“THE AUGSBURG VERSION?Y OF BSF4REXX”

Rony G. Flatscher
University of Augsburg, Germany
»1he 2003 International Rexx Symposium*, Raleigh, North Carolina, USA,
May 4" - May 7™, 2003.

ABSTRACT

"BSF4Rexx", the Bean Scripting Framework for Rexx, allows one to use the Rexx
and Object Rexx programming languages with the open source IBM Bean Scripting
Framework (BSF) which enables Java programs to easily invoke scripts and
programs written in another language than Java. This article introduces the
"Augsburg version" of BSF4Rexx which incorporates numerous changes and as a
main feature the ability to start Java from Rexx programs. This way all of Java can
be viewed as a huge external Rexx function library from the perspective of Rexx,
available on any platform Rexx is available. This paper gives a bird eyes view of
BSF4Rexx concentrating on this latter ability and introducing Rexx programmers
informally to Java and to the most important object-oriented terms such that the
unacquainted Rexx and Object Rexx programmer becomes able to read the Java
documentation and as a result apply BSF4Rexx to allow (Object) Rexx to use and

drive Java.

D This article reflects a major change in BSF4Rexx implemented right after the 2003 International
Rexx symposium on the way back to Europe: calling Java from (Object) Rexx does not require
(and as a matter of fact even prohibits) the exact indication of the types of Java arguments meant
for Java constructors or Java methods! This simplifies the invoking of Java constructors and
methods considerably for Rexx and hence is being incorporated into the final version of this article.

The Augsburg Version of BSF4Rexx, page 1-38

1 INTRODUCTION

At the 2001 International Rexx symposium the first incarnation of the "BSF4Rexx" -
the "Bean Scripting Framework for Rexx" - got introduced to the Rexx community
[FlatO1]. Taking advantage of the IBM open source project "Bean Scripting
Framework" it has become possible to invoke Rexx programs from Java programs in
an easy and straight-forward manner. In turn such invoked Rexx programs could call
back into Java and take advantage of the wealth of the functionality implemented in

Java classes and made available via Java objects.

Should a Rexx programmer be interested in using the Java functionality for solving
problems of his own, then it has been mandatory that his Rexx programs be invoked
by Java programs in the first place, as the appropriate BSF environment had to be

set up prior to Rexx calling (back) into Java.

This article introduces the reader to the "Augsburg version of BSF4Rexx" which for
the first time allows Rexx programmers to directly use Java, without the need to

invoke his own Rexx programs indirectly via Java.

This way Java becomes the "largest external function package for Rexx in the
world"! In addition that particular "external function package" has been already
ported to all commercial relevant operating systems and hardware platforms and

beyond!

Drawing from comments of some Rexx programmers in the past it has become clear
that many of the Rexx programmers have never been directly exposed to Java
programs and as a result have been handicapped in taking advantage of BSF4Rexx.
Therefore this article concentrates on explaining and demonstrating a Java program,
its interface documentation which looks like any Java documentation and the
employing of the functionality of such Java programs from Rexx. It is hoped that a
reader being a Rexx programmer who has never been exposed to Java will be able
to take advantage of this enormeous and rich set of functionality as a result of
studying this article.

The Augsburg Version of BSF4Rexx, page 2-38

2 BSF - ARCHITECTURE AND APPLICATION

The "Bean Scripting Framework" (BSF) has begun its life as an IBM alphaworks
project, which allows IBM employees to make their work available to the world. In the
case that a particular alphaworks project [W3Alpha] draws the attention of other
developers it may be the case that such a project turns into a so-called "developer
work", which usually means that the project gets more attention and resources from
IBM ([W3BSF], but may also be employed in other IBM products like "IBM
WebSphere" [W3WebSphere].

BSF defines and implements a Java framework which enables Java programmers to
invoke programs from Java, which are written in a non-Java programming language
like JavaScript or Perl. The initial support for non-Java programming languages by
IBM in BSF 2.2 concentrated on Java implemented interpreters, like Mozilla's Rhino
[W3Rhino] or Mike Cowlishaw's? NetRexx [W3NetRexx] and in addition to the
Microsoft ActiveX scripting languages JScript and VBScript, available on the

Windows platform only.

In the fall of 2002 the entire open source project was handed over to the Jakarta
project of the Apache organization and got released with the version number "BSF
2.3". This way the technology can be used in additional Apache funded/initiated
open source projects like "ant " [W3Ant] or "xer xes" [W3Xerces].

2.1 The Essener Version of BSF4Rexx

The Essener version of BSF4Rexx [FlatOl] is rooted in a feasibility study of a
student at the University of Essen [Kal01] and extends the set of usable languages
for IBM's BSF by Rexx and Object Rexx. Figure 1 depicts the overall architecture.

Steps for invoking a Rexx program using the Essener version of BSF4Rexx:

* The Java program creates an instance of the Java BSFManager class,

which allows for loading and executing programs written in any of the BSF

supported languages.

2 Mike F. Cowlishaw is the original creator of the Rexx programming language and an IBM fellow.

The Augsburg Version of BSF4Rexx, page 3-38

RexxEngine

RexxAndJava

|

BSF4Rexx
(C++)

Rexx
scripts

xxxxxxxxxxxx&

W

Figure 1: The BSF Architecture and the Essener Version of BSF4Rexx [Fla01].

* The Java program uses the BSFManager object to load the Rexx engine,

which is implemented as a Java program ("RexxEngi ne. j ava") and which

initializes the interface to Rexx, i.e. a compiled C++ program named

"BSF4Rexx" adhering to the "Java Native Interface" (INI) specifications.?

From this moment on it becomes possible for the Rexx engine to invoke

Rexx programs by supplying the Rexx code and Rexx arguments for the

Rexx interpreter which gets called in "BSF4Rexx". Before doing that an

external Rexx function named BSF() is registered with the Rexx interpreter,

which allows the Rexx programs to call back into Java.

* Rexx scripts calling back into Java are able to use a rich set of functions

which will get carried out in the Java program "RexxAndJava.j ava"

transparently. The scheme is simple: the first argument to the external Rexx

function BSF() denotes the desired subfunction® to be carried out by

"RexxAndJava". Depending on the subfunction, additional arguments may

9 "BSF4Rexx" is implemented as a DLL under OS/2 resp. eComStation and Windows, and as a

shared library under Linux.

4 E.g. the subfunction to invoke a Java method is called "i nvoke".

The Augsburg Version of BSF4Rexx, page 4-38

/*
/*
/*
/*
/*

/ inmport comibm bsf.; /1 BSF support
*/ public class Test BSF4Rexx

public static void main (String[] args)

OCO~NOOUTARWNPEF
*
-

| * */ {
/* */ try

| * */ {

/* */ BSFManager ngr = new BSFManager ();

[* 10 */ BSFEngi ne rxEngi ne = ngr. | oadScri ptingEngi ne("rexx");
[* 11 */ String rexxCode = "SAY 'Rexx was here!'";

[* 12 */ r xEngi ne. exec ("rexx", 0, 0, rexxCode);

[* 13 */ }

[* 14 */ catch (BSFException e)

[* 15 */ {

[* 16 */ e.printStackTrace();

[* 17 */ }

[* 18 */

[* 19 */ }

Figure 2: Complete Nutshell Example for a Java Program Invoking a Rexx Program
Via BSF.

have to be supplied by the Rexx program. Upon return from "RexxAndJava"

a return value will always be supplied to Rexx.”

The Essener version of BSF4Rexx has been allowing Rexx (and Object Rexx for
that matter) to be employed in the context of IBM's BSF, making it possible to
invoke Rexx programs everywhere where Rhino, VBScript and the like could be

used with BSF in the same easy and straight-forward manner by Java programmers.

Figure 2 shows a minimal Java program using BSF4Rexx to create a BSFManager
instance, which then is used to load the Rexx scripting engine containing the
necessary statements in order to call Rexx from Java using BSF4Rexx:
* Line # 1: the BSF Java package contains all the BSF classes, among them
the Java classes BSFManager and BSFEngi ne.®

* Line # 9: an instance named "ngr " of the BSFManager class is created.

% In the case that Java does not return a value (or a Java "nul | " indicating that no value is
available), then the character string ". NI L" is returned. One can use this very same string to
indicate from Rexx that one does not supply a value for a particular argument; the same effect can
be achieved by omitting the argument altogether from the Rexx side.

® This package refers to IBM's version of BSF, a.k.a. "BSF 2.2". The package name for the Apache
version of BSF is "or g. apache. bsf " and can only be used, if the NI (Java native interface) C++

program "BSF4RexXx. cc" is compiled with an Apache-specific switch.

The Augsburg Version of BSF4Rexx, page 5-38

* Line # 10: using "ngr " an instance of BSFEngi ne is created and assigned
to a variable named "r XxEngi ne".

* Line # 11. a String named "rexxCode" is defined containing a Rexx
program.”

* Line # 12: the Rexx engine is used to execute the Rexx program contained

in the String variable "r exxCode".

For a Java programmer the above program is extremely simple and should be very

easy to comprehend.

However, Rexx programmers who have never been exposed to Java need to learn
quite a few Java fundamentals before being able to take advantage of the Essener
version of BSF4Rexx. Besides, if interested in using rather the Java functionality for
the purpose of solving problems in Rexx, it has been a little bit awkward that for that
purpose alone, one would need to write a Java program to invoke the respective

Rexx program which in turn would call back into Java.

It would be simpler and hence more "Rexx-like", if it was possible to control
everything from Rexx and if the Rexx programmer needed no Java programming
skills at all.

2.2 The Augsburg Version of BSF4Rexx

The Augsburg version of BSF4Rexx was developed while at the University of
Augsburg and extends the Essener version in three main areas:
* it allows to invoke Java (the Java runtime environment with all of its classes)
from Rexx, if needed,

* it removes all restrictions of the Essener version with respect to using Java

arrays, hence arbitrarily dimensioned Java arrays can be used,

7 Please note that in this nutshell example the Rexx code in line # 11 is explicitly given. Instead, one
could read the contents of a file into the variable "r exxCode" and pass it to the Rexx engine for

execution in line # 12.

The Augsburg Version of BSF4Rexx, page 6-38

RexxEngine
g Rexx

scripts

BSF4Rexx
/ (C++)
RexxAndJava[)\ 7

~—__ |

2

Figure 3: The BSF Architecture and the Augsburg Version of BSF4Rexx [Fla01].

* it makes sure, that Java programs not adhering to the BSF-specifications®,

and passing "pure" Java objects directly to Rexx, still work by registering
such Java objects with the BSF registry and supplying the (string) key as an

argument instead.”

Figure 3 depicts the Augsburg version of BSF4Rexx, stressing the point that now it
has become possible for Rexx programs to load Java, if necessary, hence foregoing
the necessity to invoke Rexx programs via Java programs in order to be able to call
back into Java from Rexx. Nevertheless, comparing figure 3 with figure 1 it becomes
clear, that the basic architecture of BSF4Rexx remained intact. And indeed, the
information given in [Fla0l] for the Essener version of BSF4Rexx remains

appliccable to the Augsburg version!

8 Java programs which pass Java objects to non-Java programs via BSF as arguments must
register those Java objects with the BSF registry and supply the (string) key as an argument
instead. Referring to such Java objects can then be achieved by supplying that very same (string)
key as an argument, if calling into Java. In the case of Rexx "RexxAndJava" will carry out this
lookup in the BSF registry at the Java side in order to get access to the indicated Java object.

9 Technically, this is implemented in "RexxEngi ne. j ava".

The Augsburg Version of BSF4Rexx, page 7-38

221 The "BSF" External Rexx Functions

Starting with the Augsburg version of BSF4Rexx there are new Rexx external
functions implemented in the dynamic link/shared library "BSF4Rexx"'? for allowing
Rexx to demand load Java among other things. Figure 4 shows all of the available
external Rexx functions and indicates which ones are preloaded by Java, if Rexx
was invoked by a Java program. It also depicts which external Rexx functions get

loaded, if using the loader function "BSFLoadFuncs() " from Rexx.

The following external Rexx functions from figure 4 accept arguments:
e BSF(argunents...): the arguments depend on the "RexxAndJava"
function addressed and are documented in [FlatO1], a synopsis is given in
"Addendum B" at the end of this article.

External Function Name Loaded by Loaded by Synopsis
Java's BsfLoadFuncs
RexxEngine

BSF() yes yes Allows Rexx to interface with
Java.
Bsf Dr opFuncs() - yes New function, deregisters all

external Rexx functions.

Bsf I nvokedBy() yes yes New function, returns 'L’ if
Rexx was invoked by Java, ‘2'
if Java was loaded by Rexx,
'0" if no Java is present.

Bsf LoadFuncs() - - New function, BSF Loader
function.
Bsf LoadJava() - yes New, loads the Java runtime

environment.

Bsf Quer yAl | Functi ons() yes yes New, returns a stem array
with all defined external Rexx
functions.

Bsf Quer yRegi st er edFuncti ons() yes yes New, returns a stem array
with all presently registered
function.

Bsf Unl oadJava() - yes New, unloads Java.

Bsf Ver si on() yes yes New, returns the version of
the DLL/shared library
"BSF4Rexx".

Figure 4: External Rexx Functions Defined in the Dynamic/Shared library.

19 The source file from which the dynamic link/shared library "BSF4Rexx" gets created is named
"BSF4Rexx. cc".

The Augsburg Version of BSF4Rexx, page 8-38

Bsf LoadJava([add2cl asspath] [, {Ap|Pre}pend]): the optional
add2cl asspat h argument denotes a path to be added to Java's
CLASSPATH. If using Java 1.1 the second argument governs whether
add2cl asspat h should be appended (default) or prepended to the existing
CLASSPATH environment variable.

Bsf Quer yAl | Functi ons([st emNan®e]) : returns a stem array containing
a list of all Rexx external functions defined in "BSF4Rexx. cc". Optionally,
one can supply the stem name to be used (including the trailing dot!),
otherwise the stem name "BSFQUERYALLFUNCTI ONS. " is used (named
after the external Rexx function).

Bsf Quer yRegi st er edFuncti ons([st emNane]) : returns a stem array
containing a list of all Rexx external functions defined in "BSF4Rexx. cc".
Optionally, one can supply the stem name to be used (including the trailing
dot!), otherwise the stem name "BSFQUERYREG STEREDFUNCTI ONS. " is
used (named after the external Rexx function).

Bsf Ver si on(): returns the version in a number formatted as: nmaj or
nunber *100+m nor nunber, decimal dot, date of this particular version
in the format YYYYMVDD, where YYYY represents the four-digit year, MM
represents the month and DD represents the day, followed by a space,
followed by the BSF Java package name with names delimited by a slash
"/" e.g.:"200. 20030430 cont i bn bsf/engi nes/rexx"Y.

Preregistered Java Class Objects in the BSF Registry

With the Augsburg version of BSF4Rexx some often used Java class objects are

preregistered in the BSF registry. This allows Rexx programmers to refer to them

merely by denoting the names in figure 5 wherever a Java class object is expected,

e.g. in creating a Java array of a certain type.

Please note that for every primitive Java datatype there is also its object-oriented

counterpart defined, which starts its name with a capital letter in figure 5!

) The Apache variant of "BSF4Rexx. cc" of the Augsburg version of BSF4Rexx returns as its

package name "or g/ apache/ bsf/ engi nes/r exx".

The Augsburg Version of BSF4Rexx, page 9-38

Java class object |Name in BSF-Registry |Name in ".bsf4rexx" directory
Fundamental Java class objects
j ava. | ang. Obj ect hj ect . cl ass bj ect . cl ass
java.l ang. C ass d ass. cl ass Cl ass. cl ass
Additional, useful Java class objects
java.lang.reflect.Array |Array.class Array.cl ass
java.l ang. String String.class String.class
java. |l ang. System System cl ass System cl ass
Primitive Java datatypes (pseudo class objects) and their object-oriented Java class objects
bool ean. cl ass bool ean. cl ass bool ean
j ava. | ang. Bool ean Bool ean. cl ass Bool ean. cl ass
byte. cl ass byte. cl ass byte
java.l ang. Byte Byt e. cl ass Byt e. cl ass
char. cl ass char. cl ass char
j ava. | ang. Char act er Char acter.cl ass Character.cl ass
doubl e. cl ass doubl e. cl ass doubl e
j ava. |l ang. Doubl e Doubl e. cl ass Doubl e. cl ass
float. cl ass float.cl ass fl oat
j ava. |l ang. Fl oat Fl oat . cl ass Fl oat . cl ass
int.class int.class i nt
java.l ang. | nt eger I nt eger. cl ass I nt eger. cl ass
| ong. cl ass | ong. cl ass | ong
java.l ang. Long Long. cl ass Long. cl ass
short. cl ass short. cl ass short
java. |l ang. Short Short. cl ass Short. cl ass
voi d. cl ass voi d. cl ass voi d
java. |l ang. Voi d Voi d. cl ass Voi d. cl ass

Figure 5: Java Class Objects, Preregistered in the BSF Directory.

The following example demonstrates how to take advantage of this service from
Rexx, e.g. querying the Java System class object for its property named

"j ava. versi on":

/* load the BSF4Rexx functions and start a JVM if necessary */
i f rxFuncQuery("BSF") = 1 then /* BSF() support not |oaded yet ? */
do
call rxFuncAdd "BsflLoadFuncs", "BSF4Rexx", "BsflLoadFuncs"
cal |l BsfLoadFuncs /* load all external Rexx functions from BSF4Rexx */
call BsflLoadJava /* load the Java runtine environnent */
end

/* depending on your Java version "1.4.1 01" may be displayed: */
say bsf('invoke', 'Systemclass', 'getProperty', 'java.version')

Object Rexx

The Object Rexx support for BSF4Rexx has been adjusted such, that for all of these
Java class objects in "BSF. cl s" proxy Object Rexx objects are created upon
loading this Object Rexx support program. These proxy Object Rexx objects

representing the Java class objects are stored in a directory object which is stored in

The Augsburg Version of BSF4Rexx, page 10-38

the local Object Rexx environment [Flat96a] by the name "bsf 4r exx", in effect
allowing to refer to it with its environment symbol ".bsf 4r exx" (note the preceding
dot).*? This makes referral to those preregistered Java class objects by Object Rexx
easy, e.g. accessing the Java class object "j ava. | ang. Syst em™® and querying it
for the value of the Java runtime property "j ava. ver si on" could be expressed

as:¥

/* dependi ng on your Java version "1.4.1 01" may be displayed: */
say . bsf4rexx~System cl ass ~get Property("j ava. versi on")

s:requires "BSF.cls" -- load the Object Rexx support for BSF4Rexx

2.2.3 BSF()-Subfunction "wrapEnumeration™

While testing the Augsburg version of BSF4Rexx under the different available
versions of Java'® a bug'® with Java's reflection mechanism surfaced which
prohibited the access to objects of type "Enuner ati on", if these were created with
public inner classes. A possible solution” for this particular nasty problem available
to all Java versions has been created by using a new class named
"Enuner ati onW apper "*® which wraps such objects and makes the Enumeration

12 Please note that the names of the primitive datatypes in the directory with ". bsf 4r exx" do not
contain the trailing characters ". cl ass", hence allowing to distinguish the primitive datatypes from
their object-oriented representations as Java classes.

13 According to figure 5 the class object for "j ava. | ang. Syst ent' is pre-registered in the BSF
registry under the name "Syst em cl ass".

4 The tilde (=) is used as the message operator in Object Rexx.

19 In the beginning of 2003 the Java versions used for testing were: 1.1, 1.2, 1.3 and 1.4.

19 An according bug report submitted to Sun was approved by Sun on February 14, 2003 (Bug id:
4819108).

7 A general solution for all Java versions starting with 1.2 has been created for the Augsburg version
of BSF4Rexx for IBM and Apache by patching the BSF code of IBM and Apache to allow explicit
access (using "j ava. | ang. refl ect. Accessi bl eQbj ect™) in cases where objects stem from
public inner classes.

However, Java 1.1 users must use the subfunction "wr apEnuner ati on" should they wish to
access Enumeration objects stemming from public inner classes as the "Accessi bl eCbj ect”
class is not available to this older version of Java.

18 The fully qualified name is "com i bm bsf . engi nes. r exx. Enuner at i onW apper " for the IBM

version, the Apache version starts with "or g. apache. " instead of "com i bm ".

The Augsburg Version of BSF4Rexx, page 11-38

interface available to Rexx in the case it stems from an object returned from any

public class'®.

The only two methods of this class are the ones of the Java "Enunerati on"
interface:

* "hasMor eEl enent s() ": returns "1", if an element is available, "0" else.

* "next El enent ()": returns the next element of the enumeration object.

224 Java Arrays

The Essener version of BSF4Rexx [Fla01] restricted the number of dimensions for
Java arrays arbitrarily to a maximum of five. Starting with the Augsburg version, all
restrictions in the context of Java arrays have been lifted. If creating Java arrays for
primitive Java datatypes from Rexx use the appropriate pre-registered Java pseudo
class objects? to indicate to Java for which datatype the Java array should be

created for.??

2.2.4.1 New BSF()-Subfunction "wrapArray"

The new BSF() subfunction "wr apArray"” returns a Java object which allows to
conveniently interact with the Java array object supplied. The Augsburg version of
BSF4Rexx supplies a public Java class named "Arr ayW apper "??, which offers

public access to the fields and methods as depicted in figure 6.2

19 The described solution would work with all BSF scripting languages.

20) Cf. figure 5 above.

21) Please note, that the first element of a Java array has to be indexed with the value "0".
The Object Rexx support makes Java arrays look like Object Rexx arrays, including the first
element of an array to be indexed with the value "1", the methods "i t ens" and the ability to
enumerate all Java array entries with a "do. .. over" loop, as was the case with the Essener
version already. This translation occurs transparently through the Object Rexx proxy for Java
arrays. If accessing Java array objects without the Object Rexx support, then one needs to use the
Java indexing, in which the first element of an array starts at (offset) "0".

22 The fully qualified name is "com i bm bsf . engi nes. r exx. Arr ayW apper " for the IBM version,
the Apache version starts with "or g. apache. " instead of "com i bm ".

23 The methods "suppl i er " and "makear r ay" have been created to match the appropriate Object
Rexx methods for Object Rexx Array classes. Cf. subsection '2.2.5 The Java Class "Supplier"

which documents the appropriate Java class allowing for the "Supplier" functionality of Object

The Augsburg Version of BSF4Rexx, page 12-38

Member Name Synopsis

di mensi ons Field, stores the number of dimensions.

di mension(int i) Method, returns the size of the given dimension (numbering starts with '0'!)
items Field, stores the total number of entries of the array object.

conponent Type Field, stores the Java class object indicating the type of the array object
supplier([0 | 1]) Method, returns a supplier object, allowing to enumerate all array entries,

index being a String representing the needed indexing to arrive at the
according entry. If no argument is given or the argument is "0", then the String
representing the index part starts indexing with "0" (Java-style, index parts are
enclosed in square brackets), else with "1" (Object Rexx style, index parts are
separated by a comma and enclosed within rounded parenthesis).

makearray({0| 1}, {0] 1}) |Method, returns an array with possibly two single dimensioned array rendering
of the array object. If first argument is set to "1" (t r ue) then two matching
array objects are returned, one containing the array entries and one the index
in form of a string where the according entry is stored. If the second argument
is "1" (t r ue) then the index part is formatted in the Object Rexx style (see
above).

Entries with "nul | " are ignored and therefore skipped.

Figure 6: Public Members of the Java Support Class "ArrayWrapper".

The syntax is:

wa=BSF("wr apArray", soneJavaArray)

Object Rexx

Under Object Rexx the class method "wr apArray" of the Object Rexx BSF4Rexx

support class "BSF" can be used instead, e.g.:

waQbj ect =. BSF~wr apArray(someJavaArray)

2.2.4.2 New BSF()-Subfunction "createArray"

Creating an array of a certain ("component”) type can be achieved with the
subfunction "cr eat eArr ay" of the BSF() -function. With the Augsburg version, as
mentioned above, it has become possible to create arrays of arbitrary dimensions,
though the programmer needs to indicate the maximum number of entries per

dimension.

Rexx.

The Augsburg Version of BSF4Rexx, page 13-38

The Java type is indicated by referring to the appropriate Java class object. For this
purpose you can also directly use the BSF registry names of the predefined Java
class objects as depicted in figure 5 above.

The syntax is:

array=BSF("createArray", javaC ass, max_elenmentsl [, max_elenmentsX]...)

The following example defines a three dimensional Java array of the primitive
datatype "int":

array=BSF("createArray", "int.class", 3, 5, 4)

Object Rexx
Under Object Rexx the class method "cr eat eAr r ay" of the Object Rexx BSF4Rexx
support class "BSF" can be used instead, e.g.:

arrayQbj ect =. BSF~creat eArray(javad ass, nmax_el ementsl [, max_el enentsX]...)
The latter returns an Object Rexx array proxy which behaves like an Object Rexx

array.

The following example defines a three dimensional Java array of the primitive

datatype "i nt ", hence accepting integers only:

arrayQbj ect =. BSF~cr eat eArray(. bsf4rexx~int, 3, 5, 4)

2.25 The Java Class "Supplier"

Borrowing from the Object Rexx class "Suppl i er "*¥ an equivalent Java class has
been created for the Augsburg version of BSF4Rexx, allowing to iterate over all
elements of an array via the methods known from Object Rexx (cf. figure 7). In

addition the Java "Enuner at i on" interface® is implemented.

29 The fully qualified name is "com i bm bsf . engi nes. rexx. Suppl i er " for the IBM version, the
Apache version starts with "or g. apache. " instead of "com i bm ".

%) Cf. subsection entitled '2.2.3 New BSF()-Subfunction "wr apEnuner at i on™ above.

The Augsburg Version of BSF4Rexx, page 14-38

Member Name Synopsis
Methods of the Java Enumeration interface
hasMoreElements Method, returns "1" if element is available, "0" else
nextElement Method, returns the next element of the Enumeration
Methods of the Object Rexx Supplier class

available Method, returns "1" if element is available, "0" else
next Method, positions on next element

item Method, returns the element

index Method, returns a string representing some index

Figure 7: Public Members of the Java Support Class "Supplier".

Instances of this class are returned by the method "suppl i er ()" for wrapped array

objects.?®

2.2.6 Need for Strong Typing Removed

As mentioned in the introduction the author removed the need for strong typing with
the planned release of the Augsburg version of BSF4Rexx. This means, that the
explicit supply of datatype indicators preceeding each argument meant for Java has
been lifted. Instead BSF4Rexx takes the arguments and looks up the appropriate
Java method on the Java side. Hence, starting with the Augsburg version it is
forbidden to supply type information for the following subfunctions?” in BSF() -calls:

e "arrayPut",

* "I nvoke",

* "regi st erBean",

* "set Fi el dval ue",

* "set PropertyVal ue".

26) Cf. subsection entitled '2.2.4.1 New BSF()-Subfunction "wrapArray™ above.
20 For a full list and description of all subfunctions available in BSF() -calls cf. [Fla01], a synopsis is

given in Addendum B at the end of this article.

The Augsburg Version of BSF4Rexx, page 15-38

In the case that programmers still wish to be able to explicitly state the Java types of
the arguments®), then they need to use the above subfunctions with the word
"strict" appended to their names?.

%) There may be rare situations where it may be advisable to use strong typing in the context of
invoking a Java method (subfunction "i nvoke") or constructor (subfunction "bsf Regi st er "), e.g.
if a value could be interpreted to be a number or a string and that there are Java methods with a
number and a string signature.

29 Hence the subfunction names which allow for supplying the Java datatypes in front of the individual
arguments as was the default for the Essener versions need to be called: "arrayPut Strict",
“invokeStrict", "regi sterBeanStrict", "set Fi el dval ueStrict" and
"set PropertyVal ueStrict".

Under Object Rexx all of these subfunctions, except for "arrayPutStrict" and
"regi sterBeanStrict" are made available in the form of methods with the prefix "BSF. ", i.e.
"bsf.i nvokeStrict", ‘"bsf.setFieldValueStrict", "bsf.setPropertyValueStrict".
Should it become necessary to create an instance of a Java class with strong typing, then one
would need to proceed as follows:
-- create the Java object as with classic Rexx
t mp=BSF(' r egi sterBeanStrict', java_class [, "argType", "arg"]...)

-- now turn the reference into an Cbject Rexx proxy object, so one
-- is able to send it Java nessages with the twiddle (~)
pr oxy=. bsf _proxy~new(t np) -- creates an Obj ect Rexx proxy object

The Augsburg Version of BSF4Rexx, page 16-38

3 USING JAVA CLASSES FROM REXX

This section briefly introduces the reader to Java classes and their documentation,
trying to explain the most important terms and concepts with respect to Java. It then
demonstrates the usage of an example Java class from Rexx. In principle, all Java

classes and interfaces can be used with exactly the same approach.

3.1 Java Classes

A Java class is the implementation of an abstract data type. An abstract data type
(ADT) usually defines in general terms the properties and behaviours of data of a
certain kind®. Using an object-oriented language like Java it is rather easy to
implement an ADT using a C/C++ like syntax.®V

3.1.1 Defining Properties and Behaviour Using a Java Class Definition

Java classes consist of fields®® (representing properties) and methods®®
(implementing the behaviour). Fields and methods are called "members" of the class

(definition).

If one wishes to use the infrastructure of a specific class, one needs to create an
"I nst ance" of that particular class. Such instances are synonymeously called
"obj ect "s in object-oriented terms and supply access to all fields and methods,
which are declared to be "publ i c"ally accessible and which are laid out in the class.
Hence, the Java class serves as a blue-print for the properties and the behaviour its

instances should expose.

For each instance of a Java class an individual set of fields as defined in the Java
class is created, allowing the storage of values pertaining to that particular instance
only. In addition all methods defined in the class are part of the instances of that

30 In the context of this article "kind" is a synonym for "type" which is a synonym for "class", hence all
three terms are used interchangeably.

%) Object Rexx is another object oriented programming language which allows for an easy
implementation of an ADT.

%2 Sometimes the term "at t ri but " is used instead of “f i el d".

33) Loosely speaking, a "met hod" is a procedure/function of an object.

The Augsburg Version of BSF4Rexx, page 17-38

class, hence all instances (objects) "behave" the same as they all share the same

methods.

In the case that particular fields should be shared among all objects of a class, the
keyword "st ati ¢" needs to be supplied with the field. If there are methods which
should be restricted to access static fields only, then these methods need to be

decorated with the keyword "st at i c" as well.?¥ 3

3.1.2 About Class Hierarchies

In object-oriented systems the concept of a hierarchy of classes is employed to allow
programmers to reuse as much of pre-defined functionality as possible, by denoting
that a particular class is to be regarded as a specialization ("subclass") of an existing
class ("superclass"). Doing so allows the programmer to use all the methods of the
superclass for his/her own new class, allowing to define and implement only those
methods which add "specialized" behaviour, making the process of software
engineering considerably easier. Being able to get access to the methods (and
fields) of superclasses is often pictured with the term "inheritance". E.g. the fact that
Java allows to specialize one single class at one time is dubbed "single

inheritance".*®

Java comes with an incredible rich set of pre-defined (pre-programmed and
pre-tested) classes, organized in the form of a class hierarchy.®” The root class of

the Java class hierarchy is called "Obj ect". The public members of the class

% Fields and methods decorated with the keyword "st at i ¢" are also called "class fields" and "class
methods". (In Object Rexx the keyword "class" needs to be used with the method directive in order
to achieve the same results.)

%) One is able to access public static fields and public static methods also by merely referring to the
class itself. Or with other words, it is not necessary to create an instance of a Java class, if one
wants to access public static fields and public static methods.

%) In Object Rexx or C++ it is possible to specialize more than one superclass at the same time,
which is called "multiple inheritance".

30 The full documentation of all of Sun's Java classes in HTML (see below) is available from
[W3JavaDoc].

The Augsburg Version of BSF4Rexx, page 18-38

definition of the Java class "Cbj ect " are therefore available to all of its direct or

indirect subclasses.®®

3.1.3 More on Methods

In Java the definition of a method consists of optional decoration keywords, a return
value type*?, the name of the method, an opening and closing bracket, which may

contain a list of arguments with explicit declaration of their types.

The name of a method together with its argument list is called "signature" and must
be distinct to any other signature in the same class.*® The code of a Java method

follows the signature and is enclosed within curly brackets.

In many object-oriented programming languages one can define methods which
should get automatically invoked, if an instance of a class is to be built. This way it
becomes possible to receive control at creation ("construction”) time of an object,
allowing e.g. for initializing each object before it gets used. Such methods are called
"constructors” and in Java they are named exactly as the class itself. One may

define different constructors for a Java class, each having a different signature.*?

3.14 Invoking a Method

In object-oriented systems one needs to "tell" the "object" which "method" it should
activate. Conceptually, this is done by "sending a message to an object", which then
takes on the responsibility to find a method with the same signature (same name
and same argument types of the message). In Java this is realized by appending the

method name with a dot to the object (the variable containing the reference to an

%) The same holds for Object Rexx, which out of the box possesses a minimal but very functional set
of classes and the root of its class hierarchy is constituted by the Object Rexx class named
"Obj ect ",

%) If a method does not return a value, then the special name "voi d" is used to indicate this fact.

40 In Object Rexx there must not be multiple methods by the same name defined in a class. Rather,
one needs to use the "ar g() "-function to determine if and what kind of arguments were supplied
for the method, very much the same concept as with procedures/functions in classic (procedural)
Rexx.

‘D) In Object Rexx a method named "I NI T" serves as the constructor of that class, i.e. gets

automatically invoked, if an instance (object) of an Object Rexx class is created.

The Augsburg Version of BSF4Rexx, page 19-38

instance of a Java class), followed by brackets, which may contain the argument

values.*?

If such a method cannot be found in the class from which the object was created,
the object conceptually then searches its superclass for a matching method up the
class hierarchy until it arrives at the root class "Qbj ect ". If a matching method

cannot be found an error condition is raised.*®

3.2 Example: The Java Class "XyzType"

Figure 8 depicts the Java source code of the Java class named "XyzType"
implementing some ADT. The members of this class are as follows:

* a public (constructor) method named "XyzType" with a signature
indicating, that it gets invoked if there are no arguments supplied at creation
time,

* a public (constructor) method named "XyzType" with a signature
indicating, that it gets invoked if there is exactly one argument (of type
String) supplied,

* a publ i c static field named "count er " of type "i nt", i.e. a 32-Bit signed
integer type, shared among all instances because of the keyword "st ati c",

* a private field named "i nfo" of type "Stri ng", only accessible from
members of the class itself due to the keyword "pri vat e",

* apubl i c method named "get | nf 0" with a signature indicating, that it gets
invoked if there are no arguments supplied, returning a value of type
"String",

* a publ i c method named "setl nfo" with a signature indicating, that it gets

invoked, if there is exactly one argument of type "Stri ng" supplied, not

42 In Object Rexx one uses a message operator, which is dubbed "twiddle" and represented by the
tilde (~) character, followed by the name of the message. Unlike Java, Object Rexx allows to omit
the brackets from a message, if no arguments are supplied.

) In a compiled language like Java the search for methods is usually carried out at compile time by
the compiler. In an interpreted object-oriented language like Object Rexx, this search is carried out
at runtime. If the method cannot be found, Object Rexx raises the same message as one of its

conceptual ancestors, Smalltalk, namely "object cannot understand message".

The Augsburg Version of BSF4Rexx, page 20-38

public class XyzType /1 exanpl e class for denonstrati ng BSF4Rexx

/1 constructors of this class (sane nane as cl ass!)

public XyzType () { /'l constructor without argunents
count er =count er +1; /'l increase counter

}

public XyzType (String initialValue) { /1 constructor with argument
this(); /'l invoke constructor above (no argunent)
i nfo=initial Val ue; /'l save initial value

/1 keyword "static": class fields (attributes) and class nethods
static public int counter=0; // field: will count # of instances

/'l instance fields (attributes) and instance nethods
private String info = null; // field: no initial value per default

public String getinfo () { // accessor (getter) nethod (function)
return info; /1 return whatever "info" points to
}

public void setlnfo (String aVal ue) { /1 setter nmethod (function)
i nf o=aVal ue; /1 save received value with "info"
}

Figure 8: The Java Class "XyzType. j ava".

returning anything, because of the special keyword "voi d" in front of the

method name.

Studying the methods the following behaviour can be deduced:

* Each time an instance is created the static field "count er" gets its value
increased in the constructor method, and as a result representing the
number of instances (objects) which got created from this particular class.

* If a string is supplied at creation time that value gets stored in the field
"I nf 0" and can be retrieved by the public method "get I nf o() ".

* One is able to change the value of the field "i nf 0" by using the public

method "set | nf o() ".

The Java program in figure 8 can be compiled by issuing the Java compile
command "j avac XyzType.java", resulting in the class file "XyzType. cl ass",

which from this moment on can be used to create instances of that type.

In the programming language Java the creation of an instance is carried out with the

statement "new XyzType()", which returns a reference to the just created object,

The Augsburg Version of BSF4Rexx, page 21-38

3 XyzType - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras 7 lﬂ'

Class XyzType

Java. lang.Ohject
|
+-ZyzType

public class XyzType
extends java lang Obiject

Field Swnary

seavic int Lo cter

Constructor Swnmary

XyzType ()

XyzType (java. lang.3tring initialWalue)

Method Summary
Jawa.lang. Bexing

getInfo ()

void| getInfo (java. lang.String aValue)

1S

&] Fertig ¢ Arbeitsplatz

Figure 9: The Java help file for the Java class "XyzType".

after the constructors finished their work. In "BSF4Rexx" the BSF() -subfunction

"r egi st er Bean" is used for this very same purpose.

A Java programmer wishing that his Java classes are documented in the Java
standard, i.e. in the form of intertwined HTML-files which can be viewed and
navigated by any stock WWW browser on any operating system, can do so by using
the "j avadoc" program which comes with the Java development kit (JDK). Creating
the HTML-helpfile for the Java program in figure 8 one merely needs to issue the
command "j avadoc XyzType.java". The resulting helpfile containing the

accessible fields and methods of the Java class "Xyz Type" is depicted in figure 9.4

For Java programmers it is possible to add additional comments right into their

programs which then get extracted by "j avadoc" and stored in the Java HTML help

“) Please note, that by default only the public members (fields and methods) of a Java class are
documented. Therefore the unaccessible private field "i nf 0" does not get documented in figure 9.

The Augsburg Version of BSF4Rexx, page 22-38

files. As a matter of fact, all of Sun's documentation about their Java classes has
been created by this very same means. Hence anyone understanding the
information in figure 9 will be able to study each single Java class, all of its public

members (fields, methods).*)

3.2.1 Using the Java type "XyzType" from Rexx

Figure 10 depicts a Rexx program which employs "BSF4Rexx" in order to get access
and use the Java class (type) "XyzType". It accesses the static field "count er " by
referring the class "XyzType" directly and it creates instances of that type and
demonstrating the methods "getlnfo()" and "setlnfo()". Here are brief
comments about this Rexx program:

* Line # 1 through line # 6: if this Rexx program is invoked directly by Rexx,
the external Rexx function BSF() is not registered yet; therefore the loader
function of the external Rexx function package named "Bsf LoadFuncs() "
is registered and thereafter executed, registering all other external Rexx
functions from the "BSF4Rexx" dynamic link/shared library. Therafter Java
gets loaded in line # 5 in order to allow access to Java classes from Rexx.

* Line # 8: a variable gets the string value ". NI L" assigned which allows Rexx
to indicate to Java the value "nul | ".

* Line # 9: the name of the Java class gets stored in a variable.

* Line # 12: using the name of the Java class and the BSF subfunction
"get St ati cVal ue" the static field "counter" gets accessed and its
present value is returned.

* Line # 16: the BSF() subfunction "r egi st er Bean" allows for creating an

instance (object) of a Java class and returns the string value used to store

) Usually, there is much more information supplied with the individual members, explaining the
purpose and usage. Sometimes, programmers even give little examples of applying the methods of
a particular class right at the top of the documentation. Also, "j avadoc" creates navigation frames,
indexes all fields and methods of all Java classes and presents the results in alphabetic order.
Furthermore, it is possible to navigate individual packages full of Java classes, which are related
with each other, e.g. all Java classes of the "awt . " package, constituting the portable, simple

graphical user interface means of the "abstract window toolkit".

The Augsburg Version of BSF4Rexx, page 23-38

EE I S R S S R N R R S I I

~N NN NN NN NN NN NN NN NN NN NN NN NN NN N NN NN e e M — e~~~

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
14 */
*/
*/
*/
*/
*/
*/
*/
*/
*/
24 */
*/
*/
*/
*/
*/
*/
*/
*/
*/
34 */
*/
*/
*/
*/

CoO~NOUDWNEF

el el
WN RO

NN R R R
WNROW©®ONO® U

WWWWNNNDNDN
WNPFRPOWOVO~NO U

wWwww
O ~NO O

i f rxFuncQuery("BSF"') = 1 then /* BSF() support not |oaded yet ? */
do
call rxFuncAdd "BsfLoadFuncs", "BSF4Rexx", "BsfLoadFuncs"

cal | BsflLoadFuncs /* register the BSF* external functions */
cal|l BsflLoadJava /* | oad Java, we need it! */
end
nul I ="_NIL" /* representation for Java's "null" */
javad ass = "XyzType" /* determine Java class to use */

/* query value of static field (attribute) "counter" via class itself */

say "value of static field 'counter'=" || bsf("getStaticValue", javaC ass, "counter")

say
/* creating an instance of the Java class "XyzType" */

0=BSF("regi sterBean", null, javad ass) /* create an instance of "XyzType" */

say "0:" o

say "# 1:" bsf("invoke", o, "getlnfo") /* get the value via the getter nethod */
/* use the object's setter nethod to define a string val ue */

call bsf "invoke", o, "setlInfo", "Hello, fromRexx..."

say "# 2:" bsf("invoke", o, "getlnfo") /* get the value via the getter nethod */
/* query value of static field (attribute) "counter" */

say "value of static field 'counter'=" || bsf("getFieldvalue", o, "counter")

say
/* release (unregister) reference to the Java object */

cal |l BSF "unregisterBean", o /* renmove register entry from Java */
/* create a second Java obj ect */

say "creating another instance of XyzType, this tinme with an initial value..."

/* create an instance of "XyzType" and supply a string val ue */

0=BSF("regi sterBean", "otl", javaC ass, "H, RexxLA'")
say "o0:" o
say "# 3:" bsf("invoke", o, "getlnfo") /* get the value via the getter nethod */

/* query value of static field (attribute) "counter"” via object */
say "value of static field 'counter'=" || bsf("getFieldvalue", o, "counter")

Figure 10: A Rexx Program Using the Java Class "XyzType".

the just created Java object in the BSF registry.*® No argument is passed to
Java, hence the private field "i nf 0" in this newly created Java object will
have no value which is indicated by the Java value "nul | ".

* Line # 17: displays the string value under which the Java object got
registered in the BSF registry and which one needs to use from Rexx if
referring to it.

* Line # 18: the method "get I nfo() " is invoked upon the Java object and
returns ". NI L" as its value, indicating that no value is present in its private

field "i nf 0".

46 |t is possible to force the BSF() subfunction "r egi st er Bean" to use a Rexx supplied string value

as the key to be used to store the Java instance in the BSF registry, by supplying that value as an
argument to "r egi st er Bean" instead of "nul | ".

The Augsburg Version of BSF4Rexx, page 24-38

val ue of static field 'counter'=0

0: XyzType@5f 5897

1. .NL

2. Hello, from Rexx...

val ue of static field 'counter'=1

creating another instance of XyzType, this time with an initial value...
o: otl

3. H , RexxLAl
value of static field 'counter'=2

Figure 11: A Possible Output of the Rexx Program of Figure 10.

* Line # 20, # 21: with the help of the setter method "set | nf o() " the string
value "Hel | o, from Rexx. .." will be stored in the private field "i nf 0" of
the Java object. The Rexx statement in line # 21 uses the getter method
"get I nf o() " to retrieve the value of the private field "i nf 0" and to display
it.

* Line # 23: this statement uses the BSF() subfunction "get Fi el dVal ue" to
retrieve the value of the static field "count er " using the "XyzType" object,
returning the value "1" as one object got created from this class so far.

* Line # 27: this statement causes the Java object in the BSF registry to be
removed and makes it such inaccessible from Rexx.*”

* Line # 33: another instance of class "XyzType" gets created with the BSF()
subfunction "regi st er Bean", this time supplying an argument ("Hi,
RexxLA!") which gets stored with the private field "i nf 0" in the newly
created Java object. The value "ot | " is to be used as the key for storing the
newly created Java object in the BSF registry.

* Line # 35: this statement uses the Java getter method "get I nfo()" to
retrieve the value stored with the private field "i nf 0", displaying "Hi ,
RexxLA! " on the screen.

* Line # 38: this statement retrieves the value of the static field "count er ™
and displays the value "2" as there have been two objects created from the

class so far.

40 Unregistering a Java object from the BSF registry makes it also garbage collectible by Java.
Therefore, long running Rexx programs should always unregister Java objects which they do not
need anymore.

The Augsburg Version of BSF4Rexx, page 25-38

L N N N N S S

E I R S R N B . N N N N . . N N N N

Figure 11 shows a possible output generated by running the Rexx program of figure
10.

3.2.2 Using the Java type "XyzType" from Object Rexx

Figure 12 shows an Object Rexx program*® using the Java class "Xyz Type" with the
Object Rexx support of BSF4Rexx, which gets included in the requires directive,
which loads the Object Rexx support program "BSF. cl s".
* Line # 24: the requires directive*® causes the Object Rexx interpreter to load
and execute the Object Rexx program "BSF. cl s", which checks whether
Java is loaded and loads it if not and which sets up Object Rexx proxy
classes to ease the interaction with Java, attempting to make most of Java
appear to be Object Rexx.

1 */ javaC ass = "XyzType" /* determ ne Java class to use */

2 */ say "value of static field 'counter'=" || .bsf~getStaticVal ue(javad ass, "counter")
3 */ say

4 */

5 */ o=.BSF~new(j avaCl ass) /* create an instance of "XyzType" */

6 */ say "o:" o

7 */ say "# 1." o~getlnfo /* get the value via the getter nethod */

8 */ o~setlnfo("Hello, fromRexx...")

9 */ say "# 2:" o~getlnfo /* get the value via the getter nmethod */

10 */ say "value of static field 'counter'=" || o~bsf.getFieldValue("counter")

11 */ say

12 */ /* release (unregister) reference to the Java object */

13 */ -- not necessary for Cbject Rexx: garbage collection will take care of this !!!
14 */

15 */ /* create a second Java obj ect */

16 */ say "creating another instance of XyzType, this time with an initial value..."
17 */ [* create an instance of "XyzType" and supply a string val ue */

18 */ o=.BSF~new(j avad ass, "Hi, RexxLAl")
19 */ say "o:" o

20 */ say "# 3:" o~getlnfo /* get the value via the getter nmethod */

21 */

22 *| say "value of static field 'counter'=" || o~bsf.getFieldVal ue("counter")
23 */

24 */ ::requires "BSF.cls" -- get pbject Rexx support

Figure 12: An Object Rexx Program Using the Java Class "XyzType".

48 Object Rexx uses the tilde (~) character as its message operator and is called "twiddle" in the
Object Rexx documentation. It also adds line comments which are led in with two dashes (- -).

49 Directives are led in by two colons (::), appear at the end of Object Rexx programs and will be
carried out by the Object Rexx interpreter, before the Object Rexx program gets executed with its
statements starting at line # 1. This way it is possible to set up or enhance the environment for the
Object Rexx program before it gets executed. In this case the BSF4Rexx support for Object Rexx
gets initialized and its classes are made available to the Object Rexx program.

The Augsburg Version of BSF4Rexx, page 26-38

val ue of static field 'counter'=0

0: XyzType@5f 5897

1: The N L object

2: Hello, from Rexx...

val ue of static field 'counter'=1

creating another instance of XyzType, this time with an initial value...
0: XyzType@ 9f 9d8

3. H , RexxLAl
value of static field 'counter'=2

Figure 13: A Possible Output of the Object Rexx Program of Figure 12.

* Line # 2: using a class method of the Object Rexx class ". bsf " it is possible
to query public static Java fields, in this case the value of "count er " of the
Java class "XyzType", which returns the value "0" as so far no instances of
that class have been created.

* Line # 5: using the Object Rexx class ". bsf" as a wrapper for any Java
class it is possible to create Java objects from Java classes as if the Java
classes were Object Rexx classes. The reference to the Java objects is
made available via an Object Rexx proxy object, hence it is possible to
activate Java methods by sending Object Rexx messages by the desired
name to the Object Rexx proxy object.

* Line # 6: this statement shows the string hame used as a key to store the
Java object in the BSF registry and which this Object Rexx proxy object will
use to refer to it.

* Line # 7: the Java method "getInfo()" gets invoked via sending the
"get | nf 0" message to the Object Rexx proxy object, returning the value
".ni|l", the Object Rexx counterpart to Java's "nul | " value. The ". ni |l "
object renders itself to the string "The NI L object” if outputted to the
standard out stream, as is the case with the "SAY" statement.

* Line # 8 to # 9: the Java method "set | nf o() " with the argument "Hel | o,
from Rexx. .. " gets invoked, storing the value with its private field "i nf 0".
In line # 9 the getter method "get | nf o() " is used to query the actual value
of its private field "i nf 0", returning the just set value "Hell o, from

Rexx...".

%0 In Object Rexx one may omit the parenthesis after the message name, if no arguments are
supplied.

The Augsburg Version of BSF4Rexx, page 27-38

* Line # 10: the Object Rexx support for BSF4Rexx adds a set of methods to
the proxy objects starting out with the string "bsf . " and appends it with the
names of those BSF() subfunctions, which may make sense in the context
of interacting with a Java proxy object from Object Rexx. This particular
feature is employed here by using the Object Rexx proxy object instance
method "bsf . get Fi el dVal ue() " to retrieve the actual value of the (static)
field "count er ", which now returns a value of "1", as one

* Line # 13: this line comment informs the reader that the Object Rexx support
for BSF4Rexx will take care of unregistering the Java object from the BSF
registry, if it is not needed anymore. This is realized via the Object Rexx
destructor method "UNI NI T" which gets run, once the Object Rexx garbage
collector frees the proxy object, because no references from the Object
Rexx program exist to it anymore.

* Line # 18 and # 20: another instance of the Java class "XyzType", this time
supplying an initial value of "Hi , RexxLA!". Querying the object in line #
20 for the value of its private field via the getter method "get | nf o() " yields
this very same string: "Hi , RexxLA!'".

* Line # 22: this is the last statement of the Object Rexx program asking for
the present value of the public static field "count er ", which yields a value of
"2" as a total of two instances of the Java class "XyzType" have been

created up to now.

Figure 13 shows the output generated by running the Object Rexx program of figure
12.

The Augsburg Version of BSF4Rexx, page 28-38

4 SUMMARY AND OUTLOOK

This article introduced the reader to the Augsburg version of BSF4Rexx, consisting
of a Rexx engine written in Java, a Java interface program to bridge Rexx with Java,
three new Java utility classes, a Rexx Java native interface library realized as a Rexx
external function package®”, and an Object Rexx support program which makes
Java appear to be Object Rexx, for IBM's BSF 2.2 and Apache's BSF 2.3. The
Augsburg version of BSF4Rexx builds directly on the Essener version [W3BSF4RO]
and hence the reader is guided to [FlatO1], which introduces and describes the

architecture and the available functions and methods in more detail.

The two most important new features introduced with the Augsburg version of
BSF4Rexx are the ability to invoke Java from Rexx and thereafter using all of Java
with the BSF4Rexx infrastructure from Rexx and the dropping of the need of
declaring the types of arguments for Java, which makes the interface simpler to use

for Rexx programmers and appears to be much more "Rexx-like".

For (classic procedural) Rexx programmers an informal introduction to Java and the
object oriented paradigm is attempted, which should allow them to understand the
Java documentation and as a result using all functionality of the Java runtime
environment (JRE) as a huge, ported set of external Rexx functions available on any
platform Rexx runs on. The reader is then presented with a simple Java class and a
Rexx and an Object Rexx program using that class for creating Java objects from it
and interacting with such Java objects with the documented set of public accessible

Java methods and Java fields.

At the time of this writing the Augsburg version was in the gamma state and can be
regarded to be feature complete. It is planned to release the final version via

Sourceforge sometimes in the early summer of 2003 to [W3BSF4RP].

Further discussions are delegated to and expected to take place in the Internet

newsgroup <news: conp. | ang. r exx>.

D This library is available pre-compiled for Linux, OS/2 (eComStation) and Windows for the open
source and free Regina Rexx interpreter, IBM's Object Rexx interpreter and a version allowing to
use any Rexx interpreter which is supported by Mark Hessling's RexxTrans-library [W3RxTrans].

The Augsburg Version of BSF4Rexx, page 29-38

5

[Ende97]

[Flat96a]

[Flato6b]

[Flat01]

[Kalo1]

REFERENCES

Ender T.: "Object-Oriented Programming with REXX", John Wiley & Sons,
New York et.al. 1997.

Flatscher R.G.: "Local Environment and Scopes in Object REXX", in:
Proceedings of the "7" International REXX Symposium, May 12-15,
Texas/Austin 1996", The Rexx Language Association, Raleigh N.C.
1996.

Flatscher R.G.: "Object Classes, Meta Classes and Method Resolution in
Object REXX", in: Proceedings of the "7™ International REXX Symposium,
May 12-15, Texas/Austin 1996", The Rexx Language Association,
Raleigh N.C. 1996.

Flatscher R.G.: "Java Bean Scripting with Rexx", in: Proceedings of the
,12" International Rexx Symposium*, Raleigh, North Carolina, USA,
April 30" - May 2", 2001.

Kalender P.: “A Concept for and an Implementation of the Bean Scripting
Framework for Rexx”, Seminar paper, University of Essen, MIS and
Software Engineering Department, February 2001. URL (2003-05-29):

http://nestroy.w -inf.uni-essen. de/ Lv/ seni nar e/ ws0001/ PKal ender/ Seni nar ar bei t . pdf

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object Rexx by Example",

Auviar, Pittsburgh 1996.

[W3Alpha]Homepage of IBM’s alphaworks projects, URL (2003-05-29):

http://ww. al phawor ks. i bm com

[W3Ant] Homepage of the open source Apache project "ant”, URL (2003-05-29):

[W3Apa]

[W3BSF]

http://ant. apache. org/

Homepage of the open source Apache organization, URL (2003-05-29):

http://ww. apache. or g/

Homepage of IBM'’s “Bean Scripting Framework” (BSF), version 2.2,
released 2001-01-31, URL (2003-05-29):

http://oss.software.i bm conf devel operwor ks/ pr oj ect s/ bsf

[W3BSF4RG] Gamma test (release candidate) site of the Augsburg version of

the “BSF4Rexx” package, URL(2003-05-29):

http://w .wi-w en.ac. at/rgf/rexx/ bsf4rexx/

The Augsburg Version of BSF4Rexx, page 30-38

[W3BSF4RO] Homepage of the original (Essener version) “BSF4Rexx”
package, URL(2003-05-29):

http://nestroy.w -inf.uni-essen. de/ Forschung/rgf/Entw ckl ung. htm

[W3BSF4RP] Planned homepage of the Augsburg version of the “BSF4Rexx”
package, URL(2003-05-29): htt p: // sour cef or ge. net/ pr oj ect s/ bsf 4r exx

[W3Jakarta] Homepage of the open source Apache organization, URL
(2003-05-29): http: //j akart a. apache. or g/

[W3Java] Java homepage, URL (2003-05-29): http://j ava. sun. conf

[W3JavaDoc] Java documentation homepage, URL (2003-05-29):

http://java. sun. conf docs/

[W3NetRexx]NetRexx homepage of the creator of the language, the IBM fellow Mike
Cowlishaw, URL (2003-05-29): http: // ww2. hur sl ey. i bm conl net r exx/

[W30hbjRexx]Object Rexx homepage of IBM, URL (2003-05-29):

http://ww. i bm com sof t war e/ ad/ obj - r exx/

[W3Rexx] Rexx homepage of the creator of the language, the IBM fellow Mike
Cowlishaw, URL (2003-05-29): htt p: // ww2. hur sl ey. i bm cont r exx/

[W3RexxLA] Rexx homepage of the “Rexx Language Association”, URL
(2003-05-29): ht t p: / / wwn. RexxLA. or g

[W3RxTrans]Homepage of Mark Hessling's "RexxTrans", URL (2003-05-29):

http://rexxtrans. sourceforge. net/index. htm
[W3Rhino] Rhino homepage, URL (2003-05-29): ht t p: / / wwv. mozi | | a. or g/ r hi no

[W3WebSphere] Homepage of IBM's WebSphere product, URL (2003-05-29):

http://ww. i bm com sof tware/infol/ websphere/index.jsp

[W3Xerces] Homepage of the open source Apache project "Xerces", URL
(2003-05-29): http://xm . apache. or g/ xerces2-j /i ndex. ht m

The Augsburg Version of BSF4Rexx, page 31-38

ADDENDUM A: EXAMPLE PROGRAMS FROM [FLATO1] ADAPTED
FOR THE AUGSBURG VERSION

In the article about the Essener version of BSF4Rexx [FlatO1] there was a little Rexx
and Object Rexx program depicted, which demonstrated the usage of the Java
"awt " (abstract window toolkit) classes to create and use a platform independent
graphical user interface. Due to the Essener version all arguments were strongly

typed.

In this section the very same programs are shown with the type information
removed, so they can be run under the Augsburg version of BSF4Rexx. In addition
the frame window is changed to a larger size in order to show the full text of its title
and is shown in figure 16. The upper screenshot stems from Windows XP running
the programs of figure 14 and 15 under Object Rexx, the bottom screenshot was

taken from a Linux Red Hat 7.3 system running the open source Rexx interpreter

/* "ShowCount.rex" - a Rexx programto count nunber of button presses */
call BSF 'registerBean', ‘win', 'java.aw.Frane', ' Show count’

call BSF 'addEventlListener', "win', 'w ndow, 'w ndowCl osing', 'call BSF "exit"'
call BSF 'registerBean', "but', 'java.awt.Button', 'Press ne!’

call BSF 'addEventListener', 'but', '"action', '', 'call ShowSize'

call BSF 'registerBean', "lab', 'java.awt.Label"’

call BSF 'invoke', "lab', 'setAlignnent', 1

call BSF '"invoke', 'win', 'add', 'Center', 'lab'

call BSF '"invoke', 'win', 'add', 'South', 'but’

call BSF 'invoke', '"win', 'pack'

call BSF '"invoke', 'win', 'setSize', 300, 90

call BSF '"invoke', 'win', 'show

call BSF '"invoke', 'win', 'toFront'

i=0 /* set counter to O */

do forever

a = bsf("pol | Event Text") /* wait for an eventText to be sent */

interpret a /* execute as a Rexx program */

if result= "SHUTDOWN, REXX !'" then leave /* JVMw || be shutdown in 0.1lsec */
end
exit

/* show the actual nunber of tines, you pressed the button */

ShowsSi ze:

i=i+1

call BSF 'invoke', 'lab', 'setText', "Press #" i

return

Figure 14: A Rexx Program which Uses Java’'s AWT for a GUI Interface, Adaptation

(removing type information from the arguments) of Figure 20 in [FlatO1].

The Augsburg Version of BSF4Rexx, page 32-38

[* "ShowCount.rex" - an Ohject Rexx programto count nunber of button presses */

. bsf~import ("awt Frane", "java.aw.Frane")
. bsf ~i mport ("awtButton", "java.awt.Button")
. bsf ~i mport ("awt Label ", "java.awt.Label")

Wi n=. awmt Fr ane~new(" Show Count")
wi n~bsf . addEvent Li st ener (' wi ndow , 'wi ndowCl osing', '.bsf~exit"')

but =. awt Butt on~new("Press ne!")
but ~bsf . addEvent Li stener('action', '', 'call ShowSize')

| ab=. awt Label ~new ~~set Al i gnnent (1)

win ~~add("Center", |ab) ~~add("South", but) ~~pack ~~setSize(300,90) ~~show ~~toFront

i =0 /* set counter to O */

do forever
a = bsf("poll Event Text") /* wait for an eventText to be sent */
interpret a /* execute as a Rexx program */

if result= "SHUTDOWN, REXX !'" then leave /* JVMw || be shutdown in 0.1sec */
end

exit
/* show t he actual nunmber of tines, you pressed the button */
ShowSi ze:
i=i+1
| ab~set Text ("Press #" i)
return
::requires "BSF.cls" -- get access to the Object Rexx support enhancenent

Figure 15: An Object Rexx Program which Uses Java’'s AWT for a GUI Interface,

Adaptation (removing type information from the arguments) of Figure 23 in [FlatO1].

& Show count [Z”E| [z|

FPress # 6

Press mel

DI=ES

Prass # &

Prass mel Il
| |

Figure 16: Platform Independent GUI Created with Java's AWT by the Rexx
Program of Figure 14 and the Object Rexx Program of Figure 15 running under
Windows XP and Linux Red Hat 7.3.

Regina to execute the Rexx code of figure 14 and the free evaluation copy of Object
Rexx for Linux was used to run the Object Rexx code of figure 15.

The Augsburg Version of BSF4Rexx, page 33-38

ADDENDUM B: BRIEF OVERVIEW OF THE BSF()-SUBFUNCTIONS

The external Rexx function "BSF() " allows Rexx programmers to call into Java,
where with the help of a Java program ("RexxAndJava. | ava") the desired

subfunction gets carried out. The call syntax from Rexx looks like:

call BSF "SubFunction" [, "argunmentl1"]...
or.

a=BSF(" SubFunction" [, "argument"]...)

The table in figure 17 lists and briefly describes all 27 "BSF() " subfunctions, which
are implemented in "RexxAndJava.j ava" and documented with "j avadoc".
Hence, one could look up the HTML-help for "RexxAndJava" and study the
documentation of the method "j avaCal | BSF" to learn about these subfunctions as

well.

The subfunctions which deal directly with a Java class ("r egi st er Bean" and
"regi sterBeanStri ct" to create an instance from it, "get St ati cFi el d" to get
the value of a public static field of a Java class) expect a string denoting the fully

qgualified name of the Java class.

All subfunctions interacting with a Java object need to use the string (key) used to
store that Java object in the BSF registry on the Java side to uniquely address the

Java object, e.g. subfunctions: "i nvoke", "get Fi el dVal ue", "set Fi el dVval ue".

All subfunctions containing the string "Strict" need their arguments to be "strongly
typed”, i.e. the Rexx programmer needs to indicate before each argument of which
Java type it is. These strings denominating the Java types are depicted in figure 18

and are sometimes called "ar gTypes" or "t ypel ndi cat or ".

SubFunction Brief description

"addEvent Li stener"”, beanNane, eventSetNane, filter, event Text

Allows to add an event listener and tell it what event string to send to the Rexx
program. This could be Rexx code to be interpreted upon receipt.

"arrayAt", arrayQbject, indexl [, indexn]...
"arrayAt", arrayCbject, intArray

Returns the object stored in the ar r ayObj ect at the given index/indices.

The Augsburg Version of BSF4Rexx, page 34-38

Optionally the given index/indices may be supplied with ani nt Arr ay.

"arraylLength", arrayQbject

Returns the capacity of this particular ar r ayQbj ect .

"arrayPut", arrayQbject, newval ue, indexl [, indexn]...
"arrayPut", arrayQbject, newal ue, intArray

Stores newVal ue in the ar r ayObj ect at the given index/indices. Optionally the
given index/indices may be supplied with ani nt Arr ay.

"arrayPut Strict", arrayCbject, typelndicator, newval ue, indexl [, indexn]...
"arrayPut Strict", arrayCbject, typelndicator, newal ue, intArray

Stores newVal ue in the ar r ayObj ect at the given index/indices. Optionally the
given index/indices may be supplied with ani nt Array. (Deprecated.)

"createArray", conponent Type, capacityl [, capacityn]...
"createArray", conponent Type, intArray

Creates a Java array of the given conponent Type (a Java class object),
determining the capaci t y in each dimension. Alternatively, an i nt Arr ay can be
given which is used to store the capacity of each dimension.

"exit"[, [retVal] [, tinme2wait]]

Terminates the Java virtual machine with a return code of r et Val after
ti me2wai t milliseconds.

"get Fi el dval ue", javaQbject, fiel dName

Looks up and returns the value of f i el dNan® in the given j avaObj ect .

"get PropertyVal ue", javaQbject, propertyNanme, index

Looks up and returns the value of pr oper t yNane in the given j avaQbj ect at the
given i ndex (setto nul I , if not an indexed JavaBean property).

"get StaticValue", classNane, fiel dName

Looks up and returns the value of the public static f i el dNan® in the given Java
class of cl assName (can be a Javai nt er f ace as well).

"i nvoke", javaObject, nethod [, argl]

Invokes the met hod on the j avaQbj ect supplying the arguments, if any. Returns
whatever the method returns or nul | .

"invokeStrict", javaQbject, nethod [, typelndicatorl, argl]

Invokes the net hod on the j avaQbj ect supplying the type of each argument
before the argument, if any. Returns whatever the method returns or nul | .

"l ookupBean", beanNane

Returns beanNane, if there is a Java object registered in the BSF registry under the
name beanNane, nul | else.

"pol | Event Text" [, timeout]

Returns the eventText, if available, else waits t i meout milliseconds. If no timeout is
given, this subfunctions waits until an eventText becomes available.

"post Event Text", eventText [, priority]

Posts the event Text atthe given pri ority (1=highest, 2=default or 3=lowest).

"regi sterBean", [beanNane], classNane [, argl]...

Creates an instance of the Java class named cl assNane, supplying arguments if

The Augsburg Version of BSF4Rexx, page 35-38

available. The Java object will get stored in the BSF registry under beanNane
(creating a unigue name, if beanNane was omitted by Rexx), which gets returned.

"registerBeanStrict", [beanNane], classNane [, typelndicatorl, argl]...

Creates an instance of the Java class named cl assNane, supplying arguments if
available. The Java object will get stored in the BSF registry under beanNane
(creating a unique name, if beanName was omitted by Rexx), which gets returned.
If arguments are supplied, each will be preceded by its type.

"set Fi el dval ue", javaQbject, fieldNanme, newal ue
Looks up and sets the value of f i el dNane in the given j ava(bj ect to
newval ue.

"setFi el dval ueStrict", javaCbject, fieldNane, typelndicator, newal ue

Looks up and sets the value of f i el dNane in the given j avathj ect using the
type of the t ypel ndi cat or for the newval ue. (Deprecated.)

"set PropertyVval ue", javaCbject, propertyNane, index, newal ue

Looks up and sets the value of pr oper t yNane at the given i ndex (nul | , if not an
indexed JavaBean property) in the given j avaCbhj ect to newVal ue.

"set PropertyVal ue", javaQbject, propertyNane, index, typelndicator, newal ue

Looks up and sets the value of pr oper t yNane at the given i ndex (nul | , if not an
indexed JavaBean property) in the given j avaCbj ect using the type of the
t ypel ndi cat or for the newval ue.

"set RexxNul I String", newString

Sets the textual representation of a Java nul | value to newSt r i ng. This allows
Rexx to determine and to indicate the Java nul | value and is presetto". NI L".

"sleep", tinme2sleep

Sleeps ti me2sl eep seconds (can be a fraction as well) before returning to Rexx.

"unr egi st er Bean", beanNane

Removes the Java object registered with beanNane from the BSF registry, making
it unavailable to Rexx. This allows the Java object to be garbage collected from
Java.

"wrapArray", arrayQbject

Wraps the ar r ayQbj ect which then can be accessed and analyzed via the
methods of the Java class "Ar r ayW apper ".

“wr apEnumner ati on", enunObj ect

Wraps an enumerable Java object which one wishes to enumerate. (This is meant
for programs running under Java 1.1 only to overcome an access violation bug.
Starting with Java 1.2 this Java reflection bug is circumvented by the Augsburg
version of BSF4Rexx taking advantage of the Java class "Accessi bl eObj ect ")

"versi on"

Returns the version string of the program "RexxAndJava", e.g.
"200. 20030416 com i bm bsf. engi nes. rexx" or
"200. 20030416 org. apache. bsf. engi nes. rexx".

Figure 17: The "BSF() " Subfunctions of the Augsburg Version of BSF4Rexx.

The Augsburg Version of BSF4Rexx, page 36-38

Indicator Datatype

"bool ean” the value 0 (fal se)or1 (true)

"byt e" a byte value

"char" a single (UTF8) character

"doubl e" a double value

"float" a float value

"int" an integer value

"l ong" a long value

"obj ect” a Java object which is registered with the BSF registry (the immediately

following argument is the string serving as the key for retrieving the desired
Java object from the BSF registry).

"short" a short value

"string" a string value (UTF8)

Figure 18: The Java Type Indicator Strings for the "Strict"-Subfunctions of figure
17 above, which must precede each individual argument. Only the bold letters

need to be given.

The Augsburg Version of BSF4Rexx, page 37-38

Date of Article: 2003-06-01.

Published in: Proceedings of the ,2003 International Rexx Symposium®,
Triangle Research Park, North Carolina, USA, May 4" - May 7", 2003,
The Rexx Language Association, Raleigh N.C. 2003.

Presented at: ,2003 International Rexx Symposium®, Raleigh, North Carolina, USA,
May 5™, 2003.

The Augsburg Version of BSF4Rexx, page 38-38

