JavaXPCOM:

Mozilla Firefox Scripting

Seminar Paper

Martin Palkovic
0351749

0675 IS-Projektseminar SS 2010
Ao. Univ.-Prof.
Mag. Dr. Rony G. Flatscher
Institute for Management Information Systems

Vienna University of Economics and Business Administration

Table of Contents

1 MOZIlla FIrefOX ...t e e e e e 4
2.1 GBCKO .o 6
2.2 Language BiNdiNgscoooiiiiiii i e ne e O
2.3 INEEITACES ... 7
2.4 XPCOM vs. MiICroSOft COMouiiiiiiiie e i e e e 8
2.5 Interface DeSCrIPLIONccoiii e e e e e e e e 9

2.6 Interface DISCOVEIYccoiiiiiiiiiiiieiieiieiee et e eie e e e e neneeeeenn 10
2.7 Components Identificationoooiiiiiiiii 12
2.8 Lifetime Managementc.cuuieie it e e e 12

2.9 Component Manager and Service Managercoceeeevennnn.... 13

2. 00 G SN et e e e e e e 14
3 JAVAXP COM ..o 15
3.1 XULRUNNer INStallationo.eeeiiie e 15

3.2 Java Example 1 — WindowCreatorcccoeveiiiiieiieiieeeennennnn. 16
3.3 PlACES it 19

3.4 Java Example 2 — BookmarksManagerccccooeevveiviiieennn.. . 20

3.5 Java Example 3 —SaveToFile ... 21
4 Scripting XPCOM WIth O0REXXuuiu i et e e e e v aen e 23
4.1 OOR XK. ettt 23
4.2 INSEAllAtION ... e 24
4.3 BSFAOOREXX ...ttt i e e e e e e e 24

4.4 InStallation.......coooe i 0 25

4.5 ooRexx Example 1 — WindowCreatorcccoeeevviiievininnenn e ... 26

4.6 ooRexx Example 2 — CookieManagerccouvuiieiieiiiiie e iiiinnennns 28
(@] o Tod 10110 o PP 30
=] = U =P 31
List of Code EXamMPIESooviiiiii i et e e e e e e 33
2 0] o= 0 T | 34

1. Example: WindOWCTIeatorJaVaovvuieiieiie e aie e e e e eee e 34

2. Example: BookmarksManager.javac.covveiie e e i, 35

3. Example: SaveToFile.javaccccoevii i e e e 3T

4. Example: WINAOWCTEALOI.IEXueie it i e v ee e e e e 38
5. Example: CoOKIEMaNAGEI.FEX. e ittt e e e e e e ae e e 39
6. LOCAtIONPIOVIAEI.JAVA . .vvvne i ce e e et et e e e e e e e e aee e 40

1 Mozilla Firefox

Mozilla Firefox is a free open source web browser. It is the second most widely used
browser after commercial Microsoft Internet Explorer with market share of almost
24% in June 2010. [BMSh10]

The name Mozilla refers to both an Application Suite and a Cross-Platform
Application Framework. Both are based on a code base released by Netscape under
a free software open source license in 1998. Since then, it has been maintained by
the Mozilla Foundation. The application suite contains, amongst others, the Firefox

browser and the Thunderbird email client.

The Mozilla Firefox project was created by Dave Hyatt and Blake Ross as an
experimental branch of the Mozilla project. First version of Firefox 1.0 was released

on November 9, 2004 and the latest version is 3.6.6.

Firefox retains the cross-platform nature of the original Mozilla browser, using the
XUL user interface markup language. It is possible to extend the browser's functions
through the use of extensions and themes. This feature and a wide selection of third

party add-ons have attracted many Firefox users.

The latest Firefox version provides functions as tabbed browsing, live bookmarking,
download manager, spell checking, private browsing, incremental find, integrated
search system and location-aware browsing, the last of which is based exclusively on

Google services.

2 XPCOM

XPCOM, which stands for Cross Platform Component Object Model, is a framework
for writing cross-platform, modular applications. [OvXP09] The basic idea of
modularization is splitting monolithic software into several smaller pieces, known as
components. These components are usually delivered in small, reusable binary
libraries (a DLL on Windows, or a DSO on Unix). When there are two or more related
components in a library, it is referred to as a module. The goal of XPCOM is to allow
different pieces of software that offer different functionality to be developed and built

independently of one another.

Breaking software into different components can help development and maintenance
be less difficult. Component-based approach to programming has several
advantages:
* Reuse: modular code can be reused in other applications and contexts.
* Updates: updating components without having to recompile the whole
application.
* Performance: modules that are not needed necessary right away can be "lazy
loaded" or not loaded at all. It can improve the performance of an application.
* Maintenance: modular software design can make specific parts of an

application easier to find and maintain.

XPCOM enables developers to create components that can be reused in different
applications or replaced to change the functionality of existing applications. It does
not only support modular software development, it also provides functionality of
a development platform, such as file and memory management, threads, basic data
structures (strings, arrays, etc.), object message passing or component
management. These core libraries and tools enable selective component loading and

manipulation.

The most of the XPCOM components are not part of this core set and are available

with other parts of the platform (Necko, Gecko) or with an application or even with an

extension. For example the networking module, known as “Necko”, is a library of

bundled components for each of the network protocols (HTTP, FTP, etc.).

2.1 Gecko

“The most important use of XPCOM is within Gecko, an open source, standards
compliant, embeddable web browser and toolkit for creating web browsers and other
applications.” [OvXP09] It is the layout engine developed by the Mozilla Project,
whose function is to read web content, such as HTML, CSS, XUL, and JavaScript,
and render it on user's screen or print it. Gecko is used in many applications, such as

Firefox, Thunderbird, Mozilla Suite, Camino, Flock, SeaMonkey, Netscape 9, etc.

Although, main client of XPCOM is Gecko, it can be used in many environments,
which are unrelated to web browsing. However, this paper focuses on XPCOM

components that provide web browsing functionality.

2.2 Language Bindings

XPCOM layer itself is written in C/C++. Therefore, its API can be accessed out-of-
the-box using C or C++. In order to enable access to XPCOM API for other

languages, additional language bindings are needed.

Such a language binding is a bridge between a certain language and XPCOM with

purpose to: [LaBi09]

* Enable access to XPCOM objects from within that language (where access
means reading/writing/creating XPCOM objects as well as calling methods on
them).

* Expose modules written in the bound language as XPCOM objects, thereby
enabling all other languages for which XPCOM bindings exist to access these

modules.

Several language bindings exist for various languages:

JavaScript : XPConnect
Java: JavaXPCOM
Python : PyXPCOM
Perl: PIXPCOM

Ruby : RobXPCOM

Whereas XPConnect is part of Firefox and is actively used in XUL applications,
JavaXPCOM is not part of Firefox and needs to be installed as a part of XULRunner

or can be used in Eclipse applications via SWT.

2.3 Interfaces

The communication between different components takes place on the basis of
formalized boundaries known as interfaces. Interfaces allow encapsulation of the
implementation and inner workings of the software and allow clients to use the

software without knowing how things are made.

In the component-based programming, it is important that components provide the
same access to the same methods across different versions — that the interfaces,
they provide, will be immutable and thus establish a contract with the clients that use
the software. “In this respect, interface-based programming is often referred to as
programming by contract”. [OvXP09]

Interfaces are written in a language called Cross Platform Interface Description

Language (XPIDL). It allows any component to specify its interfaces in a way that all

other components can understand independently of their native language
mechanisms. Hence, all Mozilla applications are composed of a large number of
small reusable components, each exporting their interfaces in a way even JavaScript
can use. Along with XUL, XPCOM thus provides a rich environment for extensions

developers.

2.4 XPCOM vs. Microsoft COM

For those who might wonder whether XPCOM is like Microsoft COM, the short
answer is yes, and no. Both platforms appear identical due to their common
ideological heritage. They are interface based and all interfaces are derived from one
base interface, which defines three methods: Querylinterface — used for interface
dispensing, and AddRef and Release - used for lifetime management. Despite
some similarities, MSCOM and XPCOM components are neither compatible with
each other nor interchangeable. A specific glue code or wrapper is required for
communication between components of the two frameworks. As an example, the
embedding wrapper for Mozilla allows browser engine to appear as ActiveX of
MSCOM, while it internally operates on XPCOM components. The differences

between these technologies can be summarized in the following points.

First area of distinction is the component proxy support. A component proxy is a fake
component, which is used to impersonate another component that cannot be
accessed directly. MS COM supports an elaborate proxy mechanism that allows
creation of components with different threading models or restrictions. A component
can be either “in process” or “out of process”. [INXP01] Whereas the first runs inside
an application, the latter runs as a separate application. A single threaded
component has its own thread and other threads use a proxy for access. Apartment
threaded components share a thread but still need a proxy. Free threaded
components need no proxy mechanism for the same process. This built-in proxy
mechanism in MSCOM provides an appropriate amount of thread safety for

components. On the other hand, “XPCOM is tailored toward providing modular

component support at the application level, so proxy services only support multiple
threads sharing an otherwise non-reentrant component.” [INXPO1] In other words,
accessing a remote component requires creating a new proxy. XPCOM offers some

components that help user to do this.

The second and more significant contrast between XPCOM and MS COM is the fact
that XPCOM technology is open source. The XPCOM architecture is fully available
for developers to inspect the libraries and trace and debug their own application
code. Moreover, it is even possible to modify the code base and extend its
functionality. In contrast, if MS COM developers have difficulties in understanding the
way how components and libraries are created and loaded, they are at the mercy of
whatever documentation is available. Admittedly, Microsoft has put great effort to
promote their technology and provide good documentation. However, changes in
Microsoft system-level libraries behavior can affect the behavior of components and

applications that use them.

2.5 Interface Description

As it was already mentioned above, interfaces are described by an interface
description language (IDL). XPCOM uses its own dialect of IDL, which is called Cross
Platform Interface Description Language — XPIDL. It also provides an xpidl compiler,
whose purpose is to create a type library file for each module. In addition, it has a

feature of writing nearly all of the declaratory C++ code when starting a new project.

The following code shows an interface description file with a sample interface.

#include "nslSupports.idl"

[scriptable, uuid (f728830e-1dd1-11b2-9598-th9f414f2465)]

i nterface nsl Screen : nslSupports {

voi d GetRect (out |long left , out long top, out |ong width , out
| ong height);

voi d GetAvailRect (out |ong left , out |ong top, out |ong width ,

out | ong height);
readonly attribute | ong pixelDepth ;

readonly attribute | ong colorDepth ;

I3

Code example 1: Sample interface [XPCBO01]

In the above example we can see that the name of the interface is nsiScreen and
its base interface is nslSupports . This means that all methods and attributes
defined for nsISupports are implicitly defined for nsiScreen as well. Additionally,
the interface has two methods (GetRect and GetAvailRect) and each of them
uses four outgoing parameters of type long. Similarly, it has also two attributes
(pixelDepth and colorDepth) with readonly keyword, which informs that the
attributes can be examined but not set. Attributes are distinguished from methods by
the attribute keyword. There is an optional part of the interface description
between the square brackets just above the interface name, which provides some
useful metadata. The first keyword scriptable indicates that the interface is
available to be used by JavaScript or other scripting languages. Next, the uuid key
specifies the interface 1D, which needs to be provided by a program that wishes to
use the interface.

2.6 Interface Discovery

As it was described above, XPCOM uses interface-based approach to handle
components. If a client code wants to use some functionality of a component, the
interaction between them takes place strictly through the available interfaces. Most of
the XPCOM components support several interfaces. For this reason, there is an
interface dispensing mechanism, which is provided by Querylnterface method

and offers functionality for managing interfaces, in particular: [SuXP01]

« Determining what interfaces are supported by a component
« Switching from one interface to another (and back again).

10

These two functions can be grouped together with a common name of interface
discovery. Every XPCOM component is required to support a standard interface that
handles interface discovery. The standard interface has to be the base interface,
from which all other XPCOM interfaces are extended and thus providing additional

methods and functionality and is called nsiSupports

I nterface nsl Supports

{

voi d Querylnterface (in nslIDRef uuid, out nsQ Result result);
nsrefcnt AddRef ();
nsrefcnt Release ();

|8

Code example 2: Base interface nsISupport in a simp lified IDL [SuXPO01]

The first method of the base interface is Queryinterface , Which is the one that
actually is responsible for interface discovery. The following two methods AddRef
and Release provide lifetime management of a component through reference

counting.

The first parameter of Queryinterface method is a reference to a UUID
(universally unique ID) number, which is 128 bits long and is written using
hexadecimal digits. For example, the interface ID for nsISupports is: 00000000-
0000-0000-c000-000000000046.

“This ID number specifies an interface that may or may not be supported by the
component being queried.” [SuXP01] Either the component returns an error code,
when an interface represented by a specific UUID is not supported, or it returns a
successful result code and sets the second parameter to the address of the
requested interface. It is important that software designers take special care when

creating new interfaces and assigning them with unique interface IDs. An example,

11

how to query interfaces of a component using Queryinterface method, can be

found in the code section of this paper.

2.7 Components ldentification

Each component needs to be identified using one of two forms. One form of
component specification is a 128 bit number called a component’s class ID. The
other form is a contract ID, which has a form of a text string. These forms are used by
the component manager when requesting and creating components and either form
is sufficient for their identification. The purpose of the contract ID is to guarantee a
set of behavior and related interfaces to clients that want to use the component.

A contract ID has a recommended format, which looks as follows: [SUXP01]
“‘@<internetdomain>/module[/submodule][...]];<version> [?<name>=<v
alue>[&<name>=<value>[...]]] ”

And here is an example of a contract ID, in particular of the app-startup component

class: @mozilla.org/toolkit/app-startup;1

For those who know MS COM, we can say that an XPCOM contract ID is functionally

equivalent to a Program ID or ProgID.

2.8 Lifetime Management

It is necessary for components to keep count of how many outstanding interfaces
have been issued. Lifetime management ensures that no component gets destroyed
while a client code is attempting to use one of its interfaces. For this purpose, the
base interface provides reference count. When an object dispenses another copy of
its interface, the internal reference count increases and on the other hand, the
reference count decreases when the interface is released. The object destroys itself,

when its reference count drops to zero.

12

When the Querylinterface method queries a component, the AddRef method of
the base interface is performed on that component and notifies the object that an
interface pointer has been duplicated. When a client code stops using a component,
it calls the Release method, which notifies the object that an interface pointer has
been destroyed and the resources held by component for the client code can be
released. Many XPCOM bugs can be traced to the problem of incomplete pairing of
AddRef /Release methods in the client software. [SuXPO01]

2.9 Component Manager and Service Manager

As the name of the component manager implies, it keeps records of currently
installed components and what DLL or shared library has to be loaded when creating
a component. A code can use services of the component manager using its interface
nsiComponentManager , which provides methods to access factory objects and

instantiates instances of classes.

XPCOM services are referred to as singleton objects. This means that multiple
requests for a service will always receive an interface to the same component.
[SuXPO01] Interesting is the indirection, where the component manager itself works a

service.

On the other hand, the service manager is responsible for loading and unloading
services. “When a request is made for a service that is already loaded, the service
manager is smart enough to return another pointer to the existing service instead of

trying to construct another object.” [SuXPO01]

13

2.10 Criticism

Despite the advantages of XPCOM and its component-based application
development, this technology brings also some disadvantages with it. Probably the
most serious issues with XPCOM based systems are the extensive amount of code
and the well-known memory leaks. As Mitschek points out, “there is a lot of code
involved in managing and monitoring all the components and objects, which could
lead to a decrease in performance, especially in large applications.” [Mits10] This
was also the reason why Apple has decided to use KHTML to create their WebKit
engine for their Safari browser instead of XPCOM’s Gecko layout engine. An
example here is the Firefox browser, which has been criticized by a number of users

for its excessive memory usage. [RMUF10]

The current goal of the Gecko developers is to reduce excessive use of XPCOM in
Gecko. “The basic idea is to refactor interfaces to remove unnecessary ‘XPCOM
style’ ugliness and other interface design errors.” [GeDC10] An Interface Style Guide
for Gecko was created to help create efficient, easy-to-use interfaces. The idea of
creating clean interface design is referred to as “deCOMtamination”.

14

3 JavaXPCOM

JavaXPCOM is a language binding that allows for communication between Java and
XPCOM. It enables Java applications to call XPCOM objects, and XPCOM to use
any Java class that implements an XPCOM interface. With JavaXxPCOM, developers
can also embed Gecko layout engine in their Java applications. It is very similar to
XPConnect, which is the JavaScript-XPCOM bridge and uses XPIDL for interface
description.

In order to make use of JavaXPCOM, it needs to be installed and it also requires an
installed JDK. It does not come with Firefox application, but it is built by default as
part of XULRunner, “which is development framework and runtime environment for
JavaXPCOM components“[Mits10] and provides necessary interfaces to

communicate with the XPCOM architecture.

3.1 XULRunner Installation

As of July 2010, the current version of XULRunner is 1.9.2 and corresponds with the
current 3.6 version of Mozilla Firefox. Versions for Windows, Mac OS and Linux can
be downloaded from the Mozilla website!. The downloaded SDK package should be
unzipped in a user pre-defined directory. Then, the XULRunner has to be registered
with the system. This can be done by executing one of the following commands in
the command line: xulrunner --register-global for registration for all users or xulrunner

--register-user for registration for current user only.

It is important to ensure that the path to the XULRunner installation directory (GRE
path) is included in the path variable and also following archives are added to the

classpath variable:

! http://releases.mozilla.org/pub/mozilla.org/xulrunner/releases

15

e javaxpcom.jar
* Mozillainterfaces.jar
* Mozillalnterfaces-src.jar

* MozillaGlue.jar

These paths are required to get a dynamic access to the JavaXPCOM functions and
interface libraries. Moreover, the GRE path plays a crucial part in initiating the
XPCOM embedding. [Mits10]

3.2 Java Example 1 — WindowCreator

In this section, we are going to create a simple JavaXPCOM application that loads a
URL and shows the content in a new window. This window is not a Firefox window. It
is a simple frame, which shows only the content of the downloaded web page.
Getting more features for our “browser” would require more complex application that

would implement additional components.

Like every other Java application that wants to use XPCOM, it is necessary to initiate
it first. Following lines of code will show how to start XPCOM so we can use its

functionality.

First of all, we need to import all necessary classes. Besides the java.io package,
we will also need classes from org.mozilla.xpcom and
org.mozilla.interfaces packages. Whereas the first one enables the set up of
the XPCOM environment, the latter provides interfaces to components that we want

to use in our application.

import java.io.*;

import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nslAppStartup;
import org.mozilla.interfaces.nsIDOMWindow;
import org.mozilla.interfaces.nslServiceManager;
Import org.mozilla.interfaces.nsIWindowCreator;

16

Import org.mozilla.interfaces.nsIWindowWatcher;

Code example 3: JavaXPCOM - Classes import

Next, we need to set the path to the XULRunner directory. JavaXPCOM contains
code that is able to find its currently installed versions and set the path for the Gecko
Runtime Environment. In the following step, we can instantiate and initialize the

Mozilla singleton class using a valid GRE path. “XPCOM embedding is complete

when either mozilla.initXPCOM or mozilla.initEmbedding is called.”
[Mits10]
GREVersionRange[] range = new GREVersionRange[1];

range[0]= new GREVersionRange("1.8" , ftrue , "1.9+" |, true);
File grePath = null ;
grePath = Mozilla.getGREPathWithProperties(range, null);

Mozilla mozilla = Mozilla.getinstance();
mozilla.initialize(grePath);
mozilla.initXPCOM(grePath, null);

Code example 4: JavaXPCOM — Mozilla initialization

Now, when XPCOM is initialized, we need to create instance of the Service Manager
in order to use XPCOM services. In general, there are two ways of getting a service:
either requesting it using the Service Manager and providing the right Contract ID
and the Interface ID, or using Querylnterface method and the 1ID. While the first
one creates instances of the requested services, the latter returns only a pointer to

the desired interface. In our example we use both methods. We need following

interfaces:
* nslAppStartup - provides application startup and quitting services,
* nslWindowCreator — callback interface used by Gecko to create new
windows,
* nslWindowWatcher — maintains the list of the top-level windows and allows

some operations on them,
* nsIDOMWindow — represents a single window object that may also contain

child windows.

17

nslServiceManager serviceManager =
mozilla.getServiceManager();

nslAppStartup appStartup =
(nslAppStartup)serviceManager.getServiceByContractl D
("@mozilla.org/toolkit/app-startup; 1" ,
nslAppStartup.NS_IAPPSTARTUP_IID);

nslWindowCreator windowCreator =
(nsIWindowCreator)appStartup.querylnterface
(nslWindowCreator.NS_IWINDOWCREATOR_IID);

nslWindowWatcher windowWatcher =
(nslWindowWatcher)serviceManager.getServiceByContra ctiD
("@mozilla.org/embedcomp/window-watcher;1" ,
nsiWindowWatcher.NS_IWINDOWWATCHER_IID);

Code example 5: JavaXPCOM - Getting services

Now, when we have instantiated objects for all necessary services, we can start
creating the window of our application. As the first step, we need to initialize the
windowWatcher by implementing a windowCreator object. Next, we create an
instance of nsIDOMWIndow, which represents the browser window. The arguments
provided to openWindow method include: a parent window represented by another
nsIDOMWindow object, a URL that is to be loaded, name of the window, window
features and some extra arguments. We set the activeWindow property of the
windowWatcher to our new window object win and start the application. The
run) method of the nslAppStartup interface hands over the application to
xpcom/xul and blocks the Java program until all created windows are closed. “To
prevent this you would have to implement multithreading by using the XPCOM
interface nslEventQueue .” [Mits10] At the end we need to terminate the use of
XPCOM in our application by calling shutdownXPCOM() method, or by calling
termEmbedding() if we have used initEmbedding() before. This will release

resources used by XPCOM.

18

windowWatcher.setWindowCreator(windowCreator);

nsIDOMWindow win = windowWatcher.openWindow(null , targetURL,
"mywindow" , "chrome,resizable,centerscreen” , nhull);

windowWatcher.setActiveWindow(win);

appStartup.run();

mozilla.shutdownXPCOM(null);

Code example 6: JavaXPCOM - Creating window

The above example shows us how to use XPCOM components via JavaXPCOM
interfaces. We found out how to load a URL in a simple window. This window,
however, does not provide any other functionality. As already mentioned above,
additional functions can be implemented by calling respective services. In the next

section we will discuss the bookmarks and history service provided by XPCOM.

3.3 Places

‘Places’ was introduced in Firefox 3 as APl for the bookmark and history
management with new features like annotations and favicons. It also offers more
complex querying to make handling the places easier and more convenient. [MoPI10]
Places stores all the bookmarks and history data in an SQLite database. For
manipulation with the database it uses mozlStorageService interface. This database

is stored in the user’s profile directory.?

In order to be able to use some XPCOM services correctly, it is necessary to provide
XPCOM during initialization with an implementation of a Location Provider that will
return relevant path(s) and file(s) for the specific services. This is also the case for
Places services. It allows XPCOM developers to choose the locations for data of
various types like profiles, plug-ins, preferences, and so on. If XPCOM is not
provided with any Location Provider, a null object will set the default behavior.

However, not providing any implementation of such a class can lead to an

2 On Windows XP the profile directory for Mozilla Firefox is: C:\Documents and

Settings\Owner\Application Data\M ozilla\Firefox\Profiles\

19

unexpected error during the execution of the program. The Service Manager has a
problem with getting specific services without any Location Provider, as the result it
tries to return appears to be huge enough to throw an OutOfMemory Error. A sample
implementation of the Location Provider can be found in the Appendix. The following

examples will show how to get access to the Places services.

3.4 Java Example 2 — BookmarksManager

This example shows how to work with bookmarks in XPCOM. The initialization and
termination of XPCOM is the same as in the previous example. However, there is
one exception, which will be explained shortly. It creates a folder in the Bookmarks
Menu and checks whether a bookmark exists with the specified URL. If it does not
exist, program adds it into the created folder.

Here again, we have to import all necessary interface classes which we intend to
use. The nsIiNavBookmarksService interface allows for accessing bookmarks
database and manipulation with them. We will also need nslURI — the uniform
resource identifier interface and nsllOService , which provides a set of network
and URL parsing utility functions. Before we start initialize XPCOM, we create an
instance of the above mentioned LocationProvider class, which will be used as a
parameter for initialization. In our implementation of the LocationProvider the
profile directory path is set to XULRunner installation directory. If the bookmarks or
history management interfaces do not find the “places.sqlite” file in the directory, they
will create one.

Import java.io.*;

import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nsINavBookmarksService;

Import org.mozilla.interfaces.nsllOService;
import org.mozilla.interfaces.nslURI,

LocationProvider locProvider = new LocationProvider(grePath);
mozilla.initXPCOM(grePath, locProvider);

nsINavBookmarksService bms = (nsINavBookmarksServic e)

20

serviceManager.getServiceByContractID

("@mozilla.org/browser/nav-bookmarks-service;1"

nsINavBookmarksService.NS_INAVBOOKMARKSSERVICE IID) ;
nsliOService ios = (nslIOSerwce)serwceManager

.getServiceByContractID("mozilla.org/network/io-service;1" ,

nsliOService.NS_IIOSERVICE_IID);

Code example 7: BookmarksManager — Getting bookmark s service

Next, we need to get an ID of the parent folder, in which we will create a new folder
using three parameters: name of a parent directory, name and index of the new
directory. Setting the parameter to DEFAULT_INDEX will insert the folder on the last
position within the parent folder. We can see that also the createFolder() method
returns a variable of type long. This is because Places database, which stores
bookmarks and history, uses URIs and integers for identification of the items. As the
next step, we create a new URI object and check, whether there is a bookmark with
this URI in the target folder. If it does not exist, the insertBookmark() method will

add it to the created folder under the specified name.

| ong menuFolder = bms.getBookmarksMenuFolder();
| ong newFolderlD = bms.createFolder(menuFolder,

"search engine" , bms.DEFAULT_INDEX);
nslURI uri = ios.newURI("http://google.com/" , null , null);
| f (bms.isBookmarked(uri)) {
System.out.printin(uri .getPrePath() + " has been bookmarked");
} else
bms.insertBookmark(newFolderID, uri, bms.DEFAULT _IN DEX,
"Google");}

Code example 8: BookmarksManager — Creating a folde r and a bookmark

3.5 Example 3 — SaveToFile

This example shows how to save a URL to a local file. As usual, we need to import
all necessary classes. After initializing XPCOM, we use the Service Manager to

provide us with the service of the nsIWebBrowserPersist interface, which is used

21

to persisting URIs and DOM documents to a local or remote storage. Similarly we

create instances of nsllOService and nslLocalFile interfaces.

import java.io.*;

Import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nsllOService;

import org.mozilla.interfaces.nslServiceManager;
Import org.mozilla.interfaces.nsIWebBrowserPersist;
import org.mozilla.interfaces.nslLocalFile;

import org.mozilla.interfaces.nslURI,

nslWebBrowserPersist persist = (nslWebBrowserPersis t)
serviceManager.getServiceByContractID
("@mozilla.org/embedding/browser/nsWebBrowserPersist 1",
nslWebBrowserPersist. NS _IWEBBROWSERPERSIST_IID);

nsllOService ios = (nsllOService)serviceManager.
getServiceByContractID("mozilla.org/network/io-service;1"
nsliOService.NS_IIOSERVICE_IID);

nslLocalFile file = (nslLocalFile)serviceManager.
getServiceByContractID("@mozilla.org/file/local;1" ,
nslLocalFile.NS_ILOCALFILE_IID);

Code example 9: SaveToFile — Getting services

In the rest of the code we create a new URI and create new file with the
initWithPath() method and path parameter. Finally, the saveURI() method

saves the resource to the created file.

nslURI uri = ios.newURI("http://google.com/" , null , null),
file.initWithPath("C:/newFile.html");
persist.saveURI(uri, null , null , null , ™ file);

Code example 10: SaveToFile — Save URI to a file

22

4 Scripting XPCOM with ooRexx

We can now create simple java applications that can access XPCOM components
and make use of their functionality. However, one may want to control java
applications and use this functionality within a scripting language. In this chapter will
show how to use Java and XPCOM technology with ooRexx, a powerful and yet

easy-to-use scripting language.

4.1 o0o0Rexx

Open Object Rexx (0oRexx) “is an enhancement of classic Rexx; a powerful, full-
featured programming language which has a human-oriented syntax“.[OORe09] It is
an Open Source project managed by Rexx Language Association (RexxLA) and is
distributed under Common Public License v1.0 allowing a free of charge

implementation.

The ooRexx offers several advantages. It is a procedural language that implements
all concepts of object-oriented programming, which can help to solve many problems
very effectively. [Mits10] It provides a standardized API that allows high-level
programming languages to use ooRexx methods, and allows using features that are
more natural in those languages. It is also a language, which is very easy to use and
learn. There are relatively few rules for code formatting and many of its instructions
are meaningful words (e.g. say, pull, do...end, exit...). Moreover, ooRexx is referred
to as a ‘typeless’ language, in which no type declaration is needed since all variables
are treated as objects. In addition, it has a rich set of built-in functions and methods
and provides a powerful string handling functionality.

Although ooRexx has facilities to write robust large applications, it also enables to

write programs with minimum of overhead. It is mainly used for automation of

applications and operating systems like Windows or Linux.

23

4.2 Installation

As of July 2010, the latest version of ooRexx is 4.0.1. It is available for Windows,
Linux, AIX and MacOS. It has a simple installer, which is available to download along
with documentation and source code from the download section of the Open Object

Rexx website. *

We have learned that with ooRexx we can build simple and yet powerful applications.
As the next step, it is necessary to introduce a bridge that will allow for

communication between ooRexx and Java, called BSF4o0Rexx.

4.3 BSF400Rexx

“The Bean Scripting Framework (BSF) is a set of Java classes, which provide
scripting language support within Java applications. It also provides access to Java
objects and methods from supported scripting languages.” [JBSF10]

BSF supports scripting languages like JavaScript, Perl, Python and others. However,
00Rexx needs a specific BSF engine called BSF400Rexx. It is an extension to Rexx
and ooRexx that consists of set of Java classes and an external function package.
Similarly, BSF400Rexx enables Java programs to invoke ooRexx scripts and vice
versa. “This way all of Java can be viewed as a huge external Rexx function library
from the perspective of Rexx, available on any platform Rexx is available“. [FlatO3]
As it is pointed out, ooRexx is an object-oriented interface to Java and so it can

reduce its complexity. [FlatO4]

3 http://www.oorexx.org/download.html

24

4.4 |Installation

The installation package of the current version of BSF400Rexx is available to
download from the website of Vienna University of Economics and Business
Administration®. Before installing the new version of BSF400Rexx, it is necessary to
make sure that the old version is uninstalled properly. If an OpenOffice support was
also installed with previous version, this has to be removed first. The uninstallation is
carried out by running the following scripts from the Windows command line in this

order:

1. uninstallOOo.cmd
2. uninstallBSF.cmd

In Linux, there are following scripts to be executed:

1. uninstallOOo0.sh
2. uninstallBSF.sh

Next, we unzip the installation package and change into the created subdirectory
“install”. Execution of “rexx setupBSF.rex” will create platform customized installation
scripts. On Windows it is “installBSF.cmd” and on Linux “installBSF.sh”. Running the
corresponding script will add the “bsf-rexx-engine.jar’ and “bsf-v400-20090910.jar”
(name depending on the current version) archives to the system’s classpath variable.
Installation can be tested by invoking the script “infoBSF.rexx”. If installation was
successful, the script returns information about installed ooRexx, BSF400Rexx and
Java.

When we have already installed ooRexx and its BSF engine, we can move on to
practical examples. In the following chapter we will show how to work with ooRexx
and address Java and JavaXPCOM.

4 http://wi.wu-wien.ac.at/rgf/rexx/bsf4oorexx/current/

25

4.5 o00oRexx Example 1 — WindowCreator

In this section we are going to reproduce the first Java example from chapter 3.2,
which loads a URL and opens the content in a new browser window. The steps we

carry out are the same like in the Java implementation.

Also in the ooRexx implementation we need to import the required Java classes. We
need exactly the same classes and in Java. However, here we need to specify

explicitly, which class to import since importing a whole package is not possible.

bsf~bsf.import(java.io.File','File")
bsf~bsf.import(‘org.mozilla.xpcom.Mozilla','Mozilla’)
.bsf~bsf.import('org.mozilla.xpcom.GREVersionRange',GREVersionRange’)
bsf~bsf.import(‘'org.mozilla.interfaces.nslAppStartup’,'nslAppStartup’)
bsf~bsf.import(‘org.mozilla.interfaces.nsIDOMWindow','nsIDOMW,indow')
bsf~bsf.import(‘org.mozilla.interfaces.nslServiceManager','nsIServiceManager)
.bsf~bsf.import('org.mozilla.interfaces.nsIWindowCreator','nsIWindowCreator")
bsf~bsf.import(‘org.mozilla.interfaces.nsiIWindowWatcher','nsIWindowWatcher")

Code example 11: ooRexx — Classes import

Here again, we need to set the path to the XULRunner installation directory. Mitschek
points out a potential issue with XPCOM initialization. [Mits10] With a wrong GRE
registration the getGREPathWithProperties() method may return a nulltype
instead of a correct path to javaXPCOM.jar archive. He suggests a solution to look
up for the system property that we had set up during the installation of XULRunner.
Another solution is to simply set the path manually. Additionally, creating and setting

the grePath and targetURL shows the simplicity of manipulation with typeless

variables.

targetUrl = .bsf ~bsf.lookupBean(‘targetUrl')

i f targetUrl = .nil then targetUrl = ‘http://www.wsj.com’
grePathName = "C:\Program Files\xulrunner”

path = .System ~getProperty('GRE_PATH')

if path = .nil then grePath = .File ~new(grePathName)
el se grePath = .File ~new(path)

mozilla = .Mozilla ~getinstance

26

mozilla ~initialize(grePath)
mozilla ~initXPCOM(grePath , .nil)
say 'Mozilla XPCOM initialized!

Code example 12: ooRexx — Setting the GRE path and initializing Mozilla

The following code gets the Service Manager and retrieves necessary property
values and interface IDs. There are two ways to do this. In the first one we use
getStaticValue() method to get the value of the NS_IWINDOWWATCHER_IID
property of the nsiIWindowWatcher interface. The other one is simpler, in which we

send a message with the name of the property to the interface object.

serviceManager = mozilla ~getServiceManager

appStartuplD = .nslAppStartup ~NS_IAPPSTARTUP_IID

windowCreatorID = .nslWindowCreator = ~NS_IWINDOWCREATOR_IID

windowWatcherID = .bsf ~bsf.getStaticValue(.nsiIWindowWatcher
'‘NS_IWINDOWWATCHER_IDY)

winProps = "width=1000, height=600, resizable, centerscreen,

scrollbars="yes', status="yes™

Code example 13: ooRexx — Retrieving properties

The rest of the code is almost identical with the one of Java example. We use
Service Manager as well as queryinterface() method to get the component
services using the CIDs and the IIDs retrieved by the code above. Then we initialize
windowWatcher by providing it with windowCreator instance. Next, a new
window object is created and set as active. Finally, the application starts and opens
the window with the URL. Also in this implementation when the program is finished
with XPCOM, the initialization needs to be terminated. The very last line of the code
represents a directive for Rexx interpreter that the program uses Java wrapper in

order to load and manipulate with the Java classes.

appStartup = serviceManager ~getServiceByContractlD
('@mozilla.org/toolkit/app-startup;1' , appStartuplD)

windowCreator = appStartup ~querylnterface(windowCreatorID)

windowWatcher = serviceManager ~getServiceByContractlD
('@mozilla.org/lembedcomp/window-watcher;1')
windowWatcherlD)

27

windowWatcher ~setWindowCreator(windowCreator)

window = windowWatcher ~openWindow(.nil , targetUrl

winProps , .nil)
windowWatcher ~setActiveWindow(window)
appStartup ~run

mozilla ~shutdownXPCOM(.nil)
say 'Mozilla XPCOM embedding finished!

::requires BSF.cls

Code example 14: ooRexx — Creating window

4.6 o00Rexx Example 2 — CookieManager

This is another example of an ooRexx program that uses XPCOM functionality. It

builds on the previous example. This program implements an additional service of

'myWindow'

cookies management and shows, how we can read the cookies, get their properties

and delete them.

To be able to work with cookies, we need to implement following interfaces:

nslCookieManager and nslCookie . So we need to import the respective Java

interface classes. After XPCOM gets initialized, we can retrieve the interface IDs and

get the service of the Cookie Manager.

bsf ~bsf.import(‘org.mozilla.interfaces.nslCookieManager

‘cookieManager’)

bsf ~bsf.import(‘org.mozilla.interfaces.nslCookie' ‘cookie')
cookieManagerID = .bsf ~bsf.getStaticValue(.nslCookieManager ,
'NS_ICOOKIEMANAGER_IID")
cookieManager = serviceManager ~getServiceByContractlD
('@mozilla.org/cookiemanager;1’ , cookieManagerlD)
cookielD =
.bsf ~bsf.getStaticValue(.nslCookie ,'NS_ICOOKIE_IID")

Code example 15: CookieManager — Getting the cookie ~ management service

28

Now we can call enumerator through each cookie in the cookie list. The enumerated
objects are of type nsiCookie . We create a loop and iterate over all elements, for
which we dynamically get the nsiCookie interface in order to be able to read their
properties. The second loop is intended to check, whether the removeAll method
has deleted all cookies from the list. If the hasMoreElements variable is false, it

means all cookies were deleted.

iter = cookieManager -~getEnumerator
do whil e iter ~hasMoreElements
cookies =iter ~getNext
cookie =cookies ~querylnterface(cookielD)
say cookie ~getName
say "" cookie ~getHost
end

cookieManager ~removeAll

iter2 = cookieManager ~enumerator
i f iter2 ~hasMoreElements then
say 'Cookies not deleted' el se

say 'All cookies deleted'

Code example 16: CookieManager — Enumerator

29

Conclusion

This paper was aimed at introducing the XPCOM technology, its language bindings
and the possibilities to access its web browsing services from Java. It is the open
source feature of this framework and the possibility to freely use, modify and further
develop the code base that enabled many developers around the globe to create a
large number of extensions and thus enhancing the functionality Firefox already
provides. This is one of the reasons, why it is the second most common used web

browser and its market share constantly increases.

We have learned that XPCOM provides numerous language bindings including Java.
JavaXPCOM allows any Java application to access and create XPCOM components.
With the help of few examples it was presented how to make use of some specific
services. Moreover, we have learned that there is even simpler way to use this
functionality with a scripting language called ooRexx. With the bean scripting
framework it represents an easy-to-use tool to control Java and XPCOM via
JavaxXPCOM.

30

Literature

[BMSh10] Browser Market Share Net Appliocations:

http://marketshare.hitslink.com/browser-market-

share.aspx?qprid=0&gptimeframe=M&qgpsp=138&gpnp=1. Last visited on 15 June
2010.

[FlatO3] Flatscher Rony G.: “The Augsburg Version of BSF400Rexx".

http://wi.wu-wien.ac.at/rgf/rexx/orx14/orx14 bsf4rexx-av.pdf. Last visited on 23 June.

[FlatO4] Flatscher Rony G.: “Camouflaging Java as Object REXX”. http://wi.wu-

wien.ac.at/rgf/rexx/orx15/2004 orx15 bsf-orx-layer.pdf. Last visited on 23 June.

[GeDC10] Mozilla Wiki: Gecko:DeCOMtamination:
https://wiki.mozilla.org/Gecko:DeCOMtamination. Last visited on 26 March 2010.

[INXPO1] XPCOM Part 1: An Introduction to XPCOM:
http://www.ibm.com/developerworks/webservices/library/co-xpcom.html. Last visited
on 26 March 2010.

[JBSF10] Jakarta BSF FAQ — What is Bean Scripting Framework:
http://jakarta.apache.org/bsf/faq.html#what-is-bsf. Last visited on 23 June 2010.

[LaBi09] MDC - Language Bindings:
https://developer.mozilla.org/en/XPCOM/Language_Bindings. Last visited on 19 April
2010.

31

[Mits10] Mitschek Andreas: Scripting Mozilla Applications with XPCOM and

XUL. http://wi.wu-
wien.ac.at:8002/rgf/diplomarbeiten/BakkStuff/2010/201007 Mitschek/Mitschek Bakk

alaureatsarbeit XPCOM XUL-final-20100706.pdf. Last visited on 14 July 2010.

[MoPI10] MDC - Places: https://developer.mozilla.org/en/Places. Last visited on
14 June 2010.

[OORe09] Open Object Rexx — About Open Object Rexx:

http://www.oorexx.org/about.html. Last visited on 23 June 2010.

[OvXP09] MDC - Overview of XPCOM:
https://developer.mozilla.org/En/Creating XPCOM Components/An Overview of X
PCOM. Last visited on 26 March 2010.

[RMUF10] mozillaZine: Reducing memory usage — Firefox:

http://kb.mozillazine.org/Memory Leak. Last visited on 26 June

[SuXP01l] XPCOM Part 3: Setting up XPCOM:
http://www.ibm.com/developerworks/webservices/library/co-xpcom3.html. Last visited
on 26 March 2010.

[XPCBO01] XPCOM Part 2: XPCOM component basics:
http://www.ibm.com/developerworks/webservices/library/co-xpcom2.html. Last visited
on 26 March 2010.

32

List of Code Examples

Code example 1: Sample interface ..o 9

Code example 2: Base interface nsISupport in a simplified IDL 11
Code example 3: JavaXPCOM — Classes iIMportcovciiiiiiiiiiinine e ennns 16
Code example 4. JavaXPCOM — Mozilla initializationcccoooiiiiiinnnn. 17
Code example 5: JavaXPCOM — Getting SErviCesocovvvveviineineennen.... 18
Code example 6: JavaXPCOM — Creating windowcccvvviveeeneinninnnnnn. 19
Code example 7: BookmarksManager — Getting bookmarks service 20
Code example 8: BookmarksManager — Creating a folder and a bookmark 21
Code example 9: SaveToFile — Getting SEIVICESccvviiiiiiiiiiiici i e 22
Code example 10: SaveToFile — Save URIto afileoooiiiiiiiinn 22
Code example 11: coRexx — Classes IMPOrtc.oviviivieiiiiicre e e e e, 26
Code example 12: ooRexx — Setting the GRE path and initializing Mozilla 26
Code example 13: ooRexx — Retrieving propertiesc.ccveieiieiininienienennn. 27
Code example 14: ooRexx — Creating WINAOWccovviiiiiiniiiiiiiiiieenanen, 27

Code example 15: CookieManager — Getting the cookie management service... 28

Code example 16: CookieManager — Enumeratorccoooieiieiieve e enn . 29

33

Appendix

In the Appendix are listed all examples that were presented in the paper. Whereas in
the paper only important fragments were used, here are the examples complete.

1. Example: WindowCreator.java

import java.io.*;

import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nslAppStartup;
import org.mozilla.interfaces.nsIDOMWindow;
import org.mozilla.interfaces.nsIServiceManager;
import org.mozilla.interfaces.nsIWindowCreator;
import org.mozilla.interfaces.nsIWindowWatcher;

public class WindowCreator {
/* main() embeds XPCOM environment and opens an URL in a DOMWindow */

public static voi d main(String [Jargs) t hr ows Exception {

String targetURL = "http://www.wu.ac.at" ;

GREVersionRange[] range = new GREVersionRange[1];

range[0]= new GREVersionRange("1.8" , true , "1.9+" |, ftrue);

File grePath = null ;

/* get a Mozilla class instance and the path to the Gecko Runtime
Environment (GRE) */

try {
grePath = Mozilla.getGREPathWithProperties(range, null);

}

cat ch (FileNotFoundException e) { }

i f (grePath == null) {

System.out.printin("found no GRE PATH");

return,;

}

System.out.printin("GRE PATH ="+ grePath.getPath());
Mozilla mozilla = Mozilla.getinstance();

/** try embedding the XPCOM environment using the GRE p ath */
try {

mozilla.initialize(grePath);

mozilla.initXPCOM(grePath, null);

cat ch (lllegalArgumentException e) {
System.out.printin("no javaxpcom.jar found in given path");
return,;

}
cat ch (Throwable t) {

System.out.printin("initXPCOM failed");
t.printStackTrace();

return,;

}

/** XPCOM is successfully embedded */
System.out.printin(“\n --> initialized \n");
try {

/I To get access to interfaces we get an instance o f the XPCOM service
manager

nslServiceManager serviceManager = mozilla.getServi ceManager();

/I Use contract ID (@mozilla.org/toolkit/app-startu p;1) and IID to get

startup application nslAppStartup

nslAppStartup appStartup = (nslAppStartup)serviceMa nager
.getServiceByContractID("@mozilla.org/toolkit/app-startup;1" ,
nslAppStartup.NS_IAPPSTARTUP_IID);

/I Get the nslWindowCreator interface through appSt artup

nsiWindowCreator windowCreator = (nsIWindowCreator) appStartup
.queryinterface(nsIWindowCreator.NS_IWINDOWCREATOR _ 1ID);

/I Get the nslWindowWatcher interface

nsiWindowWatcher windowWatcher = (nslwWindowWatcher) serviceManager
.getServiceByContractID("@mozilla.org/embedcomp/window-watcher;1" ,

nsiWindowWatcher.NS_IWINDOWWATCHER_IID);
/I Set the window creator
windowWatcher.setWindowCreator(windowCreator);
/I Create the DOMWindow with the supplied URL
nsIDOMWindow win = windowWatcher.openWindow(null , targetURL, "mywindow" ,
"chrome,resizable,centerscreen” , null);
/l DOMWindow win is active window
windowWatcher.setActiveWindow(win);
/I Start the XPCOM startup application
appStartup.run();
}

cat ch (XPCOMException €) { e.printStackTrace(); }
/I shut down XPCOM embedding
mozilla.shutdownXPCOM(null);

}
}

2. Example: BookmarksManager.java

import java.io.*;

import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nsIServiceManager;
import org.mozilla.interfaces.nsINavBookmarksService;
import org.mozilla.interfaces.nsllOService;

import org.mozilla.interfaces.nslURI;

public cl ass BookmarksManager {

public static voi d main(String [Jargs) t hr ows Exception {
GREVersionRange[] range = new GREVersionRange[1];

range[0]= new GREVersionRange("1.8" , true , "1.9+" | ftrue);
File grePath = null ;

/** get a Mozilla class instance and the path to the Ge cko Runtime
Environment (GRE) */

try {

grePath = Mozilla.getGREPathWithProperties(range, null);
cat ch (FileNotFoundException e) { }

i f (grePath == null) {

System.out.printin("found no GRE PATH");

35

return,;

}

System.out.printin("GRE PATH =" + grePath.getPath());
LocationProvider locProvider = new LocationProvider(grePath);
Mozilla mozilla = Mozilla.getInstance();

/** try embedding the XPCOM environment using the GRE p ath */
try {

mozilla.initialize(grePath);
mozilla.initXPCOM(grePath, locProvider);

cat ch (lllegalArgumentException €) {
System.out.printin("no javaxpcom.jar found in given path");
return;

cat ch (Throwable t) {

System.out.printin("InitXPCOM failed");
t.printStackTrace();
return;
}
/** XPCOM is successfully embedded */
System.out.printin("\n --> initialized \n");
try {
/I To get access to interfaces we get an instance o f the XPCOM service
manager
nslServiceManager serviceManager = mozilla.getServi ceManager();
/I Get the bookmarks service
nsINavBookmarksService bms = nsINavBookmarksService)serviceManager.
getServiceByContractID("@mozilla.org/browser/nav-bookmarks-
service;1" , nsINavBookmarksService.NS_INAVBOOKMARKSSERVICE_I D);
/I Get the 10 service
nsllOService ios = (nsllOService)serviceManager.get ServiceByContractID
("mozilla.org/network/io-service;1" , hsllOService.NS_IIOSERVICE_IID);

/I Create a bookmark folder

| ong menuFolder = bms.getBookmarksMenuFolder();

| ong newFolderID = bms.createFolder(menuFolder, "search engine" ,
bms.DEFAULT_INDEX);

/I Create URI object

nsIURI uri = ios.newURI("http://google.com/" , null , null);

/I Check whether an URL is already bookmarked and a dd it to the bookmarks
i f (bms.isBookmarked(uri)) {

System.out.printin(uri.getPrePath() + " has been bookmarked");

} else{

bms.insertBookmark(newFolderID, uri, bms.DEFAULT _IN DEX, "Google");

}

}

cat ch (XPCOMException €) { e.printStackTrace(); }
/I shut down XPCOM embedding
mozilla.shutdownXPCOM(null);
System.out.printin("“finished");

}
}

36

3. Example: SaveToFile.java

import java.io.*;

import org.mozilla.xpcom.*;

import org.mozilla.interfaces.nslAppStartup;

import org.mozilla.interfaces.nsllOService;

import org.mozilla.interfaces.nsIServiceManager;
import org.mozilla.interfaces.nslWebBrowserPersist;
import org.mozilla.interfaces.nslLocalFile;

import org.mozilla.interfaces.nslURI;

public class SaveToFile {

public static voi d main(String [Jargs) t hr ows Exception {
GREVersionRange[] range = new GREVersionRange[1];

range[0]= new GREVersionRange("1.8" , true , "1.9+" | true);
File grePath = null ;

try {

grePath = Mozilla.getGREPathWithProperties(range, null);

}

cat ch (FileNotFoundException e) { }

i f (grePath == null) {

System.out.printin("found no GRE PATH");

return,;

}

System.out.printin("GRE PATH =" + grePath.getPath());
LocationProvider locProvider = new LocationProvider(grePath);
Mozilla mozilla = Mozilla.getlnstance();

/** try embedding the XPCOM environment using the GRE p ath */
try {

mozilla.initialize(grePath);
mozilla.initXPCOM(grePath, locProvider);

cat ch (lllegalArgumentException e) {
System.out.printin("no javaxpcom.jar found in given path");
return;

}

cat ch (Throwable t) {

System.out.printin("InitXPCOM failed");
t.printStackTrace();

return;

}

[** XPCOM is successfully embedded */

System.out.printin("\n --> initialized \n");

try {

/I To get access to interfaces we get an instance o f the XPCOM service

manager

nslServiceManager serviceManager = mozilla.getServi ceManager();

/I create a persist

nslWebBrowserPersist persist = (nsIWebBrowserPersis t)
serviceManager.getServiceByContractID
("@mozilla.org/embedding/browser/nsWebBrowserPersist 1"
nslWebBrowserPersist. NS _IWEBBROWSERPERSIST _IID);

/l do the save

nsllOService ios = (nsllOService)serviceManager.get ServiceByContractID
("mozilla.org/network/io-service;1" , hsllOService.NS_IIOSERVICE_IID);
nslLocalFile file = (nslLocalFile)serviceManager.ge tServiceByContractID

37

("@mozilla.org/file/local;1" , hslLocalFile.NS_ILOCALFILE_IID);

nslURI uri = ios.newURI("http://google.com/" , null , null);
file.initWithPath("C:/newFile.html");
persist.saveURI(uri, null , null , null , ™ file);

}

cat ch (XPCOMException e) { e.printStackTrace(); }
/I shut down XPCOM embedding
mozilla.shutdownXPCOM(null);
System.out.printin("finished");

}

}

4. Example: WindowCreator.rex

.bsf ~bsf.import('java.io.File' , 'File')

.bsf ~bsf.import(‘org.mozilla.xpcom.Mozilla' , 'Mozilla’)

.bsf ~bsf.import(‘org.mozilla.xpcom.GREVersionRange' , 'GREVersionRange')
.bsf ~bsf.import(‘org.mozilla.interfaces.nslAppStartup’ , 'nslAppStartup’)
.bsf ~bsf.import('org.mozilla.interfaces.nsIDOMWindow"' , 'nsIDOMWindow")

.bsf~bsf.import('org.mozilla.interfaces.nslServiceManager','nsIServiceManager")
.bsf~bsf.import(‘'org.mozilla.interfaces.nslWindowCreator','nsIWindowCreator")
.bsf~bsf.import('org.mozilla.interfaces.nsiWindowWatcher','nsIWindowWatcher")
/* Target URL to open (explicit or by BSF bean) */

targetUrl = .bsf ~bsf.lookupBean(‘'targetUrl’)

i f targetUrl = .nil then targetUrl = 'http://www.wsj.com'

/* Insert Path to your XULRunner installation direc tory, which contains the
JavaXPCOM library "javaxpcom.jar" */

grePathName = "C:\Program Files\xulrunner"

/* Initiate XPCOM embedding */
path = .System ~getProperty('GRE_PATH")
-- set grePathName manually (see first line)

if path = .nil then grePath = .File ~new(grePathName)
el se grePath = .File ~new(path)

say 'Gecko Runtime Engine path: ' grePath ~getPath
mozilla = .Mozilla ~getinstance

mozilla ~initialize(grePath)

mozilla ~initXPCOM(grePath , .nil)
say 'Mozilla XPCOM initialized!

/** Get the Service Manager (responsible for acquir ing XPCOM objects) */
serviceManager = mozilla ~getServiceManager
/** Retrieve necessary property values and XPCOM in terface 1IDs */
appStartuplD = .nslAppStartup ~NS_IAPPSTARTUP_IID
windowCreator|D = .nslWindowCreator ~NS_IWINDOWCREATOR_IID
windowWatcherlID = .bsf ~bsf.getStaticValue(.nslWindowWatcher
'NS_IWINDOWWATCHER_IID)
winProps = "width=1000, height=600, resizable, centerscreen,
scrollbars='yes', status="'yes"
/** Set up the application and load the new window with interface
nslWindowWatcher */
appStartup = serviceManager ~getServiceByContractID
('@mozilla.org/toolkit/app-startup;1' , appStartuplD)
windowCreator = appStartup ~querylnterface(windowCreatorlD)
windowWatcher = serviceManager ~getServiceByContractID

('@mozilla.org/embedcomp/window-watcher;1' , windowWatcherID)

windowWatcher ~setWindowCreator(windowCreator)

window = windowWatcher ~openWindow(.nil , targetUrl , 'myWindow' , winProps , .nil)
windowWatcher ~setActiveWindow(window)

appStartup ~run

[** Terminate XPCOM embedding */

mozilla ~shutdownXPCOM(.nil)

say 'Mozilla XPCOM embedding finished!

::requires BSF.cls --adds BSF supportto Java and ooRexx scripts

5. Example: CookieManager.rex

.bsf ~bsf.import('java.io.File' , 'File")

.bsf ~bsf.import('java.lang.System’ , 'System')

.bsf ~bsf.import(‘org.mozilla.xpcom.Mozilla' , 'Mozilla')

.bsf ~bsf.import(‘org.mozilla.xpcom.GREVersionRange' , 'GREVersionRange')
.bsf ~bsf.import('org.mozilla.interfaces.nslAppStartup’ , 'nslAppStartup’)
.bsf ~bsf.import(‘org.mozilla.interfaces.nsIDOMWindow"' , 'nsIDOMWindow")

.bsf~bsf.import(‘org.mozilla.interfaces.nslServiceManager','nsIServiceManager")
.bsf~bsf.import(‘org.mozilla.interfaces.nsiWindowCreator','nsIWindowCreator")
.bsf~bsf.import('org.mozilla.interfaces.nslWindowWatcher','nsIWindowWatcher")
.bsf~bsf.import('org.mozilla.interfaces.nslCookieManager','nsICookieManager’)
.bsf~bsf.import(‘'org.mozilla.interfaces.nslCookie','nsICookie")

/** Target URL to open (explicit or by BSF bean) */

targetUrl = .bsf ~bsf.lookupBean(‘targetUrl’)
i f targetUrl = .nil then targetUrl = 'http://www.derstandard.at'
grePathName = "C:\Program Files\xulrunner"

[** Initiate XPCOM embedding */
path = .System ~getProperty('GRE_PATH")

if path = .nil then grePath = .File ~new(grePathName)
el se grePath = .File ~new(path)

say 'Gecko Runtime Engine path: " grePath ~getPath
mozilla = .Mozilla ~getinstance

mozilla ~initialize(grePath)

mozilla ~initXPCOM(grePath , .nil)
say 'Mozilla XPCOM initialized"
/* Get the Service Manager */

serviceManager = mozilla ~getServiceManager
/* Retrieve necessary property values and XPCOM int erface IIDs */
appStartuplD = .bsf ~bsf.getStaticValue(.nslAppStartup ,
‘NS_IAPPSTARTUP_IID')
windowCreator|D = .bsf ~bsf.getStaticValue(.nslWindowCreator
'NS_IWINDOWCREATOR_IID")
windowWatcherlID = .bsf ~bsf.getStaticValue(.nslWindowWatcher
'NS_IWINDOWWATCHER_IID")
winProps = "width=1000, height=600, resizable, centerscreen,
scrollbars='yes', status="'yes"
/* Set up the application and load the new window w ith interface
nslWindowWatcher */
appStartup = serviceManager ~getServiceByContractID
('@mozilla.org/toolkit/app-startup;1' , appStartuplD)
windowCreator = appStartup ~querylnterface(windowCreatorlD)
windowWatcher = serviceManager ~getServiceByContractID
('@mozilla.org/embedcomp/window-watcher;1' , windowWatcherID)
windowWatcher ~setWindowCreator(windowCreator)
window = windowWatcher ~openWindow(.nil , targetUrl , 'URLOpener' , winProps , .nil)

39

windowWatcher ~setActiveWindow(window)
appStartup ~run

cookieManagerlID = .bsf ~bsf.getStaticValue(.nslCookieManager
‘NS_ICOOKIEMANAGER_IID")

cookieManager = serviceManager ~getServiceByContractlD
('@mozilla.org/cookiemanager;1’ , cookieManagerlD)

cookielD = .bsf ~bsf.getStaticValue(.nslCookie , 'NS_ICOOKIE_IID'

iter = cookieManager -~getEnumerator

do whil e iter ~hasMoreElements
cookies =iter ~getNext

cookie =cookies ~querylnterface(cookielD)
say cookie ~getName
say "" cookie ~getHost

end

cookieManager ~removeAll

iter2 = cookieManager -~enumerator
i f iter2 ~hasMoreElements then
say 'Cookies not deleted' el se

say 'All cookies deleted’

/** Terminate XPCOM embedding */

mozilla ~shutdownXPCOM(.nil)

say 'Mozilla XPCOM embedding finished!

;:requires BSF.cls --adds BSF support to Java and ooRexx scripts

6. LocationProvider.java

(LocationProvider is an implementation of nslAppFileLocProvider, which is used for

XPCOM initialization.)

import java.io.*;
import org.mozilla.xpcom.*;

public class LocationProvider i mpl enent s |AppFileLocProvider {

private final FilelibXULPath;
i nt counter = 0;
publ i ¢ LocationProvider(File grePath) {
t hi s.libXULPath = grePath;

}
publ i ¢ File getFile(String aProp, bool ean[] aPersistent) {
File file = null ;
i f (aProp.equals("GreD") || aProp.equals("GreComsD")) {

file = libXULPath;
i f (aProp.equals("GreComsD")) {

file = new File(file, "components");
}

el se if (aProp.equals("MozBinD") ||
aProp.equals("CurProcD")|
aProp.equals("ComsD") ||

)

aProp.equals("ProfD"))

{
file = libXULPath;
i f (aProp.equals("ComsD")) {

file = new File(file, "components");
}
} _
return file;

}
publ i c File[] getFiles(String aProp) {

File[] files = null ;
i f (aProp.equals("APluginsDL")) {
files = new File[1];
filesf] 0]= new File(libXULPath, "plugins”
return files;
}
}

41

