
“THE AUGSBURG VERSION1) OF BSF4REXX”

Rony G. Flatscher

University of Augsburg, Germany

„The 2003 International Rexx Symposium“, Raleigh, North Carolina, USA,

May 4th - May 7th, 2003.

ABSTRACT

"BSF4Rexx", the Bean Scripting Framework for Rexx, allows one to use the Rexx

and Object Rexx programming languages with the open source IBM Bean Scripting

Framework (BSF) which enables Java programs to easily invoke scripts and

programs written in another language than Java. This article introduces the

"Augsburg version" of BSF4Rexx which incorporates numerous changes and as a

main feature the ability to start Java from Rexx programs. This way all of Java can

be viewed as a huge external Rexx function library from the perspective of Rexx,

available on any platform Rexx is available. This paper gives a bird eyes view of

BSF4Rexx concentrating on this latter ability and introducing Rexx programmers

informally to Java and to the most important object-oriented terms such that the

unacquainted Rexx and Object Rexx programmer becomes able to read the Java

documentation and as a result apply BSF4Rexx to allow (Object) Rexx to use and

drive Java.

The Augsburg Version of BSF4Rexx, page 1-38

1) This article reflects a major change in BSF4Rexx implemented right after the 2003 International

Rexx symposium on the way back to Europe: calling Java from (Object) Rexx does not require

(and as a matter of fact even prohibits) the exact indication of the types of Java arguments meant

for Java constructors or Java methods! This simplifies the invoking of Java constructors and

methods considerably for Rexx and hence is being incorporated into the final version of this article.

1 INTRODUCTION

At the 2001 International Rexx symposium the first incarnation of the "BSF4Rexx" -

the "Bean Scripting Framework for Rexx" - got introduced to the Rexx community

[Flat01]. Taking advantage of the IBM open source project "Bean Scripting

Framework" it has become possible to invoke Rexx programs from Java programs in

an easy and straight-forward manner. In turn such invoked Rexx programs could call

back into Java and take advantage of the wealth of the functionality implemented in

Java classes and made available via Java objects.

Should a Rexx programmer be interested in using the Java functionality for solving

problems of his own, then it has been mandatory that his Rexx programs be invoked

by Java programs in the first place, as the appropriate BSF environment had to be

set up prior to Rexx calling (back) into Java.

This article introduces the reader to the "Augsburg version of BSF4Rexx" which for

the first time allows Rexx programmers to directly use Java, without the need to

invoke his own Rexx programs indirectly via Java.

This way Java becomes the "largest external function package for Rexx in the

world"! In addition that particular "external function package" has been already

ported to all commercial relevant operating systems and hardware platforms and

beyond!

Drawing from comments of some Rexx programmers in the past it has become clear

that many of the Rexx programmers have never been directly exposed to Java

programs and as a result have been handicapped in taking advantage of BSF4Rexx.

Therefore this article concentrates on explaining and demonstrating a Java program,

its interface documentation which looks like any Java documentation and the

employing of the functionality of such Java programs from Rexx. It is hoped that a

reader being a Rexx programmer who has never been exposed to Java will be able

to take advantage of this enormeous and rich set of functionality as a result of

studying this article.

The Augsburg Version of BSF4Rexx, page 2-38

2 BSF - ARCHITECTURE AND APPLICATION

The "Bean Scripting Framework" (BSF) has begun its life as an IBM alphaworks

project, which allows IBM employees to make their work available to the world. In the

case that a particular alphaworks project [W3Alpha] draws the attention of other

developers it may be the case that such a project turns into a so-called "developer

work", which usually means that the project gets more attention and resources from

IBM ([W3BSF], but may also be employed in other IBM products like "IBM

WebSphere" [W3WebSphere].

BSF defines and implements a Java framework which enables Java programmers to

invoke programs from Java, which are written in a non-Java programming language

like JavaScript or Perl. The initial support for non-Java programming languages by

IBM in BSF 2.2 concentrated on Java implemented interpreters, like Mozilla's Rhino

[W3Rhino] or Mike Cowlishaw's2) NetRexx [W3NetRexx] and in addition to the

Microsoft ActiveX scripting languages JScript and VBScript, available on the

Windows platform only.

In the fall of 2002 the entire open source project was handed over to the Jakarta

project of the Apache organization and got released with the version number "BSF

2.3". This way the technology can be used in additional Apache funded/initiated

open source projects like "ant" [W3Ant] or "xerxes" [W3Xerces].

2.1 The Essener Version of BSF4Rexx

The Essener version of BSF4Rexx [Flat01] is rooted in a feasibility study of a

student at the University of Essen [Kal01] and extends the set of usable languages

for IBM's BSF by Rexx and Object Rexx. Figure 1 depicts the overall architecture.

Steps for invoking a Rexx program using the Essener version of BSF4Rexx:

w The Java program creates an instance of the Java BSFManager class,

which allows for loading and executing programs written in any of the BSF

supported languages.

The Augsburg Version of BSF4Rexx, page 3-38

2) Mike F. Cowlishaw is the original creator of the Rexx programming language and an IBM fellow.

w The Java program uses the BSFManager object to load the Rexx engine,

which is implemented as a Java program ("RexxEngine.java") and which

initializes the interface to Rexx, i.e. a compiled C++ program named

"BSF4Rexx" adhering to the "Java Native Interface" (JNI) specifications.3)

From this moment on it becomes possible for the Rexx engine to invoke

Rexx programs by supplying the Rexx code and Rexx arguments for the

Rexx interpreter which gets called in "BSF4Rexx". Before doing that an

external Rexx function named BSF() is registered with the Rexx interpreter,

which allows the Rexx programs to call back into Java.

w Rexx scripts calling back into Java are able to use a rich set of functions

which will get carried out in the Java program "RexxAndJava.java"

transparently. The scheme is simple: the first argument to the external Rexx

function BSF() denotes the desired subfunction4) to be carried out by

"RexxAndJava". Depending on the subfunction, additional arguments may

The Augsburg Version of BSF4Rexx, page 4-38

BSF

RexxEngineRexxEngine
BSF4Rexx

(C++)

Rexx
scripts

RexxAndJavaRexxAndJava

Java Program

Figure 1: The BSF Architecture and the Essener Version of BSF4Rexx [Fla01].

4) E.g. the subfunction to invoke a Java method is called "invoke".

3) "BSF4Rexx" is implemented as a DLL under OS/2 resp. eComStation and Windows, and as a

shared library under Linux.

have to be supplied by the Rexx program. Upon return from "RexxAndJava"

a return value will always be supplied to Rexx.5)

The Essener version of BSF4Rexx has been allowing Rexx (and Object Rexx for

that matter) to be employed in the context of IBM's BSF, making it possible to

invoke Rexx programs everywhere where Rhino, VBScript and the like could be

used with BSF in the same easy and straight-forward manner by Java programmers.

Figure 2 shows a minimal Java program using BSF4Rexx to create a BSFManager

instance, which then is used to load the Rexx scripting engine containing the

necessary statements in order to call Rexx from Java using BSF4Rexx:

w Line # 1: the BSF Java package contains all the BSF classes, among them

the Java classes BSFManager and BSFEngine.6)

w Line # 9: an instance named "mgr" of the BSFManager class is created.

The Augsburg Version of BSF4Rexx, page 5-38

/* 1 */ import com.ibm.bsf.*; // BSF support
/* 2 */
/* 3 */ public class TestBSF4Rexx
/* 4 */ {
/* 5 */ public static void main (String[] args)
/* 6 */ {
/* 7 */ try
/* 8 */ {
/* 9 */ BSFManager mgr = new BSFManager ();
/* 10 */ BSFEngine rxEngine = mgr.loadScriptingEngine("rexx");
/* 11 */ String rexxCode = "SAY 'Rexx was here!'";
/* 12 */ rxEngine.exec ("rexx", 0, 0, rexxCode);
/* 13 */ }
/* 14 */ catch (BSFException e)
/* 15 */ {
/* 16 */ e.printStackTrace();
/* 17 */ }
/* 18 */ }
/* 19 */ }

Figure 2: Complete Nutshell Example for a Java Program Invoking a Rexx Program

Via BSF.

6) This package refers to IBM's version of BSF, a.k.a. "BSF 2.2". The package name for the Apache

version of BSF is "org.apache.bsf" and can only be used, if the JNI (Java native interface) C++

program "BSF4Rexx.cc" is compiled with an Apache-specific switch.

5) In the case that Java does not return a value (or a Java "null" indicating that no value is

available), then the character string ".NIL" is returned. One can use this very same string to

indicate from Rexx that one does not supply a value for a particular argument; the same effect can

be achieved by omitting the argument altogether from the Rexx side.

w Line # 10: using "mgr" an instance of BSFEngine is created and assigned

to a variable named "rxEngine".

w Line # 11: a String named "rexxCode" is defined containing a Rexx

program.7)

w Line # 12: the Rexx engine is used to execute the Rexx program contained

in the String variable "rexxCode".

For a Java programmer the above program is extremely simple and should be very

easy to comprehend.

However, Rexx programmers who have never been exposed to Java need to learn

quite a few Java fundamentals before being able to take advantage of the Essener

version of BSF4Rexx. Besides, if interested in using rather the Java functionality for

the purpose of solving problems in Rexx, it has been a little bit awkward that for that

purpose alone, one would need to write a Java program to invoke the respective

Rexx program which in turn would call back into Java.

It would be simpler and hence more "Rexx-like", if it was possible to control

everything from Rexx and if the Rexx programmer needed no Java programming

skills at all.

2.2 The Augsburg Version of BSF4Rexx

The Augsburg version of BSF4Rexx was developed while at the University of

Augsburg and extends the Essener version in three main areas:

w it allows to invoke Java (the Java runtime environment with all of its classes)

from Rexx, if needed,

w it removes all restrictions of the Essener version with respect to using Java

arrays, hence arbitrarily dimensioned Java arrays can be used,

The Augsburg Version of BSF4Rexx, page 6-38

7) Please note that in this nutshell example the Rexx code in line # 11 is explicitly given. Instead, one

could read the contents of a file into the variable "rexxCode" and pass it to the Rexx engine for

execution in line # 12.

w it makes sure, that Java programs not adhering to the BSF-specifications8),

and passing "pure" Java objects directly to Rexx, still work by registering

such Java objects with the BSF registry and supplying the (string) key as an

argument instead.9)

Figure 3 depicts the Augsburg version of BSF4Rexx, stressing the point that now it

has become possible for Rexx programs to load Java, if necessary, hence foregoing

the necessity to invoke Rexx programs via Java programs in order to be able to call

back into Java from Rexx. Nevertheless, comparing figure 3 with figure 1 it becomes

clear, that the basic architecture of BSF4Rexx remained intact. And indeed, the

information given in [Fla01] for the Essener version of BSF4Rexx remains

appliccable to the Augsburg version!

The Augsburg Version of BSF4Rexx, page 7-38

BSF

RexxEngineRexxEngine
BSF4Rexx

(C++)

Rexx
scripts

RexxAndJavaRexxAndJava

Java Runtime
Environment

(JRE)

Figure 3: The BSF Architecture and the Augsburg Version of BSF4Rexx [Fla01].

9) Technically, this is implemented in "RexxEngine.java".

8) Java programs which pass Java objects to non-Java programs via BSF as arguments must

register those Java objects with the BSF registry and supply the (string) key as an argument

instead. Referring to such Java objects can then be achieved by supplying that very same (string)

key as an argument, if calling into Java. In the case of Rexx "RexxAndJava" will carry out this

lookup in the BSF registry at the Java side in order to get access to the indicated Java object.

2.2.1 The "BSF" External Rexx Functions

Starting with the Augsburg version of BSF4Rexx there are new Rexx external

functions implemented in the dynamic link/shared library "BSF4Rexx"10) for allowing

Rexx to demand load Java among other things. Figure 4 shows all of the available

external Rexx functions and indicates which ones are preloaded by Java, if Rexx

was invoked by a Java program. It also depicts which external Rexx functions get

loaded, if using the loader function "BSFLoadFuncs()" from Rexx.

The following external Rexx functions from figure 4 accept arguments:

w BSF(arguments...): the arguments depend on the "RexxAndJava"

function addressed and are documented in [Flat01], a synopsis is given in

"Addendum B" at the end of this article.

The Augsburg Version of BSF4Rexx, page 8-38

New, returns the version of
the DLL/shared library
"BSF4Rexx".

yesyesBsfVersion()

New, unloads Java.yes-BsfUnloadJava()

New, returns a stem array
with all presently registered
function.

yesyesBsfQueryRegisteredFunctions()

New, returns a stem array
with all defined external Rexx
functions.

yesyesBsfQueryAllFunctions()

New, loads the Java runtime
environment.

yes-BsfLoadJava()

New function, BSF Loader
function.

--BsfLoadFuncs()

New function, returns '1' if
Rexx was invoked by Java, '2'
if Java was loaded by Rexx,
'0' if no Java is present.

yesyesBsfInvokedBy()

New function, deregisters all
external Rexx functions.

yes-BsfDropFuncs()

Allows Rexx to interface with
Java.

yesyesBSF()

SynopsisLoaded by
BsfLoadFuncs

Loaded by
Java's

RexxEngine

External Function Name

Figure 4: External Rexx Functions Defined in the Dynamic/Shared library.

10) The source file from which the dynamic link/shared library "BSF4Rexx" gets created is named

"BSF4Rexx.cc".

w BsfLoadJava([add2classpath] [, {Ap|Pre}pend]): the optional

add2classpath argument denotes a path to be added to Java's

CLASSPATH. If using Java 1.1 the second argument governs whether

add2classpath should be appended (default) or prepended to the existing

CLASSPATH environment variable.

w BsfQueryAllFunctions([stemName]): returns a stem array containing

a list of all Rexx external functions defined in "BSF4Rexx.cc". Optionally,

one can supply the stem name to be used (including the trailing dot!),

otherwise the stem name "BSFQUERYALLFUNCTIONS." is used (named

after the external Rexx function).

w BsfQueryRegisteredFunctions([stemName]): returns a stem array

containing a list of all Rexx external functions defined in "BSF4Rexx.cc".

Optionally, one can supply the stem name to be used (including the trailing

dot!), otherwise the stem name "BSFQUERYREGISTEREDFUNCTIONS." is

used (named after the external Rexx function).

w BsfVersion(): returns the version in a number formatted as: major

number *100+minor number, decimal dot, date of this particular version

in the format YYYYMMDD, where YYYY represents the four-digit year, MM

represents the month and DD represents the day, followed by a space,

followed by the BSF Java package name with names delimited by a slash

"/" e.g.: "200.20030430 com/ibm/bsf/engines/rexx"11).

2.2.2 Preregistered Java Class Objects in the BSF Registry

With the Augsburg version of BSF4Rexx some often used Java class objects are

preregistered in the BSF registry. This allows Rexx programmers to refer to them

merely by denoting the names in figure 5 wherever a Java class object is expected,

e.g. in creating a Java array of a certain type.

Please note that for every primitive Java datatype there is also its object-oriented

counterpart defined, which starts its name with a capital letter in figure 5!

The Augsburg Version of BSF4Rexx, page 9-38

11) The Apache variant of "BSF4Rexx.cc" of the Augsburg version of BSF4Rexx returns as its

package name "org/apache/bsf/engines/rexx".

The following example demonstrates how to take advantage of this service from

Rexx, e.g. querying the Java System class object for its property named

"java.version":

/* load the BSF4Rexx functions and start a JVM, if necessary */
if rxFuncQuery("BSF") = 1 then /* BSF() support not loaded yet ? */
do
 call rxFuncAdd "BsfLoadFuncs", "BSF4Rexx", "BsfLoadFuncs"
 call BsfLoadFuncs /* load all external Rexx functions from BSF4Rexx */
 call BsfLoadJava /* load the Java runtime environment */
end

 /* depending on your Java version "1.4.1_01" may be displayed: */
say bsf('invoke', 'System.class', 'getProperty', 'java.version')

Object Rexx

The Object Rexx support for BSF4Rexx has been adjusted such, that for all of these

Java class objects in "BSF.cls" proxy Object Rexx objects are created upon

loading this Object Rexx support program. These proxy Object Rexx objects

representing the Java class objects are stored in a directory object which is stored in

The Augsburg Version of BSF4Rexx, page 10-38

Void.classVoid.classjava.lang.Void
voidvoid.classvoid.class
Short.classShort.classjava.lang.Short
shortshort.classshort.class
Long.classLong.classjava.lang.Long
longlong.classlong.class
Integer.classInteger.classjava.lang.Integer
intint.classint.class
Float.classFloat.classjava.lang.Float
floatfloat.classfloat.class
Double.classDouble.classjava.lang.Double
doubledouble.classdouble.class
Character.classCharacter.classjava.lang.Character
charchar.classchar.class
Byte.classByte.classjava.lang.Byte
bytebyte.classbyte.class
Boolean.classBoolean.classjava.lang.Boolean
booleanboolean.classboolean.class

Primitive Java datatypes (pseudo class objects) and their object-oriented Java class objects

System.classSystem.classjava.lang.System
String.classString.classjava.lang.String
Array.classArray.classjava.lang.reflect.Array

Additional, useful Java class objects

Class.classClass.classjava.lang.Class
Object.classObject.classjava.lang.Object

Fundamental Java class objects
Name in ".bsf4rexx" directoryName in BSF-RegistryJava class object

Figure 5: Java Class Objects, Preregistered in the BSF Directory.

the local Object Rexx environment [Flat96a] by the name "bsf4rexx", in effect

allowing to refer to it with its environment symbol ".bsf4rexx" (note the preceding

dot).12) This makes referral to those preregistered Java class objects by Object Rexx

easy, e.g. accessing the Java class object "java.lang.System"13) and querying it

for the value of the Java runtime property "java.version" could be expressed

as:14)

 /* depending on your Java version "1.4.1_01" may be displayed: */
say .bsf4rexx~System.class ~getProperty("java.version")

::requires "BSF.cls" -- load the Object Rexx support for BSF4Rexx

2.2.3 BSF()-Subfunction "wrapEnumeration"

While testing the Augsburg version of BSF4Rexx under the different available

versions of Java15) a bug16) with Java's reflection mechanism surfaced which

prohibited the access to objects of type "Enumeration", if these were created with

public inner classes. A possible solution17) for this particular nasty problem available

to all Java versions has been created by using a new class named

"EnumerationWrapper"18) which wraps such objects and makes the Enumeration

The Augsburg Version of BSF4Rexx, page 11-38

18) The fully qualified name is "com.ibm.bsf.engines.rexx.EnumerationWrapper" for the IBM

version, the Apache version starts with "org.apache." instead of "com.ibm.".

17) A general solution for all Java versions starting with 1.2 has been created for the Augsburg version

of BSF4Rexx for IBM and Apache by patching the BSF code of IBM and Apache to allow explicit

access (using "java.lang.reflect.AccessibleObject") in cases where objects stem from

public inner classes.

However, Java 1.1 users must use the subfunction "wrapEnumeration" should they wish to

access Enumeration objects stemming from public inner classes as the "AccessibleObject"

class is not available to this older version of Java.

16) An according bug report submitted to Sun was approved by Sun on February 14, 2003 (Bug id:

4819108).

15) In the beginning of 2003 the Java versions used for testing were: 1.1, 1.2, 1.3 and 1.4.

14) The tilde (~) is used as the message operator in Object Rexx.

13) According to figure 5 the class object for "java.lang.System" is pre-registered in the BSF

registry under the name "System.class".

12) Please note that the names of the primitive datatypes in the directory with ".bsf4rexx" do not

contain the trailing characters ".class", hence allowing to distinguish the primitive datatypes from

their object-oriented representations as Java classes.

interface available to Rexx in the case it stems from an object returned from any

public class19).

The only two methods of this class are the ones of the Java "Enumeration"

interface:

w "hasMoreElements()": returns "1", if an element is available, "0" else.

w "nextElement()": returns the next element of the enumeration object.

2.2.4 Java Arrays

The Essener version of BSF4Rexx [Fla01] restricted the number of dimensions for

Java arrays arbitrarily to a maximum of five. Starting with the Augsburg version, all

restrictions in the context of Java arrays have been lifted. If creating Java arrays for

primitive Java datatypes from Rexx use the appropriate pre-registered Java pseudo

class objects20) to indicate to Java for which datatype the Java array should be

created for.21)

2.2.4.1 New BSF()-Subfunction "wrapArray"

The new BSF() subfunction "wrapArray" returns a Java object which allows to

conveniently interact with the Java array object supplied. The Augsburg version of

BSF4Rexx supplies a public Java class named "ArrayWrapper"22), which offers

public access to the fields and methods as depicted in figure 6.23)

The Augsburg Version of BSF4Rexx, page 12-38

23) The methods "supplier" and "makearray" have been created to match the appropriate Object

Rexx methods for Object Rexx Array classes. Cf. subsection '2.2.5 The Java Class "Supplier"'

which documents the appropriate Java class allowing for the "Supplier" functionality of Object

22) The fully qualified name is "com.ibm.bsf.engines.rexx.ArrayWrapper" for the IBM version,

the Apache version starts with "org.apache." instead of "com.ibm.".

21) Please note, that the first element of a Java array has to be indexed with the value "0".

The Object Rexx support makes Java arrays look like Object Rexx arrays, including the first

element of an array to be indexed with the value "1", the methods "items" and the ability to

enumerate all Java array entries with a "do...over" loop, as was the case with the Essener

version already. This translation occurs transparently through the Object Rexx proxy for Java

arrays. If accessing Java array objects without the Object Rexx support, then one needs to use the

Java indexing, in which the first element of an array starts at (offset) "0".

20) Cf. figure 5 above.

19) The described solution would work with all BSF scripting languages.

The syntax is:

wa=BSF("wrapArray", someJavaArray)

Object Rexx

Under Object Rexx the class method "wrapArray" of the Object Rexx BSF4Rexx

support class "BSF" can be used instead, e.g.:

waObject=.BSF~wrapArray(someJavaArray)

2.2.4.2 New BSF()-Subfunction "createArray"

Creating an array of a certain ("component") type can be achieved with the

subfunction "createArray" of the BSF()-function. With the Augsburg version, as

mentioned above, it has become possible to create arrays of arbitrary dimensions,

though the programmer needs to indicate the maximum number of entries per

dimension.

The Augsburg Version of BSF4Rexx, page 13-38

Figure 6: Public Members of the Java Support Class "ArrayWrapper".

Method, returns an array with possibly two single dimensioned array rendering
of the array object. If first argument is set to "1" (true) then two matching
array objects are returned, one containing the array entries and one the index
in form of a string where the according entry is stored. If the second argument
is "1" (true) then the index part is formatted in the Object Rexx style (see
above).
Entries with "null" are ignored and therefore skipped.

makearray({0|1},{0|1})

Method, returns a supplier object, allowing to enumerate all array entries,
index being a String representing the needed indexing to arrive at the
according entry. If no argument is given or the argument is "0", then the String
representing the index part starts indexing with "0" (Java-style, index parts are
enclosed in square brackets), else with "1" (Object Rexx style, index parts are
separated by a comma and enclosed within rounded parenthesis).

supplier([0 | 1])

Field, stores the Java class object indicating the type of the array objectcomponentType

Field, stores the total number of entries of the array object.items

Method, returns the size of the given dimension (numbering starts with '0'!)dimension(int i)

Field, stores the number of dimensions.dimensions

SynopsisMember Name

Rexx.

The Java type is indicated by referring to the appropriate Java class object. For this

purpose you can also directly use the BSF registry names of the predefined Java

class objects as depicted in figure 5 above.

 The syntax is:

array=BSF("createArray", javaClass, max_elements1 [, max_elementsX]...)

The following example defines a three dimensional Java array of the primitive

datatype "int":

array=BSF("createArray", "int.class", 3, 5, 4)

Object Rexx

Under Object Rexx the class method "createArray" of the Object Rexx BSF4Rexx

support class "BSF" can be used instead, e.g.:

arrayObject=.BSF~createArray(javaClass, max_elements1 [, max_elementsX]...)

The latter returns an Object Rexx array proxy which behaves like an Object Rexx

array.

The following example defines a three dimensional Java array of the primitive

datatype "int", hence accepting integers only:

arrayObject=.BSF~createArray(.bsf4rexx~int, 3, 5, 4)

2.2.5 The Java Class "Supplier"

Borrowing from the Object Rexx class "Supplier"24) an equivalent Java class has

been created for the Augsburg version of BSF4Rexx, allowing to iterate over all

elements of an array via the methods known from Object Rexx (cf. figure 7). In

addition the Java "Enumeration" interface25) is implemented.

The Augsburg Version of BSF4Rexx, page 14-38

25) Cf. subsection entitled '2.2.3 New BSF()-Subfunction "wrapEnumeration"' above.

24) The fully qualified name is "com.ibm.bsf.engines.rexx.Supplier" for the IBM version, the

Apache version starts with "org.apache." instead of "com.ibm.".

Instances of this class are returned by the method "supplier()" for wrapped array

objects.26)

2.2.6 Need for Strong Typing Removed

As mentioned in the introduction the author removed the need for strong typing with

the planned release of the Augsburg version of BSF4Rexx. This means, that the

explicit supply of datatype indicators preceeding each argument meant for Java has

been lifted. Instead BSF4Rexx takes the arguments and looks up the appropriate

Java method on the Java side. Hence, starting with the Augsburg version it is

forbidden to supply type information for the following subfunctions27) in BSF()-calls:

w "arrayPut",

w "invoke",

w "registerBean",

w "setFieldValue",

w "setPropertyValue".

The Augsburg Version of BSF4Rexx, page 15-38

Method, returns a string representing some indexindex

Method, returns the elementitem

Method, positions on next elementnext

Method, returns "1" if element is available, "0" elseavailable

Methods of the Object Rexx Supplier class

Method, returns the next element of the EnumerationnextElement

Method, returns "1" if element is available, "0" elsehasMoreElements

Methods of the Java Enumeration interface

SynopsisMember Name

27) For a full list and description of all subfunctions available in BSF()-calls cf. [Fla01], a synopsis is

given in Addendum B at the end of this article.

26) Cf. subsection entitled '2.2.4.1 New BSF()-Subfunction "wrapArray"' above.

Figure 7: Public Members of the Java Support Class "Supplier".

In the case that programmers still wish to be able to explicitly state the Java types of

the arguments28), then they need to use the above subfunctions with the word

"strict" appended to their names29).

The Augsburg Version of BSF4Rexx, page 16-38

29) Hence the subfunction names which allow for supplying the Java datatypes in front of the individual

arguments as was the default for the Essener versions need to be called: "arrayPutStrict",

"invokeStrict", "registerBeanStrict", "setFieldValueStrict" and

"setPropertyValueStrict".

Under Object Rexx all of these subfunctions, except for "arrayPutStrict" and

"registerBeanStrict" are made available in the form of methods with the prefix "BSF.", i.e.

"bsf.invokeStrict", "bsf.setFieldValueStrict", "bsf.setPropertyValueStrict".

Should it become necessary to create an instance of a Java class with strong typing, then one

would need to proceed as follows:

-- create the Java object as with classic Rexx
tmp=BSF('registerBeanStrict', java_class [, "argType", "arg"]...)

-- now turn the reference into an Object Rexx proxy object, so one
-- is able to send it Java messages with the twiddle (~)

proxy=.bsf_proxy~new(tmp) -- creates an Object Rexx proxy object

28) There may be rare situations where it may be advisable to use strong typing in the context of

invoking a Java method (subfunction "invoke") or constructor (subfunction "bsfRegister"), e.g.

if a value could be interpreted to be a number or a string and that there are Java methods with a

number and a string signature.

3 USING JAVA CLASSES FROM REXX

This section briefly introduces the reader to Java classes and their documentation,

trying to explain the most important terms and concepts with respect to Java. It then

demonstrates the usage of an example Java class from Rexx. In principle, all Java

classes and interfaces can be used with exactly the same approach.

3.1 Java Classes

A Java class is the implementation of an abstract data type. An abstract data type

(ADT) usually defines in general terms the properties and behaviours of data of a

certain kind30). Using an object-oriented language like Java it is rather easy to

implement an ADT using a C/C++ like syntax.31)

3.1.1 Defining Properties and Behaviour Using a Java Class Definition

Java classes consist of fields32) (representing properties) and methods33)

(implementing the behaviour). Fields and methods are called "members" of the class

(definition).

If one wishes to use the infrastructure of a specific class, one needs to create an

"instance" of that particular class. Such instances are synonymeously called

"object"s in object-oriented terms and supply access to all fields and methods,

which are declared to be "public"ally accessible and which are laid out in the class.

Hence, the Java class serves as a blue-print for the properties and the behaviour its

instances should expose.

For each instance of a Java class an individual set of fields as defined in the Java

class is created, allowing the storage of values pertaining to that particular instance

only. In addition all methods defined in the class are part of the instances of that

The Augsburg Version of BSF4Rexx, page 17-38

33) Loosely speaking, a "method" is a procedure/function of an object.

32) Sometimes the term "attribute" is used instead of "field".

31) Object Rexx is another object oriented programming language which allows for an easy

implementation of an ADT.

30) In the context of this article "kind" is a synonym for "type" which is a synonym for "class", hence all

three terms are used interchangeably.

class, hence all instances (objects) "behave" the same as they all share the same

methods.

In the case that particular fields should be shared among all objects of a class, the

keyword "static" needs to be supplied with the field. If there are methods which

should be restricted to access static fields only, then these methods need to be

decorated with the keyword "static" as well.34) 35)

3.1.2 About Class Hierarchies

In object-oriented systems the concept of a hierarchy of classes is employed to allow

programmers to reuse as much of pre-defined functionality as possible, by denoting

that a particular class is to be regarded as a specialization ("subclass") of an existing

class ("superclass"). Doing so allows the programmer to use all the methods of the

superclass for his/her own new class, allowing to define and implement only those

methods which add "specialized" behaviour, making the process of software

engineering considerably easier. Being able to get access to the methods (and

fields) of superclasses is often pictured with the term "inheritance". E.g. the fact that

Java allows to specialize one single class at one time is dubbed "single

inheritance".36)

Java comes with an incredible rich set of pre-defined (pre-programmed and

pre-tested) classes, organized in the form of a class hierarchy.37) The root class of

the Java class hierarchy is called "Object". The public members of the class

The Augsburg Version of BSF4Rexx, page 18-38

37) The full documentation of all of Sun's Java classes in HTML (see below) is available from

[W3JavaDoc].

36) In Object Rexx or C++ it is possible to specialize more than one superclass at the same time,

which is called "multiple inheritance".

35) One is able to access public static fields and public static methods also by merely referring to the

class itself. Or with other words, it is not necessary to create an instance of a Java class, if one

wants to access public static fields and public static methods.

34) Fields and methods decorated with the keyword "static" are also called "class fields" and "class

methods". (In Object Rexx the keyword "class" needs to be used with the method directive in order

to achieve the same results.)

definition of the Java class "Object" are therefore available to all of its direct or

indirect subclasses.38)

3.1.3 More on Methods

In Java the definition of a method consists of optional decoration keywords, a return

value type39), the name of the method, an opening and closing bracket, which may

contain a list of arguments with explicit declaration of their types.

The name of a method together with its argument list is called "signature" and must

be distinct to any other signature in the same class.40) The code of a Java method

follows the signature and is enclosed within curly brackets.

In many object-oriented programming languages one can define methods which

should get automatically invoked, if an instance of a class is to be built. This way it

becomes possible to receive control at creation ("construction") time of an object,

allowing e.g. for initializing each object before it gets used. Such methods are called

"constructors" and in Java they are named exactly as the class itself. One may

define different constructors for a Java class, each having a different signature.41)

3.1.4 Invoking a Method

In object-oriented systems one needs to "tell" the "object" which "method" it should

activate. Conceptually, this is done by "sending a message to an object", which then

takes on the responsibility to find a method with the same signature (same name

and same argument types of the message). In Java this is realized by appending the

method name with a dot to the object (the variable containing the reference to an

The Augsburg Version of BSF4Rexx, page 19-38

41) In Object Rexx a method named "INIT" serves as the constructor of that class, i.e. gets

automatically invoked, if an instance (object) of an Object Rexx class is created.

40) In Object Rexx there must not be multiple methods by the same name defined in a class. Rather,

one needs to use the "arg()"-function to determine if and what kind of arguments were supplied

for the method, very much the same concept as with procedures/functions in classic (procedural)

Rexx.

39) If a method does not return a value, then the special name "void" is used to indicate this fact.

38) The same holds for Object Rexx, which out of the box possesses a minimal but very functional set

of classes and the root of its class hierarchy is constituted by the Object Rexx class named

"Object".

instance of a Java class), followed by brackets, which may contain the argument

values.42)

If such a method cannot be found in the class from which the object was created,

the object conceptually then searches its superclass for a matching method up the

class hierarchy until it arrives at the root class "Object". If a matching method

cannot be found an error condition is raised.43)

3.2 Example: The Java Class "XyzType"

Figure 8 depicts the Java source code of the Java class named "XyzType"

implementing some ADT. The members of this class are as follows:

w a public (constructor) method named "XyzType" with a signature

indicating, that it gets invoked if there are no arguments supplied at creation

time,

w a public (constructor) method named "XyzType" with a signature

indicating, that it gets invoked if there is exactly one argument (of type

String) supplied,

w a public static field named "counter" of type "int", i.e. a 32-Bit signed

integer type, shared among all instances because of the keyword "static",

w a private field named "info" of type "String", only accessible from

members of the class itself due to the keyword "private",

w a public method named "getInfo" with a signature indicating, that it gets

invoked if there are no arguments supplied, returning a value of type

"String",

w a public method named "setInfo" with a signature indicating, that it gets

invoked, if there is exactly one argument of type "String" supplied, not

The Augsburg Version of BSF4Rexx, page 20-38

43) In a compiled language like Java the search for methods is usually carried out at compile time by

the compiler. In an interpreted object-oriented language like Object Rexx, this search is carried out

at runtime. If the method cannot be found, Object Rexx raises the same message as one of its

conceptual ancestors, Smalltalk, namely "object cannot understand message".

42) In Object Rexx one uses a message operator, which is dubbed "twiddle" and represented by the

tilde (~) character, followed by the name of the message. Unlike Java, Object Rexx allows to omit

the brackets from a message, if no arguments are supplied.

returning anything, because of the special keyword "void" in front of the

method name.

Studying the methods the following behaviour can be deduced:

w Each time an instance is created the static field "counter" gets its value

increased in the constructor method, and as a result representing the

number of instances (objects) which got created from this particular class.

w If a string is supplied at creation time that value gets stored in the field

"info" and can be retrieved by the public method "getInfo()".

w One is able to change the value of the field "info" by using the public

method "setInfo()".

The Java program in figure 8 can be compiled by issuing the Java compile

command "javac XyzType.java", resulting in the class file "XyzType.class",

which from this moment on can be used to create instances of that type.

In the programming language Java the creation of an instance is carried out with the

statement "new XyzType()", which returns a reference to the just created object,

The Augsburg Version of BSF4Rexx, page 21-38

public class XyzType // example class for demonstrating BSF4Rexx
{
 // constructors of this class (same name as class!)
 public XyzType () { // constructor without arguments
 counter=counter+1; // increase counter
 }

 public XyzType (String initialValue) { // constructor with argument
 this(); // invoke constructor above (no argument)
 info=initialValue; // save initial value
 }
 // keyword "static": class fields (attributes) and class methods
 static public int counter=0; // field: will count # of instances

 // instance fields (attributes) and instance methods
 private String info = null; // field: no initial value per default

 public String getInfo () { // accessor (getter) method (function)
 return info; // return whatever "info" points to
 }

 public void setInfo (String aValue) { // setter method (function)
 info=aValue; // save received value with "info"
 }
}

Figure 8: The Java Class "XyzType.java".

after the constructors finished their work. In "BSF4Rexx" the BSF()-subfunction

"registerBean" is used for this very same purpose.

A Java programmer wishing that his Java classes are documented in the Java

standard, i.e. in the form of intertwined HTML-files which can be viewed and

navigated by any stock WWW browser on any operating system, can do so by using

the "javadoc" program which comes with the Java development kit (JDK). Creating

the HTML-helpfile for the Java program in figure 8 one merely needs to issue the

command "javadoc XyzType.java". The resulting helpfile containing the

accessible fields and methods of the Java class "XyzType" is depicted in figure 9.44)

For Java programmers it is possible to add additional comments right into their

programs which then get extracted by "javadoc" and stored in the Java HTML help

The Augsburg Version of BSF4Rexx, page 22-38

Figure 9: The Java help file for the Java class "XyzType".

44) Please note, that by default only the public members (fields and methods) of a Java class are

documented. Therefore the unaccessible private field "info" does not get documented in figure 9.

files. As a matter of fact, all of Sun's documentation about their Java classes has

been created by this very same means. Hence anyone understanding the

information in figure 9 will be able to study each single Java class, all of its public

members (fields, methods).45)

3.2.1 Using the Java type "XyzType" from Rexx

Figure 10 depicts a Rexx program which employs "BSF4Rexx" in order to get access

and use the Java class (type) "XyzType". It accesses the static field "counter" by

referring the class "XyzType" directly and it creates instances of that type and

demonstrating the methods "getInfo()" and "setInfo()". Here are brief

comments about this Rexx program:

w Line # 1 through line # 6: if this Rexx program is invoked directly by Rexx,

the external Rexx function BSF() is not registered yet; therefore the loader

function of the external Rexx function package named "BsfLoadFuncs()"

is registered and thereafter executed, registering all other external Rexx

functions from the "BSF4Rexx" dynamic link/shared library. Therafter Java

gets loaded in line # 5 in order to allow access to Java classes from Rexx.

w Line # 8: a variable gets the string value ".NIL" assigned which allows Rexx

to indicate to Java the value "null".

w Line # 9: the name of the Java class gets stored in a variable.

w Line # 12: using the name of the Java class and the BSF subfunction

"getStaticValue" the static field "counter" gets accessed and its

present value is returned.

w Line # 16: the BSF() subfunction "registerBean" allows for creating an

instance (object) of a Java class and returns the string value used to store

The Augsburg Version of BSF4Rexx, page 23-38

45) Usually, there is much more information supplied with the individual members, explaining the

purpose and usage. Sometimes, programmers even give little examples of applying the methods of

a particular class right at the top of the documentation. Also, "javadoc" creates navigation frames,

indexes all fields and methods of all Java classes and presents the results in alphabetic order.

Furthermore, it is possible to navigate individual packages full of Java classes, which are related

with each other, e.g. all Java classes of the "awt." package, constituting the portable, simple

graphical user interface means of the "abstract window toolkit".

the just created Java object in the BSF registry.46) No argument is passed to

Java, hence the private field "info" in this newly created Java object will

have no value which is indicated by the Java value "null".

w Line # 17: displays the string value under which the Java object got

registered in the BSF registry and which one needs to use from Rexx if

referring to it.

w Line # 18: the method "getInfo()" is invoked upon the Java object and

returns ".NIL" as its value, indicating that no value is present in its private

field "info".

The Augsburg Version of BSF4Rexx, page 24-38

/* 1 */ if rxFuncQuery("BSF") = 1 then /* BSF() support not loaded yet ? */
/* 2 */ do
/* 3 */ call rxFuncAdd "BsfLoadFuncs", "BSF4Rexx", "BsfLoadFuncs"
/* 4 */ call BsfLoadFuncs /* register the BSF* external functions */
/* 5 */ call BsfLoadJava /* load Java, we need it! */
/* 6 */ end
/* 7 */
/* 8 */ null=".NIL" /* representation for Java's "null" */
/* 9 */ javaClass = "XyzType" /* determine Java class to use */
/* 10 */
/* 11 */ /* query value of static field (attribute) "counter" via class itself */
/* 12 */ say "value of static field 'counter'=" || bsf("getStaticValue", javaClass, "counter")
/* 13 */ say
/* 14 */
/* 15 */ /* creating an instance of the Java class "XyzType" */
/* 16 */ o=BSF("registerBean", null, javaClass) /* create an instance of "XyzType" */
/* 17 */ say "o:" o
/* 18 */ say "# 1:" bsf("invoke", o, "getInfo") /* get the value via the getter method */
/* 19 */ /* use the object's setter method to define a string value */
/* 20 */ call bsf "invoke", o, "setInfo", "Hello, from Rexx..."
/* 21 */ say "# 2:" bsf("invoke", o, "getInfo") /* get the value via the getter method */
/* 22 */ /* query value of static field (attribute) "counter" */
/* 23 */ say "value of static field 'counter'=" || bsf("getFieldValue", o, "counter")
/* 24 */ say
/* 25 */
/* 26 */ /* release (unregister) reference to the Java object */
/* 27 */ call BSF "unregisterBean", o /* remove register entry from Java */
/* 28 */
/* 29 */ /* create a second Java object */
/* 30 */ say "creating another instance of XyzType, this time with an initial value..."
/* 31 */
/* 32 */ /* create an instance of "XyzType" and supply a string value */
/* 33 */ o=BSF("registerBean", "otl", javaClass, "Hi, RexxLA!")
/* 34 */ say "o:" o
/* 35 */ say "# 3:" bsf("invoke", o, "getInfo") /* get the value via the getter method */
/* 36 */
/* 37 */ /* query value of static field (attribute) "counter" via object */
/* 38 */ say "value of static field 'counter'=" || bsf("getFieldValue", o, "counter")

Figure 10: A Rexx Program Using the Java Class "XyzType".

46) It is possible to force the BSF() subfunction "registerBean" to use a Rexx supplied string value

as the key to be used to store the Java instance in the BSF registry, by supplying that value as an

argument to "registerBean" instead of "null".

w Line # 20, # 21: with the help of the setter method "setInfo()" the string

value "Hello, from Rexx..." will be stored in the private field "info" of

the Java object. The Rexx statement in line # 21 uses the getter method

"getInfo()" to retrieve the value of the private field "info" and to display

it.

w Line # 23: this statement uses the BSF() subfunction "getFieldValue" to

retrieve the value of the static field "counter" using the "XyzType" object,

returning the value "1" as one object got created from this class so far.

w Line # 27: this statement causes the Java object in the BSF registry to be

removed and makes it such inaccessible from Rexx.47)

w Line # 33: another instance of class "XyzType" gets created with the BSF()

subfunction "registerBean", this time supplying an argument ("Hi,

RexxLA!") which gets stored with the private field "info" in the newly

created Java object. The value "otl" is to be used as the key for storing the

newly created Java object in the BSF registry.

w Line # 35: this statement uses the Java getter method "getInfo()" to

retrieve the value stored with the private field "info", displaying "Hi,

RexxLA!" on the screen.

w Line # 38: this statement retrieves the value of the static field "counter"

and displays the value "2" as there have been two objects created from the

class so far.

The Augsburg Version of BSF4Rexx, page 25-38

value of static field 'counter'=0

o: XyzType@15f5897
1: .NIL
2: Hello, from Rexx...
value of static field 'counter'=1

creating another instance of XyzType, this time with an initial value...
o: otl
3: Hi, RexxLA!

 value of static field 'counter'=2

Figure 11: A Possible Output of the Rexx Program of Figure 10.

47) Unregistering a Java object from the BSF registry makes it also garbage collectible by Java.

Therefore, long running Rexx programs should always unregister Java objects which they do not

need anymore.

Figure 11 shows a possible output generated by running the Rexx program of figure

10.

3.2.2 Using the Java type "XyzType" from Object Rexx

Figure 12 shows an Object Rexx program48) using the Java class "XyzType" with the

Object Rexx support of BSF4Rexx, which gets included in the requires directive,

which loads the Object Rexx support program "BSF.cls".

w Line # 24: the requires directive49) causes the Object Rexx interpreter to load

and execute the Object Rexx program "BSF.cls", which checks whether

Java is loaded and loads it if not and which sets up Object Rexx proxy

classes to ease the interaction with Java, attempting to make most of Java

appear to be Object Rexx.

The Augsburg Version of BSF4Rexx, page 26-38

/* 1 */ javaClass = "XyzType" /* determine Java class to use */
/* 2 */ say "value of static field 'counter'=" || .bsf~getStaticValue(javaClass, "counter")
/* 3 */ say
/* 4 */
/* 5 */ o=.BSF~new(javaClass) /* create an instance of "XyzType" */
/* 6 */ say "o:" o
/* 7 */ say "# 1:" o~getInfo /* get the value via the getter method */
/* 8 */ o~setInfo("Hello, from Rexx...")
/* 9 */ say "# 2:" o~getInfo /* get the value via the getter method */
/* 10 */ say "value of static field 'counter'=" || o~bsf.getFieldValue("counter")
/* 11 */ say
/* 12 */ /* release (unregister) reference to the Java object */
/* 13 */ -- not necessary for Object Rexx: garbage collection will take care of this !!!
/* 14 */
/* 15 */ /* create a second Java object */
/* 16 */ say "creating another instance of XyzType, this time with an initial value..."
/* 17 */ /* create an instance of "XyzType" and supply a string value */
/* 18 */ o=.BSF~new(javaClass, "Hi, RexxLA!")
/* 19 */ say "o:" o
/* 20 */ say "# 3:" o~getInfo /* get the value via the getter method */
/* 21 */
/* 22 */ say "value of static field 'counter'=" || o~bsf.getFieldValue("counter")
/* 23 */
/* 24 */ ::requires "BSF.cls" -- get Object Rexx support

Figure 12: An Object Rexx Program Using the Java Class "XyzType".

49) Directives are led in by two colons (::), appear at the end of Object Rexx programs and will be

carried out by the Object Rexx interpreter, before the Object Rexx program gets executed with its

statements starting at line # 1. This way it is possible to set up or enhance the environment for the

Object Rexx program before it gets executed. In this case the BSF4Rexx support for Object Rexx

gets initialized and its classes are made available to the Object Rexx program.

48) Object Rexx uses the tilde (~) character as its message operator and is called "twiddle" in the

Object Rexx documentation. It also adds line comments which are led in with two dashes (--).

w Line # 2: using a class method of the Object Rexx class ".bsf" it is possible

to query public static Java fields, in this case the value of "counter" of the

Java class "XyzType", which returns the value "0" as so far no instances of

that class have been created.

w Line # 5: using the Object Rexx class ".bsf" as a wrapper for any Java

class it is possible to create Java objects from Java classes as if the Java

classes were Object Rexx classes. The reference to the Java objects is

made available via an Object Rexx proxy object, hence it is possible to

activate Java methods by sending Object Rexx messages by the desired

name to the Object Rexx proxy object.

w Line # 6: this statement shows the string name used as a key to store the

Java object in the BSF registry and which this Object Rexx proxy object will

use to refer to it.

w Line # 7: the Java method "getInfo()" gets invoked via sending the

"getInfo"50) message to the Object Rexx proxy object, returning the value

".nil", the Object Rexx counterpart to Java's "null" value. The ".nil"

object renders itself to the string "The NIL object" if outputted to the

standard out stream, as is the case with the "SAY" statement.

w Line # 8 to # 9: the Java method "setInfo()" with the argument "Hello,

from Rexx..." gets invoked, storing the value with its private field "info".

In line # 9 the getter method "getInfo()" is used to query the actual value

of its private field "info", returning the just set value "Hello, from

Rexx...".

The Augsburg Version of BSF4Rexx, page 27-38

value of static field 'counter'=0

o: XyzType@15f5897
1: The NIL object
2: Hello, from Rexx...
value of static field 'counter'=1

creating another instance of XyzType, this time with an initial value...
o: XyzType@f9f9d8
3: Hi, RexxLA!
value of static field 'counter'=2

Figure 13: A Possible Output of the Object Rexx Program of Figure 12.

50) In Object Rexx one may omit the parenthesis after the message name, if no arguments are

supplied.

w Line # 10: the Object Rexx support for BSF4Rexx adds a set of methods to

the proxy objects starting out with the string "bsf." and appends it with the

names of those BSF() subfunctions, which may make sense in the context

of interacting with a Java proxy object from Object Rexx. This particular

feature is employed here by using the Object Rexx proxy object instance

method "bsf.getFieldValue()" to retrieve the actual value of the (static)

field "counter", which now returns a value of "1", as one

w Line # 13: this line comment informs the reader that the Object Rexx support

for BSF4Rexx will take care of unregistering the Java object from the BSF

registry, if it is not needed anymore. This is realized via the Object Rexx

destructor method "UNINIT" which gets run, once the Object Rexx garbage

collector frees the proxy object, because no references from the Object

Rexx program exist to it anymore.

w Line # 18 and # 20: another instance of the Java class "XyzType", this time

supplying an initial value of "Hi, RexxLA!". Querying the object in line #

20 for the value of its private field via the getter method "getInfo()" yields

this very same string: "Hi, RexxLA!".

w Line # 22: this is the last statement of the Object Rexx program asking for

the present value of the public static field "counter", which yields a value of

"2" as a total of two instances of the Java class "XyzType" have been

created up to now.

Figure 13 shows the output generated by running the Object Rexx program of figure

12.

The Augsburg Version of BSF4Rexx, page 28-38

4 SUMMARY AND OUTLOOK

This article introduced the reader to the Augsburg version of BSF4Rexx, consisting

of a Rexx engine written in Java, a Java interface program to bridge Rexx with Java,

three new Java utility classes, a Rexx Java native interface library realized as a Rexx

external function package51), and an Object Rexx support program which makes

Java appear to be Object Rexx, for IBM's BSF 2.2 and Apache's BSF 2.3. The

Augsburg version of BSF4Rexx builds directly on the Essener version [W3BSF4RO]

and hence the reader is guided to [Flat01], which introduces and describes the

architecture and the available functions and methods in more detail.

The two most important new features introduced with the Augsburg version of

BSF4Rexx are the ability to invoke Java from Rexx and thereafter using all of Java

with the BSF4Rexx infrastructure from Rexx and the dropping of the need of

declaring the types of arguments for Java, which makes the interface simpler to use

for Rexx programmers and appears to be much more "Rexx-like".

For (classic procedural) Rexx programmers an informal introduction to Java and the

object oriented paradigm is attempted, which should allow them to understand the

Java documentation and as a result using all functionality of the Java runtime

environment (JRE) as a huge, ported set of external Rexx functions available on any

platform Rexx runs on. The reader is then presented with a simple Java class and a

Rexx and an Object Rexx program using that class for creating Java objects from it

and interacting with such Java objects with the documented set of public accessible

Java methods and Java fields.

At the time of this writing the Augsburg version was in the gamma state and can be

regarded to be feature complete. It is planned to release the final version via

Sourceforge sometimes in the early summer of 2003 to [W3BSF4RP].

Further discussions are delegated to and expected to take place in the Internet

newsgroup <news:comp.lang.rexx>.

The Augsburg Version of BSF4Rexx, page 29-38

51) This library is available pre-compiled for Linux, OS/2 (eComStation) and Windows for the open

source and free Regina Rexx interpreter, IBM's Object Rexx interpreter and a version allowing to

use any Rexx interpreter which is supported by Mark Hessling's RexxTrans-library [W3RxTrans].

5 REFERENCES

[Ende97] Ender T.: "Object-Oriented Programming with REXX", John Wiley & Sons,

New York et.al. 1997.

[Flat96a] Flatscher R.G.: "Local Environment and Scopes in Object REXX", in:

Proceedings of the "7th International REXX Symposium, May 12-15,

Texas/Austin 1996", The Rexx Language Association, Raleigh N.C.

1996.

[Flat96b] Flatscher R.G.: "Object Classes, Meta Classes and Method Resolution in

Object REXX", in: Proceedings of the "7th International REXX Symposium,

May 12-15, Texas/Austin 1996", The Rexx Language Association,

Raleigh N.C. 1996.

[Flat01] Flatscher R.G.: "Java Bean Scripting with Rexx", in: Proceedings of the

„12th International Rexx Symposium“, Raleigh, North Carolina, USA,

April 30th - May 2nd, 2001.

[Kal01] Kalender P.: “A Concept for and an Implementation of the Bean Scripting

Framework for Rexx”, Seminar paper, University of Essen, MIS and

Software Engineering Department, February 2001. URL (2003-05-29):

http://nestroy.wi-inf.uni-essen.de/Lv/seminare/ws0001/PKalender/Seminararbeit.pdf

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object Rexx by Example",

Aviar, Pittsburgh 1996.

[W3Alpha]Homepage of IBM’s alphaworks projects, URL (2003-05-29):

http://www.alphaworks.ibm.com/

[W3Ant] Homepage of the open source Apache project "ant", URL (2003-05-29):

http://ant.apache.org/

[W3Apa] Homepage of the open source Apache organization, URL (2003-05-29):

http://www.apache.org/

[W3BSF] Homepage of IBM’s “Bean Scripting Framework” (BSF), version 2.2,

released 2001-01-31, URL (2003-05-29):

http://oss.software.ibm.com/developerworks/projects/bsf

[W3BSF4RG] Gamma test (release candidate) site of the Augsburg version of

the “BSF4Rexx” package, URL(2003-05-29):

http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/

The Augsburg Version of BSF4Rexx, page 30-38

[W3BSF4RO] Homepage of the original (Essener version) “BSF4Rexx”

package, URL(2003-05-29):

http://nestroy.wi-inf.uni-essen.de/Forschung/rgf/Entwicklung.html

[W3BSF4RP] Planned homepage of the Augsburg version of the “BSF4Rexx”

package, URL(2003-05-29): http://sourceforge.net/projects/bsf4rexx

[W3Jakarta] Homepage of the open source Apache organization, URL

(2003-05-29): http://jakarta.apache.org/

[W3Java] Java homepage, URL (2003-05-29): http://java.sun.com/

[W3JavaDoc] Java documentation homepage, URL (2003-05-29):

http://java.sun.com/docs/

[W3NetRexx]NetRexx homepage of the creator of the language, the IBM fellow Mike

Cowlishaw, URL (2003-05-29): http://www2.hursley.ibm.com/netrexx/

[W3ObjRexx]Object Rexx homepage of IBM, URL (2003-05-29):
http://www.ibm.com/software/ad/obj-rexx/

[W3Rexx] Rexx homepage of the creator of the language, the IBM fellow Mike

Cowlishaw, URL (2003-05-29): http://www2.hursley.ibm.com/rexx/

[W3RexxLA] Rexx homepage of the “Rexx Language Association”, URL

(2003-05-29): http://www.RexxLA.org

[W3RxTrans]Homepage of Mark Hessling's "RexxTrans", URL (2003-05-29):

http://rexxtrans.sourceforge.net/index.html

[W3Rhino] Rhino homepage, URL (2003-05-29): http://www.mozilla.org/rhino

[W3WebSphere] Homepage of IBM's WebSphere product, URL (2003-05-29):
http://www.ibm.com/software/info1/websphere/index.jsp

[W3Xerces] Homepage of the open source Apache project "Xerces", URL

(2003-05-29): http://xml.apache.org/xerces2-j/index.html

The Augsburg Version of BSF4Rexx, page 31-38

ADDENDUM A: EXAMPLE PROGRAMS FROM [FLAT01] ADAPTED

FOR THE AUGSBURG VERSION

In the article about the Essener version of BSF4Rexx [Flat01] there was a little Rexx

and Object Rexx program depicted, which demonstrated the usage of the Java

"awt" (abstract window toolkit) classes to create and use a platform independent

graphical user interface. Due to the Essener version all arguments were strongly

typed.

In this section the very same programs are shown with the type information

removed, so they can be run under the Augsburg version of BSF4Rexx. In addition

the frame window is changed to a larger size in order to show the full text of its title

and is shown in figure 16. The upper screenshot stems from Windows XP running

the programs of figure 14 and 15 under Object Rexx, the bottom screenshot was

taken from a Linux Red Hat 7.3 system running the open source Rexx interpreter

The Augsburg Version of BSF4Rexx, page 32-38

 /* "ShowCount.rex" - a Rexx program to count number of button presses */
call BSF 'registerBean', 'win', 'java.awt.Frame', 'Show count'
call BSF 'addEventListener', 'win', 'window', 'windowClosing', 'call BSF "exit"'

call BSF 'registerBean', 'but', 'java.awt.Button', 'Press me!'
call BSF 'addEventListener', 'but', 'action', '', 'call ShowSize'

call BSF 'registerBean', 'lab', 'java.awt.Label'
call BSF 'invoke', 'lab', 'setAlignment', 1

call BSF 'invoke', 'win', 'add', 'Center', 'lab'
call BSF 'invoke', 'win', 'add', 'South', 'but'
call BSF 'invoke', 'win', 'pack'
call BSF 'invoke', 'win', 'setSize', 300, 90
call BSF 'invoke', 'win', 'show'
call BSF 'invoke', 'win', 'toFront'

i=0 /* set counter to 0 */

do forever
 a = bsf("pollEventText") /* wait for an eventText to be sent */
 interpret a /* execute as a Rexx program */
 if result= "SHUTDOWN, REXX !" then leave /* JVM will be shutdown in 0.1sec */
end

exit

 /* show the actual number of times, you pressed the button */
ShowSize:
 i=i+1
 call BSF 'invoke', 'lab', 'setText', "Press #" i
 return

Figure 14: A Rexx Program which Uses Java’s AWT for a GUI Interface, Adaptation

(removing type information from the arguments) of Figure 20 in [Flat01].

Regina to execute the Rexx code of figure 14 and the free evaluation copy of Object

Rexx for Linux was used to run the Object Rexx code of figure 15.

The Augsburg Version of BSF4Rexx, page 33-38

 /* "ShowCount.rex" - an Object Rexx program to count number of button presses */
.bsf~import("awtFrame", "java.awt.Frame")
.bsf~import("awtButton", "java.awt.Button")
.bsf~import("awtLabel", "java.awt.Label")

win=.awtFrame~new("Show Count")
win~bsf.addEventListener('window', 'windowClosing', '.bsf~exit')

but=.awtButton~new("Press me!")
but~bsf.addEventListener('action', '', 'call ShowSize')

lab=.awtLabel~new ~~setAlignment(1)

win ~~add("Center", lab) ~~add("South", but) ~~pack ~~setSize(300,90) ~~show ~~toFront

i=0 /* set counter to 0 */

do forever
 a = bsf("pollEventText") /* wait for an eventText to be sent */
 interpret a /* execute as a Rexx program */
 if result= "SHUTDOWN, REXX !" then leave /* JVM will be shutdown in 0.1sec */
end

exit

 /* show the actual number of times, you pressed the button */
ShowSize:
 i=i+1
 lab~setText("Press #" i)
 return

::requires "BSF.cls" -- get access to the Object Rexx support enhancement

Figure 15: An Object Rexx Program which Uses Java’s AWT for a GUI Interface,

Adaptation (removing type information from the arguments) of Figure 23 in [Flat01].

Figure 16: Platform Independent GUI Created with Java's AWT by the Rexx

Program of Figure 14 and the Object Rexx Program of Figure 15 running under

Windows XP and Linux Red Hat 7.3.

ADDENDUM B: BRIEF OVERVIEW OF THE BSF()-SUBFUNCTIONS

The external Rexx function "BSF()" allows Rexx programmers to call into Java,

where with the help of a Java program ("RexxAndJava.java") the desired

subfunction gets carried out. The call syntax from Rexx looks like:

 call BSF "SubFunction" [, "argument1"]...

 or:

 a=BSF("SubFunction" [, "argument"]...)

The table in figure 17 lists and briefly describes all 27 "BSF()" subfunctions, which

are implemented in "RexxAndJava.java" and documented with "javadoc".

Hence, one could look up the HTML-help for "RexxAndJava" and study the

documentation of the method "javaCallBSF" to learn about these subfunctions as

well.

The subfunctions which deal directly with a Java class ("registerBean" and

"registerBeanStrict" to create an instance from it, "getStaticField" to get

the value of a public static field of a Java class) expect a string denoting the fully

qualified name of the Java class.

All subfunctions interacting with a Java object need to use the string (key) used to

store that Java object in the BSF registry on the Java side to uniquely address the

Java object, e.g. subfunctions: "invoke", "getFieldValue", "setFieldValue".

All subfunctions containing the string "Strict" need their arguments to be "strongly

typed", i.e. the Rexx programmer needs to indicate before each argument of which

Java type it is. These strings denominating the Java types are depicted in figure 18

and are sometimes called "argTypes" or "typeIndicator".

Returns the object stored in the arrayObject at the given index/indices.

"arrayAt", arrayObject, index1 [, indexn]...
"arrayAt", arrayObject, intArray

Allows to add an event listener and tell it what event string to send to the Rexx
program. This could be Rexx code to be interpreted upon receipt.

"addEventListener", beanName, eventSetName, filter, eventText

Brief descriptionSubFunction

The Augsburg Version of BSF4Rexx, page 34-38

Creates an instance of the Java class named className, supplying arguments if

"registerBean", [beanName], className [, arg1]...

Posts the eventText at the given priority (1=highest, 2=default or 3=lowest).

"postEventText", eventText [, priority]

Returns the eventText, if available, else waits timeout milliseconds. If no timeout is
given, this subfunctions waits until an eventText becomes available.

"pollEventText" [, timeout]

Returns beanName, if there is a Java object registered in the BSF registry under the
name beanName, null else.

"lookupBean", beanName

Invokes the method on the javaObject supplying the type of each argument
before the argument, if any. Returns whatever the method returns or null.

"invokeStrict", javaObject, method [, typeIndicator1, arg1] ...

Invokes the method on the javaObject supplying the arguments, if any. Returns
whatever the method returns or null.

"invoke", javaObject, method [, arg1] ...

Looks up and returns the value of the public static fieldName in the given Java
class of className (can be a Java interface as well).

"getStaticValue", className, fieldName

Looks up and returns the value of propertyName in the given javaObject at the
given index (set to null, if not an indexed JavaBean property).

"getPropertyValue", javaObject, propertyName, index

Looks up and returns the value of fieldName in the given javaObject.

"getFieldValue", javaObject, fieldName

Terminates the Java virtual machine with a return code of retVal after
time2wait milliseconds.

"exit"[, [retVal] [, time2wait]]

Creates a Java array of the given componentType (a Java class object),
determining the capacity in each dimension. Alternatively, an intArray can be
given which is used to store the capacity of each dimension.

"createArray", componentType, capacity1 [, capacityn]...
"createArray", componentType, intArray

Stores newValue in the arrayObject at the given index/indices. Optionally the
given index/indices may be supplied with an intArray. (Deprecated.)

"arrayPutStrict", arrayObject, typeIndicator, newValue, index1 [, indexn]...
"arrayPutStrict", arrayObject, typeIndicator, newValue, intArray

Stores newValue in the arrayObject at the given index/indices. Optionally the
given index/indices may be supplied with an intArray.

"arrayPut", arrayObject, newValue, index1 [, indexn]...
"arrayPut", arrayObject, newValue, intArray

Returns the capacity of this particular arrayObject.

"arrayLength", arrayObject

Optionally the given index/indices may be supplied with an intArray.

The Augsburg Version of BSF4Rexx, page 35-38

Returns the version string of the program "RexxAndJava", e.g.
"200.20030416 com.ibm.bsf.engines.rexx" or
"200.20030416 org.apache.bsf.engines.rexx".

"version"

Wraps an enumerable Java object which one wishes to enumerate. (This is meant
for programs running under Java 1.1 only to overcome an access violation bug.
Starting with Java 1.2 this Java reflection bug is circumvented by the Augsburg
version of BSF4Rexx taking advantage of the Java class "AccessibleObject".)

"wrapEnumeration", enumObject

Wraps the arrayObject which then can be accessed and analyzed via the
methods of the Java class "ArrayWrapper".

"wrapArray", arrayObject

Removes the Java object registered with beanName from the BSF registry, making
it unavailable to Rexx. This allows the Java object to be garbage collected from
Java.

"unregisterBean", beanName

Sleeps time2sleep seconds (can be a fraction as well) before returning to Rexx.

"sleep", time2sleep

Sets the textual representation of a Java null value to newString. This allows
Rexx to determine and to indicate the Java null value and is preset to ".NIL".

"setRexxNullString", newString

Looks up and sets the value of propertyName at the given index (null, if not an
indexed JavaBean property) in the given javaObject using the type of the
typeIndicator for the newValue.

"setPropertyValue", javaObject, propertyName, index, typeIndicator, newValue

Looks up and sets the value of propertyName at the given index (null, if not an
indexed JavaBean property) in the given javaObject to newValue.

"setPropertyValue", javaObject, propertyName, index, newValue

Looks up and sets the value of fieldName in the given javaObject using the
type of the typeIndicator for the newValue. (Deprecated.)

"setFieldValueStrict", javaObject, fieldName, typeIndicator, newValue

Looks up and sets the value of fieldName in the given javaObject to
newValue.

"setFieldValue", javaObject, fieldName, newValue

Creates an instance of the Java class named className, supplying arguments if
available. The Java object will get stored in the BSF registry under beanName
(creating a unique name, if beanName was omitted by Rexx), which gets returned.
If arguments are supplied, each will be preceded by its type.

"registerBeanStrict", [beanName], className [, typeIndicator1, arg1]...

available. The Java object will get stored in the BSF registry under beanName
(creating a unique name, if beanName was omitted by Rexx), which gets returned.

Figure 17: The "BSF()" Subfunctions of the Augsburg Version of BSF4Rexx.

The Augsburg Version of BSF4Rexx, page 36-38

The Augsburg Version of BSF4Rexx, page 37-38

a string value (UTF8)"string"

a short value "short"

a Java object which is registered with the BSF registry (the immediately
following argument is the string serving as the key for retrieving the desired
Java object from the BSF registry).

"object"

a long value "long"

an integer value "int"

a float value "float"

a double value "double"

a single (UTF8) character "char"

a byte value "byte"

the value 0 (false) or 1 (true) "boolean"

DatatypeIndicator

Figure 18: The Java Type Indicator Strings for the "Strict"-Subfunctions of figure

17 above, which must precede each individual argument. Only the bold letters

need to be given.

Date of Article: 2003-06-01.

Published in: Proceedings of the „2003 International Rexx Symposium“,

Triangle Research Park, North Carolina, USA, May 4th - May 7th, 2003,

The Rexx Language Association, Raleigh N.C. 2003.

Presented at: „2003 International Rexx Symposium“, Raleigh, North Carolina, USA,

May 5th, 2003.

The Augsburg Version of BSF4Rexx, page 38-38

