
UTILITY ROUTINES AND UTILITY CLASSES FOR
OBJECT REXX, PART II

Rony G. Flatscher

Department of Management and Information Systems

Vienna University of Economics and Business Administration

„8th International Rexx Symposium“, Heidelberg/Germany, April 22nd-24th, 1997

ABSTRACT

Over the past years, starting out with the beta-versions of Object Rexx in 1995, various

utilities (routines and classes) have been devised. Some of them proofed useful, so the

author wanted to share them with the Rexx community.

Among the utility routines one can find e.g. the module HTML_UTIL.CMD which defines

routines and classes to be used for creating HTML-documents containing tables, lists and

supports cross-referencing. It is possible to use references for anchors which get defined

later under program control, so in effect forward referencing becomes feasible.

For the code-pages 437 and 850 translation of the extended codes (above "7F"x) to and

from SGML-entities has been defined already and can be easily extended for other

codepages.

Utility Routines and Utility Classes for Object Rexx, Part II, page 1-29

1 INTRODUCTION

Object Rexx was introduced as a product in the fall of 1996 with IBM's PC operating

system OS/2 Warp 4. In February 1997 a version for Windows 95 and Windows NT

was introduced by IBM.

Object Rexx is backwardly compatible with Rexx, but enhances the language with

powerful new features, some being independent of object-orientedness, yet most of the

added power can be directly attributed to the innovative and powerful object oriented

concepts, introduced into the language.

In the course of working with beta-versions of Object Rexx (started as early as in 1995)

the author devised a couple of utility functions, classes and routines which should ease

and enhance the development of Object Rexx programs.

Because of the wealth of the different utilties it became necessary to split the talks and

the papers into two parts, where the second part draws sometimes on the features of

the first one. The following Object Rexx modules serve as building blocks and are

documented in a different paper1):

get_answ.cmd get an option (for command line interface, aka "CLI")

routine_find_file.cmd find a file along a path

routine_ok.cmd turn .true/.false into strings

routine_pp.cmd "cheap pretty print"

routine_pp_number.cmd simple formatting of numbers

routine_strip_quote.cmd simple strip/add quotes

Is_Util.cmd Object Rexx test support

nls_util.cmd National Language support ("NLS"), requires Is_util.cmd

sort_util.cmd sort utilities for collections, requires nls_util.cmd

rgf_util.cmd miscellaneous utilities and focal module for the following required
modules: rgf_class.cmd, routine_find_file.cmd, routine_ok.cmd,
routine_pp.cmd, routine_pp_number.cmd, routine_strip_quote.cmd and
sort_util.cmd

1) Cf. [Flat97].

Utility Routines and Utility Classes for Object Rexx, page 2-29

The following Object Rexx utility modules with their public definitions are documented in

this paper:

class_rel.cmd some subclasses of .Relation
routine_USIfy.cmd turn string into 7-Bit alphanumeric chars with embedded blanks being

replaced with an underscore

class_ref.cmd anchor/reference classes, allows for forward referencing; requires
class_rel.cmd and Routine_USIfy.cmd

sgmlEntity_util.cmd SGML-entity support to translate non 7-Bit characters according to the
codepage into SGML-entity chars; requires nls_util.cmd

html_util.cmd utilities and classes for creating HTML files, lists and tables; requires
class_ref.cmd, rgf_util.cmd and sgmlEntity_util.cmd

All of these Rexx programs2) are made freely available via the Internet (e.g. cf.

[W3Hobbes] or [W3RexxLA]). In the case that a particular interesting feature of Object

Rexx is employed, it will get explained in detail. As a rule, short routines will get shown in

full source code in this paper.

Thruout this paper it is assumed that the reader is acquainted with the basic principles of

Object Rexx as layed out e.g. in the articles of [Flat96a] and [Flat96b], or in the books of

[Ende97], [TurWah97], [VeTrUr96] and [WahHolTur97].3)

The syntax diagrams use square brackets ("[", "]") to denote optional arguments and curly

brackets ("{", "}") to indicate that a mandatory argument has to be chosen from the list of

arguments which themselves are delimited with a bar ("|"). Three dots ("ellipsis") indicate

that the preceding construct may be repeated. An example:

xyz(arg1, { arg2 | arg3 } [, optional_arg4] ...)

2) Please note that the term program in the context of this paper may be used interchangeably with the term

module. A module is a program, but was intentionally created for being required by other Rexx programs

via the ::REQUIRES directive and as a rule would not be too useful to be executed on its own.

3) [W3ObjRexx] and [W3RexxLA] contain among other things articles and brief introductions into the Object

Rexx language directly accessible via the Internet.

Utility Routines and Utility Classes for Object Rexx, Part II, page 3-29

arg1 is a mandatory argument to xyz followed by a comma followed by a mandatory

argument (either arg2 or arg3), followed optionally by one (arg4) or more optional

arguments.

All examples make sure that all public definitions (routines and classes) of the

described module are loaded by CALLing it. Please note, that one usually would

acquire access to those public definitions via the Object Rexx ":: REQUIRES"4)

directive.

2 MODULE CLASS_REL.CMD

This module supports the following public classes which all are subclasses of Object

Rexx' builtin Relation class: RelTable, RelBijective, RelBijectiveSet and

RelDir . As a consequence of subclassing, all methods defined with Relation remain

available. Most of the following classes are documented in [Flat96b] too.

2.1 Public Class RelTable

RelTable directly subclasses the Object Rexx class Relation. It overrides the methods

"[]=" and "PUT" in order to change the default behaviour to a table-like one, by

allowing just one item per index. In contrast to the built-in Table class RelTable allows

for determining whether a specific item is in the collection and navigating from an item

to its index.

4) Cf. [Flat96a].

Utility Routines and Utility Classes for Object Rexx, page 4-29

Example:
CALL class_rel /* load "Class_Rel.cmd" public definitions */

tmpColl1 = .Relation ~ new /* create an instance of the Relation class */
tmpColl1[1] = "one"
tmpColl1[1] = "one - another one"
tmpColl1[2] = "two"
tmpColl1[3] = "two"
tmpColl1["two"] = "this has the word 'two' as its index"
tmpColl1["two"] = "another entry with an index of 'two'"

CALL dump tmpColl1, "Built-in instance of class Relation"

tmpColl2 = .RelTable ~ new /* create an instance of the RelTable class */
tmpColl2[1] = "one"
tmpColl2[1] = "one - another one" /* replaces previous entry! (index exists) */
tmpColl2[2] = "two"
tmpColl2[3] = "two"
tmpColl2["two"] = "this has the word 'two' as its index"
tmpColl2["two"] = "another entry with an index of 'two'"

CALL dump tmpColl2, "Instance of class RelTable, behaving like a table"
SAY "Index of '2' present in relTable:" tmpColl2 ~ HASINDEX(2)
SAY "Item 'two' associated with index:" tmpColl2 ~ ALLINDEX('two')[1]

:: ROUTINE dump
 USE ARG coll

 SAY "Dumping" coll":"
 DO index OVER coll
 SAY "index:" LEFT("["index"]", 7) "item: ["coll[index]"]"
 END
 SAY LEFT("", 40, "-")

... yields the following output:

Dumping a Relation:
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
index: [2] item: [two]
index: [3] item: [two]
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
--
Dumping a RELTABLE:
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
index: [2] item: [two]
index: [3] item: [two]
--
Index of '2' present in relTable: 1
Item 'two' associated with index: 3

2.2 Public Class RelBijective

RelBijective directly subclasses the Object Rexx class Relation. It overrides the methods

"[]=" and "PUT" in order to change the default behaviour to a table-like one, by allowing

just one item per index. In addition to the behaviour of RelTable an item must not occur

more than once in the entire collection5).

5) This could be used to store married couples such, that a man and/or a woman may be married only once:

Utility Routines and Utility Classes for Object Rexx, Part II, page 5-29

Example:
CALL class_rel /* load "Class_Rel.cmd" public definitions */

tmpColl1 = .Relation ~ new /* create an instance of the Relation class */
tmpColl1[1] = "one"
tmpColl1[1] = "one - another one"
tmpColl1[2] = "two"
tmpColl1[3] = "two"
tmpColl1["two"] = "this has the word 'two' as its index"
tmpColl1["two"] = "another entry with an index of 'two'"

CALL dump tmpColl1, "Built-in instance of class Relation"

tmpColl2 = .RelBijective ~ new /* create an instance of the RelTable class */
tmpColl2[1] = "one"
tmpColl2[1] = "one - another one" /* replaces previous entry! (index exists)*/
tmpColl2[2] = "two"
tmpColl2[3] = "two" /* replaces previous entry! (item exists) */
tmpColl2["two"] = "this has the word 'two' as its index"
tmpColl2["two"] = "another entry with an index of 'two'"

CALL dump tmpColl2, "Instance of class RelTable, behaving like a table"

:: ROUTINE dump
 USE ARG coll

 SAY "Dumping" coll":"
 DO index OVER coll
 SAY "index:" LEFT("["index"]", 7) "item: ["coll[index]"]"
 END
 SAY LEFT("", 40, "-")

... yields the following output:

Dumping a Relation:
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
index: [2] item: [two]
index: [3] item: [two]
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
--
Dumping a RELBIJECTIVE:
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
index: [3] item: [two]
--

2.3 Public Class RelBijectiveSet

RelBijectiveSet directly subclasses the Object Rexx class Relation. It overrides the

methods "[]=" and "PUT" in order to change the default behaviour to a RelBijective

one, by allowing just one item per index, and no duplicate items. In addition to the

behaviour of RelBijective an index must not occur as an item, and an item must not

occur as an index in the entire collection.6)

the index will be used for persons of one sex and the associated item for the other sex.

Utility Routines and Utility Classes for Object Rexx, page 6-29

Example:
CALL class_rel /* load "Class_Rel.cmd" public definitions */

tmpColl1 = .Relation ~ new /* create an instance of the Relation class */
tmpColl1[1] = "one"
tmpColl1[1] = "one - another one"
tmpColl1[2] = "two"
tmpColl1[3] = "two"
tmpColl1["two"] = "this has the word 'two' as its index"
tmpColl1["two"] = "another entry with an index of 'two'"

CALL dump tmpColl1, "Built-in instance of class Relation"

tmpColl2 = .RelBijectiveSet ~ new /* create an instance of the RelTable class */
tmpColl2[1] = "one"
tmpColl2[1] = "one - another one" /* replaces previous entry! (index exists) */
tmpColl2[2] = "two"
tmpColl2[3] = "two" /* replaces previous entry! (item exists) */

/* the previous entry gets removed as "two" gets inserted (as an index) */
tmpColl2["two"] = "this has the word 'two' as its index"

/* the previous entry gets removed as "two" gets inserted (as an index) */
tmpColl2["two"] = "another entry with an index of 'two'"

CALL dump tmpColl2, "Instance of class RelTable, behaving like a table"

:: ROUTINE dump
 USE ARG coll

 SAY "Dumping" coll":"
 DO index OVER coll
 SAY "index:" LEFT("["index"]", 7) "item: ["coll[index]"]"
 END
 SAY LEFT("", 40, "-")

... yields the following output:

Dumping a Relation:
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
index: [2] item: [two]
index: [3] item: [two]
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
--
Dumping a RELBIJECTIVESET:
index: [two] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
--

2.4 Public Class RelDir

RelDir directly mixinclasses the Object Rexx class Relation. This way RelDir may be

added into the list of additional superclasses of any subclass of the class Relation. Unlike

the previous classes RelDir does not override predefined methods, but adds the methods

"ENTRY", "SETENTRY", "HASENTRY" and "UNKNOWN" and implements them in such a

way that the semantics of the class Directory are introduced.

6) This can be used e.g. to create pairs from a set of tennis players for building a tennis tournament plan.

Utility Routines and Utility Classes for Object Rexx, Part II, page 7-29

Source code of entire class definition:
:: CLASS RelDir MIXINCLASS Relation PUBLIC
:: METHOD ENTRY
 USE ARG name
 /* returns an item associated with name */
 RETURN self ~ at(TRANSLATE(name))

:: METHOD HASENTRY /* returns .true if entry exists, .false else */
 USE ARG name

 RETURN self ~ hasindex(TRANSLATE(name))

:: METHOD SETENTRY /* stores "value" with uppercased "name" */
 USE ARG name, value

 self ~ PUT(value, TRANSLATE(name))

:: METHOD UNKNOWN /* define an unknown method */
 USE ARG messageName, messageArgs

 IF RIGHT(messageName, 1) = "=" THEN /* trailing '=' in message name */
 DO /* remove trailing '=' and invoke 'SETENTRY' method */
 index = LEFT(messageName, LENGTH(messageName) - 1)
 FORWARD MESSAGE ("SETENTRY") ARRAY (index, messageArgs[1])
 END
 ELSE /* invoke 'ENTRY' method */
 FORWARD MESSAGE ("ENTRY") ARRAY (messageName)

A defined "UNKNOWN" method will get invoked by the Object Rexx interpreter if a message was received
for which no method has been defined. The uppercase name of that unknown message is used as the
index into the collection. Depending on the last character either the "ENTRY" or the "SETENTRY" (last
character must be an equal sign '=') message is sent.

Example 1:
CALL class_rel /* load "Class_Rel.cmd" public definitions */

tmpColl1 = .RelDir ~ new /* create an instance of the Relation class */
tmpColl1[1] = "one"
tmpColl1[1] = "one - another one"
tmpColl1[2] = "two"
tmpColl1[3] = "TWO"
tmpColl1["two"] = "this has the word 'two' as its index"
tmpColl1["two"] = "another entry with an index of 'two'"
tmpColl1["three"] = "another entry with an index of 'two'"
tmpColl1 ~ two = "hi"
tmpColl1 ~ two = "there"

CALL dump tmpColl1, "Built-in instance of class Relation"
SAY "tmpColl1 ~ 1 :" tmpColl1 ~ 1 /* return item associated with "1" */
SAY "tmpColl1 ~ two :" tmpColl1 ~ two /* return item associated with "TWO" */
SAY "tmpColl1 ~ three:" tmpColl1 ~ three /* no entry with "THREE" ! */

:: ROUTINE dump
 USE ARG coll

 SAY "Dumping" coll":"
 tmpSet = .set ~ new
 DO index OVER coll
 IF tmpSet ~ HASINDEX(index) THEN ITERATE
 tmpSet ~ PUT(index)
 DO item OVER coll ~ allat(index)
 SAY "index:" LEFT("["index"]", 7) "item: ["item"]"
 END
 END
 SAY LEFT("", 40, "-")

Utility Routines and Utility Classes for Object Rexx, page 8-29

... yields the following output:

Dumping a RELDIR:
index: [two] item: [another entry with an index of 'two']
index: [two] item: [this has the word 'two' as its index]
index: [TWO] item: [there]
index: [TWO] item: [hi]
index: [2] item: [two]
index: [3] item: [TWO]
index: [three] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
index: [1] item: [one]
--
tmpColl1 ~ 1 : one - another one
tmpColl1 ~ two : there
tmpColl1 ~ three: The NIL object

Example 2 (show useful usage of multiple inheritance):
tmpColl1 = .Test ~ new /* create an instance of the TEST class */
tmpColl1[1] = "one"
tmpColl1[1] = "one - another one"
tmpColl1[2] = "two"
tmpColl1[3] = "TWO"
tmpColl1["two"] = "this has the word 'two' as its index"
tmpColl1["two"] = "another entry with an index of 'two'"
tmpColl1["three"] = "another entry with an index of 'two'"
tmpColl1 ~ two = "hi"
tmpColl1 ~ two = "there"

CALL dump tmpColl1, "Built-in instance of class Relation"
SAY "tmpColl1 ~ 1 :" tmpColl1 ~ 1
SAY "tmpColl1 ~ two :" tmpColl1 ~ two
SAY "tmpColl1 ~ three:" tmpColl1 ~ three /* no entry with "THREE" ! */

:: REQUIRES class_rel /* load "Class_Rel.cmd" public definitions */

/* intermixing RelBijectiveSet with RelDir via multiple inheritance ,
 hence behaviour of both classes are present ! (Could be applied for
 RelTable or RelBijective too, or any other class descending from
 Object Rexx' Relation class.) */
:: CLASS TEST SUBCLASS RelBijectiveSet INHERIT RelDir

:: ROUTINE dump
 USE ARG coll

 SAY "Dumping" coll":"
 tmpSet = .set ~ new
 DO index OVER coll
 IF tmpSet ~ HASINDEX(index) THEN ITERATE
 tmpSet ~ PUT(index)
 DO item OVER coll ~ allat(index)
 SAY "index:" LEFT("["index"]", 7) "item: ["item"]"
 END
 END
 SAY LEFT("", 40, "-")

... yields the following output:

Dumping a TEST:
index: [TWO] item: [there]
index: [three] item: [another entry with an index of 'two']
index: [1] item: [one - another one]
--
tmpColl1 ~ 1 : one - another one
tmpColl1 ~ two : there
tmpColl1 ~ three: The NIL object

Utility Routines and Utility Classes for Object Rexx, Part II, page 9-29

3 MODULE ROUTINE_USIFY.CMD

This module supports one single public routine: USify() .

3.1 Public Routine USify()

Usage: USify(string)

Returns a string containing US-letters (actually English letters), numbers and single

underscores only. The string will never start or end with an underscore.

Source code of routine:
/* Initialization part, run only once , when first called: */

tmp = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456790"
table_in = XRANGE() /* get all chars */

/* set all non-alphanumeric chars to blank: */
table_out = TRANSLATE(table_in, tmp, tmp || table_in, " ")

.local ~ us.table_in = table_in /* save into local environment */

.local ~ us.table_out = table_out /* save into local environment */

/* just allow US-letters and numbers, replace anything else
 with *ONE* underscore */
:: ROUTINE USIfy PUBLIC
 USE ARG string

 RETURN SPACE(TRANSLATE(string, .us.table_out, .us.table_in), 1, "_")

Example:
CALL routine_USify /* load "routine_USify.cmd" public definitions */

a = " über <den> Wölkchen, muß die Freiheit & ..."
SAY pp(a)

/* show the effect of using TRANSLATE() only */
SAY pp(TRANSLATE(a, .us.table_out, .us.table_in))

/* show the effect of USify() */
SAY pp(usify (a))

:: ROUTINE pp /* private PP() version */
 RETURN "[" || ARG(1) || "]"

... yields the following output:

[über <den> Wölkchen, muß die Freiheit & ...]
[ber den W lkchen mu die Freiheit]
[ber_den_W_lkchen_mu_die_Freiheit]

Utility Routines and Utility Classes for Object Rexx, page 10-29

4 MODULE CLASS_REF.CMD

This module requires Class_Rel.cmd and Routine_USify.cmd and supports the following

public classes which all are subclasses of Object Rexx' builtin Relation class: Anchor and

Ref . The purpose of this module is to define the basic functionality for allowing to define

unique anchors and referring them at any time based on the anchor domain and the

Object Rexx unique object ID. With other words, an anchor object may be used to have a

unique surrogate string generated for and associated with any given object.

Due to the architecture it is possible to refer to an object for which no anchor was defined

at that particular point in time. If such anchors are not referred to, the Ref class methods

setOfAnchorNames , setOfReferences and SayStatistics may be used to debug

them.

4.1 Public Class Anchor

The Anchor class allows for initializing anchor objects which pertain to specific anchor

domains. All instances of class Anchor will get collected by the Anchor class and stored

with the class variable AnchorDir which is accessible via the class method AnchorDir . An

anchor object will create a unique string for any given object which follows the USify-rules

as described above, this unique string is called a "surrogate string" in the context of this

paper. The uniqueness of such surrogate strings pertains to the individual anchor objects.

Class methods of class ANCHOR:
INIT

Creates class-level attribute AnchorDir, a directory.

AnchorDir

Attribute method, allows access to the class-level attribute "AnchorDir" containing all
instances of the Anchor class.

Utility Routines and Utility Classes for Object Rexx, Part II, page 11-29

Instance methods of class ANCHOR:
INIT([domain])

Optional domain string of this anchor object. This domain string will be used as a
prefix for generating unique ("surrogate") strings for objects. A given domain will get
"US-ified" via the USify() routine. If not given, it defaults to the string "ORX" .

getAnchorName(object)

Assigns and returns a surrogate string for the given object. If the object was
processed already, then the assigned surrogate string is retrieved from the RelTable
object and returned. If object is omitted then .nil is returned.

ObjCounter

Returns the number of objects for which surrogate strings have been created and
assigned to.

AnchObjTable

Returns the RelTable object which stores all objects as indices and their assigned
surrogate strings as their values (items).

Example:
CALL class_Ref /* load "class_Ref.cmd" public definitions */

obj1 = .object ~ new /* an object */
obj2 = "hi..." /* another object */
obj3 = 12 /* yet, another object */

bk1Anch = .anchor ~ new("Book 1") /* domain for book # 1 */
bk2Anch = .anchor ~ new("Book 2") /* domain for book # 2 */

SAY "anchor for domain 'Book 1':"
CALL show obj1, "bk1Anch", bk1Anch
CALL show obj2, "bk1Anch", bk1Anch
CALL show obj3, "bk1Anch", bk1Anch
SAY " ---> obj2 has alreay a string surrogate:"
CALL show obj2, "bk1Anch", bk1Anch
SAY LEFT("", 40, "-")

SAY "anchor for domain 'Book 2':"
CALL show obj1, "bk2Anch", bk2Anch
CALL show obj2, "bk2Anch", bk2Anch
CALL show obj3, "bk2Anch", bk2Anch
SAY " ---> obj3's string surrogate in domain 'bk1Anch':"
CALL show obj3, "bk1Anch", bk1Anch

:: ROUTINE show /* private PP() version */
 SAY " surrogate: ["ARG(3) ~ getAnchorName(ARG(1))"]",
 "anchor domain: ["ARG(2)"] object: ["ARG(1)"]"

... yields the following output:

anchor for domain 'Book 1':
 surrogate: [Book_1_1] anchor domain: [bk1Anch] object: [an Object]
 surrogate: [Book_1_2] anchor domain: [bk1Anch] object: [hi...]
 surrogate: [Book_1_3] anchor domain: [bk1Anch] object: [12]
 ---> obj2 has alreay a string surrogate:
 surrogate: [Book_1_2] anchor domain: [bk1Anch] object: [hi...]
--
anchor for domain 'Book 2':
 surrogate: [Book_2_1] anchor domain: [bk2Anch] object: [an Object]
 surrogate: [Book_2_2] anchor domain: [bk2Anch] object: [hi...]
 surrogate: [Book_2_3] anchor domain: [bk2Anch] object: [12]
 ---> obj3's string surrogate in domain 'bk1Anch':
 surrogate: [Book_1_3] anchor domain: [bk1Anch] object: [12]

Utility Routines and Utility Classes for Object Rexx, page 12-29

4.2 Public Class Ref

The class Ref builds on the Anchor class. It defines class methods only and uses the class

ID string as the default prefix for the anchor domain.

Class methods of class REF:
INIT

Creates class-level attributes.

AnchorObjectDir

Private attribute method.

setOfAnchorNames

Returns a set containing those objects which are explicitly intended to be used as
anchors.

setOfReferences

Returns a set containing those objects which are explicitly intended to refer to an anchor.

getAnchorObject(object [, domain])

Private attribute method, uses an anchor object to create the surrogate string. If the
optional domain is omitted, then the class ID string of object is used instead.

Reference(object [, domain])

Returns the surrogate string by using an anchor object to create it; uses the private class
method getAnchorObject to retrieve the anchor object for the given domain. If the
optional domain is omitted, then the class ID string of object is used instead.

createReference(object [, domain])

Returns the surrogate string, uses the class method Reference. If the optional domain is
omitted, then the class ID string of the object is used instead. In addition this method will
save object in the class variable named setOfAnchorNames.

getReference(object [, domain])

Returns the surrogate string, uses the class method Reference. If the optional domain is
omitted, then the class ID string of the object is used instead. In addition this method will
save object in the class variable named setOfReferences.

SayStatistics

Writes statistical data to .ERROR total number of objects processed with method
createReference and with method getReference.

If there are objects which were referred to, but never created explicitly an appropriate
message will be generated. If there are objects which were created for reference
purposes but never referred to then an appropriate message will be generated.

Utility Routines and Utility Classes for Object Rexx, Part II, page 13-29

Example:
CALL class_Ref /* load "class_Ref.cmd" public definitions */

obj1 = .object ~ new /* an object */
obj2 = "hi..." /* another object */
obj3 = 12 /* yet, another object */
obj4 = .set ~ new /* yet, another object */
obj5 = .set ~ new /* yet, another object */

.ref ~ reference(obj1, "Book 1") /* create and get surrogate */

.ref ~ createReference(obj2, "Book 1") /* create reference explicitly */

.ref ~ createReference(obj3, "Book 1") /* never referred to explicitly */

.ref ~ createReference(obj4, "Book 1") /* never referred to explicitly */

SAY .ref ~ getReference(obj2, "Book 1") /* refer to explicitly */
SAY .ref ~ getReference(obj5, "Book 1") /* not explicitly created */

.ref ~ SayStatistics /* display statistics */

... yields the following output:

Book_1_2
Book_1_5
==> class [REF] references created explicitly: [3] references used: [2]
==> [2] object-references were created, but never referred to!
==> [1] object-references were created implicitly.

5 MODULE SGMLENTITY_UTIL.CMD

This module requires NLS_Util.cmd and supports one public class "sgmlEntity" and

the following two public routines: CPString2SGMLEntity and CPFile2SGMLEntity . It

supplies the basic functionality to translate codepage dependent characters into

codepage independent SGML entities7) and vice versa. All defined translation tables are

stored with the class sgmlEntity which itself is nothing else but a directory which holds

all translation tables indexed with their appropriate codepage table number.

sgmlEntity_Util.cmd contains the definitions for the author's codepages 850 and 437

which get set up once at initialization time. It is easy to extend the support to additional

codepages by creating the appropriate translation tables and inserting them into the

class sgmlEntity.8)

7) An SGML entity is enclosed between an ampersand "&" and a semi-colon ";" and either has a

symbolic name or a standardized number. E.g. the "hypertext markup language" (HTML) employs

SGML entities.

8) If you devise additional codepage support for this module, then please let the author know, so that it

can be added to the official distribution.

Utility Routines and Utility Classes for Object Rexx, page 14-29

5.1 Public Class sgmlEntity()

This class is defined such that it becomes easy to address it via the local environment. It

camouflages the fact that it is a bare directory holding the translation tables. It allows for

sending class methods only (methods directed at the class object ".sgmlEntity").

Source code of entire class definition:
:: CLASS SGMLEntity PUBLIC

:: METHOD init CLASS
 EXPOSE cpDirectory

 cpDirectory = .directory ~ new /* directory to contain codepages */

:: METHOD unknown CLASS /* forward messages to .directory */
 EXPOSE cpDirectory
 USE ARG mess_name, mess_args

 FORWARD MESSAGE (mess_name) ARGUMENTS (mess_args) TO (cpDirectory)

A defined "UNKNOWN" method will get invoked by the Object Rexx interpreter if a message was received for
which no method has been defined. In this case the unknown message together with its arguments is
forwarded to the class variable named cpDirectory which in turn is an instance of the Directory class.

5.2 Public Routine CPString2SGMLEntity ()

Usage: CPString2SGMLEntity (string [, [codepage] [, "Reverse"]])

Returns the string translated to the appropriate SGML entitities according to the given

codepage. If the optional third argument Reverse is given the translation is reversed from

SGML entities to the characters according to codepage. If codepage is omitted, then the

codepage of the actual default NLS-object of NLS_Util.cmd is used instead.

Utility Routines and Utility Classes for Object Rexx, Part II, page 15-29

Source code of routine:
:: ROUTINE CPString2SGMLEntity PUBLIC
 USE ARG string, CodePage, Reverse

 IF \ VAR("CodePage") THEN CodePage = get_nls_default_object() ~ codepage
 IF \ VAR("Reverse") THEN Reverse = ""

/* does given CP exist, if not use default CP, try
 to retrieve CP-2-SGMLentity table */

 cpTable = .SGMLEntity ~ entry(codepage)

 IF cpTable = .nil THEN /* SGMLentity-table for codepage not found, error */
 DO
 SIGNAL ON SYNTAX
 RAISE SYNTAX 40.904 ARRAY ("CPString2SGMLEntity()", '2 ("CodePage")',,
 "supported SGMLEntity codepages", codepage)
 END
 /* call proc according to third argument */
 IF (TRANSLATE(LEFT(Reverse, 1)) = "R") THEN
 RETURN sgml2chars(string) /* reverse */
 ELSE
 RETURN chars2sgml(string)
/* --------------- procedure ----------------- */
CHARS2SGML :
 tmpSupp = cpTable ~ supplier /* get a supplier from table */
 DO WHILE tmpSupp ~ available

/* translate chars to HTML/SGML entities */
 string = CHANGESTR(tmpSupp ~ index, string, tmpSupp ~ item)
 tmpSupp ~ next
 END
 RETURN string

/* --------------- procedure ----------------- */
SGML2CHARS :
 tmpSupp = cpTable ~ supplier /* get a supplier from table */
 DO WHILE tmpSupp ~ available

/* translate chars to HTML/SGML entities */
 string = CHANGESTR(tmpSupp ~ item, string, tmpSupp ~ index)
 tmpSupp ~ next
 END
 RETURN string

SYNTAX : RAISE PROPAGATE /* raise error in caller */

Example:
CALL sgmlEntity_util /* load "sgmlEntity_util.cmd" public definitions */

SAY CPString2SGMLEntity("über den Wölkchen, muß ...", 850)

a = "German umlauts: äöü ÄÖÜ ß"
SAY CPString2SGMLEntity(a, 850, "R")

... yields the following output:

über den Wölkchen, muß ...
German umlauts: äöü ÄÖÜ ß

Utility Routines and Utility Classes for Object Rexx, page 16-29

5.3 Public Routine CPFile2SGMLEntity ()

Usage: CPFile2SGMLEntity (file [, [codepage] [, "Reverse"]])

Translates the content of the given file to the appropriate SGML entitities according to the

given codepage. If the optional third argument Reverse is given the translation is reversed

from SGML entities to the characters according to codepage. If codepage is omitted, then

the codepage of the actual default NLS-object of NLS_Util.cmd is used instead.

Example:
CALL sgmlEntity_util /* load "routinesgmlEntity_util.cmd" public definitions */

/* make sure HTML-file "home.html" contains SGML-entities only */
CALL CPFile2SGMLEntity("home.html")

6 MODULE HTML_UTIL.CMD

This module requires sgmlEntity_util.cmd, RGF_Util.cmd and Class_Ref.cmd and

supports the following public classes: HTML_DOC, HTML_Table, HTML_List and

HTML.Reference . In addition the following public routines are defined: A_HREF(),

A_NAME(), BreakLines(), CAPITALIZE(), InitCap(), PlainText(),

SmartCap(), WWW_TAG(), X2BARE(), X2BLANK() and htmlComment() .

Although the module is not finalized as of yet, it may proof useful to some9).

6.1 Public Classes

The HTML_DOC, HTML_List and HTML_Table classes are designed such that they

behave like a storage container which has to be explicitly closed. The HTML_List class

allows for rendering the list in different styles. The HTML.Reference class adapts the

Ref class from Class_Rel.cmd for the purpose of generating valid HTML-code

("<a " -tags).

9) The reader is asked to look up the source code of ORX_ANALYZE_ASCII.CMD and compare it with

the source code of ORX_ANALYZE_HTML.CMD, which uses HTML_Util.cmd extensively. In order

to understand the source code of the first two modules the reader is referred to [Flat96c].

Utility Routines and Utility Classes for Object Rexx, Part II, page 17-29

6.1.1 Class HTML_DOC

This class serves as the container to receive and edit strings for producing valid

HTML-files.

Instance methods of class HTML_DOC:
INIT(file [, [title] [, [bReplace] [, [addHeader] [, addFooter]]]])

Sets up an instance and associates it with the given file. If the optional title is not given
the string "No title supplied !" will be used instead. The third optional argument
bReplace defaults to .false. If bReplace is set to .false a syntax error will be raised, if
the given file exists already. The optional addHeader if given must consist of valid
HTML-code and will get inserted right before the autogenerated "</HEAD>" tag. The
optional addFooter if given must consist of valid HTML-code and will get inserted right
before the autogenerated "</BODY>" tag.

UNKNOWN This method intercepts unknown messages to the HTML_DOC instance.
If the message name is LINEOUT then the argument (a string assumed) is written
directly to the HTML-file without altering its contents. Therefore the string must contain
valid HTML-code.
Any other message is interpreted as a valid HTML-tag with the following assumptions:

 1) message name is the first tag
 2) first argument is the string which gets embedded within the tag
 3) second argument contains the attributes for the first tag, if any
 4) arg(3...n) each contain a tag together with their attributes, if any

HTML_Header Private method for creating the HTML-header, invoked by the INIT-method.

HTML_Footer_Close

Private method for creating the HTML-footer, invoked by the CLOSE-method

Close Method to end working with this HTML_DOC instance, invokes method
HTML_Footer_Close.

UNINIT Method which makes sure that the CLOSE-method of this HTML_DOC instance is
called in order to make sure that the mandatory footer information is written.

Utility Routines and Utility Classes for Object Rexx, page 18-29

6.1.2 Class HTML_List

This class serves as the container to receive list-items and list-descriptions for producing

valid ordered, unordered and definition HTML-lists.

Class methods of class HTML_LIST:
INIT Defines the class variable named counter and initializes it.

Counter Returns the value of counter increased by 1.

Instance methods of class HTML_LIST:
INIT([ListTagOpen [, [ListTagItem] [, ListTagDescription]]])

Sets up an instance and invokes method SetListType to determine default list type.

SetListType([ListTagOpen [, [ListTagItem] [, ListTagDescription]]])

This method determines the default list type. If optional ListTagOpen is not given, then the
default list type is an unordered list. If the optional ListTagItem is not given, then a
definition list is assumed, otherwise the tag LI is used for ListTagItem and
ListTagDescription. This method may be invoked at any time, effectively allowing to
change the type of the HTML-list on the fly.

Item(string [, attributes])

Adds string as a list item, respects optional attributes verbatim. Functional only as long as
the CLOSE message has not been sent to the HTML_LIST instance.

Term(string [, attributes])

Adds string as a definition term item, respects optional attributes verbatim. Functional only
as long as the CLOSE message has not been sent to the HTML_LIST instance.

Description(string [, attributes])

Adds string as a description for a definition list, respects optional attributes verbatim.
Functional only as long as the CLOSE message has not been sent to the HTML_LIST
instance.

Close Method to end working with this HTML_LIST instance.

htmlText Returns the instance rendered to a string containing the HTML-code for the entire list.

Utility Routines and Utility Classes for Object Rexx, Part II, page 19-29

6.1.4 Class HTML_Table

This class serves as the container to receive table definition items for producing valid

HTML-tables.

Class methods of class HTML_TABLE:
INIT Defines the class variable named counter and initializes it.

Counter Returns the value of counter increased by 1.

Instance methods of class HTML_TABLE:
INIT([tableAttributes])

Sets up an instance of class HTML_TABLE. If the optional argument tableAttributes is
omitted than the default attributes "BORDER CELLPADDING=5" are filled in.

SetCaption(Caption [, Attributes])

Sets up a Caption. If the optional argument Attributes is omitted than the default
attribute "ALIGN=BOTTOM" is filled in.

putColumn(string [, attributes])

Adds string as a column item, respects optional attributes verbatim. If string is omitted
or empty an HTML-comment is filled in instead. Functional only as long as the
CLOSE message has not been sent to the HTML_LIST instance.

putHeader(string [, attributes])

Adds string as a header column item, respects optional attributes verbatim. If string is
omitted or empty an HTML-comment is filled in instead. Functional only as long as the
CLOSE message has not been sent to the HTML_LIST instance.

newRow([bFixup])

Ends the current row definition. If a value for bFixup and the instance variable
bSkipActive is .true by previously sending the message SkipCOLUMN, missing
columns up to the end of the row will be closed with a "COLSPAN=" attribute.

skipColumn([nrOfColumns])

Skips nrOfColumns columns with a "COLSPAN=" attribute. bSkipActive will be set to
.true (cf. method newRow). The optional nrOfColumns defaults to 1.

emptyColumn([nrOfColumns])

Inserts nrOfColumns empty columns. The optional nrOfColumns defaults to 1.

Close Method to end working with this HTML_TABLE instance.

htmlText Returns the instance rendered to a string containing the HTML-code for the entire table.

Utility Routines and Utility Classes for Object Rexx, page 20-29

6.1.5 Class HTML.Reference

This class serves as the reference mechanism for HTML "<A name=" and "<A href=" tags.

It allows to produce valid HTML-anchor names for any Object Rexx object. As it

subclasses the class REF from CLASS_REF.CMD it is also possible to use href-style

references before an anchor is defined, i.e. employing forward referencing. As the entire

code for the necessary specializations is remarkeably short, the entire class definition is

shown.

Source code of entire class definition:
:: CLASS html.reference SUBCLASS ref PUBLIC /* subclass the anchor-manager */

:: METHOD A_Name CLASS /* retrieve a reference name, else create it */
 USE ARG anObject, text

 RETURN '' text ""

:: METHOD A_Href CLASS /* retrieve a reference name, else create it */
 USE ARG anObject, text, htmlFile

 IF ARG(3, "O") THEN htmlFile = "" /* supply default empty string */

 RETURN '<A HREF="' || htmlFile || "#" ||, self ~ getReference(anObject) ||,
 '">' || text || ""

6.2 Public Routine A_NAME()

Usage: a_name(name, text)

Returns a HTML-compliant anchor-name definition, having name as its anchor name

underlying the text.

Source code of the public routine:
:: ROUTINE A_NAME PUBLIC
 PARSE ARG name, text

 RETURN '' text "

Utility Routines and Utility Classes for Object Rexx, Part II, page 21-29

6.3 Public Routine A_HREF()

Usage: a_href (target_document, name, text)

Returns a HTML-compliant anchor-name definition, having name as its target anchor in

the target_document underlying the text.

Source code of the public routine:
:: ROUTINE A_HREF PUBLIC
 PARSE ARG doc, name, text

 RETURN '' || text || ""

6.4 Public Routine BreakLines()

Usage: breakLines (CRLFstring [, nrOfChars])

Returns the CRLFstring edited such that between carriage-return and line-feed

characters there are no more than nrOfChars characters. The optional argument

norOfChars defaults to 100 characters per line.

6.5 Public Routine Capitalize()

Usage: capitalize (string, FirstMarkUp, RestMarkUp)

Returns the edited string in uppercase. Each capital letter in string is enclosed within

the FirstMarkUp tag all other characters within the RestMarkUp tag. If both,

FirstMarkUp and RestMarkUp contain an empty string, then the markup for

RestMarkUp will be set to "FONT SIZE=-1" .

Utility Routines and Utility Classes for Object Rexx, page 22-29

6.6 Public Routine InitCap()

Usage: InitCap (string, FirstMarkUp, RestMarkUp)

Returns the edited string in uppercase. The first character of each word will be enclosed

within the FirstMarkUp tag, all other characters within the RestMarkUp tag. If both,

FirstMarkUp and RestMarkUp contain an empty string, then the markup for RestMarkUp

will be set to "FONT SIZE=-1" .

6.7 Public Routine SmartCap()

Usage: SmartCap (string, type, bBlanks)

Returns the string either initcapped or capitalized depending on the value of type ("I" or

"C"). If the optional type is omitted, the string will be capitalized. By default all blanks are

translated into the SMGL entity " ", the character for non-breaking space. If bBlanks

is set to false, blank characters will remain regular blanks in the returned string.

Source code of the public routine:
/* -- */
/* purpose: capitalize or initcap plain text, replace blanks by
(non-breaking space) by default */
/* works with defaults: lowercase letters are FONT SIZE=-1
 */
/* capitalize, translate to html of **PLAIN TEXT** string, blanks will be
translated into ! */
:: ROUTINE SmartCap PUBLIC
 USE ARG string, type, bBlanks

 bBlanks = (bBlanks <> .false) /* default: translate blanks into */

 IF TRANSLATE(LEFT(type, 1)) = "I" THEN type = "I" /* InitCap desired */
 ELSE type = "C" /* default: capitalize */

 IF bBlanks THEN string = CHANGESTR(" ", string, "00"x)

 IF type = "C" THEN string = CAPITALIZE(string) /* capitalize string */
 ELSE string = INITCAP(string) /* initcap string */

 IF bBlanks THEN string = CHANGESTR("00"x, string, " ") /* to " " */
 ELSE string = CHANGESTR("00"x, string, " ") /* leave blanks */

 RETURN string

Utility Routines and Utility Classes for Object Rexx, Part II, page 23-29

6.8 Public Routine X2Blank()

Usage: X2Blank (string)

Returns the edited string in which all blanks are replace with the SGML entity for the

"non breaking space" (" ") character.

Source code of the public routine:
:: ROUTINE X2BLANK PUBLIC
 PARSE ARG plainText

 RETURN CHANGESTR(" " , plainText, " ")

6.9 Public Routine X2Bare()

Usage: X2Bare (string)

Returns the edited string in which all special SGML/HTML-characters, namely

ampersand (&), smaller than (<), greater than (>) and the quote (") are replaced with

their respective SGML-entities.

Source code of the public routine:
:: ROUTINE X2BARE PUBLIC
 PARSE ARG plainText

 plainText = CHANGESTR("&" , plainText, "&") /* translate ampersand */
 plainText = CHANGESTR("<" , plainText, "<") /* translate smaller */
 plainText = CHANGESTR(">" , plainText, ">") /* translate larger */
 plainText = CHANGESTR('"' , plainText, """)/* translate to quote */
 RETURN plainText

6.10 Public Routine PlainText()

Usage: PlainText (string)

Returns the edited string by calling X2Bare() and BreakLines() with string as an

argument.

Utility Routines and Utility Classes for Object Rexx, page 24-29

6.11 Public Routine htmlComment()

Usage: htmlComment (string)

Returns the string in form of an HTML/SGML-comment.

Source code of the public routine:
:: ROUTINE htmlComment
 RETURN "<!--" ARG(1) "-->"

6.12 Public Routine www_tag()

Usage: www_tag(string [, tag1+attr1] [, tag2+attr2]...)

Returns the HTML-code for the string embedded in tag1 with optional attributes attr1,

tag2 with optional attributes attr2 and so forth. The routine makes sure that for the

following tags no end-tags are produced as this is forbidden per the definitions of

HTML 3.2: "BR", "HR", "Image", "Input" and "IsIndex".

Utility Routines and Utility Classes for Object Rexx, Part II, page 25-29

6.13 Example

The following example shows code to produce an HTML-file which may be viewed with

any WWW-browser:
/* */

list1 = .html_list ~ new /* create a HTML_LIST instance */
list1 ~ item("This is an item")
/* a term and a description supplied */
list1 ~ term(Capitalize("OeH"))
list1 ~ description("Dies ist eine Beschreibung über die weltberühmte ÖH
hier.")
list1 ~ close

aha1 = .html_table ~ new /* create a HTML_TABLE instance */
aha1 ~ setcaption(" This is a caption ")
aha1 ~ putheader("This is a header")
aha1 ~ putheader("This is another header", "ROWSPAN=2 COLSPAN=2")
aha1 ~ newrow
aha1 ~ putColumn("cell 1")
aha1 ~ putColumn("cell 2")
aha1 ~ putColumn("cell 3")
aha1 ~ newrow
aha1 ~ newrow
aha1 ~ putColumn("aha 1")
aha1 ~ putColumn("aha 2")
aha1 ~ putColumn("aha 3")
aha1 ~ putColumn("aha 4", "COLSPAN=2")
aha1 ~ newrow

a = "I am f<rO>Mm Au&s-tria a & n < d > I < a & m > too ! "
a1 = capitalize(a) /* show effects of Capitalize */
a2 = InitCap(a) /* show effects of InitCap */

b = "1You'rENot FRoM AusTRiA ?"
b1 = capitalize(b) /* show effects of Capitalize */
b2 = InitCap(b) /* show effects of InitCap */

 /* create an instance of HTML_DOC */
file = "tmp.htm"
html = .html_doc ~ new(file, "This is *some* title ...", .true)
html ~ h1("some header at level 1")
html ~ p("some paragraph")
html ~ lineout(aha1 ~ htmlText)
html ~ lineout(list1 ~ htmlText)
html ~ lineout(list1 ~~ setListType("OL") ~ htmlText)
html ~ lineout(list1 ~~ setListType("DL") ~ htmlText)
html ~ lineout(www_tag("some other paragraph", "P"))
html ~ br("This is for sure an unknown message!")
html ~ br(PlainText(a))
html ~ br(a1)
html ~ br(a2)
html ~ hr
html ~ br(PlainText(b))
html ~ br(b1)
html ~ br(b2)
html ~ hr(, "SIZE=5")
html ~ close
CALL CPFile2SGMLEntity file, 850 /* translate 850-chars to SGML-entities ! */

:: REQUIRES HTML_UTIL.CMD /* load HTML-support */

The resulting HTML-file is displayed on the next page.

Utility Routines and Utility Classes for Object Rexx, page 26-29

Utility Routines and Utility Classes for Object Rexx, Part II, page 27-29

7 SUMMARY

This paper discussed and documented the public routines and public classes of the

following modules in a brief manner: class_rel.cmd, routine_USIfy.cmd,

class_ref.cmd, sgmlEntity_util.cmd and html_util.cmd.

Additional utilities for Object Rexx programs are presented in [Flat97]. The netnews

newsgroup <comp.lang.rexx> should be used for discussing issues with respect to

these utilities.

8 REFERENCES

[Ende97] Ender T.: "Object-Oriented Programming with REXX", John Wiley &

Sons, New York et.al. 1997.

[Flat96a] Flatscher R.G.: "Local Environment and Scopes in Object REXX", in:

Proceedings of the "7th International REXX Symposium, May 12-15,

Texas/Austin 1996", The Rexx Language Association, Raleigh N.C.

1996.

[Flat96b] Flatscher R.G.: "Object Classes, Meta Classes and Method Resolution

in Object REXX", in: Proceedings of the "7th International REXX

Symposium, May 12-15, Texas/Austin 1996", The Rexx Language

Association, Raleigh N.C. 1996.

[Flat96c] Flatscher R.G.: "ORX_ANALYZE.CMD - a Program for Analyzing

Directives and Signatures of Object REXX Programs", in: Proceedings

of the "7th International REXX Symposium, May 12-15, Texas/Austin

1996", The Rexx Language Association, Raleigh N.C. 1996.

[Flat97] Flatscher R.G.: "Utility Routines and Utility Classes for Object Rexx", in:

Proceedings of the "8th International Rexx Symposium, April 22nd-24th,

Heidelberg/Germany 1997", The Rexx Language Association, Raleigh

N.C. 1997.

Utility Routines and Utility Classes for Object Rexx, page 28-29

[TurWah97] Turton T., Wahli U.: "Object Rexx for OS/2 Warp", Prentice-Hall, London

1997.

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object Rexx by Example", Aviar,

Pittsburgh 1996.

[WahHolTur97] Wahli U., Holder I., Turton T.: "Object REXX for Windows 95/NT, With

OODialog", Prentice Hall, London 1997.

[W3Hobbes] URL (97-06-18): http://hobbes.nmsu.edu/

[W3ObjRexx] URL (97-06-18): http://www2.hursley.ibm.com/orexx/

[W3Rexx] URL (97-06-18): http://www2.hursley.ibm.com/rexx/

[W3RexxLA] URL (97-06-18): http://www.RexxLA.org

Additional information:

Online documentations for Object Rexx as delivered with OS/2 Warp 4 in the fall of 1996,

the Object Rexx OS/2 developer edition as supplied with IBM's "Developer

Connection" CD-ROM program between 1995 and 1997, and the

Windows 95/NT products and developer editions as of February 1997 and

June 1997.

Various postings on the internet newsgroup "comp.lang.rexx" between 1995 and 1997.

Utility Routines and Utility Classes for Object Rexx, Part II, page 29-29

Date of Article: 1997-07-19.

Published in: Proceedings of the "8th International REXX Symposium", Heidelberg/

Germany, April 22nd-24th, 1997", The Rexx Language Association,

Raleigh N.C. 1997.

Presented at: "8th International Rexx Symposium", Heidelberg/Germany, April

22nd-24th, 1997.

Utility Routines and Utility Classes for Object Rexx, page 30-29

