)
pw = arg(3)
path = "C:/Programme/Apache Group/Tomcat/webapps/subversion/WEB-INF/classes/data/"||
repos~substr(8,repos~length-7)~reverse~changestr("/",".")
check = SysGetFileDateTime(path,"C")
if check = -1 then return repos "doesn't exist"
else do
 .DAVRepositoryFactory~setup
 .FSEntryFactory~setup
 workspace = .SVNWorkspaceManager~createWorkspace("file",path)
 location = .SVNRepositoryLocation~parseURL(repos)
 workspace~setCredentials(user,pw);
 head = .bsf~bsf.getStaticValue("org.tmatesoft.svn.core.ISVNWorkspace", "HEAD")
 revision = workspace~update(head)
 return "Updated to revision" revision

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Developed examples Page 88

end
::requires BSF.CLS
::routine loadClasses public
 classes = "org.tmatesoft.svn.core.internal.io.dav.DAVRepositoryFactory" ,
 "org.tmatesoft.svn.core.internal.io.svn.SVNRepositoryFactoryImpl" ,
 "org.tmatesoft.svn.core.internal.ws.fs.FSEntryFactory" ,
 "org.tmatesoft.svn.core.io.SVNRepositoryLocation" ,
 "org.tmatesoft.svn.core.io.SVNRepositoryFactory" ,
 "org.tmatesoft.svn.core.ISVNWorkspace" ,
 "org.tmatesoft.svn.core.SVNWorkspaceManager" ,
 "org.tmatesoft.svn.util.SVNUtil" ,
 "org.tmatesoft.svn.core.ISVNEntryFactory" ,
 "org.tigris.subversion.javahl.SVNClient" ,
 "java.io.File"
 do i = 1 to words(classes)
 class = word(classes,i)
 rexxClass = substr(class,lastpos('.',class)+1)
 .bsf~bsf.import(class,rexxClass)
 end

Source code 35: File <path to Tomcat>\webapps\<application name>\subversion\WEB-
INF\classes\update.rex

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Conclusion Page 89

 6 Conclusion

In this paper I wanted to give a detailed view of how to automate Subversion using ooRexx.

Beginning with the technical requirements and an installation guide I discussed in-depth the

concepts of Subversion automation. The creation of useful examples were substantial for

the understanding of my work.

As to be responsive to my research questions defined at the beginning of this paper I can de-

clare question one and two to be answered positively.

It is definitely possible to automate Subversion using ooRexx – this question was answered

in chapter 4. From my point of view this automation can certainly be used to generate an

advantage in comparison to Subversion's build-in functions. Chapter 5 shows many ex-

amples how the automation can be used in different ways. In the end every reader has to de-

cide on his own if the examples provided are useful or not. Anyway, my examples are de-

clared to be nutshell-programs, which means that not every imaginable functionality could

be implemented. Much more important is that the reader understands the concept because

then he has the opportunity to implement or improve functions by himself.

I had not used Subversion or any version control system before starting with the work on

this paper. Therefore it was a great learning experience for me to get to know such a type of

software. My Subversion automation examples were definitely influenced by my interest in

the development of Internet applications.

If anybody has questions regarding my work, contact me by using the email address on the

cover.

 6.1 Further work

As mentioned before, in this last chapter I would like to give you a brief overview of further

work whose realization could be worth noting.

In chapter 4.1 I claimed that Subversion is very good at managing data, but not designed to

Conclusion Page 90

handle collaborative work. The weak point can be diminished by providing on-time inform-

ation about a user's currently done work. If we think of displaying such information using

an ooRexx script, I suggest running a server which can handle multiple clients. Every pro-

ject member has to invoke an ooRexx script when he begins to work with his local files.

The script controls the working directory and notices the server of every change made. Not

only changes should be monitored, also, for example, if a file is opened and for how long.

The server has to collect the information and display it, for example, as a web-page or send

data back to the client (where a script has to handle it).

Concerning the use of Subversion collaboratively there must be a central server. That is

why probably the directly described method should be the best. Another solution might be

not to run a central information server, but to have all clients acting as agents. That means

that every agent has the ability to find other agents in a defined namespace over a network

connection and communicates with them interactively. Every agent has the same methods

implemented and can respond to a request as well as request a resource by itself. Then there

will be no need for a central server anymore.

Both implementation methods can have several extensions, e.g. a communication module

for users to speak to each other to solve problems. If a user modifies a file and another one

wants to do the same, there should be a warning message and the user should have the pos-

sibility to communicate with the other one. To a certain level it is also possible that such a

process of interaction can be done automatically. For example, if it is defined that one user

has stronger privileges on a file than another one. Then the user with the stronger privileges

should have access to the file all the time (maybe with exceptions).

Subversion uses a copy-modify-merge model, that is why there should be no lock status for

a file as described in the previous paragraph. Of course you are able to lock a file but that is

not the developer's philosophy. So maybe an information broker as characterised above

would be a really interesting and useful program. This idea could be realized in the near fu-

ture or it might be an impulse for developing your own examples.

Bibliography Page 91

Bibliography

[Abts04] Abts, Dietmar: Grundkurs Java - Von den Grundlagen bis zu Datenbank-

und Netzanwendungen. Wiesbaden: Friedr. Vieweg & Sohn Verlag/GWV

Fachverlage GmbH, 2004.

[Alli05] Alliance Software Engineering: Software Testing Glossary.

http://www.sitetestcenter.com/software_testing_glossary.htm, retrieved on

2005-07-14.

[Apac05a] Apache Software Foundation, The: Welcome! - The Apache HTTP Server

Project. http://httpd.apache.org/, retrieved on 2005-07-13.

[Apac05b] Apache Software Foundation: Jakarta BSF - Bean Scripting Framework.

http://jakarta.apache.org/bsf/, retrieved on 2005-07-14.

[Apac05c] Apache Software Foundation, The: About the Apache HTTP Server Project -

The Apache HTTP Server Project.

http://httpd.apache.org/ABOUT_APACHE.html, retrieved on 2005-07-14.

[Apac05d] Apache Software Foundation: The Jakarta Site - Apache Tomcat.

http://jakarta.apache.org/tomcat/, retrieved on 2005-07-15.

[Ashl05a] Ashley, W. David: Apache Mod_Rexx Interface Package.

http://modrexx.sourceforge.net/Readme.html, retrieved on 2005-07-14.

[Ashl05b] Ashley, W. David: Apache Mod_Rexx Home Page.

http://modrexx.sourceforge.net/, retrieved on 2005-07-15.

[Coll05] Collins-Sussman, Ben; Fitzpatrick, Brian W.; Pilato, C. Michael: Version

Control with Subversion. http://svnbook.red-bean.com/en/1.1/svn-book.pdf,

retrieved on 2005-07-13.

[Envi05] Environmental Systems Research Institute, Inc.: GIS Glossary.

http://www.richlandmaps.com/training/glossary/m_p.html, retrieved on

2005-07-18.

[Fitz05] Fitzpatrick, Brian W.; Collins-Sussman, Ben; Pilato, C. Michael:

subversion.tigris.org. http://subversion.tigris.org/, retrieved on 2005-07-13.

[Flat05a] Flatscher, Rony G.: The Vienna Version of BSF4Rexx (Beta). http://wi.wu-

wien.ac.at/rgf/rexx/bsf4rexx/dist.20050709/readmeBSF4Rexx.txt, retrieved

on 2005-07-13.

Bibliography Page 92

[Flat05b] Flatscher, Rony G.: Automatisierung von Windows Anwendungen.

http://wwwi.wu-wien.ac.at/Studium/LVA-

Unterlagen/rgf/autowin/folien/Automatisierung_01.pdf, retrieved on 2005-

07-14.

[Flat05c] Flatscher, Rony G.: Automatisierung von Java Anwendungen.

http://wwwi.wu-wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/folien/,

retrieved on 2005-07-14.

[Gilb05] Gilbert, David; Morgner, Thomas: www.jfree.org - JFreeChart.

http://www.jfree.org/jfreechart/index.php, retrieved on 2005-07-17.

[Goul05] Gould, David: Glossary. http://www.davidgould.com/Glossary/Glossary.htm,

retrieved on 2006-07-14.

[Guid05] GuideWorks: Windows Script Reference : WScript.Network Object.

http://www.winguides.com/scripting/reference.php?id=108, retrieved on

2005-07-18.

[Hois05] Hoisl, Bernhard: Entwicklung eines webbasierten Verwaltungs- und

Kommunikationssystems für das Projekt IMST3. Wien, 2005.

[Ibm01a] IBM: Object REXX for Windows. Programming Guide.

http://publibfi.boulder.ibm.com/epubs/pdf/rxoq5a00.pdf, retrieved on 2005-

07-14.

[Ibm01b] IBM: Object REXX for Windows. Reference.

http://publibfi.boulder.ibm.com/epubs/pdf/rxor5a00.pdf, retrieved on 2005-

07-14.

[Lany05] Lanyon, Inc.: Lanyon, Support - Glossary of Terms A-D.

http://www.lanyon.com/support/Glossary/Glossarya-d.htm, retrieved on

2005-07-22.

[Meta05] MetaStuff Ltd.: dom4j - dom4j: the flexible XML framework for Java.

http://www.dom4j.org/, retrieved on 2005-07-17.

[Naud05] Naudé, Frank: Oracle FAQ: Glossary of Terms - C.

http://www.orafaq.com/glossary/faqglosc.htm, retrieved on 2005-07-22.

[Rexx05] Rexx Language Association: Open Object Rexx - About.

http://www.oorexx.org/, retrieved on 2005-07-14.

[Sour05] SourceFourge: SourceForge.net: Project Info - Mod_rexx.

http://sourceforge.net/projects/modrexx/, retrieved on 2005-07-15.

Bibliography Page 93

[SunM05a] Sun Microsystems, Inc.: Java Technology. http://java.sun.com/, retrieved on

2005-07-14.

[SunM05b] Sun Microsystems, Inc.: Overview (Java 2 Platform SE 5.0).

http://java.sun.com/j2se/1.5.0/docs/api/, retrieved on 2005-07-14.

[SunM05c] Sun Microsystems, Inc.: Index of Code Samples.

http://java.sun.com/developer/codesamples/index.html, retrieved on 2005-

07-14.

[Tere05] TERENA: GNRT Appendix: Glossary.

http://www.terena.nl/library/gnrt/appendix/glossary.html, retrieved on 2006-

07-14.

[Tmat05a] TMate Software: Pure Java Subversion (SVN) Client Library.

http://tmate.org/svn/, retrieved on 2005-07-14.

[Tmat05b] TMate Software Ltd.: Overview (JavaDoc :: Documentation :: Pure Java

Subversion (SVN) Client Lib. http://tmate.org/svn/javadoc/index.html,

retrieved on 2005-07-14.

[Tmat05c] TMate Software: Example Programs :: Documentation :: Pure Java

Subversion (SVN) Client Libr. http://tmate.org/svn/examples/, retrieved on

2005-07-14.

[Ulle05] Ullenboom, Christian: Java ist auch eine Insel - Programmieren für die Java

2 Platform in der Version 5. Bonn: Galileo Press GmbH, 2005.

[Wiki05a] Wikipedia: Java programming language.

http://en.wikipedia.org/wiki/Java_programming_language, retrieved on

2005-07-14.

[Wiki05b] Wikipedia: REXX. http://en.wikipedia.org/wiki/REXX, retrieved on 2005-

07-14.

