WIRTSCHAFTSUNIVERSITAT WIEN
BAKKALAUREATSARBEIT

Titel der Bakkalaureatsarbeit:

Automatische Erstellung von Orientierungshilfen fur Prasentorinnen in
OpenOffice.org Impress

Englischer Titel der Bakkalaureatsarbeit:

Automated Creation of Guideposts & Hints for Presenters in
OpenOffice.org Impress

Verfasser: Dominik Gundacker

Matrikel-Nr.: 0451615

Studienrichtung: J033 526 Bakkalaureat Wirtschaftsinformatik

Kurs: 1526 Vertiefungskurs VI / Bakkalaureatsarbeit
Electronic Commerce

Textsprache: Englisch

Betreuerin/Betreuer: ;. iy, prof. Dr. Rony G. Flatscher

Ich versichere:

dass ich die Bakkalaureatsarbeit selbststandig verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.

dass ich die Ausarbeitung zu dem obigen Thema bisher weder im In- noch im Ausland (einer
Beurteilerin/ einem Beurteiler zur Begutachtung) in irgendeiner Form als Prifungsarbeit vorgelegt
habe.

dass diese Arbeit mit der vom Betreuer beurteilten Arbeit (ibereinstimmt.

Datum Unterschrift

Page 2

Table of Contents

o o (1T 1o o 1P PUUSPRRRR 6
1.1 ADSTIACT. ... 6
1.2 ReSearch QUESTION.........oiiiiiiiiee e e e 6
1.3 KBYWOIAS. ..ottt e e e e e e et e e et e e e e e e e e e e e e e e e e e e aana 6

2 GeNeral Part.........oooooiiiiie ettt e e e e e e e aeaaeaaeaennennnnnndd
2.1 OPEN ODJECE REXX.ceeiiiiiiiiiiiiiiiiiiees s e et e e e e e e e e e e e ettt e e e e e e e e eaaaaaaaaaes 7

0 I I o 153 (oYU 7
20,2 REXXLA ..ottt e e e e e e e e e e e e e ——artaaaaaaaaaeas 8
2 G T O A= TS 8
A B) 4| - U 9
2.2 OPENOFIICE.OIG. ..ottt e e e e e e e e e e e e e aaaaaaas 13
2.2 HIS O et a e e e e e e e 13
WA O A= Y TS 13
2.2.3 ArChItECIUIE. ... 14
2.2.4 Services & INterfaCes.........uuuiiiiiiiiiiiiee e 16
2.3 Bean Scripting Framework for REXX...........uuuiiiiiiiiiieeeeceeee e 19
2.3.1 Bean Scripting Framework..............uuuiiiiiiiiiie e 19
2.3.2 BSFAREXX ittt a e 20
2.3, 3 BOF . CL S it a e e e e e e 22
2 T U N [2 0 s S SSP 23
2.3.5 ROULINES. ..ottt ettt e e e e s e e e e e e e e e aeeeeeeeeeeeeeennnnes 24
A TV [0] T R 25

3 INStallation GUIAE........oviiiiieee i e e e e e e e e 26
3.1 INStallation JAVa........coooiii e 26
3.2 Installation OPeNOFfICE.0MG.....ciiiiiiiiiiiii i 27
3.3 Installation Open ObJECt REXX.......uuuuiriiiiiiiieeee e 27
3.4 Installation BSFAREXX ... 28

4 IMPress AULOMATION. eennrnnnnas 32
g I 7= U= | P SPUPSRRT 32
4.2 Introduction EXAmMPIE......... oo 34
G B = 0 1] 0] (= TSP 40

G T I = 0 0] 0] = O L 41

4.3.2 EXAMPIEOZ......eeeeee e a e e e e e 45
G TG BN = 10 0] 0] L= 0 P 49
4.3.4 EXamMPIEOA...... oo 54
4.3.5 EXAMPIEOD..... oo 57
G T I = 0 0] 0] L= 0 61
G T A €= 10 0] 0] L= O 66
4.3.8 EXaMPIEOB........cooeeeiei e 71
4.3.9 EXaMPIEOO..... .o 75
ST ©7o] g T3 017] o 79

B R EIEINCES. ... e e e 80

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Communication between UNO components [FIat06]................oovvvveveniiiennnnn. 15
UNO Component Model [FIatO5]......covveeeiieieiiiieeee e 15
lllustration of ServiceManager [OpenOf07C]......ccccoviieiieieieeeiieieeeeeeeeeeees 17
Interfaces & Methods [OpenOfO7C].......uuuuuueiiiiiiiiee e 18

Architecture of BSF4RexX [FIatOBC]........cccooeeiiiiiiiiiieieeeeeee e 21

Figure 6: From ooRexx to Automation [AhamO3]...........cooriiiiii e 25
Figure 7: Options Dialog iN OO0........uuuiiiiiiiiiieie e 29
Figure 8: EXtENSION MaN@QET.........uuuiiiiiiiiiiiiiee e e e 30
Figure 9: Macros inStallation..............uuiiii e 31
Figure 10: Presentation Document Model [OO0DEeVOS].........ccccccciviiiiiiieiiieeeeeee s 34
Figure 11: Organize MaCIOS..........cccuuiiiiiiiiiieee et 35
Figure 12: MacrO @AITO... ... e e e e e as 36
Figure 13: "Hello World" TeXtShapeuuuiiiiiiie i 39
Figure 14: ClickEvent on TeXtShape.......ccccuuuiiiiiiiiiieeee e 39
Figure 15: Progress Dar....... ... i 43
Figure 16: Pacman on his way to the cherries.............oooii 47
Figure 17: Bomb With fUSE........oooiiieeee e 52
Figure 18: EXPIOSION SIAE......oeeieiiiiiieee e e e e 53
Figure 19: ClOCK tranSitioN.............eeiiiiiiiii e 56
Figure 20: INPUt dI@lOgS.......coiiiiiiie et 60
Figure 21: Generated break slide..............ooooiiiiiiiieeie e 60
Figure 22: Slide effECtS.ueiiieieeiiieee e 64
Figure 23: Dialog for choosing the Speed............oooiiiiiiiiii e 65
Figure 24: Duration Of 0Ne SIde............eeiiiiiiiiiii e 65
Figure 25: Question dialog for end slide...........cooooiiiiiiiiiiii e 65
Figure 26: Guideposts from heading..........coooiiiiiiiiie e 69
Figure 27: Guideposts with bookmarks..............oooii 74

Figure 28:

Generated agenda.........cooiiiiiii e ————— 78

Table of Snippets

Snippet 1: HEIlO WOTIA. ... e e e e e e e e e e e e e e eaaaaanas 10
SNIPPEt 2: VariabIEs.......oooiiiiiii e 10
Snippet 3: Control STrUCIUIES 1. ..o s 11
Snippet 4: Control STrUCIUIES 2.......cooooeeieeeee s 11
Snippet 5: Control StrUCIUrES 3. e 12
Snippet 6: Control STFUCIUIES 4. e 12
Snippet 7: BSF4RexxX simple eXample.........oooviiiiiiiiiiiiiieere e 23
Snippet 8: BSF4Rexx message box example.............uuuueiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeees 23
Snippet 9: USINg UNOL.CLS.......ooeiie e e e e e e e 24
Snippet 10: Interfaces With DESKIOPD........ceeeeiiiiiie e 36
Snippet 11: Introduction example (00_introduction.rex)...............eeeeeeeieeeiinninniiiiciiiieee. 38
Snippet 12: Progressbar (01_progressbar.reX)........uuuuu e 42
Snippet 13: Pacman (02_Pacman.reX).......ccceeieeeiieeeeeeeeeeeeeeeeeeeeeeeea e e e e e e e aaaaaaas 47
Snippet 14: BOmMD (03 _DOMD.IEX)....uuiiiiiiiiiieeee et e e e e e e 51
Snippet 15: ClOCK (04 _ClOCK.FEX)...cciieiee oo e e e e e e e e e e e e e e e e e eeeeeennnnes 55
Snippet 16: Create Break Slide (05 _break.réX)......cccooueeieeiieeeeeeeiieeeeeeeeeeeeee e 58
Snippet 17: Various tasks (06_finish_presentation.rex)...........cccooovvvviiiiiicicciieeeeeeen, 63
Snippet 18: Guideposts from headings (07_guideposts.reX).......ccccccvveeeeeeeeiiieccnnnvnnnnee. 68
Snippet 19: Guideposts with circles and bookmarks (08_guideposts_circles.rex)........ 73

Snippet 20: Create an agenda (09_agenda.reX).......cceeeeeiiiiiiiiiiiiiiiiiieeeeee e 77

Introduction Page 6

1 Introduction

This chapter will give you a short overview about the content, the structure and the

approach of this bachelor thesis.

1.1 Abstract

This bachelor paper will give an introduction to the OpenOffice.org suite, especially the
presentation program Impress, and how the scripting language Open Object Rexx can

help to automate the use of it.

The result of the automations should make the life easier for presenters and add some

extra value to the presentations.

This paper is divided into two parts. The first part will cover the more theoretical and
general part of the bachelor thesis. These chapters will address the technical
environment including the OpenOffice.org suite itself, the scripting language Open
Object Rexx (ooRexx), the Bean Scripting Framework (BSF) and an overall-view to get

familiar with the interaction of those components.

After that, the second part will present some snippets and nutshells that demonstrate

the automation of Impress.
The concluding part should give a short summary of the paper.

1.2 Research Question

How can Open Object Rexx help to automate the use of Impress and assist the
presenter to make presentations more appealing and attractive for both, the audience

and the presenter himself?

1.3 Keywords

OpenOffice.org, Impress, Open Object Rexx, Bean Scripting Framework for Open

Object Rexx, Automation, Guideposts, Hints

General Part Page 7

2 General Part

This chapter contains an overview of all the used tools, applications and frameworks,
which are needed for the automation of Impress and other OpenOffice.org applications.
In addition to the technical prerequisites, the most important terms will be defined here,

to ease the access to the topic of the bachelor paper.

21 Open Object Rexx

The paper starts with some introductory words about the scripting language Open
Object Rexx and how it emerges from IBM’'s REXX language. There will also be a
section with the basic syntax of Open Object Rexx, which is really not that hard to learn

and understand.

2.1.1 History

Open Object Rexx has its seeds in the "human centric language" REXX (Restructured
EXtended EXecutor") implemented by Mike Cowlishaw of IBM between 20 March 1979
and mid-1982. The main purpose of the development of REXX was to replace IBM's
mainframe batch language EXEC II.

[FlatO6a]

Eventually in 1996 REXX was been standardized by ANSI, which published it under the
code ANSI X3.274-1996 “Information Technology — Programming Language REXX”.
[WikiRe07]

In the 1990s, there were two newer variants of REXX, which were released:

* NetRexx — this version compiles to Java byte-code and makes use of the Java
object model. Therefore it is not generally upwards-compatible with the ‘classic’
REXX.

* Object Rexx — the generally upwards-compatible version of REXX, which

implements the object-oriented paradigm.

[WikiRe07]

General Part Page 8

As noted above, Object Rexx is the object-oriented approach to the scripting language
Rexx. One of the requirements of this version was the full compatibility with other
interpreters that were not object-oriented or other Open Source Rexx interpreters
currently available.

[OORexx07b]

This was a request of the SHARE SIG (special interest group).

In 1997 after 9 years of development, the commercial version of Object REXX was
released included in “OS/2 Warp”. Later on, IBM built versions for Windows, AIX and
experimental ports for Linux and Solaris.

[FlatO6a]

The last step of REXX becoming Open Object Rexx was the decision from IBM to make
their product available to the open source community. They choose the RexxLA for

managing the project in 2004.

The first release of Open Object Rexx was announced in March 2005.
[OORexx07a]

2.1.2 RexxLA

“The Rexx Language Association (RexxLA) is an independent, non-profit organization
dedicated to promoting the use and understanding of the Rexx programming language”
[RexxLAO7]

This special interest group was involved in porting Object Rexx to an open source
project in 2004 as mentioned above. Every year, the group holds a annual meeting
called ,Annual International Rexx Symposium® where the members and other experts

present new and interesting projects.

2.1.3 Overview

This paragraph deals with the main features and fundamental principles of the Rexx
language. One of the major advantages of Rexx is that it is very easy to learn, even

without advanced programming skills, and that it facilitates a rapid development

General Part Page 9

process.

The main features are the following:

« Natural language syntax — With Open Object Rexx writing and maintaining
programs is very easy. Intuitive instructions, which are oriented to the English
language, make programming accessible to IT or business users. Because Rexx
does not use any strange abbreviations, it is easy to read a program or script
and readily understand its functionality, for example. ‘System.out.printin(*xx”)" in

Java and Say “xx” in Rexx.

* Object orientation— Supports effective componentization and all the other

advantages of the object-oriented paradigm.

* Implicit data typing— In Rexx, there is no need to explicitly declare variables.
That reduces the complexity of application code and makes programming more

intuitive and faster.

 Decimal arithmetic — Open Object Rexx performs calculations in a more
accurate way. The absence of rounding makes it easy to comply with legal

requirements for financial reporting.

* Cross-platform interoperability — Reduces development costs and supports

skills transfer across platforms.

* Rapid diagnostics — In the case of exceptions and errors, Open Object Rexx

provides the user with clear messages and a built- in, multi-level debugger.

[OORexx07a]

2.1.4 Syntax

In order to understand the examples and snippets in the following sections of this
paper, a short introduction into the Open Object Rexx language is inevitable. This
paper does not want to break any conventions for describing a programming language,

so the first piece of code is the infamous ,Hello World“ example.

General Part Page 10

1 /* The infamous

2 Hello World ;-1 =/
3 SAY "Hello World!
4 EXIT O

Snippet 1: Hello World

This snippet shows many aspects of Rexx:

e Multi line comments — Starting with a slash and an asterisk, a comment can

span over multiple lines. An asterisk and a slash closes the comment.

» Single line comment — Starting with a double minus sign or dash, a comment

can be made only till the end of the line.

e Command end — Normally, a command consists of all characters till the
semicolon. It is possible to write as many commands as one prefers in one line.

If there is no semicolon, the command ends at the end of the line.

* Basic commands — SAY prints the following string literals, variables, etc. to the
command shell where the Rexx script was started.
EXIT 0, as the name implies, exits the program and sends 0 back to the shell.
Whereas 0 generally means that the program finished with no problems or

errors.

[Flat0Bb]

%
wmom

|

[;

= R R N]

=

b

Snippet 2: Variables

This snippet shows the following facts:

One do not need to specify a data type or something similar. Rexx automatically

detects if the value inside a variable is a string or a numeric value and handles the

General Part Page 11

operation itself.

Rexx also treats several white spaces in commands and string concatenations as one

whitespace. That is why the output of the SAY number 1 and SAY number 2 are equal.

The double-pipe in a string concatenation avoids the single whitespace between the

strings and connects the value of a and the value of b seamless together.

The last SAY command adds the two values regardless the fact that b was initialized
with a string literal containing the number 4.
[FlatO6b]

The next snippets show how control structures are implemented in Rexx:

1 IF month > & THEN

2 Do

3 SAY "Welcoms to the second half of the vear!

4 SAY "Lets hope it will ke as good as the first one
5 END

& ELSE

7 SAY "I think the current month is not cctokber!

Snippet 3: Control Structures 1

The IF — ELSE implementation of Rexx looks like in any other programming language.
If one wants to make a block of commands, for example to be processed in the IF or
ELSE branch, then the DO — END commands are appropriate. There is no need for a

enclosing tag.

1 Doz
2 SAY "Heho
SAY "Leta go!

END

+

5

& OUTPUT:
7 Heho

8 Leta go!
2 Heho

10 Leta go!

Snippet 4. Control Structures 2

With the keywords DO and END respectively a loop is implemented in Rexx. One can

specify the number of iterations after DO.

General Part Page 12

1 Do0i=1T0 2 BY 0.5
2 SAY "Value i
3 END

-

4

5 CUTPUT:
& Value:
7 Value:
g8 Value:
9 Value:
0 Value:

[0 S I
S o !

1

Snippet 5: Control Structures 3

The equivalent to a for — loop in Java is the DO-TO-BY loop. With this loop one can
specify the start value of a control variable, the value when the loop should be exited
and the value that would be added to the control variable after each iteration.

11 =0

2 DO WHILE i < 3

E SAY "Valus i
4 i=1i4+1
‘ END
".: CUTPT :
8 Value: 0
9 Value: 1
Q 2

10 Value:

Snippet 6: Control Structures 4

The last snippet shows the DO-WHILE loop. In fact it is nearly the same like the DO-
TO-BY loop, but unlike this version, one has to manage the increase of the control
variable himself. The keyword WHILE can be changed to UNTIL, which alters the way

how the loop will be exited.

[Flat0Bb]

General Part Page 13

2.2 OpenOffice.org

This paragraph deals with the next essential part of this bachelor paper: The
OpenOffice.org office suite. The first part describes the historic facts of the project, later

on the paper shows the main components of OpenOffice.org.

OpenOffice.org is a free suite of office applications available under the GNU Lesser
General Public License (LGPL). The software package includes a word processor, a
spreadsheet, a presentation program, a database program and a vector graphics
editor. The suite is targeted to reduce the market share of Microsoft's Office and enjoys
increasing popularity amongst the community.

[WikiOo07]

2.2.1 History

The origin of OpenOffice.org is the company StarDivision, which was founded in
Germany in 1986 by Marco Borries. OpenOffice.org emerged from the earlier
proprietary software application suite StarOffice.

[WikiOo07]

After Sun Microsystems acquired StarDivision in 1999, they released StarOffice 5.2, the

first version which was free of charge. [OpenOf07a]

In 2000 Sun released the source code under both the LGPL and the Sun Industry
Standards Source License (SISSL). Since the autumn of that year, the product is now
called OpenOffice.org. Years later Sun changed the systems with two different license

types and decides to continue their work with the usage of the LGPL.

At the time when this paper was written, the current version of OpenOffice.org was
2.2.1 RC1 build SRC680_m16 and was released on May 5th, 2007.
[WikiOo07]

2.2.2 Overview

The OpenOffice.org office suite consists of different applications. Nearly all of them
have corresponding applications in Microsoft's Office. This fact should make it easier

for users, to switch to the open source suite.

General Part Page 14

The components are the following:

* Writer — The word processing application, similar to MS Word, can be used to

create text documents, from simple letters to books or thesis like this one.

» Calc — The spreadsheet program is the counterpart to MS Excel with the basic
functionalities like tables, cell and calculations but also provides the user with a

comprehensive range of advanced functions.

* Impress — The presentation software of OpenOffice.org. Like PowerPoint,
Impress can be used for creating multimedia presentations. This component will

be heavily used across the paper.

+ Base - Base is a database application and can be compared with MS Access. In

Base creation of tables, reports, queries and forms is possible.

« Draw - Draw represents a vector graphics editor to create and design

everything from simple diagrams to dynamic 3D illustrations.

« Math - A tool, which can be used to create mathematical equations, either with

a graphical user interface (GUI) or a equation editor.

[WikiO007] [OpenOf07b]

2.2.3 Architecture

This section will cover the architecture of OpenOffice.org to act as an entry point for the
automation. The facts presented here are essential for the understanding of the

snippets and nutshells in this paper.

OpenOffice.org is based on a client-server architecture. The communication between
the layers is typically supposed to run over TCP/IP sockets by using UNO remote
protocol (urp), whereas a typical installation of this office suite runs on a single PC
rather than on different machines with each running different operating systems, which

is possible.

General Part Page 15

Figure 1 illustrates the communication between UNO objects.

client server
urp
(CORBA-like)
UNG < UNG
component > component
TCPIIP socket

Figure 1. Communication between UNO components [Flat06]

The object model used in OpenOffice.org is called Universal Network Objects (UNO)
and every component or object is defined using an interface description language
(IDL). That means that each application, for example Impress, represents a set of those

components assembled together.

Figure 2 tries to picture this concept, whereas it should be noted that swriter or scalc

can here be replaced by any otherOpenOffice.org applications.

[Flat05]
UND H
companant swriter o
campanent
UND
e — > L.
componeant
UND UND
W] n}
component cormpanent
UND
companent UKD
UND companeant
UND
T component
componant Scalc o
MO COMpnent
UND
oo —
UND
Somponent UND
companent
UND

:nmnnanl UHG IJHI."_I

campaonent cormponent

Figure 2: UNO Component Model [Flat05]

General Part Page 16

2.2.4 Services & Interfaces

Objects

.In UNO, an object is a software artifact that has methods that you can call and
attributes that you can get and set. Exactly what methods and attributes an object
offers is specified by the set of interfaces it supports.©

[OpenOfd7c]

Interface

,An interface specifies a set of attributes and methods that together define one single
aspect of an object”

[OpenOfd7c]

Each UNO component consists of interfaces and properties, which provide access to
the different functionalities of the components. Properties are used for storing

information for these services.

To retrieve a new instance of a service component one has to use a ServiceManager,
which is an implementation of the factory method pattern in software programming.
The methods "createlnstance()" or "createlnstanceWithArguments()" in combination
with the fully qualified name of the UNO component can be used to create the so-called

service objects.

General Part

Service
Manager

<____

<___-

<___

Service

Service

Service

<__________.

<__________.

Service

Service

Figure 3. lllustration of ServiceManager [OpenOf07c]

Page 17

In order to get access to methods from an interface, one has to query the service object

for the interface itself. This step is mandatory and returns an object, which has the

methods of the requested interface, which can be invoked now.

This work flow seems very awkward, but offers few advantages like the separation and

grouping of methods that belong semantically and functionally together.

[Flat05]

General Part

com.sun.star.document.
OfficeDocument

<<service>>

com.sun.star.view.XPrintable

getPrinter
setPrinter
print

com.sun.star.frame.XStorable

hasLocation
getlLocation
isReadOnly
store
storeAsUrl
storeToUrl

com.sun.star.frame.XModel

attachResource
getURL

getArgs
connectController
disconnectController
lockControllers
unlockControllers
hasControllersLocked
setCurrentController
getCurrentController

com.sun.star.util.XModifiable

com.sun.star.text.
TextDocument

<<service>>

isModified
setModified

com.sun.star.text.XTextDocument

getText
reformat

com.sun.star.util.XSearchable

createSearchDescriptor
findAll

findFirst

findNext

O com.sun.star.util.XRefreshable

refresh
addRefreshListener
removeRefreshListener

Figure 4: Interfaces & Methods [OpenOf07c]

Page 18

Figure 4 shows how two objects with interfaces and corresponding methods look like in

OpenOffice.org using an UML diagram. TextDocument contains text, is searchable and

refreshable. Because TextDocument is always an OfficeDocument, it implements also
the interfaces XModifiable, XModel, XPrintable and XStorable. All Interfaces begin with

an X in OpenOffice to distinguish them from other entities.

General Part Page 19

2.3 Bean Scripting Framework for Rexx

The next chapter covers the last step to be able to automate OpenOffice.org using
Rexx. Sun provides each UNO Object in OpenOffice.org with a Java adapter so that it
can fully be controlled and automated using Sun’s own popular programming language.
So there is only one link left between Java and Rexx, and Open Object Rexx

respectively. The Bean Scripting Framework and BSF4Rexx make this possible.

2.3.1 Bean Scripting Framework

The Bean Scripting Framework provides a bunch of classes, which make it possible to
access Java objects and methods from scripting languages. It also provides scripting

language support within Java applications.

Especially the first application area is used for automation of OpenOffice.org when we
want to access the Java Interfaces of the UNO objects and call the methods via Rexx.
[BSF07a]

Again, IBM was the founder of this project in 1999 and chose the Apache Software
Foundation to manage the source code. BSF is now part of the Apache Jakarta Project

where it is released under the Apache License.

When BSF was available in version 2.3, it was donated to the Apache Software
Foundation, the current version is 2.4.0.
[WikiBS07], [BSFO7b]

The supported script languages of BSF are:
» Javascript (using Rhino ECMAScript, from the Mozilla project)

* NetRexx (an extension of the IBM REXX scripting language in Java, mentioned

above)
» Python (using Jython)
» Tcl (using Jacl)

* XSLT Stylesheets (as a component of Apache XML project's Xalan and Xerces)

General Part Page 20

Some languages are also supported because they have their own BSF engine:
» Java (using BeanShell, from the BeanShell project)
* Groovy
* JLog (PROLOG implemented in Java)
* JRuby
e JudoScript
* ObjectScript
* Open Object Rexx, using BSF4Rexx
[BSFO7a]
There are two important components in BSF:

» BSFManager — This class is responsible for all the registered scripting execution
engines and maintains the object registry, which permits scripts access to Java

objects.

« BSFENgine — Through this interface it is possible to handle script execution and
object registration in a generic way, because it provides an abstract view of the
scripting language’s capabilities.

[BSFO7c]

2.3.2 BSF4Rexx

BSF4Rexx, as above mentioned, is an extension to make it possible to use the
scripting language Rexx to dive into the world of Java. This means that one can access
every Java object or method via Rexx. Also the reverse way, using Rexx in Java, is
provided by BSF4Rexx

[BSF4Re07c]

With this bridge, Rexx can get access to the largest external function package on earth,

which was additionally ported to each and every important operating system and

General Part Page 21

hardware platform
[FlatO6c]

From the historical point of view, it was Prof. Mag. Dr. Rony G. Flatscher who
developed BSF4Rexx in 3 different steps. Each version was named after the city where

he was working at a university.

The ,Essener Version“ was developed in 2000 in cooperation with a student from Prof.

Flatscher, Peter Kalendar. He presented this version in spring 2001 to the RexxLA.

The next Version was called ,Augsburger Version“ and was finished in 2003. The major
changes, beside some bugfixes, was the addition of external functions from Rexx into
the ,BSF4Rexx.dll* package.

The current version, the ,Vienna Version®, with the number 2.6 allows Open Object
Rexx programs to address Java fields as if they were Open Object Rexx attributes.
There are also two important methods, box and unbox, which can wrap and unwrap
primitive data types in Java to the corresponding classes.

[FlatO6c], [BSF4Re07c]

Architecture

Y
/ BSF() N\
[BsfDropFuncs())
A\ BsflnvokedBy() /\
{ BsfloadFuncs()
\ BsflLoadJava() i |
>_ BsfQueryAllFunctions() ™~ /
BsfQueryRegisteredFunctions() e
\ BsfUnioadlava) r
S sf\ersion() /L__ _,//
Java Program _7'_“\ — ooRexx environment
I é__/ (e.g. ".bsfdrexx")
F (Java el '
it JNI O BSF.cls | | 0oRexx
— — BSF4Rexx q
(_.x RexxEngine 2 1 Scripts

BIF Registsy

(C++)

S et —
'\E__RexxAndJaEE L

v

Figure 5: Architecture of BSF4Rexx [Flat06c]

General Part Page 22

Figure 5 shows the Architecture of the ,Vienna Version® of BSF4Rexx. There is a cls
file, which supports BSF routines and contains services that make the most important
Java classes directly available via the environment symbol .bsf4rexx.

[FlatO6c¢]

2.3.3 BSF.CLS

This section will show how Rexx can access some well known Java classes and how it

can call methods and retrieve results from them.

As mentioned above, with the help of the BSF.CLS module, one can access a huge
amount of classes and functionality, which is available in and for the world of Java.
From accessing the standard Java classes, which were shipped with the Java SDK
itself like the system properties, date objects, JDBC connections, Swing and SWT GUIs
through more sophisticated third party tools and packages. Every Java API can be

accessed from the scripting language Open Object Rexx.

The module provides the developer with some basic and general functions for loading
classes, for example the method bsf.loadClass, which acts as a creator for Java
objects. The following snippet should show how easy it is to access a Java Class with
just a few lines of code. One remark in advance, in Rexx one can include a module with

functions in two different ways:

* Using ::REQUIRES directive - This kind of including the module has to be in
the last line of your script. It is invoked before any other statement is interpreted
and because of this, the functions would be available across the whole Rexx

scripts. The next snippet uses this style of import.

* Using CALL - The invocation of CALL has to be before the first usage of a
method of the included module. In the case of including BSF.CLS, CALL
BSF.CLS should be written, before one calls a BSF function. The latter of the
shippets for BSF4Rexx uses this style of import.

[Flat06d]

General Part Page 23

1 dateObject = .bkaf-new("java.util.Date")
2 gtringDate = datedbject-toftring()

3 BAY "Todays date ia stringDate

4 ::requilres ESF.CLS

Snippet 7: BSF4Rexx simple example

This snippet shows how to create a new Date object and store this object into a Rexx
variable. dateObject contains now a Java object, to which a message is send using the
twiddle operator. Sending a message in Rexx means to call a method on this object.
Again the result, a String object, is saved into a Rexx variable and is printed with the

help of the SAY command.

The BSF.CLS module also contains some useful helper classes, like message boxes
and input boxes which are build open the Java class JOptionPane. The next snippet

uses a message box to notify the user about something.

1 CALL BSF.CLS

2 .bsf.dialog-messageBox("This is a warning! Don't click!!!")
3 8SAY "Have vou clicked?!

4 BXIT 0O

Snippet 8: BSF4Rexx message box example

The script sends the class dialog the message messageBox with the text that should
be displayed. There are some other parameter, which are optional, for example the title

of the dialog and the type.

2.3.4 UNO.CLS

This section will present the final step to automate OpenOffice.org programs using the
module UNO.CLS, which makes the life of developer easier, because this module

provides common functionality, which is used across the automation process.

Without using UNO.CLS it would take up to 25 lines of code to just open a blank Writer
document. All the initialization of URLResolvers, NamingServices and Factories is a
very intricate way of doing such basic tasks. And because the process of creating
macros or scripts for automation in OpenOffice.org should be a very simple thing to do,
UNO.CLS provides the developer with a load of helper functions. The difficult parts and
those parts, which will be the same for every script one wants to write, are summed up

in single methods like UNO.createDesktop(). This method takes care of nearly

General Part Page 24

everything from creating the UNO runtime to instantiating the URL where

OpenOffice.org is listening on.

The next snippet will show how easy it is to create an empty Writer document when you
are using the UNO.CLS module:

1 aDeasktop = UNO.createDesktop(] -- get the 000 Degktop zervice object

2 xCeonpeonentLoader = oDesktop-~XDesktop-EXComponentLoader - creating Loader

3 -- open an empty .sxw - file

4 xWriterComponent = xComponentLoadsr -

5 ~loadCompcnentFromURL ("private: factory/ewriter”,- "_klank", 0, .UNC-noProps)
B2

7 sirequires TNO.cle -- get THO support

Snippet 9: Using UNO.CLS

Snippet 9 uses another helper routine contained in the UNO.CLS, .UNO~noProps. This

function creates an empty Property object.

Because UNO.CLS already includes BSF.CLS, there is no need for a REQUIRE

statement in those scripts, which want to use the OpenOffice.org UNO modules.

2.3.5 Routines

A short overview of some methods presented in the reference card included in the

current BSF4Rexx version:
» uno.createDesktop([context]) - returns the local OpenOffice desktop object

* uno.getProperties(o) - returns a blank delimited, encoded string with all defined

properties for the service object o

* uno.getScriptContext() - returns a UNO proxy, if the ooRexx script was invoked
by OpenOffice, .nil else. The UNO proxy object has the following methods,

returning context related UNO proxy objects:

o getDocument (the document service object, an XModel)
o getDesktop (the desktop service object, an XDesktop)
o getComponentContext (the context object, an XComponentContext)

[BSF4Re07a] [BSF4Re07b]

General Part Page 25

2.4 Summary

This paragraph sums up the previous chapters to make again clear, how the

automation of Impress in this bachelor paper is going to be accomplished.

To illustrate this procedure Figure 6 from a previous bachelor thesis from a student of
the university of business administration in Vienna shows the different layers between a

method call in Open Object Rexx and OpenOffice.org.

DpenDﬁice.org‘

o
& O
- w)]
il = — —l
automated 2 | O |35 |00
5 2|l | |0 ™ OORexx
c > w) Z
AR
O

Java

Figure 6: From ooRexx to Automation [Aham05]

The scripts developed in Open Object Rexx are using the module UNO.CLS to benefit
from the simplified object creations and initializations. In the next step, the procedures
in UNO.CLS use the functionality provided by the module BSF.CLS. As written in the
chapter about BSF, one can use a scripting language, in this case and with the

BSF4Rexx extension the scripting language Open Object Rexx, to make use of Java.
Exactly this point brings substantial improvement to the development process because
e itis not necessary to develop in Java and
» by the use of UNO.CLS one can save a lot of lines of code

In OpenOffice.org there is a comprehensive support of Java to communicate with the

UNO components. This represents the Java UNO layer on Figure 6.

General Part Page 26

The Java UNO model then is connected to the UNO certainly and this leads to
OpenOffice.org itself to conduct the automation.
[Flat05]

As the last chapters have shown, an open source scripting language can be used to
control and automate an open source office suite on behalf of OpenOffice.org. But not

only that, OpenOffice.org itself can invoke Open Object Rexx macros.

This fact is very important, because all of the snippets for automating Impress will be

written in form of macros.

It combines the power and straightforwardness of Open Object Rexx with the full
featured and open interfaces of OpenOffice.org to make it possible to easily automate
the programs of this office suite, even without wide experience in the field of

programming and development.

3 Installation Guide

This chapter will describe and show how to set up the environment for developing and
running the snippets provided by this paper. This section will only talk about the current

versions of each application and programming language.

The steps 3.1, 3.2. and 3.3 must not be followed by in this specific order. The only step,
which has a fixed order is step number 4, the installation of BSF4Rexx. The other

installations should be finished prior to this task.

3.1 Installation Java

First of all, you have to have at least Java 1.4 installed on your machine to work with
BSF4Rexx. Because it is enough to have the Java Runtime Edition (JRE) installed

nearly every PC is capable for automating OpenOffice.org from the Java point of view.

But you can also use the Java Development Kit (JDK), which has the JRE already

bundled with it, for development.

To check whether the computer has a Java installation at all or if the Java version can
be used for the snippets, the command java —version in the command prompt will show

the result.

Installation Guide Page 27

You can download Java from Sun’s web page at http://java.sun.com. It is also very

useful if you download or at least use the API documentation available at

http://java.sun.com/reference/api/. Here you can choose the proper documentation with

the version number you are using.

The current version of Java is Java 6 (JDK 6u1) and is available at

http://java.sun.com/javase/downloads/index.jsp. The version used for developing the

nutshells in this bachelor paperis 1.6.0_01.
[BSF4Re07c]

3.2 Installation OpenOffice.org

You can download the latest version of OpenOffice.org at

http://download.openoffice.org/index.html. If the desired PC has no valid Java

installation there is an option on the download page to include the Java JRE with the
download. For all of the people who skipped the latter paragraph, this option would be

applicable.
The current version of OpenOffice.org is 2.2.1, which is used for writing this paper.

You can download the office suite for Windows, Linux, Solaris, Mac OS X and Free
BSD and in different languages. The automation itself was only tested in Windows but it

should also work with Linux.

3.3 Installation Open Object Rexx

Open Object Rexx can be downloaded from the website

http://www.oorexx.org/download.html.

Open Object Rexx, like OpenOffice.org is available for different operating systems like
Windows, Mac OS X, Linux, AIX and Solaris. Again, the documentation can also be

downloaded from the website.

The current version of Open Object Rexx is 3.1.2 and is used for creating the snippets

in this bachelor paper.

http://java.sun.com/
http://www.oorexx.org/download.html
http://www.oorexx.org/download.html
http://www.oorexx.org/download.html
http://download.openoffice.org/index.html
http://download.openoffice.org/index.html
http://download.openoffice.org/index.html
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/reference/api/
http://java.sun.com/reference/api/
http://java.sun.com/reference/api/
http://java.sun.com/
http://java.sun.com/

Installation Guide Page 28

3.4 Installation BSF4Rexx

The installation of BSF4Rexx is probably the most sophisticated step for preparing the
computer for the automation snippets. But if one follows the installation guide supplied
with the release and the previous steps were finished successfully, there should be no

problems, even for non-experts.

The current release of the BSF4Rexx is available under http://wi.wu-

wien.ac.at/rgf/rexx/bsf4rexx/current the web space from Prof. Dr. Mag. Flatscher on the

university of business administration web server.

BSF4Rexx comes in form of a zip file, which contains all files, the installation scripts,
some examples from previous bachelor thesis’ and other Rexx community members

and installation guides for every step.

For the first part of the installation, the BSF4Rexx part, the file readmeBSF4Rexx.txt is
the proper one. To start the installation run the setup script setup.rex using the rexx
command. This command should now be available in the command prompt after

installing Open Object Rexx in one of the previous steps.
This script should create four new files:
e bsfdrexx.cmd — With this, BSF4Rexx scripts can already be run

e installBSF4Rexx.cmd — This script copies the Java archives (jars) and dynamic
link libraries to the used Java extension folder. Now every Java application can
use BSF4Rexx

e uninstallBSF4Rexx.cmd — This script undoes the actions from the install script.

e setEnvironment4BSF4Rexx.cmd — This script sets the proper environment

variables for using BSF4Rexx

On a Linux PC’s all the generated scripts will not have the extension cmd, the scripts

are .sh files.

Running the script installBSF4Rexx will finish the installation by now and BSF4Rexx

can be tested by calling different kinds of commands to ensure that everything is

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current

Installation Guide Page 29

working correctly.

Running the scripts infoBSF.rex and infoBSF-oo.rex with both the rexx and rexxj

command should give the user an output in form of the registered BSF functions.
[BSF4Rexx07-3]

The second part of the installation is to make the bridge to OpenOffice.org and install
the Rexx support for the office suite.

The corresponding readme file is called readmeOQao.txt.

The first step is to ensure that Java is enabled for OpenOffice.org. For this reason start
any application of the office suite, for example Writer, and select the menu item
Options in the Tools menu. In the tree on the left side there is an entry called Java,

which shows some options on the right side of the dialog.

Options - OpenOffice.org - Java x|

Bl OpenCffice.arg
User Data
General i Use a Jawva runkime environmenkt

Jawa options

Memory
Wigw

Print vendor Yersion Features add. ..
Paths

Sun Microsystems Inc, 1.6.0 01
;:::DDII_ID;SS Sun Microsystems Inc, 1.6.0 Parameters, ., |
Securit ™ sun Micrasyskems Inc, 1.5.0_05
¥ Class Path. .. |
Appearance

Arccessibiliky
133

Java runtime environments (JREY already installed:

Online Update
Load/Save
Language Setkings
OpenQffice.org \Writer
OpenOffice.arg \Writer'Wweb
QpenCffice,org Base

HEEEREREBE

Charts
Inkernet 1] | LI
Location; D:YJavaljrel.6,0_01
K I Zancel Help | Back,

Figure 7: Options Dialog in OOo

Figure 7 shows the dialog in which the user has to select the desired JRE. This version
should be the same as the version for which BSF4Rexx is installed. After making

changes on this settings, OpenOffice.org as well as the QuickStarter should be closed.

Running the command rexx setupOQo.rex path-toOOo-directory will create the install

scripts for the OpenOffice.org support.

Installation Guide Page 30

An example:

rexx setupOQao.rex ,d:\OpenOffice.org 2.2"

Again some scripts for installing the support, uninstalling and setting up of the
environmental variables will be generated.

Running the installOOo.cmd will actually install the support. All Instances of
OpenOffice.org should be closed to ensure that the configuration takes effect in every
module.

To test the OpenOffice.org support there are a two Rexx scripts (testOOo.rex and
testO0Oo02.rex) which should be started with either the rexx and rexxj command.

The scripts should open a Writer document and insert some text into the document.

The last step for the configuration and installation is the macro support in
OpenOffice.org. To do that click on the menu entry ,Extension Manager* in the Tools
menu in an OpenOffice.org application. After clicking on Add and selecting the jar-file

ScriptProviderForooRexx.jar, it will install the macro support for Open Object Rexx.

[BSF4Re07d]

"= Extension Manager i]

Browse exkensions

Extension Wersion |Skatus

& My Extensions
= OpenCffice.org Extensions Remowe

Adding Extension(s)

Enabling: ScripkProviderForooRex:.jar

ScriptProviderForooResx:. jar |l

Lancel!

LLLiL&

Close Help

Figure 8: Extension Manager

After restarting OpenOffice.org, in the menu Macros => Organize Macros you can see if
the installation was finished successfully. Figure 9 shows exactly how it should look
like.

Installation Guide

BT o o

Extension Managet...
EML Filker Settings. ..
Cuskamize, ..

Cptions. ..

Fun Macra...
anize Macros DpenCffice.org Basic.. .

Digital Signature. ..

Beanshell. ..
Crganize Dialogs. ..

Javascripk. ..

Fethor. ..

Figure 9: Macros installation

Page 31

Impress Automation Page 32

4 Impress Automation

After creating the basis knowledge for conducting automation in OpenOffice.org, this
chapter contains general information about the document overview of Impress and

some descriptive words regarding the automation.

This bachelor paper wants to show how Open Object Rexx can ease the life of
presenters using Impress. The examples presented in this paper can also brush up and

advance existing presentations also in consideration of the audience.

A lot of presentations created by students, managers or normal John Does lack of
different kinds of gimmicks, which are very useful for both the presenter himself and the
audience. Those improvements can be guideposts to illustrate the status of the current

slide in the presentation and other helpful and valuable things.

The implementation of this automation will be developed in form of macros written in
Open Object Rexx, because this kind of realization would allow running the scripts on
existing presentation by selecting a menu entry in the OpenOffice.org application.

This paper will not cover any stand-alone Open Object Rexx scripts because such
behavior will not meet the given requirements for this application area.

The starting point of each automation process is an existing (existing from the content
point of view) presentation, which should be further enhanced by the macros provided

in this bachelor paper.

4.1 General

In OpenOffice.org Impress and Draw are vector-oriented applications for creating
presentations and drawings. Both applications support different kind of things to draw,

for example rectangles, text, curves and other graphic shapes.

Unlike to the text documents in Writer and the spreadsheet document in Calc, Draw
and Impress use the so-called drawpages for displaying the content. Figure 10 reflects
this fact with the drawpage container in the middle of the graphic. The document
service manager pictured with the fabric symbol at the top of the figure is used for
creating all the drawing elements and shape objects. These objects will be later

inserted into the drawpages.

Impress Automation Page 33

There are many different types of shapes to add to a drawpage in Impress & Draw, the

most important ones are:
* GraphicObjectShape, which can display an image from a file
e ConnectorShape, which can connect other Shapes
» EllipseShapes can be various circles and ellipses.
* RectangleShape that pictures a rectangle on a drawpage
» TextShape can be used for displaying text on a slide

The controller is used to present the presentation in the GUI and for assigning styles

and layouts to the drawings.

The figure also shows the interfaces for accessing the MasterPages and the

LayoutManager.

[OooDev05]

Impress Automation

Service
Manager

Page 34

]

[|

creares shape objects and farm controls
far insertion into the drawpages

Controller =
& ViewData J e

Cantroller has Frame
|

% Services for
Styles & Layout

istylafamiliesSupplier

AModel
gerCurrentCantroller (]
il
Presentation
MasterPages Document
¥MasterPagesSupplier Mﬂ'dEI.

LayerManager
ALayerSupplaer

EDrawPagesSupplier
qetDrawPages (]

Drawpages Contaimer

Fawmn

L

Persentation Aspects

KPresentationsupplier
¥CustomPresentationsupplier
EHandoutMasterSupplier

v

Document Aspects

KPrintable

Kstorable

¥Modifiable
KDocumentinfaSupplier

Figure 10: Presentation Document Model [OOoDev05]

4.2 Introduction Example

To make the introduction for the Open Object Rexx macros easier, this paragraph will

talk about a very simple macro, which adds a slide to an existing presentation and puts

a text field with a type of the notorious ,Hello World“ label on each additional slide. The

previous slide will get a text field that causes a slide transition to the next page when

someone clicks on the text.

There will be an examination of every

action taken in the script so that the basic

functionality, like getting access to the draw pages, will be cleared by now.

Impress Automation Page 35

Most of the functions, interfaces and properties will be used throughout the whole

bachelor paper.

Because the snippets will be executed as a macro inside OpenOffice.org the first thing

to do is to open an existing presentation or to create a new one using Impress.

In the menu Tools — Macros — Organize Macros there is the entry ooRexx, which opens

a dialog to create, edit and run the written macros, as shown on Figure 11,

x

Macros |

B =2 My Macros
examples Close |

=4 CpenCffice.arg Macros

) Untitled! Create. .

Edit

Renarme...

Delete. .,

Help

Figure 11: Organize Macros

The dialog for editing the macros acts also as a debug window where the lines, which
cause an error are marked and the error message is shown. Unfortunately there is no
syntax highlighting in the edit dialog, so the best thing one can do is to write the macros
in a third party editor like gvim, which supports the syntax of Open Object Rexx. Then,

after writing the scripts, they can be copied into the macro editor of OpenOffice.org.

Impress Automation Page 36

DOREHH Debug Window: ${$5YSBINDIR /bootstrap.iniz:UserInstallation} fuse = | Ellﬂ
[@r TERLINEpE~AIEXC~SELATEINGI HELLOD FLESENTATION-WOLIdr | -
48 textProps = textShape-XPropertylet 1
49 CALL makeTextdutoFit textProps
S0
51 nextShape-XText~set3tring("Next™)
52 CALL makeTextdutoFit nextiShapeProps
53 nextihapelProps-setPropertyValue ("Fill3tyle™, bsf.getfonstant|”con.sun. star.draving. Filly
54 nextihapelProps-setPropertyValue ("FillColor™, box("int™, "60 al 207k ~cz2d))
55
56 ifjrunPresentation == 0) THEN
57 oo
S xPresentation = oloc~XPresentationiupplier~getPresentation
59 ®xPresentation = xPresentation-xPresentation
(=1 xPresentation~baf.invoke (" start™)
51 END
62 prrequires UNO.CLS -— load UNO support for Openlffice.org
63 |
64 :iroutine makeTextdutoFit
65 use arg props
(=1}
57 props-setPropertyValue ("Paraldjust”™, baf.getlonstant("con.sun.star.style.Paragraphadjy_
(=¥:] props~setPropertyValue ("TextFitToSize™, hsf.getEnnstantt"cnm.sun.star.draming.TextFit’I_
%] props~setPropercyvValue ("TextiutosrowHeight™, box ("hoolean™, .True))
70 props-setPropertyValue ("TextdutoGrowilidth™, box("boolean™, . trues))
71
7z I~
4] i [[»]
| Run || cear || save || close |

Figure 12: Macro editor

The dialog is shown on the Figure 12, from here the script can be executed. The source
code of the introduction snippet can be seen in the Snippet 11.

5 eDoc=xScriptlontext-getDocument -- get the document service {an EModel obijesct)
6 /* retrieving the important interfaces to get access to the drawpages */

7 runPresentation = .bsf.dialeg-~dialeogbox("Do you want to start the "-

8 "presentation after adding the new 2l1id , "Ouestion®, "question®, "Yealo")

9 xDrawPagesfupplier=oDoc-XDrawPagesSuppliser

10 xImpressFactory = oDoc-XMultiferviceFactory

11 xDrawPages = xDrawPagesSupplier-getDrawPages

This cutout from Snippet 11 will get the ScriptingContext whose function is to provide

the developer with the document services and interfaces.

This is specific for the macros in Open Object Rexx, if one wants to work with the
Impress interfaces from a standalone script, the UNO.createDesktop() procedure will

get the related interfaces.

1 olesktop = UNOQ. createDesktop () -- get the UNO Desktop gervice object
2 xComponentLoader = oDegktop-Xlesktop-KEComponentLoader -- get componsntLoader

3 -- interface

4 url = "private:factory/eimprega®

5 xImpressComponent = xComponentLoader-loadComponentFromlUREL (url, -

& "_Pklank", 0, .UNO-noPropa)

7 xImpressFactory = xImpressComponent-X¥MultiServiceFactory

2 xDrawPagesSupplier = xImpregaComponent-JDrawlagesfupplisy

4
10 xDrawPages = xDrawlPagesSupplier-getDrawPages

Snippet 10: Interfaces with Desktop

Impress Automation Page 37

LT« = TES: I L T O PRI S T]

11
1z
1z
14
15
le
17
1la
13
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
ig
37
ig
39
40
41
42
43
44
45
46
47
48
449
50
51
52
53
54
55
5&
57
58
59
&l
al
62
63
a4
a5
1

f* 2imple Example to demonstrate some basic functionality */
f* 00_simple macro.rex */
xSeriptfontext=unc.getSoriptContext (} -- get the xScriptContext object

cDoc=xScriptContext~getDocument -- get the doocument gervice {an XModel object)

f* retrieving the important interfaces to get access to the drawpages */

runPresentation = .bsf.dialog~dialegbox("Do you want to start the "-
"presentation after adding the new s2lide?", "Queation”, "question”, "Yeslo")

xDrawPagesSupplier=cDoc~-XDrawPageaSupplier

xImpressFactory = oDoc-~-HMultiServiceFactory

xDrawPages = xDrawPagesSupplier-~getDrawPages

pagecount=xDrawPages~XIndexAccesa~get Count

lastPage = pagecount - 1;

f* inserting a new drawpage (slide) #*/

xDrawPages~insertlewBylndex (pagecount)

xDrawPageLaat = xDrawPages-getByIndex(lastPage)~-XDrawPage

xDrawPagelNew = xDrawPages-getByvIndex (pagecount) ~-XDrawPags

drawPageProps = xDrawPageLast-EPropertviet

widtha = drawPageProps~getPropertyValue ("Width")

widthe = trunc (widths / 2|

CALL bsf.import "com.sun.star.awt.Size", "awtbSize®

CALL bsf.import "com.sun.star.awt.Point”, "awtPoint”

f* creating, regizing and pogiticoning of the frist textahape */

textShape = xImpressFactory-~createlnstance ("com.sun.star.drawing. Text 2hape")
textfhape = textfhape-~EShape

shapeWidth = 10000

shapeHeight = 2000

shapeX = widths - trunc (shapeWidth / 2}

ghapeY = 5000

textShape~setfize(. baf-new("com. sun. star. awt . 2ize"”, shapeWidth, shapeHeight])
textShape~setPogition (. awtPoint~new ishapeX, shapeY))

f* creating, resizing and positiconing of textshape for getting te next pages */
nextShape = xImpreasFactory~createInstance("com.sun.star.drawing. Text Shape")
nextfhape = nextfhape-~EShapes

gshapeWidth = 9500

shapeHeight = 1000

shapeX = widths - trunc (shapeWidth / 2}

ghapeY = 2000

nextShape~setfize (. awtfize~new (shapeWidth, shapeHeight])
nextShape~setPogition (. awtPoint~new ishapeX, shapeY))

f* defining the slide transitions */

xDrawPagel Props = xDrawPagelNew-EPropertviet

¥DrawPagel Props~setPropertyValue ("Change", box("int", 1))
¥DrawPagelProps~setPropertyValue ("Duraticon”, box("int", &)}

/* adding the shapes to the different drawpages */
xDrawPagelLast-~add{nextShape)
xDrawPageNew~add (textShape)

f/* formating the textshapes */
textShape~XText~zetString ("Helle Presentation-World!")
textProps = textfhape~EPropertyviSet

CALL makeTextRutoFit textProps

nextfhapeProps = nextShape~XPropertyiet

nextShapelrops~get PropertyValue ("nClick”, -

baf.getConstant ("com.sun. star.pregentation.ClickAction”, "NEETPRAGE"] |
nextShape~XText~setString ("Hext")

CALL makeTextAutoFit nextShapeProps

nextShapeProps~setPropertyValue ("Fillstyle”, -

baf.getConstant ("com. sun. star.drawing.Fillgtyle”, "SCLID"})
nextShapelProps~getPropertyValue ("FillZolor”, box("int", "60 a0 20"x ~c2d))

Impress Automation Page 38

&7 /* gtart the presentation if asked for it */

£2 if (runPresentation == 0} THEN

69 Do

70 ®mPresentation = cDoc-XPresentationSupplier~getPresentation
7 ®xPregentation~baf.invoke ("start”)

72 END

73 ::requires UNC.CLS -- load UHND suppeort for Opendffice.org

74

75 ::routine makeTextAutoFit

T& ugse arg props

-

Ta props~setPropertyValue ("ParaAdjust”, -

79 baf.getConstant ("com. sun. star. style . Paragraphfdjust”, "CENTER"))
a0 props~-setPropertyValue ("TextFitToSize", -
al bef.getConstant ("com. sun. star. drawing. TextFitToSizeType", "PROPCRTIONAL"))

az props-~-setPropertyValue { "TextAutolrowHeight ", box("koolean", .true])
a3 props~setPropertyValue { "TextAutolrowWidth”, box("boclean”, .true))

Snippet 11: Introduction example (00 _introduction.rex)

25 textShape = xImpressFactory-createInstance ("com.sun.star.drawing. Text 2hape")

This cutout of the source code creates a TextShape for displaying the text ,Hello

Presentation-World“ on the new slide.

58 nextfhapeProps = nextfhape-XPropertyiet
59 nextShapeProps-getDropertyValus ("CtnClick”, -
£0 kaf.getConetant ("com. sun.atar.pregentation. ClickAction®”, "NEXTPAGE"))

If a user clicks on the nextShape TextShape, the presentation goes on to the next slide.
The function getConstant from the BSF.CLS module is used a lot in the macros. It is an
easy way to retrieve constants from classes with the use of the class name and the

name of the constant.

44 /+* defining the =lide transitions */

45 xDrawPagelProps = xDrawPagelew-ZPropertviet

45 xDrawPagelPropa-getPropertyValue ("Changs", box("int", 1))
47 xDrawPagelPropa-getPropertyValue ("Inraticn”, bex("int", &)

The newly created page properties will be changed here. The property value Change
specifies how the transition will be conducted. A value of 0 means that the user needs
to click to trigger the effects and to change to the next slide. 1 means that the page is
automatically switched and 2 means that every effect will run automatically but the user
needs to click to change to the next slide.

If Change has the value 1, Duration specifies how many seconds each page will be

shown.

Impress Automation Page 39

492 /+* adding the shapes to the different drawpages */
50 xDrawPageLaat-~add{nextShape)
51 xDrawPageMNew-add (textShape]

The two shapes, one TextShape for the ,Hello World“ label and the other one for the

click text field to go to the next slide, are added to the drawpages using the add
method.

&7 /* gtart the presentation if asked for it */

628 if (runPresentation == 0) THEN

69 Do

70 ¥Presentation = cDoc~XPresentationSupplier~getPresentation
71 #®Presentation-bsf.inveke ("start”)

72 END

T3 i:requires UNC.CLS -- leoad UNC support for Cpendffice.org

The variable runPresentation is 0 when the user does want to start the presentation
after the changes of the slides were done. The impress document will be queried for
the XPresentationSupplier interface. This interface has a method to get the
XPresentation interface to start the presentation.

The next two figures show the output of the macro.

Figure 13: "Hello World" TextShape

Figure 14: ClickEvent on TextShape

After running the script, the presentation will be updated and depending on the decision
made at the beginning, it will also be started.

Impress Automation Page 40

4.3 Examples

After describing the basic functions for automation of Impress with the help of the
introduction example, the next paragraph will be dealing with the other examples.

These examples will create helpful features and additions to presentations.

This paper will also include some examples, which will take off some recurring tasks
from the presenter so that she or he just needs to concentrate on the content of the
presentation. The macros will improve the presentations and give the audience a better
understanding of the progress of the address by creating guideposts and progress

bars.

The first four macros will be dealing with the progress of presentations and give the
audience an information, how far the presentation is already advanced.

Furthermore the next two macros will provide the presenter with a possibility to take
over recurring tasks. The next two macros are the most sophisticated ones. They will
create guideposts on each slide, with the main headings of the presentation. The last

example will automatically create the agenda of a presentation.

Impress Automation Page 41

4.3.1 Example01

/* Macro, which generates a pregress bar at the bottom of each slide */
f* 0l _progresshar.rex */

xScriptContext=unoc. getScoriptfontext() -- get the xScriptContext object
choc=xScriptfontext~getDocument -- get the document service (an EModel object)
f* retrieving the important interfaces to get access to the drawpages */
xDrawPagesSupplier=cDoc~XDrawPagesSupplier

xImpressPactory = oloc-XMultiServiceFactory

xDrawPages = xDrawPagesSupplier-getDrawPagess

f* gleokal service manager for shape grouper */

xContext = xScriptContext-getlomponsentContext

¥Mof = xContext-getServiceManager

CALL removeSelection oDoc

f* initialize all wvariables (height, width, etc.) */
pagecount=xDrawPages~¥Indexhcceaa~get Count

firstDrawPageProps = xDrawPages-getByIndex (0] ~XDrawPage~XPropertySet
width = firstDrawPageProps-getPropertvValue ("W

LTI« < TS I o I R P S

ERERERERE e
e I

Width")
height = firstDrawPageProps-getDPropertyValue ("Height")
ghapeWidthPorder = width - 1000

ghapeHeight = 750

shapeX = 500

ghapeY = height - 1250

| e R R S S
LOER R o R R« R

IF pagecount == 1 THEN
Do
baf.dialog~messageBox ("This presentation has only one slide. "-
"There is no need for a progresshar!", "ERROR", "error")
EXIT 0
END

LU (R R S N R o)
(=TT < TS I Ly [T 9

gtep = trunc((width - 1000} / (pagecount - 1})

bt
by =

currentStatus = atep
DO i = 1 TO pagecount - 1
¥DrawPage = ®DrawPages-getByIndex (i) ~XDrawPage

LI LS L
a0 e W

J* remove existing bars, if necessary */

xShapes = xDrawPage-EShapes

DO j = 0 TO xShapes~getCount - 1
xShape = xShapes-getByIndex(j)
IF (xShape~¥Named~getName (} == "progressbar_group") THEN
Do

[T ST S S PR P T P
[ST i Ve I« B |

wShapeGroup = xBhape-~XShapeGroup
¥DrawPage~remnove (xShapeGroup)
END
END

[-
=] T D e L

/* creating and positioning of border of the bar shapes */
barBorder = zlmpressFactory-createlnstance |-
"oom.sun. gtar . drawing. RectangleShape ")
barBorder = barBorder-EKShaps
CALL =metfizeRndPosition barBorder, shapeWidthPorder, shapeHesight, -
shapeX, shapeY
¥DrawPage~add (barBorder)
barBorderPrope=harBorder-XPropertviet
fillStyles = baf.wrapStaticFields("com.sun.star.drawing.Fillstyle")
barBorderProps-~asetPropertyValue ("FillStyvle", fillStyles-none)
CALL =setfhadowAndFormat (barBorderProps)

L0 0 Ry O g O 6 O Y S
LT v TS I N I SO VR S T o B v

J* creating and positioning of the statusbar shape */

statusBarfhape = xImpressFactory-createlnstance |-
"oom.sun. gtar . drawing. RectangleShape ")

atatusBarShape = statusBarShape-EShape

CALL =setSizeRndPosition statusBarShape, currentStatus, shapeHeight, -
shapeX, shapeY

currentStatus = currentStatus + step

#DrawPage~add istatusBarShape)

LS I« I I I« e
[y I S I S]

Impress Automation Page 42

&7

[/* changing the coclors of the £illing */

69 atatusBarShapePropa=atatusBarShape-EiPropertyset

70 gtatusBarShapePrope~setPropertyValues ("FillStyle”, £ill8tyleg~gradient)
71 CALL CreateGradientObject

72 statusBarShapeProps~ssetPropertyValue ("FillGradient®”, result)

T3 gtatusBarShapeProps~setPropertyValue ("LinsStyle”, -

74 baf.getConstant ("com.sun. star. drawing. LineStyle”, "NONE"))
75 CALL setfhadowAndFormat (statusBarShapeProps)

76

77 /* create the group */

T8 gshapeGroup = ¥Mof-~createInstanceWithContext (-

79 "gom. sun. star.drawing. ShapeCollection”, xContext)

a0 shapeGroup = shapeGroup-Xshapes

a1 ghapeGroup~add(barBorder)

2z sghapeGroup-addiatatusBarShape |

a3 wEhapeGrouper = xDrawPage-~XShapeGrouper

a4 ®xfhapeGroup = xShapelGrouper-group (shapeGroup)

a5 nams = xShapeGroup-Elamed

ga name~setName ("progresasbar_group™)

a7 END

g8 BXIT 0

29 /* Punction for creating the GradientChject */

90 CreateGradientObject

91 gradient = .bzf-new("com.sun.star.awt.Gradient”)
a2 gradient-Style = bsf.getConstant ("com.sun.star.awt.Gradient3tyle”, "LINEZR")
93 gradient-StartColor = 2282303

94 gradient-EndColor =0
95 gradient-Angle = 120
98 gradient-Border =0
a7 gradient-X0ffaet =0
a8 gradient~-¥Offzet =0
99 gradient-StartIntensity = 100
100 gradient-EndIntensity = 100
101 gradient-~StepCount = 10
loz2

1032 return gradient

104

105 ::requires TUNO.CLE -- load TNC support for CpenCffice.org
1ds

107 /% routine for positioning and resizing a shape */
108 ::reoutine setfizelAndPositicon
109 use arg shape, width, height, posX, posY¥

114

111 shape~-setSize (-

112 baf-new("com.sun.star.awkt.Size”, width, height))

1132 shape~getPosition(.baf~new ("com.sun. star . awt . Point”, posX, posY))
114

115

116 /#* routine for setting the shadow*/
117 ::routine setShadowAndFormat
l1sa use arg props

119
120 props~-setPropertyValus ("CornerRadius”, box("int", 300})
121 props-setPropertyValus (" Shadow", box("boolean®, .true))

122 props~-getPropertyValue ("ShadowiDistance”, box("int", 150))
123 props~-setPropertyValue ("ShadowyDistance”, box("int", 150))
124

125 /#* routine for removing selection*/

126 ::routine removeSelecticn

127 use arg oDoc

lza

129 model= oDoc-HModel

120 controller = model-~getCurrentController ()

131 selectionController = controller-XSelecticonSupplier
132 gelected = selecticnController~getSelectioni)

133 gelectionController-aelect (. nil)

Snippet 12: Progressbar (01 _progressbar.rex)

Impress Automation Page 43

The first example for advancing presentations in OpenOffice.org adds a progress bar to
the bottom of each slide. Because in most presentations, the first slide is some sort of a

welcome or introduction page, this page will not contain a progress bar.

That means on the second slide you can see a rectangle with a filled section on the left

side:

e)

Figure 15: Progress bar

Each slide will show new shapes, where the filled shapes width is increased
incremental. This will give the audience a feeling how advanced the progress of the
presentation is. Also the presenter will get a critical information about the state of the

presentation.

As the presentation goes on, the rectangle will be filled more and more till it reaches the

end.

33 DO i = 1 TO pagecount - 1
34 #DrawPage = xDrawPages-getByIndexii)-XDrawPage

35

36 /* remove existing bars, 1f necegsary */

37 wEhapes = xDrawPage-~KShapes

38 D0 j = 0 TO xShapes~getCount - 1

39 xShape = xShapes~getByIndexi(j)

40 IF (xShape-XNamed~getHame ()} == "progreassbkar_group”) THEN
41 Do

42 whapeGroup = xBhape-~XShapeGroup

43 wDrawPage~remove (xShapeGroup)

44 END

45 END

&

47 /* creating and peositioning of border of the bar shape */
48 barBorder = ®xImpressFactory-createlnstance (-

49 "oom. sun. star . drawing . RectangleShape™)

50 barBorder = barBorder-EShape

51 CALL setfizeAndPosition barBerder, shapeWidthBorder, shapeHeight, -
52 ahapeX, shape¥
53 wDrawPage~add (barBorder)

The first thing to do is to go through all the existing drawpages. This will be realized
with a DO — TO iteration starting with the drawpage with index 1, which is actually the
second slide because the index is 0 based. If there is already a progress bar, the
grouped shape will be removed. The macro then generates a RectangleShape and

passes it to a routine, which resizes the component and places it to the correct position.

Impress Automation Page 44

107 /* routine for positioning and resizing a shape */
108 ::routine setSizelndPosition
109 use arg shape, width, height, posX, posY

110
111 shape~setSize (-
112 baf-new("com.sun. star. awt . Size”, width, height))

11z shape~getPosition(.baf~new("com. sun. star.awt . Point", pos¥, posY))

This snippet shows the routine for positioning and resizing shapes, which is used in
every macro. As one can see the routine creates a Size Object with arguments number
two and three and a Point Object with the latter one. Argument number one is the

shape itself.

116 /* routine for setting the shadow*/
117 ::routine setfhadowAndFormat
112 uge arg props

113
120 props-setPropertyValus ("CornerRadiua®, box("int", 300})
121 props-getPropertyValue ("Zhadow", box("boolean®, .true))

=sLPropertyValue ("ShadowXDiatan ;, box("int", 150))

122 propg-~s 3
wilDistance", box("int", 150)]

123 props-getPropertvyValus (" Shado

This routine creates the round edges of both the border shape and the shape that
represents the progress in the presentation by adjusting the width of the rectangle.

There is also a shadow created for the shapes.

4] /* changing the colors of the £illing */

69 statusBarShapelPropa=atatusBarfhape-XPbropertyfet

70 sgtatusBarShapelProps-~astPropertyValue ("Fillstyle”, £fill8tyles~gradient)
71 CALL CreateGradientObject

72 statusBarShapeProps-~aetDropertyValue ("FillGradient”, result)
73 sgtatusBarShapelrops-~astPropertyValue ("LinesStyle”, -
74 bef.getConstant ("com. sun. etar. drawing.Linegtyle®, "NONE"))

75 CALL setBhadowAndFormat (statusBarsShapeProps)
The shape for the progress bar filling has not just a normal solid color. The FillStyle is a
Gradient Object, which can create a transition from one color to another with detailed
configuration how this transition will be done. The Gradient Object is generated in an
own function. This function returns the object and can be accessed from outside
through the variable result. Again the function for formatting the shape will be called

here.

Impress Automation Page 45

4.3.2 Example02

1 /* Macro, which generates pacman on his way to his cherries */
2 /* 02_pacman.rex */
3 xBeriptContext=unc.getloriptfontexti() -- get the xScriptContext object
4 choc=xScriptlontext-getDocument -- get the document service (an ¥Model obiject)
5 /* retrieving the important interfaces to get access to the drawpages */
& xDrawPagesBupplier=cDoc~EDrawPagesSupplier
7 xImpressFactory = cloc-XMultiServiceFactory
8 xDrawPages = xDrawPagesSupplier-getDrawlages
2 /* global service manager for shape groupsr */
10 xContext = xScriptlontext-getComponentContext
11 ¥Mcf = xContext-getServiceManager
12 CALL removeSelection oDocg
12 /% initialize all wariakles (height, width, =te.) */
14 pagecount=xDrawPages-~¥XIndexhcceaa~getClount
15 firstDrawPageProps = xDrawPages-getByIndex (0] ~¥DrawPage-XPropertySet
16 width = firstDrawPageProps-getPropertyValus ("Width")
17 height = firstDrawPageProps-getPropertyValue ("Height")
12 shapeWidthBorder = width - 1400
19 shapeHeight = 750
20 shapsX = 500
21 shapeY = height - 1500

22

23 IF pagecount <= 2 THEHN

24 DO

25 baf.dialog-mesgageBox ("This presentation has less than three slide. "-
26 "There iz no need for this macro te run!®, "ERRCR", "error")

27 EXIT ©

Zg END

29

30 gtep = trunc((width - 2500) / (pagecount - 2})
31 pacmanPogition® = shapeX

32

33 CALL GetPresentationDirectory oDeoc-getURL

34 directeory = result

35 geparator = .uno~file.sgeparator

ELS

37 D01 = 1 TO pagecount - 1

ig ¥DrawPage = xDrawPages-getByIndex(i)-FDrawPage
39

40 J* remove existing pacmans, if necessary */
41 wihapes = xDrawPage-~KShapes

4z DO j = 0 TO xShapes~getCount - 1

43 x8hape = mfhapes-~getByIndexi(j)

44 IF (xShape~ENamed~getName (] == "pacman_scenes _group") THEN
45 Do

46 xShapeGroup = xBhape-EShapeGroup

47 whrawPage~remnove (xShapeGroup)

43 END

49 END

50 J* creating and positioning of pacman */

51 pacman = xImpreassFactory-createlnatance (-

52 "gom, gun. star . drawing. GraphicObjectShape")

53 pacman = pacman-XsShape

54 CALL setBizeAndPosition pacman, 1000, 1000, pacmanPositionX, shapeY + 120
55 pacmanProps=pacman~XPropertyviet

56 pacmanProps-setPropertyValue ("GraphicURL", -

57 uno. convertToURL (directory| |separator| | "pacman.gif™))
58 ¥DrawPage~add (pacman)

59

&0 J* creating and peositiconing of the cherry */

&6l cherry = xImpressFactory-~createlnatance(-

62 "oom. sun. star.drawing . GraphicObjectShape™)

63 cherry = cherry-XShape

64 CALL setBizelAndPosition cherry, 1200, 1200, shapeWidthBorder, shape¥
65 cherryPropas=cherry-~¥PropertysSet

6 & cherryProps~set PropertyValue ("GraphicURL", -

Impress Automation Page 46

67 uno.convertToURL (directory| |separator| |"cherry.gif"))
(] ®xDrawPage~add (cherry)

]

70 /* create the group */

71 gshapeGroup = ¥Mef-createInstanceWithContext (-

72 "ocom. gun. star . drawing. Shapefollection”, xContext)

73 ghapeGroup = shapeGroup-Xthapes
74 shapeGroup-~add({cherry)
75 shapeGroup-~add (pacman)

T&

77 J* creating and positiconing of pointas */

78 IF (i == pagecount -1) THEN

79 Do

20 j = pacmanPositionX + 1200

a1 DO WHILE j < shapeWidthBorder - 3200

az point = xImpresaFactory~createlnstance (-

a3 "oom. sun. star.drawing.EllipsesShape")

24 point = point-XShape

a5 CALL setSizelAndPosition point, 200, 200, j, shape¥ + 500

86 i =3 + 800

a7 pointPropa=point-X{fropertySet

a8 constant = ksf.getConatant ("com.sun.star . drawing. CirceleFind", "FULL")
a9 pointPropa-~setPropertyValue ("Circlelind”, constant)

a0 pointPropa-~setPropertyValue ("FillColor”, beox("int", "FFFFO0"x ~c2d))
a1 pointPropa~setPropertyValue ("Line2tyle”, -

a2 baf.getConstant ("com. sun. star. drawing. LineStyle®, "NONE"))
23 ¥DrawPage~add (point)

24 ghapeGroup-~add(point)

a5 END

96 END

a7 wEhapeGrouper = xDrawPage-XfhapeGrouper

g ®xZhapeGroup = xShapelrouper-~group (shapeGroup)
a9 name = EShapeGroup-Filamesd
100 name~setName ("pacman_scens_group™)
101
1oz pacmanPositioni = pacmanPositicn® 4+ step
103 END
104
105 BXIT 0O
106 f* routine for getting the directory of the presentation */
107 GetPresgentaticnDirectory
10a use arg path
1049
110 geparator = .uno~file.sgeparator
111 full = EEVERZE (unc.convertFromURL (path))
112 parse wvar full "pdo.” filename (geparator) directory
113 directory = REVERSE (directory!

114

115 return directory

11&

117 ::regquires TUNO.CLS -- locad UNC support for OpenCffice.org
11=

119 /* routine for positioning and resizing a shape */

i
120 ::routine setfSizeAndPositicon
121 use arg shape, width, height, posX, pos¥Y

122

123 gshape~zgetSize (-

124 baf~new("com.sun. atar.awt.Size”, width, height))

125 shape~getPosition(.baf~new("com. sun. star . awt . Point”, posX, pos¥))
126

127 /* routine for removing selection*/

i
128 ::routine removeSelection
129 use arg oDoc

130
121 model= oDoo-XModel
132 controller = model-~getCurrentController ()

133 gelectionController = controller-XSelectionSupplier

Impress Automation Page 47

34 gelected = selectionController~getSelection()
2

1
135 selectionController~aslect (.nil)

Snippet 13: Pacman (02_pacman.rex)

Example number 2 is also a macro, which displays the current status of the
presentation. The animation starts on the second slide, like in the first example. On the
left side of this slide there will be an Pacman image and on the other side of the slide,
there are some cherries. On the line from Pacman to the cherries are a lot of yellow
points. Each slide the Pacman image will be shifted to the left. After running the script,
it looks like Pacman eats all the points till he finally reaches the cherry on the last slide

of the presentation.

L

Figure 16: Pacman on his way to the cherries

This snippet makes use of another Shape, the GraphicObjectShape, which loads an

image from the hard drive to display it on the slides.

50 f* creating and peositioning of pacman */

51 pacman = xImpressFactory-createlnstance (-

52 zom, sun. star . drawing. GraphicObjectShape™)

53 pacman = pacman-XsShaps

54 CALL setSizeAndPosition pacman, 1000, 1000, pacmanPositionX, shapeY 4+ 120
55 pacmanProps=pacman-XPropertySet

56 pacmanProps-setPropertyValus {"GraphiclUREL", -

57 unc.convertTolURL (directory| |separator| | "pacman.gif”})

58 #DrawPage~add (pacman)
The GraphicObjectShape is created through the Impress MultiServiceFactory interface
and is then adjusted to the position and size on the slide. The file URL can be edited by

changing the corresponding property value.

Impress Automation Page 48

/* creating and pesiticning of points */
78 IF (i == pagecount -1) THEN

79 Do
20 j = pacmanPositionX + 1200
81 DO WHILE j <= shapeWidthBorder - 200
a8z point = xImpresasFactory-~createlnstance (-
83 "gom, gun. star . drawing. EllipseShape")
a4 point = point-XShape
a5 CALL setfizelndPosition point, 200, 200, j, shape¥ + 500
as j =13 + 800
a7 pointPropaspoint-X{PropertySet
aa constant = baf.getConstant ("com.sun.star . drawing. CirceleFind", "FULL")
a9 pointPropa-~setPropertyValue ("CireleKind", constant)
a0 pointPropa~setPropertyValue ("FillColor”, box("int", "FFEFFOO"x ~c2d))
a1 pointPropa-~setPropertyValue ("Linestyle”, -
a2 baf.getlonstant ("com. sun. star.drawing.LineStyle®, "HONE"))
93 ®DrawPage~add (point)
94 shapeGroup-addipeint)
a5 END
=13 END
a7 xShapeGrouper = xDrawPage-EShapeGrouper
a8 wEhapeGroup = xShapeGrouper-group (ahapeGroup)
a4 nams = xShapeGroup-ENamed
100 name-getNams ("pacman_scene_group™)
101
102 pacmanPositioni = pacmanPositicni + step
1032 END

This snippet shows the placing of the circle shapes, which represent the points in the
Pacman game. The placement starts at the current position of Pacman and adds
EllipseShape objects to the drawpage till the x-coordinate reaches the end in form of

the position of the cherry.

The circles are just EllipseShape objects that have the CircleKind FULL. The other
options are SECTION for a circle with a cut connected by a line, CUT for a circle with a
cut connected by two lines (for example a cake diagram) and an ARC, which is a circle

with an open cut.

After the creation of the shapes, they will be added to a ShapeGroup, all of the shapes
which are inside the shapeGroup object will be grouped together using the
XShapeGrouper from a drawpage. To be able to remove them in the case of a second

run of the macro the group gets a name.

Impress Automation Page 49

4.3.3 Example03

/* Macro, which generates a fuse with a bombk, when the fuse has burned down,
the bomb will explods */

f* 03 _bomb.rex */

xBeriptContext=unc. getSoriptfontext () -- get the xScriptContext object

cDoc=xScriptContext~getDocument -- get the document service (an EModel object)

f* retrieving the important interfaces to get access to the drawpages */

xDrawPagesfupplier=cDoc~XDrawPagesSupplier

xImpressFactory = oloc-XMultiferviceFactory

xDrawPages = xDrawPagesSupplier-~getDrawlages

/* gleobal service manager for shape groupsr */

xContext = xScriptContext-getlomponentContext

¥Mcf = xContext-getServiceManager

CALL removeSelection oDoc

f* remove the explogion page, 1f it exisgtes */

pagecount=xDrawPages~¥Indexhccega~-getCount

LTI« = T I L I R PR S

e e e
[I S e,

IF pagecount == Z THEN
Do
baf.dialog~-measageBox ("This presentation has less than three slide. "-
"There is no need for running this macre!", "ERROR", "error")
EXIT 0
END

[SRR e R N e]
[N S = Y]

DO 1 = 1 TO pagecount - 1
¥DrawPage = xDrawPages-~getByIndex(i)-XDrawPage
IF ixDrawPage-XNamed~getlame (} == "explosicon_page") THEN
Do
xDrawPages-remove (xDrawPage)
ITERATE
END
END
f* initialize all variables (height, width, etc.) */
pagecount=xDrawPages~¥Indexhccega~-getCount
firstDrawPagePropas = ¥xDrawPages-getByIndex (0}~ DrawPage-EPropertySet
width = firstDrawPagelProps-getPropertyValue ("W

[EN R CN RS PR TS TS o S I R s o
o Wb S W =] Ty

Width")
height = firstDrawPageProps-getPropertyValue ("Height™)
bombPositionX = width - 2500

shapeX = 500

shapeY = height - 2450

[S PSR T I P R VY
| el =" = I = I B o Y

gtep = trunc((width - 2150) / (pagecount - 2))

[
[EE R %)

pogitionFlame = shapeX
lengthCord = bombPositiond - 200

[N S <N
oy U s

CALL GetPresentationDirectory oDeoc-getURL
directory = result
geparator = .uno~file.separator
DO i = 1 TO pagecount - 1
¥DrawPage = xDrawPages-~getByIndex(i)-XDrawPage

(S IRy I B R T =
SRl S T = Y« R

/* remove existing bombs, if necessary */
wEhapes = xDrawPage-~KShapes
DO j = 0 TO xShapes~getCount - 1
xShape = xShapes-~getByIndex(j)
IF (xShape-~ENamed~getHame (} == "bomk_group") THEN
Do
whapeGroup = xBhape-~XShapeGroup
¥DrawPage-~remove (XShapeGroup)
END
END

LS S I g R R Ry Ly Iy B
(TN % B s e R [Sy Y NV

J* creating and positiconing of the homb */
bomk = xImpresaPactory-~createlnstance (-

"oom. sun. star.drawing . GraphicObjectShape")
bombk = bomb-XShape

oy Ty
ook

[
[

Impress Automation Page 50

&7 CALL setfizeRndPosition bomb, 2100, 2150, kombPositionX, shape¥
68 bombPropa=sbomb~XPropertySet
69 bombPrope~getPropertyValue ("Graphi cURL", -

70 uno. convertToURL (directory| | separator| | "bonbk . gif"))
71 #DrawPage-~add (bomlk:)

72

73 J* ereating and peositioning of the cord */

74 cord = xlmpresaFactory~createlnstance (-

75 "oom.sun. star. drawing . RectangleShape ")

76 cord = cord-EShape

77 CALL setSizefndPosition cord, lengthCord, 100, -

78 positionFlame + 700, shapeY + 1200

79 cordPropa=scord-EPropertySet

a0 cordPropa~setPropertyValue ("FillCZolor”, beox("int", "FFFFO0"x ~c2d))
a1 ®DrawPage-~add{cord)

82

a3 /* creating and peogiticning of the fuse */

a4 fuse = xImpresaFactory-~createlnstance (-

a5 "oom.sun. star. draving . GraphicObijectShape")

=1 fuse = fuse~KShape

a7 CALL setSizefndPosition fuse, 1000, 1000, positicnPlame, shape¥ + 2940
as fuseProps=fuse-EPropertyset

a3 fuseProps~setPropertyValue ("GraphiclURL", -

a0 uno. convertToURL (directory | |separator| | " fuse . png”})
21 ®xDrawPage-~add|{fuse)

92

93 /* create the group */

294 shapeGroup = xMcf-createlnstanceWithContext (-

a5 "oom.sun. gtar. drawing . ShapeCollection”, xContext)
96 shapeGroup = shapeGroup-EShapes

a7 shapeGroup-add (bomb)

a8 shapeGroup~add (cord)

a9 shapeGroup~add (fuse)
100 mEhapeGrouper = xDrawPage-~XShapeGrouper
101 wEhapeGroup = xShapeGrouper~group (shapeGroup!
102 name = xShapeGroup-XNamed
103 name~getName ("bonk_group”)
104
105 positionFlame = pogitionFlame + step
1086 lengthCord = lengthCord - atep
107 END
108

103 f+* creating, regizing and positicning of the explosion page and content#®/
110 xDrawPages-insertNewByvIndex (pagecount)

111 explosicnPage = xDrawlages-getBvIndex (pagecount) ~XDrawlage

112 explosicnPage-~FNamed-setName ("explogion page")

113 textBhape = xImpressFactory-~createlnstance ("com.sun.star.drawing. TextShaps")
114 textBhape = textBhape-~Xthape

115 CALL setZizeAndPosition textShape, 22000, 2000, 2000, 2000

116 explosicnPage-~add {textShape)

117
118 explosicn = xImpressFactery-createlnstancei-
1139 "oom. gun. star . drawing . GraphicCkbjectShape")

120 explosicn = explosicon-XEhape

121 CALL setSizeAndPosition explosicon, 20000, 15000, 4200, 5000
122 explosicnPage-~add{explosion)

123

124 explosicnProps = explosion-~-EPropertySet

125 explosicnPreops-setPropertyValus ("GraphicURLY, -

126 uno.convertToURL(directory| | separator| | "explosion. jpg”))
127 textProps = textBhape-~XPropertyvSet

128 textProps-~setPropertyValue ("TextFitTolSize", -

129 baf.getConstant ("com.sun. star. drawing . TextFitToSizeType", "PROPORTIONAL"))
1320 effects = bef.wrapStaticFields("com.sun.star.presentation.AnimationEffect ™)
121 speeds = baf.wrapStaticFields("com.sun.star.presentation. AnimationSpesd”)

132 textProps-setPropertyValue ("Effect”, effects-FADE FRCOM _CENTER)
123 textProps-~setPropertyValue ("Speed”, speeds~FAST)

Impress Automation Page 51

134 explosicnProps-~setPropertyValue ("Effect”, effects~HORIZONTAL ROTATE)
135 explosicnProps-~setPropertyValue ("Speed”, apeeds-~-MEDITUM)

137 /#* formating the textshapes */
138 textShape~XText-~getString ("BOOOOOOOMMMIMM! LT

140 explosicnPageProps = explosionPage-XPropertySet

141 explosicnPagePropa~setPropertyValue ("Effect”, -

laz baf.getConstant ("com. sun. star.presentation. FadeEffect”, "RANDOM"))
142 explosicnPagePropa~setPropertyValue ("Speed”, speeds-~MEDITM)

145 EXIT 0O
147 /* routine for getting the directory of the presentation */

148 GetPresentaticnDirectory
las use arg path

150

151 geparator = .uno-file.separator

152 full = REVEERSE (unc.convertFromUEL (pathi)

152 parse wvar full "pdc.” filenames (geparator)! directory

154 directory = REVERSE (directory!

155

156 return directory

157

158 ::requires TUHNO.CLS -- locad TNO suppert for OpenCffice.org
154

160 /* routine for positioning and resizing a shape */

161 ::routine setSizelAndPositicon

162 use arg shape, width, height, posX, posY¥

le3

164 shape~getfize (-

165 baf-new("com.sun.star.awkt.Size”, width, height))

lae shape~getPosition(.baf~new ("com.sun. star.awt.Point”, posX, posY))
1&7

168 /* routine for removing selection*/

169 ::routine removeSelecticn

1740 use arg oDoc

171
172 model=s oDoo-EModel

172 controller = model-~getCurrentController ()

174 gelectionController = controller-XSelecticnSupplier
175 selected = selectionController-getSelection()

178 gelectionController-aelect (. nil)

Snippet 14: Bomb (03_bomb.rex)

The type of the next macro is again a progress showing macro. Instead of Pacman
going to the end of the slide, there will be a fuse with a flame. The fuse is connected to
a bomb. The fuse will be realized with the help of a RectangleShape. As the progress
of the presentation is advancing, the fuse is burning down. One of the difference to the
last example is that the macro is generating a new slide at the end of the presentation
and put some shapes on the drawpage. The new drawpage as well as the shapes on it

will have some effects, which are assigned in the script.

The last slide contains a TextShape with the text “BOOOMMM!!” and an

GraphicObjectShape with an explosion image.

Impress Automation Page 52

4 explosicnProps = explosion-XPropertySet

explosionProps~setPropertyValue ("GraphicURL", -
uno. convertToURL (directory| | separator | | "explosicon. jpg™))

27 textProps = textShape-XPropertviet

textProps~actPropertyValue ("TextFitToSize", -

besf.getConstant ("com.sun. star. drawing . TextFitToSizeType", "PROPORTICHAL"))
effects = bsef.wrapStaticFieldsa ("com.sun.star.presentation.AnimationEffect™)
speeds = baf.wrapftaticFields ("com.sun.star.presentation. Animationfpeesd®)
textProps-~acstPropertyValus ("Effect”, effects~FADE_ FRCOM CENTER!
textPrope-~actPropertyValues ("Epesd”, speeda-FAST)
explosicnProps~setPropertyValue ("Effect”, effects-HORIZONTAL ROTATE)
explosicnProps~setPropertyValue ("Speed”, apeeds-~-MEDIUM)

The URL of the image is set in the cutout using the XPropertySet interface. The method

used for fetching the filename is operating system independent. The images have to be

in the same folder as the presentation. The animation effect of the TextShape
‘BOOOMMMM!I!!” will be a fade from the center of the slide and will be conducted in a
fast sped. Similar to that, the effect of the image with the explosion should be a little bit

slower and with a horizontal rotation.

140
141
142
143z

The

explosicnPageProps = explosionPage-~XPropertySet
explosicnPagePropa~setPropertyValue ("Effect”, -

baf.getConstant ("com. sun. gtar.pregentation. FadsEffect”, "RANDOM"))
explosicnPagePropa~setPropertyValue ("Speed”, speeds~MEDITM)

counterpart to the Shape AnimationEffect object for slide transitions is the

FadeEffect object. The RANDOM value sets a random effect to the slide transition with

medium speed. The bomb with the fuse as well as the slide with the explosion image

are displayed on the next two figures.

Figure 17: Bomb with fuse

Impress Automation Page 53

Figure 18: Explosion slide

For sure, this demonstration of a progress illustration and the example with Pacman is
not very appropriate for business presentations. For these kind of presentations the
progress bar will be the best solution. This should be just a proof of concept how easy it

is to put a very helpful feature to a presentation, also with a whiff of playfulness..

Impress Automation Page 54

4.3.4 Example04
1 /* Macro, which generates a clock that counts down to the end of the
2 presentaticon */
3 /* 04_clock.rex */

4 x8criptContext=unc.getloriptContext () -- get the xScriptlontext object
5 choc=xScriptContext-getDocument -- get the document service {(an ¥Model object)
& /* retrieving the important interfaces to get access to the drawpages */
7 xDrawPagesBupplier=cloc-EDrawPagesSupplier
8 xImpressPFactory = cDoc-XMultiBerviceFactory
9 xDrawPages = xDrawPagesSupplier-getDrawPages

10 /* gleokal service manager for shape groupsr */

11 xContext = xScriptContext-getlomponentContext

12 XMcf = xContext-getServiceManager

13 CALL removeSelection oDoeg

14 /* initialize all wariabkles (height, width, etc.} */

15 pagecount=xDrawPages-EIndexicceass~getCount

15 firstDrawPageProps = xDrawPages-~getByIndex (0)-XDrawPage-~KPropertySet

17 width = firstDrawPageProps-getPropertyValue ("Width")

128 height = firstDrawPageProps-getPropertyValue ("Height")

19 bombPositionX = width - 2000

20 ghapsX = 50O

21 ghapeY = height - 1250

22

23 IF pagecount <= 2 THEN

24 DO

25 baf.dialeg-meassageBox ("This presentation has less than three slide! "-

26 "There is no need for running this macre!”, "ERROR", "error")

27 EXIT 0

28 END

29

30 gtep = trunc((36000) / (pagecount - 2}

EN

32 /* start at 12 o clock */

33 endangle = 2000

34 starthAngle = 2000

35 stopingle = -27000

i6 /* gtart with white #*/

37 colorValue = 16777215

38 gtepRed = trunci 255 / (pagecount - 2}

£

40 gcirecleKinda = bsf.wrapStaticFields ("com.sun.star.drawing. CircleKind")

41 DO i = 0 TO pagecount - 1

4z ¥DrawPage = ®DrawPages-getByIndex (i) ~XDrawPage

43

44 J* remove existing clocks, if necessary */

45 xShapes = xDrawPage-EShapes

45 DO j = 0 TO xShapes~getCount - 1

47 xShape = xShapes-getByIndex(j)

48 IF (xShape~¥Named~getName (} == "clock_group") THEN

439 Do

50 wShapeGroup = xBhape-~XShapeGroup

51 ¥DrawPage~remnove (xShapeGroup)

52 END

53 END

54 IF(i == 0} THEN

55 ITERATE

56 J* creating background shape of the clock */

57 clockBackground = xImpressPactory-createlnstance (-

58 "oom. sun. star . drawing.Ellipseshape”)

549 clockBackground = clockBackground-XShape

&0 CALL setfizeRndPosition clockBackground, 1500, 1500, -

g1 trunc (width / 2] - 750, height - 1800

62 clockBackgroundPropes=clockBackground-XPropertyviet

63 clockBackgroundPrope~setropertyValue ("Ciroelelind”, ecireleKinds-FULL)

64 clockBackgroundPrope-~setPropertyValue ("FillColor™, -

65 box("int", "FFFFFF"x -c2d})

66 ¥DrawPage~add (cleckBackground)

Impress Automation Page 55

&7
68 clock = xImpresasFactory-~createlnstance (-
69 "gom, gun. atar . drawing. EllipseShape")

70 clock = clock-XBhape

71 CALL setfizeAndlPosition ecleck, 1500, 1500, -
72 trunc iwidth / 2] - 750, height - 1800

73 ¥DrawPage-~add (clock)

74 clockPropa=clock-~XPropertyset

75

76 /* create the group */

77 shapeGroup = ¥Mcf-createlnstanceWithContext (-

T8 "eom. gun.atar . drawing. ShapeCollection”, xContext)

79 shapeGroup = shapeGroup-XShapes

a0 ghapeGroup-~add(clockBackground)

81 shapeGroup-add{clock)

a8z wShapeGrouper = xDrawPage-XthapeGrouper

a3 ®xShapeGroup = xShapelrouper-group (shapeGroup)
a4 nams = ®ShapeGroup-¥lamsd

a5 name~setName ("clock _group”)

ga

a7 IF(startAngle <> stopAngle) THEN

aa Do

a9 /* @met the atart and the end angle for the section */

a0 clockPrope~setPropertyValue ("Circelelind”, ecireleKinds-SECTION)
91 clockPrope~setPropertyValue ("CircleStarthngle”, box("int", startAngle))
92 clockProps~getPropertyValue ("CircleEndingle”, box("int", endingle))
93 startAngle = startiAngle - step

94 /* adjust color */

a5 coclor = box("int"”, colorValue)

98 colorValue = colorValue - (stepRed * 25&) - stepRed

a7 END

a8 ELSE

99 color = box("int", "FFOO00"x -c2d)

1aa

101 clockPropa~setPropertyValue ("FillColor”, color)

102 END

1oz

104 ::requires TNO.CLS -- locad UNC support for OpenCffice.org

105

106 /* routine for positioning and resizing a shape */

107 ::routine setSizelndPosition

108 use arg shape, width, height, posX, peosY

las

110 shape~setSize (-

111 baf~new("com.sun. atar.awt.Size", width, height])

112 shape~getPosition(.bef~new ("com.sun. star.awt.Polint”, posX, pos¥))
11z

114 /#* routine for removing selection*/

115 ::reutine removeSelecticn

11s usea arg oDoc

117

1lls model= oDoc~XModel

119 controller = model-~getCurrentController ()

120 selectionCentroller = controller-XSelecticonSupplier

121 gelected = selecticnController-getSelection()

12z gelectionController-select (. nil)

Snippet 15: Clock (04_clock.rex)

For this macro the progress is illustrated as a clock on each slide, which turns more

and more red as the presentation goes by.

This macro will generate a EllipseShape in form of a circle using the property value

CircleKind FULL for the background of the clock. The shape for displaying the elapsed

Impress Automation Page 56

time will be a SECTION EllipseShape. To configure the section, the values for the start

and end angle need to be set.

32 f* start at 12 o cleock */

33 endingle = 92000

34 startingle = 000

a9 f* ==t the atart and the end angle for the section */

20 clockProps-asetPropertyValue ("CircleKind”, circleKinds-SECTION)

91 clockProps~setPropertyValue ("CireleStartingle”, box("int", startiAngle])
a2 clockProps~setPropertyValue ("CircleEndingle”, box("int", endAngle))

93 atartAngle = startingle - =tep

By setting the values as seen in the cutout above, the section is forced to start at 12
o'clock. Decreasing the startAngle value after each slide will expand the section

clockwise. The fill color of the section is also changing throughout the presentation.

a5 color = box{"int”, colorValue)
9a colorValue = colorValue - (stepRed * 288) - astepRed

The color is represented by a hexadecimal value. Starting with white (FFFFFF) and
fading to red. This is done by subtracting values from the start color. The transition of

the clocks looks like Figure 19.

URUR" B _

Figure 19: Clock transition

Impress Automation Page 57

4.3.5 Example05

f* Macreo, which generates a break page with a specfic time teo display
the content. The user can control the duration and the breaktext */

f* 05 break.rex */

f* Exceptionhandling */

SIGNAL ON ANY

xScriptContext=uno.getSoriptfontext () -- get the xScriptContext object

cDoc=xScriptContext~-getDocument -- get the decument service (an EModel cbject)

f* retrieving the important interfaces to get access to the drawpages */

xDrawPagessupplier=cDoc~EDrawPagessupplier

xImpressFactery = cDoc-XMultifServiceFactory

xDrawPages = xDrawPagesSupplisr-getDrawlages

LT Js = I I S ISR PR 5]

[
[S

/* check pagecount */
pagecount=xDrawPages~KIndexAcce ag~get Count

e
T

IF pagecount <= 2 THEN
Do

==
o -

bef.dialog~messageBox ("This presentation has less than threes slide. "-
"There is no need for running this macre!", "ERROR", "error”)
EXIT ©
END

| R S R N]
LTSRN 5 I o = R ¢

F* adjust middle wvalue */
middle = trunc (pageccunt / 2):

|l e]
oy s

IF (pagecount // 2 == 0) THENW
middle = middle - 1

b3 B B
Ll e JE

/* ask user what text should ke shown and the duration of the break */

30 minutes = .bkef.dialog-inputBox("How long (minutes) should ke the break?", -
31 "Juestion®, "guestion™)

a2

33 /* Mo input */

34 if (minutes == "") then

35 Do

36 bef.dialog-~messageBox ("Not a valid numbker!”, "ERROR", "error”)
37 EXIT O

38 END

39 message = .bksf.dialog-inputBox("What text should be displaye=d?™, -
40 "gueastion”, "guestion”)

41

42 /+* insgert a slide in the middles of the pages */

43 xDrawPages-~insertNewByIndex (middle)

44

45 beforeBreakPage = xDrawlPages-getByIndex (middle) ~XDrawPage

19
L3

beforeBreakPageProps = beforeBreakPage~EPropertyiset
keforeBreakPagePropa-~getPropertyvValus ("Effect”, -
baef.getConstant ("com. sun. star.presentation. FadeEffect”, "WAVYLINE _FRCM_LEFT"))

[S
[=JNe e« E]

/* met the duration to the entered value */
breakPage = xDrawPages-getByIndex (middle+l) ~EDrawPage
breakPageProps = breakPage-XPropertySet

oo
|l o]

53 breakPageProps-setPropertyValue ("Changes", box("int", 1))

54 breakPagelProps-setPropertyValue ("Duration”, box("int", minutes * &0))
55

56 f* greate the heading of the break alide #*/

o
L= |

textShape = xImpressFactory-~createlnstance ("com.sun.star.drawing. TextShape")
textShape = textShape-EShape

CALL setfizehndlPosition textShape, 15000, 2000, €200, 2000

textProps = textihape-EIPropertviet

breakPage~add (textShape)

oy @y Oy @y
Wby = O W

f* assigning effects */
textProps-~acetPropertyValue ("TextFitToSize", -
bef.getConstant ("com. sun.star. drawing . TextFitToeSizeType”, "PROPORTICHAL") |
animaticnEffects = kbef.wrapftaticFields (-
"oom. sun. star . presentation. AnimationEffect”)

@y Ty Iy Oy
=1 T s

Impress Automation

68
69
70
71
72
T3
74
75
76
T8
79
a0
a1
a8z
a3
a4
a5
ge
a7
aa
a9
a0
a1
a2
93
24
a5
96
a7
a8
29
100
101
102
103
104
105

Page 58

speeds = bef.wrapStaticFields("com.pun.star.presentation. AnimationSpeed”)

textProps-asetlPropertyValue ("Effect”, animationEffects~-RANDOM)
textPrope~setPropertyValue ("Speed”, speeda~-MEDITM)
textBhape~XText~aetString ("-- Break --")

mezszsageshape = XImpresaFactory~createlnstance (-
"oom. gun, gtar . drawing . TextShape")

messageshape = messagedhape~Xshape

CALL setSizehAndPosition messageShape, 23000, 2000, -
2800, T000

messageshapePropa=messageshape~EKPropertySet

breakPage-add (measagehape)

f* assigning effects */
messageshapePropa~asetPropertyValue ("Effect ", -
animationEffecta~-COUNTERCLOCEWISE)
messageshapePropa~aetPropertyValue ("Speed”, speeds-SLOW)
messageShapePrope~getPropertyValue ("Fil1lStyle”, -

bef.getConstant ("com. sun. atar. drawing. Fillstyle®, "NCNE"))

messageShapePrope~getPropertyValue ("LineStyle™, -
baf.getConstant ("com. sun. star. draving. LineStyle”, "NONE"])

breakText = messageShape-~XText
breakText~getString imessage)

EXIT 0O
BIY
baf.dialeg-measageBox ("Error in line " SIGL "."-
"Please check your input!®, "ERRCE", "error")
rrrequires TNO. CLS -- load TNC support for CpenCffice.org

/* routine for peositioning and resizing a shape */
::routine setfizefndPosition
use arg shape, width, height, posX, peosY

shape~zetSize (-
baf-new ("com.sun.star. awt.Size", width, height]))

shape~getPogition(.baf~new("com.sun. star.awt.Point", posX, pos¥))

Snippet 16: Create Break Slide (05 _break.rex)

The next macro will support the presenter by automatically creating a slide in the

middle of the presentation. For long presentations it could be necessary to make such a

break to let the audience get some refreshments. The user will be asked for the

duration of the break and for a message, which will be shown on the new slide. The

duration has to be entered in minutes. After the time is elapsed the presentation will

continue with the next slide.

The slide before the break as well as all created shapes will get effects in addition to

the slide transition.

Impress Automation Page 59

5 SIGHAL ON ANY

This line is responsible for the exception handling in Open Object Rexx. If any error
occurs during the runtime of the script, the code at the marker ANY will be executed.
The script has to handle possible exceptions because it has to operate with a data
entered by a user. When the user does not enter a valid number, there would be a

SYNTAX error and the script would crash.

In order to handle those problems, the marker ANY was implemented in the rear

section of the script.

94 ANY:

95 kaf.dialeg-messageBox ("Error in line 5IGL -

96 Pleass check your input!®, "ERRCR", "error

97 ::requires UNO.CLS -- locad UNC support for OpenCffice.org

The code then shows up another message box with the line number where the problem

occurred.

f* adjust middle wvalus */
middle = trunc(pageccunt / 2);

LS

(%))

IF l(pagecount // 2 == 0} THEHN
middle = middle - 1

f* ask uzer what text should ke ghown and the duration of the break #/
minutes = .kaf.dialog-inputBox{"How long (minutes) should be the break?", -
fusstion®, question™)

L T e T I

[T TN B R S N 6 B G N

[

The cutout from the snippet above shows how the middle of the presentation is been
calculated. The // operator acts as the modulo function in Open Object Rexx to get the
rest of a division of integers.

The inputBox procedure from the BSF.CLS module is used for entering the duration of

the break. The value will be saved into the variable minutes.

The dialogs and the break slide can be seen on the next figures.

Impress Automation

Queskion

How long (minutes) should be the break?

OK

Cancel

Queskion

What text should be displayed?

x||

|take a hreath and rela}:...|

OK

Cancel

Figure 20: Input dialogs

Figure 21: Generated break slide

-- Break --

Page 60

Impress Automation Page 61

4.3.6 Example06

/* Macro, which generates different kinds of animations and effecta
the user will be asgked for the settings of the pregentation */
f* 06_finish pressntation.rex */
/* Exceptionhandling */
SIGHNAL ON SYNTAX
xSeoriptContext=unc.getScriptContext () -- get the xScriptlfontext object
cDoc=xScriptContext~getDocument -- get the document service (an EModel object)
f* retrieving the important interfaces to get access to the drawpages */
xDrawPagesfupplier=cDoc~XDrawPagesSupplier
xImpressFactory = cDoc-XMultiServiceFactory
xDrawPages = xDrawPagesSupplier~getDrawlages

LY== T I L I R PR S

.
Wb o

/* check pagecount */
pagecount=xDrawPages~¥Indexhcce gg-get Count

=
L

IF pagecount == 1 THEN
Do
.baf.dialog-meagageBox ("This presentation has only one slide. "-
"There iz no need for running this macre!®, "ERROR", "error")
EXIT ©
END

|l e R S S S
LU S o e e e IS

/* show message dialeg for slide effects */

arraykEffects = .array-of ("NCNE", "RANDCOM®, "DISSOLVE", "CLOCEWISE", -
"MOVE_FROM_TOP®, "FADE _FRCM _BOTTOM", "HORIZONTAL STRIPES", -
"SPIFALIN RIGHT", "CLOSE HCORIZONTAL", "ROLL_FROM_TOEB")

effect = .baf.dialog~inputBox ("Choose the Effect you like to add to "-

"the slides!", "Effects", "question", , arrayEffects)

IF(effect == .nil)} THEN

EXIT ©

[N TS TN 6 R % I N I S R %]
B S W 00 =] Ty N i

/* show message dialeg for gpeed of transiticn */
IF(effect <> "NONE") THEN
Do
arraysSpeed = .array-of ("SLOW", "MEDITM", "FAST")
speed = .basf.dialeg-~inputBox("Choose the apeed of the transitien!”,-
"Effecta”, "question", , arraySpeed)
IF{apeed == .nil) THEN
EXIT 0O
END

1N S SO PN VS P TN PR S Y
[S T s« T I S [T SO PR

f* ask for the duration of the transition #*/
linebreak = "0d0a"x
DO UNTIL seconds <= ""
seconds = .bef.dialog-inputBox ("How leng (seconds) should be the 7,
"duration of a =lide"||linebreak||"0= manual transition?”, -
"puestion”, "question”)
if{seconds == .nil) then
EXIT O
J* Mo input #*/
if{seconds == "") then
bef.dialog-~messageBox ("Not a valid numker!”, "ERROR", "error”)

LSSy Iy I B R SR S g ST ST
(TN S R e TS [Sy I <NV

END

mom
ok

shapefnimatien = .kaf.dialeg-dialegBox("Do veu want a shape animation?"-
, "Duesticon", "question”, "Yealo")

LEg Ry R |
0 o=] O

f* ask for the global shape animation */

IF (shapeAnimation == 0) THEN

Do

&6l arrayBffects = .array~of ("NONE", "RANDOM", "DISSOLVE", "APPERR", -

62 "LASER_FROM_LEFT", "MCVE_TO BOTTOM®, "STRETCH FROM LEFT", -

63 "WAYLINE FROM_RIGHT", "ZOOM _COUT", "VERTICAL LINES")

64 effectShapes = .baf.dialog~inputBox("Choose the Effect you like to add to "-
65 "the shapes!", "Effects", "question”, , arrayEffects)

g6 IF(effectShapes == .nil) THEN

oy
L=V e]

Impress Automation Page 62

67
68
69
70
71
72
73
T4
75
&
77
78
749
a0
a1
a2
a3
84
a5
26
a7
a8
a9
a0
a1
a2
93
94
a5
96
a7
a8
99
100
101
102
103
104
105
l0a
107
108
109
110
111
112
11z
114
115
11ls
117
1l1a
119
120
121
122
123
124
125
12a
127
lz8
129
120
131
132
133

BXIT O
/* ask for the apeed of the transiticn */
IF{effectShapes <= "NONE") THEN
Do
arraySpeed = .array-of ("SLOW", "MEDIUM", "FAST")
speedShape = .baf.dialeg~inputBox("Choose the speed of the shape "-
"animaticon!", "Effects”, "queaticn®, , arraySpeed)
IF (speedShape == .nil] THEN
EXIT 0
END
END
f* ask for end-slide and autmatic start of the presentation */

addEndSlide = .bof.dialog~-dialegBox("Should a 'Thank yvou for veour attention’®-

"zlide be generated?”, "{uesticn®, "questicn", "Yeslo")
runPresentation = .baf.dialog-~dialogbox("Do you want to start the "-
"presentaticon after adding the new slide?", "Question®, "questicn®, "YesNao")
IF (addEnd2lide == () THENW
Do
/* insert a slide at the =nd of the presentation */
xDrawPages-insertHewBy Index (pagecount)
lastPage = xDrawPages~getByIndex(pagecount) -XDrawPage
/* create the heading of the laat slide */
textShape = xImpresaFactory-createInstance ("com.sun.star.drawing. TextZhape™)
textShape = textShape-iShape
CALL setSizelndPositicn textShape, 22000, 2200, 2800, 7700
textProps = textShape-XPropertyiet
lastPage~add(textShape)
textProps~setPropertyValue ("TextFitTolize”, -
baf.getConstant ("com. sun. star.drawing. Text FitTol2izeType", "PRODPORTIONAL™))
textShape~EiText~setString (" Thank you for your attenticn!™)
END
f* go through each =lide #/

DO 1 = 0 TO pagecount - 1
xDrawPage = xDrawPages-~getByIndex(i)-XDrawPage
xShapes = xDrawPage-XShapes
f* go over esach shape if wanted */
IF (shapeAnimation == 0) THEN
DO j = 0 TO xShapes-getCount - 1
xShape = xBhapea-~getByIndex(j)
xShapePropa = xEBhape-XPropertySet
f* assigning effects, etec. */
xEhapePropa-~setPropertyValue ("Effect”, -
baf.getConstant ("com.sun. star.presentation.AnimationEffect”, -
effectShapes))
IF (speedfhape <> "SLPEEDSHADE") THEM
xShapePropa~asetPropertyValue ("Speed”, -
baf.getConstant ("com.sun. star.presentation.AnimationSpeed”, -
gpeedShape) |
END
whrawPageProps
IF (geconds ==
value = 0
ELSE
value = 1
/* assigning effects, eto. */
®xDrawPageProps-~setPropertyValue ("Change”, kox("int"”, wvalue])
¥xDrawPageProps~getPropertyValue ("Duration”, kox("int", seconds))
®xDrawPagePrope-ssetPropertyValues ("Effect™, -
bsf.getConstant ("com. sun.star.presentation. FadeEffect”, effect))
IF (speed <> "SPEED"] THEN
¥DrawPagePropa-setPropertyValue (" Speed”, -

= xDrawPage-~XPropertviSet
0) THEN

Impress Automation Page 63

124 baf.getConatant ("com. sun. star .presentation. AnimaticonSpeed”, speed))
135 END

13e

127 /* starting the presentaticn */

138 if (runPresentation == 0) THEN

139 Do

140 ¥Presentation = cDoc-XPresentationSupplier~getPresentation

141 ¥Presentation-baf.invoke ("atart”)

142 END

14z

144 EXIT O

145 SYNTAX:

lag baf.dialog-messageBox ("Error in line " SIGL ". Please check your input!", -
147 "ERROR", "error”)

las

149 ::requires TNO.CLE -- leoad UND suppeort for CpenCffice. org

150

151 /* routine for positioning and resizing a shape */

152 ::routine setSizelAndPosition

153 use arg shape, width, height, posX, posY

154

155 shape~getSize (-

156 baf~new("com.sun. atar.awt.Size"”, width, height]))

157 shape~getPogition(.baf~new("com.sun. star.awt .Point”, posi, pos¥))

Snippet 17: Various tasks (06_finish_presentation.rex)

Macro number 6 carries out some recurring tasks, which can cost a lot of time if one
has to do it manually. The user will be asked for each function that should be added to

the presentation. The following functions are support by this macro:

e Fade effects and duration of the slide transitions (the user can choose from

some predefined effects and speeds)

e Animation effects for every Shape object of the draw pages (again, the user can

choose from different effects)
e Automatically generated “Thanks for your attention” slide

e Direct start of the presentation at the end of the macro

/* ghow measage dialeg for slide effects */

23

24 arrayEffects = .array~of ("NCHE", "RANDCM", "DISSOLVE", “CLOCEWISE", -
25 "MOVE_FROM_TCP®, "FARDE_FROM_BOTTOM®, "HORIZCHTAL STRIPES", -

26 "SPIRALIN RIGHT", "CLOSE_HCRIZONTAL", "ROLL FROM_TOR")

27 effect = .kof.dialog~inputBox ("Choose the Effect you like to add to "-
28 "the slides!", "Effects”, "question”", , arrayEffects)

29 IF(effect == .nil} THEN

30 EXIT O

This cutout shows how arrays can be created in Open Object Rexx using the .array~of
method. Then the user will be asked in form of a dialog with a combo box, which

displays the effects from the array. If the user clicks on “Cancel”’ in the dialog, the

Impress Automation Page 64

returned value will be the nil object.
‘ 432 linebreak = "0d0a"x ‘

The hexadecimal value ODOA represents a line break and is used in a dialog box to

separate the message.

104 /* go through each slide */

105 DO 1 = 0 TO pagecount - 1

10s xDrawPage = xDrawPages-getByIndex(i)-IiDrawPage

107 xBhapes = xDrawPage-EShapes

108 /* go over each shape if wanted */

109 IF (shapelnimation == 0) THEN

110 DO j = 0 TO xShapes-~getCount - 1

111 xShape = xShapesa-getByIndexi(j)

112 xfhapeProps = xbhape-¥XPropertvSet

113 f* assigning effects, eto. ¥/

114 xfhapePropa-gsetPropertyValue ("Effect™, -

115 baf.getConstant ("com.sun. star.presentaticon. AnimaticnEffect ™, -
11& effectShapes) |

117 IF (apeedfhape <> "SPEEDSHATPE") THEN

118 xfhapePropa-getPropertyValue (" Spesd”, -

113 baf.getConstant ("com.sun. star.presentation. AnimaticonSpeed”, -
120 apeedfhape) |

The macro can also change the animation effects of every shape on every drawpage if
the user wants to. Using the interface XShapes of a drawpage one can get access to
every shape object on it. Like iterating through the drawpages of a presentation, one

can access the shapes using an index.

The dialogs for asking after the effects are shown on the next figures.

Effects x|

5 Choose the Effect you like to add to the slides!
NONE L
NONE | |
RANDOM
DISSOLVE -
CLOCKWISE =

MOVE_FROM_TOP
FADE_FROM_BOTTOM
HORIZONTAL _STRIPES
SPIRALIN_RIGHT

Figure 22: Slide effects

Kl

Impress Automation

Effects N {
] Choose the speed of the transition!

SLOW -

SLOW
MEDIUM

— IFasT
Figure 23: Dialog for choosing the speed

ouestion x|
How long (seconds) should be the duration of a slide

0= manual transition?
E

")

OK Cancel

Figure 24: Duration of one slide

question x|

Should a "Thank you for your attention® slide he generated?

")

Yes No

Figure 25: Question dialog for end slide

Page 65

Impress Automation Page 66

4.3.7 Example07

1 /* This macro gensrates a guldepost section on the left side of each

2 page. It shows all the heading 1 textshapes on it and marks the

3 current position */

4 f* 07 _guideposts.rex */

5

6 xScriptContext=uno.getloriptContext () -- get the xScriptContext object

7 cDoc=xScriptContext-~getDocument -- get the document service (an EModel object)
8 /* retrieving the important interfaces to get access to the drawpages */

92 xDrawPagesBupplier=cloc-XDrawlPagesSupplier
10 xImpressFacteory = clDoc~-XMultiServiceFactory
11 xDrawPages = xDrawPagealupplier-getDrawPages
12 /* glokal service manager for shape grouper */
13 xContext = xScriptlontext-getComponentContext
14 XMcf = xContext-getServiceManager
15 CALL removeSelection oDog
16 /* check pagecount */
17 pagecount=xDrawPages-~XIndexiccegs~getlount

18

1% IF pagecount == 1 THEN

20 DO

21 baf.dialog-meassageBox ("This presentation has only one slide. "-
22 "There iz no need for running this macre!®, "ERROR", "error")
23 EXIT ©

24 END

25

26 firstDrawPageProps = ®DrawPages-getByIndex (0)~XDrawPage~KPropertySet
27 height = firstDrawPageProps-getDropertyValue ("Height")

28

29 /% ask for end-g=lide, the slide will get no guldeposts */

30 hasEndSlide = .bkaf.dialog-dialeogBox("Is there an end-slide in "-
21 "thisg presentatien?", "Questicn®, "quesgticon®, "YesMo®)

32 headlineName = getHeadlineDisplayName (cDoc, "headline™)
32 headlinelName = getHeadlineDisplayName (cDoc, "headlinel")
34 f* create array with index and title of each heading-zlide */
35 headingIndex = .array -new

ie counter = 0

37 startIndex = 0

32 D01 = 0 TO pagecount - 1

39 ¥DrawPage = xDrawPages-getByIndex(i)-XDrawPage

40

41 /* remove existing guideposts, 1f necegsary */

4z wihapes = xDrawPage-~KShapes

43 IF (xShapes~getCount = 0) THEN

44 DO j = 0 TO xShapea-getCount - 1

45 xShape = xShapesa-getByIndex(j)

45 IF (xShape-~XNamed~getNam= () == "guidepost_group") THEN
47 Do

48 xShapeGroup = xXS8hape-XShapseGroup

49 xDrawPage-~remove (KShapedroup)

50 END

51 END

52

53 DO j = 0 TO xShapes~getCount - 1

54 xShape = xShapes~getByIndex(j)

55 xShapeProps = xShape-XPropertySet

56 atyle = xShapePropa-getPropertyValue("style™)
57 atyleProps = style-HPropertviet

58 nameStyle = atyleProps-getPropertyValue ("Displaylams™)
59 IF (xShape~EText == .nil) THEN

&0 ITERATE

g1 text = xShape-XText-~getStringi)

62 f* 1f the style is heading */

63 IF (nameStyle == headlineName) THEN

64 Do

65 IF (startIndex == 0] THEN

E6 gtartIndex = i

Impress Automation Page 67

&7
68
69
70
71
72
73
74
75
76
77
78
79
a0
a1
a8z
a3
g4
a5
ga
a7
aa
a9
a0
a1
a2
93
294
a5
96
a7
a8
249
100
101
102
10z
104
105
10e&
107
10a
1049
1140
111
11z
11z
114
115
1le
117
11s
1149
120
121
122
123
124
125
1ze
127
1z
1249
130
131
132
133

headingIndex-put (i||":"||"L:"||text, counter+l)
counter = counter + 1

END

IF (nameStyle == headlinelName! THEHN

Do
IF (gtartIndex == 0) THEN

gtartIndex = i

headingIndex-put (i||":"||"2:"||text, counter+l)
counter = counter + 1

END

END
END

f* there are no heading slides */
IF counter == O THEN
Do

baf.dialog~measageBox ("This presentation has neo heading textfields. "-

"There is no need for running this macro!", "ERROR", "error")
EXIT ©
END
IF hasEndSlide = O THEN
endIndex = pagscount - 2
ELSE
endIndex = pagscount - 1

gtepY = trunc((height - 2000) / counter)
posY = 2000
DO i = startIndex TO endIndex
¥DrawPage = ®DrawPages-getByIndex(i)-¥DrawPage
/* creating and positicning of left rectangle with the guideposts */
rectangle = xImpressFactory-~createlnstance |-
"com. gun. star . drawing. RectangleShape")
rectangle = rectangle-¥XShape
CALL setSizeRndPosition rectangle, €000, height, 50, 50
rectanglePrope=rectangle~XPropertyset
rectangleProps~setPropertyValue ("FillCTolor”, box("int", "BABED&"x ~c2d))
rectangleProps~aetPropertyValue ("Linestyle", -
baf.getConstant ("com.sun. star. drawing. LineStyle”, "NOHNE"))
¥DrawPage~add (rectangle)

/¥ create the group */
gshapeGroup = ¥Mof-createInstanceWithContext (-

"com. gun. star . drawing. ShapeCollection”, xContext)
shapeGroup = shapeGroup-Xthapes
ghapeGroup~add{rectangle)

poa¥ = 32000
counter = 1
marked = 0
/* adding the headings to the rectangle and mark the correct heading */
DO item OVER headingIndex
PARSE VAR item id":"lewvel”:"textGuidePost
nextItem = headingIndex[counter+l]
FARSE VAR nextItem nextIndex °

textShape = xImpresasFactory-~createlnstance (-
"oom. gun. gtar. drawing . TextShaps")
textfhape = textShape-~ithapes

textProps = textShape-~XPropertyiet
xDrawPage~add (textShape)
shapedroup~add (text Shape)
textShape-~EText~zset String (textGuidePost)
IF{counter <= i & i < nextIndex & marked == () THEN
Do
textProps~aetPropertyValue ("CharColor”, box("int", "FFO000"xX -c2d))

Impress Automation

134 marked = 1

135 END

136 ELSE

127 textProps~setPropertyValue ("CharColor”, box("int", "000000"x -c2d))
l3g counter = counter + 1

139 padding = 0

140 IFi{level == 1)} THEN

141 textProps~aetPropertyValue ("CharHeight”, box("float”, 26})

142 ELSE

143 Do

144 textProps~getPropertyValue ("CharHeight", box("flcat", 20})

145 padding = €00

l4s END

147 CALL setSizeRndPogition textShape, 5400, 1200, 200 + padding, pos¥
lag posY = posY + step¥

1449 END

150

151 whapeGrouper = xDrawPage-~XEhapeGrouper

152 xShapeGroup = xShapeGrouper-group (shapedroup)
152 name = xShapeGroup-Xlamed

154 name~zetName ("guidepost _group")

155 END

156 EBXIT 0

157

158 getHeadlineDisplayName

154 oDoc = ARG (1)

1a0 proglame = BRG(Z)

lel model= oDoc-XModel

162 famSupplier = model-XEtyleFamilieasSupplisr
163 families = famBupplier-~getStyleFamilies()

164 graphs = families-getByMName ("graphics")

1&5 styles = graphs-XNamsliccess

166 titelStyle = styles-getBylMame (proglame)

17 gtyleProps = titelStyle-XPropertyiet

leg RETURN styleProps~getPropertyValue ("DisplayNams")

lesg

170 ::requires TUNO.CLE -- load UNO support for OpenCiffice.org
171

172 /* routine for positioning and resizing a shape */

172 ::routine setfizeAndPosition

174 use arg shape, width, height, posX, peosY

175

176 shape~setSize (-

177 baf-new("com.sun.star.awt.Size", width, height])

178 shape~zetPogition(.baf~new("com.sun. star.awt.Point”, posX, pos¥))
179

180 /* routine for removing selection*/

181 ::routine removeSelecticn

laz use arg oDoc

laz

la4 model= oDoc-XModel

1as controller = model-getCurrentController ()

1868 gelectionController = controller-XSelectionSupplier

1a7 selected = selecticnController-getSelecticoni)

138 gelectionController-select (. nil)

Snippet 18: Guideposts from headings (07 guideposts.rex)

The goal of this macro is to create guideposts on the slides of a presentation. The only

thing the creator of the presentation has to care about is that the slides have text fields

with the predefined style Heading or Heading1 assigned to them. Then the macro

Impress Automation Page 69

scans each slide for those heading tagged shapes. After gathering this information, the
script creates a rectangular section on the left side of the slides and puts the headings
on it. To give the audience the chance to be aware of the status of the presentation, the
current heading text is red colored. Figure 26 shows a part of a slide, which was

changed by the macro. The macro supports a guidepost structure up to two levels.

Heading 1

Heading 2

Figure 26: Guideposts from heading

To make sure that there will be no guidepost on the last slide (this slide can be for
example a “Thank you for your attention” slide) the user will be asked for that, before

the start of the macro's main job.

34 /* create array with index and title of each heading-=lide */
35 headingIndex = .array -new

i6 counter = 0

37 startIndex = O

38 D0 1 = 0 TO pagecount - 1

39 ¥DrawPage = xDrawPages-~getByIndex(i)-FDrawPage

53 DO j = 0 TO xShapes~getCount - 1

54 xShape = xShapes-~getByIndex(j)

55 xShapeProps = xShape-XPropertyviet

& atyle = xShapePropa-getPropertyValue|{"Style”)

57 styleProps = style-EPropertyiet

58 nameStyle = styleProps-~getPropertyValue ("Displaylams")
549 IF ixBhape~XText == .nil] THEN

&0 ITERATE

el text = xShape-~XText-~getString)

62 f* if the style is heading */

63 IF (nameStyle == headlineName] THEN

64 Do

65 IF (startIndex == () THEN

(14 gtartIndex = i

&7 headingIndex-put (i | [["L:"] |text, counter+l)

The first thing to do is to iterate through all the slides to get every drawpage. With the
drawpage, one can access every shape that is added to it. The property Style has itself
another property called DisplayName. If the name is “Heading” the index of the relevant
slide and the text of the heading is added to the array. There exists also a counter

variable to calculate the span between the headings on the guidepost-section. The

Impress Automation Page 70

missing lines of the snippet are just removing previous guideposts if necessary. The

code is the same as in the examples for creating a progress information.

117 /* adding the headings teo the rectangle and mark the correct heading */
112 DO item OVER headingIndex

113 PARSE VAR item 1d":"level":"textGuidePost

120 nextItem = headingIndex|[counter+l]

121 PARSE VAR nextItem nextIndex "

122

1zz3 textfhape = xImpresaFactorv-~createlnstance (-

124 "ocom. sun. star. drawing. TextShape")

125 textfhape = textShape-Xfhape

1z2g

127 textProps = textShape-XPropertyiet

1za xDrawPage~add (textShape)

129 shapeGroup-~add (text Shape |

120 textShape-iText~set 2tring(textGuidePost)

131 IFicounter <= i & i < nextIndex & marked == 0) THEN

12z Do

133 textProps~setPropertyValue ("CharColor”, box("int", "FFO000"x ~c2d))
134 marked = 1

135 END

13e ELSE

137 textProps~asetPropertyValue ("CharColor”, box("int", "000000"x -c2d))

The next cutout is responsible for creating the heading fields in the guidepost-section of
the slides. In a DO OVER iteration all the heading fields in the array are examined with
the help of the PARSE VAR command. This command puts the slide index and the text
of the heading into different variables. As seen in line 66 of the previous cutout, this

information is stored as one literal into the array.

Depending on the current index of the slide and the index of the next slide, the heading

will be colored in red or in black.

Impress Automation Page 71

4.3.8 Example08

1 /* This macro dosg exactly the same as 07_guideposts, but displays the
2 headings in form of circles on the slides and marks it */
3 /* 08 _guldeposts_circles.rex */

xScriptContext=unoc. getScoriptfontext() -- get the xScriptContext object
choc=xScriptContext~getDocument -- get the document service {(an ¥Model object)
f* retrieving the important interfaces to get access to the drawpages */
xDrawPagesSupplier=cDoc-~-XDrawPagesSupplier
9 xImpressFactory = ocDoc-XMultiBerviceFactory
10 xDrawPages = xDrawPagesSupplier-~getDrawlages
11 /* glekal service manager for shape groupsr */
12 xContext = xScriptlontext-getlomponentContext
12 ¥Mcf = xContext-getServiceManager
14 CALL removeSelection oDoeg
15 /* check pagecount */
le pagecount=xDrawPages-EIndexAcceaz-getCount

[TR I Sy T =Y

17

18 IF pagecount == 1 THEN

15 DO

20 baf.dialog~-messageBox ("This presentation has only one slide. "-
21 "There is no need for running this macre!”, "ERROR", "error")
22 EXIT 0

23 END

24

25 firstDrawPageProps = xDrawPages-~getByIndex (0)-XDrawPage-~XPropertySet
26 height = firstDrawPageProps-getPropertyValue ("Height”)

27

28 /* asgk for end-=lide, the slide will get no guideposts */

29 hasEndSlide = .bef.dialog~dialegBox("Is there an end-slide in "-
30 "this presentation?", "(Question”, "question”, "YesNo")

31 headlineNams = getHeadlineDisplayMame (cDoc)

32 f* create array with index and title of each heading-slide */

32 headingIndex = .array -new

34 gounter = 0

35 startIndex = 0

36 DO 1 = 0 TO pagecount - 1

37 ¥DrawPage = ®DrawPages-getByvIndex(i)-XDrawPage

38 J* remove existing guidepostas, 1f necessary */

39 wZhapes = xDrawPage-Xthapes

40 IF{xShapes~getCount > 0) THEN

41 DO j = 0 TO xShapes-getCount - 1

4z xEfhape = xBhapes-~getByIndex(j)

43 IF (xShape~XNamed~getName () == "guidepost group") THEN
44 Do

45 xShapeGroup = xShape-EKShapeGroup

45 xDrawPage~remove (xShapeGroup)

47 END

4g END

49

50 DO j = 0 TO xShapes-~getCount - 1

51 xShape = xShapes-getByIndex(j)

52 xShapePrope = xEhape-~XPropertyiet

53 atyle = xShapePropa-~getPropertyValue ("Style”)
54 atyleProps = style-EPropertyiet

55 nameStyle = styleProps-getPropertyValue ("DisplayMame")
56 IF (xShape~XText == .nil) THEN

57 ITERATE

58 text = xBhape-~XText-getString)

52 f* if the style is heading */

&0 IF (nameStyle == headlineName) THEN

61 Do

62 IF (startIndex == 0] THEN

63 startIndex = i

64 /* assign bookmark teo each heading page */

65 xPageNams = xDrawPage-ENamed

g6 xPagelame~getlames (1)

Impress Automation Page 72

67
a8
e
70
71
72
73
74
75
76
77
78
79
a0
21
gz
83
24
85
86
a7
a8
a3
a0
91
92
93
94
a5
96
a7
98
99
100
101
102
103
104
105
106
107
108
109
1140
111
112
113
114
115
11s
117
11=
119
120
121
122
123
124
125
12s
127
128
129
130
131
132
133

headingIndex-put (i, counter+l)
counter = counter + 1
END
END
END

/* there ars no heading slides */
IF counter == O THEN
Do
baf.dialog-meassageBox ("This presentation has no heading textfields. -
"There is no need for running this macre!®, "ERROR", "error")
EXIT 0O
END

IF hasEndSlide = 0 THEN
endIndex = pagscount - 2
ELSE
endIndex = pagecount - 1

stepY = trunc((height - 2000) / counter)
post = 2000
countHeadings = counter
DO i = startIndex TO endIndex
#xDrawPage = xDrawPages-getByIndex (i) ~XDrawPage
poa¥ = 3000
counter = 1
marked = 0
f* create the group */
shapeGroup = xMecf-createInstanceWithContext (-
"oom. sun. star . drawing. ShapeCollection”, xContext)
shapeGroup = shapeGroup-XShapes

DO itemId OVER headingIndex

nextIndex = headingIndex[counter+l]

IF (countHeadings == ccunter| THEN

Do

/* adding the lines ketwsen the heading circles t£ill the last guidepost */
rectangle = xImpressFactory-createlnstance (-
"oom. sun. star.drawing . RectangleShape")

rectangle = rectangle-EShape
CALL setSizeAndPosition rectangle, 200, step¥ - 1000, 1260, pos¥ + 1300
rectangleProps=rectangle-XPropertySet
IF (nextIndex <= i) THEN

rectangleProps-sstPropertyValus ("FillColor”, box("int", "FFOO00"x -c2d))
ELZE
rectangleProps~-astPropertyValue ("FillColor™, -
box("int", "000000"x ~c2d))

xDrawPage~add (rectangle)
shapeGroup-add (rectangle)
END

/* create the circles with the heading serial number */
point = xImpressFactory-createlnstance |-
"ocom.sun.star.drawing. EllipseShape™)
point = point-XShape
pointPrope=point-XPropertysSet
constant = bsaf.getConstant ("com.sun.star.drawing. CirceleKind®, "FULL")
peintProps~setPropertyValue ("CircleKind", constant)
pointProps~gsetPropertyValue ("FillColor”, kox{"int", "FFFFO0"x ~c2d))
CALL setfizelndPositicn peint, 1400, 1400, 200, posa¥
xDrawPage-~add (poeint)
shapedroup-add (peint)

/* met the click event to the bockmark of the corresponding heading */
pointProps~setPropertyValue ("OnZlick”, -
baf.getConatant ("com.sun. star.presentation. ClickAction”, "BOOKMARE"))
peintPrope~setPropertyValue ("Bookmark”, itemId)

Impress Automation Page 73

134 point-EText-setString (counter)

135 posY = pos¥ + stepf

13e

137 IF{counter <= 1 & 1 < nextIndex & marked == 0) THEN

138 Do

133 pointProps-asetPropertyValue ("CharColor®, box("int®, °"FFO000"x -c2d))
140 marked = 1

141 END

142 ELSE

laz pointProps~setPropertyValue ("CharColor”, box("int", "000000"x ~c2d))
laa counter = counter + 1

145 END

l4e xShapeGrouper = xXDrawPage-XShapeGrouper

147 wEhapeGroup = xShapeGrouper-group (shapeGroup)
lag name = xShapeGroup-Xilamed

las name~zetName ("guidepost _group”)

150 END

151 EBXIT 0O

152

152 getHeadlineDisplayName

154 oDoo = ARG(1)

155 model= oDoc-EModel

156 famSupplier = model-XStyleFamilieaSupplier
157 families = famBupplier-getStyleFamilies()

158 graphs = families-getByName ("graphics")
153 styles = graphs-ilamsAccess

160 titelStyle = styles~-getByName ("headline"}

1&l gtyleProps = titelStyle-XPropertySet

ls2 RETURN styleProps-~getPropertyValus ("DisplayNams")

lez

l64 ::regquires TUNO.CLS -- load TNC support for OpenCffice.org
1&5

166 /* routine for positioning and resizing a shape */

167 ::routine setfizelndPositicon

168 use arg shape, width, height, posi, posY

les

170 shape~zetSize (-

171 baf-new ("com.sun.star.awt . Size”, width, height])

172 shape~getPogition(.baf~new("com.sun. star.awt . Point", posX, posY))
17z

174 /* routine for removing selection*/

175 ::routine removeSelecticn

17& use arg oDoc

177

178 model= oDoc-EModel

179 controller = model-getCurrentController ()

180 gelectionCfontroller = controller-XSelectionSupplier

128l gelected = gelecticnController~getSelection()

lg2 gelectionCentroller-aselect (.nil)

Snippet 19: Guideposts with circles and bookmarks (08_guideposts_circles.rex)

Macro number 8 is also adding a guidepost-section to the slides of a presentation.
There are two differences compared to the macro number 7 above. From the graphical
point of view, the guideposts will be displayed as circles connected by lines. Instead of
the text of the heading a serial number is shown on the slides. The color of the
numbers as well as the lines, which connect them, will be changed as the presentation

goes by. The result can be seen on Figure 27.

Impress Automation Page 74

But the most important difference is the use of bookmarks in this script. Each guidepost
gets an OnClick event, which directly leads to the slide with the corresponding heading.
This will provide a fast and easy way of navigating through the presentation without

writing those actions and graphical shapes manually.
|
@
(3)

(4)
Figure 27: Guideposts with bookmarks

Only the parts of the code, which are different compared to Snippet 18 will be shown in
this paragraph.
%4 /* assign boockmark teo each heading page */

65 ®PageNams = xDrawPage-HNamed
=1 xPagelams ~getlams (1)

When the macro has found a slide with a heading text field, the related drawpage gets
a name, to be able to access it later with a bookmark. The name is set with the help of
the XNamed interface and is the index of the heading slide.

These lines set the name of the drawpage to the index of the slide.

130 /* get the click event to the bookmark of the corresponding heading */
121 peintProps~setPropertyValue ("OnClick™, -

132 baf.getConatant ("com. sun. star . pregsentation. ClickAction®, "BOOEMARK"))
123 pointProps~setPropertyValue ("Bookmark”™, itemId)

124 point~-EText~getString (counter)

This cutout shows how the OnClick event is been connected to the bookmark using the
index of the guidepost circle shape. The text inside the circle will be a serial number

and is assigned to the shape in the line 134.

Impress Automation Page 75

4.3.9 Example09

1 /* This macro creates automatically an agenda of the presentaticon

2 using the headingl textfields */

3 /% 09 _agenda.rex */

4

5 xScriptfontext=unc.getScriptContext(] -- get the xScriptContext object

& choc=xScriptContext-getDocument -- get the document service {(an ¥Model object)
7 /% retrieving the important interfaces to get access to the drawpages */

8 xDrawPagesBupplier=cDoc-EDrawPagesSupplier

9 xImpressPFactory = oDoc-XMultiBerviceFactory
10 xDrawPages = xDrawPagesSupplier~getDrawlages
11
12 /* check pagecount */

13 pagecount=xDrawPages-EIndexicce as~getCount

14

15 IF pagecount == 1 THEN

1s DO

17 baf.dialeg-messageBox ("This presentation hasg only one slide. "-
18 "There is no need for running this macre!”, "ERROR", "error")
13 EXIT 0O

20 END

21 headlineNams = getHeadlineDisplayMame (cDoc)

22 /* create array with index and title of each heading-slide */
22 headingIndex = .array -new

24 counter = 0

25 startIndex = 0

26 DO 1 = 0 TO pagecount - 1

27 ¥DrawPage = ®DrawPages-getByIndex (i) ~XDrawPage

28 wZhapes = xDrawPage-Xthapes

29 DO j = 0 TO xShapes~getCount - 1

30 xShape = xShapes-getByIndex(j)

31 xShapePrope = xEhape-~XPropertyiet

32 gatyle = xBhapePropa-getPropertyValue ("style”)

33 atyleProps = style-EPropertySet

34 nameStyle = styleProps-getPropertyValue ("DisplayName")
35 IF (®xShape~XText == .nil) THEN

el ITERATE

37 text = xShape-~XText-getString/)

ig f* 1f the style is heading */

39 IF (nameStyle == headlineName) THEN

40 Do

41 IF (startIndex == () THEN

4z gtartIndex = i

43 headingIndex-put (i||":" | |text, counter+l)

44 counter = counter 4+ 1

45 END

44 END

47 END

47

49 /+* there are no heading slidea */

50 IF counter == O THEN

51 DO

52 baf.dialeg-meassageBox ("This presentation has no heading textfields. "-
53 "There iz no need for running this macre!", "ERROR", "error”)
54 EXIT 0

55 END

E&

57 f* if there is no existing agenda insert a new drawpage */
58 gecondSlide = xDrawPages-~getByIndex(l)-XDrawPage

59 nameSecondSlide = secondSlide-XNamed

60 IF (nameSecondSlide~getName () <> "agenda"] THEN
el DO

62 ¥DrawPages~insertNewByIndex (0]}

&3 END

a4

£5 /* format the agenda slide */
66 agendaPage = xDrawPages-getByIndex(l)-~EDrawPage

Impress Automation

a7
68
63
70
71
72
73
74
75
76
77
78
79
a0
a1
a2
23
a4
a5
=1
a7
aa
a3
a0
a1
a2
23
294
a5
96
97
a8
a9
100
101
102
103
104
105
1086
107
108
1049
110
111
112
113
114
115
11l
117
118
1139
120
121
1z2
123
124
125
1zg
127
1z8
129
130
131
132
133

CALL preparehAgendaSlide agendaPage

f* positioning of the text cursor */
headinglistShape = agendaPage-XShapess
headinglistShape = headinglistShape-~getByIndex (1)
xText = headinglistShape-~XText
xText~petString (")

xTextCursor = xText-createTextCursor
xTextCursor~gotoEnd (. falae)

xTextRange = xTextCursor-XTextRange

linebreak = "0d0a"x
atart = 0
DO item OVER headingIndex

PARSE VAR item id":"text
/* adding the headinge to the listing */
IF (start == 1) THEN
xTextRange~setString (linebreak| |text)
ELSE
Do
xTextRange~setString (text)
atart = 1
END
¥xTextCursor~gotoEnd (. falae)
¥TextRange = xTextCursor-ETextRanges
END

/* format the listing */
CALL formatZgenda headingListShape
EXIT 0

getHeadlineDisplayName
oDoc = BRG(1)
model= olDog-XModel
famSupplier = model-XStyleFamilieaSupplier
families = famBupplier-getStyleFamilies()
graphs = families~getByName ("graphics")
gtyles = grapha-¥Namshccess
titels8tyle = styles~getByName ("headline")
styleProps = titelStyle-XPropertySet
RETURN styleProps~getPropertyValue ("Digplayllams")

iirequires TNO.CLE -- load UNC support for OpenCffice.org

f* procedurs for formating the agenda slids */
f* asgigning of layout and heading */
::routine preparelgendaSlide

use arg agendaPage

xPageNams = agendaPage-illamsd

xPagelName-~getlams ("agenda”)

agendaPageProps = agendaPage~EFropertviet
agendaPagePrope~getPropertyValue ("Layout ", bkox("short”, 1))

whapes = agendaPage-~XShapes
agendaHeadingShape = xShapes~getByIndex(0)
®xText = agendaHeadingShape-XText
¥xText~-getString ("Agenda”)

f* procedure for formating the listing */
f* inereaging of line spacing and fontasize */
irroutine formatAgenda

use arg agendaShape

headinglistShapeProsp = agendaShape-~XPropertyiet

Page 76

lineSpacing = headinglistShapeProasp~getPropertyValue ("ParalineSpacing”)

Impress Automation Page 77

134 lineSpacing~Height=500

135 lineSpacing~Mode=2

126 headinglistShapeProgp~setPropertyValue ("ParalineSpacing”, lineSpacing)
127 headinglistShapeProgp-setPropertyValue ("CharHsight", box("float”, 40))

Snippet 20: Create an agenda (09 _agenda.rex)

The last macro of this bachelor paper is a script that generates a slide with the agenda
of the presentation. The agenda will be created using the text fields with heading style.
If the agenda is already created in the past and the script is started again, the agenda
will be updated with the current heading tags. This script will again use various parts of
the previous examples to retrieve the array with the heading information. To ensure a
failsafe process, the macro checks if there is any heading text field at all and shows a

message dialog in the case of nonexistence.

112 /#* procedure for formating the agenda slides */
112 /* asspigning of layout and heading */
114 ::routine preparelgendaSlide

115 uge arg agendaPage
1le
117 wPagelams = agendaPage-ilNamsd

11= »PageName~assetNames ["agenda”™)

113 agendaPageProps = agendaPage-EPropertySet

120 agendaPagePropa-getPropertyValue ("Layout ", kbowi"short”, 11)
121

122 wShapesz = agendaPage-XShapes

123 agendaHeadingfhape = xShapea-getByIndexid)

124 ®xText = agendaHeadingShape-XText

125 WText-setString ("Agenda®)

This procedure gets a drawpage as an argument and sets the name of it for enabling
the possibility to refresh it when running the macro at a later date. The Layout property

is set to 1 that means the slide gets a text field at the top and a listing at the center. The

text of the text shape is set to “Agenda” by accessing the shape with the index 0.

127 /* procedure for formating the listing */

128 /* increasing of line spacing and fontsize */

129 ::routine formatiAgenda

130 use arg agendaShape

131

132 headinglListShapeProsp = agendaShape-XPropertySet

133 lineSpacing = headinglistShapeProap-getPropertyValue ("Paralinefpacing™)
134 lineSpacing~Helght=500

135 lineSpacing-~Mode=2

13¢ headinglistShapeProsp~getlropertyValue ("ParalineSpacing”, lineSpacing)
137 headinglistShapeProsp~setPropertyValue ("CharHe=ight”, box("flocat”, 40))

For formating the listing with the headings this procedure is called. The line spacing as

well as the font size is adjusted to create a good looking agenda.

Impress Automation

Page 78

£9 /* positioning of the text cursor */

70 headingListShape
71 headinglistShape

= agendaPage-~XShapea
= headinglistShape-getByIndex(l)

72 xText = headinglistShape~XText

73 xText-setStringl

74 xTextCursor = xText-~createTextlursor
75 xTextCursor~gotoEnd (. falae)

76 xTextRange = xTextlursor-XTextRange

The script appends each heading to the listing text field on the agenda slide by using a

TextCursor. Line number 73 shows the command how the cursor will be placed at the

end. The XTextRange interface will then be used to append the text with a carriage

return.

Figure 28 shows a generated agenda slide.

Agenda

Heading 1
Heading 2
Heading 3
Heading 4

Figure 28: Generated agenda

Conclusion Page 79

5 Conclusion

The conclusion of this bachelor thesis is that with the help of Open Object Rexx, Bean
Scripting Framework, BSF4Rexx and OpenOffice.org it is possible to automate the
office suite without any expert knowledge about programming languages.
The only real requirement for the development is to be able to search self-dependent in
the web for the functionality one is looking for. But this is not just the case for this type
of work. For nearly every task one is coping with, there is a need to find the desired

information as fast as possible, but not loosing the sight of the quality of the results.

The open source scripting language Open Office Rexx is very easy to learn and can
use the massive amount of classes provided by Java with the help of BSF and
BSF4Rexx. This will give the scripting language more power and opens the door to the

UNO based architecture of OpenOffice.org.

The macros themselves are very useful and could save presenters a lot of time,
especially for the macros, which are dealing with the progress indication. But that
should not be the only important output of this paper. Other students who are also
interested in this topic can benefit from the results and build open the snippets to create

even more sophisticated macros.

Because there were not so many examples for automation of Impress, actually there is
only one on the homepage of OpenOffice.org, it was not very easy to get in touch with
the interfaces, properties and functionality of Impress. With the help of the excellent
Developers Guide, some nutshells from previous bachelor papers and the online
community of OpenOffice.org it was possible to create the snippets in this bachelor
paper in a reasonable amount of time.

It also emerged that the functions in both the UNO.CLS and BSF.CLS were very
helpful, for example the ones which return the names of the inferfaces using reflection

and the properties of an object.

And if more and more snippets and examples are getting online, the community grows
and grows and the collective knowledge would increase over the years, the power of

OpenOffice.org and open source software in general will be strengthen.

References

Page 80

6 References

[Aham05]

[BSFO07a]

[BSFO7b]

[BSFO7¢]

[BSF4Re073]

[BSF4Re07b]

[BSF4Re07c]

[BSF4Re07d]

Ahammer, Andreas: OpenOffice.org Automation: Object Model,
Scripting Languages, ,Nutshell*-Examples, Bachelor Course Paper,
2005

Apache Jakarta Project: Bean Scripting Framework, Front Page,
http://jakarta.apache.org/bsf/, retrieved on 2007-05-26

Apache Jakarta Project: Bean Scripting Framework, Frequently Asked
Questions, http://jakarta.apache.org/bsf/faq.html,
retrieved on 2007-05-26

Apache Jakarta Project: Bean Scripting Framework, Manual,

http://jakarta.apache.org/bsf/manual.html, retrieved on 2007-05-26

Flatscher, Rony G.: The Vienna Version of BSF4Rexx - Changes for
OOo,

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOQo.txt, 2007-
01-28, retrieved on 2007-05-24

Flatscher, Rony G.: The Vienna Version of BSF4Rexx — Reference
Card OpenOffice.org,
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOQOo.pdf,
2007-01-28, retrieved on 2007-05-24

Flatscher, Rony G.: The Vienna Version of BSF4Rexx — Readme of
BSF4Rexx,
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt,
2007-01-28, retrieved on 2007-05-24

Flatscher, Rony G.: The Vienna Version of BSF4Rexx — Readme of
OO0o support,
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOQo.txt
2007-01-28, retrieved on 2007-05-24

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOOo.txt
http://jakarta.apache.org/bsf/manual.html
http://jakarta.apache.org/bsf/manual.html
http://jakarta.apache.org/bsf/manual.html
http://jakarta.apache.org/bsf/faq.html
http://jakarta.apache.org/bsf/faq.html
http://jakarta.apache.org/bsf/faq.html
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/

References

[Flat05]

[Flat06a]

[Flat0Bb]

[FlatO6c]

[Flat06d]

[OORexx07a]

Page 81

Flatscher, Rony G.: Automating OpenOffice.org with OoRexx:
Architecture, Gluing to Rexx using BSF4Rexx, 2005,
Wirtschaftsuniversitat Wien (Vienna University of Economics and
Business Administration), Austria,

http://wi.wu-
wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_00o.pdf,
retrieved on 2007-05-20

Flatscher, Rony G.: Resurrecting REXX, Introducing Object Rexx,
2006, Wirtschaftsuniversitat Wien (Vienna University of Economics and
Business Administration), Austria,
http://prog.vub.ac.be/~wdmeuter/RDLO6/Flatscher.pdf,

retrieved on 2007-05-18

Flatscher, Rony G.: Automatisierung von Windows Anwendungen (1) -
Einfahrung, Uberblick, Anweisungen, Prozeduren, Funktionen,
http://wi.wu-
wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf,
retrieved on 2006-03-15

Flatscher, Rony G.: The Vienna Version of BSF4Rexx, Presentation at
the 2006 International Rexx Symposium, USA, 2006,
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf,
retrieved on 2007-05-20

Flatscher, Rony G.: Automatisierung von WindowsAnwendungen (3) —
Ausnahmen (Exceptions), Referenzen, Direktiven (::routine, ::requires)
http://wi.wu-
wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf,
retrieved on 2006-03-17

Open Object Rexx Homepage, Product Brochure,
http://www.oorexx.org/ooRexx-Brochure.pdf,
retrieved on 2007-05-17

http://www.oorexx.org/ooRexx-Brochure.pdf
http://www.oorexx.org/ooRexx-Brochure.pdf
http://www.oorexx.org/ooRexx-Brochure.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf
http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf
http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf

References

[OORexx07b]

[OpenOf07a]

[OpenOf07b]

[OpenOfd7c]

[OO0Dev05]

[WikiBS07]

[WikiO007]

[WikiRe07]

Page 82

Open Object Rexx Homepage, About,

http://www.oorexx.org/index.html, retrieved on 2007-05-17

Open Office Homepage, About ,
http://about.openoffice.org/index.html, retrieved on 2007-05-20

Open Office Homepage, Product ,

http://www.openoffice.org/product/index.html, retrieved on 2007-05-20

Open Office Homepage, APl — Developers Guide, First Steps,
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.x
html, retrieved on 2007-05-20

Open Office Homepage, Developers Guide, May 2005,
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf,
retrieved on 2007-05-214

Wikimedia Foundation Inc, Bean Scripting Framework,
http://en.wikipedia.org/wiki/Bean_Scripting_Framework,
retrieved on 2007-05-06

Wikimedia Foundation Inc, OpenOffice.org,

http://en.wikipedia.org/wiki/Openoffice.orqg, retrieved on 2007-05-05

Wikimedia Foundation Inc, REXX,
http://en.wikipedia.org/wiki/REXX, retrieved on 2007-05-04

http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/wiki/Openoffice.org
http://en.wikipedia.org/wiki/Openoffice.org
http://en.wikipedia.org/wiki/Openoffice.org
http://en.wikipedia.org/wiki/Bean_Scripting_Framework
http://en.wikipedia.org/wiki/Bean_Scripting_Framework
http://en.wikipedia.org/wiki/Bean_Scripting_Framework
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://www.openoffice.org/product/index.html
http://www.openoffice.org/product/index.html
http://www.openoffice.org/product/index.html
http://about.openoffice.org/index.html
http://about.openoffice.org/index.html
http://about.openoffice.org/index.html
http://www.oorexx.org/index.html
http://www.oorexx.org/index.html
http://www.oorexx.org/index.html

	 1 Introduction
	 1.1 Abstract
	 1.2 Research Question
	 1.3 Keywords

	 2 General Part
	 2.1 Open Object Rexx
	 2.1.1 History
	 2.1.2 RexxLA
	 2.1.3 Overview
	 2.1.4 Syntax

	 2.2 OpenOffice.org
	 2.2.1 History
	 2.2.2 Overview
	 2.2.3 Architecture
	 2.2.4 Services & Interfaces

	 2.3 Bean Scripting Framework for Rexx
	 2.3.1 Bean Scripting Framework
	 2.3.2 BSF4Rexx
	 2.3.3 BSF.CLS
	 2.3.4 UNO.CLS
	 2.3.5 Routines

	 2.4 Summary

	 3 Installation Guide
	 3.1 Installation Java
	 3.2 Installation OpenOffice.org
	 3.3 Installation Open Object Rexx
	 3.4 Installation BSF4Rexx

	 4 Impress Automation
	 4.1 General
	 4.2 Introduction Example
	 4.3 Examples
	 4.3.1 Example01
	 4.3.2 Example02
	 4.3.3 Example03
	 4.3.4 Example04
	 4.3.5 Example05
	 4.3.6 Example06
	 4.3.7 Example07
	 4.3.8 Example08
	 4.3.9 Example09

	 5 Conclusion
	 6 References

