
“JAVA BEAN SCRIPTING WITH REXX”

Rony G. Flatscher

Department of Management Information Systems at the

Vienna University of Economics and Business Administration (Austria)

„12th International Rexx Symposium“, Raleigh, North Carolina, USA,

April 30th - May 2nd, 2001.

ABSTRACT

IBM has developed an open source and free software system called “Bean Scripting

Framework” (BSF) which allows Java programs to easily invoke scripts and

programs written in another language than Java. This article gives a bird eyes view

of BSF by introducing its architecture and hints at the potential and ramifications of

this interesting technology. It then concentrates on describing and documenting the

implementation of a “Rexx engine”, which allows Rexx interpreters and Object Rexx

interpreters to be incorporated into the BSF framework. This allows for employing

Rexx and Object Rexx everywhere where IBM’s BSF is employed, as well as

individually create Java programs which invoke and co-operate with Rexx and

Object Rexx programs.

Java Bean Scripting with Rexx, page 1-27



1 INTRODUCTION

IBM has been actively supporting the Java movement from the beginning by

supporting the developing of numerous technologies in this area and actively

seeking co-operation with other companies and organizations since the midlle of the

90ies of the 20th century. Within IBM developers have been getting the opportunity

to make their work publically available via their alphaworks Web site [W3Alpha].

Some of these alphaworks projects are terminated, others may be developed further

and some may be turned into IBM maintained open sourced and freely available

developer works projects.

The “Bean Scripting Framework” (BSF) has been turned from an alphaworks to a

developer works project at the beginning of 2001 and can be retrieved in its latest

version 2.2 from [W3BSF]. This project has been dealing with the creation of

interfaces from java to scripting languages, either implemented in Java themselves

like NetRexx [W3NetRexx] from Mike F. Cowlishaw or Rhino [W3Rhino] from

Netscape’s Mozilla project, or in non-Java languages like Perl or BML. The BSF

package is written in pure Java and allows Java programs to call any supporting

scripting language with or without passing arguments to supplied scripts in those

languages.

Depending on the invocation it is possible for Java programs to retrieve return

values from those scripts. Figure 1 depicts the four different types of invocating

scripts from Java via the infrastructure made available by BSF:

w “exec”, supplies a script, no arguments and does not expect a return result

from the scripting engine, which executes the script,

w “eval”, supplies a script (usually a single line of code), no arguments and

expects a return result from the scripting engine, which executes the script,

w “apply”, supplies a multi-line script representing an anonymous function,

optional arguments and expects a return result from the scripting engine, which

executes the script,

Java Bean Scripting with Rexx, page 2-27



w “call”, supplies the target object, the name of the method (function) to invoke,

supplies optionally arguments and expects a return result from the scripting

engine, which executes the script.

The BSF package is accompanied with a simple Java program1) which allows for

invoking any script from the command line with switches that determine whether the

invocation occurs with the “eval” or the “exec” method.

The BSF package supplies important and very helpful services for use by the called

scripts which ultimately allow those scripts to invoke methods on Java objects by

calling back into Java via BSF.2) Figure 2 depicts the overall architecture of BSF,

allowing for invoking scripts and supporting these by allowing to easily call back into

Java to invoke methods on Java objects as well. In order to take advantage of BSF

Java Bean Scripting with Rexx, page 3-27

2) E.g. BSF supports the dynamic Java method resolution depending on the datatypes supplied with

the name of a method which should get invoked on the given Java object.

1) This program - com.ibm.bsf.Main.java - also serves as an example of how easy it is to invoke

any BSF engine from Java programs.

JRE

Java Program:
call(...)

REXX
call(o, m,args...)

JRE

Java Program:
exec()

REXX
exec()

JRE

Java Program:
eval()

REXX
eval()

JRE

Java Program:
apply(...)

REXX
apply(args...)

Figure 1: BSF - Invoking a Script (Example: Rexx Engine).



one needs to create a BSF “Engine” which is able to invoke the interpreter which

executes the script passed from Java to Rexx.

Originally, IBM made the BSF package available via its Alphaworks site [W3Alpha],

and starting with January 2001 changed its status to a supported open source

project via their developer works site [W3BSF], which at the end of May 2001 is up

to version 2.2. It supports the following languages out of the box: Java Script, Lotus’

XSLT, NetRexx, Rhino, Visual Basic. This paper describes the interfaces made

available with the implementation of a Rexx Engine for BSF.3)

Java Bean Scripting with Rexx, page 4-27

3) Rexx scripts are able to refer to Java objects registered by BSF which are dubbed “beans” in the

BSF documentation. The term “bean” in the BSF context denotes any Java object being stored in

the BSF registry on the Java side and is not to be mixed up with the term “Java beans” as defined

by Sun.

BSF

RexxEngine
BSF4Rexx

(C++)

Rexx
scripts

RexxAndJava

Java

Figure 2: Interfacing (Object) Rexx with IBM’s “Bean Scripting Framework” (BSF).



2 THE REXX BSF ENGINE

In the winter semester of 2000/2001 a student, Peter Kalender of the University of

Essen (Germany), took over the assignment of a seminar project about evaluating

IBM’s Bean Scripting Framework and to venture possibilities to allow Rexx

interpreters to be supported by it. By the middle of December 2000 he was able to

present a basic implementation allowing Java programs to invoke Rexx scripts and

making it possible for those Rexx programs to call back into Java and invoke

methods on Java objects. By February 2001 he was able, after studying and

learning Object Rexx, to come up with an Object Rexx wrapper class, allowing

Object Rexx programs to use the messaging mechanism to address Java objects

and have methods invoked upon them.4)

As the student had addressed many different and time consuming challenges

(learning Rexx, learning BSF, creating C++ and Java support programs) one could

not expect that he was able to create a full implementation of all aspects of BSF and

of Java, allowing Rexx programmers to use Java to capacity, simply due to time

restrictions. Yet, the basic evaluation and assessment as well as a prototypic

implementation paved the way for creating a full implementation with taking

advantage of these preliminary results, helping to dramatically cut down the needed

time to get to all information necessary to achieve this task.

This section will document the resulting functionality made available in the full

implementation of the Rexx BSF Engine which is aimed at making available all

aspects of Java to Rexx programs. It concludes with a section describing the new

version of the wrapper class for allowing Object Rexx to transparently create and

access Java objects.

2.1 The Rexx Function Interface

Rexx programs being invoked via BSF are always invoked by a Java program. In the

process of this invocation process the Java part (“RexxEngine.java”) of the Rexx

Engine makes sure that an external Rexx function, named “BSF” is registered and

thereby made automatically available to the called Rexx program. This is done by

Java Bean Scripting with Rexx, page 5-27

4) The seminar paper and the initial Object Rexx wrapper class can be found in [Kal01].



loading a dynamic link library written in C++, “BSF4Rexx”, which needs to be

compiled for the target operating system and target hardware. The communication

between Rexx and Java is been done via this DLL using the “Java Native Interface”

(JNI) technology for being able to interact with Java using C++. The communication

with Rexx on the Java side is realized with the Java program “RexxAndJava.java”

with as much functionality being moved from the original C++ interface to the Java

side, like the list of events pending to be read (polled) by the Rexx side.5)

The syntax rules in this article show optional arguments enclosed into square

brackets. If an argument or a closing bracket is followed by three dots (“ellipses”),

the argument or the bracketed arguments may be repeated multiple times, if

necessary. In cases where the Java side needs to indicate “null” the Rexx string for

indicating this is returned.6)

2.1.1 Passing Arguments Between Rexx and Java

The Java programming language is a strongly typed language, whith a compiler

making sure that the declared datatypes are correctly used. Choosing of methods

with the same name is done via the signature7) of such methods. By contrast, Rexx

is not a strongly typed language and there is no notion of datatype per se. All Rexx

values are strings which might get interpreted as numbers by context, e.g. if one

wishes to add the content of two variables, which implies that they need to contain

valid numbers.

Because of this fundamental difference, it is important for Rexx to indicate to Java,

as which datatype a Rexx string is to be interpreted. It is this definition which gets

used on the Java side to convert to the correct (indicated) datatype and to find a

matching method, i.e. a method which arguments occur in the order indicated by

Rexx and being of the indicated data type. Java’s primitive datatypes “boolean”,

”byte”, ”char”, “short”, ”int”, “long”, ”float” and ”double”, as well as Java’s datatype

“String” are directly translated from and to Rexx strings. Java objects on the other

Java Bean Scripting with Rexx, page 6-27

7) The “signature” consists of the return data type and the data types of the arguments of a method.

6) By default the value for representing Java’s “null” is the Rexx case sensitive string “.NIL” (note the

leading point).

5) Therefore, should the need arise, that more Java functionality should be made available to Rexx,

then “RexxAndJava.java” could be used to add that functionality for Rexx.



hand are stored in a registry on the Java side with a unique name. Therefore, Java

objects can be addressed and referred to by Rexx by name. In the case that an

argument to a Java method refers to such a registered Java object, Rexx must

indicate this explicitly by using the datatype “Object”. ,Table 1 shows the Java

datatypes, with the Rexx strings denominating them.8) 9)

2.1.2 The Core Functions for Interfacing Rexx with BSF

This section describes the core functions enabling Rexx to interface with Java using

IBM’s Bean Scripting Framework via the external Rexx function BSF(). These

functions allow to create, free, lookup Java objects in the BSF repository, to invoke

arbitrary methods on these objects (like function calls in Rexx, just on Java objects)

and to terminate the Java Virtual Machine before Rexx exits.

Java Bean Scripting with Rexx, page 7-27

a string value (UTF8)"String"

a short value"Short"

a Java object which must be registered
already with the BSF registry

"Object"

a long value"Long"

an integer value"Int"

a float value"Float"

a double value"Double"

a single (UTF8) character"Char"

a byte value"Byte"

the value 0 (false) or 1 (true)"Boolean"

DatatypeIndicator

Table 1: Datatype Indicator Strings.

9) The Java datatypes “char” and “String” (consisting of char elements) are encoded in Unicode

UTF-8. Therefore it may be necessary to translate the characters and strings from/to UTF-8, if

using non-US ASCII characters.

8) Note the bold emphasize in the column “Indicator” in table 1 indicates the minimum

(case-independent) letters one needs to supply to uniquely designate the Java datatype.



2.1.2.1 Creating and Freeing Java Objects from Rexx

Rexx programs are able to create instances of Java classes, “Java objects”, and

interact with these by invoking the Java methods available to those Java objects. In

the context of the Bean Scripting Framework this process is in effect a sequence of

two-steps: first the Java object is created on behalf of Rexx and secondly, that Java

object is stored at the Java side in a registry and can be referred to merely by name.

This in turns allows Rexx to refer to Java objects by name only by using the BSF

interface. As long as the registered Java object is stored in the BSF registry it is

available to Rexx. In the case that Java objects are no longer needed by Rexx, it

should get removed from the BSF registry, in order for allowing Java to garbage

collect unused Java objects and reclaim the resources they got reserved.

Figure 3 shows the syntax of creating an instance of a Java class which gets stored

in the BSF registry. “beanName” can be a name supplied by Rexx which gets used

to register the newly created Java object (dubbed “bean”) or can be left empty in

which case a unique name is created on the Java side.10) “beanType” denominates

the Java class which gets instantiated. In the case that it is necessary to supply

arguments for creating a particular Java object, these arguments need to be given

thereafter, each preceeded by the Java datatype as mentioned above. This function

will return the name by which the created Java object got registered in the BSF

registry and which must be used to refer to that object from Rexx.

res=BSF(‘registerBean’, beanName, beanType [, typeIndicator, arg]...)

Figure 3: Syntax for Creating and Registering a Java Object from Rexx.

Figure 4 shows the syntax of de-registering (freeing) of Java objects from the BSF

registry. This call variant supplies the “beanName” by which the Java object got

registered on the Java side by BSF. It will return the “beanName” which just got

unregistered. In the case that the indicated bean does not exist in the registry, the

Java Bean Scripting with Rexx, page 8-27

10) The Java side creates a unique name with the following algorithm as documented in the Java

Software Development Kit, 1.3.0, for class “Object” and method “toString()” with the following Java

code:

o.getClass().getName() + "@" + Integer.toHexString(o.hashCode())



Rexx string for indicating “null” gets returned.11)

res=BSF(‘unregisterBean’, beanName)

Figure 4: Syntax for Freeing a Java Object from Rexx.

2.1.2.2 Looking Up Registered and Declared Java Objects from Rexx

The Bean Scripting Framework allows Java programs and other scripting languages

to store Java objects in the BSF registry independently of Rexx.12) If the name of

such a registered Java object is known, it can be referred to and looked up by Rexx.

The syntax of looking up a declared bean is given in figure 5. “beanName” indicates

the name of the registered Java object. This function call returns the Rexx string for

indicating “null”, if the Java object is not found, else the name of the reference to the

Java object, which should get used in subsequenct referrals.13)

res=BSF(‘lookupBean’, beanName)

Figure 5: Syntax for Looking Up a Registered Java Object from Rexx.

2.1.2.3 Invoking Java Methods from Rexx

Figure 6 shows the syntax diagram for invoking methods14) on Java objects.15)

“beanName” denominates the Java object stored by this name in the BSF registry on

Java Bean Scripting with Rexx, page 9-27

15) To find out which methods one can invoke on Java objects, consult the documentation of the

respective Java classes the Java object was created from. The Java classes of the Java runtime

environment (JRE) are documented in the “Java Development Kit” (JDK) of Sun ([W3Java]) or in

the Java development kits of other companies like IBM.

14) “Invoking methods on objects” is comparable to calling a function on the data represented by the

Java objects in classic Rexx. Hence the Rexx function call “REVERSE(‘abc’)” could be

re-formulated in an OO-way by “’abc’~REVERSE”, meaning “invoke the method REVERSE on the

string object ‘abc’”.

13) At present the implementation will reference count the access of a Java object with this function, if

necessary even creating a new access name according to the rules layed out above for creating

new Java objects via the “registerBean” function. Hence, should a looked up Java object not being

needed anymore, one needs to free it explicitly via a “unregisterBean” call as layed out above.

12) Cf. [W3BSF] using the online documentation on the methods “declare()” and “undeclare()”.

11) This implementation uses reference counters on the Rexx created Java objects and effectively

deletes the entry in the BSF registry only, if the reference counter drops to 0.



the Java side. “methodName” indicates the name of the public method which should

get invoked (“called”) on the object. Depending on the method one may need to

supply arguments which follow thereafter in pairs of “typeIndicator” (cf. table 1

above) and “arg” (argument value). At the Java side the name of the method

combined with the sequence and data types of the arguments is used to identify at

runtime the method, which should get invoked.

This function returns the value the invoked method produced or the Rexx string

representation of “null”. If a Java object is returned, then at the Java side it gets

automatically registered, if needed, and the name to reference it will be returned.

Such references to Java objects created as a result of a Java method invocation

should get freed from the Rexx side with “unregisterBean” (cf. above) in order to

allow the Java object to be garbage collected and to reclaim its reserved

resources.16)

res=BSF(‘invoke', beanName, methodName [, typeIndicator, arg]...)

Figure 6: Invoking a Method on a Java Object from Rexx.

2.1.2.4 Terminating the Java Virtual Machine from Rexx

For Rexx scripts that are merely started from Java in order to get access and to use

the Java runtime environment as a huge Rexx function package, it is necessary

upon finishing execution to terminate the Java virtual machine which originally

started the Rexx script. Figure 7 denotes the syntax of the BSF-call to exit the Java

virtual machine by issuing a “System.exit(return_value)” at the Java side.

“return_value” allows to set the return value used at the Java side, which defaults to

0. “time2sleep” is a milli-second value to wait at the Java side before exiting the Java

virtual machine which defaults to 100 ms. The delayed exiting of the Java virtual

machine allows Rexx to cleanly terminate, i.e. closing and releasing the resources it

used.17)

Java Bean Scripting with Rexx, page 10-27

17) Exiting the Java virtual machine implies immediate abortion of Rexx as well.

16) The Object Rexx wrapper class “BSF.cls” discussed further down will automatically unregister

those Java objects, which are referred to by Object Rexx proxy objects which get garbage collected

by Object Rexx.



This function returns the verbatim value “SHUTDOWN, REXX !” as a reminder of the

purpose of this function.

res=BSF(‘exit’ [, return value [, time2sleep]])

Figure 7: Syntax for Exiting the Java Virtual Machine from Rexx.

2.1.3 Auxiliary Functions for Interfacing Rexx with BSF

If writing Rexx programs to interact with Java objects, it is sometimes necessary or

merely convenient to be able to use functions to achieve certain operations, which

even might be realizable via a sequence of Java method invocations. This

subsection introduces and documents the functions available to Rexx.

2.1.3.1 Retrieving a Public Field Value of a Java Object from Rexx

In Java it is common practice to access and change values of fields stored with

objects, which are declared to be public. Figure 8 shows the syntax of the

appropriate BSF call. Should a field have no value, the Rexx string representation

for “null” is returned, otherwise the stored value. “beanName” refers to the Java

object in the BSF registry, “fieldName” is the case sensitive name of a public field

defined for the object in question.

res=BSF(‘getFieldValue’, beanName, fieldName)

Figure 8: Syntax for Retrieving the Value of a Public Java Object Field from Rexx.

2.1.3.2 Setting a Public Field Value of a Java Object from Rexx

In Java it is common practice to access and change values of fields stored with

objects, which are declared to be public. Figure 9 shows the syntax of the

appropriate BSF call. “beanName” refers to the Java object in the BSF registry,

“fieldName” is the case sensitive name of a public field defined for the object in

question, “argType” is a Rexx string according to table 1 above and “newValue”

contains the value the new field is to be set to. In the case that no value should be

stored with the public field in question, then the Rexx string representation for Java

“null” has to be used which removes any values from the field.

Java Bean Scripting with Rexx, page 11-27



2.1.3.3 Retrieving a Property Value of a Java Object from Rexx

In Java some classes, denoted as “Java Beans”18) may possess properties which

may get queried. Figure 10 shows the syntax of the appropriate BSF call. Should a

property have no value the Rexx string representation for “null” is returned,

otherwise the stored value. “beanName” refers to the Java object in the BSF

registry, “fieldName” is the case sensitive name of a public property defined for the

object in question. As properties may be indexed an optional index can be given.

res=BSF('getPropertyValue', beanName, fieldName [, index])

Figure 10: Retrieving the Value of a Public Java Object Property from Rexx.

2.1.3.4 Setting a Property Value of a Java Object from Rexx

In Java it is common practice to access and change values of fields stored with

objects, which are declared to be public. Figure 11 shows the syntax of the

appropriate BSF call. “beanName” refers to the Java object in the BSF registry,

“fieldName” is the case sensitive name of a public field defined for the object in

question, “index” is optional in the case a property is not indexed and otherwise

indicates the index of the property to set, “argType” is a Rexx string according to

table 1 above and “newValue” contains the value the new field is to be set to. In the

case that no value should be stored with the public field in question, then the Rexx

string representation for Java “null” has to be used which removes any values from

the property.

res=BSF('setPropertyValue', beanName, fieldName, [index], argType, newValue)

Figure 11: Setting the Value of a Public Java Object Property from Rexx.

Java Bean Scripting with Rexx, page 12-27

res=BSF('setFieldValue', beanName, fieldName, argType, newValue)

Figure 9: Setting the Value of a Public Java Object Field from Rexx.

18) “Java Beans” as defined in the JDK must not be confused with the term used in IBM’s Bean

Scripting Framework (BSF), which uses the term “bean” as well, but primarily denotes Java objects

stored in the registry. It may be the case that BSF was originally developed for Java Beans and

thereafter extended to interface with normal Java objects as well.



2.1.3.5 Retrieving a Static Value

Usually it is possible with the “getFieldValue” function to retrieve the value of a static

public field as well.19) However, there are situations, where this may not be (easily)

possible, e.g. static public field with predefined values serving as constants. Such

constants can be found with (uninstantiable) Java Interfaces or (uninstantiable)

abstract Java classes. Figure 12 denotes the syntax of the call which allows Rexx to

easily get at the appropriate values of public static fields. Should a field have no

value the Rexx string representation for “null” is returned, otherwise the stored value.

“className” refers to the Java class or interface and “staticFieldName” is the case

sensitive name of the static public field which value should get retrieved.

res=BSF('getStaticValue', className, staticFieldName)

Figure 12: Retrieving the Value of a Public Static Java Object Field from Rexx.

2.1.3.6 Setting the Rexx String Representing Java’s “null”

Java uses a special constant (“null”) to indicate whether a field has no value or

whether a method returns no valid object. Therefore it is very important to be able in

Rexx to detect and to supply this important indicator. By default the bsf4rexx

[W3BSF4R] implementation uses the case sensitive string “.NIL” to represent a Java

“null”. Should the unlikely case arise, that some program uses this awkward string,

then it becomes necessary for Rexx to be able to switch to a totally different string

representation. Figure 13 denotes the syntax of the BSF-call which allows to set the

string representing “null” on the Java side to the argument “newString”. This setting

takes effect immediately.

res=BSF('setRexxNullString', newString)

Figure 13: Setting the Rexx String Representing Java’s “null” from Rexx.

Java Bean Scripting with Rexx, page 13-27

19) In Java an instance of a class (a Java object) is able to directly access its instance fields as well as

the static (class) fields of the class it belongs to.



2.1.3.7 Retrieving an Element of a Primitive20) Java Array

In the present implementation of bsf4rexx [W3BSF4R] the primitive Java arrays are

supported from one to five dimensions. Figure 14 shows the syntax for retrieving an

element of an array given the appropriate indices. “arrayObject” is any registered

Java object representing a primitive Java array. Note: Java arrays start with an index

of 0.21)

res=BSF('arrayAt', arrayObject, i1 [, i2 [, i3 [, i4 [, i5]]]] )

Figure 14: Retrieving an Element of a Primitive Java Array Object from Rexx.

2.1.3.8 Retrieving the Length of a Primitive Java Array

Figure 15 shows the syntax for retrieving the length (number of elements) of a

primitive Java array. “arrayObject” is any registered Java object representing a

primitive Java array.

res=BSF('arrayLength', arrayObject )

Figure 15: Retrieving the Length (Number of Elements) of a Primitive Java Array

Object from Rexx.

2.1.3.9 Setting a Value of a Primitive Java Array

In the present implementation of bsf4rexx [W3BSF4R] the primitive Java arrays are

supported from one to five dimensions. Figure 16 shows the syntax for setting an

element of an array given the appropriate type of the new value according to table 1

above, the new value itself and the indices determining the position in the array.

“arrayObject” is any registered Java bean representing a primitive Java array.

Java Bean Scripting with Rexx, page 14-27

21) By contrast, Object Rexx arrays start with an index of one. The Object Rexx wrapper for BSF takes

this into account and allows Object Rexx programs to index Java arrays as if they were Object

Rexx array, transparently translating the index values if calling into Java.

20) “Primitive” in this context indicates that these are Java arrays, which are not specializations of the

Java collection classes. Such “primitive” Java arrays must be indexed directly in Java using square

brackets.



Note: Java arrays start with an index of 0.

res=BSF('arrayPut', arrayObject, type, newValue, i1 [,i2[,i3[,i4[,i5]]]])

Figure 16: Retrieving an Element of a Primitive Java Array Object from Rexx.

2.1.3.10 Adding an Event Listener

For some Java classes it is possible for adding event listeners, which allow for

indicating which event group, which event of this group should cause a

pre-determined event text to be posted to Rexx. This can be very handy for many

problems, e.g. for creating GUI applications with Java’s “AWT” (“Abstract Window

Toolkit”) classes, where one is able to indicate which specific events should be

signalled to Rexx by posting the specified event text. Figure 17 depicts the syntax for

adding an event listener to a Java class which supports event notification.

“beanName” denotes the object to which an event listener is to be added,

“eventSetName” defines the group of events, “filter” if not empty denotes the specific

event which should cause “eventText” to be posted22). Such eventText can be

retrieved with the BSF-function “pollEventText” and could be Rexx code which gets

interpreted at runtime, but also any other text which then needs to get retrieved and

analyzed by Rexx.

res=BSF('addEventListener', beanName, eventSetName, filter, eventText)

Figure 17: Adding an Event Listener to a Java Object Supporting it from Rexx.

2.1.3.11 Polling Events (“EventText”s) from Rexx

Rexx programs are able to retrieve information (“eventText”) posted by event

listeners or by Rexx programs as a result of the occurrence of an event. If there is no

“eventText” pending, then this function waits until an “eventText” gets posted and

returns it to the Rexx program. Figure 18 denotes the syntax for polling “eventText”

from the list of “eventText”s maintained by the Java side. Sometimes it may be

Java Bean Scripting with Rexx, page 15-27

22) “eventText” posted by event listeners are put into the “normal” priority list of event texts to be

dispatched. See description of the BSF functions “pollEventText” and “postEventText” below for

more information on the priorities of event texts.



desirable to stop waiting on the occurrence of an “eventText” after a given time, so

this function allows to define an optional time-out value in milliseconds. Should the

polling of “eventText”s be timed-out the Rexx representation string of “null” will get

returned.

In this bsf4rexx [W3BSF4R] implementation there are three priority levels available

to place “eventText”s: “alarm”, “normal” and “batch”. In the case of mulithreaded

Rexx programs it becomes therefore possible to post “eventText”s at the “alarm”

priority level, which makes sure that they get retrieved before those at the “normal”

and before those at the “batch” level, as the dispatching order follows exactly these

priority levels from “alarm” to “batch”.

res=BSF('pollEventText' [, timeout])

Figure 18: Polling an Event Text from the List of Event Texts.

2.1.3.12 Posting an Event (“EventText”) from Rexx

Posting of event texts may be important for some applications, therefore this

implementation makes posting of event texts available to Rexx as well. Figure 19

shows the syntax for posting event texts. “eventText” may be any Rexx string, which

the Rexx program is able to retrieve via the function pollEventText() above, and

which then may act accordingly. Sometimes it may even make sense to post an

event text which represents executable Rexx code to be interpreted at runtime for

calling desired functions or routines or in the case of Object Rexx to invoke certain

methods on Object Rexx objects later on, when the text gets polled.

By default event text is posted at the “normal” priority level (value=1), which can be

altered to the “alarm” priority level (value=2) or to the “batch” priority level (value=0).

This allows for prioritizing the dispatching of pending event texts.

res=BSF('postEventText', eventText [, priority])

Figure 19: Posting an Event Text to the List of Event Texts.

Java Bean Scripting with Rexx, page 16-27



2.1.4 Example of a Rexx Program Interfacing with Java

Figure 20 depicts a Rexx program which uses Java’s runtime environment classes of

the “abstract windows toolkit” (awt) to create a simple and portable GUI interface

with the help of Java. Figure 21 shows the command line to invoke the program, if it

is saved in a file called “ShowCount.rex”, figure 22 shows an example snapshot of

the running program.

/* "ShowCount.rex" - a Rexx program to count number of button presses */
call BSF 'registerBean', 'Window', 'java.awt.Frame', 'String', 'Show count'
call BSF 'addEventListener', 'Window', 'window', 'windowClosing', 'call BSF
"exit"'

call BSF 'registerBean', 'Button', 'java.awt.Button', 'String', 'Press me!'
call BSF 'addEventListener', 'Button', 'action', '', 'call ShowSize'

call BSF 'registerBean', 'Label', 'java.awt.Label'
call BSF 'invoke', 'Label', 'setAlignment', 'I', '1'

call BSF 'invoke', 'Window', 'add', 'String', 'Center', 'Object', 'Label'
call BSF 'invoke', 'Window', 'add', 'String', 'South', 'Object', 'Button'
call BSF 'invoke', 'Window', 'pack'
call BSF 'invoke', 'Window', 'show'
call BSF 'invoke', 'Window', 'toFront'

i=0 /* set counter to 0 */

do forever
a = bsf("pollEventText") /* wait for an eventText to be sent */
interpret a /* execute as a Rexx program */
if result= "SHUTDOWN, REXX !" then leave /* JVM will be shutdown in 0.1sec */

end

exit

/* show the actual number of times, you pressed the button */
ShowSize:

i=i+1
call BSF 'invoke', 'Label', 'setText', 'String', "Press #" i
return

Figure 20: Rexx Program which Uses Java’s AWT for a GUI Interface.

java com.ibm.bsf.Main -mode exec -lang rexx -in ShowCount.rex

Figure 21: Invoking the Above Rexx Program via Java.

Figure 22: Rexx Program “ShowCount.rex” Using Java’s AWT.

Java Bean Scripting with Rexx, page 17-27



Both, the frame window and the button get an event listener attached to, which post

the defined event text to the Rexx program, which polls and interprets it in the

forever-loop. If the frame window gets closed the event text calling the exit-function

is interpreted and the program ended. The only other event text posted and

processed is the one defined with the event listener for the button, which causes the

Rexx procedure “ShowSize” to be called every time the button is pressed. The

procedure “ShowSize” increases the counter and sets the text for the label in order

for the user to learn about the count of button presses.

Java Bean Scripting with Rexx, page 18-27



2.2 The Object Rexx Wrapper Class “BSF.cls”

This section describes the support added to the bsf4rexx [W3BSF4R] package for

users of the Object Rexx language, which being backwardly compatible with classic

Rexx is able to use all of the Rexx interface functions described so far. The

definitions in the file “BSF.cls” create an object-oriented wrapper for allowing

transparently accessing the Java objects registered with BSF. Figure 23 depicts the

Object Rexx program version of the classic Rexx program of figure 20 above.

Invocation and presentation of the window remains exactly the same, if the Object

Rexx program is saved with the file name “ShowRexx.rex”.

/* "ShowCount.rex" - an Object Rexx program to count number of button presses
*/
.bsf~import("awtFrame", "java.awt.Frame")
.bsf~import("awtButton", "java.awt.Button")
.bsf~import("awtLabel", "java.awt.Label")

win=.awtFrame~new("string", "Show Count")
win~bsf.addEventListener('window', 'windowClosing', '.bsf~exit')

but=.awtButton~new("string", "Press me!")
but~bsf.addEventListener('action', '', 'call ShowSize')

lab=.awtLabel~new ~~setAlignment('I', 1)

win ~~add("string", "Center", "Object", lab) ~~add("str", "South", "Obj", but)
win ~~pack ~~show ~~toFront

i=0 /* set counter to 0 */

do forever
a = bsf("pollEventText") /* wait for an eventText to be sent */
interpret a /* execute as a Rexx program */
if result= "SHUTDOWN, REXX !" then leave /* JVM will be shutdown in 0.1sec */

end

exit

/* show the actual number of times, you pressed the button */
ShowSize:

i=i+1
lab~setText('str', "Press #" i)
return

::requires "BSF.cls" -- get access to the Object Rexx support enhancement

Figure 23: Object Rexx Program which Uses Java’s AWT for a GUI Interface.

From this little example the following principles guiding the creation of “BSF.cls”

become apparent:

w Java classes may get imported into the Object Rexx environment and can

thereafter be used as if they were Object Rexx classes,

Java Bean Scripting with Rexx, page 19-27



w creating instances of the imported Java classes creates Object Rexx objects

serving as proxies for their Java counterparts,

w sending Object Rexx messages (terms right to the message operator “twiddle”,

which is the character tilde) to these proxy objects invokes the methods on the

Java side automatically.

In addition any returned BSF reference to a Java object registered in the BSF

registry, causes a new Object Rexx proxy object to be created for reference. Should

an Object Rexx proxy object not be used anymore and garbage corrected on the

Object Rexx side, then the cleanup code of the destructor method “UNINIT” of class

“BSF” unregisters the Java object from the BSF registry automatically.

Should the Java side return a primitive Java array with no more than five

dimensions, then an array-like Object Rexx proxy is created, allowing to treat that

array as if it was an Object Rexx array. In the case of a PUT-operation one needs to

prepend the new value with the Rexx datatype indicator string as documented in

table 1 above, such that the BSF interface is correctly able to communicate that

datatype to Java. It is also noteworthy, that MAKEARRAY is defined such that in

Object Rexx it is possible to use the DO...OVER construct to iterate over all

elements of the Java array, irrespectible of its dimension, as well as the method

SUPPLIER23) for iterating over all elements of the array.

The remainder of this section describes the public class “BSF” and its private

subclasses “BSF_REFERENCE” and “BSF_ARRAY” as implemented and stored in

the file “BSF.cls” as per May 2001.

2.2.5 Class “BSF”

This class defines the wrapper for Object Rexx proxy objects which represent Java

obejcts registered in the BSF registry on the Java side. It allows for explicitly

importing Java classes and sending Java methods transparently to the Java objects.

Upon return of Java method invocations, the results are inspected and if a Java

Java Bean Scripting with Rexx, page 20-27

23) The current implementation supplies the index part showing exactly the subscripts of the array

element being supplied.



object is returned a new proxy of type “BSF_REFERENCE” will be dynamically

created.

There are two ways to instantiate Java classes with the help of this Object Rexx

Wrapper class:

Java Bean Scripting with Rexx, page 21-27

calls BSF(“invoke”, ...) uses this object as argument; note this
method is intended to be used only, if a Java object happens to
possess a method by the same name as implemented in the
class BSF.

bsf.invoke

calls BSF(“setPropertyValue”, ...) uses this object as argumentbsf.setPropertyValue

calls BSF(“getPropertyValue”, ...) uses this object as argumentbsf.getPropertyValue

calls BSF(“setFieldValue”, ...) uses this object as argumentbsf.setFieldValue

calls BSF(“getFieldValue”, ...) uses this object as argumentbsf.getFieldValue

calls BSF(“addEventListener”, ...) uses this object as argumentbsf.addEventListener

forwards all unknown messages to Java by invoking the Java
methods using the message name unknown to the public class
BSF. This causes BSF(“invoke”, ...) to be carried out.

unknown

destructor, deregisters the Java object using
BSF(“unregisterBean”, ...)

uninit

constructor, creates the Java object using
BSF(“registerBean”, ...)

init

calls BSF(“setRexxNullString”, ...)setRexxNullString CLASS

calls BSF(“getStaticValue”, ...)getStaticValue CLASS

calls BSF(“postEventText”, ...)postEventText CLASS

calls BSF(“pollEventText”, ...)pollEventText CLASS

calls BSF(“lookupBean”, ...)lookupBean CLASS

calls BSF(“exit”, ...)exit CLASS

creates a subclass of BSF, places a reference to it into the local
environment named according to the first argument and
remembers the Java class it refers to

import CLASS

instantiates the default Rexx string for representing Java’s “null”
(i.e. “.NIL”)

init CLASS

Short DescriptionMethod

Table 2: Public Methods of the Public Class “BSF”.



w First importing the Java class into Object Rexx and then sending the Object

Rexx proxy class the Object Rexx message “NEW”, or

w directly by instantiating the BSF-class, indicating the Java class and optionally

the arguments needed for creating the Java objects.

In both cases an Object Rexx proxy object will get returned. The messages proxy

objects receive, if unknown to the Object Rexx class “BSF” itself, will get repackaged

and forwarded to the Java side by using the BSF-external function. This logic is

implemented in the method “UNKNOWN”.

All BSF-external functions are furthermore either implemented at the class level, if

they do not pertain to individual Java objects but represent a generic function

applicable to all instances or get the string “bsf.” (including the dot!) prepended.

Table 2 lists the methods defined in the class BSF and indicates which variant of the

BSF external function is (procedurally) called.

Java Bean Scripting with Rexx, page 22-27

returns a supplier object rendering of the arraysupplier

returns a single dimensioned Object Rexx array;
allows to enumerate all elements of the Java array object using
the “DO...OVER” construct of Object Rexx

makearray

same as method “put” above“[]=”

stores the value at the given array position;
note: the value must contain as the first word the datatype
indicator for the value as indicated in table 1 above!

put

same as method “at” above“[]”

retrieves the value stored at the given array position (index
being 1-based!)

at

returns the number of items in the arrayitems

returns the dimension of the arraydimension

Short DescriptionMethod

Table 3: Public Methods of the Class “BSF_ARRAY”.



2.2.6 Class “BSF_REFERENCE”

This is a specialization of the public class “BSF” and gets used to create proxy

objects for Java objects, which got returned as a result of a Java method. This class

is not public and is only meant to be used from within the file “BSF.cls”.

2.2.7 Class “BSF_ARRAY”

This is a specialization of the public class “BSF” and gets used to create proxy

objects for Java objects, which got returned as a result of a Java method. This class

is not public and is only meant to be used from within the file “BSF.cls”. It

implements the semantics of Object Rexx arrays, including addressing the first

element of an array with one (and not 0 as is the case with Java), being

automatically translated to the Java indexing. Table 3 lists the methods implemented

in this class.

Java Bean Scripting with Rexx, page 23-27



3 SUMMARY AND OUTLOOK

This article introduced the reader to IBM’s Bean Scripting Framework (BSF) which

allows Java to call scripts in non-Java languages and to interact with such programs.

As there was no Rexx or Object Rexx support available, a BSF-compliant Rexx

engine was devised and developed, drawing heavily from previous work of the

student Peter Kalender in the context of an Business Informatics seminar at the

University of Essen. Due to the rewrite of major parts and addition of sophisticated

functions this work can be regarded as mostly new compared to the student’s work.

The reader should now be able to understand the BSF architecture and the available

interfaces for Rexx and Object Rexx with the bsf4rexx [W3BSF4R] package in

principle and be able to understand and follow the numerous test programs and

sample programs with the aforementioned package.

This work allows to employ Rexx and Object Rexx in the context of the deployment

of IBM’s BSF, which not only allows its usage in creating Java Server Pages (JSP)

with IBM’s WebSphere product, but also to be used in the projects of the Apache

organization [W3Apa] relating to the BSF technology, e.g. like XSLT or SOAP. Of

course, it is now possible to use Rexx and Object Rexx to script any Java based

application as well and to draw from the rich set of ideas and knowledge of Rexx

coders who have been developing scripts for different environments in the past 20

years.

From the perspective of a Rexx or Object Rexx programmer the support for IBM’s

BSF allows them to immediately regard the Java runtime environment (JRE) as a

huge, ported set of external functions available on any platform Java and Rexx runs

on. This in turn means that this combination of Rexx and Java effectively runs on all

platforms! Only time will tell, how fast Rexx programmers will adopt this innovative

technology for new creative problem solutions and multi-platform deployment of

such Rexx programs.

Further discussions are delegated to and expected to take place in the Internet

newsgroup <news:comp.lang.rexx>.

Java Bean Scripting with Rexx, page 24-27



4 REFERENCES

[Ende97] Ender T.: "Object-Oriented Programming with REXX", John Wiley & Sons,

New York et.al. 1997.

[Flat96a] Flatscher R.G.: "Local Environment and Scopes in Object REXX", in:

Proceedings of the "7th International REXX Symposium, May 12-15,

Texas/Austin 1996", The Rexx Language Association, Raleigh N.C.

1996.

[Flat96b] Flatscher R.G.: "Object Classes, Meta Classes and Method Resolution in

Object REXX", in: Proceedings of the "7th International REXX Symposium,

May 12-15, Texas/Austin 1996", The Rexx Language Association,

Raleigh N.C. 1996.

[Kal01] Kalender P.: “A Concept for and an Implementation of the Bean Scripting

Framework for Rexx”, Seminar paper, University of Essen, MIS and

Software Engineering Department, February 2001. URL (2001-04-22):

http://nestroy.wi-inf.uni-essen.de/Lv/seminare/ws0001/PKalender/Seminararbeit.pdf

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object Rexx by Example",

Aviar, Pittsburgh 1996.

[W3Alpha]Homepage of IBM’s alphaworks projects, URL (2001-04-22):

http://www.alphaworks.ibm.com/

[W3Apa] Homepage of the open source Apache organization, URL (2001-05-05):

http://www.apache.org/

[W3BSF] Homepage of IBM’s “Bean Scripting Framework” (BSF), URL

(2001-04-22): http://oss.software.ibm.com/developerworks/projects/bsf

[W3BSF4R] Homepage of the “bsf4rexx” package, URL(2001-04-22):

http://nestroy.wi-inf.uni-essen.de/Forschung/rgf/Entwicklung.html

[W3Java] Java homepage, URL (2001-04-22): http://http://www.sun.com/java

[W3NetRexx]NetRexx homepage of the creator of the language, the IBM fellow Mike

Cowlishaw, URL (2001-04-22): http://www2.hursley.ibm.com/netrexx/

[W3ObjRexx]Object Rexx homepage of IBM, URL (2001-04-22):
http://www.ibm.com/software/ad/obj-rexx/

Java Bean Scripting with Rexx, page 25-27



[W3Rexx] Rexx homepage of the creator of the language, the IBM fellow Mike

Cowlishaw, URL (2001-04-22): http://www2.hursley.ibm.com/rexx/

[W3RexxLA] Rexx homepage of the “Rexx Language Association”, URL

(2001-04-22): http://www.RexxLA.org

[W3Rhino] Rhino homepage, URL (2001-04-22): http://www.mozilla.org/rhino

Java Bean Scripting with Rexx, page 26-27



Date of Article: 2001-05-06.

Published in: Proceedings of the „12th International Rexx Symposium“,

Triangle Research Park, North Carolina, USA, April 30th - May 2nd, The

Rexx Language Association, Raleigh N.C. 2000.

Presented at: „12th International Rexx Symposium“, Raleigh, North Carolina, USA,

April 30th - May 2nd, 2001 24-26.

Java Bean Scripting with Rexx, page 27-27


