
Resurrecting REXX, Introducing Object
Rexx

Rony G. Flatscher (Rony.Flatscher@wu-wien.ac.at), Wirtschaftsuniversität Wien

Abstract: This paper introduces and characterizes the dynamic languages REXX
and Object Rexx in such a way that many of their notable concepts get described
and demonstrated with short nutshell examples. This way these concepts are made
available for reflection and can be discussed in depth at the workshop.

 1 Resurrecting REXX

This section introduces the programming language REXX' history and briefly its

main concepts.

 1.1 A Brief History of REXX

In 1979 IBM introduced the "Restructured Extended Executor" (REXX) language

interpreter, which was deliberately created by the English IBM employee Mike F.

Cowlishaw as a "human centric language" to replace eventually the then already

awkward EXEC II batch language for IBM mainframes. As such this typeless

language to this very day plays an incredible important role in controlling the

operation and maintenance of IBM mainframes. Over the course of time REXX

became the standard scripting language of operating systems like the Amiga OS or

later OS/2, which originally was planned by IBM and Microsoft to replace DOS and the

16-Bit Windows system.

In the 80'ies IBM implemented the "System Application Architecture" (SAA) in its

company, with the aim to standardize the creation of its software systems. E.g. The

SAA "Common User Access" (CUA) guidelines defined the function key 1 (F1) to be

assigned the semantics of being the help key.1 1987 IBM defined REXX to be the

strategic procedural (scripting) language for all of IBM's operating systems.

In the 80'ies the popularity of REXX in medium-sized and large companies induced

the creation of commercial versions of REXX, that allowed them a good living. In the

same timeframe free and opensource REXX interpreters like Regina or imc/Rexx were

1 Microsoft followed the SAA CUA guidelines for its Windows (graphical) user
interface. An updated version of IBM's SAA CUA later defined how users of object-
oriented systems should interact with objects on the user interface, which got
implemented in the OS/2 "Workplace Shell" (WPS) user interface at the end of the
80'ies. The WPS got implemented with IBM's object-oriented framework "System
Object Model" (SOM), so each object on the WPS was truly implemented as a WPS
object! Much of IBM's input to the Object Management Group's (OMG) Common
Request Broker Architecture (CORBA) standard stems from IBM's distributed SOM
(DSOM) design and implementation experiences.

Rony G. Flatscher (2006-05-22 16:13) 1 "Resurrecting REXX, Introducing Object Rexx"

created and made available to the public. After a few years of work, which gathered

many of the REXX interpreter authors, the REXX language got standardized by the

American National Standards Institute (ANSI), the 'ANSI "Programming Language -

REXX", X3.274-1996'.

The decimal arithmetics2 of REXX as defined in the ANSI REXX standard was used

in the 2000'ies to create compliant extensions to programming languages like Java

or Eiffel, with plans to create commercial processors which would implement

decimal arithmetics.

 1.2 A Very Brief Introduction to REXX

The REXX language is case-insensitive3 and possesses only a string datatype, where

the length of the string is only confined by the addressable memory available to the

process. Variables need not be defined, nor do they have to have an explicit value

assigned to it4. If the string contains a sequence of characters that can be

interpreted by humans as a valid decimal number, then it is possible to carry out

decimal arithmetics with it, using a default of nine digits in the operation.
say "Hello world!" /* yields: Hello world! */
say 1/3 /* yields: 0.333333333 */

numeric digits 25 /* now use 25 significant digits in arithmetics */
say "1"/3 /* yields: 0.3333333333333333333333333 */

"rm -rf *" /* remove all files recursively */

Code 1: A Simple, Yet Interesting REXX Program

Literal string values representing a decimal number need not to be enquoted (REXX

would do that automatically). Each REXX statements ends with a semi-colon (;), and

if it is missing then REXX implies a semi-colon at the end of the line.

Should there be a REXX statement that is unknown to REXX (as the last statement

in Code 1 above), then REXX will pass the statement's string to the program that had

started REXX, which usually is the command shell. In the case of a Unix shell or a

Windows system with the Cygwin-utils installed, the last statement in the REXX

2 Before REXX became an official IBM product that customers could order and get
support for, a beta version was deployed among selected customers, one being the
Stanford Linear Accelerator Center (SLAC). At SLAC the language design itself was
perceived positively, especially a particular feature which served them well in their
calculational needs: REXX has been able to carry out decimal arithmetics with an
arbitrary amount of digits. It has been noted that for these particular features SLAC
has approached IBM and persuaded it to release REXX as a commercial product. So
its first application was a mathematical one.

3 Actually, a REXX interpreter will uppercase all symbols, which are not enclosed in
double or single quotes. Multiple blanks between symbols will be reduced to one.

4 If using a variable without an explicit assigned value, then REXX will use the
(uppercased) name of the variable as the (string) value instead.

Rony G. Flatscher (2006-05-22 16:13) 2 "Resurrecting REXX, Introducing Object Rexx"

program will cause the deletion of all files and directories from the current

directory! In the IBM mainframe world this standard behaviour of REXX has been

used e.g. for creating macros for programming editors in REXX where the REXX

coders just pass the editor's commands verbatimely to the editor that invoked the

REXX editor macro.

In addition in REXX it is possible to define procedures and functions, invoke other

Rexx programs as procedures/functions and invoke "external REXX functions" that

are implemented in assembler, C, C++ or the like, allowing to extend its

functionality quite considerably.

As there are no explicit datatypes (other than string) in REXX there is also no array

(or any other collection-like) datatype. Still, by introducing a particular convention

in naming variables, it is possible to get at the effects of associative arrays: if a

variable name contains a dot5, everything after the dot can be regarded to be a

string "index" and the sequence of characters up to and including the first dot is

called a stem. The character sequence after the first dot is named tail.

The strings delimited by dots in a variable name are regarded as variables by REXX,

hence a program like the one in Code 2 can be used to represent an array type

where the "0-element" indicates how many entries are available, that start with an

index starting with the decimal number "1".

file.1='max.txt' /* variable "FILE.1" is assigned a value */
file.2="pia.txt" /* variable "FILE.2" is assigned a value */
file.0=2 /* variable "FILE.0" is assigned a value */

do i=1 to file.0 /* will loop twice with control variable "I" */
 say file.i /* "I" will be substituted with "1" and "2" */
end
/* yields the following output:
 max.txt
 pia.txt
*/

Code 2: Using a Stem Variable as an Integer-indexed Array.

To use decimal numbers as integers indices is just a convention to mimickry an

integer array. In effect any string value can be used as a value after a dot, as can be

seen from Code 3.
Austria.Tirol=500000 /* population of Tirol */
austria.tirol.innsbruck=120000 /* population of the city Innsbruck */

a="TIROL.INNSBRUCK" /* define the tail value */
say Austria.a /* displays: 120000 */

5 In REXX a symbol may be constructed by alphanumerical characters, the exclamation
mark, the question mark, the underline character and the dot. A REXX variable is a
symbol that must start with a letter, exclamation mark, question mark or underline
character, and may be followed by all characters that are valid for a REXX symbol.

Rony G. Flatscher (2006-05-22 16:13) 3 "Resurrecting REXX, Introducing Object Rexx"

a="TIROL"; b='INNSBRUCK'; /* define "index" values */
say austria.a.b /* displays: 120000 */

say AusTriA.TiRoL.InnsBruck /* displays: 120000 */

Code 3: Using a Stem Variable as an Associative Array.

 2 Introducing Object Rexx

Object REXX6 was originally created by IBM. It possesses an object model which is

strongly influenced by Smalltalk (including metaclasses) and also by successive OO-

developments (e.g. multiple inheritance). Object REXX, like its predecessor REXX is

implemented as an interpreter.

 2.1 A Brief History of Object Rexx

Large companies that have had REXX in operation because of using IBM

mainframes for their business administration needs started to embrace the IBM

OS/2 operating system for their Personal Computer (PC) needs at the end of the

80'ies. IBM's "extended edition" of OS/2, which contained IBM communication

software, a relational database and more, also included REXX as the SAA procedural

language. In that timeframe a huge object-oriented wave in the market place caused

IBM to deploy [D]SOM and even a fully object-oriented user interface (Workplace

Shell, WPS) which itself was implemented with the SOM framework.

In 1988 a group of English IBM engineers started work on creating an object-

oriented version of REXX. Preliminary results were presented at different IBM user

groups for discussion, among them the influential special interest group (SIG) named

SHARE, which organizes the large IBM customers. The SHARE SIG was in favor of a

true object-oriented version of REXX, but strongly requested that it should be

backwardly compatible with REXX, such that no developed REXX programs in those

large companies would need to be rewritten. It took almost nine years from the

inception of the first project team, a couple of experimental designs and

implementations, until a commercial version of what became known as "Object

REXX" was made available as a product as part of "OS/2 Warp" in 19977.

Being a fully object-oriented implementation Object REXX internally works object-

oriented and follows the notion of Smalltalk, that "everything is an object".

6 Here "REXX" in capital letters refers to the IBM version(s), "Rexx" in mixed case to
versions that are from different vendors or that are available in opensource form.

7 Originally IBM's work on an object-oriented version of REXX was conducted in
England under the lead of Simon Nash, then the project was transferred to the United
States where finally a design and implementation under the lead of Rick McGuire
succeeded.

Rony G. Flatscher (2006-05-22 16:13) 4 "Resurrecting REXX, Introducing Object Rexx"

Incarnating on the OS/2 operating system that was loaded with object-oriented

infrastructures and had the [D]SOM framework available, this initial OS/2 version of

Object REXX was fully intergrated with [D]SOM. Therefore it became possible to

send Object REXX messages to WPS objects, like folders, files, fonts, devices, etc. It

was even possible to create an Object REXX class that specialized a WPS folder

(implemented in C++) that for instance would add password protection in a few

lines of code (approximately 50 lines of code!). Unfortunately, Object REXX shared

the fate of OS/2, which started to fade when IBM lost its "deskop battle" to

Microsoft, after having ended the year long co-operation at the beginning of the

90'ies.

Independent of the OS/2 implementation, IBM created a commercial version of

Objet REXX for AIX and Windows. Especially the Windows version generated

notable income for IBM's PC software segment as all the large customers that had

to migrate from OS/2 to Windows needed a Windows based REXX interpreter in

order to take the numerous REXX programs into the new environment, being able to

run them unchanged. At the end of the beginning of the new millenium

experimental ports to Linux and Solaris were created at IBM.

Finally, in 2004 the non-profit-oriented, international SIG "Rexx Language

Association" [RexxLA] and IBM entered into talks about receiving the IBM source

code of Object REXX and making it available under RexxLA's responsibility as

opensource software, maintain and develop it further. The introduction of "Open

Object Rexx" [ooRexx] took place at RexxLA's 2005 International Rexx Symposium

which took place in Los Angeles. Among the core opensource development team one

can find the original father of Object REXX, Rick McGuire, who has taken on the

(technical) lead role again in furthering the development of ooRexx.

 2.2 A Very Brief Introduction to Object Rexx

Object REXX, a.k.a. ooRexx was created after the IBM researchers studied many

object-oriented programming languages, most notably Smalltak and to a lesser

extent C++ (in which the ooRexx interpreter itself is implemented).

ooRexx allows defining (meta-)classes, using reflection, creating one-off objects,

mandating the use of explicit message operators for sending messages to objects,

that look for methods by the name of the received message, as well as creating

"floating"8 methods and employing a runtime environment that is realized as a stack

8 "Floating" methods are not associated with a specific class and create an own scope
for sharing attributes ("object variables"). They can be easily created by defining
them before the first class gets defined in a program. The environment symbol
.methods is used to get access to such methods.

Rony G. Flatscher (2006-05-22 16:13) 5 "Resurrecting REXX, Introducing Object Rexx"

of at least four9 directory objects being looked up on behalf of ooRexx programs, as

well as being able to execute objects in a multithreaded manner. ooRexx comes with

a relatively small (but quite well thought of) set of classes organized in a very flat

classification tree. Table 1 depicts all classes that are installed with ooRexx.

Class Name Comment

Object Root class, fundamental

Alarm Send message asynchroneously

Array Collection class, no predefinition of size or dimension
necessary, ordered

Class Metaclass, fundamental

Directory Collection class, index is a string, one object per
index, no order implied

List Collection class, ordered

Message Fundamental class

Method Fundamental class

Monitor Monitors messages sent to objects

MutableBuffer Comparable to Java's StringBuffer

Queue Collection class, ordered

Relation Collection class, index is any object, multiple objects
per index possible, no order implied

Bag Index and associated object are the same object

Stem Represents "classic Rexx" stems

Stream Stream (e.g. file) input/output

String Object's string values are not mutable

Supplier Iterator for collection classes

Table Collection class, index is any object, one object per
index, no order implied

Set Index and associated object are the same object

Table 1: Object Rexx Classification Tree (Indented Classes Are Subclasses).

The program depicted in Code 4 contains two Rexx statements, one using the Rexx

built-in function "reverse", and one that employs a message with the name "reverse"

instead.
say reverse("aloha") /* the reverse function returns: ahola */
say "aloha"~reverse /* the reverse message returns: ahola */

Code 4: Using a Message to Invoke a Method with the help of the Receiving Object.

9 For each program an anonymous directory object is created that maintains important
definitions for the runtime like public classes or routines, for each session a named
directory object (.local) is created that contains e.g. the stream objects representing
the standard files stdin, stdout and stderr, in addition a named directory object
(.environment) that contains all of the ooRexx classes, and an anonymous directory
object for the runtime environment to store additional runtime information.

Rony G. Flatscher (2006-05-22 16:13) 6 "Resurrecting REXX, Introducing Object Rexx"

As can be seen from Code 4 ooRexx mandates the use of an explicit message

operator, the tilde character: ~.10 Left of the message operator is the object to which

the message is sent to, right of it is the name of the message to be sent. If the

message carries arguments, then the message name is immediately followed by

round parenthesis in which the (list of) argument(s) is given.

Conceptually, the object receives the message and looks for a method by the same

name, starting out in the class from which the object got instantiated, searching

through all superclasses until the root class Object is reached. The first found

method will be invoked by the object that received the message (returning the

result, if one was created by the method). If a method by the same name as the

received message cannot be found by the object, then the program is stopped with

the (Smalltalk-like) error message: "object cannot understand message".11

Both statements in Code 4 yield the same result. As a matter of fact, the ooRexx

interpreter will internally reformulate the first ("classic Rexx") statement to its

object-oriented form as shown in the second statement, so both statements actually

invoke the same ooRexx string method named "reverse", returning a new string

object that has the characters in reverse order to the receiving string object.
.Dog ~new("Sweety") ~bark /* create a dog, let it bark */
.BigDog~new("Grobian")~bark /* create a big dog, let it bark */

::class Dog
::method init /* constructor method */
 expose name /* establish direct access to attribute (object variable) */
 use arg name /* retrieve argument, assign it to attribute */
::method name attribute /* define set and get attribute methods */
::method bark
 say self~name":" "Wuff Wuff"

::class BigDog subclass Dog
::method bark
 say self~Name":" "WUFFF! WUFFF!! WUFFF!!!"

/* yields the following output:
 Sweety: Wuff Wuff
 Grobian: WUFFF! WUFFF!! WUFFF!!!
*/

Code 5: Creating and Instantiating Different Kind of Dogs.

The Object Rexx program in Code 5 uses directives (led in by two consecutive colons:

::) to define classes and its methods. Directives instruct the ooRexx interpreter to

carry them out, before the program starts executing at line number one. This way it

10 In ooRexx the message operator is called "twiddle".
11 ooRexx has the following UNKNOWN mechanism built in: if an object cannot find a

method by the name of the received message, but it found a method UNKNOWN while
searching through the classes, then it will invoke that method, which will receive as
its first argument the name of the unknown message and an array object as its second
argument containing the arguments supplied (sent) with the message, if any.

Rony G. Flatscher (2006-05-22 16:13) 7 "Resurrecting REXX, Introducing Object Rexx"

is assured that before a program starts, all needed resources are made available by

the interpreter. In this case the directives command the interpreter to create class

and method objects, and then assign the method objects to the class objects. In

ooRexx a method named init serves as the constructor12 method that gets invoked

at creation time; whatever arguments one passes to the new method gets passed on

to the constructor.

The BigDog class specializes the class Dog and re-implements (overrides) the method

bark, as clearly :-) big dogs bark differently from normal dogs. The program will

create first an instance of a normal dog supplying the name which gets processed in

the constructor method init and then is sent the message bark, then repeating this

sequence of messages with the BigDog class.

Object Rexx allows for multiple inheritance as well, as the probably self-explaining

program in Code 6 illustrates.
/* Multiple Inheritance */
.RoadVehicle ~new("Truck") ~drive
.WaterVehicle ~new("Boat") ~swim
.AmphibianVehicle~new("SwimCar")~show_off

::CLASS Vehicle /* define the vehicle base class */
::METHOD name ATTRIBUTE /* let interpreter define a getter and setter method */
::METHOD init /* define constructor method */
 self~name=ARG(1) /* use the setter method to set the attribute's value */

::CLASS RoadVehicle MIXINCLASS Vehicle
::METHOD drive /* define a road vehicle method */
 SAY self~name": 'I drive now...'" /* use the attribute getter method */

::CLASS WaterVehicle MIXINCLASS Vehicle
::METHOD swim /* define a water vehicle method */
 SAY self~name": 'I swim now...'" /* use the attribute getter method */

::CLASS AmphibianVehicle SUBCLASS RoadVehicle INHERIT WaterVehicle
::METHOD show_off /* demonstrate multiple (implementation) inheritance */
 self ~~drive ~~swim /* using cascading messages (two twiddles) */

/* yields the following output:
 Truck: 'I drive now...'
 Boat: 'I swim now...'
 SwimCar: 'I drive now...'
 SwimCar: 'I swim now...'
*/

Code 6: Multiple (Implementation!) Inheritance.

The class Vehicle serves as the base class, its subclasses RoadVehicle and

WaterVehicle serve as mixinclasses. The AmphibianVehicle specializes at the same

time RoadVehicle and WaterVehicle (in exactly that order which will be used for

method resolution). The method show_off demonstrates the usage of cascading

12 ooRexx also possesses a destructor method which is simply named uninit.
Rony G. Flatscher (2006-05-22 16:13) 8 "Resurrecting REXX, Introducing Object Rexx"

messages represented by two consecutive twiddles, indicating that both messages

are directed at the same object, referred to by self, which references the object that

conceptually invoked the method.

Due to place constraints the last three examples only demonstrate how a dynamic

language like ooRexx can address totally different environments as if they were

actually ooRexx environments, ie. ooRexx objects to which one can send (untyped!)

ooRexx messages: a Windows COM/OLE/ActiveX component (the Internet Explorer)

in Code 7 and a Java environment (the program runs unchanged on Linux and

Windows!) in Code 8.13

call orexxole.cls /* get the COM/OLE/ActiveX support */
 /* create an instance (a proxy) of the InternetExplorer */
myIE = .OLEObject~New("InternetExplorer.Application")

myIE~Width = 1024 /* set the width in pixels */
myIE~Height = 768 /* set the height in pixels */
myIE~Visible = .True /* now show the window */
myIE~Navigate("http://www.ooRexx.org")

say "sleeping 15 seconds..."
Call SysSleep 15
myIE~quit /* now close the Internet Explorer */

Code 7: Remote-controlling the Microsoft InternetExplorer on Windows.

call bsf.cls /* get the Java support */
s=.bsf~bsf.import("java.lang.System") /* import the Java System class */
say "java.version:" s~getProperty('java.version')

/* yields the following output (maybe):
 java.version: 1.5.0_06
*/

Code 8: Using Java Objects as If they Were ooRexx Objects.

A last, maybe impressive example as it uses Sun's StarOffice/OpenOffice to remote-

control its word processor component (mostly implemented with C++ components)

from ooRexx. Code 9 can be run unchanged on Linux and Windows.

call uno.cls /* get the UNO (StarOffice/OpenOffice, OOo) support */
oDesktop=UNO.createDesktop() /* get OOo desktop service object */
xComponentLoader=oDesktop~XDesktop~XComponentLoader
 /* open the blank *.sxw – file */
url = "private:factory/swriter" /* define the document URL */
 /* the following statement spans two lines */
xWriterComponent=xComponentLoader~loadComponentFromURL(url,"_blank", 0, -
 .UNO~noProps)
xText=xWriterComponent~XTextDocument~getText -- get the OOo text object
xText~setString("Hello World, this is ooRexx speaking!") /* insert text */

Code 9: Remote-controlling StarOffice/OpenOffice in a Platform Independent Manner.14

13 In all of these cases the ooRexx UNKNOWN mechanism is put to work to make it
relatively easy to address alien/foreign environment from ooRexx in a very easy
manner.

14 If a statement needs to be split into more than one line, one can use a trailing dash or
comma character to indicate to Rexx that the statement will be continued.

Rony G. Flatscher (2006-05-22 16:13) 9 "Resurrecting REXX, Introducing Object Rexx"

http://www.ooRexx.org/

 3 Summary

This paper attempted, according to the workshop's theme, to introduce two dynamic

languages "for revival" that offer very interesting concepts and an interesting power

to many real-world applications: Rexx and its object-oriented successor Object Rexx

a.k.a. ooRexx. Although not widely known (anymore in the case of Rexx, not at all in

the case of ooRexx), both languages - due to their implemented concepts - allow

solving many very different use cases and varying problems efficiently.

One application area of such dynamic languages is clearly the scripting, remote-

controlling of operating systems and applications that are or may be implemented in

statically typed languages. The potential of the dynamic languages and possibilities

of innovative applications are very high. It is likely that other dynamic languages

could take advantage of some of the proved and innovative Rexx and ooRexx

concepts.

 4 References

[Cow90] Cowlishaw, M.F.: "The REXX Language", Prentice-Hall (Second edition),

1990.

[Flat04] Flatscher R.G.: "Camouflaging Java as Object REXX", in: Proceedings of

the „2004 International Rexx Symposium“, Böblingen, Germany, May 3rd

- May 6th, 2004.

[Flat05] Flatscher R.G.: "Automating OpenOffice with ooRexx: ooRexx Nutshell

Examples for Write and Calc", in: Proceedings of the „The 2005 Interna-

tional Rexx Symposium“, Los Angeles, California, U.S.A., April 17th -

April 21st, 2005.

[Fos05] Fosdick H.: "Rexx Programmer’s Reference", John Wiley & Sons, ISBN: 0-

7645-7996-7, URL (as of 2006-04-01):

http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764579967.html

[cetRexx] URL (as of 2006-04-01): http://www.cetus-links.org/oo_rexx.html

[ooRexx] URL (as of 2006-04-01): http://www.ooRexx.org

[Rexx] URL (as of 2006-04-01): http://www.Rexx.org

[RexxInfo]URL (as of 2006-04-01): http://www.RexxInfo.org/

[RexxLA] URL (as of 2006-04-01): http://www.RexxLA.org

[VeTrUr] Veneskey G.L., Trosky W., Urbaniak J.J.: "Object Rexx by Example", Aviar. URL

(as of 2006-04-01): http://www.oops-web.com/orxbyex/

Rony G. Flatscher (2006-05-22 16:13) 10 "Resurrecting REXX, Introducing Object Rexx"

http://www.RexxLA.org/
http://www.ooRexx.org/
http://www.ooRexx.org/

	 1 Resurrecting REXX
	 1.1 A Brief History of REXX
	 1.2 A Very Brief Introduction to REXX

	 2 Introducing Object Rexx
	 2.1 A Brief History of Object Rexx
	 2.2 A Very Brief Introduction to Object Rexx

	 3 Summary
	 4 References

