
UTILITY ROUTINES AND UTILITY CLASSES FOR
OBJECT REXX

Rony G. Flatscher

Department of Management and Information Systems

Vienna University of Economics and Business Administration

„8th International Rexx Symposium“, Heidelberg/Germany, April 22nd-24th, 1997

ABSTRACT

Over the past years, starting out with the beta-versions of Object Rexx in 1995, various

utilities (routines and classes) have been devised. Some of them proofed useful, so the

author wanted to share them with the Rexx community.

Among the utility routines one can find routines to sort collections like arrays, stems and

directories etc., but also sort by the value part of some collections, where the sort values

themselves get retrieved via dynamically invoked messages according to the

message-names passed into the routine; determine (like with IBM's SOM) whether an

object is a class object, an instance of a specific class and the like. Also some basic

National Language support (upper/lowercasing, sorting) is documented.

.

Utility Routines and Utility Classes for Object Rexx, page 1-27

1 INTRODUCTION

Object Rexx was introduced as a product in the fall of 1996 with IBM's PC operating

system OS/2 Warp 4. In February 1997 a version for Windows 95 and Windows NT was

introduced by IBM.

Object Rexx is backwardly compatible with Rexx, but enhances the language with

powerful new features, some being independent of object-orientedness, yet most of the

added power can be directly attributed to the innovative and powerful object oriented

concepts, introduced into the language.

In the course of working with beta-versions of Object Rexx (started as early as in 1995)

the author devised a couple of utility functions, classes and routines which should ease

and enhance the development of Object Rexx programs.

Because of the wealth of the different utilties it became necessary to split the talk and the

paper into two parts, where the second part draws sometimes on the features of the first

one. The following Object Rexx utility modules with their public definitions are documented

in this paper:

get_answ.cmd get an option (for command line interface, aka "CLI")

routine_find_file.cmd find a file along a path

routine_ok.cmd turn .true/.false into strings

routine_pp.cmd "cheap pretty print"

routine_pp_number.cmd simple formatting of numbers

routine_strip_quote.cmd simple strip/add quotes

Is_Util.cmd Object Rexx test support

nls_util.cmd National Language support ("NLS"), requires Is_util.cmd

sort_util.cmd sort utilities for collections, requires nls_util.cmd

rgf_util.cmd miscellaneous utilities and focal module for the following required modules:
rgf_class.cmd, routine_find_file.cmd, routine_ok.cmd, routine_pp.cmd,
routine_pp_number.cmd, routine_strip_quote.cmd and sort_util.cmd

The following Object Rexx utility modules with their public definitions are documented in a

different paper1):

1) Cf. [Flat97].

Utility Routines and Utility Classes for Object Rexx, page 2-27

class_rel.cmd some subclasses of .Relation

routine_USIfy.cmd turn string into 7-Bit alphanumeric chars with embedded blanks being
replaced with an underscore

class_ref.cmd anchor/reference classes, allows for forward referencing; requires
class_rel.cmd and Routine_USIfy.cmd

sgmlEntity_util.cmd SGML-entity support to translate non 7-Bit characters according to the
codepage into SGML-entity chars; requires nls_util.cmd

html_util.cmd utilities and classes for creating HTML files, lists and tables; requires
class_ref.cmd, rgf_util.cmd and sgmlEntity_util.cmd

All of these Rexx programs2) are made freely available via the Internet (e.g. cf.

[W3Hobbes] or [W3RexxLA]). In the case that a particular interesting feature of Object

Rexx is employed, it will get explained in detail. As a rule, short routines will get shown in

full source code in this paper.

Thruout this paper it is assumed that the reader is acquainted with the basic principles of

Object Rexx as layed out e.g. in the articles of [Flat96a] and [Flat96b], or in the books of

[Ende97], [TurWah97], [VeTrUr96] and [WahHolTur97].3)

The syntax diagrams use square brackets ("[", "]") to denote optional arguments and curly

brackets ("{", "}") to indicate that a mandatory argument has to be chosen from the list of

arguments which themselves are delimited with a bar ("|"). Three dots ("ellipsis") indicate

that the preceding construct may be repeated. An example:

xyz(arg1, { arg2 | arg3 } [, optional_arg4] ...)

arg1 is a mandatory argument to xyz followed by a comma followed by a mandatory

argument (either arg2 or arg3), followed optionally by one (arg4) or more optional

arguments.

2) Please note that the term program in the context of this paper may be used interchangeably with the term

module. A module is a program, but was intentionally created for being required by other Rexx programs

via the ::REQUIRES directive and as a rule would not be too useful to be executed on its own.

3) [W3ObjRexx] and [W3RexxLA] contain among other things articles and brief introductions into the Object

Rexx language directly accessible via the Internet.

Utility Routines and Utility Classes for Object Rexx, page 3-27

All examples make sure that all public definitions (routines and classes) of the described

module are loaded by CALLing it. Please note, that one usually would acquire access to

those public definitions via the Object Rexx ":: REQUIRES"4) directive.

2 MODULE GET_ANSW.CMD

This module supports one single public routine: get_answer() .5)

2.1 Public Routine Get_Answer()

Usage: Get_Answer(letterString [, [upperBound] [,Force]])

Returns what the user entered via the keyboard in a command line interface (aka "CLI").

Can be either an empty string ("") if just the ENTER key is pressed, or "1B"x for the

ESCAPE key, or a single letter from the letterString (key-stroke), or an integer number

with a value of 0 or larger, but not larger than the given upperBound argument.

The BACKSPACE key allows for editing an entered number with more than one digit, if

upperBound is given. Whenever a user entry becomes unambiguous than the function

automatically ends the entry mode and returns the received value. If just the ENTER key is

pressed, an empty string is returned.

Arguments:

letterString - string of valid letters for the user to enter, e.g. "YN" for either the key "Y",

"y", "N" or "n".

upperBound - optional positive number, the user may enter 0 thru the value of

upperBound; e.g. if upperBound has a value of 32 then the user may enter any

number between 0 and 32 inclusively.

4) Cf. [Flat96a].

5) The code for this routine was extracted from the author's "showini.cmd"-package, a Rexx written package

to display, edit, delete, backup and restore OS/2 INI-files. The program with the entire source may be

found, e.g. <ftp://hobbes.nmsu.edu/os2/textutil/shwini32.zip> as of 1997-06-22.

Utility Routines and Utility Classes for Object Rexx, page 4-27

Force - forces user to enter a valid value, i.e. pressing just the ENTER key without

supplying a value is not allowed; this argument takes any argument, e.g. "F".

Example 1 (using letterString):
CALL get_answ /* load "Get_Answ.cmd" public definitions */

SAY "Do you want to erase drive A: ? (Y/N)"

answer = get_answer("YN") /* "Y", "N", ENTER or ESCAPE */
IF answer = "Y" THEN ...

Example 2 (using letterString and Force):
CALL get_answ /* load "Get_Answ.cmd" public definitions */

SAY "Do you want to erase drive A: ? (Y/N)"

answer = get_answer("YN", , "F") /* "Y", "N" or ESCAPE */
IF answer = "Y" THEN ...

Example 3 (using upperBound, i.e. a number has to be entered):
CALL get_answ /* load "Get_Answ.cmd" public definitions */

SAY "(1) add user"
SAY "(2) delete user"

answer = get_answer(, 2) /* 0, 1, 2, ENTER or ESCAPE */
IF answer = 1 THEN ... /* add user ... */

Example 4 (using letterString and upperBound, i.e. a letter or a number may be entered at

the same time):
CALL get_answ /* load "Get_Answ.cmd" public definitions */

SAY "(1) add user"
SAY "(2) delete user"
SAY "(Q)quit, (A)bort immediately:"

answer = get_answer("AQ", 2) /* 0. 1, 2, "A", "Q", ENTER or ESCAPE */
IF answer = 1 THEN ... /* add user ... */

3 MODULE ROUTINE_FIND_FILE.CMD

This module supports one single public routine: find_file() .

3.1 Public Routine Find_File()

Usage: Find_File(file_name [, [path] [, extensions]])

Returns the full path of the Rexx program denoted with file_name or empty string if not

found. If path is given, the search is restricted to the given path, where each entry is

Utility Routines and Utility Classes for Object Rexx, page 5-27

delimited by a semi-colon. If the third optional argument extensions is supplied then the

routine will attempt to find the file_name by blindly appending each space separated

extensions-item until the file_name is found or returns an empty string.

Arguments:

file_name - any valid file name, e.g. "html_util"

path - omitted or any valid path, e.g. "c:\tools;d:\tmp\rexx"; if omitted, then the

environment variable "PATH" is used, prepended with a dot for the actual directory

extensions - omitted or any extension which should be appended to file_name until the

file is found, e.g. ".cmd .erx"; if omitted defaults to the value ".orx .cmd .bat .rex .cls".

Example 1:
CALL routine_find_file /* load "routine_find_file.cmd" public definitions*/

path = find_file("html_util")

... looks up the present directory and all directories given in the environment variable "PATH" for the file(s)
"html_util", "html_util.orx", "html_util.bat", "html_util.rex" and "html_util.cls". Returns first found file, if not
found an empty string instead.

Example 2:
CALL routine_find_file /* load "routine_find_file.cmd" public definitions*/

path = find_file("html_util", "d:\apps\os2\rexx\", ".orx .cls")

... looks whether the file "html_util", "html_util.orx" or "html_util.cls" exists in the directory "d:\apps\os2\rexx".

4 MODULE ROUTINE_OK.CMD

This module supports one single and simple public routine: OK() .

4.1 Public Routine OK()

Usage: OK({ .true | .false })

Returns the string "*** not o.k. ! ***" , if the argument is .false, the string "o.k." in

all other cases.

Utility Routines and Utility Classes for Object Rexx, page 6-27

Source code of routine:
:: ROUTINE ok PUBLIC
 IF ARG(1) = 0 THEN RETURN "*** not o.k. ! ***"
 ELSE RETURN "o.k."

Example 1:
CALL routine_ok /* load "routine_ok.cmd" public definitions */

SAY "our test is" ok(.false)

... yields the following output:

*** not o.k. ! ***

Example 2:
CALL routine_ok /* load "routine_ok.cmd" public definitions */

tmp = SysSetObjectData("<WP_CLOCK>", "NOMOVE=YES")
SAY "Making System Clock unmovable worked" ok(tmp)

5 MODULE ROUTINE_PP.CMD

This module supports one single and simple public routine: PP() .6)

5.1 Public Routine PP()

Usage: pp(someText [, [leftBracket] [, rightBracket]])

Returns the string value of the given argument someText, enclosed in given brackets. If

the optional leftBracket is omitted the opening square bracket ("[") is used by default, if the

optional rightBracket is omitted the closing square bracket ("]") is used by default.

Source code of routine:
:: ROUTINE PP PUBLIC
 PARSE ARG argument, left_bracket, right_bracket

 IF left_bracket = "" THEN left_bracket = "[" /* default */
 IF right_bracket = "" THEN right_bracket = "]" /* default */

 RETURN left_bracket || argument || right_bracket

Example:
CALL routine_pp /* load "routine_pp.cmd" public definitions */

SAY "Test:" pp(" ") pp(" This is a test")

... yields the following output (note the now visible blanks within the brackets):

Test: [] [This is a test]

6) "PP" stands for "cheap" "pretty print".

Utility Routines and Utility Classes for Object Rexx, page 7-27

6 MODULE ROUTINE_PP_NUMBER.CMD

This module supports one single and simple public routine: PP_Number() .7)

6.1 Public Routine PP_Number()

Usage: pp_number(someNumber)

Returns the given number edited in US-style, e.g. the number "123456.78" will be returned

as "123,456.78" by the routine.

Source code of routine:
:: ROUTINE PP_Number PUBLIC
 PARSE ARG number

 PARSE VAR number number "." fraction

 tmpResult = ''
 DO WHILE length(number) > 3
 tmpResult = ',' || RIGHT(number, 3) || tmpResult
 number = LEFT(number, LENGTH(number) - 3)
 END

 IF fraction <> "" THEN tmpResult = tmpResult || "." || fraction

 RETURN number || tmpResult

Example:
CALL routine_pp_number /* load "routine_pp_number.cmd" public definitions */

SAY "Test:" pp_number (123456.78)

... yields the following output:

Test: 123,456.78

7) The code for this routine was extracted from the "DRIVE.RES"-example of IBM's OS/2 product "DrDialog"

as distributed with IBM's "Developer Connection" CD-ROM program since 1995.

Utility Routines and Utility Classes for Object Rexx, page 8-27

7 MODULE ROUTINE_STRIP_QUOTE.CMD

This module supports one single and simple public routine: Strip_Quotes ().

7.1 Public Routine Strip_Quotes()

Usage: Strip_Quotes (string [, [bStrip] , [quote]])

Returns the string with removed enclosing quotes (bStrip = .true) or returns the string

embedded with quotes (bStrip = .false). Optional quote may be a single quote (') or a

double quote ("), which serves as the default for embedding. The optional boolean value

bStrip defaults to .true, i.e. to stripping quotes from the given string. In stripping mode

quote is ignored; the quotes get stripped only, if the quote in position 1 of the string is a

valid quote and present as the last character of that string also.

If the string contains the surrounding quote too then Rexx' rules for escaping quotes as

part of a string are applied.

Source code of routine:
:: ROUTINE strip_quotes PUBLIC
 USE ARG string, bStrip, quote

 bStrip = (bStrip <> .false) /* default to stripping quotes */

 IF bStrip THEN /* strip quotes */
 DO
 string = STRIP(string) /* remove leading/trailing blanks */
 quote = LEFT(string, 1) /* determine quote */

 IF POS(quote, '"' || "'") > 0 THEN /* check for quote */
 DO
 IF RIGHT(string, 1) = quote THEN /* closing quote present ? */
 DO
 /* remove surrounding quotes: */
 string = SUBSTR(string, 2, LENGTH(string) - 2)
 /* take care of escaped quotes: */
 string = CHANGESTR(quote || quote, string, quote)
 END
 END
 END
 ELSE /* add quotes, duplicate existing quotes */
 DO
 IF \ VAR("quote") THEN quote = '"' /* default quote */
 /* escape quotes */
 string = quote || CHANGESTR(quote, string, quote || quote) || quote
 END
 RETURN string

Utility Routines and Utility Classes for Object Rexx, page 9-27

Examples:
CALL routine_strip_quote /* load "routine_strip_quote.cmd" public definitions */

SAY strip_quotes("This is a text.", .false , "'")

... yields the following output:

'This is a text.'

SAY strip_quotes("'This isn '' t a text, is it?'", .true , "'")

... yields the following output (note quote within text):

This isn ' t a text, is it?

SAY strip_quotes("'This isn '' t a text, is it?'", , "'")

... yields the following output (same as above, because of defaults):

This isn ' t a text, is it?

8 MODULE IS_UTIL.CMD

This module defines the following public routines: IsA(), IsA2(), IsClassObject(),

IsDescendedFrom(), IsInstanceOf() and get_methods_FROM_is_util().

For the purpose of enhancing any class with the appropriate Object Rexx methods, the

following "floating methods"8) are defined: IsA, IsA2, IsClassObject,

IsDescendedFrom, IsInstanceOf . Invoked methods call the appropriate routines

supplying self as their first argument; if necessary, the method argument will be given to

the routine as the second argument. In order for programs which require Is_Util.cmd to

access these floating methods the public routine get_methods_FROM_is_util() is

defined.

8.1 Public Routine IsA()

Usage: IsA (object, class_object)

Returns .true if class_object is a superclass of object's class, i.e. object is a direct or

indirect instance of class_object, returns .false else. If class_object is not a class object,

then a syntax error is raised.

Remark: Modelled after IBM's SOM "somIsA()".

8) Cf. [Flat96a] and [Flat96b].

Utility Routines and Utility Classes for Object Rexx, page 10-27

Examples:
CALL Is_Util /* load "Is_Util.cmd" public definitions */

tmpObject1 = .set ~ new /* create a .set-object */
tmpObject2 = .table ~ new /* create a .table-object */

SAY IsA(tmpObject1, .set) /* returns .true */
SAY IsA(tmpObject1, .table) /* returns .true */
SAY IsA(.set, .table) /* returns .false */
SAY IsA(.set, .table) /* returns .false */
SAY IsA(.set, tmpObject2) /* raises a syntax-error */

8.2 Public Routine IsA2()

Usage: IsA2 ([class_]object1, [class_]object2)

Works like IsA(), except that either argument may be an object or a class object. If an

argument is not a class object, then its class object is automatically used by sending the

passed in object the "class" message. Therefore no syntax errors will be raised.

Returns .true if class_object2 is identical to class_object1, or if class_object2 is a

superclass of class_object1, i.e. class_object1 is a direct or indirect subclass of

class_object2, returns .false else.

Examples:
CALL Is_Util /* load "Is_Util.cmd" public definitions */

tmpObject1 = .set ~ new /* create a set-object */
tmpObject2 = .table ~ new /* create a table-object */

SAY IsA2(tmpObject1, .set) /* returns .true */
SAY IsA2(tmpObject1, tmpObject2)/* returns .true */
SAY IsA2(tmpObject1, .table) /* returns .true */
SAY IsA2(.set, tmpObject2) /* returns .true */
SAY IsA2(.set, .table) /* returns .true */
SAY IsA2(.set, .set) /* returns .true */

SAY IsA2(.set, .message) /* returns .false */

8.3 Public Routine IsClassObject()

Usage: IsClassObject (object)

Returns .true if the single argument object is a class object, i.e. it may be used to create

instances of itself by sending it the new-message; returns .false else.

Utility Routines and Utility Classes for Object Rexx, page 11-27

Examples:
CALL Is_Util /* load "Is_Util.cmd" public definitions */

tmpObject1 = .set ~ new /* create a .set-object */

SAY IsClassObject(.set) /* returns .true */
SAY IsClassObject(tmpObject1) /* returns .false */

8.4 Public Routine IsDescendedFrom()

Usage: IsDescendedFrom(class_object1, class_object2)

Returns .true if class_object2 and class_object1 are identical, or if class_object2 is a

superclass of class_object1, i.e. class_object1 is a direct or indirect subclass of

class_object2, returns .false else. Raises a syntax error if the passed in objects are not

class objects.

Remark: Modelled after IBM's SOM "somDescendedFrom()".

Examples:
CALL Is_Util /* load "Is_Util.cmd" public definitions */

tmpObject1 = .set ~ new /* create a .set-object */

SAY IsDescendedFrom(tmpObject1, .set) /* raises a syntax-error */
SAY IsDescendedFrom(.table, tmpObject1)/* raises a syntax-error */
SAY IsDescendedFrom(.set, .table) /* returns .true */
SAY IsDescendedFrom(.set, .set) /* returns .true */

SAY IsDescendedFrom(.table, .set) /* returns .false */

8.5 Public Routine IsInstanceOf()

Usage: IsInstanceOf(object, class_object)

Returns .true if object is an instance of class_object, returns .false else.

Remark: Modelled after IBM's SOM "somInstanceOf()".

Source code of routine:
:: ROUTINE IsInstanceOf PUBLIC
 USE ARG Object, Class_Object

 RETURN (Object ~ class = Class_Object)

Utility Routines and Utility Classes for Object Rexx, page 12-27

Examples:
CALL Is_Util /* load "Is_Util.cmd" public definitions */

tmpObject1 = .set ~ new /* create a set-object */

SAY IsInstanceOf(tmpObject1, .set) /* returns .true */
SAY IsInstanceOf(.set, .set) /* returns .false */
SAY IsInstanceOf(.set, tmpObject1) /* returns .false */

8.6 Public Routine get_methods_FROM_is_util()

Usage: get_methods_FROM_is_util()

Returns the .methods9) directory containing all floating methods of IS_Util.cmd.

Source code of routine:
:: ROUTINE get_methods_FROM_is_util PUBLIC /* return the method-directory */
 RETURN .methods /* returns Is_util.cmd's .method directory */

Example:
CALL Is_Util /* load "Is_Util.cmd" public definitions */

tmpUtilMethods = get_methods_FROM_is_util() /* get " .methods " directory */

 /* create an instance of ".set" enhanced with the floating methods
 defined in Is_util.cmd: */

tmpObject = .set ~ enhanced(tmpUtilMethods)

SAY tmpObject ~ IsA(.table) /* test the IsA-method (.true) */
SAY tmpObject ~ IsClassObject /* test the IsClassObject-method (.false)*/

9 MODULE NLS_UTIL.CMD10)

This module requires Is_Util.cmd. All documentation and examples pertaining to

NLS_UTIL.CMD employs the following rule: if either the country or codepage arguments

are omitted from routines or methods which need them, the default country and/or default

codepage values of the session the program is running in, is used instead. Note, that for

the purpose of retrieving the collating sequence table from the system (via the RexxUtil

9) The special variable .methods is a directory containing all floating methods of a particular module. In

order to be able to access it from the "outside" a public routine needs to be defined, which allows for

establishing access to it.

10) Starting with the description of the public utility routines, class and its public methods, the format of the

documentation changes in order to preserve space and to keep the attention of the reader. The overview

part will also contain the signatures and briefly document the purpose of the public utilities.

Utility Routines and Utility Classes for Object Rexx, page 13-27

SysGetCollate-function) a syntax error may occur, if the given combination of country and

codepage is not valid.

According to IBM's online documentation of the OS/2 control program APIs as of

DevCon 12 (January 1997 edition) the following codepage settings and countries are

available for OS/2:11)

Codepage

Country Country-Code Primary Secondary

Asian English 099 437 850

Australia 061 437 850

Belgium 032 437 850

Canadian French 002 863 850

Czechoslovakia 042 852 850

Denmark 045 865 850

Finland 358 437 850

France 033 437 850

Germany 049 437 850

Hungary 036 852 850

Iceland 354 850 861

Italy 039 437 850

Japan 081 932 437, 850

Japan SAA 081 942 437, 850

Korea 082 934 437, 850

Korea SAA 082 944 437, 850

Latin America 003 437 850

Netherlands 031 437 850

Norway 047 865 850

People's Republic of China 086 936 437, 850

People's Republic of China SAA 086 946 437, 850

Poland 048 852 850

Portugal 351 860 850

Spain 034 437 850

Sweden 046 437 850

Switzerland 041 437 850

Taiwan 088 938 437, 850

11) According to the documentation some Asian codepages are available only on Asian versions of OS/2 and

Asian versions of hardware resp. hardware drivers.

Utility Routines and Utility Classes for Object Rexx, page 14-27

Taiwan SAA 088 948 437, 850

Turkey 090 857 850

United Kingdom 044 437 850

United States 001 437 850

Yugoslavia 038 852 850

In the initialization part of NLS_util.cmd a default object gets created using the session's

codepage and country settings.

The NLS_UTIL.CMD module defines the following public routines:

GET_NLS_DEFAULT_OBJECT()

Returns the default NLS-object, also retrievable by sending the attribute class method
default_NLS directly to the class object .NLS.

SET_NLS_DEFAULT_OBJECT([country] [,codepage])
SET_NLS_DEFAULT_OBJECT([NLS-object])

Sets the default NLS-object according to the arguments and returns the new default
NLS-object.

NLS_COLLATE(string)

Returns the string argument translated according to the collating sequence of the default
NLS-object.

NLS_COMPARE(string1, string2)

Returns the values -1, 0, 1 indicating whether string1 is smaller, equal or larger than
string2 according to the default NLS-object.

NLS_LOWER(string)

Returns the string argument translated to lowercase according to the default NLS-object.

NLS_UPPER(string)

Returns the string argument translated to uppercase according to the default NLS-object.

In addition this module defines a class "NLS" with the following public class and instance

methods:

Class methods of class NLS:

INIT

Creates class-level attributes and initializes them.

default_NLS Attribute method, allows access to the class-level attribute "default_NLS" containing the
default NLS-object.

entry([country] [, codepage])

Returns the NLS-object created for the given country and codepage or .nil if not found
(.Directory semantics).

hasentry([country] [, codepage])

Returns .true, if for the given country and codepage a NLS-object is available, .false else
(.Directory semantics).

Utility Routines and Utility Classes for Object Rexx, page 15-27

setentry([country] [, [codepage] [, object]])

Returns the entry (the NLS-object) for the given country and codepage and sets it to the
passed in object. If no object is given, the entry is removed and the associated
NLS-object is returned; if no entry is available then .nil (.Directory semantics) is returned.

supplier Returns a supplier of all NLS-objects created so far.

Instance methods of class NLS:

INIT([country] [, codepage])

Optional country and codepage as supplied as arguments for the NEW-message sent to
the class object .NLS; creates and returns the appropriate NLS-object. If a NLS-object for
the given country and codepage already exists, it is retrieved and returned.

codepage Returns the codepage number.

coll_lower Returns the significant lowercase letters for the NLS-related collating (sorting) sequence.

coll_upper Returns the significant uppercase letters for the NLS-related collating (sorting) sequence.

collating_table

Returns all 256 characters of the NLS-object's codepage, where those characters are
replaced with their uppercase representation which are regarded to be of equal value for
determining the collating (sorting) sequence of that particular country.

country Returns the country number.

dump Dumps the lowercase, uppercase and collating sequence letters resp. letterings to
.error .

lowercase Returns all NLS lowercase letters.

makestring Returns a string representing the NLS object.

nls_collate Returns a string translated with the appropriate collating (sorting) sequence.

nls_compare(string1, string2)

Returns the values -1, 0, 1 indicating whether string1 is smaller, equal or larger than
string2 according to the NLS-object. [This method uses the RexxUtil supplied function
named SysNationalLanguage().]

nls_lower(string)

Returns a NLS lowercased string.

nls_upper(string)

Returns a NLS uppercased string.

uppercase Returns all NLS uppercase letters.

Utility Routines and Utility Classes for Object Rexx, page 16-27

The public routines work according to the default NLS-object stored with .NLS (the class

object representing the NLS-class) in the class attribute "default_NLS".12)

Each instance of this class will get stored with a class variable13), which is indirectly

accessible by sending the (class) methods ENTRY, HASENTRY, SETENTRY and

SUPPLIER-methods to the class object .NLS.

The output of the following two examples refers to a codepage setting of "850,437" and a

country code of "043" (Austria).

Example 1:
CALL NLS_Util /* load "NLS_Util.cmd" and all of its definitions */

.nls ~~ new(0, 850) ~~ new(0, 437) /* create two NLS-objects */
tmpSupp = .nls ~ supplier /* get supplier for NLS-objects */

DO WHILE tmpSupp ~ AVAILABLE
 tmpSupp ~ ITEM ~ dump /* get object and let it dump itself */
 tmpSupp ~ NEXT
END

... produces the following output for codepage settings "850, 437" and country "049"; note that the
NLS-definitions for the default object (country=0 and codepage=0) are the same as for codepage 850
(country= 0 and codepage=850):

NLS-object:

 country: [0] codepage: [850]

lowercase: [abcdefghijklmnopqrstuvwxyzüéâäàåçêëèïîìæôöòûùøáíóúñãðõÞý]
uppercase: [ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄÀÅÇÊËÈÏÎÌÆÔÖÒÛÙØÁÍÓÚÑÃÐÕþÝ]

effect of collating table:

 low (1- 60): [abcdefghijklmnopqrstuvwxyzÇüéâäàåçêëèïîìÄÅÉæÆôöòûùÿÖÜø£Ø áíó]
 up (1- 60): [ABCDEFGHIJKLMNOPQRSTUVWXYZCUEAAAACEEEIIIAAEAAOOOUUYOUOOAIO]

 low (61- 97): [úñÑ¿¡«»ÁÂÀ¢¥ãÃ¤ðÐÊËÈ ÍÎÏÌÓßÔÒõÕÞÚÛÙýÝ]
 up (61- 97): [UNN?!""AAA$$AA$DDEEEIIIIIOSOOOOþUUUYY]

12) If it becomes necessary that the routines use a specific NLS-object, then one merely needs to create the

appropriate NLS-object first and have the class attribute "default_NLS" point to it, e.g.:

.NLS ~ default_NLS = .NLS ~ new(041, 437) /* use a Swiss NLS-object instead */

13) This class variable is a directory for which the methods ENTRY, HASENTRY and SETENTRY have been

specialized in order to serve the specific purpose of the NLS-class (the key to identify NLS-objects

uniquely is built with two strings representing a country code and codepage code). In addition access to

the SUPPLIER method is established by defining a pass-thru method at the class level. Note: it is not

possible to get direct access to that class variable from outside of the class method level, which is named

nlsDirectory (cf. the EXPOSE-keyword statements with some of the class method definitions) .

Utility Routines and Utility Classes for Object Rexx, page 17-27

NLS-object:

 country: [0] codepage: [0]

lowercase: [abcdefghijklmnopqrstuvwxyzüéâäàåçêëèïîìæôöòûùøáíóúñãðõÞý]
uppercase: [ABCDEFGHIJKLMNOPQRSTUVWXYZÜÉÂÄÀÅÇÊËÈÏÎÌÆÔÖÒÛÙØÁÍÓÚÑÃÐÕþÝ]

effect of collating table:

 low (1- 60): [abcdefghijklmnopqrstuvwxyzÇüéâäàåçêëèïîìÄÅÉæÆôöòûùÿÖÜø£Ø áíó]
 up (1- 60): [ABCDEFGHIJKLMNOPQRSTUVWXYZCUEAAAACEEEIIIAAEAAOOOUUYOUOOAIO]

 low (61- 97): [úñÑ¿¡«»ÁÂÀ¢¥ãÃ¤ðÐÊËÈ ÍÎÏÌÓßÔÒõÕÞÚÛÙýÝ]
 up (61- 97): [UNN?!""AAA$$AA$DDEEEIIIIIOSOOOOþUUUYY]

NLS-object:

 country: [0] codepage: [437]

lowercase: [abcdefghijklmnopqrstuvwxyzüéâäàåçêëèïîìæôöòûùÿáíóúñ]
uppercase: [ABCDEFGHIJKLMNOPQRSTUVWXYZÜEAÄAÅÇEEEIIIÆOÖOUUYAIOUÑ]

effect of collating table:

 low (1- 60): [abcdefghijklmnopqrstuvwxyzÇüéâäàåçêëèïîìÄÅÉæÆôöòûùÿÖÜø£Ø× áí]
 up (1- 60): [ABCDEFGHIJKLMNOPQRSTUVWXYZCUEAAAACEEEIIIAAEAAOOOUUYOU$$$$$AI]

 low (61- 69): [óúñÑ¿¡«»ß]
 up (61- 69): [OUNN?!""S]

Example 2:
CALL NLS_Util /* load "NLS_Util.cmd" and all of its definitions */

a = "Ärger über den Wölkchen auf dem Boot." /* German NLS-string */

SAY nls_upper(a) /* returns " ÄRGER ÜBER DEN WÖLKCHEN AUF DEM BOOT." */
SAY nls_lower(a) /* returns " ärger über den wölkchen auf dem boot. " */
SAY nls_collate(a) /* returns " ARGER UBER DEN WOLKCHEN AUF DEM BOOT." */

Utility Routines and Utility Classes for Object Rexx, page 18-27

10 MODULE SORT_UTIL.CMD

This module requires NLS_Util.cmd and defines the following public routines: sort(),

sortArray(), sortStem(), sortCollection() and BinFindArray().

For the purpose of determining whether a string is smaller, equal or larger than another

string this module employs (and therefore requires) the module NLS_Util.cmd, namely the

public routine NLS_collate() which uses the collating sequence of the default NLS-object.

10.1 Public Routine sort()

Usage: sort (CollObject [, option])

Returns a single-dimensioned array object containing all the string elements of

CollObject in ascending sorted order. If option option is given and starts with the letter "D"

then the sorting will be in descending order. Sort first renders the CollObj into a single

dimensioned array or produces a copy in case a single dimensional array is given and

invokes sortArray() to do the actual work.

Example:
CALL Sort_Util /* load "Sort_Util.cmd" and all of its definitions */

tmpObject = .set ~ of("Hi", "there", "how", "are", "you?")

tmpArr = sort(tmpObject) /* sort the strings in set */
tmpArr2 = sort(tmpObject, "d") /* sort the strings in set descendingly*/

DO i = 1 TO tmpArr ~ ITEMS
 SAY "asc:" LEFT(tmpArr[i], 5) "| desc:" tmpArr2[i] /* show items*/
END

... yields the following output:

asc: are | desc: you?
asc: Hi | desc: there
asc: how | desc: how
asc: there | desc: Hi
asc: you? | desc: are

Utility Routines and Utility Classes for Object Rexx, page 19-27

10.2 Public Routine sortArray()

Usage: sortArray (array [, option])

Sorts the single-dimensioned array object in place, containing the string elements in

ascending sorted order. If option option is given and starts with the letter "D" then the

sorting will be in descending order.

Example:
CALL Sort_Util /* load "Sort_Util.cmd" and all of its definitions */

tmpArr = .array ~ of("Hi", "there", "how", "are", "you?")

CALL sortArray tmpArr/* sort the strings in array */

DO i = 1 TO tmpArr ~ ITEMS
 SAY tmpArr[i] /* show item */
END

... yields the following output:

are
Hi
how
there
you?

10.3 Public Routine sortStem()

Usage: sortStem (stem [, option])

Note: this routine works with so-called stem-"arrays"14) only! Such a stem object usually

has positive integer number indices only, ranging from 1 to an upper bound stored with the

stem itself at stem.0.

Sorts the stem-array in ascending sorted order. If option option is given and starts with the

letter "D" then the sorting will be in descending order.

14) "Stem-arrays" are employed by many utility functions of RexxUtil.DLL which is supplied with Object Rexx,

e.g. the function SysFileTree(). The online documentation calls stems constructed in this way "stem

variable collection".

Utility Routines and Utility Classes for Object Rexx, page 20-27

Example:
CALL Sort_Util /* load "Sort_Util.cmd" and all of its definitions */

stem.1 = "Hi" /* element 1 */
stem.2 = "there" /* element 2 */
stem.3 = "how" /* element 3 */
stem.4 = "are" /* element 4 */
stem.5 = "you?" /* element 5 */
stem.0 = 5 /* five elements in stem */

CALL sortStem stem. /* sort the strings in set */

DO i = 1 TO stem.0
 SAY stem.i /* show item */
END

... yields the following output:

are
Hi
how
there
you?

10.4 Public Routine sortCollection()

Usage: sortCollection(collection [, [message] [, "Descending"]])

Returns a two-dimensional array sorted ascendingly by subscript 1 and the corresponding

item of collection in subscript 2. If the optional argument message is given, then all items

of collection are first sent that message and the result gets stored in subscript 1 (and the

item in subscript 2). If the optional third argument starts with a "D", then the sort will be

carried out descendingly.

Arguments:

collection - any collection of items

message - optional message argument which gets sent to each item in collection and

may be one of the following three types:

a message object,

a plain string denominating the name of the message to be sent, or

a single-dimensioned array object containing the string denominating the name of

the message to be sent at subscript 1; optionally, at subscript 2 there may be

another array object containing additional arguments for the method at

subscript 1.

Utility Routines and Utility Classes for Object Rexx, page 21-27

If a collection is a stem object and message is not given, then this routine will use the

stem subscripts as the keys to sort by.

"D[escending]" - sorts descendingly (only first character significant)

Example 1:
CALL Sort_Util /* load "Sort_Util.cmd" and all of its definitions */

tmpObj = .set ~ of("Hi", "there", "how", "are", "you?")

tmpArr = sortCollection(tmpObj) /* sort the strings in set */
CALL dump tmpArr, "1 - string value"

/* sort collection with a message object */
msgObj = .message ~ new("", "SUBSTR", "I", 3, 2) /* create message object */
tmpArr1 = sortCollection(tmpObj, msgObj)
CALL dump tmpArr1, "2 - message object for sending '~ SUBSTR(3, 2)'"

/* sort collection with arguments in array object */
tmpArrObj = .array ~ of("SUBSTR", .array ~ of(3, 2)) /* create array object */
tmpArr2 = sortCollection(tmpObj, tmpArrObj)
CALL dump tmpArr2, "3 - array object for sending '~ SUBSTR(3, 2)'"

tmpArr3 = sortCollection(tmpObj, "REVERSE") /* use reversed strings */
CALL dump tmpArr3, "4 - simple REVERSE-message"

:: ROUTINE dump
SAY ARG(2); SAY /* show title */
DO i = 1 TO ARG(1) ~ items / 2
 SAY "index" pp(ARG(1)[i, 1]) "item" pp(ARG(1)[i, 2])
END
SAY

:: ROUTINE pp; RETURN LEFT("[" || ARG(1) || "]", 10)

... yields the following output:

1 - string value

index [are] item [are]
index [Hi] item [Hi]
index [how] item [how]
index [there] item [there]
index [you?] item [you?]

2 - message object for sending '~ SUBSTR(3, 2)'

index [] item [Hi]
index [e] item [are]
index [er] item [there]
index [u?] item [you?]
index [w] item [how]

3 - array object for sending '~ SUBSTR(3, 2)'

index [] item [Hi]
index [e] item [are]
index [er] item [there]
index [u?] item [you?]
index [w] item [how]

4 - simple REVERSE-message

index [?uoy] item [you?]
index [era] item [are]
index [ereht] item [there]
index [iH] item [Hi]
index [woh] item [how]

Utility Routines and Utility Classes for Object Rexx, page 22-27

Example 2:
CALL Sort_Util /* load "Sort_Util.cmd" and all of its definitions */

stemObj.Hi = "hallo"
stemObj.["there"] = "Du"
stemObj.how = "wie"
stemObj.["are"] = "geht's"
stemObj.you = "Dir?"

tmpArr1 = sortCollection(stemObj.)
CALL dump tmpArr1, "1 - stem-object without a message (sort by subscript)"

tmpArr2 = sortCollection(stemObj. , "REVERSE")
CALL dump tmpArr2, "2 - send REVERSE-message to stem.'s items, sort by results"

:: ROUTINE dump
SAY ARG(2); SAY /* show title */
DO i = 1 TO ARG(1) ~ items / 2
 SAY "index" pp(ARG(1)[i, 1]) "item" pp(ARG(1)[i, 2])
END
SAY

:: ROUTINE pp; RETURN LEFT("[" || ARG(1) || "]", 10)

... yields the following output:

1 - stem-object without a message (sort by subscript)

index [are] item [geht's]
index [HI] item [hallo]
index [HOW] item [wie]
index [there] item [Du]
index [YOU] item [Dir?]

2 - send REVERSE-message to stem.'s items, sort by results

index [?riD] item [Dir?]
index [eiw] item [wie]
index [ollah] item [hallo]
index [s'theg] item [geht's]
index [uD] item [Du]

10.5 Public Routine binFindArray()

Usage: BinFindArray(array, searchKey [, bReturnArray])

Returns the index in the one- or two-dimensional, ascendingly sorted array where the item

with the given searchKey is stored with subscript 1; if there is no entry with the given

searchKey then .nil is returned instead. If the optional bReturnArray is set to .true, then an

array object is returned which contains the index for the found searchKey or .nil (if not

found) in subscript 1, and the index into the array where the item was found or the index

where the searchKey should be stored at in subscript 2.

Utility Routines and Utility Classes for Object Rexx, page 23-27

Example:
CALL Sort_Util /* load "Sort_Util.cmd" and all of its definitions */

tmpObj = .set ~ of("Hi", "there", "how", "are", "you?")

tmpArr = sortCollection(tmpObj)
SAY "'there' is stored at:" binFindArray(tmpArr, "there")

tmpArr2 = binFindArray(tmpArr, "how", .true)
SAY "'how' is stored at:" tmpArr2[1] "should be stored at:" tmpArr2[2]

tmpArr2 = binFindArray(tmpArr, "oh", .true)
SAY "'oh' is stored at:" tmpArr2[1] "should be stored at:" tmpArr2[2]

... yields the following output:

'there' is stored at: 4
'how' is stored at: 3 should be stored at: 3
'oh' is stored at: The NIL object should be stored at: 4

11 MODULE RGF_UTIL.CMD

This module defines the following public routines: dump(), sayDebug(), sayError()

and sayLog() . It requires the following modules and as a result makes their public

definitions available: rgf_class.cmd, routine_find_file.cmd, routine_ok.cmd,

routine_pp.cmd, routine_pp_number.cmd, routine_strip_quote.cmd and

sort_util.cmd.

Additionally, the initialization code sets up some variables with the directory object

rgf.util stored with .local:

.rgf.util ~ this_op_sys Operating system Object Rexx is running on

.rgf.util ~ this_full_path Full path to RGF_Util.cmd

.rgf.util ~ this_call_type Call type of RGF_Util.cmd

.rgf.util ~ this_name The string: "RGF_Util.cmd"

.rgf.util ~ debugLevel Usually set to 0

.rgf.util ~ indent String to prepend to arguments for the "sayDebug()"-, "sayError()"-
and "sayLog()"-routines

.rgf.util ~ Log Stream object for logging purposes (see "sayLog()"-routine), default:
.stdout

.rgf.util ~ Error Stream object for error messages (see "sayError()"-routine), default:
.stderr

.rgf.util ~ Debug Stream object for debug messages (see "sayDebug()"-routine),
default: .stderr

Utility Routines and Utility Classes for Object Rexx, page 24-27

11.1 Public Routine dump()

Usage: dump(collObject [, [title] [, [stream] [, indent]]])

Iterates over items in collObject and prints them.

Arguments:

collObj - a collection of items

title - optional title, defaulting to "--- not given ---"

stream - optional stream object to write item to, defaults to .rgf.util ~ debug

indent - optional string to prepend items before writing them to the stream, defaults to

the string defined with .rgf.util ~ indent

Example:
CALL RGF_Util /* load "RGF_Util.cmd" public definitions */

tmpObject = .array ~ of("Hi", "there", "how", "are", "you?")
CALL dump tmpObject, "Dumping the object 'tmpObject'"

... yields the following output:

 begin of dump ...---
 got [The Array class] title [Dumping the object 'tmpObject'] items [5]

 index [1] item [Hi]
 index [2] item [there]
 index [3] item [how]
 index [4] item [are]
 index [5] item [you?]
 end of dump ..--

11.2 Public Routine SayDebug(), SayError() and SayLog()

Usage: SayDebug(string), SayError(string), SayLog(string)

Writes string (or string representation of an object) to the appropriate stream object,

prepending it with the .rgf.util ~ indent string.

Utility Routines and Utility Classes for Object Rexx, page 25-27

Source code of routines:
:: ROUTINE sayDebug PUBLIC /* write to debug-stream */
 PARSE ARG arg
 .rgf.util ~ debug ~ lineout(.rgf.util~indent arg)

:: ROUTINE sayError PUBLIC /* write to error-stream */
 PARSE ARG arg
 .rgf.util ~ error ~ lineout(.rgf.util~indent "***" arg)

:: ROUTINE sayLog PUBLIC /* write to log-stream */
 PARSE ARG arg
 .rgf.util~log~lineout(.rgf.util~indent arg)

Example :
CALL RGF_Util /* load "RGF_Util.cmd" public definitions */

CALL sayDebug "This is sent to the debug stream:" .rgf.util ~ debug ~ current
CALL sayError "This is sent to the error stream:" .rgf.util ~ error ~ current
CALL sayLog "This is sent to the log stream:" .rgf.util ~ log ~ current

... yields the following output:

 This is sent to the debug stream: STDERR
 *** This is sent to the error stream: STDERR
 This is sent to the log stream: STDOUT

12 SUMMARY

This paper discussed and documented the public routines and public classes of the

following modules in a brief manner: get_answ.cmd, Is_Util.cmd, NLS_Util.cmd,

RGF_Util.cmd, routine_find_file.cmd, routine_ok.cmd, routine_pp.cmd,

routine_pp_number.cmd, routine_strip_quote.cmd and Sort_Util.cmd . The

source code of these utility modules should serve as the ultimate point of reference in

case of unclearity.

Additional utilities for Object Rexx programs are presented in [Flat97]. The netnews

newsgroup <comp.lang.rexx> should be used for discussing issues with respect to

these utilities.

13 REFERENCES

[Ende97] Ender T.: "Object-Oriented Programming with REXX", John Wiley & Sons,

New York et.al. 1997.

[Flat96a] Flatscher R.G.: "Local Environment and Scopes in Object REXX", in:

Proceedings of the "7th International REXX Symposium, May 12-15,

Texas/Austin 1996", The Rexx Language Association, Raleigh N.C. 1996.

Utility Routines and Utility Classes for Object Rexx, page 26-27

[Flat96b] Flatscher R.G.: "Object Classes, Meta Classes and Method Resolution in

Object REXX", in: Proceedings of the "7th International REXX Symposium,

May 12-15, Texas/Austin 1996", The Rexx Language Association,

Raleigh N.C. 1996.

[Flat96c] Flatscher R.G.: "ORX_ANALYZE.CMD - a Program for Analyzing

Directives and Signatures of Object REXX Programs", in: Proceedings of

the "7th International REXX Symposium, May 12-15, Texas/Austin 1996",

The Rexx Language Association, Raleigh N.C. 1996.

[Flat97] Flatscher R.G.: "Utility Routines and Utility Classes for Object Rexx, Part

II", in: Proceedings of the "8th International Rexx Symposium, April

22nd-24th, Heidelberg/Germany 1997", The Rexx Language Association,

Raleigh N.C. 1997.

[TurWah97] Turton T., Wahli U.: "Object Rexx for OS/2 Warp", Prentice-Hall, London

1997.

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object Rexx by Example", Aviar,

Pittsburgh 1996.

[WahHolTur97] Wahli U., Holder I., Turton T.: "Object REXX for Windows 95/NT, With

OODialog", Prentice Hall, London 1997.

[W3Hobbes] URL (97-06-18): http://hobbes.nmsu.edu/

[W3ObjRexx] URL (97-06-18): http://www2.hursley.ibm.com/orexx/

[W3Rexx] URL (97-06-18): http://www2.hursley.ibm.com/rexx/

[W3RexxLA] URL (97-06-18): http://www.RexxLA.org

Additional information:

Online documentations for Object Rexx as delivered with OS/2 Warp 4 in the fall of 1996,

the Object Rexx OS/2 developer edition as supplied with IBM's "Developer

Connection" CD-ROM program between 1995 and 1997, and the

Windows 95/NT products and developer editions as of February 1997 and

June 1997.

Various postings on the internet newsgroup "comp.lang.rexx" between 1995 and 1997.

Utility Routines and Utility Classes for Object Rexx, page 27-27

Date of Article: 1997-07-19.

Published in: Proceedings of the "8th International REXX Symposium", Heidelberg/

Germany, April 22nd-24th, 1997", The Rexx Language Association, Raleigh

N.C. 1997.

Presented at: "8th International Rexx Symposium", Heidelberg/Germany, April 22nd-24th,

1997.

Utility Routines and Utility Classes for Object Rexx, page 28-27

