
XSLT: Using External Functions

XSLT: Using External Functions
Edin Pezerovic

Vienna University of Economics and Business Administration

June 13, 2007

Bachelor Course Paper
Department of Business Informatics

Prof. Dr. Rony G. Flatscher

Page 1/73

XSLT: Using External Functions

Table of Content
1 Introduction ... 4

1.1 Abstract ... 4
1.2 Keywords .. 4

2 Description of the Technologies Used ... 5
2.1 The Extensible Stylesheet Language (XSL) .. 5

2.1.1 Overview ... 5
2.1.2 XML Path Language ... 5
2.1.3 XSL Transformations .. 6
2.1.4 XSL Formatting Objects ... 8
2.1.5 External Functions .. 10

2.2 Xalan-Java ... 11
2.2.1 Overview ... 11
2.2.2 Installation .. 13

2.3 JavaScript (Rhino) .. 14
2.3.1 Overview ... 14
2.3.2 Installation .. 14

2.4 The Bean Scripting Framework ... 15
2.4.1 BSF 2.4 ... 15
2.4.2 BSF 3.0 – JSR-223 ... 15
2.4.3 Installation .. 15

2.5 JudoScript ... 16
2.5.1 Overview ... 16
2.5.2 Installation .. 16

2.6 OORexx .. 17
2.6.1 Overview ... 17
2.6.2 Installation .. 17

2.7 JRuby .. 19
2.7.1 Overview ... 19
2.7.2 Installation .. 19

3 Nutshells ... 20
3.1 Querying Databases .. 20

3.1.1 Nutshell Using EXSLT ... 21
3.1.2 Nutshell Using Java .. 22
3.1.3 Nutshell Using JudoScript .. 24
3.1.4 Nutshell Using BSF4Rexx ... 26
3.1.5 Nutshell Using JavaScript .. 28

3.2 Implementing Missing Functions ... 31
3.2.1 Formatting Date Using Java ... 31
3.2.2 Printing Enhanced Node Information Using EXSLT .. 33
3.2.3 Generating More Than One Output File Using EXSLT .. 36
3.2.4 Spell Checking Using BSF4Rexx .. 38

Page 2/73

XSLT: Using External Functions

3.2.5 Formatting Date Using JavaScript ... 42
3.3 Nutshells Using Existing Applications ... 45

3.3.1 Using JRuby's ActiveRecord .. 45
3.3.2 ResourceBundle Using Java ... 48
3.3.3 Querying Calc Using BSF4Rexx ... 51
3.3.4 ResourceBundle Using JavaScript ... 56

3.4 Nutshells Calling Web Services ... 59
3.4.1 Nutshell Using Java .. 59
3.4.2 Nutshell Using JudoScript .. 61
3.4.3 Nutshell Using JavaScript .. 63

3.5 How to Upgrade to BSF 3.0 ... 66
3.5.1 Upgrading XSL Files with Embedded Scripts ... 66
3.5.2 Upgrading XSL Files with Separate Scripts .. 67

4 Conclusion .. 70
 References ... 71

Page 3/73

XSLT: Using External Functions

1 Introduction
The introduction gives a short overview of the intention of the bachelor thesis and delimits its
problem area.

1.1 Abstract
Nowadays most data in IT business is exchanged through XML files. The structure of these files is
often not suitable for processing on both sides. Therefore an intermediary step between the exchange
of data and the processing has to be introduced. This step is called transformation which changes the
structure of the underlying XML file.

The XSL-Transformation (XSLT) provides this kind of functionality. The Apache Software
Foundation has implemented an open source XSLT project called Xalan which additionally offers the
possibility to call external functions if the specified functionality of XSLT does not suffice.

External functions can be programmed in various scripting languages using the Bean Scripting
Framework of Apache as intermediary between the transformer and the scripting code.

This bachelor thesis focuses on the implementation of such external functions. The main point is to
show how different business requirements can be solved through calls to external functions within the
process of the transformation.

It is not intended to implement production ready programs, as this would expand the size of the
bachelor thesis extremely. Expressing the shortage of these examples they are called nutshells.

1.2 Keywords
Bean Scripting Framework, BSF, BSF4Rexx, EXSLT, External Functions, JavaScript, JRuby,
JudoScript, OORexx, Transformation, Xalan, XSLT

Page 4/73

XSLT: Using External Functions

2 Description of the Technologies Used
The chapter presents the scripting languages used within the nutshells. A short introduction followed
by the installation instructions is given. Furthermore the XSL Transformation is introduced.

2.1 The Extensible Stylesheet Language (XSL)

2.1.1 Overview

“The extensible stylesheet language is a family of recommendations for defining XML
document transformation and presentation.”[W3C03b]

The XSL family is part of the W3C XML Activity [W3C03a] which has the aim to develop and
maintain the XML specification. XSL consists of three parts:

● XML Path Language (XPath)
● XSL Transformations (XSLT)
● XSL Formatting Objects (XSL-FO)

2.1.2 XML Path Language

“XPath is the result of an effort to provide a common syntax and semantics for functionality
shared between XSL Transformations and XPointer. The primary purpose of XPath is to
address parts of an XML document. In support of this primary purpose, it also provides basic
facilities for manipulation of strings, numbers and booleans.”[W3C03d]

“XML Pointer Language (XPointer) supports addressing into the internal structures of XML
documents.” [W3C03e]

With XPath it is possible to locate a node (element or attribute) within a XML document. This is
accomplished by using the XPath syntax for locating nodes. XPath defines a context node which
presents the node where the process of locating starts.

The examples below show location paths using XPath syntax:

● child::para selects the para element children of the context node
● attribute::name selects the name attribute of the context node
● /child::doc/child::chapter selects the chapter element children of the doc (top) node

Facilitating the expressions, XPath provides an abbreviated syntax for locating nodes. Following
examples show the same location paths as the above ones by using the abbreviated syntax:

● para selects the para element children of the context node
● @name selects the name attribute of the context node
● /doc/chapter selects the chapter element children of the doc (top) node

Page 5/73

XSLT: Using External Functions

XPath provides functions for manipulating strings, numbers and booleans. Below some examples of
the specified functions:

● concat(…): returns the concatenation of the arguments
● substring(…): returns a substring of the first argument
● not(…): returns true if the argument is false and false otherwise
● string(…): converts an object to a string
● number(…): converts an object to a number
● round(…): rounds a number to the closest integer

The complete XPath specification can be found on the W3C homepage [W3C03d].

2.1.3 XSL Transformations

“A transformation expressed in XSLT describes rules for transforming a source tree into a
result tree.”[W3C03b]

The main purpose of XSLT is the transformation of an input XML file to an output XML file with a
different structure. If transformations are expressed using XSLT they are called stylesheets.

“XSL stylesheets are written in the XSLT language. An XSL stylesheet contains instructions for
transforming XML documents into XML, HTML, XHTML or plain text. In structural terms, an
XSL stylesheet specifies the transformation of one tree of nodes (the XML input) into another
tree of nodes (the output or transformation result).”[AXJ07a]

Page 6/73

XSLT: Using External Functions

The following figure shows the transformation process of the XML tree:

A stylesheet consists of templates and transformation rules. A template transforms a node set of the
input XML by locating it through a XPath expression.

This XML file is used to illustrate a simple transformation:

<?xml version="1.0"?>
<agencies>
<agency key="AMTRAK" />
<agency key="DISA" />

…
<agency key="NASA" />
<agency key="VA" />

</agencies>

Page 7/73

Figure 2.1.: Tree Transformation [W3C03c]

XSLT: Using External Functions

The XML file is transformed using this XSL stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
<xsl:template match="/">

<xsl:for-each select="agencies/agency">
<xsl:value-of select="@key"/>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

The table above shows a simple stylesheet. It contains one template which operates on nodes
beginning with the root node expressed by the XPath expression “/”. Within the template two
elements are defined. The first one (“for-each”) executes its tag body for each “agency” child tag of
an “agencies” parent tag contained in the input XML file. The “agencies” tag has to be located as a
child of the root node. The root node is a virtual node and is not a visible tag within the XML file.

For every “agency” tag the element “value-of” is executed outputting the content of the attribute
“key” (“@key”) to the resulting XML file.

As the result of the transformation following file is created:

AMTRAK
DISA
…
NASA
VA

For more information on XSL Transformation see [W3C03b].

2.1.4 XSL Formatting Objects

The primary purpose of XSL Formatting Objects (XSL-FO) is to produce formatted results suitable
for presentation. XSL-FO defines a set of formatting properties such as controlling page width,
margin or letter spacing.

Formatting objects is accomplished by two steps. Firstly the input XML file needs to be transformed
using XSLT to a XSL-FO formatting file. Secondly the formatted output is produced.

Page 8/73

XSLT: Using External Functions

Following figure shows an overview of this process:

Following this explanation, an example from the XSL-FO specification [W3C03c] is used. The first
snippet shows the input XML file:

<doc>
<p>This is the text of a paragraph that is going to be presented with the

first line in small-caps.</p>
</doc>

This input file needs to be formatted using XSL-FO. Therefore the following XSLT stylesheet
transforms it to a XSL-FO formatting file:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format"
version='1.0'>

 <xsl:template match="p">
<fo:block>

<fo:initial-property-set font-variant="small-caps"/>
<xsl:apply-templates/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

Page 9/73

Figure 2.2.: Two Step Process [W3C03c]

XSLT: Using External Functions

Executing this transformation leads to the resulting XSL-FO formatting file:

<fo:block>
<fo:initial-property-set font-variant="small-caps">
</fo:initial-property-set>
This is the text of a paragraph that is going to be presented with the
first line in small-caps.

</fo:block>

This XSL-FO file is the input for a formatter. This formatter file could be used by Apache FOP
[FOP07] to produce a PDF file. For further information on XSL-FO see the W3C homepage
[W3C03c].

2.1.5 External Functions

The XSLT language offers a wide range of functionality. Nevertheless the required functions are
sometimes missing. In these cases most XSLT implementations offer the possibility to extend the set
of functions by supplying an API to call external functions.

Stylesheets containing external functions can be portable by following the proposals of the
EXSLT.org.

“EXSLT is a community initiative to provide extensions to XSLT. […] We are trying to
encourage the implementers of XSLT processors to use these extensions, so that your
stylesheets can be more portable.” [EXS07]

Page 10/73

XSLT: Using External Functions

2.2 Xalan-Java

2.2.1 Overview

“Xalan-Java fully implements XSL Transformations (XSLT) Version 1.0 and the XML Path
Language (XPath) Version 1.0. XSLT is the first part of the XSL stylesheet language for XML.
It includes the XSL Transformation vocabulary and XPath, a language for addressing parts of
XML documents.”[AXJ07a]

Xalan-Java represents the XSLT implementation by The Apache Foundation. At the time of writing it
implements the version 1.0 of the XSLT specification.

Additionally it provides the possibility of calling external functions through so called Xalan-Java
Extensions.

“Extensions written in Java are directly supported by Xalan-Java. For extensions written in
languages other than Java, Xalan-Java uses the Bean Scripting Framework (BSF), an
architecture for incorporating scripting into Java applications and applets.“[AXJ07a]

The following code shows an example of an external functions definition:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="at.ac.wuwien.xsltnutshell.DatabaseQuery"
 extension-element-prefixes="props"
 version="1.0">
<xalan:component prefix="props" elements="init" functions="getValue">

<xalan:script lang="javaclass"
src="at.ac.wuwien.xsltnutshell.DatabaseQuery"/>

</xalan:component>

Xalan offers two possibilities to execute such a transformation. The difference between these types is
the parsing process. Every stylesheet needs to be parsed before it can be applied to a XML file. If this
transformation is required multiple times, the parsing of the document will be the bottleneck.

Therefore it is possible to store the parsed stylesheet in a template and reuse it for every
transformation.

The following Java code (SimpleTransform example from Xalan [AXJ07a]) shows how the
transformation will be initiated including the parsing:

/*
 * Copyright 1999-2004 The Apache Software Foundation.
…
 */
…
public class SimpleTransform

Page 11/73

XSLT: Using External Functions

{
public static void main(String[] args)

throws TransformerException, TransformerConfigurationException,
FileNotFoundException, IOException

{
// Use the static TransformerFactory.newInstance() method to instantiate
// a TransformerFactory.
TransformerFactory tFactory = TransformerFactory.newInstance();

// Use the TransformerFactory to instantiate a Transformer that will work
// with the stylesheet you specify. This method call also processes the
// stylesheet into a compiled Templates object.
Transformer transformer = tFactory.newTransformer(

new StreamSource("birds.xsl"));

// Use the Transformer to apply the associated Templates object to an XML
// document (foo.xml) and write the output to a file (foo.out).
transformer.transform(new StreamSource("birds.xml"),

new StreamResult(new FileOutputStream("birds.out")));

}
}

As mentioned in the source code, the transformer parses the stylesheet into a separate Templates
object which is applied onto the input XML file. This Templates object is kept within the Transformer.

Reusing a Templates object, it is necessary to get a reference to it. The following Java code shows
how this could be implemented:

// Get an input stream for the XSL stylesheet
StreamSource stylesheet = new StreamSource(xsl);

// The TransformerFactory will compile the stylesheet and
// put the result inside the Templates object
TransformerFactory factory = TransformerFactory.newInstance();
Templates templates = factory.newTemplates(stylesheet);

// once the transformation process is needed, the template creates the
// Transformer
Transformer transformer = template.newTransformer();

// the transformer reads the xml file and transforms it to the result
// file
Result result = new StreamResult(System.out);
transformer.transform(xml, result);

Page 12/73

XSLT: Using External Functions

This source code shows how a parsed Templates object can be obtained from the TransformerFactory.
This object should be stored in the cache and reused for all subsequent transformations concerning
this stylesheet. Templates objects are thread safe meaning that they can be used by multiple threads
running concurrently. The Transformer object produced by the Templates object is not thread safe.
Therefore the Transformer object must not be stored and reused.

Facilitating the execution of a simple transformation, Xalan-Java provides a Java class which takes a
XML file, a XSL file and an output file name as parameters and performs the transformation. This
class transforms the XML file using the first approach described above.

The following table shows the command to execute the spell checker nutshell using BSF4Rexx:

java -cp CLASSPATH org.apache.xalan.xslt.Process
-IN nutshell6/words.xml
-XSL nutshell6/spellcheckerOoRexx.xsl
-OUT nutshell6/spellcheckerOoRexx.out

This command reads the “-XSL” file and parses it. Afterwards it transforms the “-IN” file and writes
the result to the “-OUT” file.

2.2.2 Installation

The installation is as simple as downloading the Xalan-Java file from [AXJ07b] and extracting the
content. For the nutshells all the jar-files from the root of the zip file are required.

Page 13/73

XSLT: Using External Functions

2.3 JavaScript (Rhino)

2.3.1 Overview

Rhino is the open source implementation of the ECMA-262 ECMAScript Standard [ECM04] by
Mozilla.org. Originally developed by Netscape it was released to Mozilla.org in April 1998
[MOZ06a].

JavaScript is best know for scripting HTML pages.

“Rhino is an implementation of the core language only and doesn't contain objects or methods
for manipulating HTML documents.” [MOZ06a]

“Additionally Rhino has implemented “JavaAdapters” which allows JavaScript to implement
any Java interface or extend any Java class with a JavaScript object.” [MOZ06a]

JavaScript can be used to access a SimpleDateFormat object provided by Java:

 importPackage(Packages.at.ac.wuwien.xsltnutshell)
var outputFormat = "dd/MM/yyyy";

function parseDate(date, format) {
parsedDate =

new java.text.SimpleDateFormat(format).parse(date);
return new java.text.SimpleDateFormat(outputFormat).

format(parsedDate);
}

2.3.2 Installation

The complete Rhino implementation can be downloaded from the Mozilla homepage [MOZ06b] and
unzipped. For the nutshells the js.jar file from the zip file is required.

Page 14/73

XSLT: Using External Functions

2.4 The Bean Scripting Framework

2.4.1 BSF 2.4

“Bean Scripting Framework (BSF) is a set of Java classes which provides an easy to use
scripting language support within Java applications. It also provides access to Java objects
and methods from supported scripting languages.” [BSF06a]

Within the nutshells BSF is used as a bridge between Xalan-Java and the code written in a supported
scripting language. BSF currently supports several scripting languages and some of them are used to
show the functionality of the nutshells.

2.4.2 BSF 3.0 – JSR-223

One part of the Java Standard Edition 6.0 [SUN07a] represents the ability to call code written in a
scripting language. These scripting languages are called through an API specified in the JSR-223
specification [JCP07].

The team behind BSF has implemented this API in the upcoming 3.0 version of BSF.

At the time of writing BSF 3.0 is still in beta1 and the final and fully specification conforming
implementation is scheduled for mid 2007. Therefore this paper will only show some nutshells with
BSF 3.0 as the implementation is still subject to change.

2.4.3 Installation

The jar file can be downloaded from the BSF homepage [BSF06a] and unzipped to a folder. For the
nutshells only the bsf.jar file from the lib directory within the zip file is required.

The installation of BSF 3.0 is slightly complex. BSF 3.0 can only be checked out from the Subversion
repository [BSF06s] and has to be built using Maven [MVN07]. The resulting jar file is called bsf-
3.0-beta1.jar. For more information on building the 3.0 version of BSF see the file “BUILDING”
within the workspace checked out from Subversion.

Nevertheless building the binary distribution for BSF 3.0 was not successful. The first problem
appeared to be with the back porting of jar files to JDK 1.4 by Retroweaver [RWV07]. After
commenting out this part within the Maven build script some test cases did not succeed. Fortunately
Prof. Flatscher provided the URL to a binary distribution generated by “ant elder” [BSF07b].

Page 15/73

XSLT: Using External Functions

2.5 JudoScript

2.5.1 Overview

“JudoScript, or Judo for short, is a general-purpose, Java scripting and multi-domain
language. A full-fledged general-purpose scripting language with full capability of Java
scripting, JudoScript intimately supports most of today's key computing areas.” [JDS07]

JudoScript emerged from an idea of a JDBC scripting language. Over the years many other scripting
domains were introduced to Judo. Therefore it is internally called “domain-specific programming”
[JDS07] as there are a plenty of functions and objects concerning different domains within the system
of Judo.

It is possible to query a database table using the “db” domain:

function init (xslproc, elem) {
db::connect to 'jdbc:postgresql://localhost:5432/xslt',

'xslt', 'xslt';
return null;

}

function getValue(key) {
db::query qry:
select value from properties where key = ?
; with @1:string = key;
if (qry.next()) {

return qry.value;
}
return '[[' + key + ']]';

}

2.5.2 Installation

The zip file can be downloaded from the JudoScript homepage [JDS07] and unzipped to a folder. For
the nutshells only the judo.jar file from the root of the zip file is required.

Page 16/73

XSLT: Using External Functions

2.6 OORexx

2.6.1 Overview

Open Object Rexx (OORexx) is an open source implementation of a freely available scripting
language managed by RexxLA [OOR07]. It uses English-like statements and has fewer rules. Open
Object Rexx has its origin in the scripting language of Rexx implemented by IBM between 1979 and
1982.

OORexx offers libraries for various domains like querying a database or accessing modules from
OpenOffice.org. As a scripting language it is easily embeddable into a XSLT stylesheet. The linkage
between XSLT and OORexx is possible through the Bean Scripting Framework [BSF06a] and
BSF4Rexx [B4R07].

BSF4Rexx represents an implementation of a bridge between BSF and OORexx. It provides the
functionality for calling scripts written in OORexx from within the BSF. At the time of writing
BSF4Rexx only supports BSF version 2.4. Therefore all OORexx nutshells are tested with BSF 2.4.
The BSF 3.0 support should be available by end of summer 2007.

“OpenOffice.org is a multiplatform and multilingual office suite and an open-source project.
Compatible with all other major office suites, the product is free to download, use, and
distribute.” [OOO07]

2.6.2 Installation

For the OORexx nutshells implemented in this bachelor thesis a few modules are required. The
nutshells use OORexx to access the database and OpenOffice.org.

The binaries of OORexx can be downloaded from the OORexx homepage [OOR07] and installed by
running the executable file. This installs the OORexx runtime and registers the runtime with the
environment. Afterwards Rexx scripts can be executed by typing “rexx script.rex”. The nutshells in
this paper are implemented using the version 3.1.2.

Two nutshells use OpenOffice.org in the version 2.2 which can be downloaded from the homepage
[OOO07] and installed by following the installation instructions.

The installation of BSF4Rexx is quite complex but the team of Prof. Flatscher [B4R07] maintains
some installation scripts which hide the complexity from the developer. The correct order of the
scripts is documented in two files included in the BSF4Rexx installation file. The text file
“readmeBSF4Rexx.txt” explains the process of installing BSF4Rexx and the file “readmeOOo.txt”
how the OpenOffice.org support is installed.

Page 17/73

XSLT: Using External Functions

Those scripts also change the environment variables “PATH” and “CLASSPATH” through the script
file “setEnvironment4OOo.cmd”. It is recommended to copy the new values of both environment
variables to the corresponding system environment variables which facilitates the use of OORexx.
After those installations the access to OpenOffice.org through BSF4Rexx can be tested using a
provided test script calling “rexxj.cmd testOOo.rex” from the command line.

One nutshell uses BSF4Rexx and Rexx/SQL [RSQ07] to query a database. The Rexx/SQL installation
can be downloaded from the Rexx/SQL homepage [RSQ07] and installed by unzipping the file. The
Rexx/SQL directory has to be included into the PATH environment variable.

Accessing the database through Rexx/SQL, it should be registered as ODBC DataSource with
Windows. Following figure shows the configuration window of the ODBC DataSource Manager (go
to “Control Panel”  “Administrative Tools”  “Data Sources (ODBC)”  “Add”):

A supplied test script can be executed through “rexxsql simple.cmd data=PostgreSQL30” which
connects to the Data Source “PostgreSQL30” and writes the database name and version to the
console.

Page 18/73

Figure 2.3.: ODBC Driver Set-up

XSLT: Using External Functions

2.7 JRuby

2.7.1 Overview

“JRuby is a 100% Java implementation of the Ruby programming language. It is Ruby for the
JVM.” [JRU07a]

The purpose of JRuby is providing the core classes of Ruby. Furthermore it supports the Rails
framework. Through this support existing Ruby on Rails applications [ROR07] can be used for other
applications.

The JRuby nutshell uses an existing object to read data from the database. Such objects are called
ActiveRecords in JRuby:

class Properties < ActiveRecord::Base
end

2.7.2 Installation

The installation of JRuby is slightly complicated. First the actual version of JRuby has to be
downloaded from the homepage [JRU07b] and unzipped to a directory (in this case to
/Users/edin/jruby).

Afterwards two environment variables have to be set manually:

export JRUBY_HOME=/Users/edin/jruby
export PATH=/Users/edin/jruby/bin:$PATH

The variables need to be set for the next statement which installs Rails into the JRuby installation:

gem install rails -y

This takes a while to finish. Afterwards the JRuby installation is capable of running Ruby on Rails
applications.

Using it within Xalan-Java and BSF, it is necessary to copy all jar files from $JRUBY_HOME/lib to
your path.

Page 19/73

XSLT: Using External Functions

3 Nutshells
This chapter contains the examples in various scripting languages. They are classified by functionality
to facilitate a comparison between different languages.

3.1 Querying Databases
All examples in this chapter read additional information from the database.

The prerequisite to these nutshells is the existence of a database table containing the names of
agencies. Following snippet shows the create statements for the user, database and table (PostgreSQL
[POS07]):

1
2
3
4
5
6
7

create user xslt password 'xslt' ;
createdb xslt -O xslt;

CREATE TABLE properties (
 key varchar(40) PRIMARY KEY,
 value varchar(100)
);

Afterwards rows with abbreviations and names of different agencies are inserted into the table.
Furthermore a XML file is used which only contains the abbreviations:

1
2
3
4
5
6
7
8
9
10
11
12
13

<?xml version="1.0"?>
<agencies>
<agency key="AMTRAK" />
<agency key="DARPA" />
<agency key="DCAA" />
<agency key="DEA" />
<agency key="FBI" />

…
<agency key="NSA" />
<agency key="USCIS" />
<agency key="USDA" />
<agency key="VA" />

</agencies>

Keeping the main focus on the XSL file and the binding of the scripting language, the nutshells all
produce the following output:

1
2
3
4
5
6
7

<HTML>
<H1>JudoScript Example</H1>
<p>Here are the names of the Agencies:</p>
<p>[AMTRAK] National Railroad Passenger Corporation</p>
<p>[DARPA] Defense Advanced Research Projects Agency</p>
<p>[DCAA] Defense Contract Audit Agency</p>
<p>[DEA] Drug Enforcement Administration</p>

Page 20/73

XSLT: Using External Functions

8
9
10
11
12
13
14

<p>[FBI] Federal Bureau of Investigation</p>
…
<p>[NSA] National Security Agency</p>
<p>[USCIS] U.S. Citizenship and Immigration Services</p>
<p>[USDA] Department of Agriculture</p>
<p>[VA] Department of Veterans Affairs</p>
</HTML>

The same files are used in the Using JRuby's ActiveRecord nutshell where Ruby on Rails (strictly
speaking the ActiveRecord of Ruby on Rails) is used to query those names.

3.1.1 Nutshell Using EXSLT

“EXSLT is a community initiative to provide extensions to XSLT.” [EXS07]

“Xalan-Java supports the EXSLT initiative to provide a set of standard extension functions
and elements to XSLT users.” [AXJ07a]

EXSLT is a built-in extension to Xalan-Java and offers many functions. This nutshell shows the use of
the XConnection of EXSLT to connect to the database.

Executing queries against the database, EXSLT offers an API which can be embedded within a XSL
stylesheet:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:sql="org.apache.xalan.lib.sql.XConnection"
 extension-element-prefixes="sql">

<xsl:param name="driver" select="'org.postgresql.Driver'"/>
<xsl:param name="dburl"
select="'jdbc:postgresql://localhost:5432/xslt'"/>

<xsl:param name="dbuser" select="'xslt'"/>
<xsl:param name="dbpwd" select="'xslt'"/>
<xsl:param name="query" select="'select value from properties
where key = ?'"/>

 <xsl:template match="/">
 <HTML>

 <H1>EXSLT Example</H1>
 <p>Here are the names of the Agencies:</p>
 <xsl:for-each select="agencies/agency">
 <xsl:sort select="@key"/>
 <p>
 <xsl:text>[</xsl:text>
 <xsl:value-of select="@key"/>
 <xsl:text>] </xsl:text>
 <xsl:variable name="keyString"><xsl:value-of

select="@key"/></xsl:variable>
 <xsl:variable name="db" select="sql:new($driver, $dburl,

$dbuser, $dbpwd)"/>

Page 21/73

XSLT: Using External Functions

29
30
31
32
33
34
35
36
37
38
39
40

 <xsl:value-of select="sql:addParameterWithType($db, $keyString,
'string')"/>

 <xsl:variable name="resultset" select="sql:pquery($db, $query,
'string')"/>

 <xsl:value-of select="$resultset/sql/row-set/row"/>
 <xsl:value-of select="sql:close($db)"/>
 </p>
 </xsl:for-each>
 </HTML>
 </xsl:template>

</xsl:stylesheet>

The line 4 defines the SQL namespace for EXSLT and line 5 marks the namespace as an extension
element prefix. The lines 7 to 13 define some parameters for the query which could be overridden by
calling a stylesheet.

The interesting part starts at line 25 where the key attribute from the current node is saved into a local
variable. On line 27 a new select statement is created providing the parameters “driver”, “dburl”
“dbuser” and “dbpwd”. The created select statement is populated with a parameter on line 29 using
the saved “keyString”.

It is also possible to select the value from the attribute instead of saving it in between. This would
pass a reference to the attribute node to the select statement instead of the contained value. Therefore
this workaround is necessary.

On line 31 the SQL statement is executed and the result is stored in the variable result set. The
statement on line 33 selects the value of the resulting row and writes it to the output file.
Finally the SQL statement is closed on line 34.

3.1.2 Nutshell Using Java

This nutshell shows the possibility of calling miscellaneous Java function from within a
transformation. As in all nutshells in this chapter the properties table will be queried.

The XSL file below shows the use of Java for processing the XML file:

1
2
3
4
5
6
7
8
9
10
11

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="at.ac.wuwien.xsltnutshell.DatabaseQuery"
 extension-element-prefixes="props"
 version="1.0">

 <xalan:component prefix="props"
 elements="init" functions="getValue">
 <xalan:script lang="javaclass"

src="at.ac.wuwien.xsltnutshell.DatabaseQuery"/>

Page 22/73

XSLT: Using External Functions

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

 </xalan:component>

 <xsl:template match="/">
 <HTML>
 <H1>Java Example</H1>
 <props:init/>
 <p>Here are the names of the Agencies:</p>
 <xsl:for-each select="agencies/agency">
 <xsl:sort select="@key"/>
 <p>
 <xsl:text>[</xsl:text>
 <xsl:value-of select="@key"/>
 <xsl:text>] </xsl:text>
 <xsl:value-of select="props:getValue(@key)"/>
 </p>
 </xsl:for-each>
 </HTML>
 </xsl:template>
</xsl:stylesheet>

Calling an external function, a Xalan component has to be defined. Therefore the Xalan namespace is
set at line 3 and on line 4 “props” is chosen as the namespace for the external function. The lines 8 to
12 specify the component to be of a Java class (line 10) with the class name as source file (line 11).

The main point is the definition of the methods which should be exposed. “Init” is identified as a
method which should be exposed as an element and “getValue” as a function (line 9). On line 8 the
connection is set to the namespace which is defined earlier.

Within the Java code some initialisation is needed. So the “init” method is called at line 17.

The last item left is the query of the value which is executed through the “getValue” method (line 25).
In contrast to the nutshell using EXSLT, it is not necessary to save the value of the attribute to get its
value passed to the method. If the external function is implemented in Java the value of the attribute is
passed on to the external function instead of the reference to the attribute node.

The implementation in Java uses JDBC to query the database:

1
2
3
4
5
6
7
8
9
10
11
12
13

package at.ac.wuwien.xsltnutshell;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

public class DatabaseQuery {
Connection c = null;
public void init(org.apache.xalan.extensions.XSLProcessorContext

context, org.w3c.dom.Element elem) {
try {

Page 23/73

XSLT: Using External Functions

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Class.forName("org.postgresql.Driver");
c = DriverManager.getConnection(

"jdbc:postgresql://localhost:5432/xslt",
"xslt", "xslt");

} catch (Exception e) {
e.printStackTrace();

}
}

public String getValue(String key) {
PreparedStatement stmt = null;
ResultSet rs = null;
try {

stmt = c.prepareStatement(
"select value from properties where key = ? ");

stmt.setString(1, key);
rs = stmt.executeQuery();
if (rs.next()) {

return rs.getString(1);
}

} catch (Exception e) {
e.printStackTrace();

} finally {
try {

if (rs != null)
rs.close();

if (stmt != null)
stmt.close();

} catch (SQLException e) {
e.printStackTrace();

}
}
return "<<" + key + ">>";

}
}

The “init” method (lines 11 to 21) gets a connection to the database and saves it in the property “c”.
Reading the value from the database, the method “getValue” (lines 23 to 47) is called passing the key
of the required value.

3.1.3 Nutshell Using JudoScript

This nutshell uses JudoScript to query a database table from within a transformation. Achieving this
functionality, the “db” domain of JudoScript is used.

Page 24/73

XSLT: Using External Functions

The database accessing code is embedded within the XSL file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="DatabaseQuery"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"
 elements="init" functions="getValue">

<xalan:script lang="judoscript">

function init (xslproc, elem) {
db::connect to 'jdbc:postgresql://localhost:5432/xslt',

'xslt', 'xslt';
return null;

}

function getValue(key) {
db::query qry:
select value from properties where key = ?
; with @1:string = key;
if (qry.next()) {

return qry.value;
}
return '[[' + key + ']]';

}
</xalan:script>

</xalan:component>

<xsl:template match="/">
<HTML>

<H1>JudoScript Example</H1>
<props:init/>
<p>Here are the names of the Agencies:</p>
<xsl:for-each select="agencies/agency">

<xsl:sort select="@key"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@key"/>
<xsl:text>] </xsl:text>
<xsl:variable name="keyString">

<xsl:value-of select="@key"/>
</xsl:variable>
<xsl:value-of select="props:getValue($keyString)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

Page 25/73

XSLT: Using External Functions

Calling an external function, a Xalan component is defined. Therefore the Xalan namespace is
specified at line 3 and on line 4 “props” is chosen as the namespace for the external function.

The lines 8 to 28 specify the component. On lines 8 and 9 the component is defined in the same way
as for Java.

Instead of supplying the name of the source file the source code is inserted directly into the XSL file
(lines 12 to 26).

The directive on line 9 states that “init” is a method exposed as an element and “getValue” is exposed
as a function. On line 8 the connection to the namespace is set which is defined earlier.

Within the JudoScript a connection to the database is established (method “init” on lines 12 to 16) and
the properties table for the supplied key is queried (method “getValue” on lines 18 to 26).

The “init” method is called at line 33 and the query of the value gets executed through the “getValue”
method (line 44).

The “key” attribute value needs to be saved to the variable “keyString” to get the value passed on to
the method instead of the reference to the attribute node itself (lines 41 to 43).

3.1.4 Nutshell Using BSF4Rexx

This nutshell shows the possibility of executing queries against the properties table by calling an
OORexx script from within a transformation.

The OORexx script is implemented as an embedded Xalan component within the XSL file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="DatabaseQuery"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"
 elements="init cleanup" functions="getValue">

<xalan:script lang="rexx">
<![CDATA[

parse arg key
if key =="" then return ""
Call RxFuncAdd 'SQLLoadFuncs', 'rexxsql', 'SQLLoadFuncs'
Call SQLLoadFuncs
call init
agencyvalue = getValue(key)
call cleanup
return agencyvalue

Page 26/73

XSLT: Using External Functions

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

init:
rc = SQLConnect('c1', '', '', 'PostgreSQL30')

return

cleanup:
rc = SQLDisconnect('c1')

return

getValue:
parse arg key

query = 'select value from properties where key = ? '
rc = SQLCommand(stmt, query, "CHAR", key)
resultvalue = stmt.value.1

return resultvalue
]]>

</xalan:script>
</xalan:component>

<xsl:template match="/">
<HTML>

<H1>ooRexx Example</H1>
<p>Here are the names of the Agencies:</p>
<xsl:for-each select="agencies/agency">

<xsl:sort select="@key"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@key"/>
<xsl:text>] </xsl:text>
<xsl:variable name="keyString">

<xsl:value-of select="@key"/>
</xsl:variable>
<xsl:value-of select="props:getValue($keyString)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

Executing queries against a table includes connecting to the database, executing the queries and
disconnecting from the database. The flow is implemented in the OORexx script above where the
“init” method connects to the database (lines 21 to 23).

The method “getValue” (lines 29 to 34) queries the database and returns the result from the select
(line 34). Finally the script disconnects from the database using the method “cleanup” (lines 25 to 27).

The script above works as intended if executed as an OORexx command from the command line. As
soon as it gets embedded to the XSLT stylesheet it behaves differently. Independent from the method
called in the XSLT stylesheet (like on line 52) the complete script gets executed.

Page 27/73

XSLT: Using External Functions

Therefore the lines 12 to 19 are included. The parameter supplied by Xalan is stored (line 12) and
used to call the method “getValue” (line 17) after the connection to the database was established (line
16). On line 18 the script disconnects from the database. Omitting this line leads to a “too many open
connections” exception, as all established connections stay open until the execution of the script
finishes.

At the time Xalan parses the script, it is executed without a parameter which leads to a
NullPointerException. Avoiding this, the code on line 13 is inserted to the script.

The XSLT stylesheet looks similar to the other database nutshells. First a Xalan component has to be
defined. Therefore the Xalan namespace is set on line 3 and on line 4 “props” is chosen as the
namespace for the external function. The lines 8 and 9 specify the component to be an OORexx script
(line 10) with three methods (“init”, “getValue” and “cleanup”) and the source of the script embedded
below.

This nutshell uses the library Rexx/SQL [RSQ07] which is added and initialised on lines 14 and 15.
The library offers an API to connect to the database using the command SQLConnect (line 22), to
query the database using SQLCommand (line 32) and to disconnect from it by using SQLDisconnect
(line 26).

The result of the query can be retrieved from the statement after the execution (line 33). The term
“value” indicates the name of the selected column and the last part of the statement “stmt.value.1”
indicates the number of the row. The number of rows can be retrieved by executing the command
“stmt.value.0”.

The lines 49 to 51 store the value of the attribute “key” in the variable “keyString” which is used to
call the script on line 52. Without saving the value, Xalan would provide the reference to the attribute
node instead of the value.

3.1.5 Nutshell Using JavaScript

This nutshell shows the JavaScript version of a transformation which queries the database for
properties.

The following code shows the XSL file for processing the XML file containing the database access
code using JavaScript:

1
2
3
4
5
6
7
8
9

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="DatabaseQuery"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"

Page 28/73

XSLT: Using External Functions

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

 elements="init" functions="getValue">
<xalan:script lang="javascript">

<![CDATA[
var conn = null;

function init(xslProcessorContext, elem) {
java.lang.Class.forName("org.postgresql.Driver");
conn = java.sql.DriverManager.getConnection(

"jdbc:postgresql://localhost:5432/xslt", "xslt", "xslt");
}

function getValue(key) {
var stmt = conn.prepareStatement("select value from

properties where key = ? ");
stmt.setString(1, key);
var rs = stmt.executeQuery();
if (rs.next())

return rs.getString(1);
return "<<" + key + ">>";

}
]]>

</xalan:script>
</xalan:component>

<xsl:template match="/">
<HTML>

<H1>Java Example</H1>
<props:init/>
<p>Here are the names of the Agencies:</p>
<xsl:for-each select="agencies/agency">

<xsl:sort select="@key"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@key"/>
<xsl:text>] </xsl:text>
<xsl:variable name="keyString">

<xsl:value-of select="@key"/>
</xsl:variable>
<xsl:value-of select="props:getValue($keyString)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

The XSL file above contains the JavaScript code embedded as Xalan component. The Xalan
namespace is defined on line 3 and line 4 “props” is chosen as the namespace for the external
function.

Page 29/73

XSLT: Using External Functions

The lines 9 to 32 specify the component. On lines 9 and 10 two methods are defined. “Init” is
identified as a method which should be exposed as an element and “getValue” is defined as a function
(line 10). On the previous line the connection to the namespace is set which is defined earlier.

In contrast to Java the complete source code is embedded into the XSL file (lines 12 to 30).

The method “init” loads the database driver (line 16) and opens a new connection to the database
(lines 17 and 18). The second exposed method “getValue” (lines 21 to 29) receives a parameter
containing the key for the select. Afterwards it prepares (line 22) and executes the select statement
(line 25) with the parameter as bind variable (line 24) and finally returns the result of the select
statement.

The “init” method is called at line 37 through the use as XML tag and the value gets selected through
the “getValue” method on line 48.

As the “value-of” tag returns the reference to the attribute the value has to be extracted previously.
Therefore the value of the attribute is stored into a variable (lines 45 to 47) and afterwards passed on
to the method instead of the reference to the attribute node itself (line 48).

Page 30/73

XSLT: Using External Functions

3.2 Implementing Missing Functions
The XSLT specification provides a rich set of functions to the developer. Nevertheless sometimes they
do not suffice and additional functions need to be developed. This chapter deals with such functions.

3.2.1 Formatting Date Using Java

This nutshell formats a date using a call out to a Java function from within the transformation.
Showing a different possibility, the abbreviated syntax for extensions implemented in Java is used.

The input XML file contains a list of countries and a date per country. Additionally the date format is
provided as attribute:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

<?xml version="1.0"?>
<countries>
<country date="20070405" format="yyyyMMdd">

United States of America
</country>
<country date="20070406" format="yyyyMMdd">

United Kingdom
</country>
<country date="20070407" format="yyyyMMdd">

Brazil
</country>
<country date="20070408" format="yyyyMMdd">

Cuba
</country>
<country date="20070409" format="yyyyMMdd">

Chile
</country>
<country date="20070410" format="yyyyMMdd">

Mexico
</country>
<country date="20070411" format="yyyyMMdd">

Austria
</country>
<country date="20070412" format="yyyyMMdd">

Sweden
</country>

</countries>

As mentioned above the abbreviated syntax for calling Java is used in the XSL file:

1
2
3
4
5
6
7

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:java="http://xml.apache.org/xalan/java"
exclude-result-prefixes="java" version="1.0">

<xsl:template match="/">
<timedCountries>

Page 31/73

XSLT: Using External Functions

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<xsl:apply-templates select="/countries/country" />
</timedCountries>

</xsl:template>

<xsl:template match="country">
<country>

<value>
<xsl:value-of select="." />

</value>
<xsl:variable name="date" select="string(@date)" />
<xsl:variable name="format" select="string(@format)" />
<xsl:variable name="formatter"

select="java:java.text.SimpleDateFormat.new($format)" />
<date>
<xsl:value-of select="java:parse($formatter, $date)" />
</date>

</country>
</xsl:template>

</xsl:stylesheet>

Calling an external function, a Java namespace is defined (line 3). Using this syntax would generate a
root element containing the java namespace within the “timedCountries” tag. To prevent this, the
namespace is excluded from the result (line 4).

On lines 17 and 18 the values of the supplied date and format are stored in variables. To parse the date
from the XML file, a SimpleDateFormat is needed which is created on line 20 and stored in the
variable called “formatter” (line 19).

The call to the method “parse” of the SimpleDateFormat takes the formatter and the date to format as
parameters (line 22). The result of the “parse” method is written to the XML file.

The XML file below shows the result of the transformation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<?xml version="1.0" encoding="UTF-8"?>
<timedCountries>
<country>

<value>United States of America</value>
<date>Thu Apr 05 00:00:00 CEST 2007</date>

</country>
<country>

<value>United Kingdom</value>
<date>Fri Apr 06 00:00:00 CEST 2007</date>

</country>
…
<country>

<value>Austria</value>
<date>Wed Apr 11 00:00:00 CEST 2007</date>

</country>

Page 32/73

XSLT: Using External Functions

16
17
18
19
20

<country>
<value>Sweden</value>
<date>Thu Apr 12 00:00:00 CEST 2007</date>

</country>
</timedCountries>

This nutshell aims to show how simple it is to call Java code and extend the functionality of XSLT.

3.2.2 Printing Enhanced Node Information Using EXSLT

Sometimes it is necessary to process information regarding the data within the XML file, e.g. the line
number or the “System ID” of the XML file.

This nutshell shows the possible extension functions which Xalan-Java offers.

For this nutshell the following XML file is used as input:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<?xml version="1.0"?>
<countries>
 <america filename="redirectOutputAmerica.out">
 <country>United States of America</country>
 <country>Mexico</country>
 <country>Canada</country>
 <country>Brazil</country>
 <country>Cuba</country>
 </america>
 <europe filename="redirectOutputEurope.out">
 <country>United Kingdom</country>
 <country>Germany</country>
 <country>Spain</country>
 <country>Austria</country>
 <country>Greece</country>
 </europe>
 <world>
 <country>Madagascar</country>
 <country>Egypt</country>
 <country>China</country>
 </world>
</countries>

Compared to the other nutshells, this XSL file is quite long but covers all supplied functions at once:

1
2
3
4
5
6
7
8

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xalan="http://xml.apache.org/xalan"
xmlns:exslt="http://exslt.org/common"
xmlns:ni="xalan://org.apache.xalan.lib.NodeInfo"
exclude-result-prefixes="xalan exslt ni"
version="1.0">

Page 33/73

XSLT: Using External Functions

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

<xsl:template match="/">
<nodeset-countries>

<systemid>
<xsl:value-of select="ni:systemId(.)" />

</systemid>

<publicid>
<xsl:value-of select="ni:publicId(.)" />

</publicid>

<america-filename>
<xsl:variable name="xpathvalue">

/countries/america/@filename
</xsl:variable>
<xsl:value-of select="xalan:evaluate($xpathvalue)" />

</america-filename>

<europe-filename>
<xsl:variable name="xpathvalue">

/countries/europe/@filename
</xsl:variable>
<xsl:value-of select="xalan:evaluate($xpathvalue)" />

</europe-filename>

<xsl:for-each select="exslt:node-set(/countries)/*//*">
<country>

<tagname>
<xsl:value-of select="name(.)" />

</tagname>

<linenumber>
<xsl:value-of select="ni:lineNumber(.)" />

</linenumber>

<columnNumber>
<xsl:value-of select="ni:columnNumber(.)" />

</columnNumber>

<value>
<xsl:value-of select="." />

</value>

<valueparts>
<xsl:variable name="value">

<xsl:value-of select="." />
</xsl:variable>
<xsl:for-each select="xalan:tokenize($value)">

<part>
<xsl:value-of select="." />

</part>
</xsl:for-each>

</valueparts>
</country>

Page 34/73

XSLT: Using External Functions

62
63
64
65

</xsl:for-each>
</nodeset-countries>

</xsl:template>
</xsl:stylesheet>

The external functions in this nutshell cover three extensions of Xalan-Java with different namespaces
(lines 3 to 5). The extension of NodeInfo needs an additional parameter on starting the transformation.
This parameter is “-L” without which the result is always “-1” as the line number is not supplied.

In this nutshell the Xalan functions “evaluate” (lines 23 and 30) and “tokenize” (line 55) are used. The
first one takes a XPath expression and evaluates the result. On line 20 the XPath expression is stored
to a variable which later is used for the call to evaluate. This expression is hard coded but can be
supplied easily by the XML file or a parameter to the XSL file.

The method “tokenize” takes a string, splits it into discrete nodes and returns the resulting node-set. A
second parameter can be supplied indicating the delimiters. If they are absent all white space
characters are used as delimiters.

The resulting XML part is shown below on lines 7 and 8 (result of the call to evaluate) and on lines 14
to 19 (result of the call to “tokenize” with more than one word contained in the string).

The node-set function specified by EXSLT (line 33) casts a tree to a node set. The same functionality
can be implemented through the use of XPath.

The NodeInfo API provides the information regarding the node from the XML file which is currently
processed. The method “lineNumber” (line 40) gets the line number of the node within the original
XML file. Likewise the method “columnNumber” (line 44) returns the number of the column
containing the node within the XML file. These methods can be used in case of debugging.

Furthermore the NodeInfo API offers the methods “systemId” (line 12) and “publicId” (line 16) to get
the mentioned IDs from the XML file.

The XML file below shows the output from the transformation:

1
2
3
4
5
6
7
8
9
10
11
12
13

<?xml version="1.0" encoding="UTF-8"?>
<nodeset-countries>
<systemid>

file:///workspace/XSLTExtfunc/nutshell2/redirectOutput.xml
</systemid>
<publicid />
<america-filename>redirectOutputAmerica.out</america-filename>
<europe-filename>redirectOutputEurope.out</europe-filename>
<country>

<tagname>country</tagname>
<linenumber>4</linenumber>
<columnNumber>14</columnNumber>
<value>United States of America</value>

Page 35/73

XSLT: Using External Functions

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

<valueparts>
<part>United</part>
<part>States</part>
<part>of</part>
<part>America</part>

</valueparts>
</country>
…
<country>

<tagname>country</tagname>
<linenumber>20</linenumber>
<columnNumber>14</columnNumber>
<value>China</value>
<valueparts>

<part>China</part>
</valueparts>

</country>
</nodeset-countries>

3.2.3 Generating More Than One Output File Using EXSLT

A XSL transformation usually generates one (mostly XML) file. This limitation can be removed by
the use of EXSLT to create more than one resulting file. This nutshell shows how.
The XML file below shows the input for this nutshell:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<?xml version="1.0"?>
<countries>
 <america filename="redirectOutputAmerica.out">
 <country>United States of America</country>
 <country>Mexico</country>
 <country>Canada</country>
 <country>Brazil</country>
 <country>Cuba</country>
 </america>
 <europe filename="redirectOutputEurope.out">
 <country>United Kingdom</country>
 <country>Germany</country>
 <country>Spain</country>
 <country>Austria</country>
 <country>Greece</country>
 </europe>
 <world>
 <country>Madagascar</country>
 <country>Egypt</country>
 <country>China</country>
 </world>
</countries>

The data in the XML file contains three different tags, “america”, “europe” and “world”. This nutshell
saves the content of each tag into a separate file.

Page 36/73

XSLT: Using External Functions

The XSL file below is used for processing the XML file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
xmlns:redirect="http://xml.apache.org/xalan/redirect"
extension-element-prefixes="redirect">

<xsl:template match="/">
<world-countries>

<xsl:apply-templates />
</world-countries>

</xsl:template>

<xsl:template match="/countries/america">
<redirect:open select="@filename" />
<redirect:write select="@filename">

<american-countries>
<xsl:apply-templates />

</american-countries>
</redirect:write>
<redirect:close select="@filename" />

</xsl:template>

<xsl:template match="/countries/europe">
<redirect:open select="@filename" />
<redirect:write select="@filename">

<european-countries>
<xsl:apply-templates />

</european-countries>
</redirect:write>
<redirect:close select="@filename" />

</xsl:template>

<xsl:template match="country">
<country>

<xsl:apply-templates />
</country>

</xsl:template>

</xsl:stylesheet>

Xalan-Java offers the possibility to generate more than one file by using the external functionality of
the “redirect” API. This API offers functions similar to a file library known from most programming
languages.

At line 3 the namespace for the redirect functions is set. To get a writeable file it has to be opened
with the “open” command supplying the file name (lines 13 and 23). On lines 14 to 18 and 24 to 28
the file is written with the call to the “write” function. The body of the write tag is evaluated and the
result is saved to the file specified at the write tag. At the end of the generation the file needs to be
closed (lines 19 and 29).

Page 37/73

XSLT: Using External Functions

As a result of the transformation three files are created. The following XML file shows the standard
output from the transformation (everything which is not redirected to another file):

1
2
3
4
5
6

<?xml version="1.0" encoding="UTF-8"?>
<world-countries>
<country>Madagascar</country>
<country>Egypt</country>
<country>China</country>

</world-countries>

All American countries are written to the file “redirectOutputAmerica.out”:

1
2
3
4
5
6
7
8

<?xml version="1.0" encoding="UTF-8"?>
<american-countries>
<country>United States of America</country>
<country>Mexico</country>
<country>Canada</country>
<country>Brazil</country>
<country>Cuba</country>

</american-countries>

Finally all European countries are written to the file “redirectOutputEurope.out”:

1
2
3
4
5
6
7
8

<?xml version="1.0" encoding="UTF-8"?>
<european-countries>
<country>United Kingdom</country>
<country>Germany</country>
<country>Spain</country>
<country>Austria</country>
<country>Greece</country>

</european-countries>

3.2.4 Spell Checking Using BSF4Rexx

This nutshell shows how a list of words can be spell checked using the spell checker of
OpenOffice.org. Achieving this functionality, the nutshell uses BSF4Rexx and the API of
OpenOffice.org to access the spell checker.

The code in this nutshell is based on an example of Ahammer Andreas [AHA05] which is included in
the zip file of BSF4Rexx [B4R07]. It was changed to be used as a function returning one of the
strings “NOT correct” or “correct” as a result of the spell checking.

Page 38/73

XSLT: Using External Functions

The following snippet shows the XML file containing the list of words:

1
2
3
4
5
6
7
8
9
10
11

<?xml version="1.0"?>
<words>
<word value="gone" />
<word value="accumulator" />
<word value="advocate" />

…
<word value="truck" />
<word value="vest" />
<word value="wicked" />
<word value="yankee" />

</words>

The content of each value attribute (line 3) is spell checked by this nutshell.

The following code shows the XSL file for processing the XML file using OORexx as scripting
language:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="WriterSpellchecker"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props" functions="isCorrectlySpelled">
<xalan:script lang="rexx">
<![CDATA[

parse arg word
if word =="" then return ""
call init
iscorrect = spellcheck(word)
return iscorrect

init:
-- Example 29
-- From Ahammer, Andreas: <http://wi.wu-wien.ac.at/

-- rgf/diplomarbeiten/index.html#bakk_07>
-- use the SpellChecker to check a word
 /* initialise connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the

-- XContext object
-- retrieve XMultiComponentFactory
XMcf = xContext~getServiceManager

 /* create the LinguServiceManager and the SpellChecker */
mxLinguSvcMgrName = xMcf~createInstanceWithContext

("com.sun.star.linguistic2.LinguServiceManager", xContext)
xSpellChecker = mxLinguSvcMgrName~XLinguServiceManager~

getSpellChecker

Page 39/73

XSLT: Using External Functions

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

 /* load the required class "com.sun.star.lang.Locale"
and set the language to US-english */

CALL UNO.loadClass "com.sun.star.lang.Locale"
aLocale = .UNO~Locale~new("en", "US", "")

return

spellcheck:
parse arg aWord

/* test the word if it is valid */
isCorrect = xSpellChecker~isValid(aWord, aLocale, .UNO~noProps)

wordCorrect = ""
IF isCorrect = 0 THEN wordCorrect = "NOT"

return wordCorrect "correct"

::requires UNO.CLS -- get UNO support
]]>

</xalan:script>
</xalan:component>

<xsl:template match="/">
<HTML>

<H1>ooRexx Example</H1>
<p>Here are the words and the result, if they are

correctly spelled:</p>
<xsl:for-each select="words/word">

<xsl:sort select="@value"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@value"/>
<xsl:text>] </xsl:text>
<xsl:variable name="valueString">

<xsl:value-of select="@value"/>
</xsl:variable>
<xsl:value-of select="props:isCorrectlySpelled($valueString)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

OpenOffice.org supplies many functions which may be used in OORexx through the UNO.CLS
library (line 23).

Executing many function calls to a slowly initialising library implicates that the initialising process
should only be executed once for the complete handling. Therefore this script implements an “init”
method to get a reference to the spell checker of OpenOffice.org (lines 17 to 38) and an extra method
called “spellcheck” which supplies each word separately to the spell checker (lines 40 to 48).

Page 40/73

XSLT: Using External Functions

The script above works as intended if executed as an OORexx command from the command line. As
soon as it is embedded into a XSLT stylesheet it behaves differently. Independent from the method
called in the XSLT stylesheet (like on line 69) the complete script is executed. Therefore the lines 11
to 15 are included. The parameter “word” supplied by Xalan is stored (line 11) and used to call the
method “spellcheck” (line 14) after the initialisation is completed (line 13).

At the time Xalan parses the script, it is executed without a parameter which leads to a
NullPointerException. Avoiding this, the code on line 12 is inserted to the script.

A Xalan component is defined using the Xalan namespace on line 3 and on line 4 “props” is choosen
as the namespace for our external function. The lines 8 and 9 specify the component to be an OORexx
script with one method “isCorrectlySpelled”. This shows that the name of the method (line 40) is
independent from the called method (line 69).

This nutshell uses the library UNO.CLS [B4R07] which gets installed with BSF4Rexx (line 50). The
library offers an API to connect to the OpenOffice.org application using a XContext object (line 23).
The XContent object provides an API to the SpellChecker of OpenOffice.org (lines 26 to 32).

On line 44 the SpellChecker is used to validate the supplied word. If the word is not spelled correctly,
the result of the validation is “0”.

The lines 66 to 68 store the content of the attribute “value” in the variable “valueString” which is used
to call the script on line 69. Without saving the value Xalan would provide the reference to the
attribute node instead of the value.

The resulting content of the transformation is shown in the following table:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

<HTML>
<H1>ooRexx Example</H1>
<p>

Here are the words and the result, if they are correctly spelled:
</p>
<p>[accumulator] correct</p>
<p>[advocate] correct</p>
<p>[cop] correct</p>
<p>[crib] correct</p>

…
<p>[switchback] correct</p>
<p>[truck] correct</p>
<p>[vest] correct</p>
<p>[wicked] correct</p>
<p>[yankee] NOT correct</p>

</HTML>

After the resulting file is written, the transformation process does not terminate. Instead it has to be
killed.

Page 41/73

XSLT: Using External Functions

3.2.5 Formatting Date Using JavaScript

This nutshell shows the possibility of formatting dates within a transformation using JavaScript.

For this nutshell the following XML file is used as input. It contains country entries with a date and
the format string of the stated date:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

<?xml version="1.0"?>
<countries>
<country date="20070405" format="yyyyMMdd">

United States of America
</country>
<country date="20070406" format="yyyyMMdd">

United Kingdom
</country>
<country date="20070407" format="yyyyMMdd">

Brazil
</country>
<country date="20070408" format="yyyyMMdd">

Cuba
</country>
<country date="20070409" format="yyyyMMdd">

Chile
</country>
<country date="20070410" format="yyyyMMdd">

Mexico
</country>
<country date="20070411" format="yyyyMMdd">

Austria
</country>
<country date="20070412" format="yyyyMMdd">

Sweden
</country>

</countries>

The snippet below shows the corresponding XSL file for processing the XML file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:parse="parseDate"
 extension-element-prefixes="parse"
 version="1.0">

<xalan:component prefix="parse" functions="parseDate">
<xalan:script lang="javascript">

var outputFormat = "dd/MM/yyyy";

function parseDate(date, format) {
parsedDate =

Page 42/73

XSLT: Using External Functions

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

new java.text.SimpleDateFormat(format).parse(date);
return new java.text.SimpleDateFormat(outputFormat).

format(parsedDate);
}

</xalan:script>
</xalan:component>

<xsl:template match="/">
<timedCountries>

<xsl:apply-templates select="/countries/country" />
</timedCountries>

</xsl:template>

<xsl:template match="country">
<country>

<value>
<xsl:value-of select="." />

</value>
<xsl:variable name="date" select="string(@date)" />
<xsl:variable name="format" select="string(@format)" />
<date>

<xsl:value-of select="parse:parseDate($date, $format)" />
</date>

</country>
</xsl:template>

</xsl:stylesheet>

On line 3 the namespace for Xalan and on line 4 the namespace for the external function is defined.
Preventing the namespace from being output to the resulting XML file, the namespace is marked to be
excluded (line 5).

The Xalan component defines just one method “parseDate” (lines 8 to 21). This method receives two
parameters: The first string contains the date and the second one indicates the format of the first
parameter (line 13). The date is parsed using a SimpleDateFormat (lines 14 and 15) and formatted
(lines 16 and 17) using the defined format on line 11.

On line 37 the “parseDate” method is called supplying both parameters date and format. The values of
both parameters need to be saved into variables to prevent Xalan from passing on the references to the
attributes on method execution (lines 34 and 35).

Page 43/73

XSLT: Using External Functions

The XML file below shows the result of the transformation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

<?xml version="1.0" encoding="UTF-8"?>
<timedCountries xmlns:xalan="http://xml.apache.org/xalan">
<country>

<value>United States of America</value>
<date>05/04/2007</date>

</country>
<country>

<value>United Kingdom</value>
<date>06/04/2007</date>

</country>
<country>

<value>Brazil</value>
<date>07/04/2007</date>

</country>
<country>

<value>Cuba</value>
<date>08/04/2007</date>

</country>
<country>

<value>Chile</value>
<date>09/04/2007</date>

</country>
<country>

<value>Mexico</value>
<date>10/04/2007</date>

</country>
<country>

<value>Austria</value>
<date>11/04/2007</date>

</country>
<country>

<value>Sweden</value>
<date>12/04/2007</date>

</country>
</timedCountries>

Page 44/73

XSLT: Using External Functions

3.3 Nutshells Using Existing Applications
This chapter shows the possibility to capitalise existing applications by using BSF and a scripting
language.

3.3.1 Using JRuby's ActiveRecord

The following nutshell shows how an existing Ruby on Rails application can be reused through BSF
and JRuby.

The existing database table “properties” is used from the nutshells “Querying Databases”. The input
and output files are similar to the files from the nutshells “Querying Databases”.

At first the Ruby on Rails (RoR) application is created. The following code generates the complete
RoR application for the table:

1
2

rails Properties
script/generate scaffold properties Properties

The first line shows the creation of an Rails application called “Properties”. This constitutes the frame
for the RoR application. The second line uses the generators of RoR to create the Ruby files for the
“properties” table which includes the ActiveRecord (properties.rb):

1
2

class Properties < ActiveRecord::Base
end

For more information on application development with Ruby on Rails see [ROR07].

Using this Ruby ActiveRecord with BSF, some porting lines need to be coded:

1
2
3
4
5
6
7
8
9
10
11

require "rubygems"
gem 'ActiveRecord-JDBC'
require 'jdbc_adapter'
require "active_record"

ActiveRecord::Base::establish_connection(
 :adapter => 'jdbc',
 :driver => 'org.postgresql.Driver',
 :url => 'jdbc:postgresql://localhost:5432/xslt',
 :username=>"xslt",
 :password=>"xslt")

The lines 1 through 5 mark which Ruby gems are required. Line 3 shows that the “jdbc_adapter” gem
is needed because JRuby runs on Java. Within Ruby a gem like “postgres” would be used which
builds on C. As JRuby runs within the Java Virtual Machine the “jdbc_adapter” has to be used instead
to query the database. The lines 6 to 11 configure the JDBC Adapter.

Page 45/73

XSLT: Using External Functions

The following snippet shows how to initialise and call the Ruby code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

…
public class RubyCaller {
private BSFManager manager;

 public void init(…) throws Exception {
 String engine = "org.jruby.javasupport.bsf.JRubyEngine";

String[] extensions = {"rb"};
 BSFManager.registerScriptingEngine("ruby", engine, extensions);

 manager = new BSFManager();
this.execFile("nutshell3/port.rb");

 this.execFile("nutshell3/Properties/app/models/properties.rb");
}

public String getValue(String key) throws Exception{
ValueBean valuebean = new ValueBean();
valuebean.setKey(key);

 manager.declareBean("valuebean", valuebean, ValueBean.class);
 Object object = manager.eval("ruby", "(java)", 1, 1,

"Properties.find($valuebean.getKey()).value");
 return (String) object;
}

…

The class RubyCaller encapsulates the code required to interface with JRuby. The lines 6 to 11
register the scripting language of “ruby” with the BSFManager. The lines 11 and 12 execute the ruby
scripts used.

The ruby script on line 11 contains the porting code shown above. The ruby file “properties.rb” was
generated by RoR.

The method getValue() on line 15 receives a string containing the key, reads the corresponding
Properties object and returns the value.

On line 18 a bean is declared with the manager and two lines below it is used
(“$valuebean.getKey()”). Through the BSFManager API the script is invoked (line 19) submitting the
declared parameter. The returned object coincides with the value attribute of the Properties object.

The RubyCaller class is used by the XSL file:

1
2
3
4
5
6
7

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="at.ac.wuwien.xsltnutshell.RubyCaller"
 extension-element-prefixes="props"
 version="1.0">

Page 46/73

XSLT: Using External Functions

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

<xalan:component prefix="props"
 elements="init" functions="getValue">

<xalan:script lang="javaclass"
src="at.ac.wuwien.xsltnutshell.RubyCaller"/>

</xalan:component>

<xsl:template match="/">
<HTML>

<H1>Ruby Example</H1>
<props:init/>
<p>Here are the names of the Agencies:</p>
<xsl:for-each select="agencies/agency">

<xsl:sort select="@key"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@key"/>
<xsl:text>] </xsl:text>
<xsl:value-of select="props:getValue(@key)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

In lines 9 to 13 the RubyCaller class is defined. Line 18 initialises the component and finally the
getValue() method is called at line 26.

The next snippet shows another way to call the Ruby script:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

…
<xalan:component prefix="props"
 elements="init" functions="getValue">
<xalan:script lang="ruby" ><![CDATA[

require "rubygems"
gem 'ActiveRecord-JDBC'
require 'jdbc_adapter'
require "active_record"

ActiveRecord::Base::establish_connection(
:adapter => 'jdbc',
:driver => 'org.postgresql.Driver',
:url => 'jdbc:postgresql://localhost:5432/xslt',
:username=>"xslt",
:password=>"xslt")

class Properties < ActiveRecord::Base
end

def init (arg0, arg1)
end

Page 47/73

XSLT: Using External Functions

22
23
24
25
26
27
28
29

def getValue (key)

return Properties.find(key).value
end

]]>
</xalan:script>

</xalan:component>
…

The problem in this case is shown on lines 17 and 18. The existing code has to be duplicated to be
callable. Therefore the first option would be the appropriate one if a Ruby on Rails application is
already existing.

3.3.2 ResourceBundle Using Java

This nutshell shows the possibility of using a properties file through Java to get localised text strings.

The Java class reads the names of agencies from the properties file which are contained in the input
XML file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

<?xml version="1.0"?>
<agencies>
<agency key="AMTRAK" />
<agency key="DARPA" />
<agency key="DCAA" />
<agency key="DEA" />
<agency key="DFAS" />
<agency key="DHS" />
<agency key="DIA" />
<agency key="DISA" />

…
<agency key="NASA" />
<agency key="NIH" />
<agency key="NIMH" />
<agency key="NOAA" />
<agency key="NSA" />
<agency key="USCIS" />
<agency key="USDA" />
<agency key="VA" />

</agencies>

Page 48/73

XSLT: Using External Functions

Each value of a “key” attribute corresponds to an entry in the properties file. The following snippet
shows some entries:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

AMTRAK=National Railroad Passenger Corporation
DARPA=Defense Advanced Research Projects Agency
DCAA=Defense Contract Audit Agency
DEA=Drug Enforcement Administration
DFAS=Defense Finance and Accounting Service
DHS=Department of Homeland Security
DIA=Defense Intelligence Agency
DISA=Defense Information Systems Agency
DLA=Defense Logistics Agency
DOC=Department of Commerce
DOD=Department of Defense
FBI=Federal Bureau of Investigation
…
NASA=National Aeronautics and Space Administration
NEI=National Eye Institute
NIAAA=National Institute on Alcohol Abuse and Alcoholism
NIDA=National Institute on Drug Abuse
NIDCD=National Institute of Deafness and Other Communication Disorders
NIDCR=National Institute of Dental and Craniofacial Research
NIDDK=National Institute of Diabetes and Digestive and Kidney Diseases
NOAA=National Oceanic and Atmospheric Administration
NSA=National Security Agency
USCIS=U.S. Citizenship and Immigration Services
USDA=Department of Agriculture
VA=Department of Veterans Affairs

An external function implemented in Java is used to get the corresponding text string from the
properties file. The following XSL file is used for processing the XML:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="at.ac.wuwien.xsltnutshell.PropertiesQuery"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props" functions="getValue">
<xalan:script lang="javaclass"

 src="at.ac.wuwien.xsltnutshell.PropertiesQuery"/>
</xalan:component>

<xsl:template match="/">
<HTML>

<H1>Java Example</H1>
<p>Here are the names of the Agencies:</p>
<xsl:for-each select="agencies/agency">

<xsl:sort select="@key"/>
<p>

Page 49/73

XSLT: Using External Functions

21
22
23
24
25
26
27
28
29
30

<xsl:text>[</xsl:text>
<xsl:value-of select="@key"/>
<xsl:text>] </xsl:text>
<xsl:value-of select="props:getValue(@key)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

The script above processes the XML file and retrieves the corresponding text string for each key
entry. The result is written to the XML file.

On line 3 the Xalan-Java namespace and on line 4 the namespace for the external function are
defined. Beneath the component is defined as a Java class (lines 9 to 12).

On line 24 the method “getValue” is executed. It is not necessary to save the attributes value in
between as Java is used.

The implementation below shows the used Java class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

package at.ac.wuwien.xsltnutshell;

import java.util.ResourceBundle;

public class PropertiesQuery {

ResourceBundle bundle =
ResourceBundle.getBundle("at.ac.wuwien.xsltnutshell.agencies");

public String getValue(String key) {

return bundle.getString(key);

}

}

The Java class instantiates a ResourceBundle (lines 7 to 8) with the properties file mentioned above.
Every time the method “getValue” is executed it retrieves the corresponding text string to the supplied
key from the ResourceBundle (line 12).

The result is returned to Xalan (line 12).

Page 50/73

XSLT: Using External Functions

The resulting XML file contains the key from the input XML file and the text string from the
properties file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

<HTML>
<H1>Java Example</H1>
<p>Here are the names of the Agencies:</p>
<p>[AMTRAK] National Railroad Passenger Corporation</p>
<p>[DARPA] Defense Advanced Research Projects Agency</p>
<p>[DCAA] Defense Contract Audit Agency</p>
<p>[DEA] Drug Enforcement Administration</p>
<p>[DOI] Department of the Interior</p>
<p>[DOJ] Department of Justice</p>
<p>[ED] Department of Education</p>
<p>[EEOC] Equal Employment Opportunity Commission</p>
<p>[EPA] Environmental Protection Agency</p>
<p>[FAA] Federal Aviation Administration</p>
<p>[FBI] Federal Bureau of Investigation</p>
…
<p>[NASA] National Aeronautics and Space Administration</p>
<p>[NEI] National Eye Institute</p>
<p>[NIAAA] National Institute on Alcohol Abuse and Alcoholism</p>
<p>[NIST] National Institute of Standards and Technology</p>
<p>[NOAA] National Oceanic and Atmospheric Administration</p>
<p>[NSA] National Security Agency</p>
<p>[USCIS] U.S. Citizenship and Immigration Services</p>
<p>[USDA] Department of Agriculture</p>
<p>[VA] Department of Veterans Affairs</p>
</HTML>

3.3.3 Querying Calc Using BSF4Rexx

OpenOffice.org offers an API to create and manipulate a Calc file. This nutshell uses an existing Calc
file to search for a string using an OORexx script. Therefore this nutshell uses BSF4Rexx and the API
of OpenOffice.org to access the Calc file.

The key strings searched within the Calc file are supplied to the transformation by an input XML file:

1
2
3
4
5
6
7
8
9
10
11
12
13

<?xml version="1.0"?>
<agencies>
<agency key="AMTRAK" />
<agency key="DARPA" />
<agency key="DCAA" />
<agency key="DEA" />

…
<agency key="NIGMS" />
<agency key="NIH" />
<agency key="NIMH" />
<agency key="NINDS" />
<agency key="NIST" />
<agency key="NOAA" />

Page 51/73

XSLT: Using External Functions

14
15
16
17
18

<agency key="NSA" />
<agency key="USCIS" />
<agency key="USDA" />
<agency key="VA" />

</agencies>

The content of each “key” attribute is looked up in the Calc file. The Calc file contains two columns.
The first column contains the agencies key from the XML file while the second column states the
names of the agencies.

The following picture shows a snapshot of the Calc file:

Page 52/73

Figure 3.1.: Calc File Used for Look-up

XSLT: Using External Functions

The OORexx script used in this transformation is embedded within the XSL file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="CalcDocument"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props" functions="getValue">
<xalan:script lang="rexx">
<![CDATA[

parse arg key
if key =="" then return ""
call init
i = getValue(key)
return i

init:
-- Retrieve the Desktop object, we need its XComponentLoader
--interface to load a new document
oDesktop = UNO.createDesktop()
xComponentLoader = oDesktop~XDesktop~XComponentLoader

/* open the "properties.ods" from current folder/directory */
url = ConvertToURL(directory() || "/nutshell6/properties.ods")
xCalcComponent = xComponentLoader~loadComponentFromURL

(url, "_blank", 0, .UNO~noProps)

/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~

XIndexAccess~getByIndex(0) ~XSpreadSheet
return

/* this method searches the first column of the calc file for
the supplied value.if found the value of the second column
is returned */

getValue:
parse arg key

output = ""
eof = 0
row = 0

do while eof = 0
-- get the first cell of the next row
value = UNO.getCell(xSheet, 0, row)~getFormula()

-- last row already passed and nothing found
if value = "" then do

eof = 1
end
-- key found and value of second cell returned

Page 53/73

XSLT: Using External Functions

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

else if value = key then do
eof = 1
output = UNO.getCell(xSheet, 1, row)~getFormula()

end
-- not found and EOF not reached, continue searching
else do

row = row + 1
end

end
return output

::requires UNO.CLS -- get UNO support
]]>
</xalan:script>

</xalan:component>

<xsl:template match="/">
<HTML>

<H1>ooRexx Example</H1>
<p>Here are the names of the Agencies:</p>
<xsl:for-each select="agencies/agency">

<xsl:sort select="@key"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@key"/>
<xsl:text>] </xsl:text>
<xsl:variable name="keyString">

<xsl:value-of select="@key"/>
</xsl:variable>
<xsl:value-of select="props:getValue($keyString)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>>

OpenOffice.org supplies many functions which may be used in OORexx through the UNO.CLS
library (line 20). This nutshell uses UNO.CLS to open an existing Calc file in OpenOffice.org and to
search it for supplied strings.

Executing many function calls to a slowly initialising library implicates that the initialising process
should only be executed once for the complete handling. Therefore this script implements an “init”
method to get a reference to the opened Calc file (lines 17 to 31) and an extra method called
“getValue” which searches each string separately within the Calc file (lines 36 to 61).

The script above works as intended if executed as an OORexx command from the command line. As
soon as it is embedded into the XSLT stylesheet it behaves differently. Independent which method is
called in the XSLT stylesheet (like on line 81), the complete script is executed.

Page 54/73

XSLT: Using External Functions

Therefore the lines 11 to 15 are included. The parameter supplied by Xalan is stored (line 11) and
used to call the method “getValue” (line 14) after the initialisation is completed (line 13).

Additionally Xalan parses the script by executing it with no parameter which leads to a
NullPointerException. Avoiding this, the code on line 12 is inserted to the script.

The XSLT stylesheet looks similar to the other nutshells using existing applications. The Xalan
namespace is set on line 3 and on line 4 “props” is chosen as the namespace for the external function.

The lines 8 and 9 specify the component to be an OORexx script with one method “getValue”. This
shows that the name of the method (line 36) is independent from the called method (line 81).

This nutshell uses the library UNO.CLS [B4R07] which is installed with BSF4Rexx (line 63). The
library offers an API to connect to the OpenOffice.org application using a XComponentLoader (line
21). In this nutshell the Calc file is opened through the use of the XComponentLoader (lines 21 to
30).

The method “getValue” iterates through all entries in the first column (lines 43 to 60). It reads the
value (line 45) and compares it with the supplied key. If both strings match, the value from the second
column is returned (line 54 and 61).

The lines 78 to 80 store the value of the attribute “key” in the variable “keyString” which is used to
call the script on line 80. Without saving the value, Xalan would provide the reference to the attribute
node instead of the value.

The following table shows the resulting content of the transformation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

<HTML>
<H1>ooRexx Example</H1>
<p>Here are the names of the Agencies:</p>
<p>[AMTRAK] National Railroad Passenger Corporation</p>
<p>[DARPA] Defense Advanced Research Projects Agency</p>
<p>[DCAA] Defense Contract Audit Agency</p>
<p>[DEA] Drug Enforcement Administration</p>
…
<p>[NIGMS] National Institute of General Medical Sciences</p>
<p>[NIH] National Institutes of Health</p>
<p>[NIMH] National Institute of Mental Health</p>
<p>[NINDS] National Institute of Neurological Disorders and Stroke</p>
<p>[NIST] National Institute of Standards and Technology</p>
<p>[NOAA] National Oceanic and Atmospheric Administration</p>
<p>[NSA] National Security Agency</p>
<p>[USCIS] U.S. Citizenship and Immigration Services</p>
<p>[USDA] Department of Agriculture</p>
<p>[VA] Department of Veterans Affairs</p>
</HTML>

Page 55/73

XSLT: Using External Functions

One problem emerges after the transformation finishes. The transformation process does not get
terminated after the resulting file is written. Instead it has to be killed. Furthermore the started
instance of OpenOffice.org stays open even after the killing of the transformation process.

3.3.4 ResourceBundle Using JavaScript

This nutshell uses JavaScript to read localised text strings from a properties file.

The keys for the JavaScript code are supplied by the following XML snippet:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

<?xml version="1.0"?>
<agencies>
<agency key="AMTRAK" />
<agency key="DARPA" />
<agency key="DCAA" />
<agency key="DEA" />
<agency key="DFAS" />
<agency key="DHS" />
<agency key="DIA" />
<agency key="DISA" />

…
<agency key="NASA" />
<agency key="NIH" />
<agency key="NIMH" />
<agency key="NOAA" />
<agency key="NSA" />
<agency key="USCIS" />
<agency key="USDA" />
<agency key="VA" />

</agencies>

The following snippet shows some entries from the properties file used in this nutshell:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

AMTRAK=National Railroad Passenger Corporation
DARPA=Defense Advanced Research Projects Agency
DCAA=Defense Contract Audit Agency
DEA=Drug Enforcement Administration
DFAS=Defense Finance and Accounting Service
DHS=Department of Homeland Security
DIA=Defense Intelligence Agency
DISA=Defense Information Systems Agency
DLA=Defense Logistics Agency
DOC=Department of Commerce
DOD=Department of Defense
FBI=Federal Bureau of Investigation
…
NASA=National Aeronautics and Space Administration
NEI=National Eye Institute
NIAAA=National Institute on Alcohol Abuse and Alcoholism
NIDA=National Institute on Drug Abuse
NIDCD=National Institute of Deafness and Other Communication Disorders

Page 56/73

XSLT: Using External Functions

19
20
21
22
23
24
25

NIDCR=National Institute of Dental and Craniofacial Research
NIDDK=National Institute of Diabetes and Digestive and Kidney Diseases
NOAA=National Oceanic and Atmospheric Administration
NSA=National Security Agency
USCIS=U.S. Citizenship and Immigration Services
USDA=Department of Agriculture
VA=Department of Veterans Affairs

Each key in the XML file corresponds to a property from the file above. An external function
implemented in JavaScript is used to get the corresponding text string from the properties file. The
JavaScript code needed for the processing is embedded within the XSL file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="ResourceBundle"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props" functions="getValue">
<xalan:script lang="javascript">

var bundle = java.util.ResourceBundle.getBundle
('at.ac.wuwien.xsltnutshell.agencies');

function getValue(key) {
return bundle.getString(key);

}

</xalan:script>
</xalan:component>

<xsl:template match="/">
<HTML>

<H1>JavaScript Example</H1>
<p>Here are the names of the Agencies:</p>
<xsl:for-each select="agencies/agency">

<xsl:sort select="@key"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@key"/>
<xsl:text>] </xsl:text>
<xsl:variable name="keyString">

<xsl:value-of select="@key"/>
</xsl:variable>
<xsl:value-of select="props:getValue($keyString)"/>
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

Page 57/73

XSLT: Using External Functions

The script above processes the XML file and retrieves the corresponding text string for each key
entry. The result is written to the XML file.

On line 3 the Xalan-Java namespace and on line 4 the namespace for the external function are
defined. Beneath the component is defined to be implemented in JavaScript (lines 8 to 19).

On line 34 the method “getValue” is executed. As the calling script is implemented in JavaScript the
value of the attribute has to be buffered in a variable (lines 31 to 33).

The JavaScript code instantiates a ResourceBundle (lines 11 to 12) with the properties file mentioned
above. Every time the method “getValue” is executed it retrieves the corresponding text string to the
supplied key from the ResourceBundle (line 15) and returns it.
The following XML snippet shows a part of the output from the transformation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<HTML>
<H1>JavaScript Example</H1>
<p>Here are the names of the Agencies:</p>
<p>[AMTRAK] National Railroad Passenger Corporation</p>
<p>[DARPA] Defense Advanced Research Projects Agency</p>
<p>[DCAA] Defense Contract Audit Agency</p>
<p>[DEA] Drug Enforcement Administration</p>
<p>[DFAS] Defense Finance and Accounting Service</p>
<p>[DHS] Department of Homeland Security</p>
<p>[DIA] Defense Intelligence Agency</p>
<p>[DISA] Defense Information Systems Agency</p>
…
<p>[NASA] National Aeronautics and Space Administration</p>
<p>[NEI] National Eye Institute</p>
<p>[NIAAA] National Institute on Alcohol Abuse and Alcoholism</p>
<p>[NIGMS] National Institute of General Medical Sciences</p>
<p>[NIH] National Institutes of Health</p>
<p>[NSA] National Security Agency</p>
<p>[USCIS] U.S. Citizenship and Immigration Services</p>
<p>[USDA] Department of Agriculture</p>
<p>[VA] Department of Veterans Affairs</p>
</HTML>

Page 58/73

XSLT: Using External Functions

3.4 Nutshells Calling Web Services
Web services offer a standardised method for exposing functionality to the web. These nutshells use
Axis 1.4 [AXI07] to call a web service provided by Jensen Data Systems [JDI07] which converts
temperatures from Fahrenheit to Celsius.

3.4.1 Nutshell Using Java

This nutshell shows the possibility of calling a web service through Java and Axis 1.4 [AXI07]. As an
example a web service converting between Fahrenheit and Celsius is used.

For this nutshell the following XML file is used as input:

1
2
3
4
5
6
7
8
9
10
11

<?xml version="1.0"?>
<temperatures>
<city name="Los Angeles" temperature="63"/>
<city name="Bakersfield" temperature="75"/>
<city name="Burbank" temperature="61"/>
<city name="Fresno" temperature="77"/>
<city name="Long Beach" temperature="67"/>
<city name="Palm Springs" temperature="85"/>
<city name="Crescent City" temperature="52"/>
<city name="Needles" temperature="95"/>

</temperatures>

The temperature in the XML file is supplied in Fahrenheit. The XSL file for processing the XML file
contains the reference to the Java class calling the web service using Axis:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="at.ac.wuwien.xsltnutshell.WebServiceCaller"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"
 elements="init" functions="getCelsius">

<xalan:script lang="javaclass"
src="at.ac.wuwien.xsltnutshell.WebServiceCaller"/>

</xalan:component>

<xsl:template match="/">
<HTML>

<H1>Java Example</H1>
<props:init/>
<p>Here are the temperatures of the Cities:</p>
<xsl:for-each select="temperatures/city">

<xsl:sort select="@name"/>
<p>
<xsl:text>[</xsl:text>

Page 59/73

XSLT: Using External Functions

23
24
25
26
27
28
29
30
31
32

<xsl:value-of select="@name"/>
<xsl:text>] </xsl:text>
Temperature <xsl:value-of select="@temperature"/> °F -
<xsl:value-of select="props:getCelsius(@temperature)"/> °C
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

The script above reads the XML file, converts the temperatures to Celsius and outputs the result. This
is accomplished by a call to the web service through Java. Therefore a component for Xalan is defined
which points to the implementing Java class (lines 8 to 12).

On line 17 the initialisation routine of the Java class is called and finally at line 26 the method
“getCelsius” is executed. As Java is used it is not necessary to save the attribute value in between.

The Java class implements the methods “init” and “getCelsius”:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

package at.ac.wuwien.xsltnutshell;
import java.util.HashMap;

public class WebServiceCaller {

DynamicInvoker dynamicInvoker = null;

public void init(org.apache.xalan.extensions.XSLProcessorContext
context, org.w3c.dom.Element elem) {

try {
dynamicInvoker = new DynamicInvoker("http://developerdays.com/cgi-

bin/tempconverter.exe/wsdl/ITempConverter");
} catch (Exception e) {

e.printStackTrace();
}

}

public String getCelsius(String fahrenheit) {
try {

HashMap map = dynamicInvoker.invokeMethod("FtoC",
"ITempConverterPort", new String[] {null, null, fahrenheit});

return String.valueOf(map.get("return"));
} catch (Exception e) {

e.printStackTrace();
}
return "<<" + fahrenheit + ">>";

}
}

Page 60/73

XSLT: Using External Functions

The Java class uses the DynamicInvoker provided by Apache Axis (lines 6 and 11). This class
facilitates the access of web services by supplying a easy API. On line 11 the WSDL is connected to
the invoker which is afterwards used to invoke the method (line 20).

The result of the invocation is returned as a HashMap containing the key “return” (line 22).

The following XML file shows the output from the transformation containing the temperatures in
Fahrenheit and Celsius:

1
2
3
4
5
6
7
8
9
10
11
12

<HTML>
<H1>Java Example</H1>
<p>Here are the temperatures of the Cities:</p>
<p>[Bakersfield] Temperature 75 °F - 23 °C</p>
<p>[Burbank] Temperature 61 °F - 16 °C</p>
<p>[Crescent City] Temperature 52 °F - 11 °C</p>
<p>[Fresno] Temperature 77 °F - 25 °C</p>
<p>[Long Beach] Temperature 67 °F - 19 °C</p>
<p>[Los Angeles] Temperature 63 °F – 17 °C</p>
<p>[Needles] Temperature 95 °F - 35 °C</p>
<p>[Palm Springs] Temperature 85 °F - 29 °C</p>

</HTML>

3.4.2 Nutshell Using JudoScript

This nutshell shows the possibility of calling a web service using JudoScript. As an example a web
service which converts between Fahrenheit and Celsius is used.

For this nutshell the following XML file is used as input:

1
2
3
4
5
6
7
8
9
10
11

<?xml version="1.0"?>
<temperatures>
<city name="Los Angeles" temperature="63"/>
<city name="Bakersfield" temperature="75"/>
<city name="Burbank" temperature="61"/>
<city name="Fresno" temperature="77"/>
<city name="Long Beach" temperature="67"/>
<city name="Palm Springs" temperature="85"/>
<city name="Crescent City" temperature="52"/>
<city name="Needles" temperature="95"/>

</temperatures>

The temperature in the XML file is supplied in Fahrenheit.

Page 61/73

XSLT: Using External Functions

The XSL file for processing the XML file embeds the JudoScript code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="WebserviceCall"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"
 elements="init" functions="getCelsius">

<xalan:script lang="judoscript">

wsdl = null;

function init (xslproc, elem) {
wsdl = wsdl::'http://developerdays.com/cgi-

bin/tempconverter.exe/wsdl/ITempConverter';
return null;

}

function getCelsius(fahrenheit) {
return wsdl.FtoC(fahrenheit);

}
</xalan:script>

</xalan:component>

<xsl:template match="/">
<HTML>

<H1>JudoScript Example</H1>
<props:init/>
<p>Here are the temperatures of the Cities:</p>
<xsl:for-each select="temperatures/city">

<xsl:sort select="@name"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@name"/>
<xsl:text>] </xsl:text>
<xsl:variable name="temperatureString">

<xsl:value-of select="@temperature"/>
</xsl:variable>
Temperature <xsl:value-of select="@temperature"/> °F -
<xsl:value-of select="props:getCelsius($temperatureString)"/>
°C
</p>

</xsl:for-each>
</HTML>

</xsl:template>

</xsl:stylesheet>

Page 62/73

XSLT: Using External Functions

The script above reads the XML file, converts the temperatures to Celsius and outputs the result.
Calling a web service with JudoScript, the WSDL file needs to be linked to the “wsdl” domain. This
is accomplished on lines 15 and 16. Afterwards the web service can be called like a method on the
“wsdl” object (line 21). Internally JudoScript uses Axis 1.4 [AXI07] to call the web service.

The workaround saving the value of the attribute on lines 37 to 39 is required. Otherwise the
reference to the attribute would be supplied instead of the value.

The following XML file shows the output from the transformation:

1
2
3
4
5
6
7
8
9
10
11
12

<HTML>
<H1>JudoScript Example</H1>
<p>Here are the temperatures of the Cities:</p>
<p>[Bakersfield] Temperature 75 °F - 23 °C</p>
<p>[Burbank] Temperature 61 °F - 16 °C</p>
<p>[Crescent City] Temperature 52 °F - 11 °C</p>
<p>[Fresno] Temperature 77 °F - 25 °C</p>
<p>[Long Beach] Temperature 67 °F - 19 °C</p>
<p>[Los Angeles] Temperature 63 °F – 17 °C</p>
<p>[Needles] Temperature 95 °F - 35 °C</p>
<p>[Palm Springs] Temperature 85 °F - 29 °C</p>

</HTML>

3.4.3 Nutshell Using JavaScript

Web services provide functionality to the internet through the SOAP protocol. In this nutshell the
functionality of a web service which converts between Fahrenheit and Celsius is used. The calling
code is implemented with JavaScript.

The input XML file contains the name and the temperature of Californian cities:

1
2
3
4
5
6
7
8
9
10
11

<?xml version="1.0"?>
<temperatures>
<city name="Los Angeles" temperature="63"/>
<city name="Bakersfield" temperature="75"/>
<city name="Burbank" temperature="61"/>
<city name="Fresno" temperature="77"/>
<city name="Long Beach" temperature="67"/>
<city name="Palm Springs" temperature="85"/>
<city name="Crescent City" temperature="52"/>
<city name="Needles" temperature="95"/>

</temperatures>

The temperature in the XML file is supplied in Fahrenheit.

Page 63/73

XSLT: Using External Functions

The web service calling code in JavaScript is embedded within the XSL file:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="WebserviceCall"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"
 elements="init" functions="getCelsius">

<xalan:script lang="javascript">

importPackage(Packages.at.ac.wuwien.xsltnutshell)
var dynamicInvoker = null;

function init (xslproc, elem) {
dynamicInvoker = new DynamicInvoker(

"http://developerdays.com/cgi-
bin/tempconverter.exe/wsdl/ITempConverter");

return null;
}

function getCelsius(fahrenheit) {
var stringArray =

java.lang.reflect.Array.newInstance(java.lang.String, 3);
stringArray[2] = fahrenheit;
var map = dynamicInvoker.invokeMethod("FtoC",

"ITempConverterPort", stringArray);
return map.get("return");

}
</xalan:script>

</xalan:component>

<xsl:template match="/">
<HTML>

<H1>JavaScript Example</H1>
<props:init/>
<p>Here are the temperatures of the Cities:</p>
<xsl:for-each select="temperatures/city">

<xsl:sort select="@name"/>
<p>
<xsl:text>[</xsl:text>
<xsl:value-of select="@name"/>
<xsl:text>] </xsl:text>
<xsl:variable name="temperatureString">

<xsl:value-of select="@temperature"/>
</xsl:variable>
Temperature <xsl:value-of select="@temperature"/> °F -
<xsl:value-of select="props:getCelsius($temperatureString)"/>
°C
</p>

</xsl:for-each>

Page 64/73

XSLT: Using External Functions

52
53
54
55

</HTML>
</xsl:template>

</xsl:stylesheet>

The script above reads the XML file, converts the temperatures to Celsius and generates the result.
The JavaScript code uses the same DynamicInvoker class as the Java version. The web service is
called using Axis 1.4 [AXI07] which facilitates the execution.

Lines 15 to 20 show how the DynamicInvoker is instantiated through JavaScript and further down on
lines 26 and 27 how a method is invoked. The lines 23 to 25 create an array of string objects and
populate the last one with the parameter in Fahrenheit.

The workaround saving the value of the attribute on lines 44 to 46 is needed. Otherwise the reference
to the attribute would be supplied instead of the value.

The resulting XML file contains the name of the city and the temperatures in Fahrenheit and Celsius:

1
2
3
4
5
6
7
8
9
10
11
12

<HTML>
<H1>JavaScript Example</H1>
<p>Here are the temperatures of the Cities:</p>
<p>[Bakersfield] Temperature 75 °F - 23 °C</p>
<p>[Burbank] Temperature 61 °F - 16 °C</p>
<p>[Crescent City] Temperature 52 °F - 11 °C</p>
<p>[Fresno] Temperature 77 °F - 25 °C</p>
<p>[Long Beach] Temperature 67 °F - 19 °C</p>
<p>[Los Angeles] Temperature 63 °F – 17 °C</p>
<p>[Needles] Temperature 95 °F - 35 °C</p>
<p>[Palm Springs] Temperature 85 °F - 29 °C</p>

</HTML>

Page 65/73

XSLT: Using External Functions

3.5 How to Upgrade to BSF 3.0
This chapter focuses on the process of upgrading existing nutshells from BSF 2.4 to BSF version 3.0.

BSF 3.0 implements the JSR 223 specification [JCP07]. The API of BSF 3.0 is completely different
compared to the version 2.4 of BSF.

The following two sub chapters explain how a BSF 2.4 compatible Xalan XSL file can be upgraded to
BSF 3.0. They differ in the way such XSL files are implemented.

3.5.1 Upgrading XSL Files with Embedded Scripts
The most scripts in this bachelor thesis are implemented using embedded scripts. The following
snippet shows a nutshell using embedded JavaScript code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:parse="parseDate"
 extension-element-prefixes="parse"
 version="1.0">

<xalan:component prefix="parse" functions="parseDate">
<xalan:script lang="javascript">

var outputFormat = "dd/MM/yyyy";

function parseDate(date, format) {
parsedDate =

new java.text.SimpleDateFormat(format).parse(date);
return new java.text.SimpleDateFormat(outputFormat).

format(parsedDate);
}

</xalan:script>
</xalan:component>

…
</xsl:stylesheet>

An embedded script is contained within the Xalan script tag as shown on lines 9 to 20. Porting such
XSL files is straight forward by replacing the bsf.jar with the new version bsf-all-3.0-beta1.jar. Such
embedded scripts work out of the box after exchanging the jar file.

This works because Xalan acts as a kind of abstraction to the invocation of BSF and therefore
automatically invokes the script through BSF using the appropriate API.

Page 66/73

XSLT: Using External Functions

3.5.2 Upgrading XSL Files with Separate Scripts
The second possibility to call external functions is by supplying a separate file which is called by
Xalan. The following snippet shows the definition of an external function which is stored in separate
files using Ruby:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="at.ac.wuwien.xsltnutshell.RubyCaller"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"
 elements="init" functions="getValue">

<xalan:script lang="javaclass"
src="at.ac.wuwien.xsltnutshell.RubyCaller"/>

</xalan:component>
…
</xsl:stylesheet>

Lines 10 to 12 show the definition of the separate file “at.ac.wuwien.xsltnutshell.RubyCaller”.

The following code shows the file RubyCaller:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

…
public class RubyCaller {
private BSFManager manager;

public void init(…) throws Exception {
String engine = "org.jruby.javasupport.bsf.JRubyEngine";
String[] extensions = {"rb"};
BSFManager.registerScriptingEngine("ruby", engine, extensions);

manager = new BSFManager();
this.execFile("nutshell3/port.rb");
this.execFile("nutshell3/Properties/app/models/properties.rb");

}

public String getValue(String key) throws Exception{
ValueBean valuebean = new ValueBean();
valuebean.setKey(key);
manager.declareBean("valuebean", valuebean, ValueBean.class);
Object object = manager.eval("ruby", "(java)", 1, 1,

"Properties.find($valuebean.getKey()).value");
return (String) object;

}
…

Page 67/73

XSLT: Using External Functions

This file is implemented using the BSF 2.4 API. Every exchange between the scripting language and
the calling Java code is done through the class BSFManager. On line 8 the scripting engine is
registered and on line 10 the BSFManager is instantiated. Now the scripting engine is ready to receive
processing instructions from Java.

Calling a function within the scripting language, the API of the BSFManager is used (lines 19 and
20). The “eval” method of the BSFManager evaluates the supplied string and returns the result. In the
example above the method “find” of the Ruby ActiveRecord “Properties” is called.

Furthermore it is possible to pass on a value as a bean to the context of the scripting language. Every
bean in the context can be accessed as variable within the called script. On line 18 the bean called
“valuebean” is stored in the context using the “declareBean” method of the BSFManager.

The implementation for BSF version 3.0 differs in the API used:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

package at.ac.wuwien.xsltnutshell;

import java.io.FileReader;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class RubyCallerBSF30 {
private ScriptEngine rubyengine;

public void init(org.apache.xalan.extensions.XSLProcessorContext
context, org.w3c.dom.Element elem) throws Exception {

ScriptEngineManager manager = new ScriptEngineManager();
rubyengine = manager.getEngineByName("ruby");
rubyengine.eval(new FileReader("nutshell3/port.rb"));
rubyengine.eval(new FileReader(

"nutshell3/Properties/app/models/properties.rb"));
}

public String getValue(String key) throws Exception{
rubyengine.put("valuebean", key);
Object object =

rubyengine.eval("Properties.find($valuebean).value");
return (String) object;

}
}

The main focus in the code above is on the shortage and cleanliness. This code uses the JSR 223 API
to communicate with the scripting engine. The class ScriptEngine serves the same purpose as the
BSFManager did in the BSF 2.4 version. The only difference is that the ScriptEngineManager is
required to instantiate the engine (line 13).

Again the “eval” method is used to execute a script written in a supported scripting language (lines
14, 15 and 22).

Page 68/73

XSLT: Using External Functions

Passing on a bean from Java to the script, it is connected with the scripting engine through their “put”
method as if it was a HashMap (line 20). Within the script code the bean is exposed as variable (line
22 for a Ruby variable example).

Finally the snippet of the corresponding XSL file including the changes to call the BSF 3.0 version of
RubyCaller (RubyCallerBSF30) is shown below:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xalan="http://xml.apache.org/xalan"
 xmlns:props="at.ac.wuwien.xsltnutshell.RubyCallerBSF30"
 extension-element-prefixes="props"
 version="1.0">

<xalan:component prefix="props"
 elements="init" functions="getValue">

<xalan:script lang="javaclass"
src="at.ac.wuwien.xsltnutshell.RubyCallerBSF30"/>

</xalan:component>
…
</xsl:stylesheet>

Only the name of the Java class containing the call to Ruby through BSF 3.0 changed (lines 4 and 11).

Page 69/73

XSLT: Using External Functions

4 Conclusion
In business nowadays XML plays an important role for exchanging data. It both represents the data in
machine and human readable form. Changes within the structure and node set of the XML file remain
complex and difficult to achieve using standard XML manipulating APIs.

Facilitating this process, the World Wide Web Consortium (W3C) [W3C03a] develops and maintains
the XSL specification which aims to standardise the transformation process.

This bachelor thesis deals with the transformation specification of XSL called XSL Transformations
(XSLT) [W3C03b]. Although the specification defines a comprehensive set of functions some
requirements cannot be met. With the use of external functions even these cases may be
accomplished.

Implementing such external functions is not limited to a certain programming language. Through the
use of Xalan-Java [AXJ07a] and the Bean Scripting Framework [BSF06a] scripts written in many
scripting languages can be executed within the process of transformation.

This paper shows how such external functions can be used. Many businesses have sets of libraries
containing the business rules which should not be reimplemented. By using these libraries,
duplication of source code can be avoided.

The nutshells show that the access of web services or the data in the database is feasible. They also
show that problems could arise depending on the scripting language used. If the database access is
programmed using a scripting language which is not capable of caching the connection, processing
times will degrade excessively.

Therefore the used scripting language should be chosen wisely. Using the wrong alternative could
easily lead to a badly performing transformation. For example, it makes no sense to write a JRuby
application from scratch to get access to the database. But if such an application already exists, using
it is recommended.

Many other use cases could be accomplished this way like calling services implemented using
Enterprise Java Beans [SUN07b] or .NET [MSN07]. Even calls to PHP [PHP07] and inclusion of
binary content into the resulting XML is possible.

Building on the results of this bachelor thesis, future studies of the author will focus on the area of
using Domain Specific Languages (DSL) [MFW07] within transformation processes. This could
solve such requirements as calculating limits for offers. Using DSL expressions like
“14.workdays.from.now” could be converted to a date on the nearest workday 14 days in the future.
Such DSL could be made using Groovy [GRO07] or calls to the Google Data API [GDA07].

The paper shows that it is possible to reuse existing code even within a XSL Transformation.

Page 70/73

XSLT: Using External Functions

References
[AHA05]: Andreas Ahammer, OpenOffice.org Automation:Object Model, Scripting

Languages,“Nutshell”-Examples, Bachelor Thesis, Vienna University of
Economics and Business Administration, Vienna, Austria, 2005

[AXI07]: Apache Software Foundation, Axis 1.4 Homepage, UrlDate(2007-04-23),
URL http://ws.apache.org/axis/

[AXJ07a]: Apache Software Foundation, Xalan-Java Homepage, UrlDate(2007-05-01),
URL http://xml.apache.org/xalan-j

[AXJ07b]: Apache Xalan-Java, Download page, UrlDate(2007-04-02), URL
http://www.apache.org/dyn/closer.cgi/xml/xalan-j

[B4R07]: Prof. Rony G. Flatscher and students, BSF4Rexx homepage, UrlDate(2007-
05-22), URL http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx

[BSF06a]: Apache Software Foundation, Bean Scripting Framework Homepage,
UrlDate(2007-04-02), URL http://jakarta.apache.org/bsf

[BSF06s]: Apache Software Foundation, Subversion Repository for BSF, UrlDate(2007-
05-02), URL http://svn.apache.org/repos/asf/jakarta/bsf

[BSF07b]: Apache Software Foundation, BSF 3.0 binary distribution, UrlDate(2007-05-
16), URL http://people.apache.org/~antelder/bsf/3.0-beta1/

[ECM04]: Ecma International, Standard ECMA-262 : ECMAScript Language
Specification, UrlDate(2007-04-02), URL http://www.ecma-
international.org/publications/standards/Ecma-262.htm

[EXS07]: EXSLT Org, Homepage, UrlDate(2007-05-20), URL http://exslt.org

[FOP07]: Apache Software Foundation, Formatting Objects Processor, UrlDate(2007-
05-27), URL http://xmlgraphics.apache.org/fop

[GDA07]: Google Inc., Google Data API, UrlDate(2007-05-27), URL
http://code.google.com/apis/gdata/reference.html

[GRO07]: The Codehaus Opensource Software Community, Groovy Script and DSL,
UrlDate(2007-05-27), URL http://groovy.codehaus.org/Writing+Domain-
Specific+Languages

Page 71/73

XSLT: Using External Functions

[JCP07]: Java Community Process, Scripting for the Java Platform (Link to JSR-223),
UrlDate(2007-05-02), URL http://www.jcp.org/en/jsr/detail?id=223

[JDI07]: Jensen Data Systems Inc., Web Service Temperature Converter,
UrlDate(2007-05-18), URL
http://www.xmethods.com/ve2/ViewListing.po?key=uuid:396577C1-EE97-
6A65-AC0B-307B2C6943FA

[JDS07]: JudoScript.Com, Homepage, UrlDate(2007-05-02), URL
http://www.judoscript.com/judo.html

[JRU07a]: JRuby Wiki, Homepage, UrlDate(2007-05-18), URL
http://www.headius.com/jrubywiki/index.php/About_JRuby

[JRU07b]: The Codehaus Opensource Software Community, JRuby Homepage,
UrlDate(2007-05-18), URL http://jruby.codehaus.org

[MFW07]: Martin Fowler, Domain Specific Language, UrlDate(2007-05-25), URL
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html

[MOZ06a]: Mozilla Org, Rhino Homepage, UrlDate(2007-04-02), URL
http://www.mozilla.org/rhino/

[MOZ06b]: Mozilla Org, Rhino Download Link, UrlDate(2007-04-02), URL
ftp://ftp.mozilla.org/pub/mozilla.org/js/rhino1_6R5.zip

[MSN07]: Microsoft Developers Network, Dot Net Framework, UrlDate(2007-05-27),
URL http://msdn.microsoft.com/netframework

[MVN07]: Apache Software Foundation, Maven Project Homepage, UrlDate(2007-05-
02), URL http://maven.apache.org/download.html

[OOO07]: OpenOffice.org, Homepage, UrlDate(2007-05-22), URL
http://www.openoffice.org

[OOR07]: Rexx Language Association, OORex homepage, UrlDate(2007-05-22), URL
http://www.oorexx.org

[PHP07]: The PHP Group, PHP homepage, UrlDate(2007-05-27), URL
http://www.php.net

[POS07]: PostgreSQL Global Development Group, Homepage, UrlDate(2007-04-17),
URL http://www.postgresql.org/

Page 72/73

XSLT: Using External Functions

[ROR07]: Bill Walton and Curt Hibbs, Ruby on Rails Tutorial, UrlDate(2007-05-22),
URL http://www.onlamp.com/pub/a/onlamp/2006/12/14/revisiting-ruby-on-
rails-revisited.html

[RSQ07]: Mark Hessling, Rexx/SQL homepage, UrlDate(2007-05-22), URL
http://rexxsql.sourceforge.net/index.html

[RWV07]: Sourceforge project, Retroweaver Homepage, UrlDate(2007-05-02), URL
http://retroweaver.sourceforge.net

[SUN07a]: Sun Microsystems, Inc., Java Standard Edition, UrlDate(2007-05-02), URL
http://java.sun.com/javase/

[SUN07b]: Sun Microsystems, Inc., Java Enterprise Edition, UrlDate(2007-05-27), URL
http://java.sun.com/javaee

[W3C03a]: World Wide Web Consortium, Homepage, UrlDate(2007-04-02), URL
http://www.w3.org

[W3C03b]: World Wide Web Consortium, XSL Transformation (XSLT), UrlDate(2007-04-
15), URL http://www.w3.org/TR/xslt

[W3C03c]: World Wide Web Consortium, XSL Formatting Objects (XLS-FO),
UrlDate(2007-05-15), URL http://www.w3.org/TR/xsl

[W3C03d]: World Wide Web Consortium, XML Path Language (XPath), UrlDate(2007-
05-22), URL http://www.w3.org/TR/xpath

[W3C03e]: World Wide Web Consortium, XPointer Homepage, UrlDate(2007-05-24),
URL http://www.w3.org/TR/WD-xptr

Page 73/73

	1Introduction
	1.1Abstract
	1.2Keywords

	2Description of the Technologies Used
	2.1The Extensible Stylesheet Language (XSL)
	2.1.1Overview
	2.1.2XML Path Language
	2.1.3XSL Transformations
	2.1.4XSL Formatting Objects
	2.1.5External Functions

	2.2Xalan-Java
	2.2.1Overview
	2.2.2Installation

	2.3JavaScript (Rhino)
	2.3.1Overview
	2.3.2Installation

	2.4The Bean Scripting Framework
	2.4.1BSF 2.4
	2.4.2BSF 3.0 – JSR-223
	2.4.3Installation

	2.5JudoScript
	2.5.1Overview
	2.5.2Installation

	2.6OORexx
	2.6.1Overview
	2.6.2Installation

	2.7JRuby
	2.7.1Overview
	2.7.2Installation

	3Nutshells
	3.1Querying Databases
	3.1.1Nutshell Using EXSLT
	3.1.2Nutshell Using Java
	3.1.3Nutshell Using JudoScript
	3.1.4Nutshell Using BSF4Rexx
	3.1.5Nutshell Using JavaScript

	3.2Implementing Missing Functions
	3.2.1Formatting Date Using Java
	3.2.2Printing Enhanced Node Information Using EXSLT
	3.2.3Generating More Than One Output File Using EXSLT
	3.2.4Spell Checking Using BSF4Rexx
	3.2.5Formatting Date Using JavaScript

	3.3Nutshells Using Existing Applications
	3.3.1Using JRuby's ActiveRecord
	3.3.2ResourceBundle Using Java
	3.3.3Querying Calc Using BSF4Rexx
	3.3.4ResourceBundle Using JavaScript

	3.4Nutshells Calling Web Services
	3.4.1Nutshell Using Java
	3.4.2Nutshell Using JudoScript
	3.4.3Nutshell Using JavaScript

	3.5How to Upgrade to BSF 3.0
	3.5.1Upgrading XSL Files with Embedded Scripts
	3.5.2Upgrading XSL Files with Separate Scripts

	4Conclusion

