
WIRTSCHAFTSUNIVERSITÄT WIEN
BAKKALAUREATSARBEIT

Titel der Bakkalaureatsarbeit:

Automatische Erstellung von Orientierungshilfen für PräsentorInnen in
OpenOffice.org Impress

Englischer Titel der Bakkalaureatsarbeit:

Automated Creation of Guideposts & Hints for Presenters in
OpenOffice.org Impress

Verfasser: Dominik Gundacker
Matrikel-Nr.: 0451615
Studienrichtung: J033 526 Bakkalaureat Wirtschaftsinformatik
Kurs: 1526 Vertiefungskurs VI / Bakkalaureatsarbeit

Electronic Commerce
Textsprache: Englisch
Betreuerin/Betreuer: ao. Univ. Prof. Dr. Rony G. Flatscher

Ich versichere:

dass ich die Bakkalaureatsarbeit selbstständig verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.

dass ich die Ausarbeitung zu dem obigen Thema bisher weder im In- noch im Ausland (einer
Beurteilerin/ einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt
habe.

dass diese Arbeit mit der vom Betreuer beurteilten Arbeit übereinstimmt.

Datum Unterschrift

Page 2

Table of Contents
 1 Introduction...6

 1.1 Abstract..6

 1.2 Research Question..6

 1.3 Keywords...6

 2 General Part..7

 2.1 Open Object Rexx...7

 2.1.1 History..7

 2.1.2 RexxLA...8

 2.1.3 Overview...8

 2.1.4 Syntax...9

 2.2 OpenOffice.org..13

 2.2.1 History..13

 2.2.2 Overview...13

 2.2.3 Architecture..14

 2.2.4 Services & Interfaces...16

 2.3 Bean Scripting Framework for Rexx..19

 2.3.1 Bean Scripting Framework...19

 2.3.2 BSF4Rexx..20

 2.3.3 BSF.CLS...22

 2.3.4 UNO.CLS..23

 2.3.5 Routines...24

 2.4 Summary...25

 3 Installation Guide..26

 3.1 Installation Java...26

 3.2 Installation OpenOffice.org..27

 3.3 Installation Open Object Rexx...27

 3.4 Installation BSF4Rexx...28

 4 Impress Automation...32

 4.1 General..32

 4.2 Introduction Example...34

 4.3 Examples...40

 4.3.1 Example01...41

Page 3

 4.3.2 Example02...45

 4.3.3 Example03...49

 4.3.4 Example04...54

 4.3.5 Example05...57

 4.3.6 Example06...61

 4.3.7 Example07...66

 4.3.8 Example08...71

 4.3.9 Example09...75

 5 Conclusion..79

 6 References..80

Page 4

Table of Figures
Figure 1: Communication between UNO components [Flat06].....................................15

Figure 2: UNO Component Model [Flat05]...15

Figure 3: Illustration of ServiceManager [OpenOf07c]...17

Figure 4: Interfaces & Methods [OpenOf07c]...18

Figure 5: Architecture of BSF4Rexx [Flat06c]..21

Figure 6: From ooRexx to Automation [Aham05]...25

Figure 7: Options Dialog in OOo...29

Figure 8: Extension Manager..30

Figure 9: Macros installation...31

Figure 10: Presentation Document Model [OOoDev05]...34

Figure 11: Organize Macros...35

Figure 12: Macro editor...36

Figure 13: "Hello World" TextShape ..39

Figure 14: ClickEvent on TextShape..39

Figure 15: Progress bar..43

Figure 16: Pacman on his way to the cherries...47

Figure 17: Bomb with fuse..52

Figure 18: Explosion slide...53

Figure 19: Clock transition..56

Figure 20: Input dialogs..60

Figure 21: Generated break slide...60

Figure 22: Slide effects...64

Figure 23: Dialog for choosing the speed...65

Figure 24: Duration of one slide..65

Figure 25: Question dialog for end slide...65

Figure 26: Guideposts from heading..69

Figure 27: Guideposts with bookmarks..74

Figure 28: Generated agenda...78

Page 5

Table of Snippets
Snippet 1: Hello World..10

Snippet 2: Variables..10

Snippet 3: Control Structures 1...11

Snippet 4: Control Structures 2...11

Snippet 5: Control Structures 3...12

Snippet 6: Control Structures 4...12

Snippet 7: BSF4Rexx simple example...23

Snippet 8: BSF4Rexx message box example..23

Snippet 9: Using UNO.CLS...24

Snippet 10: Interfaces with Desktop...36

Snippet 11: Introduction example (00_introduction.rex)...38

Snippet 12: Progressbar (01_progressbar.rex)..42

Snippet 13: Pacman (02_pacman.rex)...47

Snippet 14: Bomb (03_bomb.rex)...51

Snippet 15: Clock (04_clock.rex)..55

Snippet 16: Create Break Slide (05_break.rex)..58

Snippet 17: Various tasks (06_finish_presentation.rex)...63

Snippet 18: Guideposts from headings (07_guideposts.rex)... 68

Snippet 19: Guideposts with circles and bookmarks (08_guideposts_circles.rex)........ 73

Snippet 20: Create an agenda (09_agenda.rex)..77

Introduction Page 6

 1 Introduction

This chapter will give you a short overview about the content, the structure and the

approach of this bachelor thesis.

 1.1 Abstract

This bachelor paper will give an introduction to the OpenOffice.org suite, especially the

presentation program Impress, and how the scripting language Open Object Rexx can

help to automate the use of it.

The result of the automations should make the life easier for presenters and add some

extra value to the presentations.

This paper is divided into two parts. The first part will cover the more theoretical and

general part of the bachelor thesis. These chapters will address the technical

environment including the OpenOffice.org suite itself, the scripting language Open

Object Rexx (ooRexx), the Bean Scripting Framework (BSF) and an overall-view to get

familiar with the interaction of those components.

After that, the second part will present some snippets and nutshells that demonstrate

the automation of Impress.

The concluding part should give a short summary of the paper.

 1.2 Research Question

How can Open Object Rexx help to automate the use of Impress and assist the

presenter to make presentations more appealing and attractive for both, the audience

and the presenter himself?

 1.3 Keywords

OpenOffice.org, Impress, Open Object Rexx, Bean Scripting Framework for Open

Object Rexx, Automation, Guideposts, Hints

General Part Page 7

 2 General Part

This chapter contains an overview of all the used tools, applications and frameworks,

which are needed for the automation of Impress and other OpenOffice.org applications.

In addition to the technical prerequisites, the most important terms will be defined here,

to ease the access to the topic of the bachelor paper.

 2.1 Open Object Rexx

The paper starts with some introductory words about the scripting language Open

Object Rexx and how it emerges from IBM’s REXX language. There will also be a

section with the basic syntax of Open Object Rexx, which is really not that hard to learn

and understand.

 2.1.1 History

Open Object Rexx has its seeds in the "human centric language" REXX (Restructured

EXtended EXecutor") implemented by Mike Cowlishaw of IBM between 20 March 1979

and mid-1982. The main purpose of the development of REXX was to replace IBM's

mainframe batch language EXEC II.

[Flat06a]

Eventually in 1996 REXX was been standardized by ANSI, which published it under the

code ANSI X3.274–1996 “Information Technology – Programming Language REXX”.

[WikiRe07]

In the 1990s, there were two newer variants of REXX, which were released:

• NetRexx – this version compiles to Java byte-code and makes use of the Java

object model. Therefore it is not generally upwards-compatible with the ‘classic’

REXX.

• Object Rexx – the generally upwards-compatible version of REXX, which

implements the object-oriented paradigm.

[WikiRe07]

General Part Page 8

As noted above, Object Rexx is the object-oriented approach to the scripting language

Rexx. One of the requirements of this version was the full compatibility with other

interpreters that were not object-oriented or other Open Source Rexx interpreters

currently available.

[OORexx07b]

This was a request of the SHARE SIG (special interest group).

In 1997 after 9 years of development, the commercial version of Object REXX was

released included in “OS/2 Warp”. Later on, IBM built versions for Windows, AIX and

experimental ports for Linux and Solaris.

[Flat06a]

The last step of REXX becoming Open Object Rexx was the decision from IBM to make

their product available to the open source community. They choose the RexxLA for

managing the project in 2004.

The first release of Open Object Rexx was announced in March 2005.

[OORexx07a]

 2.1.2 RexxLA

“The Rexx Language Association (RexxLA) is an independent, non-profit organization

dedicated to promoting the use and understanding of the Rexx programming language“

[RexxLA07]

This special interest group was involved in porting Object Rexx to an open source

project in 2004 as mentioned above. Every year, the group holds a annual meeting

called „Annual International Rexx Symposium“ where the members and other experts

present new and interesting projects.

 2.1.3 Overview

This paragraph deals with the main features and fundamental principles of the Rexx

language. One of the major advantages of Rexx is that it is very easy to learn, even

without advanced programming skills, and that it facilitates a rapid development

General Part Page 9

process.

The main features are the following:

• Natural language syntax – With Open Object Rexx writing and maintaining

programs is very easy. Intuitive instructions, which are oriented to the English

language, make programming accessible to IT or business users. Because Rexx

does not use any strange abbreviations, it is easy to read a program or script

and readily understand its functionality, for example. ‘System.out.println(“xx”)’ in

Java and Say “xx” in Rexx.

• Object orientation– Supports effective componentization and all the other

advantages of the object-oriented paradigm.

• Implicit data typing– In Rexx, there is no need to explicitly declare variables.

That reduces the complexity of application code and makes programming more

intuitive and faster.

• Decimal arithmetic – Open Object Rexx performs calculations in a more

accurate way. The absence of rounding makes it easy to comply with legal

requirements for financial reporting.

• Cross-platform interoperability – Reduces development costs and supports

skills transfer across platforms.

• Rapid diagnostics – In the case of exceptions and errors, Open Object Rexx

provides the user with clear messages and a built- in, multi-level debugger.

[OORexx07a]

 2.1.4 Syntax

In order to understand the examples and snippets in the following sections of this

paper, a short introduction into the Open Object Rexx language is inevitable. This

paper does not want to break any conventions for describing a programming language,

so the first piece of code is the infamous „Hello World“ example.

General Part Page 10

This snippet shows many aspects of Rexx:

• Multi line comments – Starting with a slash and an asterisk, a comment can

span over multiple lines. An asterisk and a slash closes the comment.

• Single line comment – Starting with a double minus sign or dash, a comment

can be made only till the end of the line.

• Command end – Normally, a command consists of all characters till the

semicolon. It is possible to write as many commands as one prefers in one line.

If there is no semicolon, the command ends at the end of the line.

• Basic commands – SAY prints the following string literals, variables, etc. to the

command shell where the Rexx script was started.

EXIT 0, as the name implies, exits the program and sends 0 back to the shell.

Whereas 0 generally means that the program finished with no problems or

errors.

[Flat06b]

This snippet shows the following facts:

One do not need to specify a data type or something similar. Rexx automatically

detects if the value inside a variable is a string or a numeric value and handles the

Snippet 2: Variables

Snippet 1: Hello World

General Part Page 11

operation itself.

Rexx also treats several white spaces in commands and string concatenations as one

whitespace. That is why the output of the SAY number 1 and SAY number 2 are equal.

The double-pipe in a string concatenation avoids the single whitespace between the

strings and connects the value of a and the value of b seamless together.

The last SAY command adds the two values regardless the fact that b was initialized

with a string literal containing the number 4.

[Flat06b]

The next snippets show how control structures are implemented in Rexx:

The IF – ELSE implementation of Rexx looks like in any other programming language.

If one wants to make a block of commands, for example to be processed in the IF or

ELSE branch, then the DO – END commands are appropriate. There is no need for a

enclosing tag.

With the keywords DO and END respectively a loop is implemented in Rexx. One can

specify the number of iterations after DO.

Snippet 4: Control Structures 2

Snippet 3: Control Structures 1

General Part Page 12

The equivalent to a for – loop in Java is the DO–TO–BY loop. With this loop one can

specify the start value of a control variable, the value when the loop should be exited

and the value that would be added to the control variable after each iteration.

The last snippet shows the DO-WHILE loop. In fact it is nearly the same like the DO-

TO-BY loop, but unlike this version, one has to manage the increase of the control

variable himself. The keyword WHILE can be changed to UNTIL, which alters the way

how the loop will be exited.

[Flat06b]

Snippet 6: Control Structures 4

Snippet 5: Control Structures 3

General Part Page 13

 2.2 OpenOffice.org

This paragraph deals with the next essential part of this bachelor paper: The

OpenOffice.org office suite. The first part describes the historic facts of the project, later

on the paper shows the main components of OpenOffice.org.

OpenOffice.org is a free suite of office applications available under the GNU Lesser

General Public License (LGPL). The software package includes a word processor, a

spreadsheet, a presentation program, a database program and a vector graphics

editor. The suite is targeted to reduce the market share of Microsoft's Office and enjoys

increasing popularity amongst the community.

[WikiOo07]

 2.2.1 History

The origin of OpenOffice.org is the company StarDivision, which was founded in

Germany in 1986 by Marco Börries. OpenOffice.org emerged from the earlier

proprietary software application suite StarOffice.

[WikiOo07]

After Sun Microsystems acquired StarDivision in 1999, they released StarOffice 5.2, the

first version which was free of charge. [OpenOf07a]

In 2000 Sun released the source code under both the LGPL and the Sun Industry

Standards Source License (SISSL). Since the autumn of that year, the product is now

called OpenOffice.org. Years later Sun changed the systems with two different license

types and decides to continue their work with the usage of the LGPL.

At the time when this paper was written, the current version of OpenOffice.org was

2.2.1 RC1 build SRC680_m16 and was released on May 5th, 2007.

[WikiOo07]

 2.2.2 Overview

The OpenOffice.org office suite consists of different applications. Nearly all of them

have corresponding applications in Microsoft's Office. This fact should make it easier

for users, to switch to the open source suite.

General Part Page 14

The components are the following:

• Writer – The word processing application, similar to MS Word, can be used to

create text documents, from simple letters to books or thesis like this one.

• Calc – The spreadsheet program is the counterpart to MS Excel with the basic

functionalities like tables, cell and calculations but also provides the user with a

comprehensive range of advanced functions.

• Impress – The presentation software of OpenOffice.org. Like PowerPoint,

Impress can be used for creating multimedia presentations. This component will

be heavily used across the paper.

• Base – Base is a database application and can be compared with MS Access. In

Base creation of tables, reports, queries and forms is possible.

• Draw – Draw represents a vector graphics editor to create and design

everything from simple diagrams to dynamic 3D illustrations.

• Math – A tool, which can be used to create mathematical equations, either with

a graphical user interface (GUI) or a equation editor.

[WikiOo07] [OpenOf07b]

 2.2.3 Architecture

This section will cover the architecture of OpenOffice.org to act as an entry point for the

automation. The facts presented here are essential for the understanding of the

snippets and nutshells in this paper.

OpenOffice.org is based on a client-server architecture. The communication between

the layers is typically supposed to run over TCP/IP sockets by using UNO remote

protocol (urp), whereas a typical installation of this office suite runs on a single PC

rather than on different machines with each running different operating systems, which

is possible.

General Part Page 15

Figure 1 illustrates the communication between UNO objects.

Figure 1: Communication between UNO components [Flat06]

The object model used in OpenOffice.org is called Universal Network Objects (UNO)

and every component or object is defined using an interface description language

(IDL). That means that each application, for example Impress, represents a set of those

components assembled together.

Figure 2 tries to picture this concept, whereas it should be noted that swriter or scalc

can here be replaced by any otherOpenOffice.org applications.

[Flat05]

Figure 2: UNO Component Model [Flat05]

General Part Page 16

 2.2.4 Services & Interfaces

Objects
„In UNO, an object is a software artifact that has methods that you can call and

attributes that you can get and set. Exactly what methods and attributes an object

offers is specified by the set of interfaces it supports.“

[OpenOf07c]

Interface
„An interface specifies a set of attributes and methods that together define one single

aspect of an object“

[OpenOf07c]

Each UNO component consists of interfaces and properties, which provide access to

the different functionalities of the components. Properties are used for storing

information for these services.

To retrieve a new instance of a service component one has to use a ServiceManager,

which is an implementation of the factory method pattern in software programming.

The methods "createInstance()" or "createInstanceWithArguments()" in combination

with the fully qualified name of the UNO component can be used to create the so-called

service objects.

General Part Page 17

Figure 3: Illustration of ServiceManager [OpenOf07c]

In order to get access to methods from an interface, one has to query the service object

for the interface itself. This step is mandatory and returns an object, which has the

methods of the requested interface, which can be invoked now.

This work flow seems very awkward, but offers few advantages like the separation and

grouping of methods that belong semantically and functionally together.

[Flat05]

General Part Page 18

Figure 4: Interfaces & Methods [OpenOf07c]

Figure 4 shows how two objects with interfaces and corresponding methods look like in

OpenOffice.org using an UML diagram. TextDocument contains text, is searchable and

refreshable. Because TextDocument is always an OfficeDocument, it implements also

the interfaces XModifiable, XModel, XPrintable and XStorable. All Interfaces begin with

an X in OpenOffice to distinguish them from other entities.

General Part Page 19

 2.3 Bean Scripting Framework for Rexx

The next chapter covers the last step to be able to automate OpenOffice.org using

Rexx. Sun provides each UNO Object in OpenOffice.org with a Java adapter so that it

can fully be controlled and automated using Sun’s own popular programming language.

So there is only one link left between Java and Rexx, and Open Object Rexx

respectively. The Bean Scripting Framework and BSF4Rexx make this possible.

 2.3.1 Bean Scripting Framework

The Bean Scripting Framework provides a bunch of classes, which make it possible to

access Java objects and methods from scripting languages. It also provides scripting

language support within Java applications.

Especially the first application area is used for automation of OpenOffice.org when we

want to access the Java Interfaces of the UNO objects and call the methods via Rexx.

[BSF07a]

Again, IBM was the founder of this project in 1999 and chose the Apache Software

Foundation to manage the source code. BSF is now part of the Apache Jakarta Project

where it is released under the Apache License.

When BSF was available in version 2.3, it was donated to the Apache Software

Foundation, the current version is 2.4.0.

[WikiBS07], [BSF07b]

The supported script languages of BSF are:

• Javascript (using Rhino ECMAScript, from the Mozilla project)

• NetRexx (an extension of the IBM REXX scripting language in Java, mentioned

above)

• Python (using Jython)

• Tcl (using Jacl)

• XSLT Stylesheets (as a component of Apache XML project's Xalan and Xerces)

General Part Page 20

Some languages are also supported because they have their own BSF engine:

• Java (using BeanShell, from the BeanShell project)

• Groovy

• JLog (PROLOG implemented in Java)

• JRuby

• JudoScript

• ObjectScript

• Open Object Rexx, using BSF4Rexx

[BSF07a]

There are two important components in BSF:

• BSFManager – This class is responsible for all the registered scripting execution

engines and maintains the object registry, which permits scripts access to Java

objects.

• BSFEngine – Through this interface it is possible to handle script execution and

object registration in a generic way, because it provides an abstract view of the

scripting language’s capabilities.

[BSF07c]

 2.3.2 BSF4Rexx

BSF4Rexx, as above mentioned, is an extension to make it possible to use the

scripting language Rexx to dive into the world of Java. This means that one can access

every Java object or method via Rexx. Also the reverse way, using Rexx in Java, is

provided by BSF4Rexx

[BSF4Re07c]

With this bridge, Rexx can get access to the largest external function package on earth,

which was additionally ported to each and every important operating system and

General Part Page 21

hardware platform

[Flat06c]

From the historical point of view, it was Prof. Mag. Dr. Rony G. Flatscher who

developed BSF4Rexx in 3 different steps. Each version was named after the city where

he was working at a university.

The „Essener Version“ was developed in 2000 in cooperation with a student from Prof.

Flatscher, Peter Kalendar. He presented this version in spring 2001 to the RexxLA.

The next Version was called „Augsburger Version“ and was finished in 2003. The major

changes, beside some bugfixes, was the addition of external functions from Rexx into

the „BSF4Rexx.dll“ package.

The current version, the „Vienna Version“, with the number 2.6 allows Open Object

Rexx programs to address Java fields as if they were Open Object Rexx attributes.

There are also two important methods, box and unbox, which can wrap and unwrap

primitive data types in Java to the corresponding classes.

[Flat06c], [BSF4Re07c]

Figure 5: Architecture of BSF4Rexx [Flat06c]

General Part Page 22

Figure 5 shows the Architecture of the „Vienna Version“ of BSF4Rexx. There is a cls

file, which supports BSF routines and contains services that make the most important

Java classes directly available via the environment symbol .bsf4rexx.

[Flat06c]

 2.3.3 BSF.CLS

This section will show how Rexx can access some well known Java classes and how it

can call methods and retrieve results from them.

As mentioned above, with the help of the BSF.CLS module, one can access a huge

amount of classes and functionality, which is available in and for the world of Java.

From accessing the standard Java classes, which were shipped with the Java SDK

itself like the system properties, date objects, JDBC connections, Swing and SWT GUIs

through more sophisticated third party tools and packages. Every Java API can be

accessed from the scripting language Open Object Rexx.

The module provides the developer with some basic and general functions for loading

classes, for example the method bsf.loadClass, which acts as a creator for Java

objects. The following snippet should show how easy it is to access a Java Class with

just a few lines of code. One remark in advance, in Rexx one can include a module with

functions in two different ways:

• Using ::REQUIRES directive - This kind of including the module has to be in

the last line of your script. It is invoked before any other statement is interpreted

and because of this, the functions would be available across the whole Rexx

scripts. The next snippet uses this style of import.

• Using CALL – The invocation of CALL has to be before the first usage of a

method of the included module. In the case of including BSF.CLS, CALL

BSF.CLS should be written, before one calls a BSF function. The latter of the

snippets for BSF4Rexx uses this style of import.

[Flat06d]

General Part Page 23

This snippet shows how to create a new Date object and store this object into a Rexx

variable. dateObject contains now a Java object, to which a message is send using the

twiddle operator. Sending a message in Rexx means to call a method on this object.

Again the result, a String object, is saved into a Rexx variable and is printed with the

help of the SAY command.

The BSF.CLS module also contains some useful helper classes, like message boxes

and input boxes which are build open the Java class JOptionPane. The next snippet

uses a message box to notify the user about something.

The script sends the class dialog the message messageBox with the text that should

be displayed. There are some other parameter, which are optional, for example the title

of the dialog and the type.

 2.3.4 UNO.CLS

This section will present the final step to automate OpenOffice.org programs using the

module UNO.CLS, which makes the life of developer easier, because this module

provides common functionality, which is used across the automation process.

Without using UNO.CLS it would take up to 25 lines of code to just open a blank Writer

document. All the initialization of URLResolvers, NamingServices and Factories is a

very intricate way of doing such basic tasks. And because the process of creating

macros or scripts for automation in OpenOffice.org should be a very simple thing to do,

UNO.CLS provides the developer with a load of helper functions. The difficult parts and

those parts, which will be the same for every script one wants to write, are summed up

in single methods like UNO.createDesktop(). This method takes care of nearly

Snippet 8: BSF4Rexx message box example

Snippet 7: BSF4Rexx simple example

General Part Page 24

everything from creating the UNO runtime to instantiating the URL where

OpenOffice.org is listening on.

The next snippet will show how easy it is to create an empty Writer document when you

are using the UNO.CLS module:

Snippet 9 uses another helper routine contained in the UNO.CLS, .UNO~noProps. This

function creates an empty Property object.

Because UNO.CLS already includes BSF.CLS, there is no need for a REQUIRE

statement in those scripts, which want to use the OpenOffice.org UNO modules.

 2.3.5 Routines

A short overview of some methods presented in the reference card included in the

current BSF4Rexx version:

• uno.createDesktop([context]) - returns the local OpenOffice desktop object

• uno.getProperties(o) - returns a blank delimited, encoded string with all defined

properties for the service object o

• uno.getScriptContext() - returns a UNO proxy, if the ooRexx script was invoked

by OpenOffice, .nil else. The UNO proxy object has the following methods,

returning context related UNO proxy objects:

o getDocument (the document service object, an XModel)

o getDesktop (the desktop service object, an XDesktop)

o getComponentContext (the context object, an XComponentContext)

[BSF4Re07a] [BSF4Re07b]

Snippet 9: Using UNO.CLS

General Part Page 25

 2.4 Summary

This paragraph sums up the previous chapters to make again clear, how the

automation of Impress in this bachelor paper is going to be accomplished.

To illustrate this procedure Figure 6 from a previous bachelor thesis from a student of

the university of business administration in Vienna shows the different layers between a

method call in Open Object Rexx and OpenOffice.org.

Figure 6: From ooRexx to Automation [Aham05]

The scripts developed in Open Object Rexx are using the module UNO.CLS to benefit

from the simplified object creations and initializations. In the next step, the procedures

in UNO.CLS use the functionality provided by the module BSF.CLS. As written in the

chapter about BSF, one can use a scripting language, in this case and with the

BSF4Rexx extension the scripting language Open Object Rexx, to make use of Java.

Exactly this point brings substantial improvement to the development process because

• it is not necessary to develop in Java and

• by the use of UNO.CLS one can save a lot of lines of code

In OpenOffice.org there is a comprehensive support of Java to communicate with the

UNO components. This represents the Java UNO layer on Figure 6.

General Part Page 26

The Java UNO model then is connected to the UNO certainly and this leads to

OpenOffice.org itself to conduct the automation.

[Flat05]

As the last chapters have shown, an open source scripting language can be used to

control and automate an open source office suite on behalf of OpenOffice.org. But not

only that, OpenOffice.org itself can invoke Open Object Rexx macros.

This fact is very important, because all of the snippets for automating Impress will be

written in form of macros.

It combines the power and straightforwardness of Open Object Rexx with the full

featured and open interfaces of OpenOffice.org to make it possible to easily automate

the programs of this office suite, even without wide experience in the field of

programming and development.

 3 Installation Guide

This chapter will describe and show how to set up the environment for developing and

running the snippets provided by this paper. This section will only talk about the current

versions of each application and programming language.

The steps 3.1, 3.2. and 3.3 must not be followed by in this specific order. The only step,

which has a fixed order is step number 4, the installation of BSF4Rexx. The other

installations should be finished prior to this task.

 3.1 Installation Java

First of all, you have to have at least Java 1.4 installed on your machine to work with

BSF4Rexx. Because it is enough to have the Java Runtime Edition (JRE) installed

nearly every PC is capable for automating OpenOffice.org from the Java point of view.

But you can also use the Java Development Kit (JDK), which has the JRE already

bundled with it, for development.

To check whether the computer has a Java installation at all or if the Java version can

be used for the snippets, the command java –version in the command prompt will show

the result.

Installation Guide Page 27

You can download Java from Sun’s web page at http://java.sun.com. It is also very

useful if you download or at least use the API documentation available at

http://java.sun.com/reference/api/. Here you can choose the proper documentation with

the version number you are using.

The current version of Java is Java 6 (JDK 6u1) and is available at

http://java.sun.com/javase/downloads/index.jsp. The version used for developing the

nutshells in this bachelor paper is 1.6.0_01.

[BSF4Re07c]

 3.2 Installation OpenOffice.org

You can download the latest version of OpenOffice.org at

http://download.openoffice.org/index.html. If the desired PC has no valid Java

installation there is an option on the download page to include the Java JRE with the

download. For all of the people who skipped the latter paragraph, this option would be

applicable.

The current version of OpenOffice.org is 2.2.1, which is used for writing this paper.

You can download the office suite for Windows, Linux, Solaris, Mac OS X and Free

BSD and in different languages. The automation itself was only tested in Windows but it

should also work with Linux.

 3.3 Installation Open Object Rexx

Open Object Rexx can be downloaded from the website

http://www.oorexx.org/download.html.

Open Object Rexx, like OpenOffice.org is available for different operating systems like

Windows, Mac OS X, Linux, AIX and Solaris. Again, the documentation can also be

downloaded from the website.

The current version of Open Object Rexx is 3.1.2 and is used for creating the snippets

in this bachelor paper.

http://java.sun.com/
http://www.oorexx.org/download.html
http://www.oorexx.org/download.html
http://www.oorexx.org/download.html
http://download.openoffice.org/index.html
http://download.openoffice.org/index.html
http://download.openoffice.org/index.html
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/reference/api/
http://java.sun.com/reference/api/
http://java.sun.com/reference/api/
http://java.sun.com/
http://java.sun.com/

Installation Guide Page 28

 3.4 Installation BSF4Rexx

The installation of BSF4Rexx is probably the most sophisticated step for preparing the

computer for the automation snippets. But if one follows the installation guide supplied

with the release and the previous steps were finished successfully, there should be no

problems, even for non-experts.

The current release of the BSF4Rexx is available under http://wi.wu-

wien.ac.at/rgf/rexx/bsf4rexx/current the web space from Prof. Dr. Mag. Flatscher on the

university of business administration web server.

BSF4Rexx comes in form of a zip file, which contains all files, the installation scripts,

some examples from previous bachelor thesis’ and other Rexx community members

and installation guides for every step.

For the first part of the installation, the BSF4Rexx part, the file readmeBSF4Rexx.txt is

the proper one. To start the installation run the setup script setup.rex using the rexx

command. This command should now be available in the command prompt after

installing Open Object Rexx in one of the previous steps.

This script should create four new files:

● bsf4rexx.cmd – With this, BSF4Rexx scripts can already be run

● installBSF4Rexx.cmd – This script copies the Java archives (jars) and dynamic

link libraries to the used Java extension folder. Now every Java application can

use BSF4Rexx

● uninstallBSF4Rexx.cmd – This script undoes the actions from the install script.

● setEnvironment4BSF4Rexx.cmd – This script sets the proper environment

variables for using BSF4Rexx

On a Linux PC’s all the generated scripts will not have the extension cmd, the scripts

are .sh files.

Running the script installBSF4Rexx will finish the installation by now and BSF4Rexx

can be tested by calling different kinds of commands to ensure that everything is

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current

Installation Guide Page 29

working correctly.

Running the scripts infoBSF.rex and infoBSF-oo.rex with both the rexx and rexxj

command should give the user an output in form of the registered BSF functions.

[BSF4Rexx07-3]

The second part of the installation is to make the bridge to OpenOffice.org and install

the Rexx support for the office suite.

The corresponding readme file is called readmeOOo.txt.

The first step is to ensure that Java is enabled for OpenOffice.org. For this reason start

any application of the office suite, for example Writer, and select the menu item

Options in the Tools menu. In the tree on the left side there is an entry called Java,

which shows some options on the right side of the dialog.

Figure 7: Options Dialog in OOo

Figure 7 shows the dialog in which the user has to select the desired JRE. This version

should be the same as the version for which BSF4Rexx is installed. After making

changes on this settings, OpenOffice.org as well as the QuickStarter should be closed.

Running the command rexx setupOOo.rex path-toOOo-directory will create the install

scripts for the OpenOffice.org support.

Installation Guide Page 30

An example:

rexx setupOOo.rex „d:\OpenOffice.org 2.2“.

Again some scripts for installing the support, uninstalling and setting up of the

environmental variables will be generated.

Running the installOOo.cmd will actually install the support. All Instances of

OpenOffice.org should be closed to ensure that the configuration takes effect in every

module.

To test the OpenOffice.org support there are a two Rexx scripts (testOOo.rex and

testOOo2.rex) which should be started with either the rexx and rexxj command.

The scripts should open a Writer document and insert some text into the document.

The last step for the configuration and installation is the macro support in

OpenOffice.org. To do that click on the menu entry „Extension Manager“ in the Tools

menu in an OpenOffice.org application. After clicking on Add and selecting the jar-file

ScriptProviderForooRexx.jar, it will install the macro support for Open Object Rexx.

[BSF4Re07d]

Figure 8: Extension Manager

After restarting OpenOffice.org, in the menu Macros => Organize Macros you can see if

the installation was finished successfully. Figure 9 shows exactly how it should look

like.

Installation Guide Page 31

Figure 9: Macros installation

 Impress Automation Page 32

 4 Impress Automation

After creating the basis knowledge for conducting automation in OpenOffice.org, this

chapter contains general information about the document overview of Impress and

some descriptive words regarding the automation.

This bachelor paper wants to show how Open Object Rexx can ease the life of

presenters using Impress. The examples presented in this paper can also brush up and

advance existing presentations also in consideration of the audience.

A lot of presentations created by students, managers or normal John Does lack of

different kinds of gimmicks, which are very useful for both the presenter himself and the

audience. Those improvements can be guideposts to illustrate the status of the current

slide in the presentation and other helpful and valuable things.

The implementation of this automation will be developed in form of macros written in

Open Object Rexx, because this kind of realization would allow running the scripts on

existing presentation by selecting a menu entry in the OpenOffice.org application.

This paper will not cover any stand-alone Open Object Rexx scripts because such

behavior will not meet the given requirements for this application area.

The starting point of each automation process is an existing (existing from the content

point of view) presentation, which should be further enhanced by the macros provided

in this bachelor paper.

 4.1 General

In OpenOffice.org Impress and Draw are vector-oriented applications for creating

presentations and drawings. Both applications support different kind of things to draw,

for example rectangles, text, curves and other graphic shapes.

Unlike to the text documents in Writer and the spreadsheet document in Calc, Draw

and Impress use the so-called drawpages for displaying the content. Figure 10 reflects

this fact with the drawpage container in the middle of the graphic. The document

service manager pictured with the fabric symbol at the top of the figure is used for

creating all the drawing elements and shape objects. These objects will be later

inserted into the drawpages.

 Impress Automation Page 33

There are many different types of shapes to add to a drawpage in Impress & Draw, the

most important ones are:

• GraphicObjectShape, which can display an image from a file

• ConnectorShape, which can connect other Shapes

• EllipseShapes can be various circles and ellipses.

• RectangleShape that pictures a rectangle on a drawpage

• TextShape can be used for displaying text on a slide

The controller is used to present the presentation in the GUI and for assigning styles

and layouts to the drawings.

The figure also shows the interfaces for accessing the MasterPages and the

LayoutManager.

[OooDev05]

 Impress Automation Page 34

Figure 10: Presentation Document Model [OOoDev05]

 4.2 Introduction Example

To make the introduction for the Open Object Rexx macros easier, this paragraph will

talk about a very simple macro, which adds a slide to an existing presentation and puts

a text field with a type of the notorious „Hello World“ label on each additional slide. The

previous slide will get a text field that causes a slide transition to the next page when

someone clicks on the text.

There will be an examination of every action taken in the script so that the basic

functionality, like getting access to the draw pages, will be cleared by now.

 Impress Automation Page 35

Most of the functions, interfaces and properties will be used throughout the whole

bachelor paper.

Because the snippets will be executed as a macro inside OpenOffice.org the first thing

to do is to open an existing presentation or to create a new one using Impress.

In the menu Tools – Macros – Organize Macros there is the entry ooRexx, which opens

a dialog to create, edit and run the written macros, as shown on Figure 11,

Figure 11: Organize Macros

The dialog for editing the macros acts also as a debug window where the lines, which

cause an error are marked and the error message is shown. Unfortunately there is no

syntax highlighting in the edit dialog, so the best thing one can do is to write the macros

in a third party editor like gvim, which supports the syntax of Open Object Rexx. Then,

after writing the scripts, they can be copied into the macro editor of OpenOffice.org.

 Impress Automation Page 36

Figure 12: Macro editor

The dialog is shown on the Figure 12, from here the script can be executed. The source

code of the introduction snippet can be seen in the Snippet 11.

This cutout from Snippet 11 will get the ScriptingContext whose function is to provide

the developer with the document services and interfaces.

This is specific for the macros in Open Object Rexx, if one wants to work with the

Impress interfaces from a standalone script, the UNO.createDesktop() procedure will

get the related interfaces.

Snippet 10: Interfaces with Desktop

 Impress Automation Page 37

 Impress Automation Page 38

This cutout of the source code creates a TextShape for displaying the text „Hello

Presentation-World“ on the new slide.

If a user clicks on the nextShape TextShape, the presentation goes on to the next slide.

The function getConstant from the BSF.CLS module is used a lot in the macros. It is an

easy way to retrieve constants from classes with the use of the class name and the

name of the constant.

The newly created page properties will be changed here. The property value Change

specifies how the transition will be conducted. A value of 0 means that the user needs

to click to trigger the effects and to change to the next slide. 1 means that the page is

automatically switched and 2 means that every effect will run automatically but the user

needs to click to change to the next slide.

If Change has the value 1, Duration specifies how many seconds each page will be

shown.

Snippet 11: Introduction example (00_introduction.rex)

 Impress Automation Page 39

The two shapes, one TextShape for the „Hello World“ label and the other one for the

click text field to go to the next slide, are added to the drawpages using the add

method.

The variable runPresentation is 0 when the user does want to start the presentation

after the changes of the slides were done. The impress document will be queried for

the XPresentationSupplier interface. This interface has a method to get the

XPresentation interface to start the presentation.

The next two figures show the output of the macro.

After running the script, the presentation will be updated and depending on the decision

made at the beginning, it will also be started.

Figure 13: "Hello World" TextShape

Figure 14: ClickEvent on TextShape

 Impress Automation Page 40

 4.3 Examples

After describing the basic functions for automation of Impress with the help of the

introduction example, the next paragraph will be dealing with the other examples.

These examples will create helpful features and additions to presentations.

This paper will also include some examples, which will take off some recurring tasks

from the presenter so that she or he just needs to concentrate on the content of the

presentation. The macros will improve the presentations and give the audience a better

understanding of the progress of the address by creating guideposts and progress

bars.

The first four macros will be dealing with the progress of presentations and give the

audience an information, how far the presentation is already advanced.

Furthermore the next two macros will provide the presenter with a possibility to take

over recurring tasks. The next two macros are the most sophisticated ones. They will

create guideposts on each slide, with the main headings of the presentation. The last

example will automatically create the agenda of a presentation.

 Impress Automation Page 41

 4.3.1 Example01

 Impress Automation Page 42

Snippet 12: Progressbar (01_progressbar.rex)

 Impress Automation Page 43

The first example for advancing presentations in OpenOffice.org adds a progress bar to

the bottom of each slide. Because in most presentations, the first slide is some sort of a

welcome or introduction page, this page will not contain a progress bar.

That means on the second slide you can see a rectangle with a filled section on the left

side:

Figure 15: Progress bar
Each slide will show new shapes, where the filled shapes width is increased

incremental. This will give the audience a feeling how advanced the progress of the

presentation is. Also the presenter will get a critical information about the state of the

presentation.

As the presentation goes on, the rectangle will be filled more and more till it reaches the

end.

The first thing to do is to go through all the existing drawpages. This will be realized

with a DO – TO iteration starting with the drawpage with index 1, which is actually the

second slide because the index is 0 based. If there is already a progress bar, the

grouped shape will be removed. The macro then generates a RectangleShape and

passes it to a routine, which resizes the component and places it to the correct position.

 Impress Automation Page 44

This snippet shows the routine for positioning and resizing shapes, which is used in

every macro. As one can see the routine creates a Size Object with arguments number

two and three and a Point Object with the latter one. Argument number one is the

shape itself.

This routine creates the round edges of both the border shape and the shape that

represents the progress in the presentation by adjusting the width of the rectangle.

There is also a shadow created for the shapes.

The shape for the progress bar filling has not just a normal solid color. The FillStyle is a

Gradient Object, which can create a transition from one color to another with detailed

configuration how this transition will be done. The Gradient Object is generated in an

own function. This function returns the object and can be accessed from outside

through the variable result. Again the function for formatting the shape will be called

here.

 Impress Automation Page 45

 4.3.2 Example02

 Impress Automation Page 46

 Impress Automation Page 47

Example number 2 is also a macro, which displays the current status of the

presentation. The animation starts on the second slide, like in the first example. On the

left side of this slide there will be an Pacman image and on the other side of the slide,

there are some cherries. On the line from Pacman to the cherries are a lot of yellow

points. Each slide the Pacman image will be shifted to the left. After running the script,

it looks like Pacman eats all the points till he finally reaches the cherry on the last slide

of the presentation.

This snippet makes use of another Shape, the GraphicObjectShape, which loads an

image from the hard drive to display it on the slides.

The GraphicObjectShape is created through the Impress MultiServiceFactory interface

and is then adjusted to the position and size on the slide. The file URL can be edited by

changing the corresponding property value.

Figure 16: Pacman on his way to the cherries

Snippet 13: Pacman (02_pacman.rex)

 Impress Automation Page 48

This snippet shows the placing of the circle shapes, which represent the points in the

Pacman game. The placement starts at the current position of Pacman and adds

EllipseShape objects to the drawpage till the x-coordinate reaches the end in form of

the position of the cherry.

The circles are just EllipseShape objects that have the CircleKind FULL. The other

options are SECTION for a circle with a cut connected by a line, CUT for a circle with a

cut connected by two lines (for example a cake diagram) and an ARC, which is a circle

with an open cut.

After the creation of the shapes, they will be added to a ShapeGroup, all of the shapes

which are inside the shapeGroup object will be grouped together using the

XShapeGrouper from a drawpage. To be able to remove them in the case of a second

run of the macro the group gets a name.

 Impress Automation Page 49

 4.3.3 Example03

 Impress Automation Page 50

 Impress Automation Page 51

The type of the next macro is again a progress showing macro. Instead of Pacman

going to the end of the slide, there will be a fuse with a flame. The fuse is connected to

a bomb. The fuse will be realized with the help of a RectangleShape. As the progress

of the presentation is advancing, the fuse is burning down. One of the difference to the

last example is that the macro is generating a new slide at the end of the presentation

and put some shapes on the drawpage. The new drawpage as well as the shapes on it

will have some effects, which are assigned in the script.

The last slide contains a TextShape with the text “BOOOMMM!!” and an

GraphicObjectShape with an explosion image.

Snippet 14: Bomb (03_bomb.rex)

 Impress Automation Page 52

The URL of the image is set in the cutout using the XPropertySet interface. The method

used for fetching the filename is operating system independent. The images have to be

in the same folder as the presentation. The animation effect of the TextShape

“BOOOMMMM!!!!” will be a fade from the center of the slide and will be conducted in a

fast sped. Similar to that, the effect of the image with the explosion should be a little bit

slower and with a horizontal rotation.

The counterpart to the Shape AnimationEffect object for slide transitions is the

FadeEffect object. The RANDOM value sets a random effect to the slide transition with

medium speed. The bomb with the fuse as well as the slide with the explosion image

are displayed on the next two figures.

Figure 17: Bomb with fuse

 Impress Automation Page 53

For sure, this demonstration of a progress illustration and the example with Pacman is

not very appropriate for business presentations. For these kind of presentations the

progress bar will be the best solution. This should be just a proof of concept how easy it

is to put a very helpful feature to a presentation, also with a whiff of playfulness..

Figure 18: Explosion slide

 Impress Automation Page 54

 4.3.4 Example04

 Impress Automation Page 55

For this macro the progress is illustrated as a clock on each slide, which turns more

and more red as the presentation goes by.

This macro will generate a EllipseShape in form of a circle using the property value

CircleKind FULL for the background of the clock. The shape for displaying the elapsed

Snippet 15: Clock (04_clock.rex)

 Impress Automation Page 56

time will be a SECTION EllipseShape. To configure the section, the values for the start

and end angle need to be set.

By setting the values as seen in the cutout above, the section is forced to start at 12

o'clock. Decreasing the startAngle value after each slide will expand the section

clockwise. The fill color of the section is also changing throughout the presentation.

The color is represented by a hexadecimal value. Starting with white (FFFFFF) and

fading to red. This is done by subtracting values from the start color. The transition of

the clocks looks like Figure 19.

Figure 19: Clock transition

 Impress Automation Page 57

 4.3.5 Example05

 Impress Automation Page 58

The next macro will support the presenter by automatically creating a slide in the

middle of the presentation. For long presentations it could be necessary to make such a

break to let the audience get some refreshments. The user will be asked for the

duration of the break and for a message, which will be shown on the new slide. The

duration has to be entered in minutes. After the time is elapsed the presentation will

continue with the next slide.

The slide before the break as well as all created shapes will get effects in addition to

the slide transition.

Snippet 16: Create Break Slide (05_break.rex)

 Impress Automation Page 59

This line is responsible for the exception handling in Open Object Rexx. If any error

occurs during the runtime of the script, the code at the marker ANY will be executed.

The script has to handle possible exceptions because it has to operate with a data

entered by a user. When the user does not enter a valid number, there would be a

SYNTAX error and the script would crash.

In order to handle those problems, the marker ANY was implemented in the rear

section of the script.

The code then shows up another message box with the line number where the problem

occurred.

The cutout from the snippet above shows how the middle of the presentation is been

calculated. The // operator acts as the modulo function in Open Object Rexx to get the

rest of a division of integers.

The inputBox procedure from the BSF.CLS module is used for entering the duration of

the break. The value will be saved into the variable minutes.

The dialogs and the break slide can be seen on the next figures.

 Impress Automation Page 60

Figure 20: Input dialogs

Figure 21: Generated break slide

 Impress Automation Page 61

 4.3.6 Example06

 Impress Automation Page 62

 Impress Automation Page 63

Macro number 6 carries out some recurring tasks, which can cost a lot of time if one

has to do it manually. The user will be asked for each function that should be added to

the presentation. The following functions are support by this macro:

● Fade effects and duration of the slide transitions (the user can choose from

some predefined effects and speeds)

● Animation effects for every Shape object of the draw pages (again, the user can

choose from different effects)

● Automatically generated “Thanks for your attention” slide

● Direct start of the presentation at the end of the macro

This cutout shows how arrays can be created in Open Object Rexx using the .array~of

method. Then the user will be asked in form of a dialog with a combo box, which

displays the effects from the array. If the user clicks on “Cancel” in the dialog, the

Snippet 17: Various tasks (06_finish_presentation.rex)

 Impress Automation Page 64

returned value will be the nil object.

The hexadecimal value 0D0A represents a line break and is used in a dialog box to

separate the message.

The macro can also change the animation effects of every shape on every drawpage if

the user wants to. Using the interface XShapes of a drawpage one can get access to

every shape object on it. Like iterating through the drawpages of a presentation, one

can access the shapes using an index.

The dialogs for asking after the effects are shown on the next figures.

Figure 22: Slide effects

 Impress Automation Page 65

Figure 23: Dialog for choosing the speed

Figure 24: Duration of one slide

Figure 25: Question dialog for end slide

 Impress Automation Page 66

 4.3.7 Example07

 Impress Automation Page 67

 Impress Automation Page 68

The goal of this macro is to create guideposts on the slides of a presentation. The only

thing the creator of the presentation has to care about is that the slides have text fields

with the predefined style Heading or Heading1 assigned to them. Then the macro

Snippet 18: Guideposts from headings (07_guideposts.rex)

 Impress Automation Page 69

scans each slide for those heading tagged shapes. After gathering this information, the

script creates a rectangular section on the left side of the slides and puts the headings

on it. To give the audience the chance to be aware of the status of the presentation, the

current heading text is red colored. Figure 26 shows a part of a slide, which was

changed by the macro. The macro supports a guidepost structure up to two levels.

To make sure that there will be no guidepost on the last slide (this slide can be for

example a “Thank you for your attention” slide) the user will be asked for that, before

the start of the macro's main job.

The first thing to do is to iterate through all the slides to get every drawpage. With the

drawpage, one can access every shape that is added to it. The property Style has itself

another property called DisplayName. If the name is “Heading” the index of the relevant

slide and the text of the heading is added to the array. There exists also a counter

variable to calculate the span between the headings on the guidepost-section. The

Figure 26: Guideposts from heading

 Impress Automation Page 70

missing lines of the snippet are just removing previous guideposts if necessary. The

code is the same as in the examples for creating a progress information.

The next cutout is responsible for creating the heading fields in the guidepost-section of

the slides. In a DO OVER iteration all the heading fields in the array are examined with

the help of the PARSE VAR command. This command puts the slide index and the text

of the heading into different variables. As seen in line 66 of the previous cutout, this

information is stored as one literal into the array.

Depending on the current index of the slide and the index of the next slide, the heading

will be colored in red or in black.

 Impress Automation Page 71

 4.3.8 Example08

 Impress Automation Page 72

 Impress Automation Page 73

Macro number 8 is also adding a guidepost-section to the slides of a presentation.

There are two differences compared to the macro number 7 above. From the graphical

point of view, the guideposts will be displayed as circles connected by lines. Instead of

the text of the heading a serial number is shown on the slides. The color of the

numbers as well as the lines, which connect them, will be changed as the presentation

goes by. The result can be seen on Figure 27.

Snippet 19: Guideposts with circles and bookmarks (08_guideposts_circles.rex)

 Impress Automation Page 74

But the most important difference is the use of bookmarks in this script. Each guidepost

gets an OnClick event, which directly leads to the slide with the corresponding heading.

This will provide a fast and easy way of navigating through the presentation without

writing those actions and graphical shapes manually.

Only the parts of the code, which are different compared to Snippet 18 will be shown in

this paragraph.

When the macro has found a slide with a heading text field, the related drawpage gets

a name, to be able to access it later with a bookmark. The name is set with the help of

the XNamed interface and is the index of the heading slide.

These lines set the name of the drawpage to the index of the slide.

This cutout shows how the OnClick event is been connected to the bookmark using the

index of the guidepost circle shape. The text inside the circle will be a serial number

and is assigned to the shape in the line 134.

Figure 27: Guideposts with bookmarks

 Impress Automation Page 75

 4.3.9 Example09

 Impress Automation Page 76

 Impress Automation Page 77

The last macro of this bachelor paper is a script that generates a slide with the agenda

of the presentation. The agenda will be created using the text fields with heading style.

If the agenda is already created in the past and the script is started again, the agenda

will be updated with the current heading tags. This script will again use various parts of

the previous examples to retrieve the array with the heading information. To ensure a

failsafe process, the macro checks if there is any heading text field at all and shows a

message dialog in the case of nonexistence.

This procedure gets a drawpage as an argument and sets the name of it for enabling

the possibility to refresh it when running the macro at a later date. The Layout property

is set to 1 that means the slide gets a text field at the top and a listing at the center. The

text of the text shape is set to “Agenda” by accessing the shape with the index 0.

For formating the listing with the headings this procedure is called. The line spacing as

well as the font size is adjusted to create a good looking agenda.

Snippet 20: Create an agenda (09_agenda.rex)

 Impress Automation Page 78

The script appends each heading to the listing text field on the agenda slide by using a

TextCursor. Line number 73 shows the command how the cursor will be placed at the

end. The XTextRange interface will then be used to append the text with a carriage

return.

Figure 28 shows a generated agenda slide.

Figure 28: Generated agenda

Conclusion Page 79

 5 Conclusion

The conclusion of this bachelor thesis is that with the help of Open Object Rexx, Bean

Scripting Framework, BSF4Rexx and OpenOffice.org it is possible to automate the

office suite without any expert knowledge about programming languages.

The only real requirement for the development is to be able to search self-dependent in

the web for the functionality one is looking for. But this is not just the case for this type

of work. For nearly every task one is coping with, there is a need to find the desired

information as fast as possible, but not loosing the sight of the quality of the results.

The open source scripting language Open Office Rexx is very easy to learn and can

use the massive amount of classes provided by Java with the help of BSF and

BSF4Rexx. This will give the scripting language more power and opens the door to the

UNO based architecture of OpenOffice.org.

The macros themselves are very useful and could save presenters a lot of time,

especially for the macros, which are dealing with the progress indication. But that

should not be the only important output of this paper. Other students who are also

interested in this topic can benefit from the results and build open the snippets to create

even more sophisticated macros.

Because there were not so many examples for automation of Impress, actually there is

only one on the homepage of OpenOffice.org, it was not very easy to get in touch with

the interfaces, properties and functionality of Impress. With the help of the excellent

Developers Guide, some nutshells from previous bachelor papers and the online

community of OpenOffice.org it was possible to create the snippets in this bachelor

paper in a reasonable amount of time.

It also emerged that the functions in both the UNO.CLS and BSF.CLS were very

helpful, for example the ones which return the names of the inferfaces using reflection

and the properties of an object.

And if more and more snippets and examples are getting online, the community grows

and grows and the collective knowledge would increase over the years, the power of

OpenOffice.org and open source software in general will be strengthen.

References Page 80

 6 References

[Aham05] Ahammer, Andreas: OpenOffice.org Automation: Object Model,

Scripting Languages, „Nutshell“-Examples, Bachelor Course Paper,

2005

[BSF07a] Apache Jakarta Project: Bean Scripting Framework, Front Page,

http://jakarta.apache.org/bsf/, retrieved on 2007-05-26

[BSF07b] Apache Jakarta Project: Bean Scripting Framework, Frequently Asked

Questions, http://jakarta.apache.org/bsf/faq.html,

retrieved on 2007-05-26

[BSF07c] Apache Jakarta Project: Bean Scripting Framework, Manual,

http://jakarta.apache.org/bsf/manual.html, retrieved on 2007-05-26

[BSF4Re07a] Flatscher, Rony G.: The Vienna Version of BSF4Rexx - Changes for

OOo,

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOOo.txt, 2007-

01-28, retrieved on 2007-05-24

[BSF4Re07b] Flatscher, Rony G.: The Vienna Version of BSF4Rexx – Reference

Card OpenOffice.org,

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOOo.pdf,

2007-01-28, retrieved on 2007-05-24

[BSF4Re07c] Flatscher, Rony G.: The Vienna Version of BSF4Rexx – Readme of

BSF4Rexx,

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt,

2007-01-28, retrieved on 2007-05-24

[BSF4Re07d] Flatscher, Rony G.: The Vienna Version of BSF4Rexx – Readme of

OOo support,

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOOo.txt

2007-01-28, retrieved on 2007-05-24

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/readmeBSF4Rexx.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/refcardOOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOOo.txt
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/current/changesOOo.txt
http://jakarta.apache.org/bsf/manual.html
http://jakarta.apache.org/bsf/manual.html
http://jakarta.apache.org/bsf/manual.html
http://jakarta.apache.org/bsf/faq.html
http://jakarta.apache.org/bsf/faq.html
http://jakarta.apache.org/bsf/faq.html
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/
http://jakarta.apache.org/bsf/

References Page 81

[Flat05] Flatscher, Rony G.: Automating OpenOffice.org with OoRexx:

Architecture, Gluing to Rexx using BSF4Rexx, 2005,

Wirtschaftsuniversität Wien (Vienna University of Economics and

Business Administration), Austria,

http://wi.wu-

wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf,

retrieved on 2007-05-20

[Flat06a] Flatscher, Rony G.: Resurrecting REXX, Introducing Object Rexx,

2006, Wirtschaftsuniversität Wien (Vienna University of Economics and

Business Administration), Austria,

http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf,

retrieved on 2007-05-18

[Flat06b] Flatscher, Rony G.: Automatisierung von Windows Anwendungen (1) -

Einführung, Überblick, Anweisungen, Prozeduren, Funktionen,

http://wi.wu-

wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf,

retrieved on 2006-03-15

[Flat06c] Flatscher, Rony G.: The Vienna Version of BSF4Rexx, Presentation at

the 2006 International Rexx Symposium, USA, 2006,

http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf,

retrieved on 2007-05-20

[Flat06d] Flatscher, Rony G.: Automatisierung von WindowsAnwendungen (3) –

Ausnahmen (Exceptions), Referenzen, Direktiven (::routine, ::requires)

http://wi.wu-

wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf,

retrieved on 2006-03-17

 [OORexx07a] Open Object Rexx Homepage, Product Brochure,

http://www.oorexx.org/ooRexx-Brochure.pdf,

retrieved on 2007-05-17

http://www.oorexx.org/ooRexx-Brochure.pdf
http://www.oorexx.org/ooRexx-Brochure.pdf
http://www.oorexx.org/ooRexx-Brochure.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_03.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx17/2006_orx17_BSF_ViennaEd.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://wi.wu-wien.ac.at/rgf/wu/lehre/autowin/material/folien/Automatisierung_01.pdf
http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf
http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf
http://prog.vub.ac.be/~wdmeuter/RDL06/Flatscher.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf
http://wi.wu-wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf

References Page 82

[OORexx07b] Open Object Rexx Homepage, About,

http://www.oorexx.org/index.html, retrieved on 2007-05-17

[OpenOf07a] Open Office Homepage, About ,

http://about.openoffice.org/index.html, retrieved on 2007-05-20

[OpenOf07b] Open Office Homepage, Product ,

http://www.openoffice.org/product/index.html, retrieved on 2007-05-20

[OpenOf07c] Open Office Homepage, API – Developers Guide, First Steps,

http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.x

html, retrieved on 2007-05-20

[OOoDev05] Open Office Homepage, Developers Guide, May 2005,

http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf,

retrieved on 2007-05-214

[WikiBS07] Wikimedia Foundation Inc, Bean Scripting Framework,

http://en.wikipedia.org/wiki/Bean_Scripting_Framework,

retrieved on 2007-05-06

[WikiOo07] Wikimedia Foundation Inc, OpenOffice.org,

http://en.wikipedia.org/wiki/Openoffice.org, retrieved on 2007-05-05

[WikiRe07] Wikimedia Foundation Inc, REXX,

http://en.wikipedia.org/wiki/REXX, retrieved on 2007-05-04

http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/wiki/REXX
http://en.wikipedia.org/wiki/Openoffice.org
http://en.wikipedia.org/wiki/Openoffice.org
http://en.wikipedia.org/wiki/Openoffice.org
http://en.wikipedia.org/wiki/Bean_Scripting_Framework
http://en.wikipedia.org/wiki/Bean_Scripting_Framework
http://en.wikipedia.org/wiki/Bean_Scripting_Framework
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://api.openoffice.org/docs/DevelopersGuide/FirstSteps/FirstSteps.xhtml
http://www.openoffice.org/product/index.html
http://www.openoffice.org/product/index.html
http://www.openoffice.org/product/index.html
http://about.openoffice.org/index.html
http://about.openoffice.org/index.html
http://about.openoffice.org/index.html
http://www.oorexx.org/index.html
http://www.oorexx.org/index.html
http://www.oorexx.org/index.html

	 1 Introduction
	 1.1 Abstract
	 1.2 Research Question
	 1.3 Keywords

	 2 General Part
	 2.1 Open Object Rexx
	 2.1.1 History
	 2.1.2 RexxLA
	 2.1.3 Overview
	 2.1.4 Syntax

	 2.2 OpenOffice.org
	 2.2.1 History
	 2.2.2 Overview
	 2.2.3 Architecture
	 2.2.4 Services & Interfaces

	 2.3 Bean Scripting Framework for Rexx
	 2.3.1 Bean Scripting Framework
	 2.3.2 BSF4Rexx
	 2.3.3 BSF.CLS
	 2.3.4 UNO.CLS
	 2.3.5 Routines

	 2.4 Summary

	 3 Installation Guide
	 3.1 Installation Java
	 3.2 Installation OpenOffice.org
	 3.3 Installation Open Object Rexx
	 3.4 Installation BSF4Rexx

	 4 Impress Automation
	 4.1 General
	 4.2 Introduction Example
	 4.3 Examples
	 4.3.1 Example01
	 4.3.2 Example02
	 4.3.3 Example03
	 4.3.4 Example04
	 4.3.5 Example05
	 4.3.6 Example06
	 4.3.7 Example07
	 4.3.8 Example08
	 4.3.9 Example09

	 5 Conclusion
	 6 References

