
“AUTOMATING OPENOFFICE.ORG WITH OOREXX:
OOREXX NUTSHELL EXAMPLES FOR

WRITE AND CALC”

Rony G. Flatscher
Wirtschaftsuniversität Wien (WU), Austria

„The 2005 International Rexx Symposium“, Los Angeles, California, U.S.A.,

April 17th - April 21st, 2005.

ABSTRACT

The opensource Microsoft Office clone "OpenOffice.org" is available on multiple plat-

forms, from Windows, over Linux to OS/2. It can read/write Microsoft office file-

formats, such as Word, Excel or PowerPoint. Its scripting architecture is radically dif-

ferent from what Microsoft has come up with and appears to be more systematic, al-

though there is a rather steep learning curve to it.

This article will give numerous little "nutshell" examples of driving OpenOffice.org via

ooRexx. All the examples will run unaltered under Linux and Windows.

Keywords: Object Rexx, ooRexx, BSF, BSF4Rexx, Automation, Scripting, OpenOf-

fice.org, OOo.

Disclaimer:
The supporting infrastructures and modules,

namely “BSF4Rexx” and “OOo.CLS”,

introduced and used in this article may change in the future due

to their “work in progress” status at the time of this writing!

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 1-27

1 INTRODUCTION

“In the 90ies a German company named "Star Division" developed a portable C++

class library that it named "Star". It became available for MacOS, Unix, OS/2 and

Windows. With this infrastructure the company started to develop an integrated office

suite which should be portable to all platforms that "Star" was available. It was

named "StarOffice".

Due to the success of the Microsoft office (MSO) suite, it was very important for Star

Division to create their office suite in a way, which allowed co-operating with MSO

users as seemlessly as possible. For that reason powerful import and export filters

for MSO have been of paramount importance and in effect allows it today, to import

and export most MSO documents into/from StarOffice on any platform Star Office is

available.

In addition the StarOffice user interface resembles the MSO user interface, such that

it becomes rather feasible for companies to migrate from MSO to StarOffice should

they wish to escape a possibly undersired lock-in situation, or should they strategi-

cally plan to not be locked-in anymore. Among other benefits such a migration also

opens up the possibility to switch operating and hardware system platforms as long

as StarOffice is available on the new target.

Finally, the built-in scripting language ("Star Basic") is a look-alike language to Mi-

crosoft's Visual Basic, sharing most of the language constructs and properties,

thereby making it relatively easy for MSO (end-user) programmers to become pro-

ductive in StarOffice.

The company Sun, looking for a MSO compatible, powerful office suite for its Unix-

based operating system Solaris bought the German company and made it available

as a commercial product on Windows as well. In addition, two important develop-

ments have taken place since then:

• "StarOffice" has become fully programmable from Java, which is because of

Sun's interest to leverage its programming language Java as much as possible,

• Sun released a version of "StarOffice" into the opensource and made it freely

available under the name "OpenOffice". The WWW homepage is located at

"OpenOffice.org" and it has therefore become common to abbreviate it as "OOo".

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 2-27

Having an opensource version of StarOffice freely available allows companies and

organizations to escape potentially undesired lock-ins by switching to the open-

source codebase, either immediately or whenever such a company decides this to

be a move in its own interest. In the case of switching from StarOffice to OpenOffice

(or the other way round) incurs no switching costs whatsoever. If switching from

MSO to StarOffice/OOo switching costs (installation, re-training users) need to be

taken into account, but it becomes possible to save by cancelling costful upgrade

plans in the long run, and possibly remarkable money by being able to switch away

from the Windows operating system altogether. Such switching to opensource soft-

ware that is free, seems to be quite attractive for public administrations in Europe

(e.g. German cities, or the Austrian capital Vienna).

Possibly more important, free software allows schools, Universities, third world coun-

tries, private people to employ a powerful, integrated office package for their needs,

without cutting into their (most of the time extremely tight) budgets. Having the soft-

ware not only free, but also in opensource means that maintenance of such software

is even possible, if the original writers are not available anymore. Especially in the

scholar environment opensource allows analysis, improvements and extensions to

such software, because of such a white box approach.”1

This article introduces the results of analyzing the ooRexx nutshell examples for

OOo as developed by a student of the author (Augustin, cf. [Aug05]) over the win-

tersemester 2004/05 at the WU (Wirtschaftsuniversität Wien), creating a requirable

ooRexx module which should ease the interaction specifically with UNO compo-

nents, of which OOo is composed of. It then introduces some nutshell examples re-

lating to the word processor (“swrite”) and spreadsheet (“scalc”) in a rewritten form,

taking advantage of the developed ooRexx module.

1 Cf. [Flat05], section „Introduction“.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 3-27

2 CREATING AN OOREXX MODULE “OOO.CLS”

This section introduces the ooRexx module “OOo.CLS” which should help ooRexx

programmers who wish to program OpenOffice.org (OOo) via its constituent UNO

(Universal Network Object) components.2

2.1 Analyzing ooRexx Code to Interact with UNO Components

Analyzing the ooRexx examples in [Aug05]3, which are based on information from

the OOo developer documentation and information related to scripting in

[W3OOoAPI], [W3OOoFW] and [W3OOoUDK]. In researching OOo scripts it is clear

that Walter Augustin was looking into Java examples, and trying to rewrite them for

ooRexx taking advantage of BSF4Rexx (cf. e.g. [Flat04]).

Figure 14 depicts an ooRexx script from [Aug05] which starts up OOo and creates an

empty word processor document. Various sections of that code have been

highlighted to draw the attention of the reader to the following observations:

1. Most of the program is concerned in creating the runtime environment for driving

the UNO components, ending at the statement starting with “oComponentLoader

=…”.

All of the examples in [Aug05] possess these statements, which therefore are

candidates to be “outsourced” into an own module (package) and made avail-

able as a routine.

2. The UNO service objects (instances of UNO components) are queried for inter-

faces that encapsulate functionality (methods) and/or properties (attributes) be-

longing semantically together, like “Naming” services, “Factory” services and the

like.

Querying an interface always involves an instance of the Java class

“com.sun.star.uno.UnoRuntime”, because of its method “queryInterface()”, the

2 Cf. [Flat05] for an architectural overview of OOo, UNO and how ooRexx can interact taking advan-

tage of the Java UNO bindings, by employing BSF4Rexx (cf. [Flat01], [Flat03], [Flat04]).
3 [Aug05] contains Object REXX examples and their counterparts in JavaScript (Rhino) as well.
4 The program in figure 1 uses a URL to connect to the OOo on the local host, port 8,100. If you

have not configured your OOo to listen on that port, and wish to test that program, then you need
to start an instance of OOo by issuing the following command in a command line window (cf.
[OOo03]):

 soffice -accept=socket,host=localhost,port=8100;urp;

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 4-27

Java class object of the interface one queries (first argument to supply) and the

service object of which the interface is sought for (second argument to supply).

It is noticeable that “queryInterface()” is used quite often (five times in figure 1

alone) and always consumes two statements, one to get at the Java class object

representing the desired interface, and one for invoking the queryInterface() run-

time method itself.

It may be interesting to note that OOo interface names always start out with a

capital “X” (an OOo convention).

3. The class “com.sun.star.beans.PropertyValue” is of utmost importance to OOo

programs. Many times additional information, attributes for services etc. are de-

noted with Java arrays of this type.

A “PropertyValue” consists of four fields only5, the two most important being:

“Name” and “Value”, where “Name” is a string and “Value” an instance of the

Java class of the appropriate type6.

It is also interesting to note that in the case of creating empty documents, one

needs to supply an empty array object of type “PropertyValue”.

5 Classes that consist of fields (aka “attributes”, “properties”) only, are called “structs”.
6 The primitive Java types “boolean”, “byte”, “char”, “short”, “int”, “long”, “float”, “double” must be

represented as instances of the classes “java.lang.Boolean”, “java.lang.Byte”,
“java.lang.Character”, “java.lang.Short”, “java.lang.Integer”, “java.lang.Long”, “java.lang.Float”,
“java.lang.Double”, respectively. So an ooRexx function that “box”es the primitive datatypes to
their Java class counterparts (and an “unbox” routine for the opposite purpose) would be desirable
in the future.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 5-27

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 6-27

/
*

i
n
i
t
i
a
l
i
z
e
c
o
n
n
e
c
t
i
o
n
t
o

s
e
r
v
e
r
,

g
e
t
i
t
s
D
e
s
k
t
o
p
-
s
e
r
v
i
c
e
a
n
d

X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
i
n
t
e
r
f
a
c
e
*
/

s
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
=

.
b
s
f
~
n
e
w
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
c
o
m
p
.
h
e
l
p
e
r
.
B
o
o
t
s
t
r
a
p
"
)

~
c
r
e
a
t
e
I
n
i
t
i
a
l
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
(
.
n
i
l
)

u
n
o
R
u
n
t
i
m
e
=

.
b
s
f
~
n
e
w
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
u
n
o
.
U
n
o
R
u
n
t
i
m
e
"
)

s
U
r
l
R
e
s
o
l
v
e
r
=

s
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
~
g
e
t
S
e
r
v
i
c
e
M
a
n
a
g
e
r
(
)

~
c
r
e
a
t
e
I
n
s
t
a
n
c
e
W
i
t
h
C
o
n
t
e
x
t
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
b
r
i
d
g
e
.
U
n
o
U
r
l
R
e
s
o
l
v
e

X
U
n
o
U
r
l
R
e
s
o
l
v
e
r
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
b
r
i
d
g
e
.
X
U
n
o
U
r
l
R
e
s
o
l
v
e
r
"
)

o
U
r
l
R
e
s
o
l
v
e
r
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
U
n
o
U
r
l
R
e
s
o
l
v
e
r
,

s
U
r
l
R
e
s
o
l
v
e
r
)

u
n
o
U
r
l
=

"
u
n
o
:
s
o
c
k
e
t
,
h
o
s
t
=
l
o
c
a
l
h
o
s
t
,
p
o
r
t
=
8
1
0
0
;
u
r
p
;
S
t
a
r
O
f
f
i
c
e
.
N
a
m
i
n
g
S
e
r
v
i
c
e
"

o
I
n
i
t
i
a
l
O
b
j
e
c
t
=

o
U
r
l
R
e
s
o
l
v
e
r
~
r
e
s
o
l
v
e
(
u
n
o
U
r
l
)

X
N
a
m
i
n
g
S
e
r
v
i
c
e
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
u
n
o
.
X
N
a
m
i
n
g
S
e
r
v
i
c
e
"
)

s
N
a
m
i
n
g
S
e
r
v
i
c
e
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
N
a
m
i
n
g
S
e
r
v
i
c
e
,

o
I
n
i
t
i
a
l
O
b
j
e
c
t
)

o
S
e
r
v
i
c
e
M
a
n
a
g
e
r
=

s
N
a
m
i
n
g
S
e
r
v
i
c
e
~
g
e
t
R
e
g
i
s
t
e
r
e
d
O
b
j
e
c
t
(
"
S
t
a
r
O
f
f
i
c
e
.
S
e
r
v
i
c
e
M
a
n
a
g
e
r
"
)

X
M
S
F
a
c
t
o
r
y
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
l
a
n
g
.
X
M
u
l
t
i
S
e
r
v
i
c
e
F
a
c
t
o
r
y
"
)

s
M
S
F
a
c
t
o
r
y
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
M
S
F
a
c
t
o
r
y
,

o
S
e
r
v
i
c
e
M
a
n
a
g
e
r
)

-
-
R
e
t
r
i
e
v
e
t
h
e
D
e
s
k
t
o
p

o
b
j
e
c
t
,

w
e
n
e
e
d
i
t
s
X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
i
n
t
e
r
f
a
c
e

-
-
t
o

l
o
a
d
a

n
e
w
d
o
c
u
m
e
n
t

s
D
e
s
k
t
o
p
=

s
M
S
F
a
c
t
o
r
y
~
c
r
e
a
t
e
I
n
s
t
a
n
c
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
f
r
a
m
e
.
D
e
s
k
t
o
p
"
)

X
D
e
s
k
t
o
p
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
f
r
a
m
e
.
X
D
e
s
k
t
o
p
"
)

o
D
e
s
k
t
o
p
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
D
e
s
k
t
o
p
,

s
D
e
s
k
t
o
p
)

X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
N
a
m
e
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
f
r
a
m
e
.
X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
"
)

r
"
,

s
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
)

o
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
N
a
m
e
,

o
D
e
s
k
t
o
p
)

/
*

O
p
e
n

a

b
l
a
n
k

t
e
x
t

d
o
c
u
m
e
n
t

*
/

/
*

N
o

p
r
o
p
e
r
t
i
e
s
n
e
e
d
e
d

*
/

p
r
o
p
e
r
t
y
V
a
l
u
e
N
a
m
e
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
b
e
a
n
s
.
P
r
o
p
e
r
t
y
V
a
l
u
e
"
)

l
o
a
d
P
r
o
p
s
=

.
b
s
f
~
c
r
e
a
t
e
A
r
r
a
y
(
p
r
o
p
e
r
t
y
V
a
l
u
e
N
a
m
e
,

0
)

/
*

0
=
n
o

e
l
e
m
e
n
t
s
,

i
.
e
.

e
m
p
t
y
J
a
v
a

a
r
r
a
y
*
/

/
*

l
o
a
d
a
n

e
m
p
t
y
t
e
x
t

d
o
c
u
m
e
n
t
*
/

s
W
r
i
t
e
r
C
o
m
p
o
n
e
n
t
=

o
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
~
l
o
a
d
C
o
m
p
o
n
e
n
t
F
r
o
m
U
R
L
(
"
p
r
i
v
a
t
e
:
f
a
c
t
o
r
y
/
s
w
r
i
t
e
r
"
,

"
_
b
l
a
n
k
"
,

0
,

l
o
a
d
P
r
o
p
s
)

:
:
r
e
q
u
i
r
e
s
"
B
S
F
.
c
l
s
"

/
*

i
n
i
t
i
a
l
i
z
e
c
o
n
n
e
c
t
i
o
n
t
o

s
e
r
v
e
r
,

g
e
t
i
t
s
D
e
s
k
t
o
p
-
s
e
r
v
i
c
e
a
n
d

X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
i
n
t
e
r
f
a
c
e
*
/

s
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
=

.
b
s
f
~
n
e
w
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
c
o
m
p
.
h
e
l
p
e
r
.
B
o
o
t
s
t
r
a
p
"
)

~
c
r
e
a
t
e
I
n
i
t
i
a
l
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
(
.
n
i
l
)

u
n
o
R
u
n
t
i
m
e
=

.
b
s
f
~
n
e
w
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
u
n
o
.
U
n
o
R
u
n
t
i
m
e
"
)

s
U
r
l
R
e
s
o
l
v
e
r
=

s
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
~
g
e
t
S
e
r
v
i
c
e
M
a
n
a
g
e
r
(
)

~
c
r
e
a
t
e
I
n
s
t
a
n
c
e
W
i
t
h
C
o
n
t
e
x
t
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
b
r
i
d
g
e
.
U
n
o
U
r
l
R
e
s
o
l
v
e

X
U
n
o
U
r
l
R
e
s
o
l
v
e
r
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
b
r
i
d
g
e
.
X
U
n
o
U
r
l
R
e
s
o
l
v
e
r
"
)

o
U
r
l
R
e
s
o
l
v
e
r
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
U
n
o
U
r
l
R
e
s
o
l
v
e
r
,

s
U
r
l
R
e
s
o
l
v
e
r
)

u
n
o
U
r
l
=

"
u
n
o
:
s
o
c
k
e
t
,
h
o
s
t
=
l
o
c
a
l
h
o
s
t
,
p
o
r
t
=
8
1
0
0
;
u
r
p
;
S
t
a
r
O
f
f
i
c
e
.
N
a
m
i
n
g
S
e
r
v
i
c
e
"

o
I
n
i
t
i
a
l
O
b
j
e
c
t
=

o
U
r
l
R
e
s
o
l
v
e
r
~
r
e
s
o
l
v
e
(
u
n
o
U
r
l
)

X
N
a
m
i
n
g
S
e
r
v
i
c
e
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
u
n
o
.
X
N
a
m
i
n
g
S
e
r
v
i
c
e
"
)

s
N
a
m
i
n
g
S
e
r
v
i
c
e
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
N
a
m
i
n
g
S
e
r
v
i
c
e
,

o
I
n
i
t
i
a
l
O
b
j
e
c
t
)

o
S
e
r
v
i
c
e
M
a
n
a
g
e
r
=

s
N
a
m
i
n
g
S
e
r
v
i
c
e
~
g
e
t
R
e
g
i
s
t
e
r
e
d
O
b
j
e
c
t
(
"
S
t
a
r
O
f
f
i
c
e
.
S
e
r
v
i
c
e
M
a
n
a
g
e
r
"
)

X
M
S
F
a
c
t
o
r
y
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
l
a
n
g
.
X
M
u
l
t
i
S
e
r
v
i
c
e
F
a
c
t
o
r
y
"
)

s
M
S
F
a
c
t
o
r
y
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
M
S
F
a
c
t
o
r
y
,

o
S
e
r
v
i
c
e
M
a
n
a
g
e
r
)

-
-
R
e
t
r
i
e
v
e
t
h
e
D
e
s
k
t
o
p

o
b
j
e
c
t
,

w
e
n
e
e
d
i
t
s
X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
i
n
t
e
r
f
a
c
e

-
-
t
o

l
o
a
d
a

n
e
w
d
o
c
u
m
e
n
t

s
D
e
s
k
t
o
p
=

s
M
S
F
a
c
t
o
r
y
~
c
r
e
a
t
e
I
n
s
t
a
n
c
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
f
r
a
m
e
.
D
e
s
k
t
o
p
"
)

X
D
e
s
k
t
o
p
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
f
r
a
m
e
.
X
D
e
s
k
t
o
p
"
)

o
D
e
s
k
t
o
p
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
D
e
s
k
t
o
p
,

s
D
e
s
k
t
o
p
)

X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
N
a
m
e
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
f
r
a
m
e
.
X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
"
)

r
"
,

s
C
o
m
p
o
n
e
n
t
C
o
n
t
e
x
t
)

o
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
=

u
n
o
R
u
n
t
i
m
e
~
q
u
e
r
y
I
n
t
e
r
f
a
c
e
(
X
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
N
a
m
e
,

o
D
e
s
k
t
o
p
)

/
*

O
p
e
n

a

b
l
a
n
k

t
e
x
t

d
o
c
u
m
e
n
t

*
/

/
*

N
o

p
r
o
p
e
r
t
i
e
s
n
e
e
d
e
d

*
/

p
r
o
p
e
r
t
y
V
a
l
u
e
N
a
m
e
=

.
b
s
f
4
r
e
x
x
~
C
l
a
s
s
.
c
l
a
s
s
~
f
o
r
N
a
m
e
(
"
c
o
m
.
s
u
n
.
s
t
a
r
.
b
e
a
n
s
.
P
r
o
p
e
r
t
y
V
a
l
u
e
"
)

l
o
a
d
P
r
o
p
s
=

.
b
s
f
~
c
r
e
a
t
e
A
r
r
a
y
(
p
r
o
p
e
r
t
y
V
a
l
u
e
N
a
m
e
,

0
)

/
*

0
=
n
o

e
l
e
m
e
n
t
s
,

i
.
e
.

e
m
p
t
y
J
a
v
a

a
r
r
a
y
*
/

/
*

l
o
a
d
a
n

e
m
p
t
y
t
e
x
t

d
o
c
u
m
e
n
t
*
/

s
W
r
i
t
e
r
C
o
m
p
o
n
e
n
t
=

o
C
o
m
p
o
n
e
n
t
L
o
a
d
e
r
~
l
o
a
d
C
o
m
p
o
n
e
n
t
F
r
o
m
U
R
L
(
"
p
r
i
v
a
t
e
:
f
a
c
t
o
r
y
/
s
w
r
i
t
e
r
"
,

"
_
b
l
a
n
k
"
,

0
,

l
o
a
d
P
r
o
p
s
)

:
:
r
e
q
u
i
r
e
s
"
B
S
F
.
c
l
s
"

Figure 1: A Typical ooRexx OOo Program (Modeled After Java Programs).

2.2 Devising a Prototype ooRexx OOo-Module

In this section a prototype ooRexx module will get developed which should ease

programming in ooRexx for OOo. The module’s name should be “OOO.CLS”

(OpenOffice.org class) and should supply at least the following features:

1. Contain the initialisation code for the UNO runtime environment,

2. allow to easily create the OOo desktop object, which is the pivotal object for cre-

ating and interacting with the OOo components,

3. make it considerably easier to query (and get) interface objects compared to

Java,

4. make it easier loading OOo classes.

The module will require “BSF.CLS”, the support for bridging ooRexx with Java using

the BSF4Rexx (cf. [Flat04]) package. This way ooRexx is able to use UNO compo-

nents from ooRexx via their Java interfaces.

In this section most of the module gets introduced and explained, the entire module

is depicted in appendix A at the end of this article.

2.2.1 Initialisation of the ooRexx Module “OOO.CLS”

In the initialization part of this module a directory object should be created and stored

in the “.local” ooRexx runtime environment. This directory object should serve as a

directory maintaining runtime information that is important for OOo and consequently

be named with the ooRexx environment symbol7 “.OOO”.

One important application of this “.OOO” directory is its purpose to maintain the most

important UNO/OOo objects and make them easily accessible.

Firstly, the Java class objects8 for the following important UNO/OOo classes should

be stored with their unqualified name in the “.OOO” directory:

• "com.sun.star.beans.PropertyValue": needed for supplying properties to

UNO/OOo components,

7 In ooRexx an identifier that starts with a dot is called “environment symbol”: the runtime system will

try to lookup an entry in one of its runtime environments by removing the leading dot and using the
rest of the (uppercased) identifier as the key.

8 Using BSF4Rexx (cf. [Flat04]) allows to interact with those Java class objects as if they were
ooRexx objects, which makes sending ooRexx messages to them straight forward, and still will
cause the invocation of the respective Java methods.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 7-27

• "com.sun.star.comp.helper.Bootstrap": needed for bootstrapping UNO/OOo,

• "com.sun.star.uno.UnoRuntime": needed mostly for querying the interface ob-

jects.

Secondly, the names of those UNO/OOo interfaces should be stored with the help of

the “.OOO” directory object which are needed by the ooRexx nutshell programs. For

this purpose a directory object is created and stored with the name “XInterfaces” in

“.OOO”. Each entry in the XInterfaces directory is pointing to the fully qualified name

of the interface, using the fully qualified name itself and with a second entry, using

the unqualified name as an index.9

2.2.2 The ooRexx Class “OOO_PROXY”

The ooRexx class “OOO_PROXY” allows to wrap up any BSF object and add OOo

specific behaviour, namely the dealing with messages that indeed are meant for que-

rying interface objects. The class “OOO_PROXY” is depicted in figure 2. The ooRexx

constructor method “INIT” merely saves the BSF object in an attribute (ooRexx “ob-

ject variable”, which can be directly accessed from each method via the “EXPOSE”

statement issued as the very first statement).

The behavior to query interface objects is added by exploiting the ooRexx “UN-

KNOWN”-mechanism: whenever a message is sent to an ooRexx object for which

no method can be found, the “NOMETHOD” exception is raised by the ooRexx run-

time system which interrupts and stops the execution of an ooRexx program. If a

class which was sought for a method which has the same name as the received

message name contains a method by the name of “UNKNOWN”, then the ooRexx

runtime system will invoke this method instead, supplying as the first argument the

name of the message for which no method was found and a second argument, either

being “.nil” or an array object containing the arguments which were supplied to the

message in round parenthesis.

The “OOO_PROXY” class implements an “UNKNOWN” method to intercept all mes-

sages for which no methods could be found. If the message starts with a capital “X”,

then it is assumed that the programmer wishes to query the interface object from the

9 This way an interface has always two entries in the “XInterfaces” directory, e.g.

"com.sun.star.uno.XComponentContext" will be stored with an index name of
"COM.SUN.STAR.UNO.XCOMPONENTCONTEXT" and an index name of “XCOMPONENTCON-
TEXT”.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 8-27

/* ***
 Class: OOo_PROXY
 Purpose: allows to wrap up BSF (Java) objects as UNO/OOo objects;
 if instances are destroyed, then no derigistration from
 the BSF registry takes place

::CLASS OOo_PROXY

*** */

::Method bsfObject ATTRIBUTE -– stores the BSF object

::METHOD init -- constructor method
 expose bsfObject -- direct access to BSF object
 use arg bsfObject -- assign object to attribute
 self~objectName=bsfObject~objectName -- use same objectname as BSF proxy

::METHOD unknown
 expose bsfObject -- direct access to BSF object
 parse arg xName

 if xName~left(1)~translate="X" then -- if an interface object is asked for, query & return it
 do
 xClass=.OOo~entry(xName) -- try to get interface class object
 if xClass=.nil then -- no entry as of yet
 do
 idx=substr(xName, lastpos(".", xName)+1)
 xClass=OOo.loadClass(.ooo~XInterfaces~entry(xName), idx)
 end

 -- query and return the interface object, wrap it up as an OOO_PROXY
 return .OOo_proxy~new(.OOo~unoRuntime~queryInterface(xClass, bsfObject))
 end
 else -- pass to BSF object (i.e. the BSF class) to handle it
 do
 if bsfObject~hasmethod(xName) then -- o.k. it's a BSF method, forward it
 FORWARD TO (bsfObject) MESSAGE (xName) ARGUMENTS (arg(2))
 else
 FORWARD TO (bsfObject) CONTINUE -- let BSF handle this

 tmpObj=result –- retrieve the returned object

 -- if a BSF-object, wrap it up as an OOO_PROXY (to gain this UNKNOWN behaviour)
 if tmpObj~hasmethod("bsf.setFieldValue") then return .OOo_proxy~new(tmpObj)
 else return tmpObj
 end

Figure 2: “OOO.CLS”: The “OOO_PROXY” Class.

receiving object. In this case, the entries in the directory object “XInterfaces” as

stored in “.OOO” are inspected to learn about the fully qualified name of the inter-

face, which then is used to query the interface object. In order to optimize the run-

time behavior the Java class objects representing the desired interfaces are created

and stored in the “.OOO” directory by their (unqualified) class name.10 In any case

the received interface object will be wrapped up as an instance of the

“OOO_PROXY” class, such that it receives that particular “UNKNOWN” behavior as

well.

If the unknown message does not start with a capital “X”, then it is either a message

which should invoke a BSF method or a message which mostlikely should invoke a

10 In a subsequent run the stored Java class object will be reused.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 9-27

Java method with the help of BSF. In the case of a BSF object the received interface

object will be wrapped up as an instance of the “OOO_PROXY” class, such that it

receives that particular “UNKNOWN” behavior as well. Otherwise the received string

value will be returned.

2.2.3 Public Routine “OOo.loadClass”

The public routine “OOo.loadClass” expects two arguments, the fully qualified name

of the (Java) class to load, and optionally a string determining the index value to use

to store the Java class object in the “.OOO” directory object. If the second argument

is omitted, then the (unqualified) class name is used as the index value.

The fully qualified Java class name is used to load the Java class object with the

help of BSF and gets wrapped up as an “OOO_PROXY” object. Figure 3 depicts the

ooRexx code.

 -- load the given OOo-cla
::routine OOo.loadClass public

ss and save it in environment

 parse arg className, idx

 if idx="" then -- omitted, hence extract last word to serve as index
 idx=substr(className, lastpos(".", className)+1)

 if .OOo~hasentry(idx)=.true then -- idx already used (class maybe loaded already)
 .error~say("OOo.loadClass:" pp(idx) "already used, in hand:" -
 pp(className) "in .OOo:" pp(.OOo~entry(idx)))

 -- load Java class via BSF, wrap it up as an "OOO_PROXY"
 tmpClass=.OOo_proxy~new(.bsf4rexx~class.class~forName(className))
 .OOo~setentry(idx, tmpClass) -- save it in the ".OOo" directory
 return tmpClass -- return the wrapped class object

Figure 3: “OOO.CLS”: Public Routine “OOO.loadClass”.

2.2.4 Public Routine: “OOO.connect”

Figure 4 depicts the public ooRexx routine “OOO.CONNECT”11 which initializes the

UNO runtime environment. The strategy employed allows for using URL-style con-

nections to OOo server instances, running anywhere on the Internet. It is assumed

that the local installation of OOo got configured such, that it is addressable via the

TCP/IP port number 8,100 as per the OOo developer guide (cf. [OOo03]).12

11 The Rexx language allows the dot to be part of an identifier (as well as the question mark, excla-

mation mark and the underline character, besides letters and digits).
12 An alternative would be to use instead the method „bootstrap()“ from ooRexx which is defined in

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 10-27

This routine will return a “XMultiServiceFactory” interface object which can be used

to create the OOo desktop object and more. For later referral this object will get

stored in the “.OOO” directory under the name “remoteMSF”.

2.2.5 Public Routine: “OOO.getDesktop”

This routine creates a desktop service object, queries its desktop interface object

and returns it. If no context object is supplied as an argument, then the one stored in

the “.OOO” directory is used. The code of this routine is depicted in figure 5.

 -- connects to given UNO server, returns the XMultiServiceFactory
 -- interface object of
::routine OOo.connect public
 parse arg unoURL
 -- no unoURL given, use default
 if unoURL="" then unoURL="uno:socket,host=localhost,port=8100;urp;StarOffice.NamingService"

 context=.OOo~Bootstrap~createInitialComponentContext(.nil)
 uur= context~getServiceManager() –
 ~createInstanceWithContext("com.sun.star.bridge.UnoUrlResolver", context)

 remoteObject = uur~XUnoUrlResolver ~resolve(unoURL)
 remoteNamingService = remoteObject~XNamingService

 remoteServiceManager=remoteNamingService~getRegisteredObject("StarOffice.ServiceManager")
 remoteMSF = remoteServiceManager~XMultiServiceFactory

 if .OOo~hasentry("remoteMSF")=.false then
 .OOo~remoteMSF=remoteMSF -- save remote MultiServiceFactory

 return remoteMSF -- return the remote XMultiServiceFactory interface object

Figure 4: “OOO.CLS”: Public Routine “OOO.connect”.

 -- create and return the OOo Desktop interface object
::routine OOo.getDesktop
 USE ARG remoteMSF

 if remoteMSF="" | remoteMSF=.nil then -- no vaild argument supplied
 remoteMSF=.OOo~remoteMSF -- use the one stored by "OOO.connect"

 -- create the OOo Desktop service object
 remoteDesktop=remoteMSF~createInstance("com.sun.star.frame.Desktop")

 -- query and return its desktop interface object
 return .OOo~unoRuntime~queryInterface(.OOo~XDesktop, remoteDesktop)

Figure 5: “OOO.CLS”: Public Routine “OOO.getDesktop”.

the remote service manager

the class “com.sun.star.comp.helper.Bootstrap”, e.g.:
 xContext = .bsf~bsf.import("com.sun.star.comp.helper.Bootstrap")~bootstrap

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 11-27

2.2.6 Putting the Module “OOO.CLS” to Work

Figure 6 shows the ooRexx code that is needed for creating an empty instance of a

word processor component, if using the module “OOO.CLS”. This has exactly the

same effect, as the Java transcription to ooRexx of figure 1, which was the basis of

the analysis and the reason for devising the module “OOO.CLS”. Therefore one can

expect that some code can be saved, nevertheless it is noticeable how much of the

original code can be left out.

Taking advantage of the module allows the resulting code to become considerably

more concise, and by the same token it also becomes easier to read and to

understand.

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */

xMSFactory=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface

-- to load a new document

sDesktop = xMSFactory~createInstance("com.sun.star.frame.Desktop")

oDesktop = sDesktop~XDesktop -- get desktop interface

oComponentLoader = oDesktop~XComponentLoader -- get componentLoader interface

/* load an empty text document */
sWriterComponent = oComponentLoader~loadComponentFromURL("private:factory/swriter", "_blank", 0, .OOo~noProps)

::requires OOo.cls -- get OOo support

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */

xMSFactory=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface

-- to load a new document

sDesktop = xMSFactory~createInstance("com.sun.star.frame.Desktop")

oDesktop = sDesktop~XDesktop -- get desktop interface

oComponentLoader = oDesktop~XComponentLoader -- get componentLoader interface

/* load an empty text document */
sWriterComponent = oComponentLoader~loadComponentFromURL("private:factory/swriter", "_blank", 0, .OOo~noProps)

::requires OOo.cls -- get OOo support

. Figure 6: Program of Figure 1 Rewritten, Using the Module “OOO.CLS”

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 12-27

3 NUTSHELL EXAMPLES

The examples in this chapter originate in the work of [Aug05], who created them fol-

lowing the Java examples available in [OOo03], [W3OOoFW] and on the Internet in

general. The ooRexx examples could be simplified quite considerably in this article

by taking advantage of the ooRexx module “OOO.CLS”, making it easier to under-

stand and extend on them.

In order to run the examples one needs to have Object REXX or its opensource ver-

sion “Open Object Rexx” (ooRexx, cf. [W3ooRexx]) and BSF4Rexx (cf. [W3B4R])

installed. In addition the Java classpath needs to point to the OOo Java archives ac-

cording to the documentation in [OOo03] and the ooRexx module “OOO.CLS” from

the appendix of this article needs to be accessible13 by these ooRexx programs.

As described in section 2.2.4, the public routine “OOO.connect” of the ooRexx mod-

ule “OOO.CLS” uses the explicit port number 8,100, so one needs to set up OOo ac-

cordingly. Alternatively, one can invoke an instance of OOo via the commandline,

instructing it to accept client connections via port 8,100. This can be done by issuing

the following command in a commandline window:14

soffice -accept=socket,host=localhost,port=8100;urp;

Most of the OOo nutshell examples of this chapter run unchanged on Windows and

Linux.15 For each nutshell example a brief description is given.

3.1 “swriter” Nutshell Example # 1

Figure 7 depicts an ooRexx nutshell example that creates an empty word processor

component and saves that empty document in a Microsoft Word format, such that

MS Word users are able to work with that document. This nutshell relates to [Aug05]

“Example_08.rex”.

To store a document one needs to acquire the “XStorable” interface object and use

13 Any Rexx program/module is “accessible” if it resides in the same directory as the running Rexx

program or in a directory denominated in the operating system environment variable “PATH”.
14 A future implementation of the routine „OOO.connect” may forgo this need by using the “boot-

strap()” method of the UNO Bootstrap class instead. If so, the ability of being able to connect to an
OOo server instance via TCP/IP should be preserved.

15 In this implementation of the ooRexx module „OOO.CLS“ fully qualified filenames need to be ad-
justed to the target platform as the Windows version always contains a “drive letter” (a letter fol-
lowed immediately by a colon).

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 13-27

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */
xMsf=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface
-- to load a new document
oDesktop = xMsf~createInstance("com.sun.star.frame.Desktop")
xDesktop = oDesktop~XDesktop -- get desktop interface
xComponentLoader = xDesktop~XComponentLoader -- get componentLoader interface

/* load an empty text document */
xWriterComponent = xComponentLoader~loadComponentFromURL(-
 "private:factory/swriter", "_blank", 0, .OOo~noProps)

-- Get a "Storable" interface in the context of the Writer application
xStorable=xWriterComponent~XStorable

-- This time we need to define a property: The filter name
storeProps = .bsf~createArray(.OOo~propertyValue, 1)
storeProps[1] = .bsf~new("com.sun.star.beans.PropertyValue")
storeProps[1]~bsf.setFieldValue("Name", "FilterName")
storeProps[1]~bsf.setFieldValue("Value", "MS Word 97")

storeUrl = "file:///c:/test.doc" -- Linux/UNIX users change the filename!
xStorable~storeAsURL(storeUrl, storeProps)

::requires OOo.cls -- get OOo support

Figure 7: “swriter” Nutshell Example # 1 (Saving as a MS Word Document).

its methods to store it. In this case the method “storeAsURL” is used, which expects

as arguments the document’s file name in URI form and an array of properties which

give additional information about how the storing should be carried out. In this exam-

ple one property, “FilterName”, is given with a value of “Word 97”, causing OOo to

store the document in MS Word 97 format.

3.2 “swriter” Nutshell Example # 2

Figure 8 depicts an ooRexx nutshell example that creates an empty word processor

component and prints that empty document to a locally installed printer. This nutshell

relates to [Aug05] “Example_10.rex”.

To print a document one needs to acquire the “XPrintable” interface object and use

its methods to set the printer and to print the document. In this case the method

“setPrinter” is used to determine the printer which should get used by supplying its

name in its argument (an array that contains one property element). The method

“print” is used to invoke the print process, which gets the information via the property

array to print the first page only!

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 14-27

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */
xMsf=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface
-- to load a new document
oDesktop = xMsf~createInstance("com.sun.star.frame.Desktop")
xDesktop = oDesktop~XDesktop -- get desktop interface
xComponentLoader = xDesktop~XComponentLoader -- get componentLoader interface

/* load an empty text document */
xWriterComponent = xComponentLoader~loadComponentFromURL(-
 "private:factory/swriter", "_blank", 0, .OOo~noProps)

-- Get a "Printable" interface in the context of the Writer application
xPrintable=xWriterComponent~XPrintable

-- We need to define a property: The printer name
props = .bsf~createArray(.OOo~propertyValue, 1)
props[1] = .bsf~new("com.sun.star.beans.PropertyValue")

-- This is a printer's name as known in your system.

props[1]~bsf.setFieldValue("Name", "Name")
props[1]~bsf.setFieldValue("Value", "Apple Color LW 12/660 PS on file")
xPrintable~setPrinter(props)

-- This prints the (empty) test page
props[1]~bsf.setFieldValue("Name", "Pages")
props[1]~bsf.setFieldValue("Value", "1")
xPrintable~print(props);

::requires OOo.cls -- get OOo support

Figure 8: “swriter” Nutshell Example # 2 (Print the First Page of a Document).

3.3 “swriter” Nutshell Example # 3

Figure 9 depicts an ooRexx nutshell example that creates an empty word processor

component, changes the style of a paragraph, inserts the current page number into it

and finally adds some text at the end to it. This nutshell relates to [Aug05] “Exam-

ple_24.rex”.

This example demonstrates the Model-View-Controller (MVC) paradigm that OOo

implements: in order to manipulate the content of a document one needs to get the

controller object of the document which can then be used to get the “view cursor”. A

“cursor” allows addressing certain parts and types of information in a document, in

our example we use a “view cursor” from which a “page cursor” is requested.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 15-27

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */
xMsf=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface
-- to load a new document

oDesktop = xMsf~createInstance("com.sun.star.frame.Desktop")
xDesktop = oDesktop~XDesktop -- get desktop interface
xComponentLoader = xDesktop~XComponentLoader -- get componentLoader interface

-- ---------- End of connection header ---------------

/* load an empty text document */
oTextComponent = xComponentLoader~loadComponentFromURL(-
 "private:factory/swriter", "_blank", 0, .OOo~noProps)

xDocument=oTextComponent~XTextDocument
xText=xDocument~getText

-- Now we could start writing into the document, for example: xText~setString("A few words ...")

-- In order to set paragraph properties, we need a cursor for navigation.
-- A cursor can be retrieved from the controller, the controller comes from the model,
-- and the model comes from the component, i.e. the application.

xModel=xDocument~XModel -- Get model from component

xController = xModel~getCurrentController -- The model knows its controller

-- The controller gives us the TextViewCursor, query the ViewCursor supplier interface
xViewCursorSupplier=xController~XTextViewCursorSupplier

xViewCursor = xViewCursorSupplier~getViewCursor -- Get the ViewCursor

-- Set the appropriate property for paragraph style
xCursorPropertySet=xViewCursor~XPropertySet

xCursorPropertySet~bsf.invokeStrict("setPropertyValue", "STRING", "ParaStyleName", -

"STRING", "Quotations")

-- Print the current page number – we need the XPageCursor interface for this
xPageCursor=xViewCursor~XPageCursor

-- This is written directly into the open document (see above).
xText~setString("The current page number is:" xPageCursor~getPage)

-- The text creates a model cursor from the viewcursor
xModelCursor = xText~createTextCursorByRange(xViewCursor~getStart)

-- Now we could query XWordCursor, XSentenceCursor and XParagraphCursor
-- or XDocumentInsertable, XSortable or XContentEnumerationAccess
-- and work with the properties of com.sun.star.text.TextCursor

-- In this case we just go to the end of the paragraph and add some text.
-- Now get a paragraph cursor first.

xParagraphCursor=xModelCursor~XParagraphCursor

-- Go to the end of the paragraph
xParagraphCursor~gotoEndOfParagraph(.false)
xParagraphCursor~setString(" ***** Fin de semana! ******")

::requires OOo.cls

Figure 9: “swriter” Nutshell Example # 3 (Edit Text in Word Processor Document).

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 16-27

3.4 “scalc” Nutshell Example # 1

Figure 10 depicts an ooRexx nutshell example that creates an empty spreadsheet

document and adds two entries into it. This nutshell relates to [Aug05] “Exam-

ple_14.rex”.

From the code it can be seen that a spreadsheet document can be regarded as a

collection of sheets. Therefore it is important to address that collection and to pick

the sheet one wishes to interact with; in this case a “XIndexAccess” interface object

is created which allows to index its collection with an integer number (index starts

with 0). All co-ordinates are 0-based, hence the cell “A1” (left top cell) resides in

“column=0” and “row=0”.

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */
xMsf=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface
-- to load a new document
oDesktop = xMsf~createInstance("com.sun.star.frame.Desktop")
xDesktop = oDesktop~XDesktop -- get desktop interface
xComponentLoader = xDesktop~XComponentLoader -- get componentLoader interface

/* load an empty text document */
oSheetComponent = xComponentLoader~loadComponentFromURL(-
 "private:factory/scalc", "_blank", 0, .OOo~noProps)

xDocument=oSheetComponent~XSpreadSheetDocument
xSheets=xDocument~getSheets
xIndexSheets=xSheets~XIndexAccess
xSheet=xIndexSheets~getByIndex(0)~XSpreadSheet -- get the spreadsheet interface for the sheet

-- (1) insert a value (number)
call setCell 1, 1, 123.456, xSheet, 1
-- (2) insert a text string (formula, text)
call setCell 1, 2, "Hello", xSheet, 0

::requires OOo.cls -- get OOo support

-- A function for inserting values or formulas into cells
-- Parameters:
-- x, y cell coordinates
-- content value or formula to insert
-- container the spreadsheet or cell range where the cell resides
-- isValue (1 [true] or 0) indicates whether the content should be
--
::routine setCell

regarded as a number or a character string

 use arg x, y, content, container, isValue

 oCell = container~getCellByPosition(x, y)
 if isValue then
 oCell~setValue(content)
 else
 oCell~setFormula(content)
 RETURN

Figure 10: “scalc” Nutshell Example # 1 (Enter Values into a Spreadsheet).

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 17-27

3.5 “scalc” Nutshell Example # 2

Figure 11 depicts an ooRexx nutshell example that creates an empty spreadsheet

document and adds two entries into it. This nutshell relates to [Aug05] “Exam-

ple_18.rex”.

The program first fills in a few values using the routine “setCell”, calculates the aver-

age of a given area in routine “avgNonEmpty” and stores it in the cell with the co-

ordination “0, 3” (i.e. “column=0”, “row=3”; or: “A4”).

3.6 “scalc” Nutshell Example # 3

Figure 12 depicts an ooRexx nutshell example that creates an empty spreadsheet

document, adds entries to it and uses them to create a 3-D diagram. This nutshell

relates to [Aug05] “Example_22.rex”.

The program first fills in a few values, then creates a rectangle which will contain the

diagram created from the values and finally will turn the shape of the diagram from 2-

D to 3-D.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 18-27

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */
xMsf=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface
-- to load a new document
oDesktop = xMsf~createInstance("com.sun.star.frame.Desktop")
xDesktop = oDesktop~XDesktop -- get desktop interface
xComponentLoader = xDesktop~XComponentLoader -- get componentLoader interface

/* load an empty text document */
oSheetComponent = xComponentLoader~loadComponentFromURL(-
 "private:factory/scalc", "_blank", 0, .OOo~noProps)

xDocument=oSheetComponent~XSpreadSheetDocument
xSheets=xDocument~getSheets
xIndexSheets=xSheets~XIndexAccess
xSheet=xIndexSheets~getByIndex(0)~XSpreadSheet -- get the spreadsheet interface for the sheet

-- (1) setCell dummy data
call setCell 0, 0, 5.2, xSheet, 1
call setCell 0, 2, 2.3, xSheet, 1

-- (2) Calculate and print average
result = avgNonEmpty(0, 0, 0, 2, xSheet)
call setCell 0, 3, result, xSheet, 1

-- (3) setCell some labels
call setCell 1, 1, "<- Remains empty", xSheet, 0
call setCell 1, 3, "<- The average", xSheet, 0

::requires OOo.cls -- get OOo support

-- A function for inserting values or formulas into cells
-- Parameters:
-- x, y cell coordinates
-- content value or formula to insert
-- container the spreadsheet or cell range where the cell resides
-- isValue (1 [true] or 0) indicates whether the content should be
--
::routine setCell

regarded as a number or a character string

 use arg x, y, content, container, isValue

 oCell = container~getCellByPosition(x, y)
 if isValue then oCell~setValue(content)
 else oCell~setFormula(content)
 return

-- A function to calculate the average not considering empty fields
::routine avgNonEmpty
use arg fromx, fromy, tox, toy, container
 sum = 0
 fieldCount = 0

 do i=fromx to tox
 do j=fromy to toy
 currentValue = container~getCellByPosition(i, j) ~getValue
 if currentValue <> 0 then
 do
 sum = sum + currentValue
 fieldCount = fieldCount + 1
 end
 end
 end

 if fieldCount > 0 then return (sum/fieldCount)
 return 0

Figure 11: “scalc” Nutshell Example # 2 (Enter and Retrieve Spreadsheet Values).

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 19-27

/* initialize connection to server, get its Desktop-service and XComponentLoader interface */
xMsf=ooo.connect() -- connect to server and retrieve remote multi server factory

-- Retrieve the Desktop object, we need its XComponentLoader interface
-- to load a new document
oDesktop = xMsf~createInstance("com.sun.star.frame.Desktop")
xDesktop = oDesktop~XDesktop -- get desktop interface
xComponentLoader = xDesktop~XComponentLoader -- get componentLoader interface

/* load an empty text document */
oSheetComponent = xComponentLoader~loadComponentFromURL(-
 "private:factory/scalc", "_blank", 0, .OOo~noProps)

xDocument=oSheetComponent~XSpreadSheetDocument
xSheets=xDocument~getSheets
xIndexSheets=xSheets~XIndexAccess
xSheet=xIndexSheets~getByIndex(0)~XSpreadSheet -- get the spreadsheet interface for the sheet

-- As a prerequisite, we populate the spreadsheet with some numeric values:
do i=0 to 4
 do j=0 to 3
 call setCell i, j, i+j, xSheet, 1
 end
end

-- First create the elements the chart consists of:
-- (1) a frame (made from the Rectangle class)
oRect = .bsf~new("com.sun.star.awt.Rectangle")
oRect~bsf.setFieldValue("X", 500)
oRect~bsf.setFieldValue("Y", 3000)
oRect~bsf.setFieldValue("Width", 25000)
oRect~bsf.setFieldValue("Height", 11000)

-- (2) the underlying data (the numeric values come from a cell range)
myRange=xSheet~XCellRange ~getCellRangeByName("A1:E4")

-- Get the address of the underlying data (in our case a cell range)
myAddr=myRange~XCellRangeAddressable ~getRangeAddress

cellRangeAddressName = .bsf4rexx~Class.class~forName("com.sun.star.table.CellRangeAddress")
oAddr = .bsf~createArray(cellRangeAddressName, 1)
oAddr[1] = myAddr

-- Now get the chart collection from the Sheet's charts supplier and add a new chart
-- Get the supplier and its charts
oCharts=xSheet~XTableChartsSupplier ~getCharts

-- Append a new chart to the collection
oCharts~addNewByName("Example", oRect, oAddr, "true", "true")

-- change diagram properties: 2-D to 3-D
oChart=oCharts~XNameAccess ~getByName("Example")
xChart=oChart~XTableChart
oEmb=xChart~XEmbeddedObjectSupplier ~getEmbeddedObject
oDiag=oEmb~XChartDocument ~getDiagram
oDiag~XPropertySet ~setPropertyValue("Dim3D", .bsf~new("java.lang.Boolean", "true"))

::requires OOo.cls -- get OOo support

::routine setCell
 use arg x, y, content, container, isValue

 oCell = container~getCellByPosition(x, y)
 if isValue then
 oCell~setValue(content)
 else
 oCell~setFormula(content)
 return

Figure 12: “scalc” Nutshell Example # 3 (Enter Spreadsheet Values, Create Diagram).

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 20-27

4 SUMMARY AND OUTLOOK

This article introduced the reader to developing and employing a new ooRexx mod-

ule, “OOo.cls”, which is intended at easying the programming of OpenOffice.org

(OOo) from ooRexx in a portable manner. As a starting point the ooRexx nutshell

examples modeled after Java and JavaScript in [Aug05] served as a “study object” to

find out code sequences that are either repetitive (e.g. the initialization of UNO com-

ponents) or which state a recurrent pattern (e.g. the need for carrying out queryInter-

face-invocations on UNO service objects).

The effects of employing “OOo.cls” were demonstrated by rewriting an original

[Aug05] example (cf. figure 1), which was modeled after Java examples given by

OOo code repository sites (e.g. [W3OOoAPI]), yielding the ooRexx program as de-

picted in figure 6.

After this proof-of-concept a few nutshell examples which demonstrate the interac-

tion with the word processor (“swriter”) and the spreadsheet (“scalc”) component of

OOo are given. These nutshells are intended as starting points to help the reader

understand the necessary steps to take in order to be able to drive OOo.

As the support is realized via the Java interfaces of the UNO components (cf.

[OOo03]) which constitute OOo (cf. [Flat05]), it is necessary to use the BSF4Rexx

(cf. [Flat04]) package, which allows ooRexx to almost transparently address Java.

This BSF4Rexx support can be further improved, e.g. by supplying “box” and “un-

box” routines that will create from primitive datatypes Java objects instantiating their

appropriate Java class and vice-versa. Also, being able to query and set Java fields

by merely sending the field names to the Java object proxies (as is the case with

ooRexx object attributes) would ease programming quite a bit.

Finally, the support for the interface classes in “OOo.cls” needs to be replenished. It

may be possible – upon further research – to take advantage of Java and UNO re-

flection to transparently handle the querying of interface classes dynamically at run-

time.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 21-27

5 REFERENCES

[Aug05] Augustin A.: “Examples for Open Office Automation with Scripting Lan-
guages”, Bachelor course paper, Wirtschaftsuniversität Wien, January
2005.

[Ende97] Ender T.: "Object-Oriented Programming with REXX", John Wiley & Sons,
New York et.al. 1997.

 [Flat01] Flatscher R.G.: "Java Bean Scripting with Rexx", in: Proceedings of the
„12th International Rexx Symposium“, Raleigh, North Carolina, USA,
April 30th - May 2nd, 2001.

[Flat03] Flatscher R.G.: “The Augsburg Version of BSF4Rexx”, in: Proceedings of
the „14th International Rexx Symposium“, Raleigh, North Carolina, USA,
May 5th - May 7th, 2003.

[Flat04] Flatscher R.G.: “Camouflaging Java as Object REXX”, in: Proceedings of
the „2004 International Rexx Symposium“, Böblingen, Germany, May 3rd -
May 6th, 2004.

[Flat05] Flatscher R.G.: “Automating OpenOffice with ooRexx: Architecture, Gluing
to Rexx Using BSF4Rexx”, in: Proceedings of the „The 2005 International
Rexx Symposium“, Los Angeles, California, U.S.A., April 17th - April 21st,
2005.

[OOo03] N.N.: “OpenOffice.org 1.1 - Developer’s Guide”, PDF download from
[W3OOo], June 2003.

[Pit04] Pitonyak A.: “OpenOffice.org Macros Explained”, Hetzenwerke Publishing,
Whitefish Bay 2004.

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object Rexx by Example",
Aviar, Pittsburgh 1996.

[W3BSF] Homepage of Apaches “Bean Scripting Framework” (BSF), URL (2005-
05-17): http://jakarta.apache.org/bsf

[W3B4R] Beta test and release candidate site of the “BSF4Rexx” package,
URL(2004-05-01): http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/

 [W3ObjRexx] Open Object Rexx homepage, URL (2005-05-17):

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 22-27

http://www.ooRexx.org

[W3OOo] OpenOffice.org homepage, URL (2005-05-17): http://www.OpenOffice.org/

[W3OOoAPI] OpenOffice.org API Homepage, URL (2005-05-17):
http://api.OpenOffice.org/

[W3OOoFW] OpenOffice.org Framework Homepage with Links to Scripting, URL
(2005-05-17): http://framework.openoffice.org/

[W3OOoUDK] OpenOffice.org UDK (UNO development kit) homepage, URL
(2005-05-17): http://udk.OpenOffice.org/

[W3ooRexx] Homepage of “Open Object Rexx” (ooRexx), URL (2005-05-17):
http://www.ooRexx.org

[W3RexxLA] Homepage of the “Rexx Language Association”, URL (2005-05-
17): http://www.RexxLA.org

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 23-27

APPENDIX A

Full listing of the ooRexx module “OOo.CLS”.

/*
 author: Rony G. Flatscher
 date: 2005-04-18/19/20
 version: 0.0.3
 name: OOo.cls
 purpose: ease interfacing with OpenOffice.org, v1.1.x and up
 needs: BSF4Rexx

*/

-- if no environment entry, then create the entry with default classes
if .local~hasentry("OOo")=.false then
do

.local~OOo=.directory~new -- create a new directory object and store it in .local

-- preload classes
 l = .list~of(-

"com.sun.star.beans.PropertyValue" , -
"com.sun.star.comp.helper.Bootstrap" , -
"com.sun.star.uno.AnyConverter" , -
"com.sun.star.uno.UnoRuntime" -
)

do c over l -- get Java class object and save it in .OOo
call OOo.loadClass c

end

.OOo~noProps=.bsf~createArray(.OOo~propertyValue, 0) -- create empty array of property-value

-- list of Interface classes to be loaded at runtime (needs completion)
 l = .list~of(-

"com.sun.star.beans.XIntrospectionAccess" , -
"com.sun.star.beans.XMultiPropertySet" , -
"com.sun.star.beans.XPropertySet" , -
"com.sun.star.bridge.XUnoUrlResolver" , -
"com.sun.star.container.XEnumeration" , -
"com.sun.star.container.XIndexAccess" , -
"com.sun.star.container.XIndexContainer" , -
"com.sun.star.container.XNameAccess" , -
"com.sun.star.container.XNameContainer" , -
"com.sun.star.container.XNamed" , -
"com.sun.star.chart.XChartDocument" , -
"com.sun.star.document.XEmbeddedObjectSupplier" , -
"com.sun.star.drawing.XDrawPage" , -
"com.sun.star.drawing.XDrawPagesSupplier" , -
"com.sun.star.drawing.XShape" , -
"com.sun.star.drawing.XShapes" , -
"com.sun.star.frame.XComponentLoader" , -
"com.sun.star.frame.XController" , -
"com.sun.star.frame.XDesktop" , -
"com.sun.star.frame.XFrame" , -
"com.sun.star.frame.XFramesSupplier" , -
"com.sun.star.frame.XModel" , -
"com.sun.star.frame.XStorable" , -
"com.sun.star.lang.XComponent" , -
"com.sun.star.lang.XMultiComponentFactory" , -
"com.sun.star.lang.XMultiServiceFactory" , -
"com.sun.star.lang.XServiceInfo" , -
"com.sun.star.lang.XSingleServiceFactory" , -
"com.sun.star.lang.XTypeProvider" , -
"com.sun.star.presentation.XPresentationSupplier" , -
"com.sun.star.script.XTypeConverter" , -
"com.sun.star.sheet.XCellRangeAddressable" , -
"com.sun.star.sheet.XCellRangesQuery" , -
"com.sun.star.sheet.XSpreadsheet" , -
"com.sun.star.sheet.XSpreadsheetDocument" , -
"com.sun.star.sheet.XSpreadsheetView" , -
"com.sun.star.sheet.XSpreadsheets" , -
"com.sun.star.style.XStyleFamiliesSupplier" , -

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 24-27

"com.sun.star.table.XCell" , -
"com.sun.star.table.XCellRange" , -
"com.sun.star.table.XTableChart" , -
"com.sun.star.table.XTableChartsSupplier" , -
"com.sun.star.text.XPageCursor" , -
"com.sun.star.text.XParagraphCursor" , -
"com.sun.star.text.XSentenceCursor" , -
"com.sun.star.text.XText" , -
"com.sun.star.text.XTextContent" , -
"com.sun.star.text.XTextCursor" , -
"com.sun.star.text.XTextDocument" , -
"com.sun.star.text.XTextRange" , -
"com.sun.star.text.XTextViewCursorSupplier" , -
"com.sun.star.text.XWordCursor" , -
"com.sun.star.uno.XComponentContext" , -
"com.sun.star.uno.XNamingService" , -
"com.sun.star.uno.XInterface" , -
"com.sun.star.util.XModifiable" , -
"com.sun.star.util.XRefreshable" , -
"com.sun.star.util.XSearchable" , -
"com.sun.star.view.XPrintable" -
)

-- save interface class names with which we want to deal
 d=.directory~new

do i over l
 idx=substr(i, lastpos(".", i)+1)
 d~setentry(i, i) -- by fully qualified name
 d~setentry(idx, i) -- by last word

end
.OOo~XInterfaces = d -- save directory

end

::requires "BSF.cls" -- get BSF4Rexx support

-- load OOo-class and save it in environment
::routine OOo.loadClass public

parse arg className, idx

if idx="" then idx=substr(className, lastpos(".", className)+1) -- extract last word to serve as index
if .OOo~hasentry(idx)=.true then -- e.g. last word is used as a class in a another package as well

.error~say("OOo.loadClass:" pp(idx) "already used, in hand:" pp(className) "in .OOo:" pp(.OOo~entry(idx)

-- say "className="className "idx="idx
 tmpClass=.OOo_proxy~new(.bsf4rexx~class.class~forName(className)) -- wrap it up

.OOo~setentry(idx, tmpClass) -- load the given Java class and save it in .OOo
return tmpClass

-- connects to given UNO server, returns the XMultiServiceFactory interface object of the remote service m
::routine OOo.connect public
parse arg unoURL

-- no unoURL given, use default
if unoURL="" then unoURL="uno:socket,host=localhost,port=8100;urp;StarOffice.NamingService"

 context=.OOo~Bootstrap~createInitialComponentContext(.nil)
 uur= context~getServiceManager() ~createInstanceWithContext("com.sun.star.bridge.UnoUrlResolver", context)

 remoteObject = uur~XUnoUrlResolver ~resolve(unoURL)
 remoteNamingService = remoteObject~XNamingService

 remoteServiceManager=remoteNamingService~getRegisteredObject("StarOffice.ServiceManager")
 remoteMSF = remoteServiceManager~XMultiServiceFactory
if .OOo~hasentry("remoteMSF")=.false then .OOo~remoteMSF=remoteMSF -- save remote MultiServiceFactory
return remoteMSF -- return the remote XMultiServiceFactory

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 25-27

-- get and return the XDesktop interface object
::routine OOo.getDesktop
USE ARG remoteMSF

if remoteMSF="" | remoteMSF=.nil then remoteMSF=.OOo~remoteMSF -- use the stored remote MultiServiceFactory
 remoteDesktop=remoteMSF~createInstance("com.sun.star.frame.Desktop")

-- return the XDesktop interface of the remote desktop
return .OOo~unoRuntime~queryInterface(.OOo~XDesktop, remoteDesktop)

::routine iif public
if arg(1)=.true then return arg(2)

else return arg(3)

/* ***
 Class: OOo_PROXY
 Purpose: allows to wrap up Java objects as Object Rexx objects;
 if instances are destroyed, then no derigstration from
 the BSF registry takes place
 restriction: needed to make getting interface objects easier
 *** */
::CLASS OOo_PROXY -- subclass BSF PUBLIC

::Method bsfObject ATTRIBUTE

::METHOD init
expose arg bsfObject -- direct access to BSF object
use arg bsfObject -- assign object to attribute
self~objectName=bsfObject~objectName -- use same objectname as BSF proxy (= idx into BSF-registry)

::METHOD unknown
expose arg bsfObject -- direct access to BSF object
parse arg xName

if xName~left(1)~translate="X" then -- if an interface object is asked for, query and return it
do

 xClass=.OOo~entry(xName)-- try to get interface class object
if xClass=.nil then -- no entry as of yet
do

 idx=substr(xName, lastpos(".", xName)+1)
 xClass=OOo.loadClass(.ooo~XInterfaces~entry(xName), idx)

end

-- query and return the interface object
return .OOo_proxy~new(.OOo~unoRuntime~queryInterface(xClass, bsfObject))

end
else -- pass to super class (i.e. BSF) to handle it
do

if bsfObject~hasmethod(xName) then -- o.k. it's a BSF method
FORWARD TO (bsfObject) MESSAGE (xName) ARGUMENTS (arg(2))

else
FORWARD TO (bsfObject) CONTINUE -- let BSF handle this

 tmpObj=result
-- if a BSF-object, wrap it up
if tmpObj~hasmethod("bsf.setFieldValue") then return .OOo_proxy~new(tmpObj)

else return tmpObj
end

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 26-27

Date (latest version) of Article: 2005-05-17.

Published in: Proceedings of the „2005 International Rexx Symposium“, Los An-
geles, California, U.S.A., April 18th - April 21st, 2005, The Rexx Language
Association, Raleigh N.C., 2005.

Presented at: „2005 International Rexx Symposium“, Los Angeles, California,
U.S.A., April 20th, 2005.

Automating OpenOffice.org with ooRexx: ooRexx Nutshell Examples for Write and Calc, page 27-27

	1 Introduction
	2 Creating an ooRexx Module “OOo.CLS”
	2.1 Analyzing ooRexx Code to Interact with UNO Components
	2.2 Devising a Prototype ooRexx OOo-Module
	2.2.1 Initialisation of the ooRexx Module “OOO.CLS”
	2.2.2 The ooRexx Class “OOO_PROXY”
	2.2.3 Public Routine “OOo.loadClass”
	2.2.4 Public Routine: “OOO.connect”
	2.2.5 Public Routine: “OOO.getDesktop”
	2.2.6 Putting the Module “OOO.CLS” to Work

	3 Nutshell Examples
	3.1 “swriter” Nutshell Example # 1
	3.2 “swriter” Nutshell Example # 2
	3.3 “swriter” Nutshell Example # 3
	3.4 “scalc” Nutshell Example # 1
	3.5 “scalc” Nutshell Example # 2
	3.6 “scalc” Nutshell Example # 3

	4 Summary and Outlook
	5 References
	Appendix A

