
WIRTSCHAFTSUNIVERSITÄT WIEN
Vienna University of Economics and Business

Bachelor Thesis

I hereby declare that

1. I have written this Bachelor thesis independently and without the aid of un-
fair or unauthorized resources. Whenever content was taken directly or in-
directly from other sources, this has been indicated and the source refer-
enced.

2. this Bachelor thesis has neither previously been presented for assessment,
nor has it been published.

3. this Bachelor thesis is identical with the assessed thesis and the thesis
which has been submitted in electronic form.

Date: 24.04.2012
Signature

English title of the Bachelor
Thesis

Developing mobile Windows Applications

Author
last name, first name(s)

Scheuer Josef

Student ID number 0754162

Degree program BaWiso06

Examiner
degree, first name(s), last
name

ao. Univ.Prof. Mag. Dr. Rony G. Flatscher

Abstract

This bachelor thesis is an introduction to the development of Silverlight applica-

tions for Windows Phone. It gives an overview of the platform, the development

tools and the concepts of developing and publishing an application.

The development environment is described in detail and the basics of the struc-

ture of an application is explained. Then the aspects of Silverlight on the basis

of programming examples are discussed and finally, the process of deployment

is presented.

Keywords: Windows Phone, Microsoft Silverlight, XAML, Visual Studio Express,

XAP-archive, App Hub, Metro

IV

Table of Contents

 List of Figures...VI

 List of Listings...VIII

 List of Abbreviations...X

1 Introduction... 1
1.1 Motivation and Goal...2
1.2 Version Numbers and Names...2
1.3 Structure of this Paper...3

2 Phone and Application Platform...4
2.1 The Windows Phone...4
2.2 Hardware Requirements..5
2.3 Software Architecture..5
2.4 The Metro Design..7
2.5 Silverlight for Windows Phone...8

2.5.1 XAML and Code-Behind..9

3 Basics... 11
3.1 Windows Phone SDK 7.1..11
3.2 Visual Studio Express..11
3.3 Structure of the Project..14

3.3.1 The Solution Explorer..14
3.3.2 Properties Folder...14
3.3.3 References Folder...16
3.3.4 “Bin” and “obj” Folder..16
3.3.5 Images..16
3.3.6 Silverlight files...17

3.4 The Emulator...21
3.4.1 Frame Rate Counters..22

3.5 The XAP-File...23
3.6 The Application Life-Cycle...25

4 Mobile Applications with Silverlight...31
4.1 Orientation...31
4.2 Layout.. 32

4.2.1 Grid.. 32
4.2.2 Stack Panel...34
4.2.3 Pivot and Panorama..34

4.3 Smartphone Controls...38
4.3.1 Button.. 38

V

4.3.2 HyperlinkButton...38
4.3.3 TextBlock...39
4.3.4 CheckBox..39
4.3.5 RadioButton...40
4.3.6 TextBox, PasswordBox and Keyboard Input.......................................40
4.3.7 ApplicationBar...42

4.4 Navigation.. 43
4.4.1 Code-Behind Solution...43
4.4.2 Passing Parameters..44
4.4.3 Sharing Data...45

4.5 Data Binding..46
4.5.1 Simple Data Binding..46
4.5.2 Change Notification...47
4.5.3 Data Binding with a Generic List...48

4.6 Data Storage.. 50
4.6.1 IsolatedStorageSettings..51
4.6.2 IsolatedStorageFile...52
4.6.3 Isolated Storage Explorer Tool..55
4.6.4 XmlSerializer...57
4.6.5 LINQ to SQL..58

4.7 Push Notifications..65
4.7.1 Toast Notification...67
4.7.2 Tile Notification..71
4.7.3 Raw Notification..71

5 Testing.. 72
5.1 Debugging... 72
5.2 NUnit for Windows Phone...73
5.3 Marketplace Test Kit..76

6 Deployment.. 78
6.1 The App Hub.. 78
6.2 Submission and Certification...79
6.3 Certification Requirements..81

7 Conclusion.. 82

 References..XI

 Appendix.. XVII

 Appendix I.. XVII

 Appendix II.. XXI

 Appendix III...XXIII

 Appendix IV...XXVII

VI

List of Figures

Figure 1: The Windows Phone [Ciap11]..4
Figure 2: Software Architecture of the Windows Phone [cf. Pren01]........................6
Figure 3: Shell Frame [Pren02]...7
Figure 4: Managed Code [Wiki01]...8
Figure 5: New Project Dialog - Visual Studio...12
Figure 6: Choose Operating System...12
Figure 7: Visual Studio Project – “Hello World” Start Screen..................................13
Figure 8: Toolbox... 13
Figure 9: Solution Explorer - "Hello World" Application...14
Figure 10: Properties Folder - Solution Explorer...14
Figure 11: References Folder - Solution Explorer...16
Figure 12: Silverlight Files...17
Figure 13: C#-Editor..17
Figure 14: System Tray...19
Figure 15: Default XAML Elements - "Hello World" Application..............................21
Figure 16: Debugging Bar - Visual Studio...21
Figure 17: Emulator - "Hello World" Application..22
Figure 18: Frame Rate Counters [MSDN08]...22
Figure 19: XAP-File - "Hello World" application...24
Figure 20: Explorer - "HelloWorld.zip"...24
Figure 21: Application Life-Cycle...26
Figure 22: Launching...28
Figure 23: Deactivated (Dormant)...28
Figure 24: Activated and Closing...28
Figure 25: ApplicationLifeCycle Properties..29
Figure 26: Deactivated (Tombstoned)...29
Figure 27: Output Window - Activated...29
Figure 28: MessageBox Activated State...29
Figure 29: Page Orientation - Emulator...32
Figure 30: Grid Row and Columns..33
Figure 31: The Stack Panel...34
Figure 32: Pivot and Panorama Page...36
Figure 33: Bing - Search Result..37
Figure 34: Panorama Example [Wilc10]..37
Figure 35: TextBlock - TextWrapping..39
Figure 36: RadioButtons..40
Figure 37: InputScope IntelliSense..41
Figure 38: Emulator InputScope..41

VII

Figure 39: Emulator - ApplicationBar..42
Figure 40: Properties Window - ApplicationBar...43
Figure 41: Change Notification UI...47
Figure 42: Data Binding with a Generic List..50
Figure 43: ProductID - WMAppManifes.xml..55
Figure 44: ISETool..56
Figure 45: Download IsolatedStorageFile..56
Figure 46: IsolateStorageFile..56
Figure 47: UI - LINQ to SQL..59
Figure 48: Notifications..66
Figure 49: Concept of Push Notifications [MSDN15]...66
Figure 50: Channel URI...69
Figure 51: Response Toast Notification..71
Figure 52: Breakpoint During Execution..72
Figure 53: Solution Explorer - NUnit for Windows Phone..73
Figure 54: Solution Properties...73
Figure 55: Emulator - NUnit Tests...76
Figure 56: App Submission Flow [Chat11]..79
Figure 57: App Hub - Upload...79
Figure 58: App Hub - Description..80
Figure 59: App Hub - Price..80
Figure 60: App Hub - Information for Testers..80
Figure 61: App Hub - Submit...80

VIII

List of Listings
Listing 1: Grid and Button-Definition in XAML...9
Listing 2: XAML File (Excerpt) - Windows Phone Application Template.................10
Listing 3: Connection of XAML and Code-Behind...10
Listing 4: Excerpt AssemblyInfo.cs..15
Listing 5: WMAppManifest.xml - "Hello World" project..16
Listing 6: App.xaml - "Hello World"..18
Listing 7: MainPage.xaml (Excerpt) - "Hello World" Application..............................19
Listing 8: MainPage.xaml.cs - "Hello Word" Application..20
Listing 9: MainPage.g.i.cs - InitializeComponent Method..20
Listing 10: Frame Rate Counters - App.xaml.cs..23
Listing 11: AppManifest.xaml - "Hello World" Application..24
Listing 12: Entry Point – App.xaml (Excerpt)...25
Listing 13: App.xaml.cs - Methods Application Life-Cycle.......................................26
Listing 14: Application Life-Cycle Example..28
Listing 15: State Dictionary..30
Listing 16: Page Orientation in XAML..31
Listing 17: Page Orientation in Code-Behind..32
Listing 18: Grid-Definition in XAML..33
Listing 19: StackPanel-Definition in XAML..34
Listing 20: Panorama Layout - XAML..35
Listing 21: Pivot Page - XAML...36
Listing 22: Button-Definition in XAML..38
Listing 23: Code-Behind - Button Click Event..38
Listing 24: HyperlinkButton-Definition in XAML...38
Listing 25: TextBlock-Definiton in XAML...39
Listing 26: CheckBox-Definition in XAML..39
Listing 27: Code-Behind - CheckBox Query..40
Listing 28: RadioButton-Definition in XAML...40
Listing 29: TextBox and PasswordBox-Defintion in XAML......................................40
Listing 30: ApplicationBar-Definition in XAML...42
Listing 31: XAML Button for Navigation...44
Listing 32: Code-Behind Navigation..44
Listing 33: XAML Button and TextBox for Passing Parameter................................44
Listing 34: Code-Behind for Navigation and Passing Parameter............................44
Listing 35: Code-Behind to Display the Parameter..45
Listing 36: Public String in App.xaml.cs...45
Listing 37: Code-Behind to Store Data..45
Listing 38: Code-Behind to Read the Property..46
Listing 39: Data Binding of two UI Elements...46

IX

Listing 40: Change Notification - XAML-Code...47
Listing 41: Change Notification - Code-Behind..48
Listing 42: Data Binding - XAML ListBox...49
Listing 43: Data Binding - Code-Behind Generic List..50
Listing 44: Background Property - App.xaml.cs...51
Listing 45: MainPage.xaml.cs - IsolatedStroageSettings..52
Listing 46: App.xaml.cs - IsolatedStorageSettings..52
Listing 47: App.xaml.cs - Save and Load Method...52
Listing 48: MainPage.xaml.cs - IsolatedStorageFile..53
Listing 49: XAML Code - Input IsolatedStorageFile...54
Listing 50: Loaded Method..54
Listing 51: Save Button - IsolatedStorageFile...55
Listing 52: Load Button - IsolatedStorageFile..55
Listing 53: XML Serializer..58
Listing 54: XML File - Isolated Storage..58
Listing 55: XAML-Code - LINQ to SQL..60
Listing 56: Namespaces for LINQ to SQL...60
Listing 57: Student Table - LINQ to SQL...62
Listing 58: Data Context – LINQ to SQL...63
Listing 59: Create Database – LINQ to SQL...63
Listing 60: ObservableCollection - LINQ to SQL...64
Listing 61: OnNavigatiedTo - LINQ to SQL...64
Listing 62: Methods for the Delete and Create Button - LINQ to SQL.....................65
Listing 63: Toast Notification - Namespaces...67
Listing 64: Receive Toast Notification...69
Listing 65: Send Toast-Namespaces..69
Listing 66: Send Toast Notification..70
Listing 67: Payload Tile Notification...71
Listing 68: TestSamples - Calc..74
Listing 69: TestSamples - CalcTest...74
Listing 70: Comparison Tests..75
Listing 71: Condition Test..75
Listing 72: Utility Method...76
Listing 73: Project "StudentDatabase" - MainPage.xaml.cs...................................XX
Listing 74: Project "ReceiveTile" – MainPage.xaml.cs...XXII
Listing 75: Project "SentTile" - Program.cs...XXII
Listing 76: Project "ReceiveRaw" - MainPage.xaml..XXIII
Listing 77: Project "ReceiveRaw" - MainPage.xaml.cs...XXV
Listing 78: Project "SendRaw" - Program.cs...XXVI
Listing 79: Project "TestSamples" - Calc.cs...XXVII
Listing 80: Project "TestSamples" - CalcTest.cs...XXVIII

X

List of Abbreviations

A-GPS..Assisted Global Positioning System

API...Application Programming Interface

CLR..Common Language Runtime

GUID..Global Unique Identity

HTML...Hypertext Markup Language

HTTP...Hypertext Transfer Protocol

ID...Identification

IDE...Integrated Development Environment

ISETool......................................Isolated Storage Explorer Tool

LINQ...Language Integrated Query

MPNS...Microsoft Push Notification Service

MSDN..Microsoft Developer Network

OS..Operating System

RIA...Rich Internet Application

SDK..Software Development Kit

SIP...Software Input Panel

SQL..Structured Query Language

UI...User Interface

URI...Uniform Resource Identifier

VB.Net.......................................Visual Basic .NET

WLAN..Wireless Local Area Network

XAML...Extensible Application Markup Language

XAP..XAML Application Package

XML..Extensible Markup Language

XNA..XNA is Not an Acronym1

XP..Extreme Programming

1 The name "XNA" originated out of the project's development name, Xbox New Architecture. Instead of
being released under the Xbox name, the Xbox 360 was released (2005), and XNA came jokingly to
stand for "XNA is Not an Acronym" [Micr01].

1 Introduction Page 1

1 Introduction

In the second half of 2010 Microsoft released a new operating system (OS) for

smartphones, which was named Windows Phone 7 [Micr02]. The next major re-

lease for this OS was Windows Phone 7.5 (Codename “Mango”) in September

2011 [Micr03]. The OS is the successor of the Windows Mobile platform, but

different in many ways. It is a completely new platform and represents a clean

break from the Windows Mobile platform. Applications that were designed for

Windows Mobile are incompatible [Zieg10]. The marketplace for Windows Mo-

bile is closing in May 2012 and applications and games are only from de-

velopers or third-party marketplaces available [Micr04].

So the Windows Phone platform is a completely fresh start for Microsoft in the

smartphone market. The Phone is primary aimed for the consumer market and

the user is the focus. Microsoft also integrates popular products from other plat-

forms such as Xbox, Zune, Office and Bing to Windows Phone [Micr02].

The realignment is also a step towards to “closed ecosystems” like the iPhone.

So for the users of Windows Phone, the marketplace is the only way to legally

download and install applications, and developers can only release their applic-

ations via the App Hub in the marketplace. In the submission process, the ap-

plication goes through a strict screening process of Microsoft.

Furthermore, each application on the phone is running in its own sandbox and

can only be written in managed code [cf. Getz11 p.26]. “The sandbox concept

is used to provide an environment where applications have limited privileges

and don’t have access to the file system, other applications and system re-

sources that could be exploited” [Shin11].

Also the manufacturers of the smartphones have hardware requirements to run

the OS of the phone.

Page 2 1.1 Motivation and Goal

1.1 Motivation and Goal

Smartphones are increasingly becoming part of our lives. The technology en-

ables it to be constantly connected and interact with friends and associates.

With the Windows Phone platform Microsoft wants to make new gains in the

smartphone market, despite the success of iPhone and Android. The Windows

Phone OS also brings changes to the developers. New development tools are

available with which the applications can easily and comfortably be created.

In this paper the author wants to give an overview of the platform and an intro -

duction to the development of applications for the Windows Phone. For the de-

velopment of the applications the Silverlight or the XNA Framework can be

used. The XNA Framework is intended for the development of games, while the

Silverlight Framework is used for event driven applications. Also a combination

of two frameworks is possible [MSDN01]. In this work the Silverlight Framework

will be presented. The programming language C# was chosen because of the

similarities with other object-orientated languages like Java.

During the creation of this work, the latest version of the operating system is

Windows Phone OS 7.1 with the update 7.10.8107.79 [Micr05]. The tools that

were used for the development are the Windows Phone Software Development

Kit (SDK) 7.1 which was published on the 25th September 2011 [Micr06].

1.2 Version Numbers and Names

With the major update from Windows Phone 7 to Windows Phone 7.5 the latter

one has received two names. Windows Phone 7.5 (Codename “Mango”) is the

marketing name, while the version for the OS is Windows Phone OS 7.1. Also

the names for the development tools have changed. The Windows Phone De-

veloper Tools was renamed to Windows Phone SDK. Also the “7” from the plat-

form name has disappeared. It is simply called Windows Phone [cf. Getz11

p.29].

1.3 Structure of this Paper Page 3

1.3 Structure of this Paper

In Chapter 2 the Application Platform, the Phone and Silverlight for Windows

Phone will be described.

Chapter three outlines the development tools Visual Studio Express and the

Emulator. Also, the structure and the files of the project are explained in more

detail. Furthermore, the XAP-archive and the application life cycle is presented.

Chapter four is the biggest part and deals with the development of Silverlight

applications for Windows Phone. It contains programming examples to illustrate

the concepts and techniques of Silverlight technology. At the beginning of the

chapter, the orientation and the layout elements are presented. Then the smart-

phone controls to build an user interface, the concept of navigation through the

phone pages and data binding are covered. Also the isolated storage and push

notifications are discussed.

After the development of applications the testing of an application is described

in chapter five. It contains a short description of the debugging feature of Visual

Studio and the use of the Marketplace Test Kit. In addition, a unit testing frame-

work of the open source community CodePlex is presented.

Chapter six deals with the deployment of an application. There is a brief de-

scription of the registration process in the App Hub and the submission and cer-

tification is discussed.

Page 4 2 Phone and Application Platform

2 Phone and Application Platform

This chapter deals with the Windows Phone, the hardware requirements, the

software architecture, the Metro design and the Silverlight technology for Win-

dows Phone.

2.1 The Windows Phone

One goal for the latest smartphone of Microsoft is to deliver a phone which in-

tegrates the things people really want to do and puts those things in front of the

user. On the Start screen of the phone, the user will find “live tiles” that show

real-time content such as social media updates, weather data or contacts. They

will be updated on the fly with real information [Micr02]. Each installed applica-

tion on the phone can be pinned to the Start screen.

A Windows Phone also must have three hardware buttons, which are named

“Back”, “Start” and “Search”. The Back button will take the user one step back

in the navigation sequence. It has a similar function as the back button in a

browser. The Start screen of the Phone can be viewed with the Start button

and with a click on the Search button, the Bing search engine of Microsoft is

launched.

Figure 1: The Windows Phone [Ciap11]

Live Tile

“Back” | “Start” | “Search”

2.2 Hardware Requirements Page 5

2.2 Hardware Requirements

Windows Phone devices have to meet technical requirements to run the OS.

Microsoft has made these technical specifications for hardware manufacturers

to ensure that there is a consistent user experience across all devices. In the

past, Windows Mobile was often installed on devices whose hardware was not

designed for the OS, which has impacted a negative user experience. The

Phone needs [cf. Getz11, 42-46]:

• a common set of hardware controls and buttons that include the Start,
Search, and Back button,

• a capacitive touch screen with at least four contact points,

• a screen with a resolution of 480 x 800 pixels,

• A-GPS, accelerometer, ambient light sensor and proximity sensor,

• a camera with five mega pixels or more,

• a Direct X9 acceleration and the phone is working with the current ARM-
v7 processor with 1 GHz or more.

The Windows Phone supports known touch gestures such as [MSDN02]:

• Tap: activation and release of the screen with one finger

• Double-Tap: tow tabs in succession

• Hold: A finger touches the screen constantly and remains a longer time
on the same position.

• Drag: The screen is activated with a finger, moves on the screen and will
then be released.

• Flick: A finger drags across the screen and is lifted up without stopping
(e.g. scrolling in a list).

• Pinch: Two fingers press on the screen and move around (e.g. rotate a
picture).

• Scale: Two fingers are spread apart or brought together to zoom in or
out.

2.3 Software Architecture

With Windows Phone the software architecture has changed fundamentally.

Figure 2 shows an overview of the structure and then the various components

are described in more detail.

Page 6 2.3 Software Architecture

Hardware & Kernel

On the bottom there is the Windows Phone Hardware which was covered in the

chapter 2.2. On the top of the Hardware there is the Kernel that provides basic

services like Security, Storage, Networking and the device drivers for GPS,

WLAN, accelerometer, etc. Details about the structure, the drivers and APIs

(native and managed) are not publicly accessible, so a normal application de-

veloper will not come into contact with this [cf. Getz11 p.53].

App Model

The App Model handles the management, the licensing, the isolation of the in-

stalled applications and the software updates. For the deployment of an applic-

ation the XAML Application Package (XAP-archive). An application for Windows

Phone is not a native application and will be loaded and executed in a host pro-

cess. It is running in a sandbox with limited privileges [cf. Getz11 p.49].

UI Model

The UI Model contains the Shell Frame Management and the Navigation Mod-

el. The Shell Frame Management is responsible for the composing of the user

interface (Figure 3).

Figure 2: Software Architecture of the Windows Phone [cf. Pren01]

2.3 Software Architecture Page 7

In the Navigation Model every application is stored in a session. As already

mentioned, the navigation of the Phone is similar to the navigation of web

pages in a browser. A manipulation of the session information is not possible

[cf. Getz11 p.51].

Cloud Integration

Windows Phone is very focused on the cloud. The Cloud Integration provides

services like Windows Live ID to synchronize e-mails, the calendar and the con-

tacts if the Live ID is connected with a hotmail account. Also it includes the Bing

search, location information and a notification service. Windows Azure is the

cloud computing platform of Microsoft that provides various services (e.g. a

SQL database) [cf. Getz11 p.52].

Applications

On the very top there is the Application Runtime which is built on the .NET

Common Language Runtime (CLR). This is the layer which is designed for the

developer. It includes the Silverlight and XNA framework which are used to de-

velop applications for the phone. Also HTML/Javascript is supported, but can

only be executed in the browser. In contrast to Windows Mobile it is not pos-

sible to install drivers on the phone. The access to the phone is strongly restric-

ted. The functions of the phone can only be used via API calls [cf. Getz11

p.48].

2.4 The Metro Design

Metro is a codename for a typography-based design language created by

Microsoft. Is was originally developed and used for the Windows Phone 7 inter-

Figure 3: Shell Frame [Pren02]

Page 8 2.4 The Metro Design

face. The inspiration for the design comes from the public transport system

which has the focus on displaying important information. The Metro design em-

phasis on simplicity and should enable a unique experience to the user. After

the release of Windows Phone Microsoft also included the Metro principle to

Xbox 360 and Windows 8 [Trip12].

2.5 Silverlight for Windows Phone

Silverlight is a cross-browser, cross platform technology for writing and running

rich internet applications (RIA) for the web, the desktop and the Windows

Phone [MSDN03]. For the Windows Phone OS 7.1 Silverlight 4 is used

[MSDN04]. Silverlight is a subset of the .NET framework and includes a mini-

Common Language Runtime (CLR) [Hube10]. Silverlight applications can only

be written in compiled, managed code. Managed code2 is developed in .NET

framework and the code can only be executed under the management of the

CLR (Figure 4) [Meha09]. The applications are hosted within a web server, web

page or the mobile device. Therefore Silverlight uses the XAP-file that contains

the .NET application code [Soda01]. The XAP-file is explained in chapter 3.5

(The XAP-File).

In Silverlight for Windows Phone the programming language VB.Net and C# (C

Sharp) can be used. Furthermore, in the development process of Silverlight

there is a strict distinction between the UI and the program logic. It uses the Ex-

tensible Application Markup Language (XAML) to define the UI and the code-
2 Unmanaged Code is developed outside the .NET framework and the applications do not run under the

control of CLR (e.g. C++ can be used to write such applications) [Meha09].

Figure 4: Managed Code [Wiki01]

2.5 Silverlight for Windows Phone Page 9

behind (C#) defines the application logic. So there are always two files that be-

long together (a file with a .xaml extension for the UI and a .xaml.cs for the

code-behind). The markup (UI) is joined to the code-behind file through the

definition of a partial class. With a partial class you can split the definition of a

class over two or more files. The parts of one class are combined when the ap-

plication is compiled [MSDN05].

2.5.1 XAML and Code-Behind

XAML is a declarative XML-based language and is used to initialize structured

values and objects to create visible UI elements such as buttons, text fields,

etc. The elements are defined in an object element tag in angle brackets. List-

ing 1 shows a simple Button within a Grid. The elements also contain addition-

al attributes for their appearance e.g. the elements have a Name, a literal dis-

tance (Margin) or the Button has a Content. An attribute is defined with the at-

tribute syntax followed by an operator (=) and the value in a string with quota -

tion marks.

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Button Content="Button" Height="72" Margin="159,149,0,0"
 Name="button1" Width="160" />
 </Grid>

Listing 1: Grid and Button-Definition in XAML

The elements in XAML are mapped to CLR object instances and the attributes

become the properties and events of the object [Anat08].

Listing 2 displays an excerpt of an XAML file of a Windows Phone Application

that was generated by Visual Studio. The project was named PhoneApplica-

tion1. By default, the file named MainPage.xaml is the starting page of the ap-

plication. The opening tag indicates that the MainPage will derive from the

PhoneAppliationPage (which derives from Page Class). The x:Class attribute

defines the code-behind. The first xmlns namespace declares the file as a

XAML document. The second namespace (xmlns:x) is required for elements

with a x prefix (e.g. x:Class is one of them). The two namespaces are stand-

ard for a Silverlight application.

<phone:PhoneApplicationPage
 x:Class="PhoneApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Page 10 2.5 Silverlight for Windows Phone

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 ...
</phone:PhoneApplicationPage>

Listing 2: XAML File (Excerpt) - Windows Phone Application Template

In the C#-Code (MainPage.xaml.cs) you will see that its class is MainPage and it

inherits from the PhoneApplicationPage. Also the used namespace which is the

project name will be found (PhoneApplication1). In Listing 3 also the connec-

tion of the XAML and C#-Code is visually displayed.

namespace PhoneApplication1
{
 public partial class MainPage : PhoneApplicationPage
 {
 ...
 }
}

<phone:PhoneApplicationPage
 x:Class="PhoneApplication1.MainPage"
 ...
</phone:PhoneApplicationPage>

Listing 3: Connection of XAML and Code-Behind

3 Basics Page 11

3 Basics

In this chapter the integrated development environment (IDE) will be described

and the famous “Hello World” application is built and run. Also the automatically

generated files of Visual Studio and the structure of an Windows Phone project

will be discussed in a greater detail. And finally, the XAP-file and the application

life cycle are presented.

3.1 Windows Phone SDK 7.1

The Windows Phone Software Development Kit (SDK) 7.1 contains all the tools

which are needed to develop applications for the Windows Phone. It is for free

and can be obtained from: http://create.msdn.com/en-US/.

This work will cover Visual Studio 2010 Express and the Windows Phone Emu-

lator to develop Silverlight applications. Expression Blend is a design tool to

create a graphical, XAML-based interface. Each Silverlight project of Visual

Studio can be opened in Expression Blend to edit the UI. Expression Blend is

not described in detail, because the author focuses on the development of ap-

plication with code-behind and their aspects.

When the installation process of the SDK has started and if there is already a

version of Visual Studio 2010 (e. g. Professional) on the system then the tools

of the Windows Phone SDK will be integrated in the existing version, assuming

the same language is used. In this paper Visual Studio 2010 Professional with

the integrated SDK tools is used. For the further work Visual Studio 2010 Ex-

press for Windows Phone is referred as Visual Studio.

3.2 Visual Studio Express

When the installation process of the SDK is successfully completed, Visual Stu-

dio can be launched. In the menu item File → New Project a new project can

be created. Then a New Project dialog box appears (Figure 5). Visual Studio

provides for each programming language several project templates.

Page 12 3.2 Visual Studio Express

Under Visual C# → Silverlight for Windows Phone(#1, Figure 5), there are sev-

eral templates for the Windows Phone. For the “Hello World” example and for

all further examples in this work the template Windows Phone Application (#2,

Figure 5) is used. Also the templates Windows Phone Databound Application,

Windows Phone Panorama Application and Windows Phone Pivot Application

are discussed during this work. Windows Phone Class Library is just a simple

C# class.

After renaming the project with “HelloWorld” (#3, Figure 5) and confirming with

the OK button (#4, Figure 5), a dialog appears where the OS of the Windows

Phone for which you want to develop can be selected (Figure 6). In this work al-

ways the latest version (Windows Phone OS 7.1) is used.

Figure 5: New Project Dialog - Visual Studio

1

2

3

4

Figure 6: Choose Operating System

3.2 Visual Studio Express Page 13

Then, after pressing the OK button, Visual Studio will create a new project.

When a new project in Visual Studio is loaded, it creates all necessary files to

start with the development of applications. By default, Visual Studio displays a

Design Viewer (#1, Figure 7), a XAML-Editor (#2, Figure 7), a Solution Explorer

(#3, Figure 7), a Properties Window (#4, Figure 7) and an Error List where Er-

rors, Warnings and Messages are displayed during the development process

(#5, Figure 7).

On the left side of the main window there is a Toolbox tab. With a click on the

tab, the Toolbox window is displayed. When the pin icon is clicked, the toolbar

is shown at all times in the main windows (Figure 8). The Toolbox contains the

most UI elements. An UI element from the Toolbox can easily be added via

drag and drop into the designer.

Figure 8: Toolbox

Figure 7: Visual Studio Project – “Hello World” Start Screen

1 2
3

4

5

Page 14 3.3 Structure of the Project

3.3 Structure of the Project

The Solution Explorer of a Windows Phone project shows the contents of a pro-

ject. In this chapter the structure of the “HelloWorld” example is discussed in a

greater detail.

3.3.1 The Solution Explorer

Figure 9 shows the Solution Explorer of the “Hello World” project. In the menu

item Project → Show All Files all files in the explorer can be shown.

3.3.2 Properties Folder

The folder Properties (Figure 10) contains three files: AppManifest.xml, As-

semblyInfo.cs and WMAppManifest.xml.

Figure 9: Solution Explorer - "Hello World" Application

Figure 10: Properties Folder - Solution Explorer

3.3 Structure of the Project Page 15

The AppManifest.xml is required to generate the application package (XAP-file).

If the file is opened in the project, it is still almost empty. When Visual Studio is

building an application, the file will be filled with content. Thus a detailed de-

scription of the file can be found in chapter 3.5 (The XAP-File).

The next file is the AssemblyInfo.cs. It contains meta data about the application

e.g.: title, version or a copyright note (Listing 4).

[assembly: AssemblyTitle("HelloWorld")]
...
[assembly: AssemblyCopyright("Copyright © 2012")]
...
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]
[assembly: NeutralResourcesLanguageAttribute("en-US")]

Listing 4: Excerpt AssemblyInfo.cs

The last file in the Properties folder is the WMAppManifest.xml. This file is also

included in the XAP-file (chapter 3.5). It is used in the Windows Phone Market-

place submission process and for installation on the device [MSDN06]. Listing 5

shows the WMAppManifest.xml for the “Hello World” project. The Deployment

element describes the used namespace and the platform version. The App ele-

ment contains information such as the ProductID, Version, type of application

(Genre), etc. In the IconPath element the icon for the application list on the

phone is defined. The Capabilities element contains information about the

used functions of the application (e.g. the microphone, sensors, push notifica-

tion, etc). The Task element describes the first page that will be loaded when

the application starts (by default it is the dummy page MainPage.xaml). Finally,

in the Tokens element the image for the life tile of the application is defined.

<?xml version="1.0" encoding="utf-8"?>

<Deployment xmlns="http://schemas.microsoft.com/windowsphone/2009/deployment"
 AppPlatformVersion="7.1">
 <App xmlns="" ProductID="{4a8de78d-148c-4d00-b265-06f88ff4cbd6}"
 Title="HelloWorld" RuntimeType="Silverlight" Version="1.0.0.0"
 Genre="apps.normal" Author="HelloWorld author" Description="Sample description"
 Publisher="HelloWorld">
 <IconPath IsRelative="true" IsResource="false">ApplicationIcon.png</IconPath>
 <Capabilities>
 <Capability Name="ID_CAP_GAMERSERVICES"/>
 <Capability Name="ID_CAP_IDENTITY_DEVICE"/>
 ...
 <Capability Name="ID_CAP_APPOINTMENTS"/>
 </Capabilities>
 <Tasks>
 <DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>
 </Tasks>
 <Tokens>

Page 16 3.3 Structure of the Project

 <PrimaryToken TokenID="HelloWorldToken" TaskName="_default">
 <TemplateType5>
 <BackgroundImageURI IsRelative="true"
 IsResource="false">Background.png</BackgroundImageURI>
 <Count>0</Count>
 <Title>HelloWorld</Title>
 </TemplateType5>
 </PrimaryToken>
 </Tokens>
 </App>
</Deployment>

Listing 5: WMAppManifest.xml - "Hello World" project

3.3.3 References Folder

The References folder as shown in Figure 11 contains the references to the

used Silverlight Class Libraries.

3.3.4 “Bin” and “obj” Folder

When the project is built by Visual Studio the Bin folder will contain the files for

the deployment of the application and the obj folder contains files which are

used for compiling the application.

3.3.5 Images

The project also contains three images. The ApplicationIcon.png and the Back-

ground.png have already been described in chapter 3.3.2 in the WMAppMani-

fest.xml. The third image named SplashScreenImage.png is displayed on the

device or emulator, when the program is initializing.

Figure 11: References Folder - Solution Explorer

3.3 Structure of the Project Page 17

3.3.6 Silverlight files

By default, Visual Studio creates two major Silverlight files (Figure 12). The first

file is the App Class which consists of the App.xaml and App.xaml.cs. The Page

Class includes the MainPage.xaml and the MainPage.xaml.cs and is the class

which contains the visuals on the screen. It is also referred to as page.

With a double click on a .xaml file the XAML-Editor (Figure 7) is opened and

with a double click on a .xaml.cs the C#-Editor is opened.

When the program starts, the App class creates an object of the type Phone-

ApplicationFrame [cf. Getz11 p.104]. This is the top level container for the en-

tire application. Then, in this frame the page objects with the contents are dis-

played. By default, the application will navigate automatically to the Main-

Page.xaml which is defined in the WMAppManifest.xml. The developer can cre-

ate multiple pages to present the content [MSDN07]. A new page can be cre-

ated in the menu item Project → Add New Item... .

Figure 12: Silverlight Files

Figure 13: C#-Editor

Page 18 3.3 Structure of the Project

The App Class

The App class is the entry point for the application. Listing 6 shows the XAML-

Code for the “Hello World” project. The root element is Application where the

App class will be derived from. The x:Class defines the code-behind file. It spe-

cifies that a class named App in the namespace HelloWorld derives from the

Silverlight Application class. The following two XML namespaces were already

described in chapter 2.5.1 (XAML and Code-Behind). The other two

namespaces (xmlns:phone and xmlns:shell) are unique to the phone. Then,

global resources such as colour schemes or brushes for the entire application

can be defined. The file also contains events for the application life cycle, which

is covered in chapter 3.6 (The Application Life-Cycle).

<Application
 x:Class="HelloWorld.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone">

 <!--Application Resources-->
 <Application.Resources>
 </Application.Resources>
 <Application.ApplicationLifetimeObjects>
 <!--Required object that handles lifetime events for the application-->

 <shell:PhoneApplicationService
 Launching="Application_Launching" Closing="Application_Closing"
 Activated="Application_Activated" Deactivated="Application_Deactivated"/>
 </Application.ApplicationLifetimeObjects>

</Application>

Listing 6: App.xaml - "Hello World"

Important parts of the code-behind of the App class are explained in the course

of this paper and are therefore not listed here (cf chapter 3.4.1 Frame Rate

Counters, chapter 3.6 The Application Life-Cycle).

The Page Class

The central element of every program is the Page class. Listing 7 shows the

XAML-Code of the MainPage class. After the opening tag the x:Class element

indicates the used namespace (HelloWorld) and the class name (MainPage)

which is also used in the code-behind file (MainPage.xaml.cs). Then the follow-

ing XML namespace declarations are the same as in the App.xaml. The d and

the mc namespace are required for XAML design programs Expression Blend

3.3 Structure of the Project Page 19

and the designer in Visual Studio. Additionally there are some StaticResource

stettings (FontFamily, FontSize and Foreground) for the page [cf. Petz10 p.14].

<phone:PhoneApplicationPage
 x:Class="HelloWorld.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 shell:SystemTray.IsVisible="True">
 ...
</phone:PhoneApplicationPage>

Listing 7: MainPage.xaml (Excerpt) - "Hello World" Application

The SupportedOrientation and Orientation attribute will be described in

chapter 4.1 (Orientation) and the shell:SystemTray.IsVisible attribute is for

the visibility of the system tray on a page (Figure 14).

Listing 8 shows the MainPage.xaml.cs file. By default, the file contains some

namespaces and a constructor in the MainPage class. In C# namespaces are

included with the using directive. The namespaces that begin with System.Win-

dows are for Silverlight classes and the Microsoft.Phone.Controls namespace

includes the class PhoneApplicationPage [cf. Petz10 p.13].

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using Microsoft.Phone.Controls;

namespace HelloWorld
{
 public partial class MainPage : PhoneApplicationPage
 {

Figure 14: System Tray

System Tray

Page 20 3.3 Structure of the Project

 // Constructor
 public MainPage()
 {
 InitializeComponent();
 }
 }
}

Listing 8: MainPage.xaml.cs - "Hello Word" Application

During the build process of the application the program generates a file named

MainPage.g.i.cs, which is located in the /obj/Debug directory. This file is for in-

ternal use of the compiler [cf Petz10 p.14]. The constructor of the MainPage

class in the MainPage.xaml.cs (Listing 8) has a method named InitializeCom-

ponent(). If you place the cursor on the name of the method and press the F12

key a new window with the file MainPage.g.i.cs will be displayed on the view

and you will see the definition of the method (Listing 9). With the LoadComponent

method the corresponding XAML file will be read to get information about the

application (e.g.: the application or page title).

public void InitializeComponent() {
 if (_contentLoaded) {
 return;
 }
 _contentLoaded = true;
 System.Windows.Application.LoadComponent(this, new System.Uri
 ("/HelloWorld;component/MainPage.xaml", System.UriKind.Relative));
 this.LayoutRoot =
 ((System.Windows.Controls.Grid)(this.FindName("LayoutRoot")));
 this.TitlePanel =
 ((System.Windows.Controls.StackPanel)(this.FindName("TitlePanel")));
 this.ApplicationTitle =
 ((System.Windows.Controls.TextBlock)(this.FindName("ApplicationTitle")));
 this.PageTitle =
 ((System.Windows.Controls.TextBlock)(this.FindName("PageTitle")));
 this.ContentPanel =
 ((System.Windows.Controls.Grid)(this.FindName("ContentPanel")));
 }

Listing 9: MainPage.g.i.cs - InitializeComponent Method

This file can be ignored by the developer. During the development process it is

possible that this file pops up due to an exception. Then the developer should

not fix the problem in this file because the real problem is probably in the cor-

responding XAML file [cf Petz10 p.14].

The body in the MainPage.xaml also contains by default some nested ele-

ments. Figure 15 shows the “Hello World” project. By default a page contains a

Grid named LayoutRoot as the basic layout container with two rows (#1, Figure

15). Then a StackPanel with two TextBlock elements are placed in the first row

(#2, Figure 15) and another Grid which is named ContentPanel (#3, Figure 15)

3.3 Structure of the Project Page 21

in the second row. Also an ApplicationBar as a comment is created (#4, Fig-

ure 15). For the “Hello World” project the TextBlock named PageTitle was se-

lected on the Page Designer. Then the element is highlighted in the Page De-

signer and in the XAML-Editor. After that the value of the Text attribute was

changed from “page name” to “Hello World” in the Properties Window (#5, Fig-

ure 15).

3.4 The Emulator

Now, the „Hello World“ application is complete and ready for debug and run. In

the standard toolbar there is a bar for debugging (Figure 16).

First, the deployment target can be chosen, either a Windows Phone Device or

the Windows Phone Emulator. The deployment on real device is only possible

after a registration of a developer phone in the App Hub. Secondly, the Debug

or Release modus can be chosen or the Configuration Manager dialog can be

opened. For all projects in this work the Windows Phone Emulator and the De-

bug modus is selected. With the Play button or with the F5 key, Visual Studio

builds the project, starts the emulator and launches the application. In Figure 17

the “Hello World” application is deployed in the emulator.

Figure 15: Default XAML Elements - "Hello World" Application

Figure 16: Debugging Bar - Visual Studio

1

2

3

5

4

Page 22 3.4 The Emulator

The emulator is a virtual machine of the phone in which either the Windows

Phone OS 7.0 or the Windows Phone OS 7.1 runs [Wild12].

3.4.1 Frame Rate Counters

When you run an application in the emulator, you can see some numbers at the

right top corner on the screen. These numbers are frame rate counters and can

be used to monitor the performance of an application [MSDN08].

The following description is directly taken from the MSDN library [MSDN08]:

Frame rate counter Description

Composition (Render) Thread The rate at which the screen is updated.

Figure 17: Emulator - "Hello World" Application

Figure 18: Frame Rate Counters [MSDN08]

3.4 The Emulator Page 23

Frame Rate (FPS)

User Interface Thread Frame Rate
(FPS)

The rate at which the UI thread is running.

Texture Memory Usage The video memory and system memory copies
of textures being used in the application.

Texture Memory Usage The video memory and system memory copies
of textures being used in the application.

Surface Counter The number of explicit surfaces being passed
to the GPU for processing.

Intermediate Surface Counter The number of implicit surfaces generated as
a result of cached surfaces.

Screen Fill Rate Counter The number of pixels being painted per frame
in terms of screens. A value of 1 represents
480 x 800 pixels.

The frame rate counters can also be disabled. The code for the frame rate

counters can be found in the App.xaml.cs (Listing 10). To disable the frame rate

counters the EnableFrameRateCounter property must be set to false or the

code line can simply be commented out.

...
public partial class App : Application
 {
 ...
 public App()
 {
 ...
 // Show graphics profiling information while debugging.
 if (System.Diagnostics.Debugger.IsAttached)
 {
 // Display the current frame rate counters.
 Application.Current.Host.Settings.EnableFrameRateCounter = true;
 ...
 }
 ...
 }

Listing 10: Frame Rate Counters - App.xaml.cs

3.5 The XAP-File

The XAP-file is the application package. Once Visual Studio has built the pro-

ject, the XAP-file can be found in the /Bin/Debug directory (Figure 19). It is a

compressed zip archive with an .XAP extension and contains all files to run the

application [cf. Petz10 p.20]. This file is also called the XAP-archive.

Page 24 3.5 The XAP-File

The XAP-archive is the file which is hosted on the emulator or on a device. This

file must also be submitted to the App Hub to publish the application in the mar -

ketplace.

If you navigate with the Windows Explorer to the /Bin/Debug directory of the

Visual Studio project and rename the .xap extension with .zip you can see the

files inside of the archive (Figure 20). The XAP-archive contains the compiled

DLL file of the “Hello World” project (HelloWorld.dll), three images which were

already described in chapter 3.3.5 and the WMAppManifest.xml (cf. Chapter

3.3.2 Properties Folder).

The application package also contains the AppManifest.xaml. As in chapter

3.3.2 briefly mentioned, the file is filled with contents in the build process and

the code is now shown in Listing 11.

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" EntryPointAssembly="Hello-
World"
EntryPointType="HelloWorld.App" RuntimeVersion="4.7.50308.0">
 <Deployment.Parts>
 <AssemblyPart x:Name="HelloWorld" Source="HelloWorld.dll" />
 </Deployment.Parts>
</Deployment>

Listing 11: AppManifest.xaml - "Hello World" Application

Figure 20: Explorer - "HelloWorld.zip"

Figure 19: XAP-File - "Hello World" application

3.5 The XAP-File Page 25

The file contains the deployment details to run the application. The Deployment

node describes the application and contains a child node (AssemblyPart). In

the Deployment node the EntryPointAssembly (which defines the main as-

sembly in the child node), the EntryPointType and the RuntimeVersion of

Silverlight is defined [Piet08]. The entry point HelloWorld.App will also be

found in the beginning of the App.xaml file (Listing 12).

<Application
 x:Class="HelloWorld.App"
...
</Application>

Listing 12: Entry Point – App.xaml (Excerpt)

3.6 The Application Life-Cycle

The OS of the Windows Phone has been designed in such a way that only one

application can be actively running in the foreground at a given time. Other ap-

plications will be paused or closed in order to save resources. For example an

incoming phone call can interrupt the execution of an application or the user

navigates to another application. Therefore, it is important for the developers to

consider and understand the application life cycle to ensure a consistent user

experience. Often it is necessary that application settings and data are stored, if

an application is deactivated or terminated [cf. Getz11 p.377]. A Windows

Phone has four states:

• Launched

• Activated

• Deactivated

• Closed

By default, each App.xaml.cs file contains methods for the application states as

shown in Listing 13.

 public partial class App : Application
 {
...
 private void Application_Launching(object sender, LaunchingEventArgs e)
 {
 }

 private void Application_Activated(object sender, ActivatedEventArgs e)
 {
 }

Page 26 3.6 The Application Life-Cycle

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)
 {
 }

 private void Application_Closing(object sender, ClosingEventArgs e)
 {
 }
...
 }

Listing 13: App.xaml.cs - Methods Application Life-Cycle

Launched & Closed

The launched and the closed states are very simple. When the application is

started, first the constructor is executed and then the method

Application_Launching is called. Subsequently, the application runs. If you

then use the back button of the Windows Phone to go one step back, the ap-

plication will be closed (#1, Figure 21).

Deactivated and Activated

When the application is running and the user navigates to the Start screen of

the phone (#2, Figure 21), the application will be deactivated. Then, if the back

button is pressed to navigate one step back (#3, Figure 21) the application is

activated. When the user clicks the start button again to return to the start page,

the application is deactivated (#4, Figure 21) and when the back button in the

activated state is pressed (#5, Figure 21) the application will be terminated (be-

cause the navigation sequence has returned to the beginning). If an application

is deactivated, the application is still in the memory of the phone and informa-

tion about the application is stored (e.g. specific user settings, input data from

the user or the last activated page), so when the application is reactivated the

Figure 21: Application Life-Cycle

1 3

2

4

5

3.6 The Application Life-Cycle Page 27

record about the application is loaded and the user has the impression that the

application never paused. But the OS can terminate a deactivated application,

to release resources. Therefore, a deactivated application can be dormant (still

in the memory), or tombstoned (the application is terminated). So the tomb-

stoned state is not predictable for the developer. Of course, when the applica-

tion is tombstoned the state data is also stored, but you do not know exactly

what (e.g. the input data of the user is lost).

In the following example a new project named ApplicationLifeCycle was created

in order to demonstrate the application life cycle again for a better understand-

ing. Also the dormant and tombstoned state will be discussed in a greater detail

and a method to handle the tombstoned event will be presented. The example

is based on a example in the book “Entwickeln für Windows Phone 7.5” of

Patrick Getzmann [cf. Getz11 377-384].

On the top of the App.xaml.cs file a System.Diagnostics namespace is in-

cluded to get an output in the Debug Console of Visual Studio. Then above the

constructor a public static string named id is implemented to store a

new Global Unique Identity (GUID). Each method of the application states con-

tains a command that will display the state and die GUID in the Debug Console

(Output Window) of Visual Studio. Under the menu item Debug → Windows →

Output the output window can be displayed in Visual Studio.

...
using System.Diagnostics;

namespace ApplicationLifeCycle
{
 public partial class App : Application
 {
 public static string id = Guid.NewGuid().ToString();
 ...
 /// Constructor for the Application object.
 public App()
 {
 ...
 }

 private void Application_Launching(object sender, LaunchingEventArgs e)
 {
 Debug.WriteLine("Launching " + App.id);
 }

 private void Application_Activated(object sender, ActivatedEventArgs e)
 {
 Debug.WriteLine("Activated " + App.id);
 if (!e.IsApplicationInstancePreserved)

Page 28 3.6 The Application Life-Cycle

 {
 MessageBox.Show("The Application was tombstoned!");
 }
 }

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)
 {
 Debug.WriteLine("Deactivated " + App.id);
 }

 private void Application_Closing(object sender, ClosingEventArgs e)
 {
 Debug.WriteLine("Closing " + App.id);
 }
 ...
 }
}

Listing 14: Application Life-Cycle Example

When the application is started the output window shows “Launching “ and the

App.id (Figure 22).

If you press the Start button on the emulator, the application will be deactivated

(dormant by default) as shown in Figure 23.

When the back button is pressed, the application will get the state activated and

with another click on the back button the application is closed (Figure 24). In

each state the GUID in the output windows was the same which means that the

instance of the application is still the same.

In Visual Studio it is possible to simulate the tombstoned state (the application

is terminated by the OS and the state data is saved). Therefore, under the

menu item Project → ApplicationLifeCycle Properties... the project properties

must be opened. In the Debug tab “Tombstone upon deactivation while debug-

ging” have to be activated (Figure 25).

Figure 22: Launching

Figure 23: Deactivated (Dormant)

Figure 24: Activated and Closing

3.6 The Application Life-Cycle Page 29

Then the application can be started again and when the initialization is com-

pleted and after pressing the Start button the application is set to the deactiv-

ated status (Figure 26).

When the application is reactivated via the back button the output window looks

like as Figure 27. Note that there is another GUID than for the launching and

deactivated output. This means that a new instance of the application has star-

ted and the application was tombstoned.

In Listing 14 within the Application_Activated method the IsApplicationIn-

stancePreserved property of events args is implemented. If this property is true,

the application was dormant and if the value is false the application was tomb-

stoned. Now, when the program is activated as shown in Figure 27 the emulat-

or should show a message box (Figure 28).

The tombstoned status can be handled on the page basis of an application.

Each page in the application will inherit from the PhoneApplicationPage class,

which will inherit from the Page class. This class has a method named OnNavig-

atedTo, which will be called when a page becomes the active page in a frame.

Another method is the OnNavigatedFrom, which will be called when the page is

Figure 25: ApplicationLifeCycle Properties

Figure 26: Deactivated (Tombstoned)

Figure 27: Output Window - Activated

Figure 28: MessageBox Activated State

Page 30 3.6 The Application Life-Cycle

no longer the active page in a frame [MSDN09]. To use this method in a page

of an application, the base method must be overridden.

The PhoneApplicationPage class has a property named State. This property is

a dictionary where objects with a string key (key/value pair) can be saved and

loaded.

Listing 15 shows the implementation of the OnNavigatedTo and OnNavigated-

From method and the use of the State dictionary. For demonstration purposes

the id string which was created in the example above (Listing 14) will be saved.

In the OnNavigatedFrom method the id is saved in the State dictionary with the

key id. When the page is loaded, the OnNavigatedTo method is invoked. If an

id is saved in the dictionary and the value is the same as the current App.id,

the application was in a dormant state, otherwise the application was tomb-

stoned. When there is no object in the dictionary, which has the key id, the ap-

plication was launched.

 protected override void OnNavigatedFrom(System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedFrom(e);
 this.State.Remove("id");
 this.State.Add("id", App.id);
 }

 protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);

 if (this.State.ContainsKey("id"))
 {
 if (this.State["id"].Equals(App.id))
 {
 MessageBox.Show("The Application was dormant" + this.State["id"].ToString());
 }
 else
 {
 MessageBox.Show("The Application was tombstoned" + this.State["id"].ToString());
 }
 }
 else
 {
 MessageBox.Show("The Application is launched" + App.id.ToString());
 }
 }

Listing 15: State Dictionary

4 Mobile Applications with Silverlight Page 31

4 Mobile Applications with Silverlight

This chapter is devoted to the development of Silverlight applications for Win-

dows Phone with Visual Studio. It covers topics such as orientation, building a

user interface, navigation through pages, stores data and deals with push noti -

fications.

4.1 Orientation

Windows Phone supports three orientations: namely portrait, landscape left and

landscape right. The orientation for a page is defined in the XAML file. The

value of the SupportedOrientations attribute in a XAML file (Listing 16) con-

tains the supported format of a page. The possible values are: Portrait, Land-

scape and PortraitOrLandscape. So you can restrict your application to a spe-

cific orientation or you can allow it to change the orientation when the phone is

turned. In the Orientation attribute you can define which orientation the page

should have when it is loaded.

<phone:PhoneApplicationPage
 ...
 SupportedOrientations="PortraitOrLandscape" Orientation="Portrait"
 OrientationChanged="PhoneApplicationPage_OrientationChanged"
 ...
</phone:PhoneApplicationPage>

Listing 16: Page Orientation in XAML

With the implementation of the OrientationChanged event in Listing 16, which

is fired when the physical orientation of the device has changed, there is the

possibility to create an event handler in the code-behind to manipulate ele-

ments of the user interface. Listing 17 shows a method which will be called

when the OrientationChanged event has fired. In this method a TextBlock in

the XAML file that is named PageTitle will display another Text, if the orienta-

tion of the device has changed.

public partial class MainPage : PhoneApplicationPage
 {
 ...
 private void PhoneApplicationPage_OrientationChanged(
 object sender, OrientationChangedEventArgs e)
 {
 if (e.Orientation == PageOrientation.LandscapeRight)
 { this.PageTitle.Text = "Landscape right"; }

Page 32 4.1 Orientation

 else if (e.Orientation == PageOrientation.LandscapeLeft)
 { this.PageTitle.Text = "Landscape left"; }
 else
 { this.PageTitle.Text = "Portrait"; }
 }
 }

Listing 17: Page Orientation in Code-Behind

Figure 29 shows the deployment of the example.

4.2 Layout

As already mentioned in chapter 3.3.6 (The Page Class), when a new Windows

Phone Application application is created by Visual Studio, the MainPage.xaml

contains by default two layout containers, a grid and a stack panel. These are

the two basic elements to design a layout of a page. The containers themselves

do not have any user interface, but they are determined to arrange elements on

the screen. Each container can include one or more child elements (layout con-

tainers and visible UI elements).

4.2.1 Grid

The Grid is a good choice for most routine layouts and is very important. It is

generally arranged in rows and columns and is very similar to a HTML table.

Listing 18 shows a simple grid that was added to the MainPage.xaml of a new

project. With the attribute ShowGridLines the rows and columns are visible in

the emulator. With the properties Grid.RowDefinitions and Grid.-

ColumnDefinitions new columns and rows can be created. The Height attrib-

ute sets the row height and the Width attribute the column width. The star sizing

Figure 29: Page Orientation - Emulator

4.2 Layout Page 33

value (3*) means a weighted proportion of the available space while an abso-

lute value (e.g. 123) is expressing pixels.

 <Grid x:Name="GridContent" ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="3*" />
 <RowDefinition Height="3*" />
 <RowDefinition Height="3*"/>
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5*" />
 <ColumnDefinition Width="5*" />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0" Grid.Row="0" Text="Row 0 / Column 0"
 VerticalAlignment="Center" HorizontalAlignment="Center"/>
 <TextBlock Grid.ColumnSpan="2" Grid.Row="1" Text="Row 1 / Column 2"
 VerticalAlignment="Center" HorizontalAlignment="Center"/>
 <TextBlock Grid.Column="1" Grid.Row="2" Text="Row 1 / Column 2"
 VerticalAlignment="Center" HorizontalAlignment="Center"/>
 </Grid>

Listing 18: Grid-Definition in XAML

Additionally, three TextBlock elements have been created in this XAML-Code

and with the Grid.Column and the Grid.Row attribute you can define the loca-

tion for a control element in the grid. Figure 30 shows this application in the

emulator.

Figure 30: Grid Row and Columns

Page 34 4.2 Layout

4.2.2 Stack Panel

The Stack Panel is also a layout container for control elements of the user inter-

face. In contrast to the grid, the children of the StackPanel do not overlap. By

default, the elements are arranged from top to bottom. With the Orientation

attribute the vertical arrangement of the elements can be changed (Listing 19).

 <Grid x:Name="GridContent" ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="5*" />
 <RowDefinition Height="5*" />
 </Grid.RowDefinitions>

 <StackPanel >
 <Button Content="Button1" Height="71" Width="160" />
 <Button Content="Button2" Height="71" Width="160" />
 <Button Content="Button3" Height="71" Width="160" />
 </StackPanel>

 <StackPanel Grid.Row="1" Orientation="Horizontal">
 <Button Content="Button" Height="71" Width="160" />
 <Button Content="Button" Height="71" Width="160" />
 <Button Content="Button" Height="71" Width="160" />
 </StackPanel>
 </Grid>

Listing 19: StackPanel-Definition in XAML

Figure 31 shows the StackPanel in the emulator.

4.2.3 Pivot and Panorama

When you create a new project with Visual Studio, you have several templates

to choose from. There is also a Windows Phone Panorama Application and a

Windows Phone Pivot application available (cf. chapter 3.2). Both concepts are

Figure 31: The Stack Panel

4.2 Layout Page 35

very similar. The space for the content is wider than the actual width of the

device [cf. Petz10 p.712]. Listing 20 shows the XAML-Code for a panorama

page. The Microsoft.Phone.Controls namespace is required, because this in-

cludes the pivot and panorama class. By default, you can find in the Grid which

is named LayoutRoot two panorama items. They include a ListBox with a

DataTemplate which contains a StackPanel and two TextBlock elements. In

the ItemSource attribute of the ListBox and in the Text attribute of the two

TextBlock elements you will find curly braces with a Binding statement with a

property. This is the syntax for data binding which will be covered in chapter 4.5

(Data Binding).

<phone:PhoneApplicationPage
 ...
 xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"
 ...
 <!--LayoutRoot is the root grid where all page content is placed-->
 <Grid x:Name="LayoutRoot" Background="Transparent">

 <!--Panorama control-->
 <controls:Panorama Title="my application">
 <controls:Panorama.Background>
 <ImageBrush ImageSource="PanoramaBackground.png"/>
 </controls:Panorama.Background>

 <!--Panorama item one-->
 <controls:PanoramaItem Header="first item">
 <!--Double line list with text wrapping-->
 <ListBox Margin="0,0,-12,0" ItemsSource="{Binding Items}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="0,0,0,17" Width="432" Height="78">
 <TextBlock Text="{Binding LineOne}" TextWrapping="Wrap"
 Style="{StaticResource PhoneTextExtraLargeStyle}"/>
 <TextBlock Text="{Binding LineTwo}" TextWrapping="Wrap"
 Margin="12,-6,12,0"
 Style="{StaticResource PhoneTextSubtleStyle}"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </controls:PanoramaItem>

 <!--Panorama item two-->
 <controls:PanoramaItem Header="second item">
 ...
 </controls:PanoramaItem>
 </controls:Panorama>
 </Grid>
</phone:PhoneApplicationPage>

Listing 20: Panorama Layout - XAML

A pivot page contains instead of the PanoramaItem a PivotItem as shown in

Listing 21. The code is very similar to the panorama page.

Page 36 4.2 Layout

<phone:PhoneApplicationPage
 ...
 xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"
 ...

 <Grid x:Name="LayoutRoot" Background="Transparent">
 <controls:Pivot Title="MY APPLICATION">

 <!--Pivot item one-->
 <controls:PivotItem Header="first">
 <ListBox x:Name="FirstListBox" Margin="0,0,-12,0"
 ItemsSource="{Binding Items}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="0,0,0,17" Width="432" Height="78">
 <TextBlock Text="{Binding LineOne}" TextWrapping="Wrap"
 Style="{StaticResource PhoneTextExtraLargeStyle}"/>
 <TextBlock Text="{Binding LineTwo}"
 TextWrapping="Wrap" Margin="12,-6,12,0"
 Style="{StaticResource PhoneTextSubtleStyle}"/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </controls:PivotItem>

 <!--Pivot item two-->
 <controls:PivotItem Header="second">
 ...
 </controls:Pivot>
 </Grid>
 ...
</phone:PhoneApplicationPage>

Listing 21: Pivot Page - XAML

On the left side in Figure 32 a default pivot page is shown. On the right side

there is a standard panorama page. Both pages are only one page object. In-

side the pivot page the user can navigate to various pivot items with a link in the

Header (Listing 21 Header="first" and Header="second"). In the panorama

page the user can navigate to the next panorama item with the flick touch ges-

ture.

Figure 32: Pivot and Panorama Page

4.2 Layout Page 37

The pivot page can be used to present collections of information sliced to sev-

eral subsets. The idea is to group similar data [Bosc11]. For example, the

search result of Bing is displayed in a pivot page (Figure 33).

The panorama page is used to slide through a big content. The content is di-

vided to different blocks which are assigned to different horizontal items

[Kart12]. Figure 34 show the concept of a panorama page.

Figure 33: Bing - Search Result

Pivot Items

Figure 34: Panorama Example [Wilc10]

Page 38 4.3 Smartphone Controls

4.3 Smartphone Controls

The control elements are used for the interaction with the user. On the one

hand there are elements that use the touch interface (e.g. Button, CheckBox,

etc.) and on the other hand there are elements (e.g. TextBox, PasswordBox) that

are used for the input of the user with the keyboard. The toolbox in Visual Stu-

dio will provide most of the supported user interface elements for a phone ap-

plication. A comprehensive overview of all supported controls in Silverlight for

Windows Phone OS 7.1. will be found in the MSDN library [MSDN10]. In this

chapter the basic elements which were also used in the most programming ex-

amples in this work will be described.

4.3.1 Button

The Button is used to trigger an action after touch. In the following example a

message box will be displayed, after the button was pressed.

<Button Content="Button" Height="72" Width="160" Margin="135,249,161,286"
 Name="button1" Click="button1_Click" />

Listing 22: Button-Definition in XAML

A click event with an event handler (button1_Click) was added to the Button

tag. For this click event a method in the code-behind file which shows the mes-

sage box is implemented.

private void button1_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("Button was pressed!");
 }

Listing 23: Code-Behind - Button Click Event

4.3.2 HyperlinkButton

The HyperlinkButton is used to navigate to other pages in an application. The

NavigateUri property contains the link to the destination page. In the Target-

Name property the target frame can be specified (_blank or _self).

<HyperlinkButton Content="Button" Height="30" Width="200" Name="button"
 NavigateUri="/Examples/Button.xaml" TargetName="_blank"/>

Listing 24: HyperlinkButton-Definition in XAML

4.3 Smartphone Controls Page 39

4.3.3 TextBlock

The TextBlock element is primarily used to display text.

<TextBlock Margin="40,375,94,39" Name="textBlock1" TextWrapping="Wrap"
 Text="Lorem ipsum dolor sit amet, consetetur sadipscing elitr"/>

Listing 25: TextBlock-Definiton in XAML

The Text property contains the text. By default, the content will be shown

without a line break. With the TextWrapping property an automatic line break

can be effected (Figure 35).

4.3.4 CheckBox

The CheckBox is used to select and clear an option in an application. The con-

trols allow the user to select a combination from a list of options. The important

property is IsChecked, which can have three states (true, false or null).

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <CheckBox Content="CheckBox" Margin="26,18,228,516"
 Name="checkBox1" IsChecked="{x:Null}"/>
 <Button Content="Button" Margin="6,97,20,425"
 Name="button1" Click="button1_Click" />
 </Grid>

Listing 26: CheckBox-Definition in XAML

At runtime, the state of the CheckBox can be queried. The following code-behind

shows a method for a click event of the Button, which will display the state of

the MessageBox.

private void button1_Click(object sender, RoutedEventArgs e)
 {
 if (this.checkBox1.IsChecked == null)
 {
 MessageBox.Show("CheckBox state is null!");
 }
 else if (this.checkBox1.IsChecked == true)
 {
 MessageBox.Show("CheckBox state is true!");
 }
 else
 {

Figure 35: TextBlock - TextWrapping

Page 40 4.3 Smartphone Controls

 MessageBox.Show("CheckBox state is false!");
 }
 }

Listing 27: Code-Behind - CheckBox Query

4.3.5 RadioButton

In contrast to CheckBox, a RadioButton is used when there is a list of options

and they are mutually exclusive. In other words, when a non-selected button is

selected, a previously selected button will be deactivated. In XAML this is real-

ized by the GroupName property that allows you to differentiate multiple groups

of mutually exclusive buttons [cf. Petz10 p.273]. The central property is again

IsChecked with a boolean return type.

<RadioButton Content="RadioButton1" Height="72" Margin="50,388,0,147"
 Name="radioButton1" GroupName="Group1" IsChecked="True"/>
<RadioButton Content="RadioButton2" Height="72" Margin="50,359,0,0"
 Name="radioButton2" GroupName="Group1"/>

Listing 28: RadioButton-Definition in XAML

4.3.6 TextBox, PasswordBox and Keyboard Input

The Textbox and the PasswordBox are the two text entry controls. For the major-

ity of the devices which will not have a physical keyboard, the software input

panel (SIP) is used when one of these controls have received focus.

 <TextBox Height="72" Margin="47,130,49,405" Name="textBox1"
 Text="TextBox" Width="361" />
 <PasswordBox Height="72" Margin="48,246,48,289" Name="passwordBox1"
 Width="361"/>

Listing 29: TextBox and PasswordBox-Defintion in XAML

In the TextBox it is possible to assign an attribute named InputScope. With the

InputScope you can suggest a specific keyboard for the input field (e.g. for

numbers, email address, etc.). This attribute can be defined in the XAML-Code

or in the code-behind file. If the definition is made in the code-behind, the de-

veloper can make use of the IntelliSense of Visual Studio which will provide the

possible values for the InputScope (Figure 37).

Figure 36: RadioButtons

4.3 Smartphone Controls Page 41

Figure 38 shows an example where the value “EmailNameOrAddress” was

chosen for the input scope. The input panel will provide keys (e.g. “@” or

“.com”) to enter an email address.

Figure 37: InputScope IntelliSense

Figure 38: Emulator InputScope

Page 42 4.3 Smartphone Controls

4.3.7 ApplicationBar

The ApplicationBar is an alternative to standard controls such as buttons. It

can be used instead of creating an own menu. If a new page is added to a pro-

ject, an ApplicationBar in the XAML file is included as a comment. The Ap-

plicationBar contains up to four buttons. Additional, menu items can be ad-

ded. As shown in Figure 39, the ApplicationBar is always on the bottom of a

page when it is displayed and stays in the same place relative to the phone

whenever the phone rotates. When the SupportedOrientations property is set

to PortraitOrLandscape, the images of the ApplicationBar turns sideways [cf.

Petz10 p.235].

In the XAML-Code (Listing 30) the IconUri and Text attribute are required.

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton IconUri="/Images/appbar.add.rest.png"
 Text="Hinzufügen"/>
 <shell:ApplicationBarIconButton IconUri="/Images/appbar.cancel.rest.png"
 Text="Abbrechen"/>
 <shell:ApplicationBarIconButton IconUri="/Images/appbar.check.rest.png"
 Text="Übernehmen"/>
 <shell:ApplicationBarIconButton IconUri="/Images/appbar.delete.rest.png"
 Text="Löschen"/>
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="MenuItem 1"/>
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Listing 30: ApplicationBar-Definition in XAML

Figure 39: Emulator - ApplicationBar

4.3 Smartphone Controls Page 43

The Windows Phone SDK provides several icons for the application bar. After a

standard installation you will find these icons in the following directory: C:\Pro-

gram Files\Microsoft SDKs\Windows Phone\v7.1\Icons. In the folder named

light you will find black images on a white background and in the dark folder

white images on a black background. The icons can easily be added via drag

and drop from the Windows Explorer into the Solution Explorer of Visual Studio.

Make sure that the Built Action property of each icon is set to Content (Figure

40), because the application bar is not smart enough to find the icons, if the

Built Action is Resource [cf. Petz10 p.233].

4.4 Navigation

As mentioned in chapter 3.3.6 (Silverlight files) a Windows Phone Application is

based on pages similar to a website. If an application consists of more than one

page, then it must be possible for the user to navigate between the pages. A

simple solution is the HyplerlinkButton which was already covered in chapter

4.3.2 (HyperlinkButton). The following solutions are based on a new project

which includes three page objects (MainPage, SecondPage and ThirdPage).

4.4.1 Code-Behind Solution

The advantage of navigation in the code-behind is that any XAML element can

be used for the navigation. This is made possible by the NaviagtionService

class. In the following example a Button on MainPage.xaml is used to navigate

to the SecondPage.xaml after the button is pressed. In the Click event attribute

the name of the event handler button1_Click gets defined.

Figure 40: Properties Window - ApplicationBar

Page 44 4.4 Navigation

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Button Content="Navigate to Page 2" Height="72" Width="321"
 Margin="78,78,57,457" Name="button1" Click="button1_Click" />
 ...
 </Grid>

Listing 31: XAML Button for Navigation

In the code-behind the Navigate method of the NavigationService class is

called. A new URI object is instantiated and the page name and the URI type

(Relative, Absolute or RelativeOrAbsolute) are passed as parameters.

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 NavigationService.Navigate(new Uri("/SecondPage.xaml",
 UriKind.Relative));
 }

Listing 32: Code-Behind Navigation

4.4.2 Passing Parameters

A simple method to pass data from one page to another page during navigation

is to specify a name-value pair in the URI. The following example shows how a

string data from a TextBox on MainPage.xaml is passed to a TextBlock on the

SecondPage.xaml.

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 ...
 <Button Content="Navigate to Page 2" Height="72" Width="321"
 Margin="77,262,57,273" Name="button2" Click="button2_Click" />
 <TextBox Height="72" Margin="77,184,54,351" Name="textBox1"
 Text="TextBox" Width="325" />
 ...
 </Grid>

Listing 33: XAML Button and TextBox for Passing Parameter

In the code-behind the NavigationService class is used. After the page name

a question mark gets added to specify the name-value pair. As name

parameter is used (which is an arbitrary name) and the string from the TextBox

is the value.

 private void button2_Click(object sender, RoutedEventArgs e)
 {
 NavigationService.Navigate(new Uri("/SecondPage.xaml?parameter="
 + textBox1.Text, UriKind.Relative));
 }

Listing 34: Code-Behind for Navigation and Passing Parameter

In the code-behind of the destination page (SecondPage.xaml.cs) the

OnNavigatedTo method is implemented to dispaly the passed parameter in the

TextBlock.

4.4 Navigation Page 45

protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);
 string parameter = String.Empty;
 if (NavigationContext.QueryString.TryGetValue("parameter", out parameter))
 {
 textBlock1.Text = parameter;
 }
 }

Listing 35: Code-Behind to Display the Parameter

4.4.3 Sharing Data

Passing data via a name-value pair in the URI works perfectly. A more elegant

way to provide data is to store the data in the App class (App.xaml.cs), which

also corresponds more to the object orientated idea. All pages in a Silverlight

application for Windows Phone have access to the App class. This class can be

used to store data. For the following example a public property is added in the

App.xaml.cs above the constructor.

public partial class App : Application
 {
 public String Parameter2 { get; set; }
 ...
 }

Listing 36: Public String in App.xaml.cs

This property can be used in each page instance of the project. In the

ManPage.xaml.cs another TextBox named textBox2 and a Button named

button3 is added. In the method for the click event of the Button the

Application.Current property returns a reference to the instance of the class

that derives from Application and must be casted to an App. Then the text,

which is contained in textBox2 will be stored in the property that was defined in

the App class and the the navigation to the ThirdPage.xaml occurs.

 private void button3_Click(object sender, RoutedEventArgs e)
 {
 App app = (Application.Current as App);
 app.Parameter2 = this.textBox2.Text;
 NavigationService.Navigate(new Uri("/ThirdPage.xaml",
 UriKind.RelativeOrAbsolute));
 }

Listing 37: Code-Behind to Store Data

In the destination page the following code is used within the constructor to read

the value of the property.

 public ThirdPage()
 {

Page 46 4.4 Navigation

 InitializeComponent();
 App app = (Application.Current as App);
 textBlock1.Text = app.Parameter2;
 }

Listing 38: Code-Behind to Read the Property

4.5 Data Binding

Because of the strict distinction between the UI and the program logic in Silver-

light applications, it is often necessary that an UI element reflects the changes

on a data object in the code-behind. A connection, or data binding allows a flow

between a UI element and a data object or between two UI elements. The ex-

amples in this chapter are based on the examples in the book “Entwickeln für

Windows Phone 7.5” [cf. Getz11 227-239].

4.5.1 Simple Data Binding

Listing 39 shows a data binding between two UI elements (a Slider and a

TextBox). The TextBox shows the value of the Slider and if a value (0-10) is

typed in the TextBox, the Slider will be adjusted (if text is entered nothing hap-

pens). Therefore, the Text property of the TextBox contains the binding syntax

which means that there is a binding to the value of the slider1 element. The

Mode property TwoWay determines a data flow in both directions (from the source

to the target and vice versa).

<Slider Margin="90,222,92,312" Name="slider1" Width="275" />
<TextBox Height="72" Width="275" Margin="90,332,92,203" Name="textBox1"
 Text="{Binding Path=Value, ElementName=slider1, Mode=TwoWay}" />

Listing 39: Data Binding of two UI Elements

There are three types of binding:

• OneTime: The value from the source to the target is passed only once.

• OneWay: This is the default mode. The data can only flow from the

source to the target.

• TwoWay: The data can flow in both directions, from the source to the

target and vice versa.

4.5 Data Binding Page 47

4.5.2 Change Notification

The INotifyPropertyChanged interface is another foundation of data binding. It

will be implemented to business objects in the code-behind in order to push

changes from a source (e.g. changes to a property of a data object) to a target

(e.g. a UI control in XAML). The following example shows the implementation of

the interface with a OneWay binding.

In the XAML file a TextBlock, a TextBox and a Button were added. The Text-

Block contains the binding to a data object and shows the property FirstName

of a Student object. In the TextBox, the user can enter a new name for the stu-

dent, which will be confirmed with a button.

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <TextBlock Height="39" Margin="52,51,125,546" Name="textBlock2"
 Text="{Binding FirstName}" />
 <TextBox Height="72" HorizontalAlignment="Left" Margin="52,133,0,431"
 Name="textBox1" Text="New Firstname" Width="279" />
 <Button Content="Change Firstname" Height="72" Margin="52,211,125,353"
 Name="button1" Click="button1_Click" />
 </Grid>

Listing 40: Change Notification - XAML-Code

The user interface is shown in Figure 41.

In the code-behind file (Listing 41) a new instance of the class Student is de-

clared and in the constructor the object is initialized. The DataContent property

is used to display the properties of the object in the TextBlock. The class Stu-

dent implements the INotifyPorpertyChanged interface. For the interface the

namespace System.ComponentModel is required. Then an event named Proper-

tyChanged is defined and will be fired if a property is changed. The setter meth-

Figure 41: Change Notification UI

Page 48 4.5 Data Binding

od of the property will call a method named NotifyPropertyChanged and the

binding element will be updated if the value of the property has changed.

...
using System.ComponentModel;

namespace DataBindingII
{
 public partial class MainPage : PhoneApplicationPage
 {
 Student s = new Student();
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 s.FirstName = "Jane";
 s.LastName = "Doe";
 s.StudentNumber = 21;
 ContentPanel.DataContext = s;
 }

 public class Student : INotifyPropertyChanged
 {
 ...
 private string firstName;
 public string FirstName
 {
 get
 {
 return firstName;
 }
 set
 {
 firstName = value;
 NotifyPropertyChanged("FirstName");
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void NotifyPropertyChanged(string info)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(info));
 }
 }
 ...
 }
 private void button1_Click(object sender, RoutedEventArgs e)
 {
 s.FirstName = textBox1.Text;
 }
 }
}

Listing 41: Change Notification - Code-Behind

4.5.3 Data Binding with a Generic List

The following example shows the data binding of a generic list and a ListBox

element. In the XAML file a ListBox with an DataTemplate is used. A DataTem-

4.5 Data Binding Page 49

plate is used to specify the visualization of your data objects [MSDN11]. For

each object in the list, an instance of this template will be created. The Data-

Template contains a StackPanel (cf. chapter 4.2.2) and three TextBlock ele-

ments, which contain the binding to the object property.

<ListBox Margin="67,100,69,101" Name="lbStudents" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding FirstName}" />
 <TextBlock Text="{Binding LastName}" />
 <TextBlock Text="{Binding StudentNumber}" Padding="0,0,0,10" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Listing 42: Data Binding - XAML ListBox

The code-behind defines how the generic list will be created and assigned to

the ListBox element. In contrast to the previous example (Listing 41) the Item-

Source property must be used to display the list in the ListBox because of the

IEnumerable object type. The DataContext property does not generate tem-

plates and expects an object type (and not an IEnumerable type object)

[Soda02].

namespace DataBindingIII
{
 public partial class MainPage : PhoneApplicationPage
 {
 List<Student> students = new List<Student>();
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 Student s1 = new Student();
 s1.FirstName = "Jane";
 s1.LastName = "Doe";
 s1.StudentNumber = 1234567;
 students.Add(s1);

 Student s2 = new Student();
 s2.FirstName = "John";
 s2.LastName = "Doe";
 s2.StudentNumber = 7654321;
 students.Add(s2);

 lbStudents.ItemsSource = students;
 }

 public class Student
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public long StudentNumber { get; set; }
 }
 }

Page 50 4.5 Data Binding

}

Listing 43: Data Binding - Code-Behind Generic List

4.6 Data Storage

As a Silverlight application for Windows Phone is running in a sandbox, there is

no direct access to the underlying file system of the OS. But the application can

use the isolated storage to store the application's data such as settings of the

application, files, folders or relational data. Isolated storage is a concept in

.NET and is a kind of virtual folder. The physical location of the isolated storage

can vary for each OS and the user do not know where the file exactly is stored.

An application simply uses the .NET classes to create and access the files

[Manj04]. Isolated also means that one application can not see or use the data

from another application and vice versa. If two applications need the same data

an online storage (cloud service) is required.

The examples in chapter 4.6.1, 4.6.2 and 4.6.4 are based on the isolated stor-

age explanation in the book “Windows Phone 7-Apps” of Christian Bleske [cf.

Bles11 215-217].

Figure 42: Data Binding with a Generic List

4.6 Data Storage Page 51

4.6.1 IsolatedStorageSettings

The following example shows, how the class IsolatedStorageSettings can be

used. The user can change the background colour of an application and the

colour will be saved if the application is deactivated or closed. First, a new pub-

lic property named Background of the type Brush is added to the App.xaml.cs

above the constructor.

 public partial class App : Application
 {
 public Brush Background { get; set; }
 ...
 }

Listing 44: Background Property - App.xaml.cs

In the class MainPage the namespace System.IO.IsolatedStorage must be in-

cluded. The property that was defined in the App.xaml.cs will be called after the

constructor. If the property contains a value it will be added to the ContentPan-

el. To change and save a new colour value, a button with the event

btnColor_Click was created. Within the method, a random colour will be cre-

ated and added to the background and saved in the public property of the App

class.

using System.IO.IsolatedStorage;
using System.IO;

namespace IsolatedStorageI
{
 public partial class IsolatedStorage : PhoneApplicationPage
 {
 public IsolatedStorage()
 {
 InitializeComponent();

 Brush brush = (Application.Current as App).Background;
 if (brush != null)
 {
 ContentPanel.Background = brush;
 }
 }

 private void btnColor_Click(object sender, RoutedEventArgs e)
 {
 Random random = new Random();
 SolidColorBrush solidColorBrush = new SolidColorBrush(Color.FromArgb(255,
 (byte)random.Next(256), (byte)random.Next(256), (byte)random.Next(256)));

 ContentPanel.Background = solidColorBrush;

 (Application.Current as App).Background = solidColorBrush;
 }
 }
}

Page 52 4.6 Data Storage

Listing 45: MainPage.xaml.cs - IsolatedStroageSettings

Then for each state of the application (Launching, Activated, Deactivated

and Closing) the background colour must be saved or loaded. Therefore, two

methods are implemented in the App.xaml.cs.

private void Application_Launching(object sender, LaunchingEventArgs e)
 {
 LoadSettings();
 }

 private void Application_Activated(object sender, ActivatedEventArgs e)
 {
 LoadSettings();
 }

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)
 {
 SaveSettings();
 }

 private void Application_Closing(object sender, ClosingEventArgs e)
 {
 SaveSettings();
 }

Listing 46: App.xaml.cs - IsolatedStorageSettings

The SaveSettings and LoadSettings methods use the IsolatedStorageSet-

tings object to store a key-value based data in the isolated storage.

void SaveSettings()
{
 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 if (Background is SolidColorBrush)

 settings["backgroundColor"] = (Background as SolidColorBrush).Color;
 settings.Save();
}

void LoadSettings()
{
 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;
 Color color;

 if (settings.TryGetValue<Color>("backgroundColor", out color))
 Background = new SolidColorBrush(color);
}

Listing 47: App.xaml.cs - Save and Load Method

4.6.2 IsolatedStorageFile

To create files and directories in the isolated storage the class IsolatedStor-

ageFile must be used. The System.IO and System.IO.IsolatedStroage

namespace is required to access this class. In the following example a directory

4.6 Data Storage Page 53

named Subdirectory1 will be created and the content from a TextBox will be

saved in a file named HelloWorld.txt.

To create a new directory, a new object of the type IsolatedStorageFile is re-

quired. With the method GetUserStoreForApplication you get a new instance

of the IsolatedStorageFile class. For the folder the method CreateDirectory

with the name of the directory is invoked.

...
using System.IO;
using System.IO.IsolatedStorage;

namespace IsolatedStorageII
{
 public partial class MainPage : PhoneApplicationPage
 {
 // Constructor
 public MainPage()
 {
 ...
 try
 {
 IsolatedStorageFile file =
 IsolatedStorageFile.GetUserStoreForApplication();

 file.CreateDirectory("Subdirectory1");
 }
 catch (IsolatedStorageException iso)
 {
 //error handling
 }
 }
 ...
 }
}

Listing 48: MainPage.xaml.cs - IsolatedStorageFile

In the MainPage.xaml a TextBox named textbox1, a TextBlock, a Load and

Save button was added. The two buttons have a click event. Additionally a

Loaded event (Loaded="PhoneApplicationPage_Loaded") was added (Listing 49). The

Loaded event is used in the code-behind to disable the Load button on screen if

no file exist.

<phone:PhoneApplicationPage
 x:Class="IsolatedStorageII.MainPage"
 ...
 Loaded="PhoneApplicationPage_Loaded"
 ...
 <Grid x:Name="LayoutRoot" Background="Transparent">
 ...
 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Button Content="Load" Margin="72,284,224,269"
 Name="loadBtn" Click="loadBtn_Click" />
 <Button Content="Save" Margin="255,284,40,269"
 Name="saveBtn" Click="saveBtn_Click" />
 <TextBox Margin="70,204,39,360" Name="textBox1" />

Page 54 4.6 Data Storage

 <TextBlock Margin="83,182,40,411" Name="textBlock1"
 Text="Enter Text:" />
 </Grid>
 </Grid>
 ….
</phone:PhoneApplicationPage>

Listing 49: XAML Code - Input IsolatedStorageFile

The code-behind method for the Loaded event is shown below. Here the

FileExists method is used to check whether the file exists or not. If so, the but-

ton is enabled, otherwise not.

 private void PhoneApplicationPage_Loaded(object sender, RoutedEventArgs e)
 {
 IsolatedStorageFile file =
 IsolatedStorageFile.GetUserStoreForApplication();
 if (!file.FileExists("Subdirectory1/HelloWorld.txt"))
 {
 loadBtn.IsEnabled = false;
 }
 }

Listing 50: Loaded Method

Listing 51 shows the method for the save button, which will store the file. In this

example the using statement wraps the objects. The using statement is for

classes that support the IDisposable interface. If the object is no longer needed,

the allocated resources are released (before the garbage collector comes)

[Will12].

The method of the click event of the save button contains the code to write the

file. First, an object of the type IsolatedStorageFile is declared and instanti-

ated. With the CreateFile method a new file in the isolated storage is created,

opened and the IsolatedStorageFileStream is returned from the method. If

the file already exists, the original file is deleted and recreated. Subsequently,

with a StreamWriter the text of the textBox is written into the file, the content

textBox is cleared and the load button enabled.

private void saveBtn_Click(object sender, RoutedEventArgs e)
 {
 using (IsolatedStorageFile file =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream =
 file.CreateFile("Subdirectory1/HelloWorld.txt"))
 {
 using (StreamWriter sw = new StreamWriter(stream))
 {
 sw.Write(textBox1.Text);
 sw.Close();
 textBox1.Text = "";
 loadBtn.IsEnabled = true;

4.6 Data Storage Page 55

 }
 }
 }
 }

Listing 51: Save Button - IsolatedStorageFile

The method for the load event is very similar to the save event which is shown

below. Instead of the CreateFile Method the OpenFile method is used and a

StreamWriter is required to read the content of the file.

 private void loadBtn_Click(object sender, RoutedEventArgs e)
 {

 using (IsolatedStorageFile file =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream =
 file.OpenFile("Subdirectory1/HelloWorld.txt", FileMode.Open))
 {
 using (StreamReader sr= new StreamReader(stream))
 {
 textBox1.Text = sr.ReadToEnd();
 }
 }
 }
 }

Listing 52: Load Button - IsolatedStorageFile

4.6.3 Isolated Storage Explorer Tool

The Windows Phone SDK provides a useful tool for dealing with the isolated

storage. It is the Isolated Storage Explorer Tool (ISETool.exe). With this line-

command tool you can list, copy and replace files and directories in the isolated

storage of the phone. After a standard installation of the SDK the tool will be

found in the following folder: C:\Program Files\Microsoft SDKs\Windows

Phone\v7.1\Tools\IsolatedStorageExplorerTool\ISETool.exe. The tool

works with the emulator as well as with a developer device. To use the ISETool,

the emulator or device must be running and the ProductID of the application is

needed. The ProductID attribute is contained in the WPAppManifest.xml file of

the project. Figure 43 shows the ID for the application, which was created in

this chapter.

Figure 43: ProductID - WMAppManifes.xml

Page 56 4.6 Data Storage

In the command-prompt of Windows you can navigate to the ISETool (Figure

44).

Then the following command will copy the isolated storage to a folder named

„_temp“ on drive „D:“.

ISETool.exe ts xd ff3b21e8-817e-425f-807d-7acced7d2ed3 D:_temp

With „ISETool.exe“ the program is run. The command-line option „ts“ copies

the isolated storage directory from the emulator to the computer and „xd“

stands for the emulator. After that the ProductID and the target directory fol-

lows. When the program is executed a download report is listed (Figure 45).

When the download is successful the target folder contains the isolated storage

from the emulator. Figure 46 shows the file and directory which was created in

the chapter 4.6.2.

Figure 45: Download IsolatedStorageFile

Figure 46: IsolateStorageFile

Figure 44: ISETool

4.6 Data Storage Page 57

4.6.4 XmlSerializer

To write simple text files, the method in chapter 4.6.2 is sufficient. If, however,

more complex objects and their data should be stored, you need a different

solution. With the XmlSerializer objects can be written in an XML file and then

be read again. For this, the System.Xml.Serialization reference is needed.

The following example shows how a generic list can be stored in an XML file. A

list named student with two objects is created. In region serialize the two ob-

jects will be stored in a file named Students.xml and in region deserialize the

file will be read again and displayed in a listBox named lbStudents. In both

regions, a new instance of IsolatedStorageFile class and IsolatedStorage-

FileStream class is created. These have already been presented in Chapter

4.6.2. In serialize a new object of XmlSerializer is created. A parameter of

the type List<Student> is passed. With the method Serialize the stream and

the list are passed. Then the list is cleared. In region deserialize the method

Deserialize is called. As parameter the stream is passed again. The return

value is converted back to an object of the type List. Then the list is assigned

to a XAML UI element (listBox) named lbStudents.

...
using System.IO;
using System.IO.IsolatedStorage;
using System.Xml.Serialization;

namespace XMLSerzializer
{
 public partial class MainPage : PhoneApplicationPage
 {
 private List<Student> student;
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 student = new List<Student>();

 student.Add(new Student() { FirstName = "Jane",
 LastName = "Doe", StudentNumber = 123456 });
 student.Add(new Student() { FirstName = "John",
 LastName = "Doe", StudentNumber = 987654 });

 #region "serialize"
 using (IsolatedStorageFile file =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream =
 file.CreateFile("Students.xml"))
 {
 XmlSerializer xs = new XmlSerializer(typeof(List<Student>));

Page 58 4.6 Data Storage

 xs.Serialize(stream, student);
 student = null;
 }
 }
 #endregion

 # region "deserialize"
 using (IsolatedStorageFile file =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream =
 file.OpenFile("Students.xml", FileMode.Open))
 {
 XmlSerializer xs = new XmlSerializer(typeof(List<Student>));
 student = (List<Student>)xs.Deserialize(stream);
 lbStudents.ItemsSource = student;
 }
 }
 #endregion
 }

 public class Student
 {
 public long StudentNumber {get; set;}
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }
 }
}

Listing 53: XML Serializer

With the ISETool, the created file can be viewed (Listing 54).

<?xml version="1.0"?>
<ArrayOfStudent xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Student>
 <StudentNumber>123456</StudentNumber>
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Student>
 <Student>
 <StudentNumber>987654</StudentNumber>
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Student>
</ArrayOfStudent>

Listing 54: XML File - Isolated Storage

4.6.5 LINQ to SQL

With Windows Phone OS 7.1 local databases can be created. In the previous

version (OS 7.0) only third-party solutions were available. Microsoft implemen-

ted LINQ to SQL to work with databases. LINQ to SQL is an object-orientated

approach, which maps an object model to a data model of a relational data-

base. The object model is expressed in the programming language. When an

application is running, the LINQ to SQL runtime will translate the Language In-

4.6 Data Storage Page 59

tegrated Query (LINQ) to the Structured Query Language (SQL) and sends

them to the database. The results of the database are then translated back to

objects that you can work with in your own programming language.

The following example which is based on the MSDN library [MSDN12], shows a

list that uses a local database as a storage where students with their first name,

last name and student number can be added and deleted. Figure 47 displays

the application.

In the TextBox elements you can enter the data of a student and with the

Create Entry button the entry will be added to a ListBox and stored in the

database. To delete an entry, the desired entry must be selected in the ListBox

(shown in red in Figure 47) and can then be removed from the list and

database with the Delete Entry button.

For the user interface the following XAML-Code is implemented instead of the

Grid named LayoutRoot of the default page. A ListBox with data binding (cf.

Figure 47: UI - LINQ to SQL

Page 60 4.6 Data Storage

chapter 4.5.3) is added to display the database entries. Two Button elements

(one for insertion and one for deletion) with a click event, three TextBox

elements for the input and three TextBlock elements for the description of the

input fields. Note that the text box for the student number has the attribute

inputscope="number", in order to change the keyboard layout for the input.

<Grid x:Name="ContentPanel" Margin="12,160,12,0" Grid.RowSpan="2">
 <Grid.RowDefinitions>
 <RowDefinition Height="5*"/>
 <RowDefinition Height="5*"/>
 </Grid.RowDefinitions>
 <ListBox ItemsSource="{Binding lbStudents}" x:Name="lbStudent"
 Margin="6,6,12,11" Height="287">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding FirstName}" />
 <TextBlock Text="{Binding LastName}" />
 <TextBlock Text="{Binding StudentNumber}" Margin="0,0,0,10" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <Button Content="Create Entry" Height="72" Width="226" Margin="0,232,230,0"
 Name="btnCreateEntry" Click="btnCreateEntry_Click" Grid.Row="1"/>
 <Button Content="Delete Entry" Height="72" Width="226" Margin="224,232,6,0"
 Name="btnDeleteEntry" Click="btnDeleteEntry_Click" Grid.Row="1"/>
 <TextBox Height="72" Margin="164,9,6,223" Name="txtBoxFirstName"
 Text="" Width="286" Grid.Row="1" />
 <TextBox Height="72" Margin="164,78,6,154" Name="txtBoxLastName"
 Text="" Width="286" Grid.Row="1" />
 <TextBox Height="72" Margin="164,151,6,81" Name="txtBoxStudentNumber"
 Text="" Width="286" Grid.Row="1" InputScope="number"/>
 <TextBlock Height="30" Margin="12,30,286,244" Name="textBlock1"
 Text="First Name:" Grid.Row="1"/>
 <TextBlock Height="30" Margin="12,103,286,171" Name="textBlock2"
 Text="Last Name:" Grid.Row="1"/>
 <TextBlock Height="30" Margin="12,180,286,94" Name="textBlock3"
 Text="Student Number:" Grid.Row="1" />
 </Grid>

Listing 55: XAML-Code - LINQ to SQL

In the following section, the required classes and methods for the application

will be explained step by step. In addition, the entire code-behind file (Main-

Page.xaml.cs) will be found in the appendix (Appendix I).

First, for each database application a reference to the assembly

System.Data.Linq is required. The assembly can be added under the menu

item Project -> Add Reference. Then, the following namespaces are required.

using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.ComponentModel;
using System.Collections.ObjectModel;

Listing 56: Namespaces for LINQ to SQL

4.6 Data Storage Page 61

Below the MainPage class, the Student class (Listing 57) is added which

represents the table of the database. With the Table attribute as a

metainformation on the top of the class, the Student class is associated with

the Student table in the database. The additional parameter Name specifies the

table name and is optional.

The properties of the class are decorated with the attribute Column and describe

the table columns. The Column attribute has a variety of properties for an exact

mapping to the database. The id property is declared as the primary key.

IsDbGenerated means that the database will generate the primary key.

DbType describes the data mapping between the object model type (CLR) and

the database type (SQL). For the other columns in the example there is no type

defined and thus the automatic mapping is used. A detailed “Type Mapping

Run-time Behavior Matrix” overview can be found on the Microsoft Developer

Network under http://msdn.microsoft.com/en-gb/library/bb386947.aspx

[MSDN13].

In addition, the id column contains a CanBeNull property with the value false

which indicates that the column can not be empty and an AutoSync property

that specifies the primary key is inserted only at the entry (for performance

reasons).

The Student class also implements the INotifyPropertyChanged and the

INotifyPropertyChanging interface. The former was already explained in

chapter 4.5.2 . The latter one is used for a better memory management of LINQ

to SQL. The change tracking of LINQ to SQL works by default with two copies

of an object. One object will remain unchanged and the other one can be

changed by the application. With the two objects the LINQ to SQL runtime can

determine which properties have been updated and submit only the changes to

the database. “The INotifyPropertyChanging interface allows the application

to notify the DataContext (Listing 58) when it is modifying a property that will ul-

timately be submitted as an update to the database. The DataContext can use

that notification as a trigger to create the copy. This way, only the items that are

actually changing need to be duplicated” [MSDN14].

 [Table(Name = "Student")]

Page 62 4.6 Data Storage

 public class Student : INotifyPropertyChanged, INotifyPropertyChanging
 {
 private int id;
 private string firstName;
 ...
 [Column(IsPrimaryKey = true, IsDbGenerated = true, DbType = "INT NOT NULL Identity",
 CanBeNull = false, AutoSync = AutoSync.OnInsert)]
 public int ID
 {
 get
 {
 return id;
 }
 set
 {
 if (id != value)
 {
 NotifyPropertyChanging("ID");
 id = value;
 NotifyPropertyChanged("ID");
 }
 }
 }

 [Column]
 public string FirstName
 {
 get
 {
 return firstName;
 }
 set
 {
 if (firstName != value)
 {
 NotifyPropertyChanging("FirstName");
 firstName = value;
 NotifyPropertyChanged("FirstName");
 }
 }
 }
 ...
 public event PropertyChangedEventHandler PropertyChanged;
 private void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
 public event PropertyChangingEventHandler PropertyChanging;

 private void NotifyPropertyChanging(string propertyName)
 {
 if (PropertyChanging != null)
 {
 PropertyChanging(this, new PropertyChangingEventArgs(propertyName));
 }
 }
 }

Listing 57: Student Table - LINQ to SQL

Below the MainPage and Student class the StudentsDataContext class (Listing

58) is added. The class acts as a link between the database table and the

objects and inherits from the DataContext class. The class is responsible for

reading, writing, updating, deleting table entries and also for tracking changes.

The DBConnectionString specifies the connection to the database which is

4.6 Data Storage Page 63

named Students.sdf. Then the base(connectionString) constructor is called

and the connection string is passed. Finally a database table named

StudentsTable is declared.

public class StudentsDataContext : DataContext
{
 public static string DBConnectionString = "Data Source=isostore:/Students.sdf";
 public StudentsDataContext(string connectionString)
 : base(connectionString)
 { }
 public Table<Student> StudentsTable;
}

Listing 58: Data Context – LINQ to SQL

Listing 59 shows the code to create the database. The code is added to

App.xaml.cs inside the class constructer for the App class that the database is

present before the main page runs.

using (StudentsDataContext db = new StudentsDataContext
 (StudentsDataContext.DBConnectionString))
 {
 if (db.DatabaseExists() == false)
 {
 db.CreateDatabase();
 }
 }

Listing 59: Create Database – LINQ to SQL

Above the class constructor in the MainPage class a global variable of the type

StudentsDataContext studentdDB is declared, which will be instantiated in the

constructor (Listing 60). Thus, the entire class has access to the

StudentsTable. The ObservableCollection is used for binding the data to the

UI.

 private StudentsDataContext studentsDB;

 private ObservableCollection<Student> students;
 public ObservableCollection<Student> Students
 {
 get
 {
 return students;
 }
 set
 {
 if (students != value)
 {
 students = value;
 NotifyPropertyChanged("Students");
 }
 }
 }

 // Constructor
 public MainPage()
 {
 InitializeComponent();

 studentsDB = new StudentsDataContext

Page 64 4.6 Data Storage

 (StudentsDataContext.DBConnectionString);
 this.DataContext = this;

 }

Listing 60: ObservableCollection - LINQ to SQL

Below the class constructor the OnNaviagtedTo method (Listing 61) is

implemented in which the query is executed. The result of the query is placed

into a Students collection. Then the collection is assigned to a UI element

(listBox) named lbStudents.

 protected override void OnNavigatedTo
 (System.Windows.Navigation.NavigationEventArgs e)
 {
 var studentsInDB = from Student student in studentsDB.StudentsTable
 select student;

 Students = new ObservableCollection<Student>(studentsInDB);
 lbStudent.ItemsSource = students;
 base.OnNavigatedTo(e);
 }

Listing 61: OnNavigatiedTo - LINQ to SQL

Following, the OnNavigatedTo method, the NotifyPropertyChanged method for

data binding and the click events for the UI buttons are defined (Listing 62).

In the CreateButton a new Student is instantiated and the contents of the input

fields are assigned to the properties of the Student. Then the object is added to

the collection. The InsertOnSubmit method belongs to the StudentsTable and

will register the object for insertion to the database. With the SubmitChanges

method the object will be added to the database.

In the method for the delete button the selected ListBox item will be casted into

a new Student object. Then the object is removed from the collection,

registered for deletion (DeleteOnSubmit) and finally removed from the database

(SubmitChanges).

public event PropertyChangedEventHandler PropertyChanged;
 private void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 private void btnCreateEntry_Click(object sender, RoutedEventArgs e)
 {
 Student newStudent = new Student();
 {
 newStudent.FirstName = txtBoxFirstName.Text;
 newStudent.LastName = txtBoxLastName.Text;
 newStudent.StudentNumber = Int64.Parse(txtBoxStudentNumber.Text);

4.6 Data Storage Page 65

 }

 Students.Add(newStudent);
 studentsDB.StudentsTable.InsertOnSubmit(newStudent);
 studentsDB.SubmitChanges();
 lbStudent.ItemsSource = students;
 txtBoxFirstName.Text = "";
 txtBoxLastName.Text = "";
 txtBoxStudentNumber.Text = "";
 }

 private void btnDeleteEntry_Click(object sender, RoutedEventArgs e)
 {
 Student deleteStudent = (Student)lbStudent.SelectedItem;

 Students.Remove(deleteStudent);
 studentsDB.StudentsTable.DeleteOnSubmit(deleteStudent);
 studentsDB.SubmitChanges();
 }

Listing 62: Methods for the Delete and Create Button - LINQ to SQL

4.7 Push Notifications

Push Notifications are messages that are sent from a web service or web ap-

plication (cloud services) to an application on the Windows Phone. Moreover,

Toast and Tile Notifications can be received even though the application is not

running. The information will be pushed by the cloud service in order to notify

the user that something of interest has happened (e.g. news in a social network

or weather alert). There are three types of Push Notifications:

Toast Notifications: A Toast Notification is an overlay message on the top of

the user's current screen.

Tile Notifications: A Tile Notification is represented on the Tile on the Start

Page.

Raw Notifications: A Raw Notification has no visual representation. They are

used to send information to an application and can only be processed when the

application is running, otherwise the information will be discarded.

Page 66 4.7 Push Notifications

Push Notification Architecture

Figure 49 shows the various components that are involved in a Push Notifica-

tion. As a first step the application on the phone will request a Push Notification

URI from the push client service (#1, Figure 49). Then the push client service

will negotiate (#2, Figure 49) with the Microsoft Push Notification Service

(MPNS) and return an URI to the application (#3, Figure 49) that uniquely iden-

tifies the device on the network. In the next step the application can provide the

URI to the requested service (#4, Figure 49). Now the cloud service can send

notifications to the registered device(s). It will send a HTTP POST message

with an XML payload to the MPNS by using the URI which was provided by the

phone (#5, Figure 49). Then the MPNS will route the message as a Push

Notification to the phone (#6, Figure 49) [MSDN15].

Figure 48: Notifications

Toast Notification

Tile Notification

Figure 49: Concept of Push Notifications [MSDN15]

4.7 Push Notifications Page 67

The concepts of the three Push Notifications are very similar. Each notification

has an appropriate payload, except Raw Notifications. They do not have a par-

ticular payload format. There is no system-wide way to display a raw notification

and they can contain whatever data you like.

Because of the similarities of the different types of notification, in the following

example only a Toast Notification is described in detail. In the appendix there is

a complete example of Tile (Appendix II) and Raw Notification (Appendix III).

The examples of the notifications are based on the examples in the book “Ent-

wickeln für Windows Phone 7.5” [cf. Getz11 660-683].

4.7.1 Toast Notification

Toast Notifications have the property that the received message will disappear

after a few seconds when the application is not running. The Notification can

contain three elements. A Title which is defined as wp:Text1 in the XML

schema, a Content defined as wp:Text2 and a Parameter as wp:parm. Either

the Title or Content must be filled and the Parameter element can only be set

on Windows Phone OS 7.1 or greater. This example contains two projects, one

Windows Phone Application for receiving the Toast Message and a Console

Application that acts as web service for demonstration purposes. If only the

Windows Phone SDK is used to develop applications (and not a full version of

Visual Studio as in this work), Visual C# 2010 Express is needed to build a con-

sole application. It can be obtained under: http://www.microsoft.com/express

[Micr07].

For the Windows Phone Application the following namespaces are required.

using System;
using System.Diagnostics;
using System.Windows;
using Microsoft.Phone.Controls;
using Microsoft.Phone.Notification;

Listing 63: Toast Notification - Namespaces

At the beginning of the class (Listing 64), a channelName which is an arbitrary

name for the channel of the application is created and a HttpNotification-

Channel object is declared. The HttpNotificationChannel is the key class and

creates a channel between the MPNS and the Push Client. Then in the con-

Page 68 4.7 Push Notifications

structor the Find method will search for an existing channel object. If there is

none a new channel with the channelName will be instantiated. Then an event

handler for the event ChannelUriUpdated follows. Also an event handler follows

in the case of an error (ErrorOccured) and for receiving Toast Notifications

while the application is running (ShellToastNotificationReceived).

With the call of channel.Open the channel will be opened and the BindToShell-

Toast method will activate the channel for the toast events. The event handler

channel_ShellToastNofificatonsReceived shows how to react to a toast noti-

fication when the application runs. Only toast and raw notifications can be

viewed within a running application. With the asynchrone method BeginInvoke

of the Dispatcher class the notification is shown in a MessageBox. In the chan-

nel_ChannelUriUpdated event the URI is shown in the output window of Visual

Studio. This is only for testing purposes because normally the URI is passed

back to the cloud service.

namespace ReceiveToast
{
 public partial class MainPage : PhoneApplicationPage
 {
 string channelName = "ToastNotification";
 HttpNotificationChannel channel;
 // Constructor
 public MainPage()
 {
 InitializeComponent();

 channel = HttpNotificationChannel.Find(channelName);
 if (channel == null)
 {
 channel = new HttpNotificationChannel(channelName);
 channel.ChannelUriUpdated += channel_ChannelUriUpdated;
 channel.ErrorOccurred += channel_ErrorOccured;
 channel.ShellToastNotificationReceived +=
 channel_ShellToastNotificationReceived;
 channel.Open();

 channel.BindToShellToast();
 }
 else
 {
 channel.ChannelUriUpdated += channel_ChannelUriUpdated;
 channel.ErrorOccurred += channel_ErrorOccured;
 channel.ShellToastNotificationReceived +=
 channel_ShellToastNotificationReceived;
 }
 }
 void channel_ShellToastNotificationReceived(object sender,
 NotificationEventArgs e)
 {
 Dispatcher.BeginInvoke(() => MessageBox.Show(String.Format
 ("{0} {1}", e.Collection["wp:Text1"], e.Collection["wp:Text2"])));
 }

 void channel_ErrorOccured(object sender,
 NotificationChannelErrorEventArgs e)
 {
 switch (e.ErrorType)

4.7 Push Notifications Page 69

 {
 case ChannelErrorType.ChannelOpenFailed:
 break;
 }
 }

 void channel_ChannelUriUpdated(object sender,
 NotificationChannelUriEventArgs e)
 {
 Debug.WriteLine(e.ChannelUri.ToString());
 }
 }
}

Listing 64: Receive Toast Notification

When the application is started, the channel URI can be found in the output

window of Visual Studio.

The URI in Figure 50 is used in the console application for sending the Push

Notification.

For the console application the following namespaces are required:

using System;
using System.Text;
using System.Net;
using System.IO;

Listing 65: Send Toast-Namespaces

In the Main class a url string is defined and contains the channel URI which

was generated in the example above (Figure 50). In the variable data (Listing

66) the payload for a toast massage is created. Then a HTTP web request

(WebRequest) that posts the Toast Notification to the Microsoft Push Notification

Service is created. The ContentType is text/xml and the Method is POST. POST is

the only method which will be allowed to sent Push Notifications. Additionally,

the request object has two mandatory key/value pairs in the header property.

The value toast indicates that it is a toast message and the Notification-

Class determines the priority of the notification message. Then the payload of

the notification will be transformed to a byte array for the request stream. In the

Figure 50: Channel URI

Page 70 4.7 Push Notifications

try block the request stream is posted to the Microsoft Push Notification Ser-

vice. Each sent notification gets a response. The response object contains in-

formation about the transmission which will be displayed in the console.

namespace SendToast
{
 class Program
 {
 static void Main(string[] args)
 {

 string url = "http://db3.notify.live.net/throttledthirdparty/01.00/AAH64HM3bkh" +
 "OQJOI4j32ucHqAgAAAAADAQAAAAQUZm52OjIzOEQ2NDJDRkI5MEVFMEQ";

 string data = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Toast>" +
 "<wp:Text1>Hello</wp:Text1>" +
 "<wp:Text2>This is a toast notification!</wp:Text2>" +
 "<wp:Param>/SecondPage.xaml?parameter=Hello World!</wp:Param>" +
 "</wp:Toast> " +
 "</wp:Notification>";

 WebRequest request = WebRequest.Create(url);

 request.ContentType = "text/xml";
 request.Method = "POST";
 request.Headers.Add("X-WindowsPhone-Target", "toast");
 request.Headers.Add("X-NotificationClass", "2");

 byte[] bytes = Encoding.UTF8.GetBytes(data);

 using (Stream requestStream = request.GetRequestStream())
 {
 requestStream.Write(bytes, 0, bytes.Length);
 try
 {
 HttpWebResponse response = (HttpWebResponse)request.GetResponse();
 string notificationStatus = response.Headers["X-NotificationStatus"];
 string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
 string connectionStatus = response.Headers["X-DeviceConnectionStatus"];

 Console.Write(String.Format("X-NotificationStatus:{0}\r\nX-Subscription" +
 "Status:{1}\r\nX-DeviceConnectionStatus:{2}",
 notificationStatus, subscriptionStatus, connectionStatus));
 Console.ReadKey();
 }
 catch (WebException ex)
 {
 Console.Write("WebExeption occured with Statuscode:" +
 ((HttpWebResponse)ex.Response).StatusCode.ToString());
 Console.ReadKey();
 }
 }

 }
 }
}

Listing 66: Send Toast Notification

4.7 Push Notifications Page 71

Figure 51 shows the status of a successful delivered message.

4.7.2 Tile Notification

The process of sending a Tile Notification is very similar to Toast Notification.

Only the header elements and the payload of the HTTP request is different.

The X-WindowsPhone-Target element (Listing 66) in the header contains token

instead of toast. Listing 67 shows the content of the payload. It contains a title

string, an URI for a background image and a count element.

 <?xml version=\"1.0\" encoding=\"utf-8\"?>
 <wp:Notification xmlns:wp=\"WPNotification\">
 <wp:Tile>
 <wp:BackgroundImage>URI backgroung image</wp:BackgroundImage>
 <wp:Count>count</wp:Count>
 <wp:Title>title</wp:Title>
 </wp:Tile>
 </wp:Notification>

Listing 67: Payload Tile Notification

An application tile on the Start screen of the emulator or device can be created

when the user taps and holds the application in the application list and then se-

lects “pin to start”.

4.7.3 Raw Notification

Raw notifications do not have a particular payload format. When the X-Win-

dowsPhone-Target is not present in the Header of the HTTP request it is a raw

notification.

Figure 51: Response Toast Notification

Page 72 5 Testing

5 Testing

This chapter deals with the testing of an application. First, the debugging fea-

ture of Visual Studio is described, then a unit testing framework is presented

and finally the use of the Marketplace Test Kit is covered.

5.1 Debugging

In Visual Studio, it is possible to set so-called breakpoints in the code-behind

editor that pauses the execution of an application. The menu Debug provides

items such as: Start Debugging (F5), Start without Debugging (Ctrl+F5), Step

Into (F11), Step Over (F10) and Toggle Breakpoint (F9). With Toggle Break-

point (F9) you can set a breakpoint at a certain point in the source code. Also

with a mouse click within the C#-Editor at the left side in the gray area a break-

point can be placed. If the application is executed, Visual Studio stops at the

breakpoint. Then, with Step Into (F11) the code is executed line by line. If you

reach a point where a method is called, Visual Studio branches in this method.

With Step Over (F10) it is not branched.

Figure 52: Breakpoint During Execution

5.2 NUnit for Windows Phone Page 73

5.2 NUnit for Windows Phone

NUnit is a unit testing framework for .NET languages. “Unit tests are one of the

corner stones of Extreme Programming (XP)” [Well09]. One programmer writes

the source code, while the other one writes test cases. The open source com-

munity CodePlex provides a version of NUnit for Windows Phone for an auto-

mated testing. With this project a single developer can implement tests for an

application. The project can be downloaded at http://nunitwindows

phone7.codeplex.com/. After the download, the project must be extracted to a

directory. When the project is opened in Visual Studio, the startup project Test-

Samples has to be selected. The Properties (Figure 54) dialog can be opened

when the solution (#1, Figure 53) is marked in the Solution Explorer via the item

menu Project → Properties .

The following example is based on an example in the book “Windows Phone7-

Apps entwickeln” of Christian Bleske [cf. Bles11 316-323]. The two created

classes can also be found in the appendix (Appendix IV). First, a class named

Calc is created in the project “TestSamples”. It contains two methods, Add3 and

Div as shown in Listing 68.

3 In this method, an error was made on purpose to demonstrate the functionality.

Figure 54: Solution Properties

Figure 53: Solution Explorer - NUnit for Windows Phone

1

Page 74 5.2 NUnit for Windows Phone

namespace TestSamples
{
 public class Calc
 {

 public Calc()
 {
 }

 public int Add(int parameter1, int parameter2)
 {
 return parameter1 - parameter2;
 }

 public double Div(double parameter1, double parameter2)
 {
 return parameter1 / parameter2;
 }

 }

Listing 68: TestSamples - Calc

Then another class named CalcTest is created which contains the test cases

(Listing 69). For this class the namespace Nunit.Framework is required. The

attribute TestFixture indicates that this class contains test cases and the

methods get the attribute Test.

using NUnit.Framework;

namespace TestSamples
{
 [TestFixture]
 public class CalcTest
 {
 public CalcTest()
 {
 }

 [Test]
 public void TestAdd()
 {
 ...
 }

 [Test]
 public void TestDiv()
 {
 ...
 }
 }
}

Listing 69: TestSamples - CalcTest

The developer of NUnit has also implemented Assertions to compare a result of

a method with a specified value. The class Assert contains Comparison Tests,

Condition Tests and Utility Methods.

5.2 NUnit for Windows Phone Page 75

Comparison Tests

For comparison tests there are two methods available, Assert.AreEqual and

Assert.AreSame. The first one compares the result of a method with a value

and the latter one compares references to an objects.

[Test]
 public void TestAdd()
 {
 Calc c = new Calc();
 Assert.AreEqual(30, c.Add(10, 20));
 }
 ...

 [Test]
 public void ObjektTest()
 {
 ObjektA a = new ObjektA();
 ObjektA c = new ObjektA();
 a = c;
 Assert.AreSame(c, a);
 }

Listing 70: Comparison Tests

Condition Tests

Condition Tests allow testing of true or false statements. For this the methods

Assert.IsTrue, Assert.IsFalse, Assert.IsNull and Assert.IsNotNull are

available.

 [Test]
 public void TestResultIsTrue()
 {
 Calc c = new Calc();
 Assert.IsTrue(c.ResultIsTrue());
 }

Listing 71: Condition Test

Utility Methods

With Utility Methods the developer can implement own testing methods. There

are Assert.Ignore and Assert.Fail. Listing 72 shows the Assert.Fail meth-

od. The method TestFail creates an object of the class Calc and calls the

method ReturnValue. If the returned value is greater then 2, the parameter of

the method Fail is shown.

Page 76 5.2 NUnit for Windows Phone

 [Test]
 public void TestFail()
 {
 Calc c = new Calc();
 if (c.ReturnValue() > 2)
 {
 Assert.Fail("Fehler!");
 }
 }

Listing 72: Utility Method

When the application is started, there is a run button. When the button is

pressed, the tests will be executed (Figure 55).

5.3 Marketplace Test Kit

The Marketplace Test Kit contains a set of automated and manual tests. The kit

helps the developer to prepare an application to be accepted in the Market-

place [MSDN16]. This tool is only available for Windows Phone OS 7.1. For ex-

ample it contains a validation of the XAP-archive size and the content files.

Figure 55: Emulator - NUnit Tests

5.3 Marketplace Test Kit Page 77

There is also a capability detection. It shows the used capabilities of the applic-

ation that must be specified in the WMAppManifest.xml of the XAP-archive.

The Marketplace Test Kit can be opened when the project is marked in the

Solution Explorer of Visual Studio under the menu item Project → Open Mar-

ketplace Test Kit.

Page 78 6 Deployment

6 Deployment

This chapter describes how a completed application will be published. It in-

cludes the registration process in the App Hub, the submission flow and the

certification requirements.

6.1 The App Hub

A developer account on the App Hub is needed to publish an application in the

marketplace. Furthermore, an account enables the registration of a developer

device (up to three) [MSDN17]. The registration of a phone is also the only way

to deploy and test an application on a real device during development process.

For the membership there is an annual fee (USD 99,00 as of March 2012).

Only students have the possibility for a free membership.

For the registration there are some prerequisites. First, a Windows Live ID is

needed. Under https://signup.live.com/ an ID can be created. Then, cur-

rently, the membership payment can only be purchased with a credit card (as of

March 2012). Students need a valid DreamSpark registration

(https://www.dreamspark.com) which has to be associated with the Windows

Live ID. This is required during the registration process as a student in the App

Hub. If problems occur during the registration process to verify your student

status, you can contact the support of the App Hub.

6.2 Submission and Certification Page 79

6.2 Submission and Certification

Figure 56 shows the application submission flow.

In the App Hub you can create a new application submission and in the first

step you have to upload the XAP-archive.

After the XAP-archive is uploaded, a detailed description of an application has

to be made. The application must be assigned to a specific category (e.g.

games, music, social). Then you have to provide a description, keywords and

images for the artwork (e.g. screenshots and application tiles).

Figure 56: App Submission Flow [Chat11]

Figure 57: App Hub - Upload

Page 80 6.2 Submission and Certification

In the next step you have to specify the price for the application. To distribute

the application for free the price must be set to 0,00. Also the target market

must be selected (e.g. worldwide distribution, Europe only, etc.).

In the final step you can enter information for the testers of Microsoft and you

have to choose an option when the application will be published (e.g. “As soon

as it's certified”).

With a click on the “Submit” button, Microsoft will check the application. If all the

data for the application is present, the app will be submitted.

Figure 58: App Hub - Description

Figure 61: App Hub - Submit

Figure 59: App Hub - Price

Figure 60: App Hub - Information for Testers

6.3 Certification Requirements Page 81

6.3 Certification Requirements

The submitted application have to meet several policies and requirements be-

fore it is signed by Microsoft. There are:

• Application Policies

• Content Policies

• Application Submission Requirements

• Technical Certification Requirements

• Additional Requirements for Specific Application Types

Examples for these policies are: the size of the application (max 225 MB), con-

tents regarding violence, alcohol, drugs and so on. The details can be found on

the MSDN network under http://msdn.microsoft.com/en-

us/library/hh184843%28v=vs.92%29.aspx [MSDN18].

Page 82 7 Conclusion

7 Conclusion

With the Windows Phone SDK the development of mobile applications for Win-

dows Phone is very comfortable. The MSDN library represents a very good

documentation of the programming languages of Microsoft and is developer

friendly. Also in the forums and in the blogs of MSDN the developer will find

solutions quickly, if there are problems in a project. With regard to Silverlight,

the distinction between the UI and the program logic is an interesting concept,

because the designers can concentrate on the visual appearance of the applic-

ation and the programmers to the logic.

Whether Microsoft will win with the Windows Phone in market share of smart-

phones remains to be seen. In any case, they are moving toward to closed sys-

tems and that should be viewed from a critical point of view. Proprietary and

closed systems lead to concentration that allows the operators of the platform

to benefit from network effects.

From the perspective of users and developers there is also power shift in favour

of the vendors of the operating system and the operators of the platform. A

reason for concern is the power to restrict content. Microsoft can decide which

applications can run on the phone and which not. Now their business includes

the approval of content, which opens the door to censorship.

Also, the lock-in effect in economics must be considered. Lock-in effect means

to make a customer dependent on a vendor for a product or service due to high

switching costs to another vendor. From a economic point of view, these lock-in

strategies have a negative effect on the welfare.

XI

References

[Anat08] Nandini S Anatharam: XAML and Silverlight. 2008, http://www.-

codeproject.com/Articles/24991/XAML-and-Silverlight, retrieved on

2012-04-13

[Bles11] Bleske, Christian: Windows Phone 7-Apps entwickeln. 2011,

Franzis Verlag GmbH

[Bosc11] Andrea Boschin: Windows Phone 7 - Part #5: Panorama and

Pivot controls. 2011, http://www.silverlightshow.net/items/Win-

dows-Phone-7-Part-5-Panorama-and-Pivot-controls.aspx, re-

trieved on 2012-04-23

[Chat11] Chatterjee, Amit: Submitting the Windows Phone application to

the Marketplace. 2011,

http://blogs.msdn.com/b/amit_chatterjee/archive/2011/07/30/sub-

mitting-the-windows-phone-application-to-the-marketplace.aspx,

retrieved on 2012-03-07

[Ciap11] Ciappara, Clive: Windows Phone 7 Development. 2011,

http://ciappara.com/2011/01/23/windows-phone-7-development/,

retrieved on 2012-03-07

[Getz11] Getzmann P., Hackfort S., Nowak P: Entwickeln für Windows

Phone 7.5. Arichitektur, Framework, APIs. 2011, O'Reilly Verlag

Gmbh & Co. KG

[Hube10] Huber, Thomas Claudius: Silverlight 4. 2010, http://www.galileo-

computing.de/download/dateien/2320/galileocomputing_silver-

light_4.pdf, retrieved on 2012-02-27

[Kart12] Karthikeyan, Anbarasan: Working With Panorama Control in Win-

dows Phone 7. 2012, http://www.c-

sharpcorner.com/UploadFile/ae35ca/working-with-panorama-con-

trol-in-windows-phone-72/, retrieved on 2012-04-23

[Manj04] T Manjaly: Isolated Storage in .NET to store application data.

2004, http://www.codeproject.com/Articles/6535/Isolated-Stor-

age-in-NET-to-store-application-data, retrieved on 2012-04-15

XII

[Meha09] Puran Mehra: Managed code and unmanaged code in .NET.

2009, http://www.c-sharpcorner.com/uploadfile/puranindia/man-

aged-code-and-unmanaged-code-in-net/, retrieved on 2012-04-13

[Micr01] Microsoft: Visual Basic XNA. 2012, http://code.msdn.microsoft.-

com/windowsdesktop/Visual-Basic-XNA-29cd4963, retrieved on

2012-04-23

[Micr02] Microsoft News Center: Windows Phone 7: A Fresh Start for the

Smartphone. 2010,

http://www.microsoft.com/Presspass/Features/2010/oct10/10-

11WP7main.mspx, retrieved on 2012-03-05

[Micr03] Microsoft News Center: ‘People-Centric’ Windows Phone 7.5 Up-

date Released. 2011, http://www.microsoft.com/Presspass/Fea-

tures/2011/sep11/09-27WindowsPhone75.mspx, retrieved on

2012-03-16

[Micr04] Microsoft Answers: The Windows Marketplace for Mobile for win-

dows mobile 6.x devices is closing. 2012, http://answers.mi-

crosoft.com/en-us/winphone/forum/wp6n-wpmarketplace/the-win-

dows-marketplace-for-mobile-for-windows/ead87a1f-1291-429c-

a1ac-2406c684367b?tm=1331232502343, retrieved on 2012-03-

16

[Micr05] Microsoft: Windows Phone-Updateverlauf. 2012, http://www.mi-

crosoft.com/windowsphone/de-at/howto/wp7/basics/update-his-

tory.aspx, retrieved on 2012-03-16

[Micr06] Microsoft: Windows Phone SDK 7.1. 2012, http://www.microsoft.-

com/download/en/details.aspx?displaylang=en&id=27570, re-

trieved on 2012-03-16

[Micr07] Microsoft: Microsoft Visual Studio. 2012, http://www.microsoft.-

com/visualstudio/en-us/products/2010-editions/express, retrieved

on 2012-04-23

[MSDN01] MSDN: The Silverlight and XNA Frameworks for Windows Phone.

2012, http://msdn.microsoft.com/en-

us/library/ff402528%28v=vs.92%29.aspx, retrieved on 2012-03-05

XIII

[MSDN02] MSDN: Gesture Support for Windows Phone. 2012, http://msdn.-

microsoft.com/en-us/library/ff967546%28v=vs.92%29.aspx, re-

trieved on 2012-03-14

[MSDN03] MSDN: Silverlight Overview. 2012, http://msdn.microsoft.com/en-

us/library/bb404700%28v=vs.95%29.aspx, retrieved on 2012-03-

12

[MSDN04] MSDN: What's New in Silverlight for Windows Phone. 2012,

http://msdn.microsoft.com/en-

us/library/hh237342%28v=vs.95%29.aspx, retrieved on 2012-03-

12

[MSDN05] MSDN: x:Class Attribute. 2012, http://msdn.microsoft.com/en-

us/library/cc189082%28v=vs.95%29.aspx, retrieved on 2012-03-

19

[MSDN06] MSDN: Application Manifest File for Windows Phone. 2012,

http://msdn.microsoft.com/en-

us/library/ff769509%28v=vs.92%29.aspx, retrieved on 2012-03-01

[MSDN07] MSDN: PhoneApplicationPage Control for Windows Phone. 2012,

http://msdn.microsoft.com/en-

us/library/ff402539%28v=vs.92%29.aspx, retrieved on 2012-03-02

[MSDN08] MSDN: Frame Rate Counters in Windows Phone Emulator. 2012,

http://msdn.microsoft.com/en-

us/library/gg588380%28v=vs.92%29.aspx, retrieved on 2012-04-

21

[MSDN09] MSDN: Page Class. 2012, http://msdn.microsoft.com/en-us/lib-

rary/ms611620%28v=vs.92%29.aspx, retrieved on 2012-03-03

[MSDN10] MSDN: Controls in Silverlight for Windows Phone. 2012,

http://msdn.microsoft.com/en-

us/library/ff426932%28v=vs.95%29.aspx, retrieved on 2012-03-04

[MSDN11] MSDN: DataTemplate Class. 2012, http://msdn.microsoft.com/en-

us/library/system.windows.datatemplate.aspx, retrieved on 2012-

04-15

XIV

[MSDN12] MSDN: How to: Create a Basic Local Database Application for

Windows Phone. 2012, http://msdn.microsoft.com/en-

us/library/hh202876%28v=vs.92%29.aspx, retrieved on 2012-03-

19

[MSDN13] MSDN: SQL-CLR Type Mapping (LINQ to SQL). 2012,

http://msdn.microsoft.com/en-gb/library/bb386947.aspx, retrieved

on 2012-04-19

[MSDN14] MSDN: Local Database Best Practices for Windows Phone. 2012,

http://msdn.microsoft.com/en-

us/library/hh286406%28v=VS.92%29.aspx#BKMK_Minimizing-

MemoryUsage, retrieved on 2012-04-23

[MSDN15] MSDN: Push Notifications Overview for Windows Phone. 2012,

http://msdn.microsoft.com/en-

us/library/ff402558%28v=vs.92%29.aspx, retrieved on 2012-03-17

[MSDN16] MSDN: Windows Phone Marketplace Test Kit. 2012, http://msdn.-

microsoft.com/en-us/library/hh394032%28v=vs.92%29.aspx, re-

trieved on 2012-04-23

[MSDN17] MSDN: How to: Register Your Phone for Development. 2012,

http://msdn.microsoft.com/en-

us/library/ff769508%28v=vs.92%29.aspx, retrieved on 2012-03-07

[MSDN18] MSDN: Application Certification Requirements for Windows

Phone. 2012, http://msdn.microsoft.com/en-

us/library/hh184843%28v=vs.92%29.aspx, retrieved on 2012-03-

07

[Petz10] Petzold, Charles: Programming Windows Phone 7. 2010,

http://download.microsoft.com/download/5/0/A/50A39509-D015-

410F-A8F2-A5511E5A988D/Microsoft_Press_ebook_Program-

ming_Windows_Phone_7_PDF.pdf, Microsoft Press

[Piet08] Pietschmann, Chris: Silverlight: Anatomy of an .XAP file. 2008,

http://pietschsoft.com/post/2008/03/Silverlight-Ana-

tomy-of-an-XAP-file.aspx, retrieved on 2012-03-02

XV

[Pren01] Prengel, Frank: Die neue Anwendungsplattform im Überblick.

2010, http://www.microsoft.com/germany/msdn/webcasts/librar-

y.aspx?id=1032453737, retrieved on 2012-03-19

[Pren02] Prengel, Frank: Architektur der Anwendungsplattform von Win-

dows Phone 7. 2010,

http://www.microsoft.com/germany/msdn/webcasts/library.aspx?

id=1032453977, retrieved on 2012-03-12

[Shin11] Shinder, Debra: Windows Phone 7 Security Implications. 2011,

http://www.windowsecurity.com/articles/Windows-Phone-7-Secur-

ity-Implications.html, retrieved on 2012-02-26

[Soda01] Sodani, Dinesh: What is Silverlight. 2010, http://beyondrelational.-

com/blogs/dinesh/archive/2010/08/01/what-is-silverlight.aspx, re-

trieved on 2012-02-07

[Soda02] Sodani, Dinesh: Different Ways to Bind Data Grid in Silverlight. ,

http://beyondrelational.com/blogs/dinesh/archive/2010/09/28/dif-

ferent-ways-to-bind-data-grid-in-silverlight.aspx, retrieved on

2012-03-04

[Trip12] Tripathi, Mani: Understanding Metro Style Applications. 2012,

http://www.infosysblogs.com/microsoft/2012/01/understanding_me

tro_style_appl.html, retrieved on 2012-03-05

[Well09] Wells, Don: Unit Tests. 2009, http://www.extremeprogram-

ming.org/rules/unittests.html, retrieved on 2012-03-13

[Wiki01] Wikipedia: Common Language Runtime. 2012, http://en.wikipedi-

a.org/wiki/Common_Language_Runtime, retrieved on 2012-03-12

[Wilc10] Wilcox, Jeff: Panorama and Pivot controls for Windows Phone de-

velopers. 2010, http://www.jeff.wilcox.name/2010/08/look-

ing-ahead-at-panorama-and-pivot/, retrieved on 2012-04-23

[Wild12] Wildermuth, Shawn: Essential Windows Phone 7.5. 2012, Pear-

son Education, Inc.

[Will12] Wille, Christoph: Das using Schlüsselwort. , http://www.aspheute.-

com/artikel/20020318.htm, retrieved on 2012-03-04

XVI

[Zieg10] Ziegler, Chris: Microsoft talks Windows Phone 7 Series develop-

ment ahead of GDC: Silverlight, XNA, and no backward compatib-

ility. 2010, http://www.engadget.com/2010/03/04/mi-

crosoft-talks-windows-phone-7-series-development-ahead-of-gdc/,

retrieved on 2012-02-26

XVII

Appendix

The appendix contains the complete source code for four examples of the work.

Appendix I

Listing 73 shows the complete code of the file MainPage.xaml.cs from the ex-

ample in chapter 4.6.5 LINQ to SQL.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using Microsoft.Phone.Controls;
using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.ComponentModel;
using System.Collections.ObjectModel;

namespace StudentsDatabase
{
 public partial class MainPage : PhoneApplicationPage
 {
 private StudentsDataContext studentsDB;

 private ObservableCollection<Student> students;
 public ObservableCollection<Student> Students
 {
 get
 {
 return students;
 }
 set
 {
 if (students != value)
 {
 students = value;
 NotifyPropertyChanged("Students");
 }
 }
 }

 // Constructor
 public MainPage()
 {
 InitializeComponent();

 studentsDB = new StudentsDataContext
 (StudentsDataContext.DBConnectionString);
 this.DataContext = this;
 }

 protected override void OnNavigatedTo
 (System.Windows.Navigation.NavigationEventArgs e)
 {
 var studentsInDB = from Student student in studentsDB.StudentsTable
 select student;

XVIII

 Students = new ObservableCollection<Student>(studentsInDB);
 base.OnNavigatedTo(e);
 lbStudent.ItemsSource = students;
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

 private void btnCreateEntry_Click(object sender, RoutedEventArgs e)
 {
 Student newStudent = new Student();
 {
 newStudent.FirstName = txtBoxFirstName.Text;
 newStudent.LastName = txtBoxLastName.Text;
 newStudent.StudentNumber = Int64.Parse(txtBoxStudentNumber.Text);
 }

 Students.Add(newStudent);
 studentsDB.StudentsTable.InsertOnSubmit(newStudent);
 studentsDB.SubmitChanges();
 lbStudent.ItemsSource = students;
 txtBoxFirstName.Text = "";
 txtBoxLastName.Text = "";
 txtBoxStudentNumber.Text = "";
 }

 private void btnDeleteEntry_Click(object sender, RoutedEventArgs e)
 {
 Student deleteStudent = (Student)lbStudent.SelectedItem;

 Students.Remove(deleteStudent);
 studentsDB.StudentsTable.DeleteOnSubmit(deleteStudent);
 studentsDB.SubmitChanges();
 }
 }

 //Table
 [Table(Name = "Student")]
 public class Student : INotifyPropertyChanged, INotifyPropertyChanging
 {
 private int id;
 private string firstName;
 private string lastName;
 private long studentNumber;

 [Column(IsPrimaryKey = true, IsDbGenerated = true, DbType = "INT NOT NULL Identity",
 CanBeNull = false, AutoSync = AutoSync.OnInsert)]
 public int ID
 {
 get
 {
 return id;
 }
 set
 {
 if (id != value)
 {
 NotifyPropertyChanging("ID");
 id = value;
 NotifyPropertyChanged("ID");
 }
 }
 }

 [Column]
 public string FirstName
 {

XIX

 get
 {
 return firstName;
 }
 set
 {
 if (firstName != value)
 {
 NotifyPropertyChanging("FirstName");
 firstName = value;
 NotifyPropertyChanged("FirstName");
 }
 }
 }

 [Column]
 public string LastName
 {
 get
 {
 return lastName;
 }
 set
 {
 if (lastName != value)
 {
 NotifyPropertyChanging("LastName");
 lastName = value;
 NotifyPropertyChanged("LastName");
 }
 }
 }

 [Column]
 public long StudentNumber
 {
 get
 {
 return studentNumber;
 }
 set
 {
 if (studentNumber != value)
 {
 NotifyPropertyChanging("StudentNumber");
 studentNumber = value;
 NotifyPropertyChanged("StudentNumber");
 }
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
 public event PropertyChangingEventHandler PropertyChanging;

 private void NotifyPropertyChanging(string propertyName)
 {
 if (PropertyChanging != null)
 {
 PropertyChanging(this, new PropertyChangingEventArgs(propertyName));
 }
 }
 }

 //Datacontext
 public class StudentsDataContext : DataContext
 {

XX

 public static string DBConnectionString = "Data Source=isostore:/Students.sdf";

 public StudentsDataContext(string connectionString)
 : base(connectionString)
 { }

 public Table<Student> StudentsTable;
 }
}

Listing 73: Project "StudentDatabase" - MainPage.xaml.cs

XXI

Appendix II

Listing 74 shows the code-behind to receive and Listing 75 to send a Tile Noti-

fication (cf. chapter 4.7 Push Notifications).

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using Microsoft.Phone.Controls;
using System.Diagnostics;
using Microsoft.Phone.Notification;

namespace ReceiveTile
{
 public partial class MainPage : PhoneApplicationPage
 {
 string channelName = "TileNotification";
 HttpNotificationChannel channel;

 // Constructor
 public MainPage()
 {
 InitializeComponent();

 channel = HttpNotificationChannel.Find(channelName);

 if (channel == null)
 {
 channel = new HttpNotificationChannel(channelName);
 channel.ChannelUriUpdated += channel_ChannelUriUpdated;
 channel.ErrorOccurred += channel_ErrorOccured;
 channel.Open();

 channel.BindToShellTile();
 }
 else
 {
 channel.ChannelUriUpdated += channel_ChannelUriUpdated;
 channel.ErrorOccurred += channel_ErrorOccured;
 }
 }

 void channel_ErrorOccured(object sender,
 NotificationChannelErrorEventArgs e)
 {
 switch (e.ErrorType)
 {
 case ChannelErrorType.ChannelOpenFailed:
 break;
 }
 }

 void channel_ChannelUriUpdated(object sender,
 NotificationChannelUriEventArgs e)
 {

XXII

 Debug.WriteLine(e.ChannelUri.ToString());
 }
 }
}

Listing 74: Project "ReceiveTile" – MainPage.xaml.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.IO;

namespace SentTile
{
 class Program
 {
 static void Main(string[] args)
 {
 string url = "http://db3.notify.live.net/throttledthirdparty/01.00/AAH64H" +
 "M3bkhOQJOI4j32ucHqAgAAAAADAgAAAAQUZm52OjIzOEQ2NDJDRkI5MEVFMEQ";

 string data = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<wp:Notification xmlns:wp=\"WPNotification\">" +
 "<wp:Tile>" +
 "<wp:BackgroundImage></wp:BackgroundImage>" +
 "<wp:Count>3</wp:Count>" +
 "<wp:Title>New Messages</wp:Title>" +
 "</wp:Tile> " +
 "</wp:Notification>";

 WebRequest request = WebRequest.Create(url);

 request.ContentType = "text/xml";
 request.Method = "POST";
 request.Headers.Add("X-WindowsPhone-Target", "token");
 request.Headers.Add("X-NotificationClass", "1");

 byte[] bytes = Encoding.UTF8.GetBytes(data);

 using (Stream requestStream = request.GetRequestStream())
 {
 requestStream.Write(bytes, 0, bytes.Length);
 try
 {
 HttpWebResponse response = (HttpWebResponse)request.GetResponse();
 string notificationStatus = response.Headers["X-NotificationStatus"];
 string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
 string connectionStatus = response.Headers["X-DeviceConnectionStatus"];

 Console.Write(String.Format("X-NotificationStatus:{0}\r\nX-" +
 "SubscriptionStatus:{1}\r\nX-DeviceConnectionStatus:{2}",
 notificationStatus, subscriptionStatus, connectionStatus));
 Console.ReadKey();
 }
 catch (WebException ex)
 {
 Console.Write("WebExeption occured with Statuscode:" +
 ((HttpWebResponse)ex.Response).StatusCode.ToString());
 Console.ReadKey();
 }
 }
 }
 }
}

Listing 75: Project "SentTile" - Program.cs

XXIII

Appendix III

Listing 76 shows the XAML-code for the UI. Listing 77 shows the code-behind

to receive and Listing 78 to send a Raw Notification (cf. chapter 4.7 Push Noti-

fications).

<phone:PhoneApplicationPage
 x:Class="ReceiveRaw.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"
 FontFamily="{StaticResource PhoneFontFamilyNormal}"
 FontSize="{StaticResource PhoneFontSizeNormal}"
 Foreground="{StaticResource PhoneForegroundBrush}"
 SupportedOrientations="Portrait" Orientation="Portrait"
 shell:SystemTray.IsVisible="True">

 <!--LayoutRoot is the root grid where all page content is placed-->
 <Grid x:Name="LayoutRoot" Background="Transparent">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->
 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
 <TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"
 Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0"
 Style="{StaticResource PhoneTextTitle1Style}"/>
 </StackPanel>

 <!--ContentPanel - place additional content here-->
 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <ListBox Margin="26,26,37,222" Name="lbStudents" >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="{Binding FirstName}" />
 <TextBlock Text="{Binding LastName}" />
 <TextBlock Text="{Binding StudentNumber}" Padding="0,0,0,10" />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </Grid>
 </Grid>

</phone:PhoneApplicationPage>

Listing 76: Project "ReceiveRaw" - MainPage.xaml

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

XXIV

using Microsoft.Phone.Controls;
using System.Diagnostics;
using Microsoft.Phone.Notification;
using System.IO;
using System.IO.IsolatedStorage;
using System.Xml.Serialization;

namespace ReceiveRaw
{
 public partial class MainPage : PhoneApplicationPage
 {
 string channelName = "RawNotification";
 HttpNotificationChannel channel;
 private List<Student> student;

 // Constructor
 public MainPage()
 {
 InitializeComponent();

 student = new List<Student>();
 channel = HttpNotificationChannel.Find(channelName);

 if (channel == null)
 {
 channel = new HttpNotificationChannel(channelName);
 channel.ChannelUriUpdated += channel_ChannelUriUpdated;
 channel.ErrorOccurred += channel_ErrorOccured;
 channel.HttpNotificationReceived += channel_HttpNotificationReceived;
 channel.Open();

 channel.BindToShellTile();
 }
 else
 {
 channel.ChannelUriUpdated += channel_ChannelUriUpdated;
 channel.ErrorOccurred += channel_ErrorOccured;
 channel.HttpNotificationReceived += channel_HttpNotificationReceived;
 }
 }

 void channel_ErrorOccured(object sender,
 NotificationChannelErrorEventArgs e)
 {
 switch (e.ErrorType)
 {
 case ChannelErrorType.ChannelOpenFailed:
 break;
 }
 }

 void channel_ChannelUriUpdated(object sender,
 NotificationChannelUriEventArgs e)
 {
 Debug.WriteLine(e.ChannelUri.ToString());
 }

 void channel_HttpNotificationReceived(object sender, HttpNotificationEventArgs e)
 {
 string message;
 using (StreamReader reader = new StreamReader(e.Notification.Body))
 {
 XmlSerializer xs = new XmlSerializer(typeof(List<Student>));
 student = (List<Student>)xs.Deserialize(reader);
 message = reader.ReadToEnd();
 }
 //Dispatcher.BeginInvoke(() => MessageBox.Show(message));
 Dispatcher.BeginInvoke(() => lbStudents.ItemsSource = student);
 }

 public class Student
 {
 public long StudentNumber { get; set; }
 public string FirstName { get; set; }

XXV

 public string LastName { get; set; }
 }
 }
}

Listing 77: Project "ReceiveRaw" - MainPage.xaml.cs

XXVI

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.IO;

namespace SendRaw
{
 class Program
 {
 static void Main(string[] args)
 {
 string url = "http://db3.notify.live.net/throttledthirdparty/01.00/AAEQxeTQY0" +
 "T5R42SYg62O3a8AgAAAAADAQAAAAQUZm52OjIzOEQ2NDJDRkI5MEVFMEQ";

 string data = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
 "<ArrayOfStudent>" +
 "<Student>" +
 "<StudentNumber>123456</StudentNumber>" +
 "<FirstName>Jane</FirstName>" +
 "<LastName>Doe</LastName>" +
 "</Student>" +
 "<Student>" +
 "<StudentNumber>987654</StudentNumber>" +
 "<FirstName>Jane</FirstName>" +
 "<LastName>Doe</LastName>" +
 "</Student>" +
 "</ArrayOfStudent>";

 WebRequest request = WebRequest.Create(url);

 request.ContentType = "text/xml";
 request.Method = "POST";
 request.Headers.Add("X-NotificationClass", "3");

 byte[] bytes = Encoding.UTF8.GetBytes(data);

 using (Stream requestStream = request.GetRequestStream())
 {
 requestStream.Write(bytes, 0, bytes.Length);
 try
 {
 HttpWebResponse response = (HttpWebResponse)request.GetResponse();
 string notificationStatus = response.Headers["X-NotificationStatus"];
 string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
 string connectionStatus = response.Headers["X-DeviceConnectionStatus"];

 Console.Write(String.Format("X-NotificationStatus:{0}\r\nX-" +
 "SubscriptionStatus:{1}\r\nX-DeviceConnectionStatus:{2}",
 notificationStatus, subscriptionStatus, connectionStatus));
 Console.ReadKey();
 }
 catch (WebException ex)
 {
 Console.Write("WebExeption occured with Statuscode:" +
 ((HttpWebResponse)ex.Response).StatusCode.ToString());
 Console.ReadKey();
 }
 }
 }
 }
}

Listing 78: Project "SendRaw" - Program.cs

XXVII

Appendix IV

Listing 79 and Listing 80 show the complete code the test cases in chapter 5.2

NUnit for Windows Phone.

using System;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace TestSamples
{
 public class Calc
 {
 public Calc()
 {
 }

 public int Add(int parameter1, int parameter2)
 {
 return parameter1 - parameter2;
 }

 public double Div(double parameter1, double parameter2)
 {
 return parameter1 / parameter2;
 }

 public bool ResultIsTrue()
 {
 return true;
 }

 public int ReturnValue()
 {
 return 3;
 }

 }

 public class ObjektA
 {
 public ObjektA()
 {
 }
 }
}

Listing 79: Project "TestSamples" - Calc.cs

using System;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using NUnit.Framework;

XXVIII

namespace TestSamples
{
 [TestFixture]
 public class CalcTest
 {
 public CalcTest()
 {
 }

 //Comparison Tests
 [Test]
 public void TestAdd()
 {
 Calc c = new Calc();
 Assert.AreEqual(30, c.Add(10, 20));
 }

 [Test]
 public void TestDiv()
 {
 Calc c = new Calc();
 Assert.AreEqual(5, c.Div(10,2));
 }

 [Test]
 public void ObjektTest()
 {
 ObjektA a = new ObjektA();
 ObjektA c = new ObjektA();
 a = c;
 Assert.AreSame(c, a);
 }

 //Condition Test
 [Test]
 public void TestResultIsTrue()
 {
 Calc c = new Calc();
 Assert.IsTrue(c.ResultIsTrue());
 }

 //Utility Method
 [Test]
 public void TestFail()
 {
 Calc c = new Calc();
 if (c.ReturnValue() > 2)
 {
 Assert.Fail("Fehler!");
 }
 }
 }
}

Listing 80: Project "TestSamples" - CalcTest.cs

	Table of Contents
	List of Figures
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Goal
	1.2 Version Numbers and Names
	1.3 Structure of this Paper

	2 Phone and Application Platform
	2.1 The Windows Phone
	2.2 Hardware Requirements
	2.3 Software Architecture
	2.4 The Metro Design
	2.5 Silverlight for Windows Phone
	2.5.1 XAML and Code-Behind

	3 Basics
	3.1 Windows Phone SDK 7.1
	3.2 Visual Studio Express
	3.3 Structure of the Project
	3.3.1 The Solution Explorer
	3.3.2 Properties Folder
	3.3.3 References Folder
	3.3.4 “Bin” and “obj” Folder
	3.3.5 Images
	3.3.6 Silverlight files

	3.4 The Emulator
	3.4.1 Frame Rate Counters

	3.5 The XAP-File
	3.6 The Application Life-Cycle

	4 Mobile Applications with Silverlight
	4.1 Orientation
	4.2 Layout
	4.2.1 Grid
	4.2.2 Stack Panel
	4.2.3 Pivot and Panorama

	4.3 Smartphone Controls
	4.3.1 Button
	4.3.2 HyperlinkButton
	4.3.3 TextBlock
	4.3.4 CheckBox
	4.3.5 RadioButton
	4.3.6 TextBox, PasswordBox and Keyboard Input
	4.3.7 ApplicationBar

	4.4 Navigation
	4.4.1 Code-Behind Solution
	4.4.2 Passing Parameters
	4.4.3 Sharing Data

	4.5 Data Binding
	4.5.1 Simple Data Binding
	4.5.2 Change Notification
	4.5.3 Data Binding with a Generic List

	4.6 Data Storage
	4.6.1 IsolatedStorageSettings
	4.6.2 IsolatedStorageFile
	4.6.3 Isolated Storage Explorer Tool
	4.6.4 XmlSerializer
	4.6.5 LINQ to SQL

	4.7 Push Notifications
	4.7.1 Toast Notification
	4.7.2 Tile Notification
	4.7.3 Raw Notification

	5 Testing
	5.1 Debugging
	5.2 NUnit for Windows Phone
	5.3 Marketplace Test Kit

	6 Deployment
	6.1 The App Hub
	6.2 Submission and Certification
	6.3 Certification Requirements

	7 Conclusion
	References
	Appendix
	Appendix I
	Appendix II
	Appendix III
	Appendix IV

