
Bachelor thesis for course
1076 IT-Spezialisierung E-Commerce Vertiefungskurs VI WS 2008/09

Ao. Univ.-Prof.
Mag. Dr. Rony G. Flatscher

Institute for Management Information Systems

Author: Andreas Mitschek (0251215)

Supervising tutor: Mag. Dr. Rony G. Flatscher

 Scripting Mozilla Applications

 with XPCOM and XUL

Scripting Mozilla Applications with XPCOM and XUL

Abstract

This bachelor thesis aims to explain the working principles of Mozilla’s extensive

component and interface architecture, XPCOM. Nutshell code examples serve as a

mean to explain the underlying mechanisms and show the practical use of the different

programming and scripting languages. Finally, XPCOM services are accessed and

manipulated from within different language environments. The programming language

Java and its several bridges to other technologies play a crucial role throughout this

thesis.

2

Scripting Mozilla Applications with XPCOM and XUL

Table of Contents

1 Motivation and Interest..5

2 The Mozilla Suite...6

2.1 The story of Mozilla...6

2.2 XPCOM – the backbone of Mozilla applications...9

2.2.1 The Advantages of XPCOM..9

2.2.2 XPCOM component architecture...10

2.2.3 Interfaces...11

2.2.4 Criticism...13

2.3 A comparison between Java and Mozilla ..14

2.3.1 Introduction to JAVA..14

2.3.2 Application Interfaces comparison...16

2.3.3 Conclusion...18

2.4 XPCOM-related technologies...20

2.4.1 XPIDL..20

2.4.2 XUL...21

2.4.3 XBL...23

2.4.4 XPConnect ...25

2.4.5 XPT ..27

3 Building powerful XPCOM applications...28

3.1 Bean Scripting Framework...28

3.1.1 Working with BSF...30

3.1.2 Working with Beans..35

3

Scripting Mozilla Applications with XPCOM and XUL

3.2.2 Working with ooRexx..38

3.2.3 BSF4ooRexx...40

3.2.4 Working with BSF4ooRexx...42

3.3 JavaXPCOM and XULRunner..46

3.3.1 Working with JavaXPCOM...47

3.3.2 Implementing JavaXPCOM with ooRexx...51

3.4 XULRunner Applications ...56

3.4.1 The Javascript Application Content..56

3.4.2 The XULRunner Packaging Process..61

3.4.3 Extending the Application with JavaXPCOM..63

4 Conclusion...72

5 Literature...73

6 List of Figures..76

7 Project Management...79

8 Appendix..80

8.1 XUL example...80

8.2 XBL example...83

8.3 BSF example...84

8.4 JavaXPCOM example...89

8.5 XULRunner Javascript example...91

8.6 XULRunner ooRexx example...94

4

Scripting Mozilla Applications with XPCOM and XUL

1 Motivation and Interest

Since the success of Web 2.0 in recent years internet users around the globe feel the
growing need to customize and personalize their web experience. The open source
project Mozilla was among the first software companies to recognize this desire and
along with the paradigm of Cross Platform Component Modeling (XPCOM) made it
possible for the average programmer to include themselves into the development
process. By allowing everyone to inspect the source code of their applications and
setting new interface standards it became much easier to integrate new components into
complex applications.

The impossible task of creating software that meets everyone’s needs was replaced by
the idea of involvement and customization. By developing and selecting individual
modules and components the customer can modify applications like the Mozilla browser
Firefox or the E-Mail client Thunderbird to his personal needs.

This thesis will evolve around the idea of the cross platform component modeling –
(XPCOM), which made it possible for the average “home developer” to include new ideas
and services into their favorite applications, using complex interfaces provided by the
Mozilla development center. The primary goal of this work will be the development,
documentation and testing of “nutshell” examples, small applications, to illustrate the
available features of the Mozilla architecture.

5

Scripting Mozilla Applications with XPCOM and XUL

2 The Mozilla Suite

This chapter introduces the open source project Mozilla. On one hand Mozilla is a well
known software suite, popular for providing a diversity of free licensed applications. On
the other hand it is a development platform, which uses unique technologies for its
functionality. It is not a separate programming language, but a collection of open source
software components, which can be assembled and manipulated to meet your goals.

The technologies, which are unique to Mozilla are first and foremost the Cross-Platform
Component Object Model (XPCOM) and the graphical rendering engine Gecko, both are
open source and will be explained in more detail in this chapter.

2.1 The story of Mozilla

Mozilla’s history reaches back to the early years of the internet and the “browser war”
between the Netscape Navigator and the Microsoft Internet Explorer in the 1990s.
Netscape was at that time a key player in the browser sector, but Microsoft managed to
drastically increase its market share due to several smart, but harshly criticized
measures. The most successful and legitimate step was the inclusion of the Internet
Explorer as the standard web browser for Microsoft’s platform Windows, at that time and
still to this day the most used operating system in the world.

After the fall of the Navigator, Mozilla was created in 1998 by the Netscape
Communications Corp. to coordinate the community's open source development of the
Netscape source code. Four years later, in 2002, Mozilla 1.0 was presented to the world
and made public under the GNU General Public License (GPL) [InNe09].

Since then, the popularity and use of Mozilla applications soared, and due to the large
community of developers, testers and users products like Firefox and Thunderbird are
threatening the market leadership of Microsoft’s counterparts, the Internet Explorer and
Outlook.

6

Scripting Mozilla Applications with XPCOM and XUL

Mozillas success

Due to the success of its most famous product, the open source web browser Firefox,
the Mozilla Suite quickly gained popularity and market share. In 2004, for the first time in
nearly a decade, the Mozilla browser nudged the Internet Explorer below the 90 percent
mark.

The most important factor in Mozilla’s success was that the underlying architecture was
completely open source. With the help of an avid and ambitioned development
community bug-fixing and the coding of new add-ons brought a sense of customizability
that no other browser could offer at the time. The Mozilla foundation correctly detected
the customer’s need for personalization and individualized software.

As of November 2008, Firefox officially climbed the 20 percent mark and there seems to
be no end to this development. Although the browser giant Internet Explorer is still the
clear market leader (69.77%), Firefox (20.78%) and Apple’s Safari (7.13%) are steadily
increasing their market shares over the years [MaSh09].

Figure 1: Firefox closes the market share gap to the Internet Explorer (11/2008) [MaSh09]

Mozilla’s CEO John Lilly about the rising success of the web browser Firefox: "Reaching
20 percent worldwide market share is a significant milestone for Firefox and Mozilla. It's
a huge achievement by the global Mozilla community, one that just a few years ago most
would have considered impossible. The open web is more vibrant than ever, and the
thousands of Mozilla contributors around the world have played a major role in making it
that way [BrMa09]."

7

Scripting Mozilla Applications with XPCOM and XUL

Figure 2: In some countries, Firefox is already the most
popular browser (11/08) [MaSh09]

According to statistics from late 2008, provided by Net Applications (see figure 2), Firefox
has already established itself as the number one web browser in some European and
Asian countries, in three different countries the Mozilla browser even surpassed the 50
percent mark. Indonesian (57.44%), Macedonian (53.13%) and Slovenian (51.99%)
internet users are opting to use Firefox as their standard web browser [MaSh09].

8

Scripting Mozilla Applications with XPCOM and XUL

2.2 XPCOM – the backbone of Mozilla applications

The Cross Platform Component Object Model (XPCOM) “is a framework which allows
developers to break up monolithic software projects into smaller modularized pieces. The
pieces, known as components, are then assembled back together at runtime [OvXP09].”
Its structure is related to existing Component Object Models like CORBA and COM.
Before we dive into the code parts it would be best to get to know the XPCOM-related
technologies.

2.2.1 The Advantages of XPCOM

The goal of XPCOM and all other Component Object Models is setting up a standardized
framework of components that ease the development of new software modules. Every
programmer can then pick the pieces he needs to change existing code or write new
applications. XPCOM also provides several methods to load, manipulate and maintain
these components. It enables developers to write modular cross-platform code, existing
components can then be easily replaced or upgraded without breaking the entire
application. No one has to reinvent the wheel, which has the following advantages:
[MoXP09]

• Reuse : Modularized code can be reused for other purposes than the original
developer intended.

• Updates : A developer can easily replace or update certain parts without
recompiling the entire application.

• Performance : Some modules may not be used all the time. They can be “lazy
loaded” to improve the overall performance.

• Maintenance : Finding and maintaining certain areas of the code is much easier
when the application is divided into components.

9

Scripting Mozilla Applications with XPCOM and XUL

Gecko

XPCOM is in a lot of ways similar to Microsoft COM, except that XPCOM is used mainly
at the application level. XPCOM is part of the Gecko layout engine, so its services are
actually Gecko services, therefore those two terms are often used as synonyms.

Gecko is an open source embeddable web browser, but it is also a rendering engine for
documents and a toolkit to create new web browsers. It is used in many internet
applications and is at the moment the most popular and successful open source web
browser [OvXP09].

2.2.2 XPCOM component architecture

Applications like Firefox and Thunderbird are modularized clients of XPCOM
components. Almost any kind of services you would need to write new applications are
already defined in XPCOM components, e.g.:

• Browser-Navigation

• Window Management

• Cookie Management

• Bookmarks

• Address books

• Security

• Searching

• Rendering

• Operating System

For example, accessing the cookie manager can be as easy as the following lines of
JavaScript code:

// get the cookie manager component in JavaScript

var cookieManager = Components.classes["@mozilla.org/cookiemanager;1"].getService();

cookieManager = cookieManager.QueryInterface(Components.interfaces.nsICookieManager);

Now you are able to work with this XPCOM component, be it in JavaScript, C++, Java or

10

Scripting Mozilla Applications with XPCOM and XUL

any other programming language that offers a bridge to XPCOM. You will find more on
the practical aspects behind these lines of code in the following chapters. First, let us
take a look at all the involved technologies surrounding XPCOM.

If you are new to Mozilla and want to find out more about the available components you
should probably take a look at the XPCOMViewer at the Mozilla Development Center
mozdev.org [MoXV08]. This tool enables you to browse through all supported XPCOM
interface and serves as an API information tool. In the spirit of Mozilla development, it is
written as an open source extension.

2.2.3 Interfaces

Now that we know what the advantages of a component-based architecture are, we can
talk about linking those components. After we have determined which functionalities
should be grouped together, it is the interfaces that manage the communication between
components. Several interfaces are usually bundled to a single service component.

Like in every other programming language calling certain interfaces provides your
application with more functionality, but there is a major difference between XPCOM and
object-oriented programming languages. A programming language looks for the
necessary components and interfaces while compiling the source code, XPCOM does
not look for those functionalities until the start of the runtime. In this respect it is much
closer to the working principles of a scripting language.

Understanding how exactly components and interfaces work together is a very complex
task and would be too much for this work, but there are some issues that we should
know of. In XPCOM all interfaces derive from the “root interface” called nsISupports and
inherite certain methods from it. In general, nsISupports has a monitoring role and
controls administrative tasks like:

 Component lifetime

 Interface querying

Since every XPCOM component can use a variety of interfaces it is very important to

11

Scripting Mozilla Applications with XPCOM and XUL

know how they are connected. For this reason XPCOM components use reference
counting to determine how often an instance of a certain component is being used. If the
reference count of a component hits zero – which means that it is no longer used by any
client – the component deletes itself. This is known as component lifetime or object
ownership.

By using the nsISupports function queryInterface(), like we did in the above JavaScript
code example, you can instantiate basically any implemented interface. Every
component and interface is identified by unique keys.

Contract ID vs. IID/CID

Interfaces can be addressed by name (contract ID) or by their IID/CID. The universally
unique identifier (UUID) is a unique 128 bit number. In the case of XPCOM interfaces it is
called interface identifier or IID, when we talk about components or classes it is called
CID. But as a programmer it is much easier to address certain functionalities by their
contract ID, which is a human readable string. In our first example we introduced the
initialization of a cookie manager instance, identified by the

• Contract ID: “@mozilla.org/cookiemanager;1”

• IID: “aaab6710-0f2c-11d5-a53b-0010a401eb10”

• Interface name: “nsICookieManager”

Component Registration

Before an application is able to access a new component it has to be registered. It does
not matter whether the component is stored in shared libraries, JavaScripts or other files.
The registration process provides all the information needed to use the new component
properly. As a reminder, all new XPCOM components must implement the root interface,
nsISupports, before being registered. In earlier Mozilla versions the registration process
was done by a program called regxpcom, but it is now also possible to register the
component using XPIDL or have the user install the component directly as an extension
or add-on.

12

Scripting Mozilla Applications with XPCOM and XUL

2.2.4 Criticism

Of course XPCOM does not only bring advantages, there are some things developers
are moaning about for years. For example the “code bloat” in XPCOM-based systems.
Mozilla has a rather large memory footprint. There is a lot of code involved in managing
and monitoring all the components and objects, which could lead to a decrease in
performance, especially in large applications. This is the main reason why Apple for
example chose KHTML over Gecko for their Web browser.

At the moment Gecko developers are working on reducing the extensive use of XPCOM
in the Gecko layout engine. This kind of work is - as a play of words - also known as
“deCOMtamination” [Mill06].

13

Scripting Mozilla Applications with XPCOM and XUL

2.3 A comparison between Java and Mozilla

The goal of this thesis is to show how a developer can link XPCOM-related technologies
with existing programming and scripting languages to create simple, but powerful
applications. This will be demonstrated with a series of nutshell examples. Ultimately
XPCOM interfaces should be implemented in a Java application. The bridge, which will
enable communication between Java and XPCOM, is called JavaXPCOM [OvXP09].

This section includes a comparison between the two main technologies behind
JavaXPCOM, the programming language Java and Mozilla. After some background
information on Java we will compare the functionalities and concepts of Java and Mozilla
according to the following criteria:

 Java and XPCOM API

 Graphical user interfaces

 Multithreading

 Portability

2.3.1 Introduction to JAVA

Java is a multi-platform object-oriented language and is used for several types of (web-
based) applications. It is generally known as the “language for the web” and for its great
portability.

James Gosling created the Java language in June 1991, with the importance of easy
portability already in mind. Java, first known as “Oak”, had a similar notation as C/C++.
With Java 1.0 the first release was presented to the public in 1995. The internet and the
development of Java 2 lead to its explosive rise in popularity.

In the Java creation process those were the primary goals: [NaMa09]

1. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple operating systems.

3. It should contain built-in support for using computer networks.

14

Scripting Mozilla Applications with XPCOM and XUL

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use by selecting what were considered the good parts of
other object-oriented languages.

Use of Java

Java earned the reputation as the “language for the web” primarily because of Applets –
small programs that can be executed inside a web page. Although over the years,
Applets have revealed their limits and are being pushed aside by technologies like
Macromedia Flash.

 “Write once, run everywhere”, is the slogan most commonly associated with Java, which
is being developed since 1997 by Sun Microsystems. New code can be written on any
platform, compiled into a standardized byte code and expected to run on any system with
a Java virtual machine (JVM), which ultimately interprets the generated byte code. The
existence of a JVM or Java interpreter on desktops, laptops, mobile devices and chips
has long become an industry standard.

The programmer no longer has to worry about the portability of applications, it does not
matter whether the code is being accessed on a UNIX or Windows system, or the type of
machine (desktop, router, mainframe, etc.). This feature guaranteed Java’s large
success, especially on the sector of mobile devices.

Another important reason in favor of Java is its technology pervasiveness. When Java
lost the fight for client-side applets, the development of the Java 2 Enterprise Edition
(J2EE) introduced a new opportunity, server-side development. J2EE provides a
framework for secure and scalable applications and presents a counter-part to ASP and
PHP, making it possible to write stand-alone programs, application plug-ins, applets for
web pages and web applications using:

• Applets (Java programs embedded in a web page)

• Servlets (Java code with embedded HTML tags)

• Java Server Pages (HTML with embedded Java expressions)

• Enterprise JavaBeans (build the application logic in multi-tiered architectures)

15

Scripting Mozilla Applications with XPCOM and XUL

Since the fall of 2006 Sun Microsystems Java is registered under the GNU General
Public License (GPL) and is completely open-source. At http://www.sun.com/ it is
possible to download the standard Java Runtime Environment (JRE) and the Software
Development Kit (SDK), targeted at Java programmers [Carb06].

2.3.2 Application Interfaces comparison

Java API

Both Java and Mozilla provide a rich set of APIs. While Java is used in many different
domains, Mozilla interfaces usually specialize in expanding the functionality of web
applications.

The Java SDK API provides amongst others the following functionalities:

• GUI

• Images

• Input/output on file/network/device

• Network Datagram, Sockets

• Remote Method Interface

• Security

• Text manipulation

• Sound

• XML parsing

• Abstract database connections

XPCOM API

Contrary to Java, Mozilla provides a language neutral API. New XPCOM Components
can be written in several programming languages, as long as the interfaces are defined
with a common Mozilla Interface Description Language, XPIDL.

The XPCOM API provides amongst others the following functionalities: [OvXP09]

16

Scripting Mozilla Applications with XPCOM and XUL

• Access to web platform components like bookmarks, address book, etc.

• Collections, Sets, Dictionaries

• Directory service LDAP

• Mail

• Network

• RDF and XML

• SOAP, XML-RPC and WSDL.

Graphical user interfaces

Java offers two different GUI toolkits, the simple but fast AWT and the modern Swing
components. The main advantage of AWT is its better performance, but in terms of
native components and functionalities Swing is the much better choice. The Swing API is
far larger than the older AWT and it provides a full object oriented architecture. Therefore
a Java GUI is a selection of AWT/Swing components within a given Java code.

Mozilla, coming from a browser background, uses a completely different approach. The
GUI is defined in XUL, a XML-like markup language. So, like the markup language
HTML, it is possible for Javascript or other scripting languages to navigate through and
manipulate the DOM tree. The Document Object Model (DOM) is the hierarchical order
of all elements of a website, from the root window down to the attribute of a text label.

The layout engine Gecko is later used to render either HTML or XUL pages. Mozilla uses
the Gecko engine to render both the GUI and the content of the web pages. Other
applications, like e.g. Camino, use Gecko only for their web pages and rely on native
GUI APIs.

Multithreading

Another important aspect of Java is multithreading, to run and manage different activities
within runtime. This feature is handled by the Java virtual machine and theoretically
enables multithreading even in systems that do not support it. Although today every
system and operating system kernel is able to manage multiple activities or threads. The
keywords wait, notify and synchronized realize this feature in Java.

17

Scripting Mozilla Applications with XPCOM and XUL

Mozilla on the other hand relies on the use of object-oriented programming languages to
realize multithreading. Therefore managing multiple activities is solely done in the
respective source code. If we talk about a simple standalone program involving only
XUL, XBL and JavaScript, then multithreading is very hard to achieve without bridges to
other languages. JavaScript offers workarounds such as timers to solve this problem in
small programs, although this kind of programming/scripting is not recommended
[Carb06].

2.3.3 Conclusion

There is no short answer to the question whether to use Java or Mozilla for your
applications, the choice rather depends on what is really important for your program.

Figure 3: Short comparison between Mozilla
and Java [Carb06]

Java is a programming language that enables you to write complex programs, be it for
mobile clients, desktop clients or server-side programming. The included virtual machine
is great as a layer between the source code and the underlying system and therefore
guarantees great portability. But recent years showed that XML is getting more important
in terms of internet technologies, covering areas that Java cannot handle.

Due to its modularity and many open source technologies like XPCOM and XUL Mozilla
applications are getting key players in many internet domains. Mozilla is open to inter-

18

Scripting Mozilla Applications with XPCOM and XUL

operability and is language neutral, which means that components can be written and
used by many different programming languages including Java. The internet is no longer
a collection of documents, but rather a collection of services. And component-based
applications are able to provide rich graphical user interfaces and the functionalities to
access a variety of those web services.

Luckily, programmers do not need to make a choice between Java and Mozilla, since
JavaXPCOM (bridge between Java and XPCOM) already combines those two
technologies under one hood. In the following chapter we will learn how to write XUL
GUIs, bring them to life using scripting languages and access XPCOM components in
Java [Carb06].

19

Scripting Mozilla Applications with XPCOM and XUL

2.4 XPCOM-related technologies

Mozilla supplies its development community with several proprietary and open source
technologies, which aid you in the process of creating new Mozilla extensions or
manipulating existing components. Furthermore, you can create interactive user
interfaces with small effort.

2.4.1 XPIDL

Mozilla uses the Cross-Platform Interface Description Language (XPIDL) to define and
manage all its interfaces. XPIDL stems from the CORBA OMG Interface Definition
Language (IDL) and allows to define methods, attributes, constants and even the
Inheritance behavior of an interface.

XPIDL allows the programmer to generate type libraries, or typelibs. Those XPT files are
a binary representation of an interface. When a programming language such as Java or
C++ accesses an interface it communicates directly with its typelib to find out which
methods and variables are available. This feature of XPCOM is called XPConnect and is
the main layer between any programming or scripting language and the XPCOM core
with its components and interfaces. In the following chapters we will learn more about
XPIDL and its practical use, when dealing with XPCOM components [PoHo07].

20

Figure 4: XPCOM component
architecture [PoHo07]

Scripting Mozilla Applications with XPCOM and XUL

2.4.2 XUL

The graphical user interfaces of all Mozilla applications are implemented in a XML-
derivative called XML User Interface Language or XUL (spoken as “zool”). XUL is not a
programming language, but a markup language like HTML or XML. As a markup
language it is natively interpreted by Mozilla’s layout engine Gecko. Every visual part of
Firefox or Thunderbird includes XUL-layouts, which determine the structure and design
of the application front end. Those GUIs are then interpreted and rendered by Gecko.

Microsoft picked up on this concept and is
expected to adopt a XUL-like markup language
called XAML for its newest operating system
Longhorn.

The graphical user interfaces are written in XUL,
CSS provides the necessary design and Javascript
handles the events of the GUI and brings the
application to life. The scripts can communicate
with the existing XPCOM architecture using the
XPConnect layer [BuSm01].

An example for a XUL widget would be this short code sample.

<?xml version="1.0"?>
<?xml-style sheet href="chrome://global/skin/global.css" type="text/css"?>

<dialog id="myDialog" title="My Dialog"
xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"

buttons="cancel"
buttonlabelcancel="Exit"
buttonaccesskeycancel="E"
ondialogcancel="doCancel();">

<script language="JavaScript" src="DialogScript.js"></script>

Code example 1: Header information of a XUL document

The XUL document begins like any other XML document with information about version
and namespace. In line 2 is a reference to the standard style sheet provided by the
Mozilla development center. The first XUL element is the dialog. The tag is structured
like an HTML element. The tag name is followed by a series of attributes identifying and

21

Figure 5: Elements of an XPCOM GUI
[PoHo07]

Scripting Mozilla Applications with XPCOM and XUL

creating the element at hand. The attribute xmlns includes the official XUL namespace,
at least one namespace per XUL document is mandatory. buttons is a reference to the
exit or cancel button, its behavior is documented in the last three attributes of the dialog
element, the label is “Exit” and the action event triggers the JavaScript method
doCancel(). At the moment there is no JavaScript included.

<menu label="Datei“ class="mymenu" >
<menupopup>

<menuitem label="Menu 1" class="mymenu" id="b1"
oncommand="newTab(‘http://www.wu.ac.at/’)" />
<menuitem label="Menu 2" class="mymenu" id="b2"

oncommand="newBookmarkFolder(folder)" />
<menuitem label="Menu 3" class="mymenu" id="b3"

oncommand="doSomethingOther()" />
</menupopup>

</menu>
</dialog>

Code example 2: Body of a XUL document

The actual body of the XUL document is a simple popup menu with three different menu
items. Each item has its own label, ID, class name and action event. The document
closes when the root tag element – in this case dialog – is closed. XUL documents can
only be opened and rendered by Mozilla’s Gecko engine. In case you would open the
document from Mozilla Firefox or by a double-click on the file, the following “web page” in
Figure 8 would appear in the browser window.

Figure 6: Firefox displays the XUL document

XUL elements are nice and easy to define, but they have no functionality whatsoever.
This is the reason Mozilla provides its own scripting or binding language - XBL.

22

Scripting Mozilla Applications with XPCOM and XUL

2.4.3 XBL

The XML Binding Language (XBL) is like XUL a XML-derived language. While as XUL
only packs the components for graphical user interfaces, XBL is a way of dynamically
changing those GUIs. When it comes to providing actual functionalities, XBL hands
control over to more powerful scripting languages though. At the moment, developers
have to work with XBL version 1.0, the coming version 2.0 is on its way to being
standardized by the World Wide Web Consortium W3C.

So called bindings are attached to XUL elements and influence their behavior, for
example the handling of certain events. This collection of bindings is stored in a separate
XBL document and is integrated into the XUL document through CSS. In practice, this
binding language is not very well known and has limited potential at the moment. The
following short example shows how it is included into a XUL document.

Code example 3: XBL - The XUL document xbl.xul

First the XUL root window is created. Note that the XML declaration includes our own
style sheet “xbl.css” and not the standard reference “chrome://global/skin/global.css” like
in the previous example. The window element only contains the XUL namespace and a
box element with the class name “classname”. The content of the box element is empty,
but will later be filled by the corresponding XBL binding.

Code example 4: XBL - The CSS document xbl.css

The XBL document is integrated in the XUL document via the referenced cascading style
sheet xbl.css. “–moz-binding:” links the box element with the class name “classname” to
the binding xblname in the XBL document xbl.xml.

23

<?xml version="1.0"?>
<?xml-style sheet href="xbl.css" type="text/css" ?>

<window
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul" >

 <box class="classname" />
</window>

box.classname
{
 -moz-binding : url('xbl.xml#xblname');
}

Scripting Mozilla Applications with XPCOM and XUL

The content of the XBL file (Code example 5) is the actual code. The most important
elements of all XBL documents are:

 <bindings>, the root tag of the XBL format. Contains namespace and the
individual <binding> elements.

 Each <binding> is the definition of one XUL element.

 The <content> of such a binding declares further elements and behavior.

Code example 5: XBL - The XBL document xbl.xml

The root tag <bindings> contains the namespaces for XBL and XUL elements and the
different <binding> tags. In our case there is just one, the binding for the box element
classname. The id attribute links the binding with the XUL component. The actual
behavior is documented in the <content> tag. It creates a vertical box element,
containing a label and a horizontal box with a text box and two buttons. Both buttons
have action listeners (oncommand), which fire JavaScript functions, in this case only
alert().

When you open the XUL document or when a certain user action triggers en event, the
CSS file replaces the existing content of the XUL box with the content of the
corresponding XBL binding. Such XBL files can be used to manipulate or create new

24

<?xml version="1.0"?>

<bindings xmlns="http://www.mozilla.org/xbl"
 xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul" >

 <binding id="xblname">
 <content>
 <xul:vbox style="margin:8px;">
 <xul:label value="Type a text:" />
 <xul:hbox>
 <xul:textbox flex="8" />
 <xul:button label="Enter" oncommand="alert('enter');" />
 <xul:button label="Clear" oncommand="alert('clear');" />
 </xul:hbox>
 </xul:vbox>
 </content>
 </binding>

</bindings>

Scripting Mozilla Applications with XPCOM and XUL

parts of a XUL document on the fly, presenting a similar behavior like AJAX. The final
result displayed by Mozilla Firefox 3.0 is shown in Figure 7.

Figure 7: XBL - The final result of the XUL file call

Now that we know how XUL/XBL interfaces gain access to scripts we should take a
closer look at the underlying technology, which enables Javascript access to XPCOM
components.

2.4.4 XPConnect

XPConnect is a XPCOM module and a bridge between Javascript and internal XPCOM
interfaces. The script authorizes itself through XPConnect and enables access to the C+
+ code behind every interface. In fact, both languages do not need to know who is
accessing their components, neither do they need to understand the other language,
XPConnect works as a mediator. Likewise, the XPCOM components can also access
Javascript documents. There are several third party development projects going on,
aiming to extend the XPConnect functionality to other scripting languages. The
authorization process of a Javascript can be as easy as adding one of the two following
lines of code [MoSi09].

netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');

or

netscape.security.PrivilegeManager.enablePrivilege("UniversalPreferencesRead")

The Netscape security module grants the Javascript that calls one of the above functions
access to internal XPCOM modules. What happens internally, is that Mozilla’s Sign Tool
creates a digital signature to the calling script. The signature and the responsible script
are both temporarily stored in a Java archive. The access privileges are only granted for
the actual scope of the calling Javascript functions, so this line of code has to be

25

Scripting Mozilla Applications with XPCOM and XUL

repeated in every separate function that wants to access XPCOM interfaces. On the front
end of the application the user is asked to accept the signature of the script before
access is granted. If you register your files with a digital signature before hand, this step
can be avoided.

There is a reason for XPCOM to be sensible about which script requests the security
privileges. Object-oriented programming languages like Java have several opportunities
to hide and secure internal information. You can use key words like private/protected or
data encapsulation to hide sensible information in external classes or interfaces. Plus
Java code cannot be changed at runtime. All those security issues are not the case with
Javascript or many other scripting languages, simply because they have other priorities
than strict security. For our code examples this is not an issue, we can simply access the
script, knowing what it wants and what it is able to do. Would your unsigned Javascript
try to get access to XPCOM components on another computer, it would fail the security
checks.

When the Javascript function newTab(url) in code example 6 is called, it will create a
new tab in the currently active Mozilla Firefox window. If no browser is opened yet, it will
create a new browser instance with the requested target URL opened.

Code example 6: Javascript function doSomething adds a new tab to the current Firefox
browser

Let us take a look what happens exactly in the code in example 6. After the creation of
var url we would request access privileges to XPConnect. At this point the end user is
asked if he wants to trust the calling script, if no digital signature was created in advance.
Through the Components.classes object we can access the component WindowMediator
with the contract id “@mozilla.org/appshell/window-mediator;1” and use its

26

function newTab(url) {
try {

 // get access to XPConnect module
netscape.security.PrivilegeManager .enablePrivilege('UniversalXPConnect');

 // get access to XPCOM interface nsIWindowMediator
var wm = Components.classes["@mozilla.org/appshell/window -mediator;1"]

 .getService(Components .interfaces.nsIWindowMediator);
 // get the current Firefox window and add new Tab

var mainWindow = wm.getMostRecentWindow ("navigator:browser");
mainWindow.getBrowser().addTab(url);

} catch (e) { alert(e); return false;}

}

Scripting Mozilla Applications with XPCOM and XUL

service/interface nsIWindowMediator [CoCl08]. Like you may have guessed the interface
is responsible to monitor and manipulate current browser windows and tabs. The method
getMostRecentWindow() requests access to the currently opened browser window, if
available. Then we can finally add our target URL as a new tab. Five lines of code that
are able to achieve quite a lot.

2.4.5 XPT

Although we are now able to access XPCOM services there are some restrictions to
what Javascript can do. We already talked about the precarious security issues, but it
takes more than XPConnect to get access to an interface. Every time an internal
XPCOM service is requested the script is handled by XPIDL, which checks if the
requested interface exists in its own registry. In general, Interface Description
Languages (IDLs) are used to describe interfaces in a language- and machine-
independent way. IDLs make it possible to define interfaces which can then be
processed by other applications.

When an interface is run through the XPIDL compiler, it produces an XPT or type library
file, a language-independent representation of the interface code. Because XPConnect
uses the information to allow scripts access to XPCOM interfaces, it is important to make
sure they are generated and included with your code even if you are developing
exclusively in C++, the native Mozilla XPCOM language. Not only is a big part of the
browser implemented in Javascript, it is possible that in the future someone may wish to
use scripts to interact with whatever components you created. If you did not register
them with XPIDL, they basically do not exist for the rest of the development community.

27

Scripting Mozilla Applications with XPCOM and XUL

3 Building powerful XPCOM applications

Our applications are now able to present a nice and clean user interface to the customer,
via Javascript they come to life and using the XPConnect layer we can even access and
manipulate XPCOM interfaces. But this is not enough for a full fledged software
application. Due to security reasons we want our program to be implemented in a object
oriented language, that offers us all the advantages that a scripting language like
Javascript will never be able to. But as it stands now, we have no means to call Java
classes or let them call our scripts. So it is time to introduce a bridge between Javascript
and Java that will eliminate that barrier – the Bean Scripting Framework.

3.1 Bean Scripting Framework

“The Bean Scripting Framework (BSF) is a set of Java classes, which provide scripting
language support within Java applications. It also provides access to Java objects and
methods from supported scripting languages. [ApJa09]” That is the official definition of
the BSF project. It provides a bridge between Java and most scripting languages,
enabling a two-way communication. Java objects are encapsulated into beans, which
can be accessed by any supported language. Vice versa, Java is able to process objects
from other formats.

BSF was initiated by software giant IBM in 1999 to provide access to JavaBeans from
other scripting languages. It was soon declared an open source project and was used
both in IBM (e.g. Websphere) and Apache (e.g. Xalan) projects. In 2002, BSF was
officially accepted as a subproject of Apache Jakarta, which deals with numerous open
source technologies evolving around Java.

The current distribution of BSF is since late 2007 version 2.3, enabling access to the
following scripting languages:

• JavaScript (Rhino)
• NetRexx
• Perl
• Python

28

Scripting Mozilla Applications with XPCOM and XUL

• Tcl (using Jacl)
• XSLT Style sheets

It is possible to integrate more than those scripting languages using their respective BSF
engines. This is the case for

• Open Object Rexx
• Groovy (Monkey)
• JLog
• JRuby
• JudoScript
• ObjectScript

Installation & Use

There are several ways to use the BSF classes. It can be used as a standalone, a class
library or as part of an application server. Enabling access to BSF for the first two
choices is very easy. The developer simply has to download the most current version of
BSF’s bsf.jar file from the Jakarta web page and include the archive in the classpath of
the local machine, as well as the JAR archive for the scripting language you want to
include in your Java application.

The advantages of BSF are pretty clear. First it bridges Java to your selected scripting
engine. You therefore enable access to your application to end users, who might be
familiar with simple languages like Visual Basic or Javascript, but have no real
experience with object oriented programming languages. And it brings more possibilities
for debugging the software at hand.

Getting started

The BSF architecture mainly exists of two components: BSFManager and BSFEngine.
The BSFManager is used to access and execute scripts, BSFEngine loads and interacts
with the scripts. First you have to import the BSF classes and instantiate the
BSFManager.

29

Scripting Mozilla Applications with XPCOM and XUL

The newly created instance of the BSFManager registers the scripting language, using
the name and full path of the package. Then the BSFEngine is instantiated using the
registered scripting language. From this point on you have basically two ways of handling
scripts. eval() evaluates the script and checks for errors. If you completely trust the script
you can start it directly by calling exec().

3.1.1 Working with BSF

Now that we know a little bit about the underlying interfaces, we test it with our own Java
class “ScriptInterpreter.java”. This Java class waits to be called, using the given
argument as the file path of the script we want to include. To start it from the command
line you have to call > java ScriptInterpreter scriptname.js. When the class is called
without an argument, it assumes the script to be Javascript and execute a default script
called frame.js. To instantiate the class from within Java you would have to call the
constructor containing the script as the only parameter, e.g. ScriptInterpreter si = new
ScriptInterpreter (script). This code example orients itself after one of the many BSF
code samples, that come with the source code.

But first we have to include all necessary Java and BSF classes. The necessary path to
include the classes BSFManager and BSFEngine is org.apache.bsf, other utilities can be
referenced by using the subdomain .util.

30

Code example 7: BSF -Creation of BSFManager and BSFEngine

import org.apache.bsf. *;
import org.apache.bsf.util.*;

BSFManager mgr = new BSFManager();
mgr.registerScriptingEngine(" javascript ",
"org.apache.bsf.engines.javascript.JavaScriptEngine", null);
BSFEngine engine = mgr.loadScriptingEngine(" javascript ");

Scripting Mozilla Applications with XPCOM and XUL

Code example 8: BSF - The main method of ScriptInterpreter.java

When ScriptInterpreter.java is called, the main method in Code example 8 checks the
given argument. Was no argument given, then the standard Javascript is called, did the
main method receive more than one argument, the program exits due to misuse. The
ideal scenario is one valid file name for the source of the script. The argument is stored
as String scriptName and sent to the constructor method.

The first thing the constructor does is create a new instance of BSFManager called bsf.
The BSFManager extracts important information like the type of scripting language
(String language) and reads the content via a FileReader to the String script. At this point
it would be possible to instantiate the BSFEngine and check the validity of the script with
eval(), but we elect to execute the script right away using exec(). This method receives
all the information we have about the script and launches it. Now let us take a look at
what happens within the script.

Again, we have to include all the Java and BSF classes we need in the script. In this we
include BSF and Java’s .awt, .lang and .net packages. Then we can begin with the
construction of the AWT frame.

31

 /* main() checks arguments (filename) and calls constructor
 /***/
 public static void main (String[] args) throws Exception {

 if (args.length == 0) {
 scriptName = "frame.js";
 System.out.println ("Kein Skript uebergeben --> default: JavaScript"

+scriptName);
 }
 else {
 scriptName = args[0];
 System.out.println ("Skript erfolgreich uebergeben --> "+args[0]);
 if (args.length > 1) System.out.println ("Error: Höchstens ein Parameter");
 }

 // initialize TestScript
 new ScriptInterpreter(scriptName);
 }
}

Scripting Mozilla Applications with XPCOM and XUL

Code example 10: BSF - The construction of an AWT Frame within Java

As you can see in Code example 11, we can now create Java components without any
restrictions from within the script. We would even be able to do this, if we haven’t had
included the necessary Java packages. In that case, we would have to address the full
path of the package every time. The creation of the main frame would have taken the
following line of code: var frame = new java.awt.Frame (“…”); I will not include the rest of
the frame creation, since it is a pretty simple task of putting AWT components together.

You see that it is very easy to bridge a complex object oriented language like Java to a
much simpler construct like Javascript. I mentioned that we can use pretty much any
aspect of Java we would like. That is even the case for Event listeners, as shown in
Code example 12.

32

Code example 9: BSF - ScriptInterpreter's constructor method initializes BSFManager

/* class constructor uses BSF to (evaluate and) launch a script
 /*** *******************/
 public ScriptInterpreter (String scriptName) throws BSFException {

 // execute script
 try {
 BSFManager bsf = new BSFManager ();

 //create "Java -String"
 String btnLabel = "Label stammt aus Java" ;
 bsf.declareBean ("btnLabel" , btnLabel , String .class);

 String language = BSFManager .getLangFromFilename (scriptName);
 FileReader in = new FileReader (scriptName);
 String script = IOUtils .getStringFromReader (in);

 // launch script start
 bsf.exec (language , scriptName , 0, 0, script);

 }
 catch (BSFException e) { e.getMessage (); e.printStackTrace (); }
 catch (IOException e) { e.getMessage (); e.printStackTrace (); }
 }

/** Create GUI components
/**********************************/
frame = new Frame("AWT Frame, implementiert in JavaScript");
panel = new Panel(new BorderLayout());
scroll = new Scrollbar(Scrollbar.HORIZONTAL);

Scripting Mozilla Applications with XPCOM and XUL

Code example 11: BSF - Event handling from within the script

The approach to adding the event listeners is exactly the same as it is in Java. The target
component is attached to an event listener (WindowListener, ItemListener, etc.). When
the action is observed the inner function catches the event and processes it according to
the script code. In our case we have two window listeners, who close the application
(event windowClosing) or change the content of the label element label (event
windowDeiconified). The item listener is attached to the choice element color. When the
event itemStateChanged is launched, the background color of the label element changes
to the selected item in the choice box. Now we pack() the frame and show() it or
setVisible(true). Figure 8 shows the final result, an responsive AWT frame written purely
in JavaScript.

Figure 8: BSF - AWT Frame in JavaScript

When the choice elements at the bottom are selected, either the color of the label
background (choice element on the right), or the content of the label element (choice

33

/** Add event handler to components
/**/
frame.addWindowListener(function(event, methodName) {
 if (methodName == "windowClosing") { System.exit(0);}
 if (methodName == "windowDeiconified") { label.setText("Willkommen zurück");
}
});

color.addItemListener(function(event, methodName) {
 if (methodName == "itemStateChanged")
 {
 switch (color.getSelectedIndex()) {
 case 0: label.setBackground(Color.green); break;
 case 1: label.setBackground(Color.blue); break;
 case 2: label.setBackground(Color.red); break;
 default: break;
 }
 label.setFont(new Font("Dialog", Font.BOLD, 14));
 }
});

Scripting Mozilla Applications with XPCOM and XUL

element on the left side) will be changed (see Figure 9 on page 36).

The Javascript button in the center has a special use and will be the topic of the next
chapter. Bean Scripting Framework is more than just the execution of a script in an
unknown language. It is about communication and the exchange of objects. But before
objects can be transferred to a foreign script they have to be encapsulated. Like the
name of the BSF project probably hints, those encapsulated objects are known as
beans.

34

Scripting Mozilla Applications with XPCOM and XUL

3.1.2 Working with Beans

The idea for BSF beans evolved out of JavaBeans, which was the first step to
encapsulate and transfer Java objects. BSF beans work in a very similar way. First they
are added to a common registry, containing a key and a value. Then they can be loaded
at any place you like. The registering as well as the loading can take place in Java or any
scripting language you desire. We should take a few steps back to the constructor
method of the original BSF example and include our first bean.

Code example 12: Bean-example: The new StringInterpreter constructor

This is pretty much the same code as before, the only difference are the two lines that
declare the BSF bean. First the String btnLabel is initialized containing a new value for
our label element created with Javascript. The String is registered to the BSFManager
using the method declareBean(), and is given a keyword to find the bean (“btnLabel”),
the content of the bean (btnLabel) and the class type (String) as arguments.
Alternatively, you could use registerBean() with almost the same parameters. The bean
is now fully registered and can be accessed wherever we want.

35

Scripting Mozilla Applications with XPCOM and XUL

The ActionListener for our button contains only two lines of code, that change the content
of the button label, which was “Javascript Button”. As you can see it is not necessary to
instantiate the BSFManager within Javascript as it was already created in the Java class
constructor and is now available to any script that is loaded into the BSFManager or
BSFEngine. We access the bean by calling the BSFManager function lookupBean() and
can get it using the identifier we specified while declaring the bean. The imported bean
contains the String “Label stammt aus Java”, which will be changed to the new text of our
button label (see Figure 9).

Figure 9: Bean-example: The Java String is now used within Javascript

We have learned that with very few lines of code it is possible to connect the powerful
programming language Java with many different scripting languages and avoid
complicated and dangerous workarounds. But what if Javascript is not the scripting
language our customers use, in fact they rely on a scripting format, which is not
supported by BSF. In this case we would need another bridge to solve the problem. One
example for such a scripting language is Open Object Rexx. We will learn what it is and
how we can use it in combination with Java in the following chapter.

36

Scripting Mozilla Applications with XPCOM and XUL

3.2 Open Object Rexx

We have learned how an object-oriented programming language like Java can interact
with Javascript using the Bean Scripting Framework. It is also possible to connect Java
applications with other scripting languages, like Open Object Rexx (ooRexx). ooRexx’s
main use is the automation of processes, dealing for example with component object
models and applications running on different operating systems.

3.2.1 Introduction to Open Object Rexx

Open Object Rexx celebrates 30 years of information technology history this year. The
predecessor “Restructured Extended Executor” (REXX) was introduced by IBM in 1979.
It was created as a “human-centric” format and is a typeless language since its
beginning. Operating systems like the Amiga OS or OS/2 use REXX as their standard
scripting language. In 1987 it was redefined to be IBM’s main procedural scripting
language for their operating systems. REXX was standardized by the American National
Standards Institute (ANSI) in 1996.

Due to the strong desire of the IT market to incorporate object oriented paradigms into
their application, IBM developers started working on the open source version of REXX,
Open Object Rexx (ooRexx). The final product was introduced as part of “OS/2 Warp” in
1997. It is built on an object model and has many object oriented features like multiple
inheritance, but is at the same time backwards compatible with REXX. With the decline
of IBM’s success in the desktop market, REXX and ooRexx became increasingly less
used [Fla02].

Advantages of ooRexx

ooRexx has a standardized API, which enables you to call ooRexx methods from within
applications written in compiled programming languages. It is even possible to extend
the existing ooRexx API using those languages. Combining procedural with object
oriented script features, this human-centric language can solve many problems in a very
effective way. ooRexx is especially used in the operating systems of many IBM

37

Scripting Mozilla Applications with XPCOM and XUL

mainframes. Therefore it is a vital component in connecting client operating systems like
Windows or Linux with the existing mainframes [OnLa09].

Getting started

ooRexx comes in the form of a simple installer, Windows users can download an
executable installer, users of other operating systems have to download the binary
installer. The current version is 3.2, with 4.0 available as a beta version since April 2009.

ooRexx itself is implemented in C++ and has a very small, but powerful application
programming interfaces. 18 different classes (Array, Class, Directory, etc.), that all inherit
from the same root class “Object”. ooRexx messages are very simple and the
typelessness of the language makes it even easier to work with. Printing a string to the
command line can be as easy as:

say “Hello World”

As you can see, there is very little code involved. Every ooRexx statement is closed with
a semicolon like in Java or Javascript, but in case it is missing the ooRexx interpreter
automatically adds one at the end of every line [Fla02].

Within ooRexx everything is an object and every object can receive and send messages.
Functions are called by using a message operator, the tilde character (~).

name = person~getName

There are several ways to structure the code. Certain keywords like function, call, do
over, when then, etc. initiate methods, loops and conditional behavior. How they are
used will be demonstrated in this chapter.

3.2.2 Working with ooRexx

RexxUtil is a set of ooRexx classes that allow the scripting and automation of operating
system services and allow access to COM components. Later on we will use ooRexx to
access Mozilla XPCOM components. The short script in Figure 10 accesses the
Windows COM service “Windows Management Instrumentation” (WMI). It provides an

38

Scripting Mozilla Applications with XPCOM and XUL

operating system interface, through which scripts and programming languages gain
access to internal information. Win32_Process is a WMI module that contains detailed
information about all active processes [MiTe09].

/** get Windows management database containing all active processes */
objWMIService = .OLEObject ~GetObject ("winmgmts: \\.\root\CIMV2")

/** do for every result */
do objItem over objWMIService ~ExecQuery ("Select * from Win32_Process")
 say "__"
 say "Name:" objItem ~Name
 say "Creation Date:" objItem ~CreationDate
 say "Execution State:" objItem ~ExecutionState
 say "Install Date:" objItem ~InstallDate
 say "Parent Process Id:" objItem ~ParentProcessId
 say "Priority:" objItem ~Priority
 say "Process Id:" objItem ~ProcessId
 say "Read Operation Count:" objItem ~ReadOperationCount
 say "Virtual Size:" objItem ~VirtualSize
end

Figure 10: Rexx lists data about all active Windows processes

All windows processes that are currently active are listed in root\CIMV2\Win32_Process,
a copy of this database is stored to the ooRexx object objWMIService. The do over loop
is similar to an for each loop, meaning that for every result of the SQL method
ExecQuery(“Select * ..”) the steps until the keyword end are repeated.
ExecQuery(“Select * ..”) is sent to our ooRexx object, launching the function with the
corresponding name and extracting all results through the supplied SQL statement.
objItem represents in every single loop iteration the current process object and displays
their attribute values.

39

Scripting Mozilla Applications with XPCOM and XUL

Figure 11: The Windows command line prints all active processes

When the ooRexx script is started, it prints the requested information about the entire
result set to the command line. Figure 11 shows one of the differences to other
(scripting) languages. The NIL object (.nil) represents the same data type as null usually
does.

ooRexx is not only suited to deal with the underlying operating system, it can also be
used to automate processes of different applications. The Open Office applications for
example are open source and provide a vast API to create or change Open Office
documents. What ooRexx cannot do is communicate natively with Java. For this reason
we need a bridge similar to BSF. This gap is closed by BSF4ooRexx.

3.2.3 BSF4ooRexx

The Bean Scripting Framework for Rexx (BSF4ooRexx) is an extension, which enables
ooRexx to communicate with Java objects. This way any script can take advantage of
the huge Java function library. Vice versa, any Java application can use ooRexx as a
scripting language. The current version of BSF4ooRexx1 is 4.0 and was released in
October of 2009.

A set of Java classes and the external function package “BSF4ooRexx.dll” translate
ooRexx code into Java-readable commands. Java field objects can be collected in a
1 The current version of BSF4ooRexx is also referenced as the „Vienna version of BSF4ooRexx“, since the
development took place at the Vienna University of Economics and Business. Earlier work on BSF4ooRexx
were the “Augsburger” and “Essener” versions.

40

Scripting Mozilla Applications with XPCOM and XUL

wrapper and accessed by ooRexx objects. Scripts using the BSF4ooRexx bridge are
therefore fully portable to any system that has a Java and Rexx interpreter installed. At
the moment BSF4ooRexx provides ready-to-go support for Windows and Linux
[WURe09].

Installation

First make sure you have the ooRexx interpreter installed correctly on your system. The
fastest way to do this would be to invoke a simple script from the command line.
Download the installer source code1 at the Vienna University of Economics and Business
(WU Wien). If you have an older version of BSF4ooRexx installed, uninstall the source
code by invoking

uninstallBSF4ooRexx.cmd or uninstallBSF.cmd

in the Windows command line or executing

uninstallBSF4ooRexx.sh or uninstallBSF.sh

on a Linux system. Unzip the installer archive BSF4ooRexx_install.zip and change into
the target directory. The execution of the command

rexx setupBSF.rex

will create customized install scripts. Afterwards invoke either

installBSF.cmd or ./installBSF.sh

depending on the underlying operating system. In the last step call

setEnvironment4BSF.cmd or setEnvironment4BSF.sh

which will add the Java archives bsf-rexx-engine.jar and bsf-v400-20090910.jar
(depending on the current version) to the classpath of your systems environment
variables. If not, please provide your system with the necessary path information
manually.

Test the successful installation by invoking rexx infoBSF.rex on your machine. You
should now see detailed information about your ooRexx, BSF4ooRexx and Java
installation [WURe09].

1 Most current BSF4ooRexx Installer: http://wi.wu-wien.ac.at/rgf/rexx/bsf4oorexx/current/

41

Scripting Mozilla Applications with XPCOM and XUL

3.2.4 Working with BSF4ooRexx

Before we begin with the practical code example for BSF4ooRexx we should take a few
steps back to chapter 3.1.1 (Working with BSF) and 3.1.2 (Working with Beans). In these
code samples we implemented a Java AWT Frame completely within Javascript,
including several event listeners. The script was invoked by a Java class, which created
the BSFManager, a BSF bean and executed the script. We will repeat the same process
for ooRexx and look at the language-specific differences between the two scripting
engines.

Code example 13: BSF4ooRexx - Definition of class names and constants

The first four lines in code example 13 is optional and serves only to make the coming
ooRexx code easier to read. We define all full class names, class constants and static
variables we later need. To get to the constant variables of the respective classes we
need to address the global bsf object and invoke the method getStaticValue(class name,
variable name). Now we are able to build the frame.

Code example 14: Javascript - Definition of class names and constants

42

/** Define "ooRexx shortcuts" to create Java components **/
/**/
BorderLayout = 'java.awt.BorderLayout'
Button = 'java.awt.Button'
Choice = 'java.awt.Choice'
Color = 'java.awt.Color'
Frame = 'java.awt.Frame'

EAST = .bsf~bsf.getStaticValue(BorderLayout, "EAST")
WEST = .bsf~bsf.getStaticValue(BorderLayout, "WEST")
SOUTH = .bsf~bsf.getStaticValue(BorderLayout, "SOUTH")
NORTH = .bsf~bsf.getStaticValue(BorderLayout, "NORTH")

/** Create GUI components
/**********************************/
frame = new Frame("AWT Frame, implementiert in JavaScript");
panel = new Panel(new BorderLayout());
scroll = new Scrollbar(Scrollbar.HORIZONTAL);

Scripting Mozilla Applications with XPCOM and XUL

Code example 15: BSF4ooRexx - The frame construction

Code example 15 illustrates how BSF4ooRexx handles the invocation of Java methods.
The method name is sent to the bsf object, supplying the full class name and optional
values for the class constructor. The first line creates a new java.awt.Frame with the
caption “AWT Frame, […]”.

Code example 16: BSF4ooRexx - The ooRexx event listeners

When the frame is completed, we can implement the event listeners. In Javascript we
pretty much copied the Java style of writing event listeners, including the hidden
functions. This step is done much faster in ooRexx. We simple send the method
addEventListener(a, b, c) to the corresponding Java object, with

• a being the triggered event set,

• b being the specific event and

• c being the ooRexx statement/method to call.

The event listener for Frame frame would simply close the application, while the event
listeners for the choice elements color and button invoke the ooRexx methods

43

/** Create GUI components **/
/**********************************/
frame = .bsf~new(Frame, "AWT Frame, implementiert in open Object Rexx ")
layout = .bsf~new(BorderLayout)
panel = .bsf~new(Panel, layout)

scroll = .bsf~new(Scrollbar, HORIZONTAL)
label = .bsf~new(Label, "Servus")
button = .bsf~new(Button, "ooRexx Button")

color = .bsf~new(Choice)
color ~~add("green") ~~add("blue") ~~add("red")

/** Add event handler to components **/
/**/
frame~bsf.addEventListener ('window' , 'windowClosing' , 'call BSF "exit"')
frame~bsf.addEventListener ('window' , 'windowDeiconified' ,
'label~setText("Willkommen zurück")')

color~bsf.addEventListener ('item', 'itemStateChanged' , 'call changeColor color, label')
text~bsf.addEventListener ('item' , 'itemStateChanged' ,
'label~setText(text~getSelectedItem())')
button~bsf.addEventListener ('action' , 'actionPerformed' , 'call switchLabel button')

Scripting Mozilla Applications with XPCOM and XUL

changeColor and switchLabel.

/** pollEventText (any event) gets interpreted costantly **/
/***/
do forever
 INTERPRET .bsf~bsf.pollEventText
 if result="SHUTDOWN, REXX !" then leave
end
exit

Code example 17: BSF4ooRexx - The pollEventText Interpreter

Code example 17 shows another difference to Javascript, or many other scripting
languages for that matter. We include a loop which iterates until the termination of the
program and interprets the current pollEventText. This makes it possible for us to catch
the events. The keyword leave terminates the loop and exit closes the application.

/** event handler for choice field "color" **/
/*** **/
changeColor : procedure
 use arg color, label

 label~setBackground(.bsf~bsf.getStaticValue('java.awt.Color' ,
color~getSelectedItem ()))
 label~setFont(.bsf~new('java.awt.Font' , 'Dialog',
.bsf~bsf.getStaticValue('java.awt.Font' , 'BOLD'), 14))
return

/** event handler fo r button "button" **/
/*** **/
switchLabel: procedure
 use arg button

 btnLabel = bsf('lookupBean' ,'btnLabel')
 button~setLabel(btnLabel)
return

::requires BSF.cls -- adds BSF support to Java and scripts

Code example 18: BSF4ooRexx - ooRexx methods for event handling

Here we see the implementation of the two event handler. The procedure changeColor is
triggered by the choice component color and receives the object color and label as
parameters. It sets the background color of label to the selected color and changes the
font style of label to “Dialog”, “bold” and size “14”. The second event handler is
switchLabel and receives the button button. By providing the method name and the bean

44

Scripting Mozilla Applications with XPCOM and XUL

name as arguments, we get a copy of the String created in Java. The second statement
changes the value of the label to the received String. In the last line of our ooRexx
programs we include all necessary BSF4ooRexx libraries. Every script that wants to
access BSF4ooRexx functions has to include the main library BSF.cls via:

::requires BSF.cls

If you want to get access to the interfaces of Star Office/Open Office applications, you
would have to include UNO.cls.

Getting into ooRexx can be a bit awkward at first, since many of its principles differ from
the more popular scripting languages. But the possibilities you have in remote controlling
operating systems and other applications are very useful. It is now possible for us to
communicate with XPCOM (or COM) components from within Javascript and ooRexx
and both languages are able to communicate with Java. But our Java applications are
not yet able to call XPCOM interfaces directly. To do this we have to get to know
XULRunner, a JavaXPCOM runtime environment.

45

Scripting Mozilla Applications with XPCOM and XUL

3.3 JavaXPCOM and XULRunner

JavaXPCOM is a technology aiming to connect Java libraries with XPCOM components.
The Mozilla Development Center (MDC) describes the bridge this way. “JavaXPCOM
allows for communication between Java and XPCOM, such that a Java application can
access XPCOM objects, and XPCOM can access any Java class that implements an
XPCOM interface. JavaXPCOM is very similar to XPConnect (JavaScript-XPCOM
bridge), and uses XPIDL [JaXP06]”.

It is available as part of the XULRunner project, which is development framework and
runtime environment for JavaXPCOM components. In this chapter XULRunner will
provide us with the necessary interfaces to communicate with the XPCOM architecture,
while in chapter 3.4 we will build standalone applications with its help.

Installation

The current version1 of XULRunner can be downloaded at the Mozilla Development
Center2. At the moment XULRunner is available for Windows, Linux and Macintosh
operating systems. When the download is completed unzip the source code to your
target directory and execute –register-global (register for all users) or –register-user
(register for this user) in the command line/shell. This should include the following .jar
archives to your classpath:

• XULRunnerDirectory\javaxpcom.jar;

• XULRunnerDirectory\xulrunner\MozillaInterfaces.jar;

• XULRunnerDirectory\xulrunner\MozillaInterfaces-src.jar;

• XULRunnerDirectory\xulrunner\MozillaGlue.jar;

Furthermore, a new user environment variable called “GRE_HOME” (Gecko Rendering
Environment path or GRE) with the path of the XULRunner application should be
created. If not, please do this manually to get a dynamic access to the JavaXPCOM
functions. This GRE path plays a crucial part in initiating the XPCOM embedding.

1 The current XULRunner version is 1.9.2, for Mozilla Firefox 3.6

2 XULRunner Download: http://releases.mozilla.org/pub/mozilla.org/xulrunner/releases/

46

Scripting Mozilla Applications with XPCOM and XUL

To test the successful installation, try to invoke

xulrunner –version

to get the current XULRunner info dialog. By calling a XUL application through

xulrunner filename

the XUL document should open in a standalone frame, instead of in the browser
[XuRu09].

3.3.1 Working with JavaXPCOM

Setting up the XPCOM environment for Java is more complex than accessing it from
Javascript. The following code example describes the implementation of a startup
application which loads an URL in an independent browser window. We will be using the
following XPCOM interfaces:

• nsIServiceManager: The XPCOM service manager is one of the most important
interfaces, through it we will reference all other necessary XPCOM services.

• nsIAppStartup: The interface is intended to be used as an application startup
service. Applications are started with run().

• nsIWindowCreator: Gecko uses this interface to create new windows.

• nsIWindowWatcher: This interface is used to display and manipulate Gecko/DOM
Windows. Must implement a nsIWindowCreator object.

• nsIDOMWindow: Primary interface for a DOMWindow object. Represents a single
window outside the Firefox browser environment.

47

Scripting Mozilla Applications with XPCOM and XUL

import java.io.*;
import java.util.*;

import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nsIAppStartup;
import org.mozilla.interfaces.nsIDOMWindow;
import org.mozilla.interfaces.nsIServiceManager;
import org.mozilla.interfaces.nsIWindowCreator;
import org.mozilla.interfaces.nsIWindowWatcher;

Code example 19: JavaXPCOM - Import of all necessary classes.

We start by importing all necessary classes. First we get the Java packages java.io and
java.net. org.mozilla.xpcom.* enables us to set up the XPCOM environment with the
Mozilla singleton class. org.mozilla.interfaces.* contains the specific XPCOM interfaces
we later implement.

Our application “URLOpener.java” only contains a main method and is invoked through
the command line, the web page which should be opened is supplied as the sole
argument. How the requested URL (targetUrl) is verified is not included in the code
example, since it has nothing to do with JavaXPCOM. grePath is the directory of the
current XULRunner installation and is essential for XPCOM embedding.

GREVersionRange [] range = new GREVersionRange [1];
 range [0] = new GREVersionRang e("1.8" , true, "1.9+" , true);

 File grePath = null ;
 /** get a Mozilla class instance and the path to the Gecko Runtime Environment (GRE) */
 try {
 grePath = Mozilla .getGREPathWithProperties (range , null);
 }
 catch (FileNotFoundException e) { }

 if (grePath == null) {
 System .out .println ("found no GRE PATH");
 return ;
 }
 System .out .println ("GRE PATH = " + grePath .getPath ());

Code example 20: JavaXPCOM - Initialization of the Gecko Runtime Engine

In code example 20 we begin with the embedding process. The GREVersionRange array
range[] contains the range of supported Gecko Runtime Engines (GRE). The Mozilla
singleton class receives the range array and should return a valid GRE path. This
singleton class will provide us later with all necessary methods to access XPCOM
components. Can the GRE path not be found, then the application throws a “File Not

48

Scripting Mozilla Applications with XPCOM and XUL

Found Exception” and terminates.

 /** XPCOM is successfully embedded */
try {
Mozilla mozilla = Mozilla .getInstance ();

 // To get access to interfaces we get an instance of the XPCOM service manager
 nsIServiceManager serviceManager = mozilla .getServiceManager ();
 // Use contract ID (@mozilla.or g/toolkit/app -startup;1) and IID to get startup application

nsIAppStartup appStartup = (nsIAppStartup)serviceManager .getServiceByContractID
("@mozilla.org/toolkit/app -startup;1" ,

nsIAppStartup .NS_IAP PSTARTUP_IID);
 // Get the nsIWindowCreator interface through appStartup

nsIWindowCreator windowCreator =
(nsIWindowCreator)appStartup .queryInterface (nsIWindowCreator .NS_IWINDOWCREAT
OR_IID);

 // Get the nsIWindowWatcher interface
nsIWi ndowWatcher windowWatcher =
(nsIWindowWatcher)serviceManager .getServiceByContractID

("@mozilla.org/embedcomp/window -watcher;1" ,
nsIWindowWatcher .NS_IWINDOWWATCHER_IID);

Code example 21: JavaXPCOM - Using the Mozilla instance and XPCOM services

Now that we have validated the GRE path we can create a new instance of the Mozilla
singleton class. The new instance, mozilla, has to be initialized with the GRE path and
the XPCOM embedding is complete when either mozilla.initXPCOM() or
mozilla.initEmbedding() are called.

In line 60 we use mozilla to create a new Service Manager. There are basically two ways
of getting hold of an XPCOM interface. Either using the Service Manager to create a new
instance of the desired service by CID/IID or using queryInterface(IID), which is a method
inherited by all XPCOM objects by the root interface nsISupports. If queryInterface(IID) is
invoked, only a pointer to the requested interface is returned.

The Service Manager serviceManager will provide us with new instances of
nsIAppStartup and nsIWindowWatcher. nsIAppStartup is the interface used to launch
and quit different kind of applications and provides us with a pointer to nsIWindowCreator
by querying the interface ID. Now we have created all necessary XPCOM objects to run
the application.

49

Scripting Mozilla Applications with XPCOM and XUL

 // Set the window creator
 windowWatcher .setWindowCreator (windowCreator);
 // Create the DOMWindow with the supplied URL

nsIDOMWindow win = windowWatcher .openWindow (null, targetURL , "mywindow" ,
"chrome,resizable,centerscreen" , null);

 // DOMWindow win is active window
 windowWatcher .setActiveWindow (win);
 // Start the XPCOM startup application
 appStartup .run();

}
 catch (XPCOMException e) { e.printStackTrace (); }

Code example 22: JavaXPCOM - Running the startup application

Before windowWatcher can open a new window it has to be initialized using the
windowCreator. When this is done, we can open the new window with the provided URL
and a set of window parameters. The result will be stored in the form of a DOMWindow,
the simplest way to realize windows using Mozilla. We associate the windowWatcher
with the DOMWindow win and run the application. Now the Java application will be
blocked until the startup application terminates. To prevent this you would have to
implement multithreading by using the XPCOM interface nsIEventQueue.

 // shut down XPCOM embedding
 System.out.println (“JavaXPCOM shuts down... “);
 System.gc();

 mozilla .shutdownXPCOM (null);

Code example 23: JavaXPCOM - XPCOM shutdown

When the Java application is done using the XPCOM environment all resources have to
be freed. Calling the garbage collector with System.gc() is optional, since Java should do
this automatically. But the XPCOM embedding has to be shutdown. If you have used
initEmbedding(), then termEmbedding() has to be called. Was XPCOM initialized using
initXPCOM(), then shutdownXPCOM(Service Manager) ends the embedding process.
When the application is invoked, a new window loads the requested target URL.

Now we are able to connect Java with several scripting languages and let the scripts
communicate directly to Java using the Mozilla components. Furthermore XPCOM can
be accessed directly by script. Usually a Mozilla application or extension gets started
with a static XUL GUI and enabling it with Javascript. If your application needs Java in
the backend, the script can call the necessary Java classes with the Bean Scripting
Framework. Out of the box Javascript can only call the standard Java API. If you want to

50

Scripting Mozilla Applications with XPCOM and XUL

address your own Java classes from within your scripts, then you would have to pack
your classes to a .JAR archive and include them into your application with a Java Class
Loader. The use of such a class loader will be explained in chapter 3.4.3 “Extending the
application with JavaXPCOM”.

This chapter described how the XULRunner installation embeds XPCOM into a native
Java environment. In the next chapter we will learn how to implement a JavaXPCOM
environment with Open Object Rexx.

3.3.2 Implementing JavaXPCOM with ooRexx

Most XPCOM implementations use Javascript and XPConnect to request certain
services and enhance existing applications. We have already learned how such an
implementation could be done using the Java programming language. Since Java can be
connected to a vast number of scripting languages with interfaces like BSF or
BSF4ooRexx, it should be possible to let Open Object Rexx (ooRexx) to interact directly
with XPCOM components. In a way we are now connecting JavaXPCOM and
BSF4ooRexx to make our scripts more powerful.

In the previous chapter about JavaXPCOM we worked with the “URLOpener” example,
completely written in Java. When we translate the code into an ooRexx script it becomes
obvious how similar it will look. Which should not be surprising, since we are using the
same JavaXPCOM libraries. “URLOpener.rex” will have the same task as its Java
pendant, to receive an URL and open it with XPCOM interfaces.

.bsf~bsf.import('java.io.File' ,'File')

.bsf~bsf.import('java.lang.System' ,'System')

.bsf~bsf.import('org.mozilla.xpcom.Mozilla' ,'Mozilla')

.bsf~bsf.import('org.mozilla.xpcom.GREVersionRange' ,'GREVersionRange')

.bsf~bsf.import('org.mozilla.interfaces.nsIAppStartup' ,'nsIAppStartup')

.bsf~bsf.import('org.mozilla.interfaces.nsIDOMWindow' ,'nsIDOMWindow')

.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager' ,'nsIServiceManager')

.bsf~bsf.import('org.mozilla.interfaces.nsIWindowCrea tor','nsIWindowCreator')

.bsf~bsf.import('org.mozilla.interfaces.nsIWindowWatcher' ,'nsIWindowWatcher')

Code example 24: ooRexx and JavaXPCOM - “URLOpener.rex” - The import step

The first step is to import all necessary Java classes and XPCOM interfaces. As opposed
to Java, ooRexx does not yet support the import of whole packages. This is one of the

51

Scripting Mozilla Applications with XPCOM and XUL

main differences to the previous Java example. The other one would be the initialization
of the XPCOM embedding. On certain operating systems and with a wrong GRE
registration, the getGREPathWithProperties() method might return a nulltype object
instead of the right path to your javaxpcom.jar file in the XULRunner installation directory.
There are a few ways to solve this problem.

You could try to get the GRE path from your systems properties, from your registry or
include the Java archive into your application and use a relative path. In our test case,
we look for a corresponding system property that we have set up (System.getProperty()).
If this fails, we use a path where javaxpcom.jar can be found. The ooRexx variable
grePathName contains this path.

/** Target URL to open (explicit or by BSF bean) */
targetUrl = .bsf~bsf.lookupBean('targetUrl')
if targetUrl = .nil then targetUrl = 'http://derstandar d.at'

/** Initiate XPCOM embedding */
path = .System~getProperty('GRE_PATH')
 -- set grePathName manually (see first line)
if path = .nil then grePath = .File~new(grePathName)
else grePath = .File~new(path)
say 'Gecko Runtime Engine path: ' grePath~getPath

mozilla = .Mozilla~getInstance
 mozilla~initialize(grePath)
 mozilla~initXPCOM(grePath, .nil)
say 'Mozilla XPCOM initialized!'

Code example 25: ooRexx and JavaXPCOM - “URLOpener.rex” – XPCOM embedding

First we check if our script was launched by a Java class that could have registered a
targetURL as a BSF bean. If not we will open the homepage of the newspaper
derStandard by default. Finding a correct GRE path is next. As we already know there
are a number of ways to acquire it. One foolproof way would be to include javaxpcom.jar
to your script and reference it, which is done here by grePathName.

When this is done, we get a new Mozilla instance from the Singleton class and call the
functions initialize() and initXPCOM().

52

Scripting Mozilla Applications with XPCOM and XUL

/** Get the Service Manage r (responsible for acquiring XPCOM objects) */
serviceManager = mozilla ~getServiceManager

/** Retrieve necessary property values and XPCOM interface IIDs */
appStartupID = .bsf~bsf .getStaticValue (.nsIAppStartup , 'NS_IAPPSTARTUP_IID')
windowCreatorID = .bsf~bsf .getStaticValue (.nsIWindowCreator ,
'NS_IWINDOWCREATOR_IID')

windowWatcherID = .bsf~bsf .getStaticValue (.nsIWindowWatcher ,
'NS_IWINDOWWATCHER_IID')

winProps = "width=1000, height=650, resizable, centerscreen, scrollbars='yes',
status='yes'"

Code example 26: ooRexx and JavaXPCOM - “URLOpener.rex” – get the Interface IDs

The actual implementation of the XPCOM services is a near identical copy of the
previous Java example. We get a new Service Manager and then all the necessary
interface IIDs with the BSF4ooRexx subfunction getStaticValue(class, property name).

You should already be familiar with the code from code example 26 and 27, since it was
already explained in the previous chapter. When we are done with our task, we terminate
the XPCOM embedding again by calling shutdownXPCOM(). The last line of this code
example includes the Java support for ooRexx by including the Java wrapper program
BSF.cls, which is part of the BSF4ooRexx distribution.

/** Set up the application and load the new window with interface nsIWindowWatcher */
appStartup = serviceManager ~getServiceByContractID ('@mozilla.org/toolkit/app -
startup;1' , appStartupID)
windowCreator = appStartup~queryInterface (windowCreatorID)
windowWatcher =
serviceManager ~getServiceByContractID ('@mozilla.org/embedcomp/window -
watcher;1' , windowWatcherID)
windowWatcher ~setWindowCreator (windowCreator)

window = windowWatcher ~openWindow (.nil, targetUrl , 'URL Opener' , winProps, .nil)
windowWatcher ~setActiveWindow (window)
appStartup~run

/** Terminate XPCOM embedding */
mozilla~shutdownXPCOM (.nil)
say 'Mozilla XPCOM embedding finished!'

::requires BSF.cls -- adds BSF support to Java and ooRexx scripts

 Code example 27: ooRexx and JavaXPCOM - “URLOpener.rex” – implement XPCOM services

The ooRexx script does not need to be called by Java, the user can simply start the
script and BSF4ooRexx takes care of the embedding on its own. But XPCOM can do
much more than facilitate certain web services. It is also possible to do handle the file
system, I/O operations, XML parsing and so on.

53

Scripting Mozilla Applications with XPCOM and XUL

Since we know how to initiate the XPCOM embedding from within Java and ooRexx, the
next example will only cover the use of other interfaces. “DirCreator.rex” demonstrates
how to create new files and directories with the XPCOM interfaces nsIProperties and
nsILocalFile.

/** Cross platform path retrieval of directories */
properties =
serviceManager~ getServiceByContractID (“@mozilla.org/file/d irectory_service;1 “,
propsID)
dir = properties~ get(“Desk “, fileID) -- references the users Desktop directory

/** Appen d directory name and check for existence */
dir~append (“Ordner aus ooRexx “)
if dir~exists = .false

then dir~create (dirType, 0777)
else say “Dire ctory “‘dir~bsf.getPropertyValue (“path “)‘“ exists already !“

Code example 28: ooRexx and JavaXPCOM - “DirCreator.rex” – create a new desktop directory

XPCOM offers a way to retrieve platform independent directory paths, this is done using
the nsIProperties interface within the directory_service component. By calling the get()-
method with the keyword “Desk” we get the path to the current user’s desktop directory,
this path will of course vary depending on the operating system.

Subsequently, we append the name of our new directory and create it with the
nsILocalFile property “DIRECTORY_TYPE”. If this directory exists already, the user is
informed and the operation aborted.

/** Create nsILocalFile object and initiate with given directory path */
file = serviceManager~ getServiceByContractID (“@mozilla.org/file/ local ;1“, local ID)
file~initWithPath (dir~bsf.getPropertyValue (“path“))

/** Appen d file name and check for existence */
file~append (“Datei aus ooRexx .txt“)
if file~exists = .false

then file~create (fileType, 0 666)
else say “File “‘dir~bsf.getPropertyValue (“path“)‘“ exists already !“

file~launch

Code example 29: ooRexx and JavaXPCOM - “DirCreator.rex” – create a new file and launch

Code example 29 demonstrates how to do the same with files. All objects descending
from the interface nsILocalFile have to be initialized with initWithPath(). Analog to the
creation of our directory we append the file name to the existing directory path with the
interface property “NORMAL_FILE_TYPE”. The method launch() will open the file with
the default program for this file type. The complete XPCOM API available with
XULRunner version 1.9.2 can be found at the Mozilla Development Center [Mozi10] or
the Oxymoronical Blog [Oxym10] , which covers current Mozilla development news.

54

Scripting Mozilla Applications with XPCOM and XUL

This chapter showed how to embed XPCOM in an ooRexx environment, taking
advantage of BSF4ooRexx. Once the XPCOM embedding is successful, it is easy to
write effective code with just a few lines of code. In the next chapter we will learn how to
create platform independent standalone applications.

55

Scripting Mozilla Applications with XPCOM and XUL

3.4 XULRunner Applications

In the last chapter we have already established that our XULRunner installation is
working. Our aim now is to pack a XUL dialog and a script file into a standalone
XULRunner application, which can be started without a browser on any platform. The
program will be able to download and install a file by supplying a target URL and a target
path to store the file locally. The user can choose to download the target or download
and install at the same time. Let’s start with the entry dialog, realized in XUL.

3.4.1 The Javascript Application Content

We have already learned how a XUL document is formed, so we concentrate on the
actual content. The elements are arranged using horizontal (hbox) and vertical boxes
(vbox) that serve as containers for the other elements. Two labels are describing the kind
of input or text fields are expecting. The first text field text1 receives the URL of a
downloadable file and text2 expects the target path on the local hard drive to save the
file. Both text fields are mandatory.

<hbox>
 <vbox>
 <label id="label2" align="right" value="Enter Download URL, e.g:" />
 <label id="label1" value="---------------------- --->" />
 <label id="label2" align="right" value="Enter the target path, e.g:" />
 </vbox>

 <vbox>
 <textbox id="text1" value="http://www.rarlab.com/rar/wrar380d.exe" size="40"/>
 <textbox id="text2" value="c:\\winrar3.zip" size="40"/>
 </vbox>

 <vbox>
 <button id="button1" label="Just Download" oncommand="downloadFile('download')" />
 <button id="button2" label="Download & Install" oncommand="downloadFile('install')" />
 </vbox>
</hbox>

Code example 30: XULRunner - The main XUL document

In Figure 12 you can see the resulting dialog window.

56

Scripting Mozilla Applications with XPCOM and XUL

Figure 12: XULRunner - The dialog window

From this point on the user has two options: Either to just download the file or to execute
right after the download has finished. These options are realized by buttons, their event
handlers are implemented by the oncommand attribute. Both events launch the same
Javascript function, but with different arguments.

function downloadFile (method) {

 // get download download Url and target Path from the XUL dialog
 var url = document .getElementById ('text1').value ;
 var targetPath = document .getElementById ('text2').value ;

 // check if both have values
 if (!url || !targetPat h) {
 alert ("Please enter download url AND target path!");
 return false ;
 }

 // Just download
 if (method == "download") {
 download (url, targetPath);
 alert ("Download finished");
 } else {
 // Downloa d and install
 if (method == "install") {
 download (url, targetPath);
 alert ("Executing file" + targetPath);
 execute (targetPath);
 } };
}

Code example 31: XULRunner - Javascript main function downloadFile()

Code example 31 shows the Javascript function downloadFile(method,) which
determines what the program does with the supplied paths. First we get the two path
values by looking for the XUL elements in the DOM tree with getElementById(). When
both variables were entered the script continues to check the given argument method,
with the value:

• ‘download’, if the file should only be downloaded. In this case the function
download() is invoked.

57

Scripting Mozilla Applications with XPCOM and XUL

• ‘install’, when the file should be executed right after downloading. Here both
functions download() and execute() are called.

function download (url, targetPath) {
try {

 // get XPCOM access privileges
 netscape .security .PrivilegeManager .enablePrivilege ('UniversalXPConnect');

 //new ob j_URI object
 var urlFile = Components .classes["@mozilla.org/network/io -service;1"]
 .getService (Components .interfaces .nsIIOService)
 .newURI (url, null, null);
 //new file object
 var nsIFile = Components .classes["@mozilla.org/file/local;1"]
 .createInstance (Components .interfaces .nsILocalFile);

 //set file with path
 nsIFile .initWithPath (targetPath);
 //if file doesn't exist, create
 if(!nsIFile .exists()) {
 nsIFile .create(0x00,0644);
 }

Code example 32: XULRunner - First part of the Javascript function download()

The function download() is called in both use cases. First we have to get access to the
XPCOM layer XPConnect, enabling Javascript to reference the different interfaces. We
need to implement the XPCOM interface nsIIOService with the target URL and create a
new local file with the nsILocalFile interface. We get both interfaces using
Components.classes, which is a read-only object. Each object within
Components.classes represents one of the XPCOM components that can be accessed.
When our XPCOM file is created, we have to initiate it with the target path on our hard
drive. In case it does not exist we just create an empty file at the desired location
[CoCl08].

58

Scripting Mozilla Applications with XPCOM and XUL

 //new persistence object
 var persist =
Components .classes["@mozilla.org/embedding/browser/nsWebBrowserPersist;1"]
 .createInstance (Components .interfaces .nsIWebBrowserPersist);

 // with persist flags if desired See nsIWebBrowserPersist page for more
PERSIST_FLAGS.
 const nsIWBP = Components .interfaces .nsIWebBrowserPersist ;
 const flags = nsIWBP.PERSIST_FLAGS_REPLACE_EXISTING_FILES ;
 persist.persistFlags = flags | nsIWBP.PERSIST_FLAGS_FROM_CACHE ;

 //save file to target
 persist.saveURI(urlFile,null,null,null,null,nsIFile);
 alert(targetPath+" was created");
 return true;

} catch (e) { alert(e); return false;}
}

Code example 33: XULRunner - Second part of the Javascript function download()

Now that we have set up the URL and the target path in XPCOM, we can start
downloading. This is the duty of the interface nsIWebBrowserPersist, so we create an
instance called persist. nsIWebBrowserPersist saves DOM documents and URLs either
to local or remote drives. Before we can call saveURI() to save the file we have to
declare the necessary flags. Those flags are constants, which determine the behavior of
nsIWebBrowserPersist and are stored in the object attribute persistFlags. The only
necessary arguments for saveURI() are the file name and the URL, all other parameters
can be set to null. When saveURI() completes without errors, the file is done
downloading .

function execute(targetPath) {
try {

 // get XPCOM access privileges
 netscape .security .PrivilegeManager .enablePrivilege ('UniversalXPConnect');

 // get new XPCOM nsIFile
 var file = Components .classes["@mozilla.org/file/local;1"]
 .createInstance (Components .interfaces .nsILocalFile);
 // store target path and execute
 file.initWithPath (targetPath);
 file.launch();
 return true;
} catch (e) { alert(e); return false;}
}

Code example 34: XULRunner - Javascript function execute() opens the downloaded file

59

Scripting Mozilla Applications with XPCOM and XUL

Depending on the user choices the function execute() is called. Its goal is to execute the
downloaded file. Because the security privileges are only given within the scope of a
Javascript function, we have to call it here again. Now we repeat the steps from function
download() and create and initiate nsIFile with the given file name. The nsILocalFile
function launch() executes the file. This is all the functionality we need for our little
desktop application. Now we just have to pack it and it is ready for distribution.

60

Scripting Mozilla Applications with XPCOM and XUL

3.4.2 The XULRunner Packaging Process

XULRunner handles standalone applications with a predefined folder structure and three
key files that define the loading behavior of the program and make sure that every file is
registered [GeXU09].

1. application.ini: The entry point for the application.

2. chrome.manifest: defines the content, including text files and JAR archives

3. prefs.js: Defines the path and preferences of all documents of the application.

When all files are in their right place, the package looks like the structure in Figure 50.
Our documents are stored in the subfolder /myapp/chrome/content/. The structure within
the subfolder /content can be chosen by the developer as long as chrome.manifest has
all the necessary path information [XuTu05].

Figure 13: Folder structure of our XULRunner application

application.ini will be the entry point for our application and contains general information
as well as the supported XULRunner versions. Setting up requirements for the supported
Gecko Runtime Engines prevents the scripts from crashing, since the XPCOM libraries
may change over time.

[App]
Vendor = andi
Name = xulrunner
Version = 1.0
BuildID = 20090411
[Gecko]
MinVersion = 1.8
MaxVersion = 1.9.*

61

Scripting Mozilla Applications with XPCOM and XUL

In our case, the XULRunner installation that starts the program has to be at least of
version 1.8.01 [XuSo09].

Chrome.manifest only contains the following line:

content xulrunner file:xulrunner/

The line is telling application.ini that the folder content contains the necessary
documents, the name of the application (xulrunner) and the type of documents in folder
content (file:xulrunner) [GeXU09].

The declaration of our XUL document as the main window is done in prefs.js, where all
preferences are stored in a Javascript file. It is also possible to define the attributes of all
windows in this script. Our application has the following information stored in prefs.js.

pref("toolkit.defaultChromeURI", "chrome://xulrunner/content/dialog.xul");

pref("toolkit.defaultChromeFeatures","chrome,resizable=yes,dialog=no");

The first line describes the relative path of our XUL document. In the second line we refer
to object chrome (the main window) and define the attributes resizable and dialog.

Now that the XUL document dialog.xul and the Javascript dialogScript.js are in the folder
content and we have written application.ini, chrome.manifest and prefs.js, we are ready
to test the application. Open the command line and change to the directory, in which
application.ini resides. The program is called with

xulrunner application.ini

and the application starts in a separate window. You see the resulting GUI in Figure 14.

Figure 14: The graphical user interface of our XULRunner application

The package is ready to be distributed as an archive and runs on any platform that is
familiar with the XPCOM library. Even though the last two chapters contained a bit more
code than the scripting examples you can see that Mozilla enables software developers
to use the XPCOM component architecture to build powerful platform independent
applications with relatively small effort.

1 The current version of XULRunner – as of 1st of June 2009 – is 1.9.2 pre.

62

Scripting Mozilla Applications with XPCOM and XUL

3.4.3 Extending the Application with JavaXPCOM

In the previous two chapters we used the XULRunner framework to create a stand-alone
application with just a few configuration files and the application content, consisting of a
XUL template, which served as the application’s entry point, and Javascript. We already
know that it is possible to use Java to interact with any number of scripting languages.

Now we will extend this application to embed XPCOM within an ooRexx script, which will
be managed and launched by a custom Java class. The configuration files of our new
application are basically identical with the previous example, with the exception of the
path to the XUL template. So we will concentrate solely on the new, more complex
application content, consisting of:

• “UrlOpener.xul” – the XUL application entry point.

• “JavaClassLoader.js” – the Javascript that implements a Java Class Loader
object and will give the necessary permissions to certain Java archives.

• “javaFirefoxExtensionUtils.jar” – the Java archive that contains certain policy
setting classes and our custom JavaBSF.class.

• “JavaBSF.java” – the custom Java class with BSF support, that will register
some BSF beans and launch Window.rex.

• “Window.rex” – the ooRexx script that will implement the XPCOM services.

All of the above content files will reside in the application subdirectory
/xulrunner/chrome/xulrunner.

63

Scripting Mozilla Applications with XPCOM and XUL

UrlOpener.xul

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://global/skin/global.css" type="text/css"?>
<?xml-stylesheet href="dialog.css" type="text/css"?>

<window id="myDialog" title="URL Opener with Java Class Loader"
 onload="window.sizeToContent()"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul" >

<script language="JavaScript" src="JavaClassLoader.js"> </script>

<hbox>
 <vbox>
 <label id="label1" align="center" value="Enter URL:" />
 <textbox id="urlField" value="http://www.wu.edu/" size="40"/>
 <button id="button1" label="Launch URL via Java and ooRexx" oncommand="useClassLoader();" />
 </vbox>
</hbox>

</window>

Code example 35: JavaXPCOM XULRunner - “UrlOpener.xul”

The XUL template “UrlOpener.xul” looks almost like the one in our first XULRunner
application. It sets up the XUL xml namespace, some other window options and includes
the Javascript “JavaClassLoader.js”. The content only consists of a label, a textbox
containing the URL to be called and a button that executes the Javascript function
useClassLoader().When invoked, our XUL file will produce the following output (see
Figure 15).

Figure 15: The output of “UrlOpener.xul”

64

Scripting Mozilla Applications with XPCOM and XUL

JavaClassLoader.js

This Javascript uses a Java Class Loader to register certain Java archives to the system.
By default a Java application can only use the standard API. If you want to use other
libraries or frameworks you have to include the corresponding Java archives into the
system’s classpath. But this approach does not work with a custom Java class that you
would write, so we have to make our class available to Java, which is done by using a
Java Class Loader object. Our Javascript contains three functions.

• useClassLoader(): This will generate a new Class Loader object and add certain
Java archives. In our case we need the support for our custom Java class, BSF
and JavaXPCOM.

• policyAdd(): This function sets the permissions and access privileges for our
Class loader files.

• launchUrl(): If everything is set up, we can instantiate our custom Java class
JavaBSF and call its methods.

In our application we take advantage of the Java archive “javaFirefoxExtensionUtils.jar”,
which is part of the open source MIT Simile project “Java Firefox Extensions” [MITS10].
On the Mozilla Development Center you will find instructions on how to utilize this Java
archive for other XULRunner applications [Mozi10]. The Javascript function policyAdd()
will need this JAR file to set the permissions. If the paths to the necessary Java archives
are not set correctly, the whole application will not work.

65

Scripting Mozilla Applications with XPCOM and XUL

function useClassLoader () {

// Get path to the following JAR files
try {
 // get the desktop directory
 var file = Components .classes ["@mozilla.org/file/directory_service;1"].
 getService (Component s.interfaces .nsIProperties).
 get("Desk" , Components .interfaces .nsIFile);
 var desktop = file.path;

// You must add this utilities JAR (javaFirefoxExtensionUtils.jar) to give your application full
privileges
var myJar =
"file:///"+desktop+"/xulrunner/chrome/xulrunner/javaFirefoxExtensionUtils.jar" ;
var xpcom1 = "file:///C:/xulrunner -1.9.2/bin/javaxpcom.jar" ;
var xpcom2 = "file:///C:/xulrunner -1.9.2/sdk/lib/MozillaGlue.jar" ;
var xpcom3 = "file:///C:/xulrunner -1.9.2/sdk/lib /MozillaInterfaces.jar" ;
var bsf1 = "file:///C:/Program Files/bsf4oorexx/bsf -rexx-engine.jar" ;
var bsf2 = "file:///C:/Program Files/bsf4oorexx/bsf -v400-20090910.jar" ;

 // Builds a regular JavaScript array (LiveConnect will auto -convert to a Java a rray)
 var urlArray = [];
 urlArray [0] = new java.net.URL(myJar);
 urlArray [1] = new java.net.URL(xpcom1);
 urlArray [2] = new java.net.URL(xpcom2);
 urlArray [3] = new java.net.URL(xpcom3);
 urlArray [4] = new java.net.URL(bsf1);
 urlArray [5] = new java.net.URL(bsf2);
 var cl = java.net.URLClassLoader .newInstance (urlArray);

 // Set security policies using the above policyAdd() method
 policyAdd (cl, urlArray);

 var url = document .getElementById("urlField").value;
 alert("Opening this URL: " + url);
 // launch URL
 launchUrl (cl, url, desktop);
}
catch(e) {alert(e+' ::useClassLoader:: ' +e.lineNumber);}
}

Code example 36: JavaXPCOM XULRunner - “JavaClassLoader.js” Method: useClassLoader()

Code example 36 shows the function useClassLoader(), which is invoked by the XUL
button. Since the application is installed in the desktop directory, we get the path using
the XPCOM interface nsIProperties, like we did in the “DirCreator.rex” example in
chapter 3.3.2. At the moment the Java Class Loader needs to include the following JAR
files in order for the application to work.

Archive with the policy setting classes and our custom Java class:

66

Scripting Mozilla Applications with XPCOM and XUL

• javaFirefoxExtensionUtils.jar

Archives for JavaXPCOM support:1

• javaxpcom.jar

• MozillaGlue.jar

• MozillaInterfaces.jar

Archives for BSF4ooRexx support:2

• bsf-rexx-engine.jar

• bsf-v400-20090910.jar

Those paths have to be edited if the application is distributed to other systems. If you
want to free the end user of the need to change all those paths himself, you could add
those Java archives to your application directory and reference them with relative paths.
But it is better to point to the correct installation directories.

Pack the paths into an “URL-Array” and create a new Class Loader object with URL-
ClassLoader.newInstance(array). Then you can add the necessary permissions by
calling policyAdd() and get access to your custom Java file by calling launchUrl().

1 These 3 JAR files are included in every XULRunner distribution. For further information where to find
these files on your system, please read chapter 3.3 – JavaXPCOM and XULRunner.

2 These 2 JAR files are included in every BSF4ooRexx distribution. For further information where to find
these files on your system, please read chapter 3.2.3 – BSF4ooRexx.

67

Scripting Mozilla Applications with XPCOM and XUL

// launches the target URL, using the Java class loader and JavaBS F.class
function launchUrl (loader, url, desktop) {

try {
 var myClass =
loader.loadClass('edu.mit.simile.javaFirefoxExtensionUtils.JavaBSF');
 var myObj = myClass.newInstance(); // instantiates JavaBSF class
 // alert("launching JavaBSF class");
 var response = myObj.launchUrl(url); // calls JavaBSF, pass whatever arguments
you need
 alert(response);
}
catch(e) {alert(e+' ::launchUrl:: '+response);}

}

Code example 37: JavaXPCOM XULRunner - “JavaClassLoader.js” – launchUrl()

The function launchUrl() is pretty straight forward. You reference your custom Java class
with URLClassLoader.loadClass(), create a new instance of the class with newInstance()
and call any method you want. Method parameters are sent just like any other Javascript
function. From this point on, the Java/ooRexx part of the XULRunner application is
active. But before your Java class can call the ooRexx script you will need to set up a
“grant”-permission for the JAR file containing your custom Java class.

Setting permissions in the Java policy file

Depending on the kind of application, which will use a custom Java class, we also have
to give the right permissions. In Java, every program runs in a so called Sandbox, which
shelters the application from your operating system and the file system. Different access
privileges can be applied for certain programs. This is especially important for the
security of your system if you deal with applets or other web-based Java services. If you
use custom Java classes outside of your classpath, you will also need to grant
permissions to the application directory.

There are two configuration files responsible for your Java security settings, java.security
and java.policy. The first one tells your Java installation where to look for the specific
policy files. The default java.security is located in the subdirectory /lib/security/ of your
Java Runtime Environment installation and contains the following two entries:

68

Scripting Mozilla Applications with XPCOM and XUL

policy.url.1=file:${java.home}/lib/security/java.policy
policy.url.2=file:${user.home}/.java.policy

The first entry is the path to your systemwide policy file, the second entry specifies the
security settings for the current user. In our case, we want to provide this XULRunner
application to all the users on the machine, so we edit /lib/security/java.policy.

Although it is a simple text file you should never edit the security permissions manually,
but use the policytool.exe program in the /bin/ directory of your Java installation. On
Windows systems always run policytool.exe as an Administrator, otherwise you may not
be able to edit the permissions.

Figure 16: Grant Java Access permissions with the Java Policy Tool

Figure 16 demonstrates how to edit you policy file. Open java.policy and add a new
permission (dt.: Richtlinieneintrag). The code base is the absolute path to the directory of
your XULRunner application directory, in our case it resides on the current user’s
desktop. Add all the necessary permissions and save the policy file. Since we do not
know if the application gets extended in the future we will grant all available permissions
with java.security.AllPermission.

69

Scripting Mozilla Applications with XPCOM and XUL

JavaBSF.java

Now that we are able to access our custom Java class from within Javascript we can
initiate the BSF support, load the ooRexx script and execute it. You should already be
familiar with the BSF Manager and its ability to call different scripting languages.

package edu.mit.simile .javaFirefoxExtensionUtils ;

import java.lang.*;
import java.util.logging .*;
import java.io.*;
import org.apache .bsf.*;
import org.apache .bsf.util.*;

public class JavaBSF {

 private Logger logger = Logger .getLogger ("");
 String targetUrl ;
 String currentDir ;

/** launchUrl() receives the targetUrl from JavaScript and launches the ooRexx script */
public String launchUrl (String url) {

 try {
 // Get instance of BSFManager (beans and launching the script)
 BSFManager bsf = new BSFManager ();

 // package targetUrl as a BSF bean
 if (url != null) targetUrl = url;
 else targetUrl = "http://www.orf.at/" ;
 bsf.registerBean ("targetUrl" , targetUrl);

 // current directory
 // when called by xulrunner app, it is the directory of application.ini (top level)
 currentDir = new File(".").getAbsolutePath ();
 System .out.println(currentDir);

 // retrieve information from script
 String scriptName = currentDir + "/chrome/xulrunner/Window.rex" ;
 String language = bsf.getLangFromFilename (scriptName);
 FileReader in = new FileReader(scriptName);
 String rexxCode = IOUtils .getStringFromReader (in);

 // launch script and terminate BSF environment
 bsf.exec (language , scriptName , 0, 0, rexxCode);
 }
 catch (BSFException e) { e.getMessage (); e.printStackTrace (); logError (e);
return e.getMessage (); }
 catch (IOException e) { e.getMessage (); e.printStackTrace (); logError(e);
return e.getMessage (); }

return "Java/ooRexx ist fertig!" ;
 }

Code example 38: JavaXPCOM XULRunner – The Java method calls the ooRexx script

70

Scripting Mozilla Applications with XPCOM and XUL

The first step is to add this Java class to a package (in our case:
edu.mit.simile.javaFirefoxExtensionUtils.jar) and import all necessary classes. The
method launchUrl(url) will call the ooRexx script. We get a new BSF Manager, register
the target Url, which was supplied by Javascript, as a BSF bean and start the script.
There are no customizing steps needed for the Java class to work on other systems,
since the File method getAbsolutePath() will always support the correct path to the
application.ini file.

Window.rex

The ooRexx script is the last step of our application and will implement the XPCOM
embedding and will open a new XPCOM window with the provided target URL. It is the
same script as the “UrlOpener.rex” example in chapter 3.3.2. Therefore it is not
necessary to explain the code again, if you have any questions regarding the
implementation of XPCOM from within ooRexx please see chapter 3.3.2 or the Appendix.
The script will be explained there in full detail.

There is only one word of advice. Since it does not seem to be possible to get the GRE
path dynamically with Mozilla.getGREPathWithProperties() with the current XULRunner
version 1.9.2 please provide your “Window.rex” script in the first line with the path to the
directory of javaxpcom.jar ! Usually this JAR file can be found in the /bin directory of your
XULRunner installation. This is very important, otherwise the XPCOM embedding
process fails.

If you have followed all the steps you should be ready to go. Start your program by
invoking

xulrunner.exe application.ini

in your application directory or double-click on start.bat (Windows) or start.sh (Linux).

71

Scripting Mozilla Applications with XPCOM and XUL

4 Conclusion

This bachelor thesis aimed to explain the working principle of XPCOM and component
object models in general. It showed in how many ways the developer can access
complete interfaces to enrich the application at hand. We used Javascript, ooRexx and
Java to implement XPCOM interfaces and finally learned how to build standalone
applications with XULRunner, enabling easy distribution of our programs. The fact that
the XPCOM architecture is open source and platform independent makes this technology
even more appealing.

The Mozilla project and XPCOM are continuously growing. Over the years the
technologies matured and new languages evolved. XUL/XBL, the xml-based and intuitive
user interface languages, and other web languages quickly accelerated this movement.

Although XPCOM-related formats like XUL or the binding language XBL are not yet fully
recognized by standardizing consortiums like the W3C, those technologies are expected
to soon emerge from their shadowy existence.

Like Mozilla, every open source project needs the support of an avid community to
prosper. The funding and research of projects is directly correlated to the project’s
popularity. So, if you have taken help from the countless forums and newsgroups you
should contribute as well and help other people.

72

Scripting Mozilla Applications with XPCOM and XUL

5 Literature

[ApJa09] Apache Jakarta Project – BSF: http://jakarta.apache.org/bsf/faq.html#what-
is-bsf. Last visited on May 24th, 2009.

 [BoOe02] Boswell David, Oeschger Ian and Murphy Eric: “Creating Applications with
Mozilla“, 2002 O'Reilly

 [BrMa09] Browser1.de – “50% Marktanteil für Firefox”:
http://www.browser1.de/content/view/369/112/. Last visited on April 9th, 2009.

 [BuSm01] Bullard Vaughn, Smith Kevin and Daconta Michael: “Essential XUL
Programming”. John Wiley & Sons, 2001.

[Carb06] Carboni Davide: “Mozilla: a development platform under the hood of your
browser”. Free Software Magazine, 09/2006

 [CoCl08] MDC – Components.classes:
https://developer.mozilla.org/en/Components.classes. Last visited on May 21st, 2009.

 [Flat02] Flatscher Rony G.:“Automatisierung von Windows Anwendungen“.
(http://wi.wu-
wien.ac.at/rgf/rexx/misc/ecoop06/ECOOP2006_RDL_Workshop_Flatscher_Paper.pdf).

[Flat03] Flatscher Rony G.: “The Augsburg Version of BSF4ooRexx”.
http://wi.wu-wien.ac.at/rgf/rexx/orx14/orx14_BSF4ooRexx-av.pdf.
Last visited on May 21st, 2009.

[GeXU09] MDC – Getting started with XULRunner:
https://developer.mozilla.org/en/Getting_started_with_XULRunner. Last visited on June
1st, 2009.

[InNe09] InternetNews - “Mozilla.org Unleashes Mozilla 1.0”:
http://www.internetnews.com/xSP/article.php/1299381. Last visited on April 8th, 2009.

 [JaXP06] MDC – JavaXPCOM: https://developer.mozilla.org/en/JavaXPCOM. Last
visited on June 9th, 2009.

[MaSh09] Market share Net Applications – “Firefox market”:
http://marketshare.hitslink.com/firefox-market-share.aspx?qprid=0&sample=28. Last

73

Scripting Mozilla Applications with XPCOM and XUL

visited on April 9th, 2009.

 [McFa03] McFarlane Nigel: “Rapid Application Development with Mozilla“. Prentice
Hall, 2003.

[Mill06] Millenium X: “COM in Mozilla”, 05.08.2006.
http://www.bengoodger.com/2006/08/com_in_mozilla.html. Last visited on May 10th,
2009.

[MiTe09] Microsoft TechNet – Rexx Script Center:
http://www.microsoft.com/technet/scriptcenter/scripts/rexx/default.mspx?mfr=true. Last
visited on May 26th, 2009.

[MITS10] MIT Simile Project – Java Firefox Extension: http://simile.mit.edu/ , Last visited
on March 22th, 2010

[MoSi09] Mozilla.org – Signed Scripts in Mozilla:
http://www.mozilla.org/projects/security/components/signed-scripts.html. Last visited on
May 25th, 2009.

[MoXP09] Mozilla Development Center (MDC) - XPCOM project page:
www.mozilla.org/projects/xpcom. Last visited on May 15th, 2009.

[MoXV08] mozdev.org - XPCOMViewer extension: http://xpcomviewer.mozdev.org/.
Last visited on May 1st, 2009.

[Mozi10] Mozilla Development Center Homepage: https://developer.mozilla.org/en , Last
visited on March 10th, 2010

[NaMa09] NationMaster Encyclopedia - Java (programming language):
http://www.nationmaster.com/encyclopedia/Java-(programming-language). Last visited
on May 5th, 2009.

[OnLa09] O’Reilly ONLamp - System Administration with ooRexx:
http://www.onlamp.com/pub/a/onlamp/2006/03/02/oorexx_gui.html?page=last&x-
maxdepth=0. Last visited on May 26th, 2009.

[OvXP09] MDC - Overview of XPCOM:
https://developer.mozilla.org/En/Creating_XPCOM_Components/An_Overview_of_XPCOM.
Last visited on April 20th, 2009.

[Oxym10] http://www.oxymoronical.com/experiments/apidocs/platform/1.9.2a1pre , Last
visited on March 18th, 2010

74

Scripting Mozilla Applications with XPCOM and XUL

[PoHo07] Pohja Mikko, Honkala Mikko, Penttinen Miemo, Vuorimaa Petri and Panu
Ervamaa: “Web User Interaction”. Springer, 2007.

[ThSma09] MDC - The Smart Pointer Guide:
http://www.mozilla.org/projects/xpcom/nsCOMPtr/. Last visited on May 20th, 2009.

[WUCo09] WU Wien - BSF4ooRexx Source Code Installer: http://wi.wu-
wien.ac.at/rgf/rexx/BSF4ooRexx/current/BSF4ooRexx_install.zip. Last visited on May
21st, 2009.

[WURe09] WU-Wien - BSF4ooRexx Readme.txt: http://wi.wu-
wien.ac.at/rgf/rexx/BSF4ooRexx/current/readmeBSF4ooRexx.txt. Last visited on May
21st, 2009.

[XPCo09] MDC - Information on XPConnect and scriptable components:
http://www.mozilla.org/scriptable. Last visited on June 10th, 2009.

[XPID09] MDC - XPIDL Reference: http://www.mozilla.org/scriptable/xpidl/. Last
visited on May 10th, 2009.

[XulP09] XULPlanet's online XPCOM reference:
http://www.xulplanet.com/references/xpcomref/. Last visited on April 29th, 2009.

[XuRu09] Mozilla.org - XULRunner Releases Download Site:
http://releases.mozilla.org/pub/mozilla.org/xulrunner/releases/. Last visited on May 10th,
2009.

[XuSo09] Mozilla.org – XULRunner Source Repository:
http://ftp.mozilla.org/pub/mozilla.org/xulrunner/nightly/. Last visited on May 4th, 2009.

 [XuTu05] XULRunner Tutorial:
http://blogs.acceleration.net/ryan/archive/2005/05/06/1073.aspx. Last visited on June 1st,
2009.

75

Scripting Mozilla Applications with XPCOM and XUL

6 List of Figures

List of Figures:

Figure 1: Firefox closes the market share gap to the Internet Explorer (11/2008) [MaSh09].. ..7

Figure 2: In some countries, Firefox is already the most popular browser (11/08) [MaSh09]….8

Figure 3: Short comparison between Mozilla and Java [Carb06]…...18

Figure 4: XPCOM component architecture [PoHo07]…..20

Figure 5: Elements of an XPCOM GUI [PoHo07]…...21

Figure 6: Firefox displays the XUL document……...22

Figure 7: XBL - The final result of the XUL file call….. 25

Figure 8: BSF - AWT Frame in JavaScript…...34

Figure 9: BSF - AWT Frame in JavaScript…...36

Figure 10: Rexx lists data about all active Windows processes…...39

Figure 11: The Windows command line prints all active processes….......................................40

Figure 12: XULRunner - The dialog window…..57

Figure 13: Folder structure of our XULRunner application…...61

Figure 14: The graphical user interface of our XULRunner application…..............................…62

Figure 15: The output of “UrlOpener.xul”…..…64

Figure 16: Grant Java Access permissions with the Java Policy Tool…...................................69

76

Scripting Mozilla Applications with XPCOM and XUL

List of Code examples:

Code example 1: Header information of a XUL document…...21

Code example 2: Body of a XUL document…...22

Code example 3: XBL - The XUL document xbl.xul…...23

Code example 4: XBL - The CSS document xbl.css…... ..23

Code example 5: XBL - The XBL document xbl.xml…..24

Code example 6: Javascript function doSomething adds a new tab to the current Firefox
browser…...26

Code example 7: BSF -Creation of BSFManager and BSFEngine…............................30

Code example 8: BSF - The main method of ScriptInterpreter.java…......................... 31

Code example 9: BSF - ScriptInterpreter's constructor initializes BSFManager…........32

Code example 10: BSF - The construction of an AWT Frame within Java…................33

Code example 11: BSF - Event handling from within the script….................................33

Code example 12: Bean-example: The new StringInterpreter constructor................... 35

Code example 13: BSF4ooRexx - Definition of class names and constants….............42

Code example 14: Javascript - Definition of class names and constants…..................42

Code example 15: BSF4ooRexx - The frame construction…..43

Code example 16: BSF4ooRexx - The ooRexx event listeners................................….43

Code example 17: BSF4ooRexx - The pollEventText Interpreter.............................….44

Code example 18: BSF4ooRexx - ooRexx methods for event handling…....................44

Code example 19: JavaXPCOM - Import of all necessary classes……........................48

Code example 20: JavaXPCOM - Initialization of the Gecko Runtime Engine…..........48

Code example 21: JavaXPCOM - Using the Mozilla instance and XPCOM
services…..49

Code example 22: JavaXPCOM - Running the startup application….......................…50

Code example 23: JavaXPCOM - XPCOM shutdown……..50

Code example 24: ooRexx and JavaXPCOM - “URLOpener.rex” - The import step….51

77

Scripting Mozilla Applications with XPCOM and XUL

Code example 25: ooRexx and JavaXPCOM - “URLOpener.rex” – XPCOM
embedding…...52

Code example 26: ooRexx and JavaXPCOM - “URLOpener.rex” – get the Interface
Ids…...…53

Code example 27: ooRexx and JavaXPCOM - “URLOpener.rex” – implement XPCOM
services…..53

Code example 28: ooRexx and JavaXPCOM - “DirCreator.rex” – create a new desktop
directory…...54

Code example 29: ooRexx and JavaXPCOM - “DirCreator.rex” – create a new file and
launch…..54

Code example 30: XULRunner - The main XUL document….......................................56

Code example 31: XULRunner - Javascript main function downloadFile()…............…57

Code example 32: XULRunner - First part of the Javascript function download()….....58

Code example 33: XULRunner - Second part of the Javascript function download()…59

Code example 34: XULRunner - Javascript function execute() opens the downloaded
file……...59

Code example 35: JavaXPCOM XULRunner - “UrlOpener.xul”....................................64

Code example 36: JavaXPCOM XULRunner - “JavaClassLoader.js” Method:
useClassLoader()…...66

Code example 37: JavaXPCOM XULRunner - “JavaClassLoader.js” – launchUrl()
……..67

Code example 38: JavaXPCOM XULRunner – The Java method calls the ooRexx
script…...70

78

Scripting Mozilla Applications with XPCOM and XUL

7 Project Management

Gantt-Chart

79

Scripting Mozilla Applications with XPCOM and XUL

8 Appendix

The appendix is a collection of all programs that were used to illustrate the working
principles of the discussed languages. You will find the entire code and instructions on
how to run the mentioned programs.

8.1 XUL example

Instructions: The XUL document dialog.xul shows a typical structure of a XUL document.
The behavior of the XUL window is controlled by the CSS script "dialogScript.js". When
the function newTab(url) is called, dialogScript.js adds a new browser tab to Firefox.
newBookmarkFolder(folder) adds a new bookmark folder to the bookmark service of
Mozilla Firefox.

dialog.xul

<?xml version="1.0"?>
<?xml-style sheet href="chrome://global/skin/global.css" type="text/css"?>

<dialog id="myDialog" title="My Dialog"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
 buttons="cancel"
 buttonlabelcancel="Exit"
 buttonaccesskeycancel="E"
 ondialogcancel="doCancel();" >

<script language="JavaScript" src="DialogScript.js"></script>

<menu label="Datei" class="mymenu" >
 <menupopup>
 <menuitem label="Menu 1" class="mymenu" id="b1"

oncommand=" newTab(‘http://www.wu.ac.at/’) " />
 <menuitem label="Menu 2" class="mymenu" id="b2"

oncommand=" newBookmarkFolder(folder) " />
 <menuitem label="Menu 3" class="mymenu" id="b3"

oncommand="doSomethingOther()" />
 </menupopup>
</menu>
</dialog>

80

Scripting Mozilla Applications with XPCOM and XUL

dialogScript.js

function downloadFile(url) {
try {
netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');

 if (url==null)
 var url = "http://tinyurl.com/koko5l"; // WinRAR Downloader

 //new obj_URI object
 var urlFile = Components.classes["@mozilla.org/network/io-service;1"]
 .getService(Components.interfaces.nsIIOService)
 .newURI(url, null, null);
 //new file object
 var nsIFile = Components.classes["@mozilla.org/file/local;1"]
 .createInstance(Components.interfaces.nsILocalFile);
 //set file with path
 nsIFile.initWithPath("c:\\winrar.exe");
 //if file doesn't exist, create
 if(!nsIFile.exists()) {
 nsIFile.create(0x00,0644);
 }

 //new persitence object
 var persist =
Components.classes["@mozilla.org/embedding/browser/nsWebBrowserPersist;1"]
 .createInstance(Components.interfaces.nsIWebBrowserPersist);

 // with persist flags if desired
 const nsIWBP = Components.interfaces.nsIWebBrowserPersist;
 const flags = nsIWBP.PERSIST_FLAGS_REPLACE_EXISTING_FILES;
 persist.persistFlags = flags | nsIWBP.PERSIST_FLAGS_FROM_CACHE;

 //save file to target
 persist.saveURI(urlFile,null,null,null,null,nsIFile);

 alert(flags); alert(nsIFile);

} catch (e) { alert(e); return false;}
}

function newTab(url) {
try {
 // gBrowser is only accessible from the scope of
 // the browser window (browser.xul) gBrowser.addTab("http://derstandard.at");
netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');

var wm = Components.classes["@mozilla.org/appshell/window-mediator;1"]
 .getService(Components.interfaces.nsIWindowMediator);
var mainWindow = wm.getMostRecentWindow("navigator:browser");
mainWindow.getBrowser().addTab(url);

} catch (e) { alert(e); return false;}
}

function newBookmarkFolder(newFolder) {
// https://developer.mozilla.org/en/Code_snippets/Bookmarks
netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');

try {

81

Scripting Mozilla Applications with XPCOM and XUL

 // before you can use the bookmarks service, you need to get access to it
 var bmsvc = Components.classes["@mozilla.org/browser/nav-bookmarks-service;1"]
 .getService(Components.interfaces.nsINavBookmarksService);

 var menuFolder = bmsvc.bookmarksMenuFolder; // existing Bookmarks menu folder
 var newFolderId = bmsvc.createFolder(menuFolder, newFolder,
bmsvc.DEFAULT_INDEX);

 alert("Der neue Bookmark-Folder '"+newFolder+"' hat die ID "+newFolderId);

} catch (e) { alert(e); return false;}
}

function showInterfaces(component) {
 netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');
 // |component| is the XPCOM component instance
 for each (i in Components.interfaces) {
 if (component instanceof i) { alert(i); }
 }
}

82

Scripting Mozilla Applications with XPCOM and XUL

8.2 XBL example

Instructions: The XBL example shows how XBL bindings can change the structure of
XUL documents.
When xbl.xul is started, parts of its body are replaced with the content of the
corresponding XBL binding. The XBL file xbl.xml is connected to the XUL document by a
CSS statement in xbl.css.

xbl.xul
<?xml version="1.0"?>
<?xml-style sheet href="xbl.css" type="text/css"?>

<window
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <box class="classname" />
</window>

xbl.css
box.classname
{
 -moz-binding: url('xbl.xml#xblname');
}

xbl.xml

<?xml version="1.0"?>

<bindings xmlns="http://www.mozilla.org/xbl"
 xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <binding id="xblname">
 <content>
 <xul:vbox style="margin:8px;">
 <xul:label value="Type a text:" />
 <xul:hbox>
 <xul:textbox flex="8" />
 <xul:button label="Enter" oncommand="alert('enter');" />
 <xul:button label="Clear" oncommand="alert('clear');" />
 </xul:hbox>
 </xul:vbox>
 </content>
 </binding>

</bindings>

83

Scripting Mozilla Applications with XPCOM and XUL

8.3 BSF example

Instructions: This example shows how Java can access scripts directly.

Different scripting languages (e.g. Javascript, ooRexx) create a Java GUI within the
script by using BSF.

To start: 1. cmd.exe/shell: java TestScript "script filename"
 2. create new instance: new ScriptInterpreter(filename)

ScriptInterpreter.java

import java.awt.*;
import java.awt.*;
import java.io.*;

import org.apache.bsf.*;
import org.apache.bsf.util.*;

public class ScriptInterpreter {

public static String scriptName;

/* class constructor uses BSF to (evaluate and) launch a script
 /**/
 public ScriptInterpreter(String scriptName) throws BSFException {

 // execute script
 try {
 BSFManager bsf = new BSFManager();

 //create "Java-String"
 String btnLabel = "Label stammt aus Java";
 bsf.declareBean("btnLabel", btnLabel, String.class);

 String language = BSFManager.getLangFromFilename(scriptName);
 FileReader in = new FileReader(scriptName);
 String script = IOUtils.getStringFromReader(in);

 // launch script start
 bsf.exec (language, scriptName, 0, 0, script);

 }
 catch (BSFException e) { e.getMessage (); e.printStackTrace (); }
 catch (IOException e) { e.getMessage (); e.printStackTrace (); }
 }

 /* main() checks arguments (filename) and calls constructor
 /***/
 public static void main (String[] args) throws Exception {

84

Scripting Mozilla Applications with XPCOM and XUL

 if (args.length == 0) {
 scriptName = "frame.js";
 System.out.println ("Kein Skript uebergeben --> default: JavaScript "+scriptName);
 }
 else {
 scriptName = args[0];
 System.out.println ("Skript erfolgreich uebergeben --> "+args[0]);
 if (args.length > 1) System.out.println ("Error: Es kann höchstens ein Parameter
übergeben werden");
 }

 // initialize TestScript
 new ScriptInterpreter(scriptName);
 }
}

frame.js

 /** JavaScript Rhino imports Java packages
/***/
importPackage(java.awt);
importPackage(java.lang);
importPackage(java.net);
importPackage(org.apache.bsf);

/** Create GUI components
/**********************************/
frame = new Frame("AWT Frame, implementiert in JavaScript");
panel = new Panel(new BorderLayout());
scroll = new Scrollbar(Scrollbar.HORIZONTAL);

label = new Label("Servus");
button = new Button("JavaScript Button");
color = new Choice();
 color.add("green"); color.add("blue"); color.add("red");
text = new Choice();
 text.add("Hallo!"); text.add("Ciao."); text.add("Bis bald...");

panel.setBackground(Color.black);
label.setBackground(Color.lightGray);
label.setAlignment(Label.CENTER);

/** Pack the GUI
/*************************/
panel.add(BorderLayout.EAST, color);
panel.add(BorderLayout.WEST, text);
panel.add(BorderLayout.SOUTH, scroll);

frame.add(BorderLayout.NORTH, label);
frame.add(BorderLayout.CENTER, button);
frame.add(BorderLayout.SOUTH, panel);

/** Add event handler to components
/**/
frame.addWindowListener(function(event, methodName) {
 if (methodName == "windowClosing") { System.exit(0);}
 if (methodName == "windowDeiconified") { label.setText("Willkommen zurück"); }
});

85

Scripting Mozilla Applications with XPCOM and XUL

color.addItemListener(function(event, methodName) {
 if (methodName == "itemStateChanged")
 {
 switch (color.getSelectedIndex()) {
 case 0: label.setBackground(Color.green); break;
 case 1: label.setBackground(Color.blue); break;
 case 2: label.setBackground(Color.red); break;
 default: break;
 }
 label.setFont(new Font("Dialog", Font.BOLD, 14));
 }
});

text.addItemListener(function(event) {
 label.setText(text.getSelectedItem());
});

button.addActionListener(function(event) {
 try {
 btnLabel = bsf.lookupBean('btnLabel');
 java.lang.System.out.println(45);
 button.setLabel(btnLabel);
 } catch (e) { }
});

/** Display frame with properties
/***/
frame.resize(400, 400);
frame.setLocation(300, 300);
frame.pack();
frame.setVisible(true);

frame.rex

/** Define "ooRexx shortcuts" to create Java components **/
/**/
BorderLayout = 'java.awt.BorderLayout'
Button = 'java.awt.Button'
Choice = 'java.awt.Choice'
Color = 'java.awt.Color'
Frame = 'java.awt.Frame'
Label = 'java.awt.Label'
Panel = 'java.awt.Panel'
Scrollbar = 'java.awt.Scrollbar'

EAST = .bsf~bsf.getStaticValue(BorderLayout, "EAST")
WEST = .bsf~bsf.getStaticValue(BorderLayout, "WEST")
SOUTH = .bsf~bsf.getStaticValue(BorderLayout, "SOUTH")
NORTH = .bsf~bsf.getStaticValue(BorderLayout, "NORTH")
HORIZONTAL = .bsf~bsf.getStaticValue(Scrollbar, "HORIZONTAL")
CENTER = .bsf~bsf.getStaticValue(BorderLayout, "CENTER")
LCENTER = .bsf~bsf.getStaticValue(Label, "CENTER")

black = .bsf~bsf.getStaticValue("java.awt.Color", "black")
blue = .bsf~bsf.getStaticValue("java.awt.Color", "blue")
green = .bsf~bsf.getStaticValue("java.awt.Color", "green")

86

Scripting Mozilla Applications with XPCOM and XUL

red = .bsf~bsf.getStaticValue("java.awt.Color", "red")
lightGray = .bsf~bsf.getStaticValue("java.awt.Color", "lightGray")

/** Create GUI components **/
/**********************************/
frame = .bsf~new(Frame, "AWT Frame, implementiert in open Object Rexx ")
layout = .bsf~new(BorderLayout)
panel = .bsf~new(Panel, layout)

scroll = .bsf~new(Scrollbar, HORIZONTAL)
label = .bsf~new(Label, "Servus")
button = .bsf~new(Button, "ooRexx Button")

color = .bsf~new(Choice)
color ~~add("green") ~~add("blue") ~~add("red")

text = .bsf~new(Choice)
text ~~add("Hallo!") ~~add("Ciao.") ~~add("Bis bald...")

panel~setBackground(black)
button~setBackground(lightGray)
label~setAlignment(LCENTER)

/** Pack the GUI **/
/*************************/
panel~add(EAST , color)
panel~add(WEST, text)
panel~add(SOUTH, scroll)

frame~add(NORTH, label)
frame~add(CENTER, button)
frame~add(SOUTH, panel)

/** Add event handler to components **/
/**/
frame~bsf.addEventListener('window', 'windowClosing', 'call BSF "exit"')
frame~bsf.addEventListener('window', 'windowDeiconified', 'label~setText("Willkommen
zurück")')

color~bsf.addEventListener('item', 'itemStateChanged', 'call changeColor color, label')
text~bsf.addEventListener('item', 'itemStateChanged',
'label~setText(text~getSelectedItem())')
button~bsf.addEventListener('action', 'actionPerformed', 'call switchLabel button')

/** Display frame with properties **/
/***/
frame~setSize(400, 400)
frame~setLocation(300, 300)
frame~pack()
frame~show()

/** pollEventText (any event) gets interpreted costantly **/
/***/
do forever
 INTERPRET .bsf~bsf.pollEventText
 if result="SHUTDOWN, REXX !" then leave
end
exit

/** event handler for choice field "color" **/
changeColor: procedure
 use arg color, label

87

Scripting Mozilla Applications with XPCOM and XUL

 label~setBackground(.bsf~bsf.getStaticValue('java.awt.Color',
color~getSelectedItem()))
 label~setFont(.bsf~new('java.awt.Font', 'Dialog',
.bsf~bsf.getStaticValue('java.awt.Font', 'BOLD'), 14))
return

/** event handler for button "button" **/
switchLabel: procedure
 use arg button

 btnLabel = bsf('lookupBean','btnLabel')
 button~setLabel(btnLabel)
return

::requires BSF.cls -- adds BSF support to Java and scripts

listAllPro.rex

/** ooRexx script accessing and displaying all active processes of a Windows machine **/

/** get Windows management database containing all active processes */
objWMIService = .OLEObject~GetObject("winmgmts:\\.\root\CIMV2")

/** do for every result */
do objItem over objWMIService~ExecQuery("Select * from Win32_Process")
 say "__"
 say "Name:" objItem~Name
 say "Creation Date:" objItem~CreationDate
 say "Execution State:" objItem~ExecutionState
 say "Install Date:" objItem~InstallDate
 say "Parent Process Id:" objItem~ParentProcessId
 say "Priority:" objItem~Priority
 say "Process Id:" objItem~ProcessId
 say "Read Operation Count:" objItem~ReadOperationCount
 say "Virtual Size:" objItem~VirtualSize
end

88

Scripting Mozilla Applications with XPCOM and XUL

8.4 JavaXPCOM example

Instructions: WindowCreator.java

Java program embeds XPCOM environment and explains the necessary steps.
Different XPCOM services open a URL and a startup application displays the content in
a separate DOM window.
Just start the main method, no arguments required at the moment.

WindowCreator.java

import java.io.*;
import java.util.*;
import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nsIAppStartup;
import org.mozilla.interfaces.nsIDOMWindow;
import org.mozilla.interfaces.nsIFile;
import org.mozilla.interfaces.nsILocalFile;
import org.mozilla.interfaces.nsIServiceManager;
import org.mozilla.interfaces.nsISimpleEnumerator;
import org.mozilla.interfaces.nsISupports;
import org.mozilla.interfaces.nsIWindowCreator;
import org.mozilla.interfaces.nsIWindowWatcher;

public class WindowCreator {

 /* main() embeds XPCOM environment and opens an URL in a DOMWindow
 /**/
 public static void main(String []args) throws Exception {

 String targetURL = "http://www.kurier.at";

 GREVersionRange[] range = new GREVersionRange[1];
 range[0] = new GREVersionRange("1.8", true, "1.9+", true);

 File grePath = null;
 /** get a Mozilla class instance and the path to the Gecko Runtime Environment (GRE) */
 try {
 grePath = Mozilla.getGREPathWithProperties(range, null);
 }
 catch (FileNotFoundException e) { }

 if (grePath == null) {
 System.out.println("found no GRE PATH");
 return;
 }
 System.out.println("GRE PATH = " + grePath.getPath());

 Mozilla mozilla = Mozilla.getInstance();

 /** try embedding the XPCOM environment using the GRE path */
 try {

89

Scripting Mozilla Applications with XPCOM and XUL

 mozilla.initialize(grePath);
 mozilla.initXPCOM(grePath, null);
 }
 catch (IllegalArgumentException e) {
 System.out.println("no javaxpcom.jar found in given path");
 return;
 }
 catch (Throwable t) {
 System.out.println("initXPCOM failed");
 t.printStackTrace();
 return;
 }

 /** XPCOM is successfully embedded */
 System.out.println("\n--> initialized\n");

 try {

 // To get access to interfaces we get an instance of the XPCOM service manager
 nsIServiceManager serviceManager = mozilla.getServiceManager();
 // Use contract ID (@mozilla.org/toolkit/app-startup;1) and IID to get startup application nsIAppStartup
 nsIAppStartup appStartup = (nsIAppStartup)serviceManager.getServiceByContractID
 ("@mozilla.org/toolkit/app-startup;1",
nsIAppStartup.NS_IAPPSTARTUP_IID);
 // Get the nsIWindowCreator interface through appStartup
 nsIWindowCreator windowCreator =
(nsIWindowCreator)appStartup.queryInterface(nsIWindowCreator.NS_IWINDOWCREATOR_I
ID);
 // Get the nsIWindowWatcher interface
 nsIWindowWatcher windowWatcher =
(nsIWindowWatcher)serviceManager.getServiceByContractID
 ("@mozilla.org/embedcomp/window-watcher;1",
nsIWindowWatcher.NS_IWINDOWWATCHER_IID);

 // Set the window creator
 windowWatcher.setWindowCreator(windowCreator);
 // Create the DOMWindow with the supplied URL
 nsIDOMWindow win = windowWatcher.openWindow(null, targetURL, "mywindow",
"chrome,resizable,centerscreen", null);
 // DOMWindow win is active window
 windowWatcher.setActiveWindow(win);
 // Start the XPCOM startup application
 appStartup.run();

 }
 catch (XPCOMException e) { e.printStackTrace(); }

 // shut down XPCOM embedding
 mozilla.shutdownXPCOM(null);

 }
}

90

Scripting Mozilla Applications with XPCOM and XUL

8.5 XULRunner Javascript example

Instructions: Standalone application that is launched using the XULRunner framework.
XUL document dialog.xul and JS script dialogScript.js display a standalone GUI giving
the user the option to download (and install) a file by providing a download URL and a
target path to save the file.

Start application: go to cmd.exe/shell and application directory and invoke:
 --> xulrunner(.exe) application.ini

dialog.xul

<?xml version="1.0"?>
<?xml-style sheet href="chrome://global/skin/global.css" type="text/css"?>
<?xml-style sheet href="dialog.css" type="text/css"?>

<window id="myDialog" title="Download Applet"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
 onload="window.sizeToContent()">

<script language="JavaScript" src="dialogScript.js"> </script>

<hbox>
 <vbox>
 <label id="label2" align="right" value="Enter Download URL, e.g:" />
 <label id="label1" value="------------------------->" />
 <label id="label2" align="right" value="Enter the target path, e.g:" />
 </vbox>
 <vbox>
 <textbox id="text1" value="http://www.rarlab.com/rar/wrar380d.exe" size="40"/>
 <textbox id="text2" value="c:\\winrar3.zip" size="40"/>
 </vbox>
 <vbox>
 <button id="button1" label="Just Download"
oncommand="downloadFile('download')" />
 <button id="button2" label="Download & Install" height="40px"
oncommand="downloadFile('install')" />
 </vbox>
</hbox>

</window>

91

Scripting Mozilla Applications with XPCOM and XUL

dialogScript.js

function download(url, targetPath) {
try {

 // get XPCOM access privileges
 netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');

 //new obj_URI object
 var urlFile = Components.classes["@mozilla.org/network/io-service;1"]
 .getService(Components.interfaces.nsIIOService)
 .newURI(url, null, null);
 //new file object
 var nsIFile = Components.classes["@mozilla.org/file/local;1"]
 .createInstance(Components.interfaces.nsILocalFile);

 //set file with path
 nsIFile.initWithPath(targetPath);
 //if file doesn't exist, create
 if(!nsIFile.exists()) {
 nsIFile.create(0x00,0644);
 }

 //new persitence object
 var persist =
Components.classes["@mozilla.org/embedding/browser/nsWebBrowserPersist;1"]
 .createInstance(Components.interfaces.nsIWebBrowserPersist);

 // with persist flags if desired See nsIWebBrowserPersist page for more PERSIST_FLAGS.
 const nsIWBP = Components.interfaces.nsIWebBrowserPersist;
 const flags = nsIWBP.PERSIST_FLAGS_REPLACE_EXISTING_FILES;
 persist.persistFlags = flags | nsIWBP.PERSIST_FLAGS_FROM_CACHE;

 //save file to target
 persist.saveURI(urlFile,null,null,null,null,nsIFile);
 alert(targetPath+" was created");
 return true;

} catch (e) { alert(e); return false;}
}

function execute(targetPath) {
try {

 // get XPCOM access privileges
 netscape.security.PrivilegeManager.enablePrivilege('UniversalXPConnect');

 // get new XPCOM nsIFile
 var file = Components.classes["@mozilla.org/file/local;1"]
 .createInstance(Components.interfaces.nsILocalFile);
 // store target path and execute
 file.initWithPath(targetPath);
 file.launch();
 return true;
} catch (e) { alert(e); return false;}
}

function downloadFile(method) {

92

Scripting Mozilla Applications with XPCOM and XUL

 // get download download Url and target Path from the XUL dialog
 var url = document.getElementById('text1').value;
 var targetPath = document.getElementById('text2').value;

 // check if both have values
 if (!url || !targetPath) {
 alert("Please enter download url AND target path!");
 return false;
 }

 // Just download
 if (method == "download") {
 download(url, targetPath);
 alert("Download finished");
 } else {
 // Download and install
 if (method == "install") {
 download(url, targetPath);
 alert("Executing file"+ targetPath);
 execute(targetPath);
 } };
}

93

Scripting Mozilla Applications with XPCOM and XUL

8.6 XULRunner ooRexx example

Instructions: Standalone application that is launched using the XULRunner framework.
XUL document UrlOpener.xul invokes Javascript JavaClassLoader.js. The script includes
a custom Java class “JavaBSF.java” and several other JAR archives for BSF support.
When the Java class method launchUrl() is called by the Javascript, Java will start an
ooRexx script Window.rex, that implements an XPCOM environment and opens an URL
provided by the XUL dialog.

Start application: go to cmd.exe/shell and application directory and invoke:
 --> xulrunner(.exe) application.ini

UrlOpener.xul

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/global.css" type="text/css"?>
<?xml-stylesheet href="dialog.css" type="text/css"?>

<window id="myDialog" title="URL Opener with Java Class Loader"
 onload="window.sizeToContent()"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

<script language="JavaScript" src="JavaClassLoader.js"> </script>

<hbox>
 <vbox>
 <label id="label1" align="center" value="Enter URL:" />
 <textbox id="urlField" value="http://www.wu.edu/" size="40"/>
 <button id="button1" label="Launch URL via Java and ooRexx"
oncommand="useClassLoader();" />
 </vbox>
</hbox>

</window>

94

Scripting Mozilla Applications with XPCOM and XUL

JavaClassLoader.js

 /**
 ** This script is part of a XULRunner application:
 ** (see Readme.text in top level directory for more information)
 **
 ** This JS script receives a call by the XUL template, creates a Java class loader using the
 ** following jar Files: javaFirefoxExtensionUtils.jar
 ** javaxpcom.jar
 ** MozillaGlue.jar
 ** MozillaInterfaces.jar
 ** bsf-rexx-engine.jar
 ** bsf-v400-20090910.jar
 ** The Jars are collected in a Java Class Loader, which gives the proper permissions.
 ** Now we can instantiate and call our custom Java class "JavaBSF.class".
 **
 ** Customize: change vars myJar, bsf1, bsf2, xpcom1, xpcom2 and xpcom3 to your installation dirs !
 **
 ** Output: calls JavaBSF.launchUrl(String targetUrl), which launches ooRexx script
 **/

function useClassLoader () {

// Get path to the following JAR files
try {
 // get the desktop directory
 var file = Components.classes["@mozilla.org/file/directory_service;1"].
 getService(Components.interfaces.nsIProperties).
 get("Desk", Components.interfaces.nsIFile);
 var desktop = file.path;

// You must add this utilities JAR (javaFirefoxExtensionUtils.jar) to give your application full privileges
var myJar =
"file:///"+desktop+"/xulrunner/chrome/xulrunner/javaFirefoxExtensionUtils.jar";
var xpcom1 = "file:///C:/xulrunner-1.9.2/bin/javaxpcom.jar";
var xpcom2 = "file:///C:/xulrunner-1.9.2/sdk/lib/MozillaGlue.jar";
var xpcom3 = "file:///C:/xulrunner-1.9.2/sdk/lib/MozillaInterfaces.jar";
var bsf1 = "file:///C:/Program Files/bsf4oorexx/bsf-rexx-engine.jar";
var bsf2 = "file:///C:/Program Files/bsf4oorexx/bsf-v400-20090910.jar";

 // Builds a regular JavaScript array (LiveConnect will auto-convert to a Java array)
 var urlArray = [];
 urlArray[0] = new java.net.URL(myJar);
 urlArray[1] = new java.net.URL(xpcom1);
 urlArray[2] = new java.net.URL(xpcom2);
 urlArray[3] = new java.net.URL(xpcom3);
 urlArray[4] = new java.net.URL(bsf1);
 urlArray[5] = new java.net.URL(bsf2);
 var cl = java.net.URLClassLoader.newInstance(urlArray);

 // Set security policies using the above policyAdd() method
 policyAdd(cl, urlArray);

 var url = document.getElementById("urlField").value;
 alert("Opening this URL: " + url);
 // launch URL
 launchUrl(cl, url, desktop);
}
catch(e) {alert(e+' ::useClassLoader:: '+e.lineNumber);}
}

95

Scripting Mozilla Applications with XPCOM and XUL

// launches the target URL, using the Java class loader and JavaBSF.class
function launchUrl (loader, url, desktop) {

try {
 var myClass = loader.loadClass('edu.mit.simile.javaFirefoxExtensionUtils.JavaBSF');
 var myObj = myClass.newInstance(); // instantiates JavaBSF class
 // alert("launching JavaBSF class");
 var response = myObj.launchUrl(url); // calls JavaBSF, pass whatever arguments you need
 alert(response);
}
catch(e) {alert(e+' ::launchUrl:: '+response);}

}

// This function will give the necessary privileges to the JAR files in your ClassLoader
function policyAdd (loader, urls) {
try {
 var str = 'edu.mit.simile.javaFirefoxExtensionUtils.URLSetPolicy';
 var policyClass = java.lang.Class.forName(str, true, loader);

 var policy = policyClass.newInstance();
 policy.setOuterPolicy(java.security.Policy.getPolicy());
 java.security.Policy.setPolicy(policy);
 policy.addPermission(new java.security.AllPermission());

 for (var j=0; j < urls.length; j++) {
 policy.addURL(urls[j]);
 }
}
catch(e) {alert(e+' ::policyAdd:: '+e.lineNumber);}
}

96

Scripting Mozilla Applications with XPCOM and XUL

JavaBSF.java

 /**
 ** This Java class is part of a XULRunner application:
 ** (see Readme.text in top level directory for more information)
 **
 ** The class JavaBSF is called by the JavaScript "ClassLoader.js" receives an URL,
 ** implements BSF (BSFManager and BSFEngine) and launches the ooRexx script "Window.rex"
 **
 ** Customize: Usually no configuration required.
 ** If either the ooRexx script "Window.rex" or the Error Logger file "java/ErrorLog.txt"
 ** can not be found, change the paths for the variables "scriptName" and "log"
 **
 ** Paramaters: receives String "targetUrl" from ClassLoader.js
 **
 ** Output: launches ooRexx script "Window.rex"
 **
 ** Warning: If you change this Java class, you have to load the new
 ** .class file into the JAR archive "javaFirefoxExtensionUtils.jar"
 **/

package edu.mit.simile.javaFirefoxExtensionUtils;

import java.lang.*;
import java.util.logging.*;
import java.io.*;
import org.apache.bsf.*;
import org.apache.bsf.util.*;

public class JavaBSF {

 private Logger logger = Logger.getLogger("");
 String targetUrl;
 String currentDir;

/** launchUrl() receives the targetUrl from JavaScript and launches the ooRexx script */
public String launchUrl (String url) {

 try {
 // Get instance of BSFManager (beans and launching the script)
 BSFManager bsf = new BSFManager();

 // package targetUrl as a BSF bean
 if (url != null) targetUrl = url;
 else targetUrl = "http://www.orf.at/";
 bsf.registerBean("targetUrl", targetUrl);

 // current directory
 // when called by xulrunner app, it is the directory of application.ini (top level)
 currentDir = new File(".").getAbsolutePath();
 System.out.println(currentDir);

 // retrieve information from script
 String scriptName = currentDir + "/chrome/xulrunner/Window.rex";
 String language = bsf.getLangFromFilename(scriptName);
 FileReader in = new FileReader(scriptName);
 String rexxCode = IOUtils.getStringFromReader(in);

 // launch script and terminate BSF environment
 bsf.exec (language, scriptName, 0, 0, rexxCode);

97

Scripting Mozilla Applications with XPCOM and XUL

 }
 catch (BSFException e) { e.getMessage(); e.printStackTrace(); logError(e); return
e.getMessage(); }
 catch (IOException e) { e.getMessage(); e.printStackTrace(); logError(e); return
e.getMessage(); }

return "Java/ooRexx ist fertig!";
 }

/** Simple Error Logger, receives possible errors from method launchUrl(url) */
public void logError (Exception ex) {

 try {
 // current directory
 // when called by xulrunner app, it is the directory of application.ini (top level)
 currentDir = new File(".").getAbsolutePath();
 System.out.println(currentDir);

 String log = currentDir + "/chrome/xulrunner/java/ErrorLog.txt";
 FileHandler handler = new FileHandler(log);

 logger.addHandler(handler);
 logger.setLevel(Level.ALL);
 logger.info("Error logs:");
 logger.log(Level.INFO, "", ex);
 logger.fine("");
 }
 catch (Exception e) { e.printStackTrace(); }
}

/** main method for command line test purposes */
/**
public static void main (String[] args) {
JavaBSF a = new JavaBSF();
a.launchUrl("http://www.zdf.de");
}
*/

}

98

Scripting Mozilla Applications with XPCOM and XUL

Window.rex

 /**
 ** This script is part of a XULRunner application:
 ** (see Readme.text in top level directory for more information)
 **
 ** This ooRexx script receives an URL, implements XPCOM embedding and calls
 ** several XPCOM services to open a new window.
 **
 ** Customize: change String "grePathName" in the first line to your XULRunner/bin directory!
 **
 ** Paramaters: receives String "targetUrl" as a BSF bean
 **
 ** Output: opens a new window using "targetUrl"
 **/

/** Insert Path to your XULRunner installation directory, which contains the JavaXPCOM library
"javaxpcom.jar" */

grePathName = "C:/xulrunner-1.9.2/bin"
/*************************************/

.bsf~bsf.import('java.io.File','File')

.bsf~bsf.import('java.lang.System','System')

.bsf~bsf.import('org.mozilla.xpcom.Mozilla','Mozilla')

.bsf~bsf.import('org.mozilla.xpcom.GREVersionRange','GREVersionRange')

.bsf~bsf.import('org.mozilla.interfaces.nsIAppStartup','nsIAppStartup')

.bsf~bsf.import('org.mozilla.interfaces.nsIDOMWindow','nsIDOMWindow')

.bsf~bsf.import('org.mozilla.interfaces.nsIServiceManager','nsIServiceManager')

.bsf~bsf.import('org.mozilla.interfaces.nsIWindowCreator','nsIWindowCreator')

.bsf~bsf.import('org.mozilla.interfaces.nsIWindowWatcher','nsIWindowWatcher')

/** Target URL to open (explicit or by BSF bean) */
targetUrl = .bsf~bsf.lookupBean('targetUrl')
if targetUrl = .nil then targetUrl = 'http://derstandard.at'

/** Initiate XPCOM embedding */
path = .System~getProperty('GRE_PATH')
 -- set grePathName manually (see first line)
if path = .nil then grePath = .File~new(grePathName)
else grePath = .File~new(path)
say 'Gecko Runtime Engine path: ' grePath~getPath

mozilla = .Mozilla~getInstance
 mozilla~initialize(grePath)
 mozilla~initXPCOM(grePath, .nil)
say 'Mozilla XPCOM initialized!'

/** Get the Service Manager (responsible for acquiring XPCOM objects) */
serviceManager = mozilla~getServiceManager

/** Retrieve necessary property values and XPCOM interface IIDs */
appStartupID = .bsf~bsf.getStaticValue(.nsIAppStartup, 'NS_IAPPSTARTUP_IID')
windowCreatorID = .bsf~bsf.getStaticValue(.nsIWindowCreator,

'NS_IWINDOWCREATOR_IID')
windowWatcherID = .bsf~bsf.getStaticValue(.nsIWindowWatcher,

'NS_IWINDOWWATCHER_IID')
winProps = "width=1000, height=650, resizable, centerscreen, status='yes'"

/** Set up the application and load the new window with interface nsIWindowWatcher */

99

Scripting Mozilla Applications with XPCOM and XUL

appStartup = serviceManager~getServiceByContractID(
'@mozilla.org/toolkit/app-startup;1', appStartupID)

windowCreator = appStartup~queryInterface(windowCreatorID)
windowWatcher =serviceManager~getServiceByContractID(

'@mozilla.org/embedcomp/window-watcher;1', windowWatcherID)
windowWatcher~setWindowCreator(windowCreator)

window = windowWatcher~openWindow(.nil, targetUrl, 'URL Opener', winProps, .nil)
windowWatcher~setActiveWindow(window)
appStartup~run

/** Terminate XPCOM embedding */
mozilla~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!'

::requires BSF.cls -- adds BSF support to Java and ooRexx scripts

100

	1	 Motivation and Interest
	2	The Mozilla Suite
	2.1	The story of Mozilla
	2.2	XPCOM – the backbone of Mozilla applications
	2.2.1	 The Advantages of XPCOM
	2.2.2	 XPCOM component architecture
	2.2.3 Interfaces
	2.2.4 Criticism

	2.3	A comparison between Java and Mozilla
	2.3.1 Introduction to JAVA
	2.3.2 Application Interfaces comparison
	2.3.3 Conclusion

	2.4	XPCOM-related technologies
	2.4.1	XPIDL
	2.4.2 XUL
	2.4.3 XBL
	2.4.4	 XPConnect
	2.4.5 XPT

	3 Building powerful XPCOM applications
	3.1 Bean Scripting Framework
	3.1.1 Working with BSF
	3.1.2	Working with Beans
	3.2.2 Working with ooRexx
	3.2.3 BSF4ooRexx
	3.2.4 Working with BSF4ooRexx

	3.3	JavaXPCOM and XULRunner
	3.3.1	Working with JavaXPCOM
	3.3.2 Implementing JavaXPCOM with ooRexx

	3.4	XULRunner Applications
	3.4.1 The Javascript Application Content
	3.4.2 The XULRunner Packaging Process
	3.4.3 Extending the Application with JavaXPCOM

	4	Conclusion
	5 Literature
	6	List of Figures
	7 Project Management
	8	 Appendix
	8.1	XUL example
	8.2 XBL example
	8.3 BSF example
	8.4 JavaXPCOM example
	8.5 XULRunner Javascript example
	8.6 XULRunner ooRexx example

