
“OBJECT REXX AND WINDOWS AUTOMATION
INTERFACES”

Rony G. Flatscher
University of Augsburg, Germany

„The 2004 International REXX Symposium“, Böblingen, Germany,

May 3rd - May 6th, 2004.

ABSTRACT

In the Windows world the scripting respectively remote controlling of Windows and

Windows applications is usually realized via the COM-based OLE/ActiveX-

Automation Interfaces. Unfortunately, many times the documentation of the

available interfaces is either not available or in a form which does not serve very well

as reference for Object REXX programmers.

Usually, the available OLE/ActiveX-interfaces can be interrogated and therefore it

becomes possible to analyze the interfaces (functions/methods with their signatures

and return values as well as interceptable events) at runtime. This article describes

the architecture of a set of Object REXX programs for interrogating and rendering

the documented interfaces into HTML employing CSS and embedding Object REXX

code. For non-Object REXX programmers a Windows Script Component (WSC) is

devised, which allows e.g. C++, Visual Basic (Script) programmers to employ this

particular functionality, which is implemented in Object REXX.

Exploiting the scriptability of the Internet Explorer it is applied as a GUI for some of

the presented interrogation applications.

Keywords: Object REXX, Windows automation, OLE, ActiveX, WSC, WSH, HTML,

DHTML, DOM

Object REXX and Windows Automation Interfaces, page 1-27

1 INTRODUCTION

IBM’s Object REXX programming language version for the Windows platform got

enhanced with specific Windows supporting modules. One Windows specific

enhancement is the Object REXX class named „OLEOBJECT“, which makes the

important Windows infrastructure „Object Linking and Embedding“ (OLE) available to

Object REXX.

This article first introduces conceptually the building stones for OLE and ActiveX and

explains the Object REXX supporting class OLEOBJECT by discussing the purpose

of all of its methods. It then draws the attention to the IBM supplied OLEOBJECT

examples which allow to remote control („script“) Windows components by Object

REXX and explains what they do. These examples are installed automatically on the

Windows platform when Object REXX gets installed, but can be easily overseen by

programmers.

In order to take full advantage of Object REXX on the Windows platform by remote

controlling Windows OLE/ActiveX components, it is mandatory, that one learns about

the published interfaces of such Windows components. For that purpose this paper

introduces a set of Object REXX utilities which allow exploring Windows

OLE/ActiveX components for their published interfaces, i.e. their methods, attributes,

events and constants. The functionality of these programs is made available to any

Windows programming language capable of instantiating and interacting with COM

objects („Component Object Model“, a building stone for OLE).

Object REXX and Windows Automation Interfaces, page 2-27

2 OBJECT LINKING AND EMBEDDING (OLE)

This section introduces the reader to the technological infrastructure (on a

conceptual level) for scripting Windows applications. First the fundamental Windows

component technology (COM) is presented on which the „Object Linking and

Embedding“ (OLE) technology is built, which the Windows scripting technology uses

(„OLE automation“).

2.1 „Component Object Model“ (COM)

At the end of the 80’ies Microsoft introduced a remote procedure call (RPC)

convention for Windows which it named „Component Object Model“ (COM). COM

defined the protocol and a minimal set of functions („interfaces“) which needed to be

implemented by all programmers adhering to the COM specification. Doing so

allowed the creation of self contained and executable program packages

(„components“) which could be interacted with by the standardized COM interfaces.

One important COM function, named „IUnknown“, allows the inspection of such

components at runtime, e.g. enabling the detection of published1) functions

(“methods“) and their signatures (arguments and argument types, if any, return value

and return value’s type, if any).

Windows COM components can be registered with the Windows operating system

by entering the appropriate information into the Windows registry, which Windows

services then can use to locate, load, initialize („instantiate“), and run them. Each

such registered COM component must possess a system wide unique value, such

that two different COM components can be distinguished at all times. For that reason

algorithms to create GUID2) („Globally Unique Identifier“) values are used, that are

theoretically able to create unique values not duplicable on any other computer

system in the world. An example for a GUID/UUID used for uniqely identifying COM

components in Windows is: „{d51ba994-e701-4f1a-a7b4-4a18a2ef22b9}“.

Object REXX and Windows Automation Interfaces, page 3-27

2) A synonym for GUID is UUID („Universally Unique Identifier“).

1) There may be many more functions („methods“) implemented in a Windows COM component than

the author of it publishes via IUnknown.

As COM components are called COM classes, the unique GUID to identify it is called

„class identification“ (CLSID). Analyzing the Windows registry hive

„HKEY_CLASSES_ROOT“ will yield many entries possessing a key named „CLSID“

carrying a unique UUID/GUID value. If Windows programs need to use a COM class,

then it is necessary to identify the desired component by supplying its CLSID value,

which allows Windows to look up its registry to find out which COM component it

should load. Clearly, it is very cumbersome for humans to memorize such

GUID/UUID values, therefore alternative naming schemes are available, allowing the

addressing of COM components in a more programmer friendly way:

w Program identification strings (PROGID): these are human readable and easy

to memorize strings like „InternetExplorer.Application“. Such PROGIDs must be

contained in the Windows registry as well and point to the COM class by

pointing to the respective CLSID.

w Moniker strings: these are human readable and easy to memorize or to build

strings like „c:\MyExcelFile.xls“. The monikers allow Windows to find out what

COM classes are able to work on them. In our example it is clear that an Excel

spreadsheet is denoted and Windows will be able to infer the respective Excel

COM class, because of the file type „.xls“ and the entries in the registry, deter-

mining the COM class for files of type „.xls“.

Clearly, the Windows registry plays an extremely important role addressing and

identifying them in a standard way. However, it must be noted that COM classes

need not be registered with the Windows registry. For that reason it is possible, that

some COM methods return instances of (other) COM classes that cannot be inferred

from the Windows registry.

The Microsoft Office (MSO) applications are created as a set of COM classes that

together realize the end user applications. Therefore it is possible to

programmatically instantiate MSO classes (components) and interact with them.

Object REXX and Windows Automation Interfaces, page 4-27

2.2 OLE

„Object Linking and Embedding“ (OLE) is a set of specifications building on COM,

which unifies the interaction between different applications either by means of linking

to external storage or by means of embedding external application data in one owns

storage. The functionality is defined with a set of interfaces which need to be

implemented using the COM specifications. Every Windows program adhering to the

OLE specifications can interact with any other Windows application that adheres to

OLE as well. So OLE defines a common set of interfaces to communicate for the

following purposes:

w Exchange of information irrespectible of the storage: applications can link to

each other and exchange data whenever data changes in the „source“ applica-

tion. This communication can be kicked off by the „target“ application only, in

which case a „cold link“ is realized.

An alternative way of communicating the change of data is establishing a

„warm link“ or a „hot link“. The „target“ application informs the „source“ applica-

tion not only about the data it should make available to the target, but agrees

with the source to get informed whenever the source data changes („warm

link“). If the source application should automatically send the changed data

without informing the target beforehand, then this link is called „hot“.

w Retrieving data from a source application which will be stored in the target

application storage (e.g. a file). The target application is able through the OLE

communication means to start the source application for editing or printing

purposes. If editing mode is desried, then the source application takes over the

target Window and allows editing „in place“. Hence, source applications are

also named „editors“.

One particular interesting OLE enhancement is the definition of a standard interface

for scripting OLE applications. If there is an implementation of the OLE automation

available to a programming language, then it becomes possible to script (remote

control) OLE programs from that programming language. As Object REXX on

Windows is capable of interfacing with OLE one can use Object REXX to script

(remote control) OLE applications.

Object REXX and Windows Automation Interfaces, page 5-27

2.3 ActiveX Automation

At the end of the 90’ies Microsoft augmented the OLE automation functionality by

introducing „ActiveX Automation“, a set of COM interfaces which allow the creation

of so called „Windows Script Hosts“ (WSH).3) WSH applications are Windows COM

applications that are able to register scriptable COM objects with ActiveX scripting

engines upfront, i.e. before any script gets invoked. By doing so a WSH is able to

setup a scriptable environment alleviating a script programmer of incorporating those

COM objects which he wishes to interact with.

Important WSH applications are MS Internet Explorer, MS Internet Information

Server (IIS) and „Shell“ (the Windows shell, a scriptable interface to Windows)4).

The WSH infrastructure was introduced into the Windows operating systems with

„Windows Millenium Edition“ (WME, 16-Bit Windows) and „Windows 2000“ (W2K,

32-Bit Windows). It also was made available via download for „Windows 95“ (W95)

and „Windows NT 4.0“ (WNT) users.

2.4 The Object REXX „OLEObject“ Class

The Windows version of Object REXX comes with an Object REXX class named

„OLEObject“. As the name implies, this class serves as a „proxy“ class to allow

Object REXX to interact with Windows COM objects as if they were Object REXX

objects.

Instances of the Object REXX „OLEObject“ class are Object REXX objects, which

serve as „proxies“ for instances of Windows COM classes. This means among other

things, that sending Object REXX messages to OLEObject instances will cause the

invocation of those methods on the Windows COM objects they represent. If

Windows COM objects return other COM objects, the Object REXX OLEObject class

Object REXX and Windows Automation Interfaces, page 6-27

4) The documentation to WSH 5.6 explicitly lists the name „Shell“, yet, later Microsoft documentation

has started to name the „Shell“ Windows Script Host application „WSH“! This has caused the

creation of a homonym and has a result introduced a lot of confusion.

3) Cf. [Flat02a], [Flat02b].

will turn them into proxy objects, allowing Object REXX programmers to send them

Object REXX messages as well.

It is interesting to explore how this mechanism is implemented in the OLEObject

class, in order to understand why it is possible to interact with Windows COM objects

and to learn about possible pitfalls and how to come by them.

Studying the (astonishingly few) methods OLEObject possesses one particular

method plays an extremely important role: „UNKNOWN“.

2.4.1 The „UNKNOWN“ Method

The „UNKNOWN“ method in the Object REXX language has a particular meaning to

the Object REXX runtime system: whenever a message is not understood by an

object, the runtime system invokes that object’s UNKNOWN method supplying the

name of the unknown message and the arguments sent with it. If there is no

UNKNOWN method defined in the class or one of the superclasses of that object,

then the Object REXX runtime system will abort the execution of the entire program

with the error message „object does not understand message“.

Because of this behaviour the UNKNOWN method can serve as a particular runtime

error handler, in that it gets activated whenever unknown messages are sent to an

object. In the case of OLEObject proxy objects it is the case for most messages

meant for the Windows COM objects they represent, which usually means that no

methods by the name of such messages exist on the Object REXX side. Therefore

such proxy objects are not understanding the message sent to them and the

OLEObject UNKNOWN method gets invoked by the runtime system.

The OLEObject UNKNOWN method learns about the name of the unknown method

and the arguments sent with the message (if any at all) in form of the runtime

supplied arguments and will now interrogate the Windows COM object using the

COM interfaces for learning about the available functions (methods) and their

arguments (if any at all). With this knowledge and with the ability to convert the

(Object) REXX arguments to the published Windows datatypes it becomes possible

to set up a Windows method invocation call and have it carried out on the Windows

side. The return value (if any at all) of the invoked COM method will get converted to

Object REXX and Windows Automation Interfaces, page 7-27

an appropriate Object REXX value (a string or an OLEObject proxy object, if a COM

object was returned).

This forwarding mechanism using the Object REXX UNKNOWN mechanism works

fine for most messages meant for the Windows COM objects. However, sometimes

Windows COM objects need to get messages sent to which get consumed on the

Object REXX side. This may happen, if the Windows COM objects possess methods

with the same name as in the Object REXX root class „Object“ or the „OLEObject“

class itself.

Examples are the „CLASS“ or the „COPY“ methods, which are available in the

Object REXX root class „Object“. Therefore e.g. a „COPY“ message sent to the

Object REXX proxy will get resolved on the Object REXX side (the Object REXX root

class „Object“ COPY method will get carried out), therefore the UNKNOWN runtime

mechanism does not get triggered and the Windows COM object would never get a

„COPY“ message sent to it (e.g. for copying a selection to the Windows clipboard). In

such a case it becomes necessary to directly invoke the OLEObject UNKNOWN

method, supplying the name of the message as its first argument, and either „.nil“ (=

no arguments) or an Object REXX array object containing all arguments to be

forwarded to the Windows side, e.g.

myExcelProxyObject~unknown("COPY", .nil) -- send the COPY message to Windows

2.4.2 The „INIT“ Method

Whenever an instance of an Object REXX class is created by sending the class

object the „NEW“ message, that newly created object gets the „INIT“ message sent

to it accompanied by the arguments which the programmer supplied to the „NEW“

message in the same order. Therefore the „INIT“ method of the OLEObject class

documents the initialisation arguments one is able to send to the newly created

object.

In the case of the OLEObject class one must supply a PROGID or a CLSID string as

the first argument, identifying the Windows COM class which should get instantiated

and for which the newly created Object REXX object serves as a proxy. The second

argument is optional and determines whether Windows COM events should get

forwarded to the Object REXX side. If the forwarding of Windows COM events is

Object REXX and Windows Automation Interfaces, page 8-27

desired, then the Object REXX programmer needs to create a subclass of

„OLEObject“ and define methods by the name of the Windows COM events which

should get intercepted on the Object REXX side. In such a case one needs to create

an instance of the created subclass, supplying the second argument with a value of

„WITHEVENTS“.

If using the „OLEObject“ class for creating Windows COM proxy objects, then by

default the value „NOEVENTS“ is assumed for the second argument.

2.4.3 The „GetObject“ Class Method

There is an alternative way to create an Object REXX proxy object for a Windows

COM object: the „GETOBJECT“ class method of the „OLEObject“ class. Sending this

message to the „OLEObject“ class object allows defining an application dependent

„moniker“ string allowing the Windows OLE support to figure out the OLE host

application and querying it for a Windows COM object of it. Such monikers are

specially formatted strings, as simple as a fully qualified file name possessing a „file

type“ (e.g. a MS Excel or a MS Word file name) or as complicated as a WMI5) query.

If an instance of the appropriate (with the indicated moniker) Windows application is

running already, the returned proxy object will refer to it. This way it becomes

possible to acquire a proxy object to address running Windows programs.

This method allows the creation of proxy objects for already instantiated Windows

COM classes which are already running, like a particular instance of MS Word or MS

Excel processing a specific file. If there is a need to intercept events from such

Windows COM objects then the „GETOBJECT“ class method allows for supplying an

appropriate „OLEObject“ class as its second argument (a direct or indirect

specialization of the „OLEObject“ class, containing methods by the same name as

the Windows COM events which should activate them, supplying the arguments of

the event, if any). If the second argument is omitted, then the „OLEObject“ class is

Object REXX and Windows Automation Interfaces, page 9-27

5) „WMI“ is the acronym for „Windows Management and Instrumentation“, a Microsoft

implementation for managing information technology resources like computers, printers etc. via

OLE. It is part of the MS Win2K or WinXP 32-Bit operating systems and can be downlaoded and

installed to earlier versions of Windows. There are small („nutshell“) Object REXX examples

distributed with Object REXX itself taking advantage of the WMI interfaces.

used to create the Object REXX proxy objets and no Windows COM events are

intercepted.

2.4.4 The „GetConstant“ Method

The OLE specification allows for defining constants, which are symbolic names

which serve as a synonym to some predefined value. The constant’s name carries

the semantics for the human programmer, whereas the represented value itself is

usually some binary value. An example for such a constant is „OLECmdID_undo“

which gets defined in th MS Internet Explorer application and which stands for the

value „15“ which must be supplied to the message instead.

Many OLE applications publish the constants which are defined for them and the

online help of such applications usually uses the symbolic names instead of the

values they represent. For that reason it is important to be able to query the value of

a constant of an OLE application (at runtime) to be used as the argument for the

message directed at the Windows COM object. The „GetConstant“ method accepts

the symbolic name as its sole argument and returns the value that constant

represents, or .nil, if the constant is not published.

It is also possible to use this method to retrieve a list of all published constants of an

OLE application by omitting the argument altogether in which case a stem array of all

constants and the values they represent is returned.

2.4.5 The "GetKnownEvents" and "GetKnownMethods" Methods

Generally, the COM (and OLE) specifications define an interface which allows

programmers to retrieve a list of all published methods (and events) in a

standardized way. These two methods allow Object REXX programmers to retrieve

stem arrays containing the exact definitions of the published methods and events

made available by the Windows COM (OLE) class.

2.4.6 Type Conversion and Argument Considerations

Object REXX is a programming language which is based on REXX and as such has

as its "basic type" a string value. Object REXX adds to this the Object REXX classes

which serve as a additional types. None of the Object REXX types does represent or

Object REXX and Windows Automation Interfaces, page 10-27

directly relate to the Windows data types used in COM (OLE) as depicted in table 1.

For that reason the "OLEObject" class must convert Object REXX values to the

appropriate Windows data types and vice versa. Because it is possible to reflect the

signatures (name, return type and argument types) of Windows functions/methods at

runtime, conversion from/to Windows data types can be carried out at runtime

without the need for Object REXX programmers to intervene. From the Windows

data types in table 1 it may be noteworthy, that the"VT_DISPATCH" type represents

a Windows COM object for which an Object REXX proxy object will be created.

The COM specifications were created by Microsoft to define a remote procedure call

(RPC) standard for Windows. Such calls allowed for various (mostly performance)

reasons, that arguments passed in a RPC call could be changed by the receiving

end and hence may serve as a means of communication back to the calling end.

Arguments which can be changed by the receiving side are dubbed "OUT" (only

meant for returning a value) or "INOUT" (meant for submitting and returning a value)

arguments. Object REXX does not allow arguments to be changed in place, so

Object REXX and Windows Automation Interfaces, page 11-27

Table 11 Windows Datatypes Used in the Context of COM (OLE).

Respective representation.Wraps one of the above types.VT_VARIANT, VT_PTR

An array.An array with fixed lower and
upper bounds.

VT_SAFEARRAY

.true (string '1') or .false (string
'0').

A truth value. False is represented
with the numeric value 0, true with
-1 (sometimes 1 and sometimes
any value but 0).

VT_BOOL
An instance of "OLEObject".A COM (OLE) object.VT_DISPATCH
A string.A string of bytes.VT_BSTR
A string.Represents a date.VT_DATE

Respective decimal number (a
string).

Fixed point decimal number to
represent currency values (15
digits before the decimal point, 4
digits after the decimal point.

VT_CY

Respective real number (a
string).

Real number of size 4 or 8 bytes.VT_R4, VT_R8

Respective unsigned (positive)
whole number (a string).

Unsigned integer of size 1, 2, 4 or
8 bytes.

VT_UI1, VT_UI2, VT_UI4,
VT_UI8

Respective signed whole
number (a string)

Signed integer of size 1, 2, 4 or 8
bytes.

VT_I1, VT_i2, VT_I4, VT_I8

.nilIndicate no value.VT_EMPTY, VT_NULL,
VT_VOID

Object REXX ValueCommentVariant's Name

therefore a specific mechanism is supplied by the "OLEObject" class in the form of

the method "GetOutParameters". This method returns an Object REXX array

containing the values of any "INOUT" and "OUT" arguments in ascending order

("IN"-only arguments are omitted from this array).6)

2.5 Further Resources Coming with Object REXX

The Object REXX for Windows installation comes with a very rich set of very small

("nuthshell") examples, demonstrating the usage of the "OLEObject" class, i.e. the

automation of Windows OLE applications. Because of the excellent OLE examples

the reader's attentions is therefore pointed at them, as tehy demonstrate how Object

REXX is able to unleash the power of OLE/ActiveX automation:7) e.g. remote

controlling MS Internet Explorer, MS Excel, ADS ("advanced directory services"),

WMI ("Windows management and instrumentation") and the like.

Object REXX and Windows Automation Interfaces, page 12-27

7) The "SAMPLES" subdirectory contains subdirectories which also demonstrate the "native" Object

REXX low level interface to Windows GUI components. In addition there are interesting examples

demonstrating how one can use Object REXX to implement COM classes that could be

instantiated by any Windows programming language able to interact with COM like C++, Visual

BASIC and the like ("WSC", "Windows Script COM"ponents).

6) Clearly, allowing the OUT and INOUT semantics in Object REXX for Windows would be desirable,

because it would ease coding and transcribing of e.g. Visual BASIC programs to Object REXX

straight forwardly.

3 THE "RGF_OLEINFO" PACKAGE

Object REXX for Windows adds specific support for the Windows platform, which

allows Object REXX to be used as a fully fledged programming (and scripting)

language for that platform. Especially the support for COM (OLE) allows for

unleashing the power of Object REXX.

However, analyzing the Windows applications that can be remote controlled

("automated") via OLE (ActiveX) it becomes clear, that many such applications lack

of a stringent, easy to understand documentation. Rather, documentation may be

scattered around many documents and help files such, that one is hardly able to gain

an overview and get at a compact listing of available interfaces. An example may be

the MS Office suite of applications.

Sometimes the documentation on how an application can be driven via OLE is

missing altogether, because it does not get installed with the application itself by

default (like the Lotus set of applications). At other times OLE/ActiveX objects may

be returned by driving documented OLE/ActiveX interfaces, which themselves are

not documented online at all.

Analyzing a modern installation of Windows like XP it is interesting to learn that there

are well over 2,000 (!) COM classes that are installed and that get recorded in the

Windows registry, many of which can be driven via OLE/ActiveX automation. Most

users of Windows XP systems are not even aware of the wealth of functionality

being presented in an automatable form!

Yet another interesting capability to note when comparing Object REXX with MS

Visual BASIC in the context of OLE/ActiveX scripting is the ability of the Visual

BASIC programming environment to allow using the symbolic names of constants

instead of the values they represent, making coding rather easy in this respect.8)

Object REXX and Windows Automation Interfaces, page 13-27

8) The Visual BASIC development environment allows identifying those OLE/ActiveX libraries from

which one wishes to use the name of the constants, by choosing the appropriate entries in the

"Tools" main menu. In addition the signatures of methods and events are made available in a

context sensitive manner, which provides some nice help while coding.

This section therefore introduces programs and utlities written entirely in Object

REXX which attempt to forgo all of these shortcomings, using the Windows specific

support supplied with IBM's Object REXX for the Windows platform. There will be

four utilities introduced and discussed:

1) "rgf_oleconstants.rex", a tool for making it easy to use published OLE constants

in Object REXX,

2) "rgf_oleinfo.rex", an Object REXX program creating a HTML rendering

containing the published interfaces to a OLE application,

3) "rgf_oleinfo.wsc", a "Windows Script COMponent" allowing any programming

language to take advantage of the anaylzing and documentation capabilities of

"rgf_oleinfo.hta",

4) "rgf_oleinfo.hta", a "HTML application" making it easy to analyze the COM

classes available on a Windows system.

3.1 "rgf_oleconstants.rex"

OLE/ActiveX applications usually define constants which allow human programmers

to easily memorize and understand the purpose of the value a constant represents.

Object REXX programmers can query the value of any published OLE constant

using the "OLEObject" method "getConstant". Sometimes, especially if driving the

same OLE applications repeatedly for different application needs, it would be helpful

to allow for an easier way at getting at the values the constants represent.

The Object REXX application "rgf_oleconstants.rex" is a little utility program, which

interrogates all of the published constants of a given OLE application, sorts them by

constant name and saves them one by one in an Object REXX directory object. This

is carried out by creating actually an Object REXX program in which the directory

object is set with all the entries mapping the name of the constant to its value. The

"constant" directory object is stored in the local environment under the name

"ole.const" and created, if it does not exist yet.

Object REXX and Windows Automation Interfaces, page 14-27

The name of this utility is "rgf_oleconstants.rex". It nees to be executed from a

command line window and expects two blank delimited arguments: the PROGID or

CLSID of the COM/OLE class to be queried and optionally the name of an output file,

which will contain an Object REXX program setting the constant directory to the

respective values. Example creating all the constants published by MS Internet

Explorer:

rgf_oleconstants InternetExplorer.Application iec.rex

This will create an Object REXX program named "iec.rex" containing all necessary

statements to store all published MS Internet explorer constants in the Object REXX

directory object named ".ole.const". An excerpt of the generated file can be seen in

figure 1. Any Object REXX program needing access to the Internet Explorer

constants then would either issue a "CALL iec.rex" or define the directive

"::REQUIRES iec.rex" in its program. After that it is easy to retrieve the value of any

constant by merely sending the constant's name as a message to that directory

object (".ole.const"):

Object REXX and Windows Automation Interfaces, page 15-27

/* [rgf_oleconstants.rex] run on: [20040430] [21:55:16] */

-- OLE/ActiveX-application/CLSID: [InternetExplorer.Application]
-- there is/are [84] constants

-- create directory 'ole.const', if necessary; maybe shared with
-- OLE constant definitions of other programs

 -- create directory 'ole.const' in .local
if .local~hasentry('ole.const')=.false then .local~ole.const=.directory~new

.ole.const~CSC_NAVIGATEBACK = 2

.ole.const~CSC_NAVIGATEFORWARD = 1

.ole.const~CSC_UPDATECOMMANDS = -1

.ole.const~OLECMDEXECOPT_DODEFAULT = 0

.ole.const~OLECMDEXECOPT_DONTPROMPTUSER = 2

.ole.const~OLECMDEXECOPT_PROMPTUSER = 1

.ole.const~OLECMDEXECOPT_SHOWHELP = 3

.ole.const~OLECMDF_DEFHIDEONCTXTMENU = 32

.ole.const~OLECMDF_ENABLED = 2

.ole.const~OLECMDF_INVISIBLE = 16

.ole.const~OLECMDF_LATCHED = 4

.ole.const~OLECMDF_NINCHED = 8

.ole.const~OLECMDF_SUPPORTED = 1

.ole.const~OLECMDID_ALLOWUILESSSAVEAS = 46

.ole.const~OLECMDID_CLEARSELECTION = 18

.ole.const~OLECMDID_CLOSE = 45

.ole.const~OLECMDID_COPY = 12

... cut ...

Figure 1: Content of "iex.rex" (an excerpt).

.ole.const~csc_navigateBack -- will return the value '2'

No matter how many different Object REXX programs containing the constant

definitions of different Windows OLE classes one creates with the utility

"rgf_oleconstants.rex", they will re-use the same directory object with the

environment name ".ole.const". This utility therefore creates a unique source serving

the values for the different OLE constants different OLE classes define.

3.2 "rgf_oleinfo.rex"

The set of "rgf_oleinfo.rex" utility programs hase been created to ease a Windows

user in exploring and understanding the COM/OLE classes installed on his

computer.

One utility ("rgf_olinfo.rex") analyzes a given OLE class with the help of all of its

published interfaces and creates a HTML rendering of it. Another utility

("ole_info.wsc") makes the functionality of "ole_infor.rex" available to non-Object

REXX programs like Visual Basic (Script), C++, etc. Lastly, a utility, that

("rgf_oleinfo.hta") uses the MS Internet Explorer to create a GUI frontend got created

which allows analyzing the Windows registry for entries pointing to COM/OLE

classes and making it easy for users to point to those OLE classes they wish to get

their published interfaces rendered as HTML by merely clicking on them.

3.2.1 "rgf_oleinfo.cls"

The "rgf_oleinfo.cls" program defines the public class "rgf.oleinfo" which is used to

query the published interfaces of OLE classes, stores the results and makes them

readily available via its attributes in form of directory objects for later use by other

Object REXX programs. In addition, the most important Windows registry entries for

that OLE class are analyzed and maintained for later referral by client Object REXX

programs.

Object REXX and Windows Automation Interfaces, page 16-27

3.2.2 "rgf_oleinfo2html.rex"

The "rgf_oleinfo2thml.rex" program uses "rgf_oleinfo.cls" to get at the published

interfaces of a given OLE class and renders the results in HTML using CSS

(Cascading Style Sheets) in two forms: a "normal" and a "compact" form.

"rgf_oleinfo2html.rex" inserts Object REXX code into the generated HTML taking

advantage of Microsoft's DHTML ("dynamic HTML") to hide or show HTML sections.

In addition it formats registry information pertaining to OLE classes which allow

documenting which CLSID, PROGID and VersionIndependentPROGID (if any) an

OLE class carries, as well as when it got registered in the Windows registry (if

registered at all) and which EXE or DLL implements the functionality.

The HTML rendering employs CSS ("cascading style sheets"), which determine the

physical formatting of the HTML embedded data. The CSS allows users to change

the formatting to their particular needs, e.g. using larger fonts, different colors and

the like. CSS allows a very detailed control over formatting and it is even possible to

define distinct formatting rules for printing the HTML data to a printer.

There are two different modes of presenting the data with this utility:

w "Normal mode": in this mode separate sections are created for listing all publis-

hed methods, read-only attributes ("properties"), write-only attributes ("proper-

ties"), read-/write attributes ("properties"), events and constants.

w "Compact mode": in this mode all information is given as compact as possible,

e.g. all attribute sections are folded into one. No constant section will be

created.

This mode is meant for creating "reference card" like listings, which are format-

ted (optimized) for color printouts.

3.2.3 "rgf_oleinfo.rex"

The utility program "rgf_oleinfo.rex" serves as the frontend to "rgf_oleinfo2html.rex"

and can be used as a command via the commandline or as a function from any

REXX program. The following arguments can be supplied:

Object REXX and Windows Automation Interfaces, page 17-27

w PROGID | CLSID: either string, identifying the OLE component to analyze

OLEOBJ ... a proxy object, if invoking the program as a function,

w "header": the HTML header to be used in the HTML file,

w "mode": the mode (normal=0, compact=1), default: normal (command),

compact (function),

w "display": should the resulting HTML file be displayed with Interent Explorer (no

display=0, display=1), default: display.

The command line syntax uses blank delimited arguments and is defined as

follows:9)

Object REXX and Windows Automation Interfaces, page 18-27

Figure 2: Result of running "REXX rgf_oleinfo InternetExplorer.Application 0 1".

9) Optional arguments are enclosed in square brackets ([]), alternatives are delimited with a vertical

REXX rgf_oleinfo PROGID|CLSID [mode [display]]

The function syntax uses comma delimited arguments and is defined as follows:

res=rgf_oleinfo(PROGID|CLSID|{OLEOBJ [, header]} [, mode [, display]])

The function will return .true if successful, .false if it was not possible to get an

OLEObject proxy to analyze.

Figure 2 shows the result ("normal mode", displayed in Internet Explorer) of running

the command:

REXX rgf_oleinfo InternetExplorer.Application 0 1

Object REXX and Windows Automation Interfaces, page 19-27

Figure 3: Result of: res=rgf_oleinfo("InternetExplorer.Application",1,1).

bar (|) and a mandatory argument is enclosed in curly brackets ({}) .

Figure 3 shows the result ("compact mode", displayed in Internet Explorer) of

running the function:

res=rgf_oleinfo("InternetExplorer.Application", 1, 1)

3.3 "rgf_oleinfo.wsc"

The utility program "rgf_oleinfo.wsc" is realized as a "Windows Script COM"

program, implementing a [D]COM class in Object REXX and serves as the interface

to any Windows program that is capable of using COM classes. This way it becomes

possible, e.g. for Visual Basic or VBScript programmers to use the introduced Object

REXX programs to analyze any COM object and render all the published interfaces

Object REXX and Windows Automation Interfaces, page 20-27

<?xml version="1.0"?>
<component>
<comment>
 author: Rony G. Flatscher, WU Wien
 date: 2004-01-22
 purpose: wrapper for non-REXX programs wishing to analyze the documented interfaces
 of OLE/ActiveX objects

 hint: if using this from Visual Basic (Script) you need to enclose the variable
 referring to the OLE/ActiveX object into parenthesis in order to pass the
 reference (and not the default string value of it)!

 needs: the rgf_oleinfo-package for Object REXX
</comment>

<?component error="true" debug="true"?>

<registration
description="Analyzes the OLE/ActiveX-Interface of the given PROGID or OLE/ActiveX object."
PROGID="REXX.OLEinfo"
version="1.00"
classid="{d51ba994-e701-4f1a-a7b4-4a18a2ef22b9}"

>
</registration>

<public>
<method name="analyze">

<parameter name="PROGID_or_OLEobject"/>
<parameter name="stringHTML_Header"/>
<parameter name="boolCompactRendering"/>
<parameter name="boolDisplayImmediatelyInMSIE"/>

</method>
</public>

<script language="Object REXX">
<![CDATA[

 -- invoke program which does the gory work ...
 ::routine analyze public
 call rgf_oleinfo arg(1), choose(arg(2)="" | arg(2, "o"), "n/a" , arg(2)), arg(3), arg(4)

 -- if arg(1) yields .true return arg(2), else return arg(3)
 ::routine choose
 if arg(1)=.true then return arg(2)
 else return arg(3)
]]>
</script>

</component>

Figure 4: "rgf_oleinfo.wsc".

attractively in HTML10). Figure 4 depicts the code of "rgf_oleinfo.wsc".

The PROGID of the WSC class is "REXX.OLEinfo" and becomes available, once the

WSC-file got registered11) on Windows, the sole published method is named

"analyze" and expects the following arguments:

w "PROGID_or_OLEobject": supply either the PROGID of the COM class to

analyze (Object REXX needs to be able to successfully instantiate it), or supply

an OLE object,

w "stringHTML_Header": supply the title for the HTML rendering of the published

interfaces,

Object REXX and Windows Automation Interfaces, page 21-27

' VBScript
dim mxVar, myVar
Set mxVar = createObject("REXX.OLEinfo")
Set myVar = createObject("InternetExplorer.Application")

WScript.echo "about to use 'REXX.OLEinfo.analyze()...'"

' OLEobject *must* be enclosed in parenthesis, otherwise
' the default string value is retrieved!
mxVar.analyze (myVar)

WScript.echo "done. (vbs)"

Figure 5: Using the Object REXX COM "REXX.OLEinfo" class from VBScript.

// JScript
var mxVar, myVar
mxVar = new ActiveXObject("REXX.OLEinfo")
myVar = new ActiveXObject("InternetExplorer.Application")

WScript.echo("about to use 'REXX.OLEinfo.analyze()...'")
mxVar.analyze(myVar, "invoked via JScript !")
WScript.echo("done. (js)")

Figure 6: Using the Object REXX COM "REXX.OLEinfo" class from JScript.

11) Registering is easiest via the Windows Explorer by moving the mouse over the file

"rgf_oleinfo.wsc", right-click on it and choose "Register".

10) In Visual Basic or VBScript it is necessary to supply the OLE object to be analyzed enclosed in

parenthesis. Otherwise the string value of the OLE object gets supplied.

w "boolCompactRendering": supply "1" (.true) to render in compact mode (cf.

figure 3), or "0" (.false) to render in verbose mode (cf. figure 2),

w "boolDisplayImmediatelyInMSIE": if "1" (.true) the resulting HTML file is

displayed with the MS Internet Explorer, else ("0"=.false) the HTML file gets

created and stored in the file system.

Figure 5 shows how one can use the Object REXX COM class from VBScript and

figure 6 displays the code to achieve the same from JScript.

3.4 "rgf_oleinfo.hta"

The utility program "rgf_oleinfo.hta" is a so-called "HTML application" (cf. [Flat02b])

for Windows and serves as a graphical front end for entering PROGIDs or CLSIDs in

a user friendly way for analyzing and rendering the published interfaces in HTML.

HTA-files are regarded like any other executable under Windows and therefore

execute under the credentials of the logged-on user who invokes it. As a result script

code embedded in the HTML applications is not executing in the "sandbox"

environment of the MS Internet Explorer and has unrestricted access to the system it

runs on.12)

"rgf_oleinfo.hta" starts out with a list of pre-defined applications ("initial apps") and is

depicted in figure 7:

w Checkbox "Generate compact listings": if checked, a compact listing of the

published interfaces will be generated (cf. figure 3), otherwise a little bit more

verbose and structured listing with the published constant values is created (cf.

figure 2).

w Clicking on any link in the list of "initial applications": the appropriate COM class

is instantiated and its published interfaces queried and rendered.

Object REXX and Windows Automation Interfaces, page 22-27

12) "Unrestricted" in this context means with the credentials of the user's session in which the HTA got

invoked. If that user happens to be the "Administrator" or a member of the Windows "Administrator

group", the HTML application indeed has practically unrestricted access to the Windows machine!

w Text-field underneath "Enter Application Manually (PROGID or CLSID)": allows

entering a known PROGID or CLSID directly, pressing the push button

"Lookup" will start the analyzing and rendering process.

w Push button "List all inferrable PROGIDs": this will cause the analysis of the

Windows registry for PROGIDs in the "HKEY\CLASSES_ROOT\CLSID"

branch. This process may take quite a while, depending on the power of the

processor and on the amount of registry entries, which could be in the

thousands. Figure 8 depicts such a run where the screen got scrolled to the

very end, revealing that on that Windows machine there were 2,587 inferrable

PROGIDs registered!

w Push button "List initial apps" will replace the list of links to COM classes with

the one that is pre-defined and displayed at start-up.

Object REXX and Windows Automation Interfaces, page 23-27

Figure 7: Using a HTA for a GUI Frontend, Initial Screen.

Object REXX and Windows Automation Interfaces, page 24-27

Figure 8: Using a HTA for a GUI Frontend, Full List of Inferrable PROGIDs.

4 SUMMARY AND OUTLOOK

This article introduced the reader to the Object REXX support for Object Linking and

Embedding Automation (OLE automation) on the Windows platform, which is

realized via the Object REXX class named "OLEObject". It discusses the methods of

that class and explains the role of the Object REXX UNKNOWN mechanism, which

gets exploited by "OLEObject".

The "rgf_oleinfo" suite of Object REXX programs allow for analyzing the published

interfaces of Windows COM and DCOM classes via OLE respectively ActiveX, which

is the latest incarnation of the Windows script host support. The article describes the

purpose and the available interfaces of these programs and shows how non-Object

REXX languages can take advantage of the analysis and rendering to HTML

capablities by the means of a "Windows Script Component" (WSC) file.

Finally, a GUI interface realized via a "HTML application" (HTA) is introduced and

discussed, which eases considerably the researching of the installed COM classes

on any Windows computer, that can be driven via OLE/ActiveX automation.

The resulting HTML renderings allow for printing reference card like documentations

of the published interfaces to COM classes, which otherwise are hardly available at

all in such a concise form.

Object REXX and Windows Automation Interfaces, page 25-27

5 REFERENCES

[Ende97] Ender T.: "Object-Oriented Programming with REXX", John Wiley & Sons,
New York et.al. 1997.

[Flat02a] Flatscher R.G.: "Applying the Object REXX Windows Scripting Engine
with Windows Script Host", in: Proceedings of the „The 2002 International
REXX Symposium“, April 28 - May 1, The REXX Language Association,
Research Triangle Park, North Carolina 2002.

[Flat02b] Flatscher R.G.: "Overview of the Document Object Model (DOM) a.k.a.
DHTML Under Windows", in: Proceedings of the „The 2002 International
REXX Symposium“, April 28 - May 1, The REXX Language Association,
Research Triangle Park, North Carolina 2002.

[Flat02c] Flatscher R.G.: "The Windows Script Host (WSH) - Architecture and
Security Issues", in: Proceedings of the „E-World@Syria - From
Technology to E-Business (ET2EB 2002)“, April 8 - April 9, Damascus,
Syria 2002.

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object REXX by Example",
Aviar, Pittsburgh 1996.

[W3LP] Lee Pedin's Object REXX for Windows scripts, URL:
http://pragmaticlee.safedataisp.net/

[W3MSORX] Microsoft Object REXX scripts, URL:
http://www.microsoft.com/technet/scriptcenter/scripts/REXX/default.mspx

[W3MSWSH] Microsoft Windows Script Host Homepage, URL:
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/webdev.asp

[W3NetREXX] NetREXX homepage of the creator of the language, the IBM
fellow Mike Cowlishaw, URL (2004-05-01):
http://www2.hursley.ibm.com/netREXX/

[W3ObjREXX] Object REXX homepage of IBM, URL (2004-05-01):
http://www.ibm.com/software/ad/obj-REXX/

[W3REXX] REXX homepage of the creator of the language, the IBM fellow Mike
Cowlishaw, URL (2004-05-01): http://www2.hursley.ibm.com/REXX/

Object REXX and Windows Automation Interfaces, page 26-27

[W3REXXLA]REXX homepage of the “REXX Language Association”, URL
(2004-05-01): http://www.REXXLA.org

Published in: Proceedings of the „2004 International REXX Symposium“, Böblingen,
Germany, May 3nd - May 6th, 2004, The REXX Language Association,
Raleigh N.C., 2004.

Presented at: „2004 International REXX Symposium“, Böblingen, Germany,
May 4th, 2004.

Object REXX and Windows Automation Interfaces, page 27-27

