
BAKKELAUREAT E-COMMERCE

Lehrveranstaltungsunterlagen
zum Thema Semantic Web

Sommersemester 2005

Manfred Ahorn
 h0005522@wu-wien.ac.at

Wirtschaftsuniversität Wien

Abteilung für Wirtschaftsinformatik

a.o. Univ.Prof. Dr. Rony G. Flatscher

Dr. Horst Treiblmaier

Semantic Web – Grundlagen Seite 2

Inhaltsverzeichnis
1 Vorwort .. 5

2Einleitung... 6

2.1 Internet Heute.. 6

2.2 Erweiterung des WWW... 6

2.2.1 Begriffserklärung Semantik.. 8

2.3 Semantic Web - Entwicklung... 9

2.3.1 W3C... 9

2.4 Aufbau des Skriptums.. 10

3 Semantic Web – Grundlagen... 11

3.1 Architektur.. 11

3.1.1 Unicode / URI.. 11

3.1.2 Extensible Markup Language (XML) / XML Schema..................... 14

3.1.3 Resource Description Framework (RDF) / RDF Schema.............. 15

3.1.4 Ontologien... 15

3.1.4.1 Web Ontology Language (OWL)......................................16

3.1.5 Logic.. 17

3.1.6Proof... 17

3.1.7 Trust, Digitale Signatur.. 17

3.1.7.1 Web of Trust.. 18

3.2 Nutzen des Semantic Web.. 18

4 XML.. 20

4.1 Einleitung... 20

4.1.1Überblick über hier behandelte Bereiche von XML:........................20

4.2 Beschreibung XML... 21

4.2.1 Wohlgeformtheit und Gültigkeit in XML... 21

4.3 XML – Der Anfang... 24

4.3.1 Namespaces ... 25

4.3.2 XML-Schema... 26

4.3.3 XSL.. 29

4.4 XML in der Praxis... 33

5 RDF.. 34

Semantic Web – Grundlagen Seite 3

5.1 Einleitung... 34

5.2 RDF-Modell.. 35

5.3 RDF-Syntax... 37

5.3.1 Abbreviated Syntax – kompakte Syntax.. 39

5.4 Container... 40

5.4.1 Darstellung von Containern... 41

5.5 Reification - Aussagen über Aussagen.. 43

5.6RDF-Schema (RDFS)... 43

5.6.1 Klassen und Eigenschaften... 44

5.7Dublin Core Element Set.. 47

5.8 RSS... 49

5.9 RDF Abfragesprachen... 49

5.10 RDF in der Praxis... 51

5.11 Exkurs: Graphentheorie... 51

5.11.1 RDF Triple in Graphentheorie.. 53

6 Ontologien.. 54

6.1 Was sind Ontologien.. 54

6.2 Anforderungen an die Ontologie für das Semantic Web......................... 54

6.3 Web Ontology Language... 57

6.4OWL LITE... 60

6.5OWL DL (DESCRIPTION LOGIC).. 60

6.6 OWL Full.. 61

6.7 Owl Erklärungsbeispiel.. 61

6.8 Vertiefendes Tutorial.. 63

6.9 Taxonomie vs. Ontologie... 69

6.10 OWL Tools... 71

6.11 Ontologien in der Praxis... 73

6.12Exkurs: Beschreibungslogik.. 75

7Ausblick... 77

8Übungsbeispiele.. 79

8.1XML.. 79

8.2RDF.. 82

8.3OWL... 84

9Lösungen... 85

Semantic Web – Grundlagen Seite 4

9.1XML.. 85

9.2RDF.. 91

9.3OWL... 95

10 Quellenverzeichnis... 98

11 Abbildungsverzeichnis.. 102

12 Tabellenverzeichnis.. 104

Semantic Web – Grundlagen Seite 5

1 Vorwort

Die vorliegende Bakkalaureatsarbeit wurde aufbauend auf der

Seminararbeit „Lehrveranstaltungsunterlagen zum Thema Semantic
Web“ von Manfred Ahorn, Thomas Altmutter, Lukas Helm und Dieter

Steffen erstellt. Bei der Seminararbeit wurden die Kapiteln „Einleitung“
und „Semantic Web – Grundlagen“ von Lukas Helm, „XML“ und

„Ausblick“ von Thomas Altmutter, „RDF“ von Dieter Steffen und
„Ontologien“ von Manfred Ahorn mit den jeweils zu den Kapiteln

passenden Übungsbeispielen und Lösungen erstellt. Im Rahmen der
nun vorliegenden Arbeit wurden sämtliche Teilbereiche überarbeitet,

ergänzt und durch zusätzliche Inhalte erweitert.

Semantic Web – Grundlagen Seite 6

2Einleitung

2.1 Internet Heute
Das Internet ist heute ein riesiger, dezentraler Wissensspeicher, der Unmengen

von Informationen bereitstellt. Die Metapher „Das Internet ist die größte Biblio-

thek der Welt, nur leider liegen alle Bücher verstreut auf dem Boden“ [Case]

beschreibt die aktuelle Situation treffend. Demnach ist es momentan für Nutzer

des Internets keine leichte Aufgabe, die benötigten Inhalte zu finden. Die

einzige praktikable Möglichkeit, Daten aus dem Internet zu filtern, sind

momentan Suchmaschinen. Sie können Websites nach textuellen Mustern

durchsuchen, und über deren Metadaten grobe Informationen über die Seite

erfahren, jedoch ist es ihnen nicht möglich, die Inhalte einer Seite zu verstehen.

Das ist insofern problematisch, als sich diverse Inhalte über mehrere Websites

verstreut befinden und diese Zusammenhänge von Suchmaschinen nicht auf-

gedeckt werden können [vgl. Palm01]. Es ist demnach wahrscheinlich, dass et-

liche nicht relevante Dokumente gefunden werden, andere relevante Doku-

mente (z.B. mit Synonymen) aber nicht gefunden werden können. Das Problem

liegt darin, dass die Inhalte von Maschinen nicht verstanden oder interpretiert

werden können. Diese Tatsache verhindert, dass Computer Verbindungen zwi-

schen Websites herstellen können. Ein großes Potential bleibt ungenutzt.

2.2 Erweiterung des WWW
„The Semantic Web will bring structure to the meaningful content of Web

pages, creating an environment where software agents roaming from page to

page can readily carry out sophisticated tasks for users.” [BeHL01]

Die Idee des Semantic Web ist es, Webseiten mit Metadaten versehen, deren

Semantik in Ontologien repräsentiert wird. Diese Idee stammt von Tim Berners-

Lee, dem Vorsitzenden des World Wide Web Consortium (W3C). Inhalte

sollen maschinenlesbar gemacht werden. Metadaten sind Daten, die die

eigentlichen Daten beschreiben. Beispielsweise könnte man über das Wort

Hund sagen, dass es sich dabei um ein Lebewesen welches eine Säugetier

und Haustier ist handelt. Die Mensch – Maschine Kommunikation soll so ver-

bessert werden. Maschinen sollen befähigt werden, Zusammenhänge zwischen

Sites zu verstehen und damit auch eine Suche über mehrere Sites hinweg zu

Semantic Web – Grundlagen Seite 7

ermöglichen. Das herkömmliche WWW soll dadurch nicht ersetzt werden. Das

Semantic Web stellt vielmehr eine Erweiterung dar. Komplexe Anfragen, die

bisher nur von Menschen erledigt werden konnten, sind nun auch von Ma-

schinen durchführbar. Die semantische Suche basiert nun nicht auf bestimmten

Suchbegriffen, sondern auf der Bedeutung der Begriffe. Auch die Auswertung

der gefundenen Daten kann dann durch den Computer erfolgen.

Als Beispiel betrachten wir nun eine Website, die Nachrichten anbietet. Die

Inhalte dieser Site sind maschinenlesbar nach den Grundsätzen des Seman-

tic Web verknüpft. Für die Kunden dieser Site, die wir fortan Newsmuster.org

nennen wollen, bieten sich dadurch Möglichkeiten, die sie sonst nicht in An-

spruch nehmen könnten.

Das Semantic Web soll sich allerdings nicht nur auf eine einzelne Seite

beschränken. Gehen wir also davon aus, dass auch die mit „Newsmuster.org“

verknüpften Seiten den Ansprüchen des Semantic Web genügen.

Dadurch ergeben sich viele, mächtige Möglichkeiten, wie das Zusammenspiel

zwischen Mensch und Maschine effizient gestaltet werden kann. In unserem

Fall kann jemand, der sich für den Autor eines Artikels interessiert, sehr

einfach weitere Nachforschungen anstellen. Innerhalb der Site kann nun leicht

eruiert werden, welche weiteren Beiträge er verfasst hat, wann der letzte Bei-

trag eingestellt wurde oder wie viele Beiträge er bereits geschrieben hat. Dar-

über hinaus ist auch eine Interaktion mit der Site des Autors möglich. Ein

Agent könnte automatisch weitere Informationen über den Autor ausfindig

machen. Um in Erfahrung zu bringen, auf welcher Universität der Autor stu-

diert hat, kann die Site des Autors den Agent auf die Homepage der Universi-

tät weiterleiten. Dort kann der Agent dann nach weiteren Studenten suchen,

die im selben Jahr wie der Autor ihr Studium abgeschlossen haben. Das alles

wird möglich, ohne dass der Mensch die Maschine dabei unterstützt.

Nehmen wir an, der Autor unseres Artikels heißt Herr Elch. Würde man in

heute üblichen Suchmaschinen das Wort Elch als Suchbegriff eingeben,

wüsste die Maschine nicht, ob man nach dem Tier oder einer Person sucht.

Das Semantic Web macht es möglich, Begriffen eine Bedeutung zuzuordnen

und so die Suche zu erleichtern. Man sieht, dass so Suchmechanismen im In-

ternet stark verbessert und unterstützt werden können.

Semantic Web – Grundlagen Seite 8

Abbildung 1: Funktionsweise des Semantic Web

Technologien zur Realisation dieser Idee existieren bereits, allerdings sind in-

ternational anerkannte Standards notwendig. Sollten diese Standards nicht

einheitlich umgesetzt werden, ist die Realisierung des Semantic Web nicht

möglich.

2.2.1 Begriffserklärung Semantik
Zum besseren Verständnis des Semantic Web werden im Folgenden die Be-

griffe Syntax, Semantik und Pragmatik erklärt [Knop04]:

• Syntax: Im informatischen Sinn legt die Syntax eine formale Grammatik

fest, welche die erlaubten Konstrukte einer formalen Sprache (z.B. Pro-

grammiersprache) festlegt. Es wird also festgelegt, welche Zeichen-

folgen korrekt sind. Syntax ist mit der natürlichsprachlichen Grammatik

vergleichbar.

• Semantik: Die Semantik bestimmt die Bedeutung von Aussagen. Die

Aussage „Der Mensch ist eine Unterart des Hundes“ ist zwar syntaktisch

korrekt, da die Zeichenabfolge erlaubt ist, aber semantisch ist sie of-

fensichtlich falsch.

Semantic Web – Grundlagen Seite 9

• Pragmatik: Die Pragmatik beschreibt die mit dem Auftreten von Zeichen

verbundenen Folgen beziehungsweise die Handlungen. Beispielsweise

könnte aus „Peter schimpft Paul“ folgen: „Paul mag Peter nicht“.

2.3 Semantic Web - Entwicklung
Die Idee des Semantic Web stammt von Tim Berners-Lee. Er gilt als eine der

wichtigsten Persönlichkeiten bei der Entwicklung des WWW. Im Jahr 1990

konzipierte er das Hypertext Transfer Protocol (HTTP), das heute die Grund-

lage der Kommunikation im Internet darstellt. Er entwarf zusätzlich ein Schema

zur Adressierung von Dokumenten im Internet, welches er Universal Resource

Identifier (URI) nannte. Gegen Ende des Jahres hatte er dann den ersten Brow-

ser entwickelt, welchen er WorldWideWeb nannte, und den ersten Webserver

installiert. Als das Internet wuchs fürchtete Berners-Lee, dass dessen offener

Charakter gefährdet werden könnte. dem entgegen zu wirken gründete er das

W3C. Das W3C ist ein Gremium zur Standardisierung und Weiterentwicklung

des World Wide Webs und wird im Kapitel 2.3.1 W3C näher beschrieben.

Entwickler von Browsern und Servern sollten die Möglichkeit haben mitzuwir-

ken, wie das Web funktionieren soll. [vgl. O.A.a]

Die Idee des Semantic Web wurde entwickelt, um der immer größer werdenden

Informationsflut im Web entgegen zu wirken. Im Jahr 1998 veröffentlichte Tim

Berners-Lee die Semantic Web Roadmap, die erstmals einen Überblick über

das Konzept des Semantic Web gab. Wichtig ist auch der 2001 im Scientific

American erschienene Artikel The Semantic Web von Tim Berners Lee, James

Hendler und Ora Lassila.

2.3.1 W3C
Das W3C wurde im Jahr 1994 von Tim Berners-Lee gegründet und hat die

Zielsetzung, das World Wide Web zu seinem vollen Potential zu führen, indem

Protokolle und Empfehlungen entwickelt werden, die eine langfristiges Wachs-

tum des World Wide Webs sichern. W3C Mitglieder, W3C Mitarbeiter und

externe Experten entwickeln gemeinsam Anforderungen und Spezifikationen1.

Diese bilden den Rahmen für das Web von heute und morgen. Berners-Lee

steht bis heute dem W3C vor.

1 Unter einer Spezifikation versteht man einen formalen Text, der die Syntax und die Seman-
tik (beispielsweise einer Software) beschreibt. Eine Spezifikation beschreibt also, was etwas
ist oder was es tut.

Semantic Web – Grundlagen Seite 10

400 Organisationen nehmen am W3C teil und bringen fast 700 technische Ex-

perten ein. So werden in 50 Working-, Interest- und Coordination-Groups Tech-

nologien und Standards entwickelt, geleitet von einem firmenneutralen Team

des W3C. Technologien werden auf Implemetierbarkeit und Kompatibilität ge-

prüft und bei positivem Ergebnis als Web-Standard des W3C anerkannt. Die

Entwürfe werden außerdem durch die Mitglieder und die Öffentlichkeit geprüft,

es bestehen Verbindungen zu 30 anderen Standardisierungsgremien. Zur Zeit

gibt es 80 W3C Recommendations, dazu zählen HTML, XML, CSS, DOM,

RDF, OWL, XSLT, P3P und viele weitere [W3C04].

2.4 Aufbau des Skriptums
Das Skriptum ist in die drei Teilbereiche: Einführung, Technologiendarstellung

und Übungen untergliedert. Der erste Teilbereich sind die ersten zwei Kapitel

„Einleitung“ und „ Semantic Web – Grundlagen“. Sie sollen einen Einstieg und

einen kurzen Überblick über die behandelten Themen liefern. Im zweiten

Teilbereich werden in den Kapiteln „ XML“, „ RDF“ und „ Ontologien“ jeweils am

Beginn der Kapitel die Problemstellungen, die durch XML, RDF bzw. Ontologi-

en behandelt werden dargestellt, danach werden XML, RDF und Ontologien

detailliert beschrieben. Am Ende der Kapitel zeigen Praxisbeispiel Einsatzge-

biete der jeweiligen Technologie. Das Kapitel „Ausblick“ stellt eine kurze Über-

sicht über zukünftige Entwicklungen des Semantic Webs dar. Durch den letzte

Teilbereich „Übungen“ soll das erlernte Wissen an Beispielen angewandt und

dadurch gefestigt werden.

Semantic Web – Grundlagen Seite 11

3 Semantic Web – Grundlagen
Durch das Semantic Web sollen Daten im Internet maschinenlesbar gemacht

werden, wodurch eine Art weltweite Datenbank entstehen soll. Um dieses Ziel

zu erreichen, sind Standards unabdingbar. Im folgenden Abschnitt werden die

Architektur des Semantic Web und die dazu benötigten Standards näher

beschreiben.

3.1 Architektur
Tim Berners-Lee beschreibt den Aufbau des Semantic Web in mehreren

Schichten (Abb.2 [KoMi01]). Diese Schichten sind Unicode/URI, XML, RDF,

Ontologien, Logic, Proof und Trust.

Abbildung 2: Schichtenmodell von Berners-Lee [KoMi01]

3.1.1 Unicode / URI
Unicode

„Der von der ISO genormte Zeichensatz Unicode (ISO 10646) ist ein 16-Bit-

Code zur Darstellung von Schrift- und Steuerzeichen. Neben den Zeichen der

westlichen und slawischen Sprachen werden durch diese Norm unter anderem

Zeichen für Arabisch und Hebräisch, Griechisch, Kyrillisch und Armenisch, In-

disch, Einheitszeichen aus dem Chinesischen, Koreanischen und Japanischen,

mathematische, technische und grafische Symbole sowie spezielle Zeichen für

Anwendungen definiert“ [HaNe01, S.1007].

Semantic Web – Grundlagen Seite 12

Heute ist Unicode ein internationaler Standard, der von allen gebräuchlichen

Betriebssystemen und Web-Datenformaten unterstützt wird. Eine inkompatible

Codierung in unterschiedlichen Ländern soll damit verhindert werden.

Beispiele (in hexadezimaler Schreibweise) [Unic05]:

Zeichen A B Z a =
Codierung 0041 0042 005A 0061 003D

Tabelle 1: Codierung in Unicode

URI (engl.: Uniform Resource Identifier)

“Ein URI […] ist entweder ein Verweis auf einen Ort, an dem ein bestimmtes

Dokument gespeichert ist (engl.: uniform resource locator, abgekürzt: URL)

oder ein symbolischer Name für eine prinzipiell beliebige Ressource (engl.: uni-

form resource name, abgekürzt: URN). Die meisten heute verwendeten URIs

sind URLs.“ [HaNe01, S.1192f]

Mit Hilfe von URLs werden Ressourcen im Internet adressiert, die Verlinkung

von Websites wird ermöglicht. URL Schemata sind beispielsweise http, https

oder ftp.

Ein URL setzt sich folgendermaßen zusammen: An erster Stelle Steht das Pro-

tokoll, im Internet ist das häufig http, gefolgt von einem Doppelpunkt und zwei

Schrägstrichen. Dahinter steht der Dienst, der angibt um welchen Inhalt es sich

handelt. So steht www beispielsweise für World Wide Web, dem wichtigsten In-

ternetdienst. Danach folgt der Hostname, der entweder als Domäne oder als

IP-Adresse angegeben wird. Hier sind auch Subdomänen möglich. Darauf

folgen die Verzeichnisangaben des angefragten Dokuments mit Pfad und Da-

teiname. Schlussendlich können mit Hilfe eines Fragezeichens als Trennzei-

chen noch Parameter übergeben werden (siehe Abb.3). Die Übergabe von Pa-

rametern dient beispielsweise der Speicherung von Daten, die in einem Formu-

lar eingegeben wurden [Wiki a].

Semantic Web – Grundlagen Seite 13

Abbildung 3: Aufbau einer URL

Ein URN ist ein dauerhafter, ortsunabhängiger Bezeichner für eine Ressource.

Im Gegensatz zu URLs können sie nicht direkt aufgerufen werden, sondern

müssen zuerst in URLs oder andere URIs übersetzt werden um angezeigt zu

werden. URNs sind folgendermassen aufgebaut:

urn:<NID>:<NID-spezifischer Teil>

„urn“ drückt aus, das es sich um eine URI nach dem Schema URN handelt.

Der schemenspezifische Teil des URIs ist in Namespace Identifiers (NID) unter-

teilt [Wikiu]. Beispielhaft sei das Strategiekonzeptdokument für URNs der Deut-

schen Bibliotheken erwähnt. Dieses ist unter der URN „urn:nbn:de:1111-

2003121811“ gespeichert. Wobei „nbn:de“ den spezifische Namesraum angibt

und „1111-2003121811“ das Dokument in dem Namesraum identifiziert. Um

dieses Dokument in einem Browser darzustellen muss die URN zuerst mittels

eines URN Resolvers in eine URL umgewandelt werden. Der URN Resolver

hierfür lässt sich unter der URL „http://www.nbn-resolving.de/“ aufrufen. Voll-

ständigkeitshalber muss erwähnt werden, dass ein URN auch auf mehrere

URLs verweisen kann.

Abbildung 4: URN Resolver

Semantic Web – Grundlagen Seite 14

Der Vorteil von URN gegenüber URLs liegt in der eindeutigen Bezeichnung

einer Ressource. Der Inhalt einer Newsseite, wie es unsere Beispielseite www.-

newsmuster.org eine ist, wird sich täglich mehrmals ändern. Eine Verlinkung

auf die Startseite http://www.newsmuster.org/index.html um einen spezifischen

Inhalt zu erhalten macht daher keinen Sinn. Wird jedoch eine URN angegeben

kann man sicher sein, den gewünschten Inhalt zu erhalten.

3.1.2 Extensible Markup Language (XML) / XML Schema
Eine einheitliche Syntax ist eine weitere wichtige Vorbedingung für das

Funktionieren eines Systems wie des Semantic Web. Auf dieser Ebene kommt

XML zum Einsatz. „XML […] ist eine Metasprache für die Definition von

anwendungsspezifischen Auszeichnungssprachen.“ Eine Auszeichnungsspra-

che ist eine Sprache, mit der Textelementen auf deklarative Weise Eigen-

schaften zugewiesen werden können. Dadurch kann deren Bedeutung (Se-

mantik) ausgedrückt werden [HaNe01, S. 1043]. Maschinen- und menschenles-

bare Dokumente können in Form einer Baumstruktur erstellt werden. Der

Grundgedanke hinter XML ist es, den Inhalt vom Layout zu trennen [Wiki b].

Die Festlegung der Elemente und deren Stellung innerhalb des Baumes

müssen von Fall zu Fall festgelegt werden. Im Fall des Semantic Web ist es

allerdings sinnvoll, bereichsspezifische Konventionen einzuhalten, beziehungs-

weise sich bestehenden anzuschließen. Sollten gänzlich unterschiedliche

Elementnamen benützen werden, wäre die Zusammenarbeit der Maschinen

unmöglich.

XML-Schema bietet die Möglichkeit, die Struktur von XML-Dokumenten zu

beschreiben. Im Gegensatz zu den Document Type Definitions (DTD) können

mittels XML-Schema Datentypen2 definiert werden. So kann nun festgelegt

werden, wie eine XML Datei auszusehen hat und komplexere Strukturen als mit

einer DTD können beschrieben werden. Diese genaue Beschreibung von Da-

ten ist auch im Sinne des Semantic Web, da ein hoher Grad an Stan-

dardisierung erreicht werden soll.

Namensräume (engl.: namespaces) wurden in XML eingeführt, um der

Mehrdeutigkeit von Element- und Attributnamen entgegenzuwirken. Um solche

2 Ein Datentyp definiert, in welchem Wertebereich sich ein Element befinden darf. Beispiele:
Zahlen (Integer), Text (String).

Semantic Web – Grundlagen Seite 15

Konflikte zu vermeiden, wurde 1999 vom W3C eine Empfehlung zur

Verwendung von Namespaces in XML (http://www.w3.org/TR/1999/REC-xml-

names-19990114) gegeben [Hüsl05].

3.1.3 Resource Description Framework (RDF) / RDF
Schema
RDF wurde für die Definition von Metadaten entworfen. Metadaten sind Daten

über Daten, die Dateninhalte anhand eines bestimmten Vokabulars

beschreiben. „Das RDF definiert ein allgemeines Metadatenformat für Informa-

tion, die im Internet verfügbar ist.“ [HaNe01, S.1050] Jedes im Internet

adressierbare Gut wird hier als Ressource bezeichnet. RDF bietet die Möglich-

keit, Aussagen über Ressourcen zu treffen und deren Eigenschaften mit Hilfe

eines vorgegebenen Vokabulars zu beschreiben. Dieses Vokabular heißt RDF

Schema.

Durch Aussagen über Ressourcen werden diesen Eigenschaften zugeordnet.

Eigenschaften besitzen wiederum Werte. Diese Werte können strukturierte Da-

ten, Zeichenketten oder auch andere Ressourcen sein. Grafisch sieht das

folgendermaßen aus:

Jede Aussage kann somit durch Subjekt, Prädikat und Objekt beschrieben

werden, man spricht von RDF-Triples. So könnte man beispielsweise sagen,

die Ressource www.google.com besitzt eine Eigenschaft Titel, und diese

Eigenschaft hat den Wert Suchmaschine.

3.1.4 Ontologien
Im informatischen Kontext bedeutet Ontologie laut T. Gruber die „explizite

formale Spezifikation einer gemeinsamen Konzeptualisierung“ [Grub95]. Eine

einheitliche Definition hat sich bisher allerdings noch nicht durchgesetzt. Allge-

mein soll durch eine Ontologie ein Wissensbereich (z.B. das Internet) be-

Abbildung 5: Aufbau von RDF-Aussagen

Semantic Web – Grundlagen Seite 16

schrieben werden. Die Beschreibung erfolgt mittels einer standardisierten

Terminologie sowie Beziehungen und eventuell Ableitungsregeln zwischen den

definierten Begriffen. Mit Hilfe dieser Terminologie können Entitäten be-

schrieben werden. Damit soll ein einheitliches Verständnis von Begriffen er-

reicht werden. Es können auch mehrere Ontologien bestehen, die unterschied-

liche Terminologien verwenden. Es ist jedem möglich, eine Ontologie zu er-

stellen. Also kann es auch mehrere Ontologien zu einem einzigen Themenbe-

reich geben, die sich dann auch unterscheiden können.

Newsmuster.org zählt das Impressum zu den Artikeln der Zeitschrift. Bei einer

anderen Website umfasst der Begriff des Artikels nicht das Impressum (Abb.

5). Daraus können sich Probleme bei der Kommunikation ergeben, weil jeder

etwas anderes unter dem Begriff Artikel versteht. Ontologien sollen helfen,

diese Probleme zu lösen.

Abbildung 6: Unterschiede in Ontologien

3.1.4.1 Web Ontology Language (OWL)

OWL ist eine Spezifikation des W3C die es ermöglicht, Ontologien in einer

formalen Beschreibungssprache zu erstellen und zu verteilen. Terme und de-

ren Beziehungen zueinander sollen so beschrieben werden, dass auch Soft-

wareagenten deren Bedeutung verstehen und sie weiterverarbeiten können.

Semantic Web – Grundlagen Seite 17

Die Sprache basiert technisch auf der RDF-Syntax. Es ist auch möglich, Aus-

drücke ähnlich einer Prädikatenlogik3 zu formulieren. [vgl. W3Ca, Kap.5]

3.1.5 Logic
Die Stufe Logic des Semantic Web ist bisher technisch noch nicht realisiert

worden. In Zukunft soll dadurch ermöglicht werden, logische Grundsätze aufzu-

stellen aus denen ein Computer Schlüsse ziehen kann. [Choi03]

Unsere Website bietet auch einen Sportteil an. Logic ermöglicht hier einige in-

teressante Schlüsse. So könnte man die Regel aufstellen, dass alle Fußball-

spieler, die in einer Saison mindestens 10 Tore geschossen haben, in die Lis-

te der „Superscorer“ aufgenommen werden.

3.1.6Proof
Wenn man Systeme aufbaut, die auf Logik basieren, macht es auch Sinn,

diese zur Überprüfung von Zusammenhängen oder Aussagen zu nutzen. So

soll erklärt werden können, wie und warum man auf eine bestimmte Schluss-

folgerung gekommen ist. Es ist einfach, einen veröffentlichten Proof zu über-

prüfen, schwieriger ist es allerdings, einen Proof zu erstellen. Proof alleine

reicht allerdings nicht aus, um das Vertrauen der Benutzer in das Semantic

Web zu gerechtfertigen. [Wels03]

Auch dieser Teil steckt noch in den Kinderschuhen und ist technologisch noch

nicht verwirklicht worden.

3.1.7 Trust, Digitale Signatur
Im Internet stellt sich die Frage ob man das, was der Computer ausgibt, auch

glauben kann, denn theoretisch kann jeder alles, was er will, zu einem Thema

behaupten. Das behindert den Fortschritt des Semantic Web, denn ohne Ver-

trauen in die Korrektheit der Daten wird es kaum jemand benutzen. Es muss

eine Möglichkeit gefunden werden, um den RDF-Statements vertrauen zu

3 Mit Hilfe der Prädikatenlogik lassen sich Schlüsse formulieren. Es werden diverse Be-
dingungen (Prämissen) aufgestellt, daraus folgt dann ein Schluss (Konklusion). Beispiel:
Prämisse 1: Alle Menschen sind sterblich. Prämisse 2: Sokrates ist ein Mensch. Konklusion:
Sokrates ist sterblich. [vgl. Pann04]

Semantic Web – Grundlagen Seite 18

können. Dabei ist es von besonderer Wichtigkeit, die Identität des Verfassers

nachprüfen zu können.

Eine Möglichkeit, das zu prüfen, ist die digitale Signatur. Sie kann in RDF-Do-

kumente eingebunden werden und identifiziert mittels Verschlüsselungsverfah-

ren eindeutig die Identität des Verfassers. Es kann nun entschieden werden,

welchen Signaturen Vertrauen geschenkt wird.

3.1.7.1 Web of Trust

Da es aufgrund der Größe des WWW nicht möglich ist, alle Informations-

quellen explizit zu kennen, wurde die Idee des Web of Trust entwickelt.

Abbildung 7: Web of Trust Funktionsweise

In Abb. 6 zeigen die durchgehenden Pfeile an, dass das Individuum dem

nächsten vertraut. Alice möchte nun wissen, ob sie Bob vertrauen kann obwohl

sie noch keine Beziehungen mit ihm hatte. Da einige Individuen ihres Ver-

trauens auch Bob vertrauen, kann sie davon ausgehen, dass auch er ver-

trauenswürdig ist.

3.2 Nutzen des Semantic Web
Nun stellt sich die Frage, welchen Nutzen die Technologien des Semantic Web

bringen können. Besonders bei der Suche im WWW sind große Potentiale zur

Verbesserung vorhanden. Wenn eine Suchmaschine Daten interpretieren und

Semantic Web – Grundlagen Seite 19

ihnen eine Bedeutung zuordnen kann, werden weniger irrelevante Ergebnisse

geliefert. Gegenüber einer rein textuellen Suche ergibt sich auch eine

Beschleunigung, da dem Menschen die Aufgabe der Interpretation und Aus-

wahl der Daten erleichtert oder abgenommen wird.

Voraussetzung hierfür ist allerdings eine weite Verbreitung. Das Semantic Web

kann seinen potenziellen Nutzen nur dann entfalten, wenn die verknüpften We-

bseiten es auch einsetzen. Wird beispielsweise eine semantische Suche durch-

geführt, werden jene Seiten, welche die neuen Technologien nicht imple-

mentiert haben, außer Acht gelassen werden.

Bei einer regional verbreiteten und konsequenten Umsetzung beschränkt sich

der Nutzen aber nicht auf eine bessere Suche. Weitere Möglichkeiten reichen

dabei von der automatischen Abstimmung von Zeitplänen bis zu einer regiona-

len Einschränkung von Geschäftspartnern. Transaktionen könnten viel leichter

und schneller vonstatten gehen. Die semantische Verknüpfung von Daten im

WWW bringt eine Effizienzsteigerung bei Operationen im Netz.

Semantic Web – Grundlagen Seite 20

4 XML

4.1 Einleitung
XML ist eine immer weiter verbreitete Technologie, die in den unterschiedlichs-

ten Bereichen Verwendung findet. Die Abkürzung steht für eXtensible Markup

Language, also erweiterbare Auszeichnungssprache. XML ist somit keine Pro-

grammiersprache im herkömmlichen Sinn.

„Eine Auszeichnungssprache (Markup-Sprache, engl.: markup language) ist

eine Sprache, die Regeln zur Auszeichnung von Textelementen bereitstellt.

Beliebigen Textelementen können auf deklarative Weise Eigenschaften zuge-

wiesen werden, wodurch deren Bedeutung (Semantik) ausgedrückt werden

kann.“ [HaNe01, S.1043]

Markup-Sprachen, wie zum Beispiel HTML, kennzeichnen Teile eines Doku-

ments mit Metainformationen und ermöglichen es, eine Struktur zu erstellen.

Metainformationen sind Informationen über etwas. Ein Beispiel für eine Aus-

zeichnung (so wird die „Etikettierung“ bei Markup-Sprachen bezeichnet) wäre:

<title>WILLKOMMEN BEI LEARN@WU</title>

Das Besondere an XML ist, dass es eine strikte Trennung zwischen Daten und

deren Verwendung gibt. Ein XML-Dokument lässt sich dadurch für die verschie-

densten Zwecke einsetzen: von einer Überführung in HTML bis hin zur

Verwendung in Datenbanken, bietet diese Aufteilung vielfältige Anwendungs-

möglichkeiten. Außerdem lassen sich über geeignete Bezeichner Dokumente

so unterteilen, dass die Struktur maschinell erkannt werden kann wodurch

andere Programme sowohl darauf zugreifen als diese auch weiterverarbeiten

können. XML eignet sich somit hervorragend, eine maschinell verwertbare

Grundstruktur, die notwendig für die Idee des „Semantic Web“ ist, zu imple-

mentieren.

4.1.1Überblick über hier behandelte Bereiche von XML:

• XML : eine erweiterbare Markup-Sprache; oft als Überbegriff (unter

anderem für nachfolgende Technologien) verwendet.

• XML-Schema : in XML verfasste Definition (inklusive Einschränkungen)

der verwendeten Tags.

Semantic Web – Grundlagen Seite 21

• XSL : Abkürzung für Extended Style Sheet Language; in XML verfasste

„Transformationsschablone“ mit der ein XML-Dokument in ein anderes

Dokument umgewandelt werden kann.

4.2 Beschreibung XML
Genauso wie bei HTML gibt es auch bei XML so genannte „Tags“ (dt.: Etikett,

Bezeichner, Aufkleber), welche die Elemente umschließen, auf die sie sich be-

ziehen. Ein Beispiel:
<titel>Semantic Web</titel>

Diese Umschließung ist ein zwingender Bestandteil von XML. Ein geöffneter

Tag muss, anders als bei manchen HTML-Befehlen, wieder geschlossen

werden, wobei der Endtag dem Anfangstag mit einem vorangesetzten Slash

(„/“) entspricht:
<titel>…</titel>

Attribute werden in XML innerhalb des öffnenden Tags wie folgt deklariert:
<tagName attributName=“attributWert“>

Beispiel:
<titel autor=“Mein Name“>Titel</titel>

Es bleibt dem Verfasser des Dokuments überlassen, welche Informationen in

eigenen Elementen und welche in Attributen gespeichert werden. Anstatt wie

oben den Namen des Autors in einem Attribut zu speichern könnte man auch

folgendes schreiben:
<titel>Titel

<autor>Mein Name</autor>
</titel>

Es hängt somit sowohl von der persönlichen Vorliebe als auch von der weiteren

Verwendung des Dokuments ab, welche Variante gewählt wird.

4.2.1 Wohlgeformtheit und Gültigkeit in XML
Wichtige Konzepte in Zusammenhang mit XML-Dokumenten sind die Wohlge-

formtheit (engl.: well-formedness) und die Gültigkeit (engl.: validity) eines Do-

kumentes. Ein wohlgeformtes XML-Dokument erfüllt folgende Kriterien:

Semantic Web – Grundlagen Seite 22

• Jeder Tag, der geöffnet wird, muss auch geschlossen werden. Leere

Tags, d.h. Tags, die keinen Inhalt umschließen, aber für die Struktur

wichtig sind, können anstatt ausgeschrieben zu werden (z.B.:

<titel></titel>) folgendermaßen abgekürzt werden: <titel/>.

• Tags können nur im Zwiebelschalensystem verschachtelt werden
<Name><Vorname></Vorname></Name>
und NICHT <Name><Vorname></Name></Vorname>.

• Es darf nur EIN Wurzelelement (engl.: root-element) geben, das alle

anderen Elemente einfasst.

• XML ist case sensitive, d.h. dass zwischen Groß- und Kleinbuchstaben

unterschieden wird: <titel> ist ein anderer Tag als <Titel>. Diese Unter-

scheidung wird sowohl bei Elementen, als auch bei Attributen getroffen.

• Attributen zugeordnete Werte müssen in Anführungszeichen oder Hoch-

kommas stehen.

Lösen Sie sich nun die Fehlersuchbeispiele Beispiel 1 und 2 im Kapitel 79:

Übungsbeispiele an. Finden Sie die Fehler, indem Sie das bisher erwähnte

anwenden.

Die Wohlgeformtheit eines Dokuments sagt lediglich aus, dass die allgemeinen

XML-Regeln eingehalten wurden. Da es sich um eine erweiterbare Sprache

handelt, sind die Tags bei XML nicht wie bei HTML vorgegeben, sondern frei

definierbar. Diese Freiheit in der Definition von Tags führt dazu, dass irgendwie

hinterlegt werden muss, welche Tags in welcher Form gültig sind. Desweiteren

müssen XML Dokumente richtig strukturiert dargestellt werden. Um Elementen

Datentypen, Beschränkungen und Ähnliches zuzuweisen, gibt es zwei Möglich-

keiten von unterschiedlicher Mächtigkeit und Komplexität:

• Document Type Definitions (DTD)

• XML-Schema

Gegenüberstellung:

DTD XML-Schema

Nicht in XML verfasst In XML verfasst

Semantic Web – Grundlagen Seite 23

Begrenzte vorgegebene Datentypen Erstellung von eigenen komplexen Da-

tentypen möglich; größere Auswahl an

vorgegebenen Datentypen

Nicht erweiterbar, da Umfang per

XML-Spezifikation 1.0 fest vorge-

schrieben

Erweiterbar

Tabelle 2: Vergleich DTD und XML-Schema

Da DTDs einen weitaus eingeschränkteren Befehlsumfang als XML-Schema

haben, werden sie hier nur der Vollständigkeit halber kurz vorgestellt.

Die XML-Datei Die dazugehörende DTD
<?xml version="1.0" encoding="ISO-
8859-1"?>
<!DOCTYPE autorenliste SYSTEM
"autoren-liste.dtd">
<autorenliste>
 <autor>

 <nr>1</nr>
 <vorname>Heinz</vorname>
 <nachname>Kauz</nachname>
 <alter>123</alter>
</autor>

</autorenliste>

<?xml version="1.0" encoding="ISO-
8859-1"?>
<!ELEMENT autorenliste (autor)>
<!ELEMENT autor (nr, vorname,
nachname, alter)>
<!ELEMENT nr (#PCDATA)>
<!ELEMENT vorname (#PCDATA)>
<!ELEMENT nachname (#PCDATA)>
<!ELEMENT alter (#PCDATA)>

Tabelle 3: XML-Datei und zugehörige DTD

Wie sich an obigem Beispiel erkennen lässt, ist eine DTD vergleichsweise kurz

(insbesondere im Vergleich zu XML-Schema), aber wie bereits erwähnt, ist der

Preis dafür eine eingeschränkte Funktionsvielfalt.

Um die Gültigkeit eines Dokuments zu überprüfen gibt es mehrere Wege: Zum

einen gibt es Validatoren im Internet, von denen hier auf zwei verwiesen

werden soll (Stand: Mai 2005):

• http://www.validome.org/

• http://www.w3.org/2001/03/webdata/xsv

Die zweite Möglichkeit ist ein Editor mit integriertem Validator. Der gängigste,

der auch als für den privaten Gebrauch freie Home-Edition angeboten wird,

nennt sich XML-Spy von der Firma Altova.

Semantic Web – Grundlagen Seite 24

(http://www.altova.com/download_spy_home.html ; letzter Abruf am 2005-06-

23)

4.3 XML – Der Anfang
Am besten lernt man XML jedoch, wenn man selbst Dokumente verfasst. Für

den Anfang empfiehlt sich ein einfacher Text-editor. Der Autor empfiehlt, die

ersten Beispiele handschriftlich oder mit einem Texteditor zu absolvieren bevor

man zu einem Programm wie XML-Spy greift, da dadurch die Übung der

Grundlagen verbessert wird.

Am folgenden einfachen Beispiel sollen die Grundelemente eines XML-Doku-

ments vorgestellt werden:
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!DOCTYPE autorenliste SYSTEM "test01.dtd">
3 <autorenliste>
4 <autor>
5 <nr>1</nr>
6 <vorname>Heinz</vorname>
7 <nachname>Kauz</nachname>
8 <alter>123</alter>
9 </autor>
10 <autor>
11 <nr>2</nr>
12 <vorname>Martin</vorname>
13 <nachname>Muster</nachname>
14 <alter>26</alter>
15 </autor>
16 <autor>
17 <nr>3</nr>
18 <vorname>Gwendula</vorname>
19 <nachname>Bernfriedstein</nachname>
20 <alter>76</alter>
21 </autor>
22 </autorenliste>

Autorenliste.xml

Die Zahlen am Beginn der Zeile bezeichnen die Zeilennummer und dienen nur

der besseren Beschreibung und sind nicht Bestandteil des Dokuments. Der

Text, der von den frei wählbaren Ausdrücken in spitzen Klammern, um-

Semantic Web – Grundlagen Seite 25

schlossen wird, stellt die eigentliche Information dar. Spitze Klammern und

Schrägstriche kennzeichnen die Tags.

Die erste Zeile gibt an, dass es sich um ein XML-Dokument handelt und legt im

„encoding=“-Teil fest, welcher Zeichensatz benutzt wird. Zwingend erforderlich,

um eine XML-Dokument als solches zu kennzeichnen ist:

<?xml version="1.0"?>

Bitte erstellen Sie eine XML-Datei mit einem einfachen Texteditor  Beispiel

3 auf Seite 79.

In Zeile 2 folgt die Referenz auf eine DTD oder Schema-Datei, die für die Gül-

tigkeitsüberprüfung des Dokuments notwendig ist und in der die selbst de-

finierten Regeln für den Dokumentaufbau enthalten sind. In diesem Beispiel

sieht man die Referenz auf eine DTD. Wird jedoch einen Schema-Datei

verwendet entfällt Zeile zwei und Zeile drei wird folgendermaßen modifiziert:
<autorenliste xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="autoren.xsd">

Um nun nachvollziehen zu können, was in dieser Zeile passiert, muss man das

Konzept der Namespaces kennen lernen.

4.3.1 Namespaces
Um auch XML-Vokabular (Tags) benutzen zu können, das von anderen bereits

definiert wurden, werden „Namespaces“ (dt.: Namensraum) verwendet. Durch

Namensräume ist es möglich gleichlautende Auszeichnungen zu differenzieren.

Diese Unterscheidung wird folgendermaßen erreicht:
<root xmlns:test=“http://www.meintest.at“
xmlns:versuch=“ http://www.meinversuch.at“>

<unterelement>
<test:name>Namespaces</test:name>
<versuch:name>Namemsräume</versuch:name>

</unterelement>
</root>

Beispiel für Namespaces

Bei der Angabe der Namensräume wird keine Verbindung mit dem Internet

hergestellt. Es gibt lediglich, zum Beispiel bei Browsern, bereits integrierte Na-

Semantic Web – Grundlagen Seite 26

mespace-Vokabulare, die Funktionen für den Browser zur Verfügung stellen.

Das ist bei selbst definierten Namensräumen nicht der Fall. Dort kann man die

angegebenen URLs vielmehr als ein eindeutiges Kennwort für die Namens-

raumabkürzung verstehen, die dadurch Namenskonflikte verhindern sollen.

„xmlns:“ Befehl zur Namensraumdeklaration

Mit Namespaces wurde auch im vorhergehenden Abschnitt zuerst der XML-

Schema-Namensraum eingebunden, um auf die vordefinierten Elemente zu-

greifen zu können:
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Danach wird durch xsi:noNamespaceSchemaLocation=“…“ festgelegt, dass sich

alle in der betreffenden Schema-Datei vorkommenden Elemente der „Autoren-

liste“ im Vorgabennamensraum “xmlns:xsi= "http://www.w3.org/2001/XML-
Schema-instance" befinden. Durch die Schema-Datei wird also kein eigener

Namensraum definiert [Vgl. Jeck04, Kap. 2.3].

Die erweiterte Zeile drei noch einmal im Überblick:
<autorenliste xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="autoren.xsd">

4.3.2 XML-Schema
Der Nachfolger der Document Type Definition ist, wie bereits weiter oben

erwähnt, ungleich mächtiger. Mit XML-Schema lassen sich eigene Elementty-

pen und Attribute kreieren. So ist es zum Beispiel möglich, festzulegen, ob ein

Element nur ganzzahlige Werte oder ausschließlich Zeichenketten enthalten

darf. Allein die Auswahl an vorgegebenen Datentypen, die sich wiederum kom-

binieren lassen, bietet eine Komplexität, die DTDs nicht aufweisen.

Das folgende Beispiel beschreibt eine Liste der Artikel für unsere Nachrichten-

website:

XML-Datei (artikel.xml):
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <artikelliste xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.newsmuster.org/artikellis
te.xsd">

3 <artikel>
4 <titel>Die Fußballmeisterschaft ist vorbei.</titel>
5 <autor>2</autor>

Semantic Web – Grundlagen Seite 27

6 <datum>2005-05-28</datum>
7 <rubrik>sport</rubrik>
8 </artikel>
9 <artikel>
10 <titel>Heißester Tag im Mai steht bevor!</titel>
11 <autor>3</autor>
12 <datum>2005-05-26</datum>
13 <rubrik>wetter</rubrik>
14 </artikel>
15 </artikelliste>

artikel.xml

Dazugehörige Schema-Datei (artikelliste.xsd):
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
3 <xsd:element name="artikelliste">
4 <xsd:annotation>
5 <xsd:documentation>Kommentarmöglichkeit</xsd:documentation>
6 </xsd:annotation>
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element name="artikel" maxOccurs="unbounded">
10 <xsd:complexType>
11 <xsd:sequence>
12 <xsd:element name="titel" type="xsd:string" />
13 <xsd:element name="autor" type="xsd:int" />
14 <xsd:element name="datum" type="xsd:date" />
15 <xsd:element name="rubrik" type="xsd:string" /
>
16 </xsd:sequence>
17 </xsd:complexType>
18 </xsd:element>
19 </xsd:sequence>
20 </xsd:complexType>
21 </xsd:element>
22 </xsd:schema>

artikel.xsd

Die Funktion der Zeilen eins und zwei ist bereits beschrieben worden (Deklara-

tion als XML-Dokument und Verwendung eines vorgegebenen

Namensraumes). Auch die Struktur der nachfolgenden Zeilen entspricht, im

Gegensatz zur DTD, der bekannten XML-Schachtelung. Neu ist, dass hier

Semantic Web – Grundlagen Seite 28

vorgegebene Befehle des XML-Schema-Namensraumes benutzt werden. Die

folgende Auflistung gibt einen Überblick über einige wichtige Schema-Befehle:

Befehl Beschreibung

“element” +At-

tribut “name”

Definitionsbeginn eines Elements

Bsp.: <xsd:element name=”katalog”>

“type” Typeneinschränkung

Bsp: <xsd:element name=”zahl” type=“integer“ />

“simpleType” Definiert, dass das übergeordnete Element nur Daten,

aber keine anderen Elemente aufnehmen kann

“complexType” Notwendig, wenn ein Element andere Elemente enthal-

ten soll oder der gewünschte Datentyp nicht bei den

vordefinierten enthalten ist

“sequence” Gibt an, dass folgende Elemente genau in dieser Rei-

henfolge auftreten müssen

„choice“ Gibt an, dass von den folgenden Unterelementen der

Schema-datei nur eines in der XML-Datei vorkommen

darf

“restriction” Leitet eine Beschränkung ein:

Bsp.: <xsd:simpleType>
 <xsd:restriction base=”xsd:integer”>
 <xsd:minInclusive value=“1“/>
 </xsd:restriction>
</xsd:simpleType

“minOccurs”

bzw. “maxOc-

curs”

Attribute, die angeben, wie oft ein Element mindestens

vorkommen muss oder maximal vorkommen darf

Bsp.: <xsd:sequence maxOccurs=“unbounded“>

Tabelle 4: XML-Schema: einige Elemente und Attribute

Bitte bearbeiten Sie im Übungsteil Beispiel 4 auf Seite 79 und Beispiel 5 auf

Seite 80.

Semantic Web – Grundlagen Seite 29

4.3.3 XSL
Ein XML-Dokument kann mittels XSL in andere Dokument(typen) transformiert

werden, die unterschiedlichen Anforderungen gerecht werden (z.B. XHTML,

HTML, Text,…). Abhängig von der Verwendung werden sie dementsprechend

angewendet. Um alle Möglichkeiten, die XSL-Transformationen bieten, zu

beschreiben, reicht der Platz in dieser Arbeit nicht aus. Es soll nur eine „erste

Bekanntschaft“ geschlossen werden, um einen Eindruck davon zu bekommen,

was man mit XSL umsetzen kann.

Bevor jedoch XSL vorgestellt werden kann, benötigt man eine Sprache, die auf

einzelne Elemente eines Dokuments zugreifen kann. XPath bietet diese

Möglichkeit.

Mit XPath navigiert man sozusagen durch das XML-Dokument. Dadurch ist es

auch möglich, einzelne Elemente herauszugreifen und nur diese mit XSL (oder

anderweitig) weiterzuverarbeiten.

/ Wurzelelement; Trennzeichen Bsp.: /autor/name

// Suche im gesamten Dokument; Beispiel: „//titel“ ergibt als „Suchergeb-

nis „jedes „titel“-Element, unabhängig vom Platz im Dokument

. Aktuelles Element

@ Markiert ein Attribut, dass dem Suchkriterium entspricht

Tabelle 5: Wichtige Pfadangaben in XPath [vgl. JLI05, S. 216]

Eine Visualisierungshilfe mit dem Namen XPath-Demo, die sich gut zum expe-

rimentieren eignet, findet sich im WWW unter

http://www.futurelab.ch/xmlkurs/xpath.de.html (letzter Aufruf: 2005-06-21).

Semantic Web – Grundlagen Seite 30

Abbildung 8: Screenshot von XPath-Demo – Startseite

Wenn wir nun unser XML - Beispiel „artikel.xml“ aus dem Kapitel 3.3.2 in XPath

- Demo eingeben, können daran XPath Ausdrücke einfach „ausprobiert“

werden. Die Teile des XML-Dokuments, welche vom Ausdruck ausgewählt

werden, stellt XPath - Demo rot markiert dar.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <artikelliste>
3 <artikel>
4 <titel>Die Fußballmeisterschaft ist vorbei.</titel>
5 <autor>2</autor>
6 <datum>2005-05-28</datum>
7 <rubrik>sport</rubrik>
8 </artikel>
9 <artikel>
10 <titel>Heißester Tag im Mai steht bevor!</titel>
11 <autor>3</autor>
12 <datum>2005-05-26</datum>
13 <rubrik>wetter</rubrik>
14 </artikel>
15 </artikelliste>

artikel.xml

Semantic Web – Grundlagen Seite 31

Beispielhaft kann nun der XPath Ausdruck „/artikelliste/artikel/titel“ eingeben

werden. Als Ergebnis erhält man rot markiert „<titel> Die Fußballmeisterschaft

ist vorbei. </titel>“ und „<titel> Heißester Tag im Mai steht bevor! </titel>“.

Abbildung 9: Screenshot von Xpath-Demo - Auswertungsseite

Mit dem Wissen um XPath kann man nun eine Transformation von XML in

bspw. HTML vornehmen. Als Grundlage dient wiederum die Datei artikel.xml

aus dem Kapitel 3.3.2. Hier ist die zweite Zeile hervorzuheben, welche die

Referenz auf den XSL-Stylesheet darstellt:

<?xml-stylesheet type=”text/xsl”
href=”http://www.newsmuster.org/artikel.xsl”?>

Bevor die XSL-Datei erstellt wird, sollte man sich überlegen, wie die HTML-Aus-

gabe aussehen soll bzw. welche Elemente der XML-Datei vorkommen sollen.

Nehmen wir an, wir wollen eine Übersicht aller Artikel, die aus deren Titel, Da-

tum und Rubrik besteht, in einer Tabelle ausgeben. Der Kopf der XSL-Datei ist

folgendermaßen aufgebaut:

Semantic Web – Grundlagen Seite 32

1 <?xml version=“1.0“ encoding=“ISO-8859-1“?>
2 <xsl:stylesheet xmlns: xsl=http://www.w3.org/1999/XSL/Transform
version=”1.0”>

3 <xsl:output method=”html”/>
4 <xsl:template match=”/”>

Nun folgen die HTML-Anweisungen:
5 <html>
6 <head><title>Transformation</title></head>
7 <body>
8 <table border="1">
9 <tr>
10 <td>Titel</td>
11 <td>Datum</td>
12 <td>Rubrik</td>
13 </tr>

Bis hier findet sich reines HTML. Ab der nächsten Zeile finden sich auch XSL-

Befehle, die die gewünschte Information aus dem XML-Dokument „markieren“

und deren Wert zwischen die HTML-Tags setzen.

14 <xsl:for-each select="artikelliste/artikel">
15 <tr>
16 <td><xsl:value-of select="titel"/></td>
17 <td><xsl:value-of select="datum"/></td>
18 <td><xsl:value-of select="rubrik"/></td>
19 </tr>
20 </xsl:for-each>
21 </table>
22 </body>
23 </html>
24 </xsl:template>
25 </xsl:stylesheet>

Mittels xsl:for-each wird eine for-Schleife eingeleitet, die die Anweisungen in-

nerhalb der Schleife für jeden Eintrag „artikel“ anwendet. xsl:value-of nimmt

Semantic Web – Grundlagen Seite 33

den Inhalt des durch select gekennzeichneten Elements („titel“, „datum“,

„rubrik“) und setzt ihn in die Tabellenfelder ein.

Nach erfolgter Transformation sieht das Ergebnis so aus:

Abbildung 10: Ergebnis der XSL-Transformation

Lösen Sie nun die Übungen 6 und 7 im Übungsteil auf Seite 81 und 81.

4.4 XML in der Praxis

XML ist DER Standard um Daten strukturiert zu speichern. Auch viele „neue“

Standards wie ATOM4, RSS oder eben auch das Konzept des Semantic Webs

bauen auf XML auf. Weitere Indinzen für die enorme Verbreitung und

Verwendung von XML sind die Vielzahl der erschienenen XML Publikation und

XML Hilfstools. Selbst in der Automobilbranche wird XML verwendet. Die

Entwicklungsabteilungen der Automobilkonzerne nützen XML als Standard , da

die immer komplexer werdende Entwicklungsprozesse der Bordnetzelektronik

nicht proprietäre Beschreibungssprachen und Applikationen benötigen

[Weim05].

4 Atom ist ein auf XML basierender Standard der den plattformunabhänigen Ausstausch von
Informationen im Internet ermöglicht.

Semantic Web – Grundlagen Seite 34

5 RDF

5.1 Einleitung
Das Resource Description Framework (RDF) ist ein Modell zur Repräsentation

von Metadaten. Metadaten sind Daten, die Informationen über andere Daten

enthalten. Beispielsweise sind Titel, ISBN-Nummer und Autorenangaben Meta-

daten eines Buches.

RDF besteht aus einem grafischen Modell zur Repräsentation von Metadaten

und aus einer XML-Syntax, die dem gleichen Zweck dient. Das Grundmodell

hierfür baut auf der Graphentheorie auf, die in 5.11 Exkurs: Graphentheorie nä-

her beschrieben wird. Verglichen zu einfachen XML-Instanzen haben die RDF-

Instanzen zusätzliche Vorgaben zu erfüllen. Diese vorgegebene Struktur dient

als Rahmen für verschiedenste Metadatenformate, die als DTD, mit XML-Sche-

ma oder auch mit RDF-Schema spezifiziert werden können. Die Verwendung

des RDF-Schemas erlaubt die Bildung von Begriffshierarchien (Ontologien) für

die semantische Einordnung von Begriffen. Diese können sowohl auf die ein-

zelnen Elemente der Metadatenformate, als auch auf deren Inhalte ange-

wendet werden [vgl. Ecks04, S. 235].

Man kann die Suche nach Informationen im Internet wesentlich verbessern,

wenn man nicht nur auf syntaktischer Ebene (Namen, Bezeichnungen, …) mit

Suchmaschinen arbeitet, sondern auch mit Hilfe von Beschreibungen die Web-

quellen semantisch einordnet, sowie die Begriffe mit Hilfe von Ontologien zu-

einander in Beziehung setzt. Die technische Umsetzung soll mittels RDF

gestaltet werden. [vgl. Ecks04, S. 236]

Es ist zu erwarten, dass in naher Zukunft die Suchmaschinen auch seman-

tische Informationen verarbeiten können. Da in den Begriffshierarchien z.B.

auch Verwandtschaftsbeziehungen beschrieben werden, können dann auch

Seiten gefunden werden, die nicht genau den gesuchten, sondern nur einen

verwandten Inhalt haben.

Semantic Web – Grundlagen Seite 35

5.2 RDF-Modell
Das Basisdatenmodell von RDF ist einfach aufgebaut und dient der

Beschreibung beliebiger Ressourcen, die durch RDF-Ausdrücke beschrieben

werden und eine eindeutige URI haben. Das sind z.B. einzelne Webseiten,

Sammlungen von Webseiten, aber auch Objekte wie beispielsweise Bücher,

Personen, etc., auf die nicht direkt über das Web zugegriffen werden können.

Man unterscheidet folgende drei Grundbausteine bzw. Objekttypen:

• Ressourcen (engl. „Resources“)

• Eigenschaften (engl. „Properties“)

• Aussagen (engl. „Statements“)

Eine Ressource wird durch ihre Eigenschaften wie z.B. Datum, Autor, Bezeich-

nung, usw. beschrieben. Die Eigenschaften werden als Kanten dargestellt, wel-

che die beiden Knoten für die Ressource und den Wert der Eigenschaft ver-

bindet.

Abbildung 11: Ressource, Eigenschaft und Wert der Eigenschaft

Die URI „http://newsmuster.org/ressourcen-eigenschaften-werte.xml“ ist der

Verweis auf die zu beschreibende Ressource, „Titel“ ist die Eigenschaft und

„RDF-Tripel in der Praxis“ ist der Wert der Eigenschaft. Ein Wert einer Eigen-

schaft kann noch weiter unterteilt werden, indem man anstelle des Rechtecks

ein leeres Oval zur Darstellung verwendet. Dieses symbolisiert eine unbenann-

te Ressource der die einzelnen (unterteilten) Werte als Rechtecke über be-

nannte Kanten zugeordnet werden.

Semantic Web – Grundlagen Seite 36

Abbildung 12: Wert der Eigenschaft ist eine Ressource mit zwei eigenen Eigenschaften und
Werten

Die Eigenschaft Autor wird ihrerseits als Ressource mit den zwei Eigenschaften

Name und Email und deren Werten beschrieben.

So genannte Aussagen werden in RDF als Sätze in Form von Subjekt, Prädikat

und Objekt interpretiert, wobei die Ressource als Subjekt, die Eigenschaft als

Prädikat und die Werte der Eigenschaften als Objekt zu verstehen sind.

Folgender Satz ist aus der vorigen Abbildung zu lesen: „Das XML-Dokument

hat einen Verfasser, der durch den Namen und die Email beschrieben wird.“

Die nächste Abbildung ist zu lesen als: „Die Website www.newsmuster.org hat

den Ersteller (mit dem Wert) Seminargruppe.“

Abbildung 13: Aussage in Form eines einfachen RDF-Tripels aus Subjekt, Prädikat und Objekt

Semantic Web – Grundlagen Seite 37

Wie man an diesem Beispiel sehen kann, zeigen die (gerichteten) Kanten

immer vom Subjekt ausgehend auf das Objekt der Aussage.

Lösen Sie die RDF Beispiele 1 und 2 im Übungsbeispielteil auf Seite 82 und

82.

5.3 RDF-Syntax
Das RDF-Modell bietet eine abstrakte Vorlage zum Definieren und Benutzen

von Metadaten. Für die praktische Erstellung und den Austausch von Metada-

ten ist allerdings eine konkrete Syntax erforderlich.

Für die Darstellung der Syntax der RDF-Datenmodelle wird das vom W3C stan-

dardisierte XML verwendet, das durch seine Darstellung in reiner Textform

leicht erstellbar, durchsuchbar und plattformunabhängig austauschbar ist. RDF

verwendet die XML-Namensräume, womit eine eindeutige Definition von

Elementen und die Zuordnung von Elementen zu einem bestimmten Schema

erreicht werden. Diese Zugehörigkeit zu einem Schema wird durch ein zuvor

definiertes Präfix vor dem Element festgelegt.

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#“

Wurzelelement:
<rdf:RDF> … Beschreibung … </rdf:RDF>

about- und ID-Attribut, Description:

Die zu beschreibende Ressource wird mit einem von zunächst zwei Attributen

des Description-Elementes referenziert: about und ID. Die ID wird verwendet,

wenn die Ressource keinen URI besitzt. Das ist dann der Fall, wenn man mit

dem RDF-Schema Begriffe definieren und in eine Begriffshierarchie einer

Anwendungsdomäne einordnen will. Dann nimmt man den Namen des Begriffs

als Wert des ID-Attributes. Diese ID ergibt dann zusammen mit dem URI des

definierten Dokuments den URI der Ressource.
<rdf:Description ID=“Begriff“>
 <xyz:Name>Name</xyz:Name>

Semantic Web – Grundlagen Seite 38

</rdf:Description>

Beschreibt man Ressourcen, die über einen URI identifizierbar sind, wird das

about-Attribut verwendet und man setzt als Wert den URI. Damit kann man Be-

griffe, die schon an anderer Stelle beschrieben wurden, wieder aufnehmen und

bei Bedarf auch um weitere Beschreibungen ergänzen. Der Inhalt des Descrip-

tion-Elementes besteht aus beliebig vielen Eigenschaften.
<rdf:Description

[about-Attribut oder ID-Attribut]
>

[Eigenschaftselement]
[Eigenschaftselement]

…
</rdf:Description>

Rahmen eines RDF-Dokumentes:
<?xml version="1.0"?>
 <rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xyz="http://www.newsmuster.org/unserschema/">

 [...]

 </rdf:RDF>

Das Schema „xyz“ ist dabei ein von www.newsmuster.org selbst festgelegtes

Schema.

Die Beschreibung der Ressourcen mit ihren Eigenschaften werden innerhalb

der Description-Tags vorgenommen:
<rdf:Description about=“www.newsmuster.org/redaktion”>

<xyz:Creator>Max Mustermann</xyz:Creator>
<rdf:Description>

Mehrere Eigenschaften, die sich auf dieselbe Ressource beziehen:
<rdf:Description about=“www.newsmuster.org/redaktion”>

<xyz:Creator>Max Mustermann</xyz:Creator>
<xyz:Title>Redaktion von www.newsmuster.org</xyz:Title>
<xyz:Date>01-01-2005</xyz:Date>

<rdf:Description>

Semantic Web – Grundlagen Seite 39

Hat ein Description-Element kein about-Attribut, so wird dadurch eine neue

Ressource repräsentiert, die ein Ersatz für eine physische Ressource ohne

festlegbaren URI sein kann.

5.3.1 Abbreviated Syntax – kompakte Syntax
Es wurde eine kompakte Schreibweise entwickelt, damit die Elementinhalte

nicht als „freier Text“ codiert sind und dann direkt sichtbar werden, wenn z.B.

die RDF-Beschreibung in ein html-Dokument eingebettet wird. Mit der kompak-

ten Schreibweise ist es möglich, Informationen in so genannten Eigenschaftsat-

tributen abzulegen. Die Attribute werden dann genau so benannt, wie die

Eigenschaftselemente, die sie ersetzen. Das mehrfache Auftreten gleich be-

nannter Attribute in einem Element bzw. die Verschachtelung von Elementen

lässt sich auf diese Weise allerdings nicht abbilden. [vgl. Ecks04, S. 245]

Man kann den Code eines RDF-Dokuments auf drei verschiedenen Arten

abkürzen:

1) Darstellung von Eigenschaften als Attribute des Description-Tag:
<rdf:Description about=“www.newsmuster.org/redaktion”
 xyz:Creator=”Max Mustermann” />

2) Verschachtelung mehrerer Descriptions, wenn das Objekt eines Statements

auch eine andere Ressource ist und deren Werte der Eigenschaft Literale sind:
<rdf:Description about=“www.newsmuster.org/redaktion”
 xyz:Creator rdf:resource=”www.newsmuster.org/mitarbeiter/906090” />
</rdf:Description>

+

<rdf:Description about=“www.newsmuster.org/mitarbeiter/906090”>
 <xyz:Name>Anna Kournikova</xyz:Name>
 <xyz:Email>sportredaktion@newsmuster.org</xyz:Email>
</rdf:Description>

=
<rdf:Description about=“www.newsmuster.org/redaktion”>
 <xyz:Creator>

<rdf:Description about=”www.newsmuster.org/mitarbeiter/906090”>
<xyz:Name>Anna Kournikova</xyz:Name>
<xyz:Email>sportredaktion@newsmuster.org</xyz:Email>
</rdf:Description>

Semantic Web – Grundlagen Seite 40

 </xyz:Creator>
</rdf:Description>

3) der Klassentyp, der im Schema definiert ist, und im rdf:type-Attribut angege-

ben wird, kann direkt als Elementname im Description-Tag verwendet werden,

statt im Attribut genannt zu werden.
<rdf:Description about=”www.newsmuster.org/mitarbeiter/906090”>
 <rdf:type resource=”http://www.newsmuster.org/unserschema#Person”>
 <xyz:Name>Anna Kournikova</xyz:Name>
 <xyz:Email>sportredaktion@newsmuster.org</xyz:Email>
</rdf:Description>

<xyz:Person about=”http://www.newsmuster.org/mitarbeiter/906090“>
 <xyz:Name>Anna Kournikova</xyz:Name>
 <xyz:Email>sportredaktion@newsmuster.org</xyz:Email>
</rdf:Description>

5.4 Container
Für den Fall, dass man mehrere gleichartige Beschreibungen zusammenfassen

möchte, bietet RDF das Konzept der Container an. Besitzt eine Ressource

mehrere Eigenschaften gleichen Typs, können alle dazugehörigen Eigen-

schaftswerte (Literale oder Ressourcen) zu einem Container zusammengefasst

werden.

Man unterscheidet s verschiedene Containertypen:

• Sequenzen (Sequenz)

• Multimengen (Bag)

• Alternativen (Alternative)

Bei einer Sequenz handelt es sich um eine geordnete Liste von Ressourcen

oder Literalen, d.h. die Reihenfolge der Elemente spielt eine Rolle. Bei Büchern

z.B. werden die Autoren immer in einer bestimmten Reihenfolge angegeben.

Eine Multimenge ist eine ungeordnete Liste von Ressourcen oder Literalen,

d.h. die Reihenfolge ist unerheblich – beispielsweise eine Lehrveranstaltung,

die von mehreren Teilnehmern besucht wird.

Semantic Web – Grundlagen Seite 41

Eine Alternative lässt die Auswahl eines ihrer Elemente zu – beispielsweise

wählt man auf einer Webseite die Sprache „Deutsch“ aus mehreren Möglichkei-

ten. Im Gegensatz zu Sequenz und Multimenge sind keine Duplikate in der Lis-

te erlaubt.

5.4.1 Darstellung von Containern
Für die Darstellung eines Containers wird eine weitere Ressource benötigt. Mit

dem Eigenschafts-Typ rdf:type wird eine Instanz entsprechend einer der drei

Containertypen deklariert. Die Zugehörigkeit der Elemente zum Container wird

über eine Nummerierung der Eigenschaften hergestellt.

Beispiel:

Die RDF-Aussage lautet: „Die Autoren des Buches Geographic Information

Systems and Science lauten Paul A. Longley und Michael F. Goodchild.“

Abbildung 14: Statement mit einem Sequenz-Container

Lösen Sie in Zusammenhang mit der Abbildung 14 das RDF Beispiel 3 im

Übungsseitenteil auf Seite 83.

Semantic Web – Grundlagen Seite 42

Der Container wird wie eine Ressource mit den Containerelementen als Eigen-

schaften dargestellt. Anstelle der Nummerierung verwendet man den Element-

namen li (list item).

Statt des Containers könnten auch voneinander unabhängige Aussagen formu-

liert werden, die dasselbe Subjekt besitzen – jedoch kann dabei der inhaltliche

Zusammenhang verloren gehen.

Beispiel:

Die Aussage „Der Vorstand bestehend aus dem Vorsitzenden, dem 1. Stell-

vertreter und dem 2. Stellvertreter hat das Budget 2006 angenommen.“ ver-

liert bei drei einzelnen Aussagen die Information, dass alle Mitglieder des Vor-

standes (Containerelemente) das Budget einstimmig angenommen haben.

Stattdessen hätten dann der Vorsitzende, der 1. Stellvertreter und der 2. Stell-

vertreter unabhängig voneinander das Budget angenommen.

Wenn mehrere Ressourcen die gleichen Eigenschaften besitzen, kann in einer

Aussage auch das Subjekt durch einen Container dargestellt werden.
<rdf:Description about="http://www.newsmuster.org/redaktion">
 <xyz:Creator> Arabella Kiesbauer </xyz:Creator>
</rdf:Description>
<rdf:Description about="http://www.newsmuster.org/gesellschaft">
 <xyz:Creator>Arabella Kiesbauer</xyz:Creator>
</rdf:Description>

Zusammengefasst in einen Container:
<rdf:Bag ID="Newssites">
 <rdf:li resource="http://www.newsmuster.org/redaktion" />
 <rdf:li resource="http://www.newsmuster.org/gesellschaft" />
</rdf:Bag>

<rdf:Description aboutEach="#Newssites">
 <xyz:Creator>Arabelle Kiesbauer</xyz:Creator>
</rdf:Description>

Das aboutEach-Attribut wird verwendet, damit sich die Aussage auf die einzel-

nen Containerelemente bezieht. Die einzelnen Aussagen sind syntaktisch

gleich mit der zusammengefassten Aussage.

Semantic Web – Grundlagen Seite 43

Es kommt vor, dass Aussagen einerseits über eine gesamte Website, aber

andererseits auch über viele Elemente einer einzelnen Seite getroffen werden

sollen. Dazu verwendet man das aboutEachPrefix-Attribut. Dabei wird jede

Ressource, bei der der URI mit dem Präfix beginnt, angesprochen.

<rdf:Description aboutEachPrefix="www.newsmuster.org/">
 <xyz:Creator>Arabella Kiesbauer</xyz:Creator>
</rdf:Description>

5.5 Reification - Aussagen über Aussagen
Beispiel:

“Herr Mayer ist der Ersteller der Website www.mayer.at.“

Macht man nun eine Aussage über diese Aussage, kann das so aussehen:

„Herr Huber sagt, dass Herr Mayer der Ersteller der Website www.mayer.at

ist.“

In RDF wird darüber etwas ausgesagt, was Herr Huber sagt – über die Website

selbst wird keine Aussage gemacht. Für die Abbildung in einem Modell werden

fünf Eigenschaften benötigt: subject, predicate, object, type und attributedTo.

Lösen Sie nun das Beispiel 4 im Übungsbeispielteil auf Seite 83.

5.6RDF-Schema (RDFS)
Mit Hilfe des RDF-Schema können Begriffe semantisch zueinander in Bezie-

hung gesetzt werden, wobei es verschiedene Beziehungsarten gibt. So können

Begriffe, aus denen die Elemente- und Attributnamen gebildet werden, und die,

die in den Beschreibungen der Ressourcen Verwendung finden sollen, erklärt

werden. [siehe Ecks04, S. 259]

Das RDF-Schema ist ein Vokabular zur Formulierung von Ontologien in RDF

und lässt sich nur bedingt mit dem XML-Schema vergleichen. Es erweitert RDF

um Konstrukte zur Kreierung von Schemata. RDFS liegt die Idee des mengen-

theoretischen Klassenmodells zugrunde, wobei Klassen und Eigenschaften se-

Semantic Web – Grundlagen Seite 44

parat von einander modelliert werden. Das Klassenkonzept macht es möglich,

eine formale Beschreibung der Semantik der verwendeten RDF-Elemente

festzulegen. Neben RDFS gibt es weitere Ontologiebeschreibungssprachen wie

F-Logic, DAML+OIL und OWL.

5.6.1 Klassen und Eigenschaften
RDFS definiert eine Reihe von Klassen und Eigenschaften, die zur Erstellung

von Schemata benutzt werden können.

Lösen Sie dazu das Beispiel 5 im Übungsbeispielteil auf Seite 84.

Ein Schema legt für jede Eigenschaft fest:

• welche Werte erlaubt sind

• welche Bedeutung die Eigenschaft hat

• welche Ressource die Werte besitzen darf

• welche Beziehung zu anderen Eigenschaften besteht

Abbildung 15: RDF-Schema

Kernklassen des RDF-Schema:

• rdfs:Resource: alle in RDF beschriebene Dinge sind Instanzen dieser

Klasse und haben daher automatisch (implizit) eine rdf:type-Eigenschaft

mit dem Wert rdfs:Resource

Semantic Web – Grundlagen Seite 45

• rdfs:Class: ist die Zuweisung einer Ressource zu einem Klassentypen;

das Konzept ist ähnlich dem der Klassen in objektorientierten Sprachen.

Jede Klasse, die definiert wird, muss also eine rdf:type-Eigenschaft mit

dem Wert rdfs:Class haben

• rdfs:Property: Instanzen dieser Kernklasse sind alle Klassen, die als

Eigenschaft die Beziehung zwischen Klassen ausdrücken; dazu gehört

neben der Eigenschaft rdf:type auch die Eigenschaften rdfs:subClassOf,

rdfs:subPropertyOf, rdfs:seeAlso und rdfs:isDefinedBy

Abbildung 16: Resource, Class, Property

Kern-Properties des RDF-Schema:

• rdfs:subClassOf: beschreibt die Beziehung zwischen Ober- und Unter-

klassen und entspricht dem Vererbungsmechanismus in objekt-

orientierten Sprachen

• rdfs:subPropertyOf: damit kann eine Spezialisierung der Eigenschaft

ausgedrückt werden. Wenn die Eigenschaft ist_Mutter_von eine Un-

tereigenschaft von ist_Elternteil_von ist, dann gilt für „Anna

ist_Mutter_von Karin“ auch „Anna ist_Elternteil_von Karin“.

Kern-Constraints des RDF-Schema:

• rdfs:range: damit wird der Wertebereich einer Eigenschaft festgelegt;

eine Eigenschaft kann höchstens eine rdfs:range-Eigenschaft haben

• rdfs:domain: damit wird der Definitionsbereich einer Eigenschaft festge-

legt; eine Eigenschaft kann höchstens eine rdfs:domain-Eigenschaft

haben

Semantic Web – Grundlagen Seite 46

Schemata sind statisch und ändern sich nicht, denn eine Schemadefinition wird

im Internet von sehr vielen verschiedenen Personen benützt und Änderungen

in einem Schema würden Änderungen in einer großen Anzahl anderer Doku-

mente nach sich ziehen sowie Anpassungen der Anwendungen.

Wenn doch Änderungen erforderlich sind, muss ein neues Schema erstellt

erden, das das alte Schema erweitert. Bei den Teilen, die ohne Änderung über-

nommen werden, muss deutlich werden, dass sich die Bedeutung nicht ge-

ändert hat [vgl. Stum02, S.10]. Das geschieht mit rdfs:subClassOf
<rdf:Description rdf:ID=“XY“

rdfs:subClassOf=“http://beispiel.org/altesschema#XY“/>

Beispiel:

Die Mitarbeiter eines Unternehmens können verschiedenen Projekten zuge-

ordnet werden. Eine Ressource „Hr. Mayer“ kann sowohl eine Instanz der

Klasse „Projekt A“, als auch eine Instanz der Klasse „Projekt B“ sein. Darüber

hinaus können auch Subklassen gebildet werden – das können z.B. Arbeits-

gruppen sein, die innerhalb der Projekte gebildet werden. Analog zu den

Klassen von Objekten können auch Eigenschaften und Subeigenschafen de-

finiert werden. Man kann z.B. die Eigenschaft „hat_Fortbildungskurs“ und

dazu die Subeigenschaften „hat_einen_Fortbildungskurs“, „hat_zwei_Fortbil-

dungskurse“, „hat_drei_Fortbildungskurse“, usw. definieren.

Damit hat man die Möglichkeit, einfache hierarchische Strukturen zu

erzeugen, aus denen zusätzliche, nicht explizite Information gewonnen

werden kann. Hat ein Projekt z.B. das Thema „Effizienzsteigerung“ und eine

Arbeitsgruppe dieses Projekts bearbeitet das Thema „Prozessoptimierung“,

so kann man daraus ableiten, dass „Prozessoptimierung“ ein Unterthema von

„Effizienzsteigerung“ ist. Ein weiteres Beispiel ist eine Klasse mit den Eigen-

schaften „hat_Fortbildungskurs“ und „erhält_den_Bildungsbonus“. Wird dieser

Klasse eine Subklasse mit der Eigenschaft „hat_einen_Fortbildungskurs“

zugeordnet, dann hat jede Instanz dieser Subklasse automatisch auch die

Eigenschaft „erhält_den_Bildungsbonus“, ohne das das explizit angeführt

werden muss.

Das RDF-Schema bietet darüber hinaus die Möglichkeit, Eigenschaften zu

beschreiben. Dafür definiert man für Subjekte und Objekte, zu welchen

Semantic Web – Grundlagen Seite 47

Klassen sie gehören müssen. Eine Eigenschaft „ist_Vorgesetzter_von“ als

Subjekt kann dann z.B. nur Instanzen einer Klasse „Person“ und als Objekt

nur Instanzen einer Klasse „Mitarbeiter“ zulassen. Damit können sinnlose

Aussagen wie „ein Kopierer ist_Vorgesetzter_von einem Firmenwagen“ aus-

geschlossen werden.

Das im RDF-Modell benützte Vokabular kann mit dem RDF-Schema typisiert

und durch Vererbungen von Eigenschaften ausgedrückt werden. Die formale

Beschreibung der Semantik ermöglicht es, Informationen aus den im Internet

zur Verfügung stehenden Daten abzuleiten. Über Vererbungsbeziehungen

können implizite Attribute explizit gemacht werden.

Das RDF-Schema ist eine einfache Modellierungssprache, die zur Formu-

lierung von einfachen Ontologien dient. Ressourcen und ihre Beziehungen

können allerdings untereinander nicht sehr detailliert dargestellt werden – da-

für kommen die Ontologiesprachen zum Einsatz.

5.7Dublin Core Element Set
Eigenschaften die Dinge beschreiben, sind eine Teilmenge der Ressourcen, sie

können daher auch selbst beschrieben werden und müssen darüber hinaus

einen Unified Resource Identifier (URI) haben. Wird über bestimmte

Themengebiete kommuniziert, besteht allerdings die Möglichkeit, dass die

Kommunikationspartner jeweils unterschiedliche Vorstellungen von den enthal-

tenen Konzepten haben und daher ist es wichtig, sich auf bestimmte Defini-

tionen zu einigen. Durch die Verwendung einheitlicher URI´s für bestimmte

Eigenschaften kann diesem Umstand Rechnung getragen werden.

Im so genannten „Dublin Core Element Set“ wurde ein Namensraum mit allge-

meinen Eigenschaften zur Kategorisierung und Beschreibung von Webseiten

erstellt.

Semantic Web – Grundlagen Seite 48

Das „Dublin Core Element Set“ besteht aus 15 Datenfeldern:

1 Title 9 Format

2 Creator 10 Identifier

3 Subject 11 Source

4 Description 12 Language

5 Publisher 13 Relation

6 Contributor 14 Coverage

7 Date 15 Rights

8 Type

Abbildung 17: RDF, Dublin Core Elemente

Die Internetseite http://forum.oeh-wu.at hat den Titel „Dein ÖH WU Forum – po-

wered by vBulletin“ und den Herausgeber http://www.oeh-wu.at. Die Eigen-

schaften Titel (Title) und Herausgeber (Publisher) sind dem „Dublin Core

Element Set“ entnommen.

RDF Seite 49

5.8 RSS
RSS ist eine XML-basierte Familie von Dateiformaten und steht für die

folgenden Standards:

• Rich Site Summary (RSS 0.9x)

• RDF Site Summary (RSS 1.0)

• Really Simple Syndication (RSS 2.0)

• Really Simple Syndication (RSS 3.0)

RSS wird verwendet, um Artikel oder deren Kurzbeschreibungen auf Web-

präsenzen (insbesondere Nachrichtenmeldungen) zu speichern und in ma-

schinenlesbarer Form bereitzustellen. Ein sogenannter RSS-Feed oder

Newsfeed besteht aus einer XML-Datei, welche nur den Inhalt – beispielsweise

einer Nachrichtenseite – bereithält, aber keinerlei Layouts oder Design

beinhaltet. Viele Seiten, die regelmäßig Artikel publizieren, generieren eine sol-

che RSS-Datei mit den neuesten Artikeln und veröffentlichen diese auf ihrer

Webpräsenz [siehe Wiki m].

Lösen Sie das Beispiel 6 im Übungsbeispielteil auf Seite 84.

5.9 RDF Abfragesprachen

Um Daten aus RDF auszulesen und damit Weiterverarbeitungsmöglichkeiten

zu bieten, ist eine eigene Abfragesprache nötig. Nachdem es bereits einige

Abfragesprachen wie „RQL“, „N3“ usw. gibt, hat sich das W3C das Ziel gesetzt,

einen einheitlichen Standard für RDF Abfragen zu schaffen5. Diese hat den

Namen SPARQL (SPARQL Protocol And RDF Query Language6). Die Schaf-

fung der Spezifikationen ist zurzeit (August 2005) im Gange und befindet sich

5 Nähere Informationen zu bereits bestehenden RDF Abfragesprachen können dem Report „A
Comparison of RDF Query Languages“ von Peter Haase, Jeen Broekstra, Andreas Eberhart
und Raphael Volz 2004, entnommen werden, in dem die RDF Abragesprachen RQL, SeR-
QL, TRIPLE, RDQL, N3 und Versa beschrieben und miteinader verglichen werden.

6 In früheren Versionen stand SPARQL für Simple Protocol and RDF Query Language und
wurde erst später zu dem endgültig rekursiven Akronym SPARQL Protocol And RDF Query
Language

RDF Seite 50

derzeit im Status „Last Call Working Draft“ der am 21. Juli 2005 veröffentlicht

wurde. Es sind nur noch kleinere Änderungen bis zur endgültigen Version zu

erwarten.

Mittels SPARQL können aus einem RDF Graphen Informationen über den URI,

dem Knoten und natürlich den Daten des RDF Graphen ausgelesen werden.

Des Weiteren können durch SPARQL RDF Subgraphen extrahiert und neue

RDF Graphen, die auf den Informationen des abgefragten Graphen basieren,

erstellt werden.

Anhand des folgenden Beispiels wird eine einfache SPARQL Abfrage darge-

stellt :

Ausgangsdaten sind folgendes RDF Triple:

<http://www.newsmuster.org/leitartikel>
<http://purl.org/dc/elements/1.1/title> "Semantic Web"

Das RDF Triple sagt aus, dass „<http://www.newsmuster.org/leitartikel>"

den Titel "Semantic Web" hat. Der Ausdruck

„<http://purl.org/dc/elements/1.1/title>" ist eine spezifische Definition für

den Titel eines Werkes der Dublin Core Metadata Initiative. Damit wird si-

chergestellt, dass es eindeutig feststellbar ist, dass es sich um den Titel eines

Werkes handelt, und nicht um irgendeinen anderen Titel, wie zum Beispiel die

Titelbezeichnung eines Menschen oder einfach um die Aneinanderreihung der

Buchstaben „t“ „i“ „t“ „l“ und „e“. Will man nun den Titel von <http://www.-
newsmuster.org/leitartikel> wissen, sieht die SPARQL Abfrage

folgendermaßen aus:

SELECT ?title
WHERE
{
 <http://www.newsmuster.org/leitartikel> <http://purl.org/dc/ele-
ments/1.1/title> ?title .
}

Als Ergebnis erhält man "Semantic Web".

RDF Seite 51

5.10 RDF in der Praxis

Der Einsatz von RDF in der Praxis erfährt derzeit eine steigende Tendenz, da

immer mehr Beispiele die Verbesserungen die durch RDF möglich sind zeigen.

So ist es etwa Vodafone durch den Einsatz von RDF auf deren mobilen Voda-

fone Live Portal, auf dem Klingeltöne, Spiele und Handybilder zum Download

angeboten werden, den Klingeltonumsatz um 20% zu steigern. Gleichzeitig

wurde durch die semantische Verknüpfung der Daten eine auf die Kundenbe-

dürfnisse zugeschnittene Auswertung der Suchanfragen möglich, sodass die

Anzahl der Seiten, die besucht werden bis ein Download getätigt wird, halbiert

werden konnte. Auch die Forum Seite von Nokia http://www.forum.nokia.com

setzt auf RDF [W3Ce].

Abbildung 18: Vodafone Live Portal

5.11 Exkurs: Graphentheorie

Die Graphentheorie stellt ein Teilgebiet der Mathematik dar, das sich mit Eigen-

schaften von Graphen und ihren Beziehungen untereinander beschäftigt. Als

einen Graphen bezeichnet man ein Gebilde aus Knoten (Punkte) die durch

Kanten (Linien) miteinander verbunden sind. Die Form der Knoten und Kanten

RDF Seite 52

kann hierbei frei gewählt werden. Mathematische Strukturen werden durch

Graphen grafisch darstellbar. Ein Graph besteht aus der Menge der enthalten

Konten V (V für „vertex“ engl. für Knoten) und der Menge der Kanten E (E für

„edge“ engl. für Kante).

G = (V, E)

In der Graphentheorie wird einerseits zwischen ungerichteten und gerichteten

Graphen sowie andererseits zwischen Graphen mit und ohne Mehrfachkanten

unterschieden. Bei gerichtete Graphen haben die Kanten im Gegensatz zu un-

gerichteten Kanten eine Orientierung. Diese Orientierung wird meist mittels

eines Pfeils dargestellt. Mehrfachkanten sagen aus, dass mehrere Kanten zwi-

schen den gleichen Knoten verlaufen und diese zusätzlich bei gerichteten

Graphen dieselbe Orientierung haben. In den folgenden Abbildungen 19 bis 22

werden die einzelnen Graphenformen dargestellt [wiki g] .

Abbildung 19: Ungerichteter Graph ohne Mehrfachkanten

Abbildung 20: Gerichteter Graph ohne Mehrfachkanten

Abbildung 21: Gerichteter Graph mit Mehrfachkanten

Abbildung 22: Ungerichteter Graph mit Mehrfachkanten

A B

A B

A B

A B

RDF Seite 53

5.11.1 RDF Triple in Graphentheorie
Wenn wir nun den Aufbau von RDF Graphen anhand der Abbildung 5: Aufbau

von RDF-Aussagen betrachenten können wir feststellen, dass es sich um einen

gerichteten Graphen ohne Mehrfachkanten handelt. Der Knoten „Ressource“

zeigt durch die Kante „Eigenschaft“ auf den Knoten „Wert“.

Abbildung 23: Graph aus Abbildung 5: Aufbau von RDF-Aussagen

RDF Seite 54

6 Ontologien

6.1 Was sind Ontologien
Eine Ontologie im IT - Sinn ist eine geschaffene Sprache die aus einem spezi-

fischen Vokabular, um einen Teil der Wirklichkeit (Wissensbereich) zu

beschreiben, und Regeln über die Verwendung des Vokabulars besteht.

[Grub93]. Ontologien regeln, welche Eigenschaften, Funktionen und Bezie-

hungen Objekte im beschriebenen Wissensbereich selbst und zu anderen

Objekten haben. Kurz gesagt: Ontologien spezifizieren Konzepte!

Ontologien müssen die Beschreibung von Wissensgebieten so darstellen, dass

sie von anderen verstanden und verwendet werden können, da ohne einheitli-

che Sprache keine Information ausgetauscht werden kann.

Ontologien bauen auf dem Konzept von Taxonomien und Thesauren auf. Taxo-

nomien sind hierarchische Klassifikationen von Objekten der realen Welt, die

typischer Weise in einer Baumstruktur dargestellt werden. (z. B. „Tennis ist eine

Subklasse von Sportart“). Bei Thesauren werden Objekte beliebig miteinander

in Beziehung gesetzt (z. B. „A ist ein B“, „A ist verwandt mit B“). Taxonomien

und deren Unterschied zu Ontologien wird im Kapitel 6.9 Taxonomie vs. Onto-

logie näher behandelt.

6.2 Anforderungen an die Ontologie für das
Semantic Web
Ontologien für das Semantic Web bauen auf den bereits in den vorherigen Ka-

piteln beschriebenen Konzepten von XML und RDF auf. Diese Einordnung

kann in der folgenden Grafik nochmals ersehen werden.

RDF Seite 55

Abbildung 24: Schichtenmodell von Berners-Lee [KoMi01]

XML übernimmt die Aufgabe benutzerdefinierte Schemata zu definieren, und

RDF wird als flexibler Ansatz verwendet, um Daten abzubilden. Nun werden

Ontologien gebraucht, die die in den Dokumenten verwendeten Ausdrücke aus-

drücklich und formell beschreiben. Dies geschieht durch zusätzliche Sprach-

ausdrücke einhergehend mit formaler Semantik. Die Wichtigkeit von Ontologien

für das Semantic Web liegt darin, dass zur Schaffung von leistungsfähigen

Web – Applikationen, die Daten interpretieren und miteinander in Beziehung

setzen können, die Basissemantik von RDF nicht ausreicht.

Um diese Anforderungen für das Semantic Web zu erfüllen, muss die Ontolo-

gie Sprache für das Semantic Web einige Punkte erfüllen [vgl. W3Cb]:

• Ontologien sollten öffentlich zugänglich sein und zusätzlich durch andere

Ontologien erweiterbar sein.

• Einerseits sollen Ontologien ein weites Spektrum an Wissen darstellen,

anderseits sollen auch effiziente Möglichkeiten bestehen, daraus

Schlüsse zu ziehen. Darum muss ein Mittelweg zwischen Ausdruckstär-

ke und Skalierbarkeit gefunden werden.

• Die Sprache soll einfach zu erlernen sein, und ein klares Konzept und

Ausdrucksweise haben.

• Ontologien müssen eindeutig identifizierbar sein. (URI)

RDF Seite 56

• Verschiedene Ontologien können ein und dasselbe Konzept durch die

eindeutige Unterscheidbarkeit auf verschiedenste Art und Weise dar-

stellen.

• Jede Ontologie muss Metadaten über den Ersteller, Erstelldatum usw.

integrieren.

• Die geschaffene Sprache muss es ermöglichen verschiedene Versionen

einer Ontologie zu vergleichen und in Verbindung zu bringen.

• Klassen müssen wie Instanzen behandelt werden können

RDF Seite 57

6.3 Web Ontology Language
Zur Einbindung von Ontologien in das Semantic Web wurde unter Einhaltung

der Anforderungen der W3C Web Ontology Working Group die Web Ontology

Language (kurz: OWL7) geschaffen. Die Spezifikationen für OWL wurden am

10. Februar 2004 verabschiedet. [W3Ca]

Es wird aufbauend auf der Syntax von XML und semantischen Sprachaus-

drücken eine Sprache geboten, die es ermöglicht Bedeutungen für OWL Onto-

logien zu beschreiben. Dadurch ist OWL für Anwendungen geeignet, die In-

formation weiterverarbeiten und sie nicht nur für Menschen darstellen. Durch

die Verwendung eines zusätzlichen Vokabulars und formaler Semantik wird

eine größere Maschinenverarbeitungsmöglichkeit von Informationen geboten,

als dies mit XML, RDF oder auch RDF Schema möglich wäre. OWL ist in drei

Subsprachen, die sich in der Aussagenkräftigkeit unterscheiden, gegliedert:

• OWL Lite

• OWL DL (Description Logic)

• OWL Full

Im Folgenden sollen die drei Subsprachen von OWL kurz vorgestellt werden.

OWL LITE

OWL Lite kann als Basisversion bzw. „light“ Version von OWL gesehen

werden. Es wird verwendet um eine einheitliche Hierarchie oder einfache

eingeschränkte Abstraktionen darzustellen [vgl. W3Cc].

OWL DL Description Logic

OWL DL ist für jene Nutzer gedacht, die ein Maximum an Ausdrucksstär-

ke möchten, ohne dabei auf vollständige Verarbeitbarkeit und Entscheid-

barkeit verzichten zu müssen [vgl. W3Cc].

OWL Full

7 Die Abkürzung für Web Ontology Language müsste eigentlich WOL sein. Doch als Referenz
an die Eule in der Kindergeschichte Winnie Puuh, die in der englischen Originalfassung ihren
Namen „Eule“ „OWL“ immer falsch als „WOL“ schreibt, wurde die Vertauschung der Buch-
staben umgekehrt. So wird aus Web Ontology Language WOL -> OWL.

RDF Seite 58

OWL Full bietet ein Maximum an Ausdrucksstärke und syntaktische Frei-

heit von RDF, jedoch keine Garantie für Verarbeitbarkeit und Entscheid-

barkeit [vgl. W3Cc].

Da die drei OWL Subsprachen jeweils eine Erweiterung der aussagenschwä-

cheren Subsprache darstellen, ist die aussagenschwächere Sprache eine gül-

tige Version der aussagenstärkeren Version. Jedoch sind Ontologien die in

einer aussagenkräftigeren Subsprache geschrieben worden sind, nicht zu aus-

sagenschwächeren kompatibel. (keine „Abwärtskompatibiliät“)

Daraus können folgende Schlüsse gezogen werden:

 Jede korrekte OWL Lite Ontologie ist eine korrekte OWL DL Ontologie.

 Jede korrekte OWL DL Ontologie ist eine korrekte OWL Full Ontologie

 Jede korrekte OWL Lite Ontologie ist eine korrekte OWL Full Ontologie

 Jede gültige OWL Lite Schlussfolgerung ist eine gültige OWL DL Schluss-

folgerung

 Jede gültige OWL DL Schlussfolgerung ist eine gültige OWL Full Schluss-

folgerung

 Jede gültige OWL Lite Schlussfolgerung ist eine gültige OWL Full Schluss-

folgerung

Diese Aussagen sollen mit der nachfolgenden Grafik noch einmal verdeutlicht

werden.

RDF Seite 59

Abbildung 25: Zusammenhang OWL Full, OWL DL und OWL Lite [Schr04]

In der Gegenüberstellung mit RDF können folgende Aussagen getroffen

werden. OWL Full kann als Erweiterung von RDF gesehen werden. OWL Lite

und OWL DL können nur als Erweiterungen einer eingeschränkten Sicht auf

RDF bezeichnet werden.

Daraus können folgende Schlüsse gezogen werden:

• Jedes OWL (lite, DL und Full) Dokument ist ein RDF Dokument.

• Jede RDF Dokument ist ein gültiges OWL Full Dokument.

• Nur bestimmte RDF Dokumente sind gültige OWL DL bzw. OWL lite Do-

kumente

RDF Seite 60

6.4OWL LITE
Die ausdrucksschwächste Subsprache von OWL ist OWL Lite. Durch sie

lassen sich einfache Klassenhierarchien und Restriktionen darstellen. Durch

die geringere Komplexität von OWL Lite ist es leicht Thesauri und Taxonomien

zu migrieren, sowie Tools zu entwickeln.

OWL Lite bietet Sprachausdrücken die im Bezug zum RDF Schema stehen,

Ausdrücke der Property Einschränkungen, Klassen Schnittmenge, Datentypen,

(In)Äquivalenz, eingeschränkte Kardinalitäten, Versionierung; Property Charac-

teristika, Header Informationen und Anmerkungen zu den Properties. Die ge-

nauen Sprachausdrücke können in [W3Cd] nachgelesen werden.

6.5OWL DL (DESCRIPTION LOGIC)
OWL DL ist für jene Nutzer gedacht, denen die Ausdrucksstärke von OWL Lite

nicht genügt und wenn eine vollständige Verarbeitbarkeit und Entscheidbarkeit

gegeben sein soll. Es können sämtliche OWL Konstrukte verwendet werden,

die jedoch gewissen Beschränkungen unterliegen. OWL DL verlangt Typenun-

terscheidung. Dies bedeutet, dass eine Klasse nicht gleichzeitig ein Individual

oder eine Eigenschaft (Property) sein kann. Desweiteren kann eine Eigenschaft

(Property) nicht auch gleichzeitig ein Individual oder eine Klasse sein. Restrik-

tionen können daher mit OWL DL nicht auf die Sprachelemente von OWL

selbst angewendet werden. Eine weitere Restriktion ist, dass Eigenschaften

(Properties) entweder „ObjectProperties“ „oder DataProperties“ sind [vgl.

W3Cd]

OWL DL entspricht einer entscheidbaren terminologischen Logik (Description

Logic (DL)) und damit einer Teilmenge der Prädikaten - Logik erster Stufe,

erlaubt also auch keine Metabegriffe und keine „semantischen“ Relationen mit

Begriffen als Argumenten.

OWL DL erweitert die Sprachausdrücke von OWL Lite um Ausdrücke für

Klassen Grundsätze, wählbaren Kardinalitäten, Boolean Kombinationen von

Klassenausdrücken und Wertinformation. Die genauen Sprachausdrücke

können wiederum unter [W3Cd] nachgelesen werden.

RDF Seite 61

6.6 OWL Full
OWL Full ist für Benutzer gedacht, die maximale Ausdrucksstärke und die syn-

taktische Freiheit von RDF möchten. Sie müssen dabei jedoch auf die Garantie

der Verarbeitbarkeit verzichten. OWL Full erlaubt es einer Ontologie die Bedeu-

tung von vordefiniertem (RDF oder OWL) Vokabular zu erweitern. OWL Full

nützt denselben Syntax wie OWL DL. Der Unterschied zwischen den Sprachen

liegt darin, dass OWL Full keinen Restriktionen unterliegt. Es muss auf die be-

reits erwähnten Restriktionen wie Typenunterscheidung oder Eigenschaftsre-

striktionen keine Rücksicht genommen werden.

6.7 Owl Erklärungsbeispiel
Im Folgenden ist eine einfache Ontologie über den Nachrichtenbereich darge-

stellt. Es ist zu beachten, dass nur einige der wichtigsten Aspekte beleuchtet

werden und kein Anspruch auf Vollständigkeit der Anwendungsmöglichkeiten

von OWL gestellt werden kann.

Die Zeile [6] identifiziert den Namespace der Ontologie. Zeile [7] identifiziert die

Basis – URI dieses Dokuments. Diese wurde frei mit

„http://www.ontologien.at/news.owl“ gewählt. Von Zeile 3 bis 6 werden die fix

definierten Namespaces für OWL [5], RDF [3], RDF Schema [4] und XML

Schema Datentypen definiert. Unter [8] könnte man einen Namen oder eine

Referenz für die Ontologie angeben. Wenn wie in unserem Fall nichts angege-

ben ist, was auch der Standardfall ist, ist die URI des Dokuments der Name. Es

sind die Klassen Autor und Nachricht (mit den Subklassen Sport und Politik) in

[9 – 19] deklariert. Als Restriktion wurde definiert, dass eine Nachricht von

einem Autor geschrieben wird [20 – 30]. „Staberl“ [37] und „Dr. Schneckerl“ [38]

sind Instanzen der Klasse Autor. Von [40 – 50] wird je eine Sport- und eine Po-

litiknachricht instanziert. Detailierte Informationen zum Aufbau von OWL

können unter der URL http://www.w3.org/TR/2004/REC-owl-guide-20040210/

gefunden werden.

 1<?xml version="1.0"?>
 2<rdf:RDF
 3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

RDF Seite 62

 4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 5 xmlns:owl="http://www.w3.org/2002/07/owl#"
 6 xmlns="http://www.ontologien.at/news.owl#"
 7 xml:base="http://www.ontologien.at/news.owl">

8 <owl:Ontology rdf:about=""/>

 9 <owl:Class rdf:ID="Sport">
10 <rdfs:subClassOf>
11 <owl:Class rdf:ID="Nachricht"/>
12 </rdfs:subClassOf>
13 </owl:Class>
14 <owl:Class rdf:ID="Autor"/>
15 <owl:Class rdf:ID="Politik">
16 <rdfs:subClassOf>
17 <owl:Class rdf:about="#Nachricht"/>
18 </rdfs:subClassOf>
19 </owl:Class>

20 <owl:Class rdf:about="#Nachricht">
21 <rdfs:subClassOf>
22 <owl:Restriction>
23 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLS-
chema#int"
24 >1</owl:cardinality>
25 <owl:onProperty>
26 <owl:ObjectProperty rdf:ID="wurdegeschriebenvon"/>
27 </owl:onProperty>
28 </owl:Restriction>
29 </rdfs:subClassOf>
30 </owl:Class>
31
32 <owl:ObjectProperty rdf:about="#wurdegeschriebenvon">
33 <rdfs:domain rdf:resource="#Nachricht"/>
34 <rdfs:range rdf:resource="#Autor"/>
35 </owl:ObjectProperty>
36
37 <Autor rdf:ID="Staberl"/>
38 <Autor rdf:ID="Dr.Schneckerl"/>
39
40 <Sport rdf:ID="EM2008">
41 <wurdegeschriebenvon rdf:resource="#Dr.Schneckerl"/>
42 <rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
43 >Das EM Stadion in Klagenfurt wird gebaut.</rdfs:comment>

RDF Seite 63

44 </Sport>

45 <Politik rdf:ID="EUVerfassung">
46 <rdfs:comment
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
47 > Franzosen sagen NON zur EU-Verfassung</rdfs:comment>
48 <wurdegeschriebenvon rdf:resource="#Staberl"/>
49 </Politik>
50</rdf:RDF>

6.8 Vertiefendes Tutorial
Zur Vertiefung soll anhand des folgenden Beispiels einer einfachen Computer

Hardware Ontologie gezeigt werden, wie eine Ontologie erschaffen wird. Es

werden die Schritte jeweils kurz erläutert und durch dazugehörigen Code

ergänzt. Zum Zwecke des besseren Verständnisses wird auf Komplexität ver-

zichtet und die vereinfachte Annahme getroffen, dass ein PC nur aus Main-

board, CPU und Grafikkarte besteht.

Um eine eindeutige interpretierbare Ontologie die von Softwareagenten genutzt

werden kann zu erstellen, sind die formale Syntax und die formale Semantik

von OWL anzuwenden.

Namespaces

Als erstes muss definiert werden, welches spezifische Vokabular genützt wird.

Dazu wird ein „XML namespace“ deklariert. Dieser macht gemäß dem Prinzip

der Namespaces die Ontologie eindeutig.
<rdf:RDF
1xmlns = "http://www.meineonto.at/pc.owl#"
2xml:base = "http://www.meineonto.at/pc.owl">
3xmlns:owl ="http://www.w3.org/2002/07/owl#"
4xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
6xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

Die erste Zeile (1) identifiziert den Namespace der Ontologie. Die Zeile 2 identi-

fiziert die Basis – URI dieses Dokuments. Von Zeile 3 bis 6 werden die (fix de-

finierten) Namespaces für OWL, RDF, RDF Schema und XML Schema Daten-

typen definiert.

Ontologie Header

RDF Seite 64

Als nächstes werden im Header der Ontologiename [4], Bemerkungen [1], Hin-

weis auf ältere Versionen [2] oder auch die Einbindung von weiteren Ontologien

[3] durchgeführt. Weiters könnt unter anderem noch Inkompatibilität mit „owl:in-

compatibleWith“ oder Versioninformation mit „owl:versionInfo“ angegeben

werden. Unter rdf:about [0] könnte man einen Namen oder eine Referenz für

die Ontologe angeben. Wenn wie in unserem Fall durch " "nichts angegeben

ist, was auch der Standardfall ist, ist die URI des Dokuments der Name.
0 <owl:Ontology rdf:about="">
1 <rdfs:comment>An example OWL ontology</rdfs:comment>
2 <owl:priorVersion
rdf:resource="http://www.meineonto.at/bspalt.owl"/>
3 <owl:imports
rdf:resource="http://www.meineonto.at/grundonto.owl"/>
4 <rdfs:label>Computer Ontology</rdfs:label>

Klassen

Nun werden durch die Definition von Klassen Taxonomiebäume geschaffen.

Dies geschieht durch <owl:Class rdf:ID=“Klassenname“/> zur

Klassendeklaration durch <rdfs:subClassOf rdf:resource="#Überge-
ordneteKlasse"/> um Unterklassen, und damit transitive Abhängigkeiten zu

deklarieren. In unserem Beispiel werden als erstes die Klassen System-

komponenten [1] und Computer [2] geschaffen. Danach werden in [3-11] die

Klassen Mainboard, Grafikkarte und CPU jeweils mit Hinweis, das es sich um

Subklassen von Systemkomponenten [4, 7 und 10] deklariert.
1 <owl:Class rdf:ID="Systemkomponenten"/>
2 <owl:Class rdf:ID="Computer"/>

3 <owl:Class rdf:ID="Mainboard">
4 <rdfs:subClassOf rdf:resource="#Systemkomponenten"/>
5 </owl:Class>

6 <owl:Class rdf:ID="Grafikkarte">
7 <rdfs:subClassOf rdf:resource="#Systemkomponenten"/>
8 </owl:Class>

9 <owl:Class rdf:ID="CPU">
10 <rdfs:subClassOf rdf:resource="#Systemkomponenten"/>
11 </owl:Class>

Instanzen

RDF Seite 65

Um Instanzen zu erzeugen werden diese als Individuen der Klasse durch

<Klasse rdf:ID="Instanzenname"/> instanziert. Beispielhaft wird unter [1] ein

„Intel3Ghz“ Prozessor als Instanz eines CPU’s sowie die Grafikkarte „Ge-

Force6600GT“ [2] als auch das Mainboard „AsusA8N“ [3] angelegt
1 <CPU rdf:ID="Intel3Ghz"/>
2 <Grafikkarte rdf:ID="GeForce6600GT"/>
3 <Mainboard rdf:ID="AsusA8N"/>

Eigenschaften (Properties)

Um Fakten über Klassenmitglieder aber auch über Instanzen anzugeben,

müssen diese durch Eigenschaftsdefinitionen in Beziehung gebracht werden. In

[1] wird die Objekteigenschaft (Relationen zwischen Instanzen von zwei

Klassen) „hatCPU“ deklariert. Die Domain [2] (Grundmenge) und Range [3]

(Wertebereich) Deklaration bringt die Instanzen von „Computer“ und „CPU“ in

Beziehung. Genauso geschieht es für „hatMainboard“ und „hatGrafikkarte“ [5-

12].
1<owl:ObjectProperty rdf:ID="hatCPU">
2 <rdfs:domain rdf:resource="#Computer"/>
3 <rdfs:range rdf:resource="#CPU"/>
4 </owl:ObjectProperty>
5 <owl:ObjectProperty rdf:ID="hatMainboard">
6 <rdfs:range rdf:resource="#Mainboard"/>
7 <rdfs:domain rdf:resource="#Computer"/>
8 </owl:ObjectProperty>
9 <owl:ObjectProperty rdf:ID="hatGrafikkarte">
10 <rdfs:domain rdf:resource="#Computer"/>
11 <rdfs:range rdf:resource="#Grafikkarte"/>
12 </owl:ObjectProperty>

Nun kann definiert werden, dass ein Computer aus genau einen CPU [1-9],

einer Grafikkarte [10 -18] und einem Mainboard [19 – 27] besteht. Dazu wird

die Restriktion „cardinality“ verwendet. Dadurch ist nur ein Wert, in unserem

Fall „1“ erlaubt.
0 <owl:Class rdf:ID="Computer">
1 <rdfs:subClassOf>
2 <owl:Restriction>
3 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLS-
chema#int"
4 >1</owl:cardinality>
5 <owl:onProperty>
6 <owl:ObjectProperty rdf:ID="hatCPU"/>

RDF Seite 66

7 </owl:onProperty>
8 </owl:Restriction>
9 </rdfs:subClassOf>
10 <rdfs:subClassOf>
11 <owl:Restriction>
12 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLS-
chema#int"
13 >1</owl:cardinality>
14 <owl:onProperty>
15 <owl:ObjectProperty rdf:ID="hatGrafikkarte"/>
16 </owl:onProperty>
17 </owl:Restriction>
18 </rdfs:subClassOf>
19 <rdfs:subClassOf>
20 <owl:Restriction>
21 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLS-
chema#int"
22 >1</owl:cardinality>
23 <owl:onProperty>
24 <owl:ObjectProperty rdf:ID="hatMainboard"/>
25 </owl:onProperty>
26 </owl:Restriction>
27 </rdfs:subClassOf>
28 </owl:Class>

Nun können wir die Computerinstanz „HeimPC“ [0] mit den Eigenschaften hat-

CPU [2], hatMainboard [2] und hatGrafikkarte [3] beschreiben.
0<Computer rdf:ID="HeimPC">
1 <hatCPU rdf:resource="#Intel3Ghz"/>
2 <hatMainboard rdf:resource="#AsusA8N"/>
3 <hatGrafikkarte rdf:resource="#GeForce6600GT"/>
4 </Computer>

Unsere (fertige) Computerontologie sieht folgendermaßen aus:
<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://www.meineono.at/pc.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.meineono.at/pc.owl">
 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Systemkomponenten"/>

RDF Seite 67

 <owl:Class rdf:ID="Mainboard">
 <rdfs:subClassOf rdf:resource="#Systemkomponenten"/>
 </owl:Class>
 <owl:Class rdf:ID="CPU">
 <rdfs:subClassOf rdf:resource="#Systemkomponenten"/>
 </owl:Class>
 <owl:Class rdf:ID="Grafikkarte">
 <rdfs:subClassOf rdf:resource="#Systemkomponenten"/>
 </owl:Class>
 <owl:Class rdf:ID="Computer">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hatCPU"/>
 </owl:onProperty>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLS-
chema#int"
 >1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLS-
chema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hatGrafikkarte"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLS-
chema#int"
 >1</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hatMainboard"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:about="#hatCPU">
 <rdfs:domain rdf:resource="#Computer"/>
 <rdfs:range rdf:resource="#CPU"/>

RDF Seite 68

 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hatGrafikkarte">
 <rdfs:domain rdf:resource="#Computer"/>
 <rdfs:range rdf:resource="#Grafikkarte"/>
 </owl:ObjectProperty>
 <owl:ObjectProperty rdf:about="#hatMainboard">
 <rdfs:range rdf:resource="#Mainboard"/>
 <rdfs:domain rdf:resource="#Computer"/>
 </owl:ObjectProperty>

 <Grafikkarte rdf:ID="GeForce6600GT"/>
 <CPU rdf:ID="Intel3Ghz"/>
 <Mainboard rdf:ID="AsusA8N"/>

 <Computer rdf:ID="HeimPC">
 <hatCPU rdf:resource="#Intel3Ghz"/>
 <hatMainboard rdf:resource="#AsusA8N"/>
 <hatGrafikkarte rdf:resource="#GeForce6600GT"/>
 </Computer>
</rdf:RDF>

Es handelt sich hierbei um eine OWL Lite Ontologie.

Nehmen wir nun an, dass wir unsere Ontologie dahin erweitern, das nun auch

Computer (z.B.: Server), welche mit zwei Prozessoren betrieben werden, unter-

stützt werden. Dadurch würde die Restriktion das ein Computer genau eine

CPU hat durch
<owl:maxCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</owl:maxCardin-
ality>

ersetzt werden. Das hat zur Folge, dass die Ontologie nun eine OWL DL Onto-

logie ist, da bei OWL Lite die Kardialitäten auf „0“ und „1“ beschränkt sind.

6.9 Taxonomie vs. Ontologie

Der Unterschied zwischen Ontologien und Taxonomien liegt darin, dass Taxo-

nomien Objekte lediglich hierarchisch klassifizieren. Ontologien bieten neben

RDF Seite 69

der reinen hierarchischen Klassifikation der Objekte auch die Möglichkeit, die

Beziehungen, Restriktionen und Eigenschaften der Objekte darzustellen. Als

Beispiel wird folgend eine Taxonomie für Getränke, die sich in Bier und Wein

und Wein wiederum in Weißwein und Rotwein gliedert dargestellt.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.newsmuster.org/getreanke.owl#"
 xml:base="http://www.newsmuster.org/getreanke.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Bier">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Getränke"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Wein">
 <rdfs:subClassOf rdf:resource="#Getränke"/>
 </owl:Class>
 <owl:Class rdf:ID="Rotwein">
 <rdfs:subClassOf rdf:resource="#Wein"/>
 </owl:Class>
 <owl:Class rdf:ID="Weisswein">
 <rdfs:subClassOf rdf:resource="#Wein"/>
 </owl:Class>
</rdf:RDF>

Daraus lässt sich folgender Taxonomiebaum ableiten:

Abbildung 26: Einfache WeintaxonomieGetränke

Bier Wein

RDF Seite 70

Diese einfache Taxonomie kann nun zu einer Ontologie dadurch erweitert

werden, dass die Restriktion eingeführt wird, dass Weisswein besonders gut zu

Fischgerichten schmeckt. In der nachfolgenden Ontologie wird dies dargestellt.

„Fischgerichte“ ist eine Subklasse von „Essen“ und die Restriktion „passtzu-

Fisch“ gibt an, dass nur Weissweine zu Fisch schmecken. Als Beispiel wird die

Fischgerichte Instanz „Forelle“ instanziert, die als passenden Wein „Vetliner“

zugeordnet bekommt.

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://www.newsmuster.org/wein.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.newsmuster.org/wein.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Bier">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Getränke"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Wein">
 <rdfs:subClassOf rdf:resource="#Getränke"/>
 </owl:Class>
 <owl:Class rdf:ID="Fischgerichte">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Essen"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XML-
Schema#int"
 >1</owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="passtzuFisch"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Rotwein">
 <rdfs:subClassOf rdf:resource="#Wein"/>
 </owl:Class>

Weisswein Rotwein

RDF Seite 71

 <owl:Class rdf:ID="Weisswein">
 <rdfs:subClassOf rdf:resource="#Wein"/>
 </owl:Class>
 <owl:ObjectProperty rdf:about="#passtzuFisch">
 <rdfs:range rdf:resource="#Weisswein"/>
 </owl:ObjectProperty>
 <Weisswein rdf:ID="Vetliner"/>
 <Fischgerichte rdf:ID="Forelle">
 <passtzuFisch rdf:resource="#Vetliner"/>
 </Fischgerichte>
</rdf:RDF>

6.10 OWL Tools
Zur Validierung und zur Feststellung der Zugehörigkeit zu den einzelnen Sub-

sprachen werden im Internet Online – Validatoren angeboten. Exemplarisch sei

hier der WonderWeb OWL Ontology Validator genannt, der unter der URL:

„http://phoebus.cs.man.ac.uk:9999/OWL/Validator“ aufrufbar ist.

RDF Seite 72

Abbildung 27: Sreenshot des WonderWeb OWL Ontology Validator [Vali]

RDF Seite 73

Zur Erstellung von Ontologien gibt es auch Hilfstools. Hierbei sei vor allem

Protégé als Open Source Ontologie Editor erwähnt. Dieser wird unter der URL

„http://protege.stanford.edu/“ zum freien Download angeboten.

Abbildung 28: Screenshot von Protégé 3.0 [Prot]

6.11 Ontologien in der Praxis

Obwohl OWL in der Praxis noch wenig Verbreitung gefunden hat, sind sich

doch viele EDV Entwicklungsverantwortliche von bedeutenden Firmen wie Boe-

ing, HP, IBM Research, Nokia, Sun usw. einig, dass OWL ein bedeutsamer und

für die Zukunft sehr wichtiger Standard ist [W3Cf]. Der geringe Einsatz von

OWL mag auch daran liegen, da oft die Möglichkeiten von RDF noch nicht zur

Gänze ausgreizt sind, und ein Umstieg auf OWL erst in einiger Zeit nötig sein

wird.

Eine der interessantesten Semantic Web Anwendungen ist zurzeit die Firefox

Extension „Piggy Bank“. Mittels „Piggy Bank ist es bereits „heute“ möglich einen

RDF Seite 74

„semantischen Browser“ zu verwenden. Dazu werden die bereits bestehenden

Informationen ausgelesen und mittels RDF gespeichert. Danach ist es möglich

die Daten der verschiedensten Websites sinnvoll miteinander zu kombinieren.

So kann zum Beispiel die Adresse einer Firma durch die Kombination mit einer

„Planseite“ auf einer Landkarte dargestellt werden, obwohl dies auf der

ursprünglichen Firmenseite nicht möglich war. Leider ist die Anwendung von

„Piggy Bank“ derzeit nur auf wenigen Webseiten möglich. Beispielhaft sei die

Anwendung von „Piggy Bank“ an der Informationsseite http://www.orf.at/ ge-

zeigt.

Abbildung 29: Screenshot von http://www.orf.at/ vom 24. August 2005

Durch einen „Klick“ auf das „Pure Data“ Symbol werden die Daten neu aufbe-

reitet und als „reine Information“ (Pure Data) dargestellt. Danach kann die Seite

nach diversen Kriterien gruppiert und untersucht werden, was die Informations-

gewinnung für den Benützer vereinfacht. Unter der URL

http://simile.mit.edu/piggy-bank/ kann die Firefox - Extension „Piggy Bank“ her-

untergeladen werden.

Pure Data

RDF Seite 75

Abbildung 30: Screenshot von http://www.orf.at/ , „Pure Data“ Ansicht vom 24. August 2005

6.12Exkurs: Beschreibungslogik

Beschreibungslogiken sind Sprachen zur Repräsentation von Wissen. Wie der

Name “Beschreibungslogik” bereits sagt, handelt es sich einerseits um Konzep-

te um eine Sache zu beschreiben, und andererseits um eine auf Logik ba-

sierende Semantik. Beschreibungslogiken sind eine Untermenge der Prädi-

katenlogik, die wiederrum eine Untermenge der Logik ist. Mittels Prädikatenlo-

gik können einfache logische Aussagen wie zB. „Alle Weißweine schmecken

gut zu Fisch“ oder „Die Forelle ist ein Fisch“ und logische Schlussfolgerungen,

in unserem Beispiel „Weißwein schmeckt zu Forelle“, getroffen werden

[Nard02] [Pann04].

RDF Seite 76

Abbildung 31: Einordnung der Beschreibungslogik

Logik

OWL

Beschreibungs-
logik

Prädikaten-
logik

RDF Seite 77

7Ausblick
Vier Jahre sind vergangen seit Tim Berners Lee's Artikel im „Scientific Ameri-

can“ veröffentlicht wurde. In dieser Zeit ist viel passiert und vieles hat sich

verändert. Auf der jährlich stattfindenden International Semantic Web Confe-

rence (ISWC) werden Ideen, Technologien und Probleme, kurz, verschiedenste

Aspekte, die mit dem Semantic Web in Verbindung stehen (oder stehen könn-

ten / sollten) vorgestellt, diskutiert und ausgetauscht. An dieser Stelle möchten

die Autoren einige davon herausgreifen.

Die vorgestellte Schichteneinteilung ist, zumindest was die oberen Schichten

(Logic bis Trust) betrifft, bereits nicht mehr aktuell. Warum dennoch das

ursprüngliche Schichtenmodell als Grundlage für diese Unterlagen herangezo-

gen wurde, ist schnell erklärt: die Autoren wollten den Lesern die ursprüngliche

Idee und Konzeption des Semantic Web näher bringen und einen Einblick in

die grundlegende Funktionsweise der zur Umsetzung angedachten Technologi-

en bieten. Dabei sollte eine Wertung weitgehend vermieden und dem Leser

selbst überlassen werden. Diese Unterlagen sind gewissermaßen als „Sprung-

brett“ für eine weitere Auseinandersetzung mit dem Thema gedacht.

Bereits bei der zweiten Schicht (XML) beginnen sich manche Geister zu

scheiden. Andere Technologien sind im Gespräch, die andere Schichten inklu-

dieren könnten. Spätestens auf der Ebene der Ontologien jedoch teilen sich die

Ansichten nicht nur auf der technologischen, sondern auf der konzeptionellen

Ebene, von den darüber liegenden ganz zu schweigen.

Drei Technologien die in Zusammenhang mit dem Semantic Web stehen und

neue Aspekte einbringen sollen hier kurz umrissen werden:

SPARQL (Protocol And RDF Query Language)

Um die in RDF verfügbare Information besser nutzbar zu machen, soll eine

standardisierte Abfragesprache entwickelt werden, die Information aus den

RDF-Graphen ausliest. Stand: 3. Public Working Draft (19. April 2005)

(http://www.w3.org/TR/rdf-sparql-query/ ;letzter Abruf am 2005-06-23)

XHTML 2.0

Um semantische Aspekte und neue Technologien besser einbinden zu können,

wird XHTML 2.0 einige Neuerungen und Änderungen gegenüber seinem Vor-

RDF Seite 78

gänger beeinhalten: das Abgehen von der strikten Abwärtskompatibilität und

der Vorsatz weniger layout- und mehr strukturorientiert zu sein, sind nur zwei

von mehreren wichtigen Punkten. Stand: 7. Public Working Draft (27. Mai 2005)

(http://www.w3.org/TR/xhtml2/ ; letzter Abruf am 2005-06-23)

VoiceXML 2.1

VoiceXML will unterschiedliche Signale nutzbar machen, um damit Vorteile des

WWW in neuen Bereichen nutzbar zu machen. Die angedachte Palette ist

groß: von der Navigation durch eine Seite mittels Tastenton (per Telefon) bis

hin zur Aufnahme von gesprochenen Worten, könnten gänzlich neue

Anwendungen für diese Technologie entstehen. Stand: Candidate Recom-

mendation (13. Juni 2005). (http://www.w3.org/TR/2005/CR-voicexml21-

20050613/ ; letzter Abruf am 2005-06-23)

Diese drei Beispiele zeigen, dass sich das Internet, mehr oder weniger of-

fensichtlich, weiter verändern wird. Ob und in welcher Weise die Semantik ver-

stärkt einfließen wird, bleibt abzuwarten.

RDF Seite 79

8Übungsbeispiele

8.1XML
Beispiel 1: Finden Sie den Fehler in diesem Beispiel:
<autor name=Maier>

Beispiel 2: Finden Sie die Fehler in diesem Beispiel:
<artikel>
<titel>Meteorologen prognostizieren Rekordsommer</titel>
<autor>Wetterfrosch</autor>
<datum>14. Mai 2005 <datum>

</Artikel>

Beispiel 3: Erstellen Sie eine XML-Datei, die zu folgender Beschreibung passt:

Die Datei „Kontakte.xml“ soll mindestens drei Einträge aufweisen. Jeder Eintrag

soll den Namen, den Vornamen, das Alter und die e-mail-Adresse umfassen.

Beispiel 4: Erstellen Sie zu folgender XML-Datei eine passende Schema-Da-

tei:
<?xml version="1.0" encoding="ISO-8859-1"?>
<autoren xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:no-
NamespaceSchemaLocation="BSP4.xsd">
 <autor>
 <name>Maier</name>
 <vorname>Hans</vorname>
 <alter>38</alter>
 <berufserfahrung>5 Jahre</berufserfahrung>
 </autor>
 <autor>
 <name>Mayer</name>
 <vorname>Max</vorname>
 <alter>47</alter>
 <berufserfahrung>25</berufserfahrung>
 <wichtigeWerke>XML</wichtigeWerke>
 </autor>
</autoren>

RDF Seite 80

Beispiel 5: Erstellen Sie zu folgender Schema-Datei eine passende XML-Da-

tei:
?xml version="1.0" encoding="ISO-8859-1"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="schlagzeilen">
 <xsd:annotation>
 <xsd:documentation>Schema-Datei zu Beispiel 5</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="schlagzeile" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="titel">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="55"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="redakteur" type="xsd:string"/>
 <xsd:element name="datum" type="xsd:date"/>
 <xsd:element name="bereich">
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="politik"/>
 <xsd:enumeration value="kultur"/>
 <xsd:enumeration value="sport"/>
 <xsd:enumeration value="wetter"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="anmerkung" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

RDF Seite 81

Beispiel 6: Erstellen Sie eine einfache XSL-Transformation, die eine HTML-

Tabelle ausgibt, die folgende Informationen enthält: Schlagzeile, Bereich und

Datum (Beziehen Sie sich auf Beispiel 5).

Beispiel 7: Erstellen Sie zu folgender XML-Datei eine Schema-Datei, die die

Auswahl an Städten auf die neun österreichischen Hauptstädte beschränkt und

die zulässt, dass kein Wert für das Element „himmel“ angegeben wird. Erstellen

Sie danach eine XSL-Datei, die alles in einer Tabelle ausgibt (leere Felder sind

erlaubt).
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="wetter.xsl"?>
<messungen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="wetter.xsd">
<wert>

<stadt>Eisenstadt</stadt>
<temp>33</temp>
<datum>2005-06-24</datum>

</wert>
<wert>

<stadt>Wien</stadt>
<himmel>Heiter</himmel>
<temp>32</temp>
<datum>2005-06-24</datum>

</wert>
<wert>

<stadt>Inssbruck</stadt>
<himmel>Stark bewölkt</himmel>
<temp>17</temp>
<datum>2005-06-24</datum>

</wert>
<wert>

<stadt>Graz</stadt>
<temp>26</temp>
<datum>2005-06-24</datum>

</wert>
</messungen>

RDF Seite 82

Zusatzbeispiel:

a)

Erstellen Sie eine XML-Datei mit dem Namen student.xml. in dieser Datei

sollen Daten über Studenten gespeichert werden können. Schreiben Sie eine

DTD und fügen sie 3 Datensätze Ihrer Wahl ein.

Die Datei soll folgendes Aussehen haben: Einem Student soll einen Vorname,

einen Nachname, eine Matrikelnummer und ein Studium zugeordnet werden

können. Zusätzlich soll dem Studium ein Attribut mit dem Namen Art zugeord-

net werden, welches beispielsweise die Werte „bakk“, „mag“ oder „dr“ haben

könnte, je nachdem um welchen Studientyp es sich handelt.

Hinweis: für Attribute verwenden Sie folgende Syntax:

In der DTD: <!ATTLIST studium art CDATA #IMPLIED>

In der XML-Datei: <studium art ="mag">IBW</studium>

b)

Erstellen sie eine Datei student2.xml, die der Datei Student.xml gleicht, aber

keine DTD enthält. Erstellen Sie stattdessen eine passende XML-Schema-Da-

tei. (student2.xsd)Berücksichtigen Sie auch die Datentypen, beispielsweise

kann eine Matrikelnummer nur eine Zahl sein (z.B. Integer). Fügen Sie ein Feld

für das Geburtsdatum hinzu.

Hinweis: Attribute in XML-Schema: <xs:attribute name="art" type="xsd:string"/>

8.2RDF
Beispiel 1:

In die Aussage aus soll ein weiterer Aspekt hinzugefügt werden. Stellen Sie

folgende Aussage grafisch dar: „Die Website www.newsmuster.org hat als Er-

steller die Seminargruppe, die aus Hans, Karl und Rudi besteht.“

Beispiel 2:

Erweitern Sie das Beispiel 1 insofern, dass die anonyme Ressource durch eine

eindeutige URI identifiziert werden kann.

RDF Seite 83

Beispiel 3:

Erstellen sie die XML-Notation zur Container-Darstellung aus Abbildung 14.

Beispiel 4:

Erstellen Sie die Syntax zur folgenden Abbildung, die ein Datenmodell einer

Aussage über eine Aussage darstellt.

Abbildung 32: Datenmodell einer Aussage über eine Aussage

RDF Seite 84

Beispiel 5:

Erstellen Sie eine Datei, die den Begriff „XML“ als Klasse und die Begriffe

„XML-Schema“ und „RDF“ als Unterklassen von „XML“ definiert.

Beispiel 6:

Erstellen Sie eine RSS-Datei, die unterschiedliche Nachrichtenmeldungen an-

bietet. Beziehen Sie sich dabei auf die fiktiv erstelle Website http://www.-

newsmuster.org.

Zusatzbeispiel:

Erstellen Sie eine RDF-Datei, die die Webseite

http://www.newsmuster.org/sport/meisterschaftsende.html beschreibt.

Beschreiben Sie den Autor mittels Website, Name und Email. Verwenden Sie

dabei das fiktive Schema xyz.

8.3OWL
Beispiel 1: Definieren sie die Klasse „Bälle“ mit den Subklassen „Fussball“ und

„Handball“ sowie die Klasse „Leder“ mit den Instanzen „Naturleder“ und „Kunst-

leder“. (Nehmen sie Namespace der Ontologie „http://www.beispiel.at/ball.owl“

an.

Beispiel 2: Nun erweitern sie die Ontologie um die Eigenschaft „istaus“

(owl:ObjectProperty), dass ein Fussball aus Leder sein muss. (verwenden sie

dazu die Restriktion „owl:hasValue“).

Beispiel 3: Instanzieren sie nun von der Klasse “Fussball” den “EMStar2008”
der aus „Naturleder ist.

RDF Seite 85

9Lösungen

9.1XML
Beispiel 1:
<autor name=“Maier“>
Bei Attributen muss der Wert immer in Anführungszeichen oder Hochkommas

stehen.

Beispiel 2:
<artikel>
<titel>Meteorologen prognostizieren Rekordsommer</titel>
<autor>Wetterfrosch</autor>
<datum>14. Mai 2005 </datum>

</Artikel>
1. Der Slash beim Schließ-Tag wird bei manueller Eingabe häufig

vergessen.

2. XML ist case-sensitive. D.h.: artikel ≠ Artikel

Beispiel 3:
<?xml version="1.0" encoding="ISO-8859-1"?>
<kontakte>
<eintrag>

<name>Iksemel</name>
<vorname>Detede</vorname>
<alter>5</alter>
<email>beispiel@test.com</email>

</eintrag>
<eintrag>

<name>Mustermann</name>
<vorname>Helga</vorname>
<alter>29</alter>
<email>muster@muster.com</email>

</eintrag>
<eintrag>

<name>Altmutter</name>
<vorname>Thomas</vorname>
<alter>26</alter>
<email>h0000000@wu-wien.ac.at</email>

</eintrag>
</kontakte>

Beispiel 4:

RDF Seite 86

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="autoren">

<xsd:annotation>
<xsd:documentation>Schema-Datei zu Beispiel 4</xsd:documentati-
on>

</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="autor" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="vorname" type="xsd:string"/>
<xsd:element name="alter" type="xsd:int"/>
<xsd:element name="berufserfahrung" type="xsd:string"/>
<xsd:element name="wichtigeWerke" type="xsd:string"
minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Beispiel 5:
<?xml version="1.0" encoding="ISO-8859-1"?>
<schlagzeilen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="F:\Eigene Dateien\Studium\SoSe05\SemWe-
bXML\BSP5.xsd">

<schlagzeile>
<titel>Heißer Sommer erwartet</titel>
<redakteur>Muster</redakteur>
<datum>2005-03-23</datum>
<bereich>wetter</bereich>

</schlagzeile>
<schlagzeile>

<titel>Vienale eröffnet</titel>
<redakteur>Vorlage</redakteur>
<datum>2005-04-15</datum>
<bereich>kultur</bereich>

</schlagzeile>
</schlagzeilen>

RDF Seite 87

Beispiel 6:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">

<html>
<head><title>Transformation</title></head>
<body>

 <table border="1">
 <tr>
 <td>Schlagzeile</td>
 <td>Bereich</td>
 <td>Datum</td>
 </tr>

<xsl:for-each select="schlagzeilen/schlagzeile">
 <tr>
 <td><xsl:value-of select="titel"/></td>
 <td><xsl:value-of select="datum"/></td>
 <td><xsl:value-of select="bereich"/></td>
 </tr>
 </xsl:for-each>
 </table>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Beispiel 7: Die Schema-Datei:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="messungen">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="wert" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="stadt">
<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="Wien"/>
<xsd:enumeration value="St.Pölten"/>
<xsd:enumeration value="Eisenstadt"/>

RDF Seite 88

<xsd:enumeration value="Linz"/>
<xsd:enumeration value="Graz"/>
<xsd:enumeration value="Inssbruck"/>
<xsd:enumeration value="Klagenfurt"/>
<xsd:enumeration value="Salzburg"/>
<xsd:enumeration value="Bregenz"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="himmel" type="xsd:string"
minOccurs="0"/>
<xsd:element name="temp" type="xsd:integer"/>
<xsd:element name="datum" type="xsd:date"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Die XSL-Datei:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">

<html>
<head><title>Wetterwerte</title></head>
<body>
 <table border="2">

 <tr>
 <td>Stadt</td>
 <td>Wetter</td>
 <td>Temperatur</td>
 <td>Datum</td>
 </tr>

<xsl:for-each select="messungen/wert">
 <tr>
 <td><xsl:value-of select="stadt"/></td>
 <td><xsl:value-of select="himmel"/></td>
 <td><xsl:value-of select="temp"/></td>
 <td><xsl:value-of select="datum"/></td>
 </tr>
 </xsl:for-each>

RDF Seite 89

 </table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Zusatzbeispiel:
a)
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE studenten [
 <!ELEMENT studenten (student)+>
 <!ELEMENT student (vorname, nachname, adresse)>
 <!ELEMENT vorname (#PCDATA)>
 <!ELEMENT nachname (#PCDATA)>
 <!ELEMENT matrikelnummer (#PCDATA)>
 <!ELEMENT studium (#PCDATA)>
 <!ATTLIST studium art CDATA #IMPLIED>
]>
<studenten>
 <student>
 <vorname>Lukas</vorname>
 <nachname>Helm</nachname>
 <matrikelnummer>0253563</matrikelnummer>
 <studium art ="bakk">WINF</studium>
 </student>
 <student>
 <vorname>Thomas</vorname>
 <nachname>Altmutter</nachname>
 <matrikelnummer>0053410</matrikelnummer>
 <studium art ="mag">IBW</studium>
 </student>
 <student>
 <vorname>Dieter</vorname>
 <nachname>Steffen</nachname>
 <matrikelnummer>9953501</matrikelnummer>
 <studium art="dr">BW</studium>
 </student>
</studenten>

b)
student2.xml:
<?xml version="1.0" encoding="ISO-8859-1"?>

RDF Seite 90

<studenten xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="student2.xsd">
 <student>
 <vorname>Lukas</vorname>
 <nachname>Helm</nachname>
 <matrikelnummer>0253563</matrikelnummer>
 <studium art ="bakk">WINF</studium>
 </student>
 <student>
 <vorname>Thomas</vorname>
 <nachname>Altmutter</nachname>
 <matrikelnummer>0053410</matrikelnummer>
 <studium art ="mag">IBW</studium>
 </student>
 <student>
 <vorname>Dieter</vorname>
 <nachname>Steffen</nachname>
 <matrikelnummer>0251281</matrikelnummer>
 <studium art="dr">BW</studium>
 </student>
</studenten>

RDF Seite 91

student2.xsd:
<?xml version="1.0" encoding="ISO-8859-1"?>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="studenten">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="student" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="vorname" type="xsd:string" />
 <xsd:element name="nachname" type="xsd:string" />
 <xsd:element name="matrikelnummer" type="xsd:int" />
 <xsd:element name="studium" type="xsd:string" />
 <xs:complexType>
 <xs:attribute name="art" type="xsd:string"/>
 </xs:complexType>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

9.2RDF
Beispiel 1:

Abbildung 33: Lösung zu, RDF-Beispiel 1

RDF Seite 92

Beispiel 2:

Abbildung 34: Lösung zum RDF-Beispiel 2

Die Aussage ist so zu lesen: „Die Mitglieder der Seminargruppe mit der Identifi-

kationsnummer 1234ss2005 haben den Namen Hans, Karl und Rudi. Die

Ressource http://newsmuster.org wurde von diesen Personen erstellt.“

Beispiel 3:

<rdf:Description about="ISBN0-471-89275-0">
 <xyz:author>
 <rdf:Sequence>

 <rdf:li resource="http://buch.com/longley" />
 <rdf:li resource="http:// buch.com/goodchild" />
</rdf:Sequence>

 </xyz:author>
</rdf:Description>

Beispiel 4:
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xyz="http://www.mayer.at/rdfschema#">
 <rdf:Description>
 <rdf:subject resource="http://www.mayer.at"/marketing />
 <rdf:predicate
 resource="http:// www.mayer.at/rdfschema#Creator" />
 <rdf:object>Herr Mayer</rdf:object>
 <rdf:type

RDF Seite 93

 resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement" />
 <xyz:attributedTo>Herr Huber</xyz:attributedTo>
 </rdf:Description>
</rdf:RDF>

Beispiel 5:
<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”>

<rdf:Description ID=”XML”>
 <rdf:type resource=”http://www.w3.org/2000/01/rdf-schema#Class”/>
 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2000/01/

rdf-schema#Resource”/>
</rdf:Description>

<rdf:Description ID=”XML-Schema”>
 <rdf:type resource=”http://www.w3.org/2000/01/rdf-schema#Class/”>
 <rdfs:subClassOf rdf:resource=”#XML”/>
</rdf:Description>

<rdf:Description ID=”RDF”>
 <rdf:type resource=”http://www.w3.org/2000/01/rdf-schema#Class”/>
 <rdfs:subClassOf rdf:resource=”#XML”/>
</rdf:Description>
</rdf>

[Ecks04, S. 260]

Innerhalb des RDF-Elements, das zwei Namensraum-Deklarationen für die
Namensräume von RDF/XML-Syntax und RDF-Schema enthält, werden drei
Description-Elemente verwendet. Diese enthalten als Eigenschaftselemente
type und subClassOf. Durch die Definitionen erhält man einen Oberbegriff
„XML“, von dem die beiden untergeordneten Begriffe „XML-Schema“ und „RDF“
abgeleitet werden können. Dadurch wird es z.B. ermöglicht, dass bei der Suche
bei Angabe von „XML“ auch Dokumente gefunden werden können, die nicht
„XML“, dafür aber „XML-Schema“ oder „RDF“ enthalten [siehe Ecks04, S.260].

Beispiel 6:
<?xml version=”1.0” encoding=”utf-8”?>

<rdf:RDF xmlns=”http://purl.org/rss/1.0/”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”

RDF Seite 94

 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

 <channel rdf:about=”http://www.newsmuster.org/home.rss”>
 <title>News Muster</title>
 <description>Die Seite, die vielseitige Nachrichten
anbietet...</description>
 <link>http://www.newsmuster.org/</link>

 <dc:date>2005-06-01T09:00:00Z</dc:date>

 <items>
 <rdf:Seq>
 <rdf:li
rdf:resource=”http://www.newsmuster.org/2005/138.html” />
 <rdf:li rdf:resource=”http://www.newsmuster.org/2005/139.-
html” />
 <rdf:li rdf:resource=”http://www.newsmuster.org/2005/140.-
html” />
 </rdf:Seq>
 </items>

 </channel>

 <item rdf:about=”http://www.newsmuster.org/2005/138.html”>
 <title>Liverpool gewinnt die Champions League!</title>
 <description>25. Mai 2005: Liverpool besiegt den AC Milan im
 Elfmeterschießen […]
 </description>
 <link> http://www.newsmuster.org/2005/138.html </link>
 <dc:date>2005-05-25</dc:date>
 </item>

 <item rdf:about=”http://www.newsmuster.org/2005/139.html”>
 <title>Frankreich sagt Nein zur EU-Verfassung</title>
 <description>29. Mai 2005: Die Volksabstimmung zur EU-Verfassung
 brachte inFrankreich ein klares Nein […]</description>
 <link> http://www.newsmuster.org/2005/139.html </link>
 <dc:date>2005-05-29</dc:date>
 </item>

 <item rdf:about=”http://www.newsmuster.org/2005/140.html”>
 <title>Probleme bei Airbus A380</title>
 <description>1. Juni 2005: Nach der Klage der USA wegen der Sub-
ventionen kommt auf
 Airbus das nächste Problem zu […]</description>

RDF Seite 95

 <link> http://www.newsmuster.org/2005/140.html </link>
 <dc:date>2005-06-01</dc:date>
 </item>

</rdf:RDF>

Zusatzbeispiel:
<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xyz="http://www.newsmuster.org/autorschema.xml">

 <rdf:Description
about=”http://www.newsmuster.org/sport/meisterschaftsende.html”>
 <xyz:Autor>
 <xyz:Website rdf:resource=http:// www.martinmuster.org />
 <xyz:Name>Martin Muster</xyz:Name>
 <xyz:Email>muster@newsmuster.org</xyz:Email>
 </xyz:Autor>
 </rdf:Description>
</rdf:RDF>

9.3OWL
Beispiel 1:

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://www.beispiel.at/ball.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.beispiel.at/ball.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Bälle"/>
 <owl:Class rdf:ID="Handball">
 <rdfs:subClassOf rdf:resource="#Bälle"/>
 </owl:Class>
 <owl:Class rdf:ID="Fussball">
 <rdfs:subClassOf rdf:resource="#Bälle"/>
 </owl:Class>
 <owl:Class rdf:ID="Leder"/>

RDF Seite 96

 <Leder rdf:ID="Naturleder"/>
 <Leder rdf:ID="Kunstleder"/>
</rdf:RDF>

Beispiel 2:

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://www.beispiel.at/ball.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xml:base="http://www.beispiel.at/ball.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Bälle"/>
 <owl:Class rdf:ID="Handball">
 <rdfs:subClassOf rdf:resource="#Bälle"/>
 </owl:Class>
 <owl:Class rdf:ID="Fussball">
 <rdfs:subClassOf rdf:resource="#Bälle"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:hasValue>
 <owl:Class rdf:ID="Leder"/>
 </owl:hasValue>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="istaus"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:ObjectProperty rdf:about="#istaus">
 <rdfs:range rdf:resource="#Leder"/>
 <rdfs:domain rdf:resource="#Fussball"/>
 </owl:ObjectProperty>
 <Leder rdf:ID="Naturleder"/>
 <Leder rdf:ID="Kunstleder"/>
</rdf:RDF>

Beispiel 3:

<Fussball rdf:ID="EMStar2008">
 <istaus rdf:resource="#Naturleder"/>
 </Fussball>

RDF Seite 97

10 Quellenverzeichnis
[BeHL01] Berners-Lee, Tim; Hendler, James; Lassila, Ora: The Semantic

Web; Scientific American, May 2001, pp. 35-42.

[Bern98] Berners-Lee, Tim: Semantic Web Road map; September 2004.

http://www.w3.org/DesignIssues/Semantic.html, letzter Abruf am

2005-04-11.

[Case] Patrick Casey, Associated Press

[Born05] Born, Günter: jetzt lerne ich XML, Markt+Technik Verlag, München

2005.

[Choi03] Choi, Joongmin: Semantic Web Overview. Intelligent Systems

Laboratory, Dept. of Computer Science and Engineering, Hanyang

University, 2003.

http://cse.hanyang.ac.kr/~jmchoi/presentations/Ajou-030226.pdf,

letzter Abruf am 2005-05-09.

[Ecks04] Eckstein, Rainer; Eckstein, Silke, XML und Datenmodellierung,

2004

[Grub93] Gruber, T. R.; A Translation approach to portable ontology specific-

ations; Knowledge Acquisition; 5: S. 199-220; 1993

[Grub95] Gruber, T. (1995). Towards Principles for the design of ontologies

used for knowledge sharing. International Journal of Human-

Computer Studies, (43):907–928.

[HaNe01] Hansen, Hans Robert; Neumann, Gustaf: Wirtschaftsinformatik I, 8.

Auflage. Lucius & Lucius, Stuttgart 2001.

[Hüsl05] Hüsler, Martin: Kurzeinführung in XML. Fachhochschule Solothurn

Nordwestschweiz, 2005.

http://www.hst.fhso.ch/~huesler/internet/XML.pdf, letzter Abruf am

2005-04-18.

[Jeck03] Jeckle, Mario: XML-Namensräume. DaimlerChrysler Forschungs-

zentrum Ulm, 2003. http://www.jeckle.de/files/xmlnsW3CDE.pdf,

letzter Abruf am 2005-04-18.

RDF Seite 98

[Jeck04] Jeckle, Mario: e-Business Engineering Vorlesung, 2004.

http://www.jeckle.de/vorlesung/eBusinessEng/script.html, letzter

Abruf am 2005-06-23.

[KnKo01] Knobloch, Manfred; Kopp, Matthias: Web-Design mit XML,

dpunkt.verlag Heidelberg, 2001.

[Knop04] Knopper, Klaus: Einführung in die Informatik. http://www.knopper.-

net/bw/gdi/vorlesung/vorlesung2.pdf, letzter Abruf am 2005-06-18.

[KoMi01] Koivunen, Marja-Riitta; Miller, Eric: W3C Semantic Web Activity.

W3C 2001. http://www.w3.org/2001/12/semweb-fin/w3csw, letzter

Abruf am 2005-04-11.

[Nard02] Nardi Daniele, Ronald J. Brachman, An Introduction to Description

Logics 2002

[O.A.a] o.V.; http://www.ibiblio.org/pioneers/lee.html, letzter Abruf am 2005-

03-30.

[Palm01] Palmer, Sean B.: The Semantic Web: An Introduction; http://in-

fomesh.net/2001/swintro/, letzter Abruf am 2005-03-30.

[Pann04] Panny, Wolfgang: Expertensysteme und Uncertain Reasoning –

Logik und AI. Wirtschaftsuniversität Wien, Abteilung für Informa-

tionswirtschaft 2004.

[Peny05] Penya, Yoseba: Foliensätze 2 und 3, benutzt im „Grundzüge der In-

formationsstrukturierung“-Semiar im SoSe 05 an der WU-Wien; htt-

ps://learn.wu-wien.ac.at/ (Abruf am 2005-04-30; eingeschränkter

Zugang).

[Popp05] Popp, Nora: Eine Einführung in das Semantic Web. Humboldt Uni-

versität Informatik, Fachgebiet Wissensmanagement, Jänner 2005.

[Prot] Protégé Ontology Editor, http://protege.stanford.edu/ , letzter Abruf

am 2005-06-18

[Schr04] Schreiber (2004) http://www.cs.vu.nl/~guus/public/2004-webont-

zeist/all.htm , letzter Abruf am 2005-06-01

[Treib04] Treiblmaier, Horst: „XML“-Foliensatz, benutzt im „Webengineering

1“-Seminar im WS04/05 an der WU-Wien; https://learn.wu-wi-

en.ac.at/ (Abruf am 2004-11-29; eingeschränkter Zugang)

RDF Seite 99

[Unic05] Unicode Home Page: C0 Controls and Basic Latin. http://www.uni-

code.org/charts/PDF/U0000.pdf, letzter Abruf am 2005-06-18.

[Vali] OWL Validator http://phoebus.cs.man.ac.uk:9999/OWL/Validator,

letzter Abruf am 2005-06-24.

[W3C04] World Wide Web Consortium: Der technische Hintergrund; 2004.

http://www.w3c.at/Flyer/OnePage%202004.pdf, letzter Abruf am

2005-04-11.

[W3Ca] World Wide Web Consortium: Web Ontology Language (OWL).

http://www.w3.org/2004/OWL/, letzter Abruf am 2005-05-08.

[W3Cb] World Wide Web Consortium: Web Ontology Language (OWL).

http://www.w3.org/TR/2004/REC-webont-req-20040210/, letzter Ab-

ruf am 2005-05-20.

[W3Cc] World Wide Web Consortium: Web Ontology Language (OWL).

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2,

letzter Abruf am 2005-05-20.

[W3Cd] World Wide Web Consortium: Web Ontology Language (OWL).

http://www.w3.org/TR/owl-features/ , letzter Abruf am 2005-05-20.

[W3Ce] World Wide Web Consortium: Wood, David;

http://www.w3.org/2005/Talks/0512-semweb-dwood, letzter Abruf

am 2005-08-20.

[W3Cf] World Wide Web Consortium: Testimonials for W3C's Semantic

Web Recommendations - RDF and OWL,

http://www.w3.org/2004/01/sws-testimonial , letzter Abruf am 2005-

08-20.

[Weim05] Weimer, K ,SVG gibt Gas. Automobil-Bordnetzentwicklung mit

XML, SVG, Apache Cocoon und der XML-Datenbank eXist. Auto-

mobile boardnet development with XML, SDVG, Apache Cocoon

and the XML-database eXist

[Wels03] Welsh, Tom: The Semantic Web – Proof, Trust and Security. Cutter

Consortium, 2003. http://www.cutter.com/research/2003/ed-

ge030923.html, letzter Abruf am 2005-05-09.

RDF Seite 100

[Wiki a] Wikipedia: URI, URL. http://de.wikipedia.org/wiki/URL, letzter Abruf

am 2005-04-11.

[Wiki b] Wikipedia: XML. http://de.wikipedia.org/wiki/XML, letzter Abruf am

2005-04-11.

[Wiki m] Wikipedia: RSS, http://de.wikipedia.org/wiki/RSS, letzter Abruf am

2005-06-07.

[wiki g] http://de.wikipedia.org/wiki/Kategorie:Graphentheorie, letzter Abruf

am 2005-08-07.

[Wiki u] Wikipedia: URN, http://de.wikipedia.org/wiki/URN, letzter Abruf am

2005-08-07.

RDF Seite 101

11 Abbildungsverzeichnis
Abbildung 1: Funktionsweise des Semantic Web... 8

Abbildung 2: Schichtenmodell von Berners-Lee [KoMi01]................................ 11

Abbildung 3: Aufbau einer URL... 13

Abbildung 4: URN Resolver... 13

Abbildung 5: Aufbau von RDF-Aussagen.. 15

Abbildung 6: Unterschiede in Ontologien.. 16

Abbildung 7: Web of Trust Funktionsweise... 18

Abbildung 8: Screenshot von XPath-Demo – Startseite.................................... 30

Abbildung 9: Screenshot von Xpath-Demo - Auswertungsseite........................ 31

Abbildung 10: Ergebnis der XSL-Transformation.. 33

Abbildung 11: Ressource, Eigenschaft und Wert der Eigenschaft....................35

Abbildung 12: Wert der Eigenschaft ist eine Ressource mit zwei eigenen

Eigenschaften und Werten.. 36

Abbildung 13: Aussage in Form eines einfachen RDF-Tripels aus Subjekt,

Prädikat und Objekt... 36

Abbildung 14: Statement mit einem Sequenz-Container.................................. 41

Abbildung 15: RDF-Schema.. 44

Abbildung 16: Resource, Class, Property.. 45

Abbildung 17: RDF, Dublin Core Elemente... 48

Abbildung 18: Vodafone Live Portal... 51

Abbildung 19: Ungerichteter Graph ohne Mehrfachkanten............................... 52

Abbildung 20: Gerichteter Graph ohne Mehrfachkanten................................... 52

Abbildung 21: Gerichteter Graph mit Mehrfachkanten...................................... 52

Abbildung 22: Ungerichteter Graph mit Mehrfachkanten.................................. 52

Abbildung 23: Graph aus Abbildung 5: Aufbau von RDF-Aussagen................. 53

Abbildung 24: Schichtenmodell von Berners-Lee [KoMi01].............................. 55

Abbildung 25: Zusammenhang OWL Full, OWL DL und OWL Lite [Schr04]....59

RDF Seite 102

Abbildung 26: Einfache Weintaxonomie... 70

Abbildung 27: Sreenshot des WonderWeb OWL Ontology Validator [Vali]...... 72

Abbildung 28: Screenshot von Protégé 3.0 [Prot]... 73

Abbildung 29: Screenshot von http://www.orf.at/ vom 24. August 2005............74

Abbildung 30: Screenshot von http://www.orf.at/ , „Pure Data“ Ansicht vom 24.

August 2005.. 75

Abbildung 31: Einordnung der Beschreibungslogik... 76

Abbildung 32: Datenmodell einer Aussage über eine Aussage........................ 83

Abbildung 33: Lösung zu, RDF-Beispiel 1... 91

Abbildung 34: Lösung zum RDF-Beispiel 2... 92

RDF Seite 103

12 Tabellenverzeichnis
Tabelle 1: Codierung in Unicode... 12

Tabelle 2: Vergleich DTD und XML-Schema.. 23

Tabelle 3: XML-Datei und zugehörige DTD... 23

Tabelle 4: XML-Schema: einige Elemente und Attribute...................................28

Tabelle 5: Wichtige Pfadangaben in XPath [vgl. JLI05, S. 216]........................ 29

