WIRTSCHAFTSUNIVERSITAT WIEN W.E:é:ﬁ:

UNIVERSITY OF

Vienna University of Economics and Business economics

AND BUSINESS

zzzzzzzzzz

Bachelor Thesis

English title of the Bachelor @ Developing mobile Windows Applications
Thesis

Author Scheuer Josef
last name, first name(s)

Student ID number 0754162

Degree program BaWiso06

Examiner ao. Univ.Prof. Mag. Dr. Rony G. Flatscher
degree, first name(s), last

name

| hereby declare that

1. | have written this Bachelor thesis independently and without the aid of un-
fair or unauthorized resources. Whenever content was taken directly or in-
directly from other sources, this has been indicated and the source refer-
enced.

2. this Bachelor thesis has neither previously been presented for assessment,
nor has it been published.

3. this Bachelor thesis is identical with the assessed thesis and the thesis
which has been submitted in electronic form.

Date: 24.04.2012

Signature

Abstract

This bachelor thesis is an introduction to the development of Silverlight applica-
tions for Windows Phone. It gives an overview of the platform, the development

tools and the concepts of developing and publishing an application.

The development environment is described in detail and the basics of the struc-
ture of an application is explained. Then the aspects of Silverlight on the basis
of programming examples are discussed and finally, the process of deployment

is presented.

Keywords: Windows Phone, Microsoft Silverlight, XAML, Visual Studio Express,
XAP-archive, App Hub, Metro

v

Table of Contents

List Of FIQUIES.. . Vi
LiSt Of LiSHINGS...ceeeeiiiiiiiiiiiiiieeeeeee e e e e e e e e e eeeeees VIl
List of Abbreviations.............ooo oo X
1 INtrOdUCHION.. ... 1
1.1 Motivation and GoOal..........oooueuiiiiiiiie s 2
1.2 Version Numbers and Names..........cooooiiiiiiiiiiiii e 2
1.3 Structure of this Paper.........c..uuiiiiiiiiii e 3

2 Phone and Application Platform..............oooiiiiii i 4
2.1 The WINAOWS PRONE.......coo e 4
2.2 Hardware ReqUIrEMENTS............oiiiiiiiiiecee et 5
2.3 Software ArChiteCtUre........ ..o 5
2.4 The Metro DeSIgnN.......ccooiiiiiiiiiiiieiee e 7
2.5 Silverlight for WIndows Phone...........c.cuuiiiiiiiii e 8
2.5.1 XAML and Code-Behingd.........cccooeiiiiiiiiieieiee e, 9

3 BaSICS. i 11
3.1 Windows Phone SDK 7.1, e, 11
3.2 Visual StUdIO EXPreSS......ccuuiiiiiiiiieee et 11
3.3 Structure Of the ProOjJECt..........uueiiiiiiiiiiiee e e e 14
3.3.1 The Solution EXPIOrer.........cooeuiiiieeeeecee e 14

3.3.2 Properties FOIAer ... 14

3.3.3 References FOIdEr..........oooooiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 16

3.3.4 “Bin” and “Obj” FOIAEN...........uuuiiiiiiiiiiiiiiiir e e e eeees 16

I R IS T [=T =S 16

3.3.6 Silverlight files.......cooi e 17

3.4 The EMUIGTOT. ... 21
3.4.1 Frame Rate COUNEIS.........ouuuiiiiiiiiiiiiiiie e 22

3.5 THE XAP-FIlE.... e et 23
3.6 The Application Life-CyCle.......cccooieiiiiiieii e, 25

4 Mobile Applications with Silverlight..............oi e 31
g I =Y o1 =1 (o o 1P 31
2 - 1Y o1 | P 32
421 Grid..cco oo 32

4.2.2 STACK PANEL........oooeiiiieieeeeeeee e 34

4.2.3 Pivot and Panorama.........cccooooeoiiiiiiiiee e 34

4.3 Smartphone CONtrolS.........coooiiiiiiiiie e 38

G Tt I =101 (o TR 38

4.3.2 HyperlinkButton.........ccooo 38

4.3.3 TEXIBIOCK.ceieieeiiiiee e 39

N @ o T=Tod (= To) G RTREPP 39

4.3.5 RadiOBUHON......coii e 40

4.3.6 TextBox, PasswordBox and Keyboard Input..........ccccceeiiiiiiiniiiiiiniennns 40

G A Y o] o] [To7= i o]] = 7= PSP 42

R N F= YT = 1o) o 1T 43
4.4.1 Code-Behind Solution..............eeeiiiiiiiiie e 43

4.4.2 Passing Parameters...........cuuuiiiiiiiiiiiiiiiiieiieiiieeieiieeeeaneaeeneennnn e e eennanns 44

4.4.3 Sharing Data..........coooiiiiiii e 45

SR B = L= 1 =] T[] o TSP 46
4.5.1 Simple Data Binding..... ..o 46

4.5.2 Change Notification...............oo o, 47

4.5.3 Data Binding with @ Generic List.............ooooiiiiiiiiiii e, 48

4.6 Data STOrage.......ceeiiieeiiie e 50
4.6.1 IsolatedStorageSettings.........ccooiiiiiiiiiiiiee e 51

4.6.2 IsolatedStorageFile. 52

4.6.3 Isolated Storage EXplorer TOOL......ccooceeiiieiieiieeeeeeeeeeeeeeee e 55

4.6.4 XMISEIAIIZET......eeeiiiie i 57

4.6.5 LINQ 10 SQIL.. ..o 58

4.7 Push NOIfICAtiONS.........oooiiiiiiiiiiiieieeeeeeeeeeeee e e e e 65
4.7.1 Toast NOtification...........cuuiiiiiii s 67

4.7.2 Tile NOtIficatioN.........cooiiiiiiiee e 71

4.7.3 Raw NOtIfiCation...........uuuie e 71

O TESHING. ..t 72
ST I B 1= o TW T [[o T RSP RRRRPTP 72
5.2 NUnit for Windows PRONE...........coooiiiiee e 73
5.3 Marketplace Test Kit........cooooeiioiiee e 76
B DEPIOYMENT 78
6.1 The App HUD ...t 78
6.2 Submission and Certification..............oooiiiii 79
6.3 Certification Requirements.............ccoooiiiiiiiiii e 81
4 07e] g [ex [V o o TP EERPRUURRPRPRT 82
REFEIENCES. ... e e e e e e e nnaes Xl
Y o] o =T oo | XVII
APPENAIX |t XVII
APPENAIX Tl e XXI
APPENAIX T s XXII

APPENAIX IV ... et e e XXVII

VI

List of Figures

Figure 1: The Windows Phone [CiapT1].....coo oo 4
Figure 2: Software Architecture of the Windows Phone [cf. PrenO1]........................ 6
Figure 3: Shell Frame [Pren02]..... ... 7
Figure 4: Managed Code [WIKIOT]. ..o 8
Figure 5: New Project Dialog - Visual Studio...........c..ueeeiiiiiiiiiiiiiiieeeee e 12
Figure 6: Choose Operating System..........cccuiiiiiiiiii e 12
Figure 7: Visual Studio Project — “Hello World” Start Screen.............cccvvvvvvveeeennnn. 13
FIQUIE 81 TOOIDOX. ... 13
Figure 9: Solution Explorer - "Hello World" Application..............ccccceviecnieereiinnnnnn. 14
Figure 10: Properties Folder - Solution EXplorer.............ccccoiiiiiiiiiiiiiii s 14
Figure 11: References Folder - Solution EXPlOrer............eiiiiiiiieeeeiiee e, 16
Figure 12: Silverlight Files........ooo e 17
Figure 13: CH-EAItOr.......coo e e e e e e eees 17
Figure 14: SYstem Tray 19
Figure 15: Default XAML Elements - "Hello World" Application...........c.cccccoeeeunnnn... 21
Figure 16: Debugging Bar - Visual Studio...........cccevvviiiiiiiiiiiiiiiiiieeiicee e 21
Figure 17: Emulator - "Hello World" Application............cccccoooiiiiiiiiiiiiiiieieeeeeee e, 22
Figure 18: Frame Rate Counters [MSDNOS8].......cccooeiiiiiiiiiieeeeeeeee e, 22
Figure 19: XAP-File - "Hello World" application................cccoooiiiiiiiiiiiiiieen 24
Figure 20: Explorer - "HelloWorld.zip"..........cooooe i, 24
Figure 21: Application Life-CyCle........coooiiiiiiiiiieee e 26
o [0 (=2 = 18 [od 11 o o P 28
Figure 23: Deactivated (Dormant)............oooiiiiiiiiiiiiei e 28
Figure 24: Activated and CloSiNg..........cooooiiiiiiieii 28
Figure 25: ApplicationLifeCycle Properties. ..., 29
Figure 26: Deactivated (TOmbStONed)..........ueviiiiiiiiiiiiiiec e 29
Figure 27: Output Window - Activated............oooiiiii s 29
Figure 28: MessageBox Activated State..............eooeviiiiiiiiiiiic e 29
Figure 29: Page Orientation - Emulator..............ooo s 32
Figure 30: Grid RoOw and COlUMNS.........ccuuiiiiiiiieee e 33
Figure 31: The Stack Panel...........eeii e 34
Figure 32: Pivot and Panorama Page..........cooooooiiiii e 36
Figure 33: Bing - Search ReSUIt.............uuii e 37
Figure 34: Panorama Example [WilCTO0]. ..., 37
Figure 35: TextBIoCK - TeXtWrapPiNg.........ueeeeeeeeeeeieeeieerieeeeeeieenneeeenennnnnnnnnnnnneeeeeees 39
Figure 36: RAdiOBUIONS..........oiiiiiiiiiiiiiii e 40
Figure 37: InputScope IntelliSense............cooo i 41
Figure 38: Emulator INPUESCOPE.........coviiiiiii e 41

Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:

Emulator - ApplicationBar.................e e 42
Properties Window - ApplicationBar..............coeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennn. 43
Change Notification Ul...........c.uueiiiiiii e 47
Data Binding with @ Generic List...........cccoiiiiii 50
ProductID - WMAppManifes.Xml............oooouiiiiiiiiiiiiiccce e 55
ISETOON. ..t 56
Download IsolatedStorageFile.........ccooooiiiiiiiiiiee e 56
IsolateStorageFile. i 56
Ul = LINQ 0 SQIL...eeieeeieeeeee e 59
NOHFICAtIONS.....ceiiiiie e 66
Concept of Push Notifications [MSDN15].........cooiiiiiiiiiiiieeeeee, 66
Channel URIL... ..o 69
Response Toast Notification..............cccooooiiiiiii 71
Breakpoint During EXeCULION........cccoiiiieiiiiiieeeeeeee e 72
Solution Explorer - NUnit for Windows Phone..............ccccoiiiiiiininiies 73
SOlUtION Properti€s.........cei it 73
Emulator - NURNIit TeStS.....cccoviiieiee e 76
App Submission Flow [Chat11]........c.ooomiiiiii e 79
APP HUD - UPI0AQ..... .o 79
APP HUD - DESCIIPION......ciiiiiieee e 80
APP HUD - PriCe. ..o 80
App Hub - Information for Testers.........ccoooeiiiiiiiiii e, 80
APP HUDb - SUDBMIt....oe e 80

VI

List of

Listing 1:
Listing 2:
Listing 3:
Listing 4:
Listing 5:
Listing 6:
Listing 7:
Listing 8:
Listing 9:
Listing 10
Listing 11
Listing 12
Listing 13

Listing 14:
Listing 15:
Listing 16:
Listing 17:
Listing 18:
Listing 19:
Listing 20:
Listing 21:
Listing 22:
Listing 23:
Listing 24:
Listing 25:
Listing 26:
Listing 27:
Listing 28:
Listing 29:
Listing 30:
Listing 31:
Listing 32:
Listing 33:
Listing 34:
Listing 35:
Listing 36:
Listing 37:
Listing 38:
Listing 39:

Listings
Grid and Button-Definition in XAML.........ooiiiiiiiii e 9
XAML File (Excerpt) - Windows Phone Application Template................. 10
Connection of XAML and Code-Behind............cccccccoeiiiiiiiiiiiii, 10
Excerpt Assemblylnfo.CS......ooiiiiiii e 15
WMAppManifest.xml - "Hello World" project.........ccccccoviiiiiiiiiiiineeienennn. 16
App.xaml - "Hello World"........ .. 18
MainPage.xaml (Excerpt) - "Hello World" Application...............ccccceeeeene. 19
MainPage.xaml.cs - "Hello Word" Application..............cccccoeiiiiiiiiiiiiiinnnn. 20
MainPage.g.i.cs - InitializeComponent Method.............cccocoi, 20
: Frame Rate Counters - App.Xaml.CS........ccooimiiiiieiiiiiiiiiicceee e 23
: AppManifest.xaml - "Hello World" Application.............cccccocieiiiiiiininnnnee. 24
: Entry Point — App.xaml (EXcerpt).........cccoe oo 25
: App.xaml.cs - Methods Application Life-Cycle...........cccccceiiiiiiiiiiiinnin. 26
Application Life-Cycle Example........cccoeeeeiii 28
State DICtONAIY........ueeeiiiee e 30
Page Orientation in XAML........ce e 31
Page Orientation in Code-Behind.............oooviiiiiiiiiiiiiiiiiiee e 32
Grid-Definition in XAML. ..o 33
StackPanel-Definition in XAML.........cooooi e 34
Panorama Layout - XAML..........o e 35
Pivot Page - XAML........ooo e 36
Button-Definition in XAML........cooiiiiiiiee e 38
Code-Behind - Button Click Event.............cccuiiiiiiiiiieeeeeeeen 38
HyperlinkButton-Definition in XAML.........ccccoiiiiii e 38
TextBlock-Definiton in XAML........coooii e 39
CheckBox-Definition in XAML........cooiiiiiiiiiieeee e 39
Code-Behind - CheCkBOX QUETY.......ccoiiiiiiieiiiiiieeeieeee e 40
RadioButton-Definition in XAML...........oooi e 40
TextBox and PasswordBox-Defintion in XAML...........ccccoviiiiiiiiiiinennenn. 40
ApplicationBar-Definition in XAML..........cooiii e 42
XAML Button for Navigation.............cccoiiiiiiiiiiiie e 44
Code-Behind Navigation..............coooiiiiiii e 44
XAML Button and TextBox for Passing Parameter......................c.oee. 44
Code-Behind for Navigation and Passing Parameter................ccccuvun... 44
Code-Behind to Display the Parameter.............cccceviiiiiiiiiiiiiiie e 45
Public String in App.Xaml.CS......ccooeiiiiiiee e 45
Code-Behind to Store Data...........coooiiiiiiiiiii e 45
Code-Behind to Read the Property............cccoooe i, 46
Data Binding of two Ul Elements...........ooiiiiii e 46

Listing 40:
Listing 41:
Listing 42:
Listing 43:
Listing 44
Listing 45:
Listing 46:
Listing 47:
Listing 48:
Listing 49:
Listing 50:
Listing 51:
Listing 52:
Listing 53:
Listing 54:
Listing 55:
Listing 56:
Listing 57:
Listing 58:
Listing 59:
Listing 60:
Listing 61:
Listing 62:
Listing 63:
Listing 64:
Listing 65:
Listing 66:
Listing 67:
Listing 68:
Listing 69:
Listing 70:
Listing 71:
Listing 72:
Listing 73:
Listing 74:
Listing 75:
Listing 76:
Listing 77:
Listing 78:
Listing 79:
Listing 80:

Change Notification - XAML-Code..........ccooiiiiiiiiiiiiiiiiiiieeeeeee e, 47
Change Notification - Code-Behind............cccccooiiiiiiiies 48
Data Binding - XAML LiStBOX.........cooiiiiiiiiiiieeeeeeeeeeee 49
Data Binding - Code-Behind Generic List.............ooocoiiiiiiiiiis 50
Background Property - App.Xaml.CS.......couvvviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeaeees 51
MainPage.xaml.cs - IsolatedStroageSettings..........ccccceeiiiiiiiiiiiiiiiiinnnnn. 52
App.xaml.cs - IsolatedStorageSettings............uvvviiieeiiiiiiiiiiieeeeeiie e, 52
App.xaml.cs - Save and Load Method............cccccooiiiiiiiiiii 52
MainPage.xaml.cs - IsolatedStorageFile............cccccoviiiiiiiiiiiiiiiiiiieeeees 53
XAML Code - Input IsolatedStorageFile..............ccccooeiiiiiiiiiii 54
Loaded Method............uuiiiiiiiiiee e 54
Save Button - IsolatedStorageFile.............ccccoooeii i, 55
Load Button - IsolatedStorageFile............ccccoooiiiii 55
XML SeHAlIZEN ... 58
XML File - Isolated Storage..........cccueeieiiiiiieiiiiiiee e 58
XAML-Code - LINQ t0 SQL......ueiiieeeeiiee e 60
Namespaces for LINQ t0 SQL.........cccvvveiiiiiiie e 60
Student Table - LINQ t0 SQL.......ooeiiiiiiiii e 62
Data Context — LINQ t0 SQL.......cocoiiiuiiiieeiiiiie e 63
Create Database — LINQ 10 SQL.........ccoviiiiiiiiii e 63
ObservableCollection - LINQ t0 SQL.........ccooiiiiiiiic e 64
OnNavigatiedTo - LINQ t0 SQL......ccuiiiiiiieiiie e 64
Methods for the Delete and Create Button - LINQ to SQL..................... 65
Toast Notification - Namespaces..........ccccuuviieiiiiiiiiiiiiiieee e 67
Receive Toast Notification...............eeeiiiiiiiiiiiiie e 69
Send Toast-NamesSpaCeS.ccuuiiiiiiiiieieeeeeee e 69
Send Toast Notification..............oooiii s 70
Payload Tile Notification.............oooiiiiii e 71
TestSamples - CalC..........uuiiiiiiiice e 74
TestSamples - CalCTest. ... 74
ComparisON TESES......cooiiiiiee e 75
(@70 oo 11 i) IR =] U R 75
Utility Method..........eeiieeeee e 76
Project "StudentDatabase" - MainPage.xaml.Cs.........ccccccvviiiiiiiinennnnn. XX
Project "ReceiveTile" — MainPage.xaml.CS.........ccccceevvevviiiiinieeeiiinnnn. XXII
Project "SentTile" - Program.CS..........uuuueiiiieiiieeeieeieieeeeeeeeneenneennennnennnn XXII
Project "ReceiveRaw" - MainPage.xaml..............coooiiiiiiiiiiieeeeeennnnn. XX
Project "ReceiveRaw" - MainPage.xaml.CS........ccccoeviiiiiiiiiieieieieeeeeenn, XXV
Project "SendRaw" - Program.Cs.........cccceeeiiiieeeiiiiiieee e XXVI
Project "TestSamples" - CalC.CS........cooveeiiiiiieiii e, XXVII
Project "TestSamples" - CalcTest.CS......coovvviiiiiiiiiiiiiiieeeeieee e, XXVII

List of Abbreviations

A-GPS.....oor, Assisted Global Positioning System
APl .o Application Programming Interface
CLR e Common Language Runtime
GUID.....cooi Global Unique Identity

HTML. .o Hypertext Markup Language

HTTP .o Hypertext Transfer Protocol
IDeeeeeee e Identification

IDE... e Integrated Development Environment
ISETOOL......eveiieiieiiiiieeeeeeeee, Isolated Storage Explorer Tool
LINQ .o Language Integrated Query
MPNS.....ooe e Microsoft Push Notification Service
MSDN....ccoiiiiiiiiiiceee e, Microsoft Developer Network

OS. . s Operating System

RIA. e Rich Internet Application

SDK e Software Development Kit

SIP . Software Input Panel

SQL. oo Structured Query Language

UL User Interface

URL Uniform Resource Identifier
VB.N€t......oooiiiiii, Visual Basic .NET

WLAN. ..o, Wireless Local Area Network
XAML.......ooo e, Extensible Application Markup Language
XAP...ooii i XAML Application Package
XML Extensible Markup Language

XNA e XNA is Not an Acronym’
KPP Extreme Programming

' The name "XNA" originated out of the project's development name, Xbox New Architecture. Instead of
being released under the Xbox name, the Xbox 360 was released (2005), and XNA came jokingly to
stand for "XNA is Not an Acronym" [Micr01].

1 Introduction Page 1

1 Introduction

In the second half of 2010 Microsoft released a new operating system (OS) for
smartphones, which was named Windows Phone 7 [Micr02]. The next major re-
lease for this OS was Windows Phone 7.5 (Codename “Mango”) in September
2011 [Micr03]. The OS is the successor of the Windows Mobile platform, but
different in many ways. It is a completely new platform and represents a clean
break from the Windows Mobile platform. Applications that were designed for
Windows Mobile are incompatible [Zieg10]. The marketplace for Windows Mo-
bile is closing in May 2012 and applications and games are only from de-

velopers or third-party marketplaces available [Micr04].

So the Windows Phone platform is a completely fresh start for Microsoft in the
smartphone market. The Phone is primary aimed for the consumer market and
the user is the focus. Microsoft also integrates popular products from other plat-

forms such as Xbox, Zune, Office and Bing to Windows Phone [Micr02].

The realignment is also a step towards to “closed ecosystems” like the iPhone.
So for the users of Windows Phone, the marketplace is the only way to legally
download and install applications, and developers can only release their applic-
ations via the App Hub in the marketplace. In the submission process, the ap-

plication goes through a strict screening process of Microsoft.

Furthermore, each application on the phone is running in its own sandbox and
can only be written in managed code [cf. Getz11 p.26]. “The sandbox concept
is used to provide an environment where applications have limited privileges
and don’t have access to the file system, other applications and system re-

sources that could be exploited” [Shin11].

Also the manufacturers of the smartphones have hardware requirements to run
the OS of the phone.

Page 2 1.1 Motivation and Goal

1.1 Motivation and Goal

Smartphones are increasingly becoming part of our lives. The technology en-

ables it to be constantly connected and interact with friends and associates.

With the Windows Phone platform Microsoft wants to make new gains in the
smartphone market, despite the success of iPhone and Android. The Windows
Phone OS also brings changes to the developers. New development tools are

available with which the applications can easily and comfortably be created.

In this paper the author wants to give an overview of the platform and an intro-
duction to the development of applications for the Windows Phone. For the de-
velopment of the applications the Silverlight or the XNA Framework can be
used. The XNA Framework is intended for the development of games, while the
Silverlight Framework is used for event driven applications. Also a combination
of two frameworks is possible [MSDNO1]. In this work the Silverlight Framework
will be presented. The programming language C# was chosen because of the

similarities with other object-orientated languages like Java.

During the creation of this work, the latest version of the operating system is
Windows Phone OS 7.1 with the update 7.10.8107.79 [Micr05]. The tools that
were used for the development are the Windows Phone Software Development
Kit (SDK) 7.1 which was published on the 25" September 2011 [Micr06].

1.2 Version Numbers and Names

With the major update from Windows Phone 7 to Windows Phone 7.5 the latter
one has received two names. Windows Phone 7.5 (Codename “Mango”) is the
marketing name, while the version for the OS is Windows Phone OS 7.1. Also
the names for the development tools have changed. The Windows Phone De-
veloper Tools was renamed to Windows Phone SDK. Also the “7” from the plat-
form name has disappeared. It is simply called Windows Phone [cf. Getz11
p.29].

1.3 Structure of this Paper Page 3

1.3 Structure of this Paper

In Chapter 2 the Application Platform, the Phone and Silverlight for Windows

Phone will be described.

Chapter three outlines the development tools Visual Studio Express and the
Emulator. Also, the structure and the files of the project are explained in more

detail. Furthermore, the XAP-archive and the application life cycle is presented.

Chapter four is the biggest part and deals with the development of Silverlight
applications for Windows Phone. It contains programming examples to illustrate
the concepts and techniques of Silverlight technology. At the beginning of the
chapter, the orientation and the layout elements are presented. Then the smart-
phone controls to build an user interface, the concept of navigation through the
phone pages and data binding are covered. Also the isolated storage and push

notifications are discussed.

After the development of applications the testing of an application is described
in chapter five. It contains a short description of the debugging feature of Visual
Studio and the use of the Marketplace Test Kit. In addition, a unit testing frame -

work of the open source community CodePlex is presented.

Chapter six deals with the deployment of an application. There is a brief de-
scription of the registration process in the App Hub and the submission and cer-

tification is discussed.

Page 4 2 Phone and Application Platform

2 Phone and Application Platform

This chapter deals with the Windows Phone, the hardware requirements, the
software architecture, the Metro design and the Silverlight technology for Win-

dows Phone.

2.1 The Windows Phone

One goal for the latest smartphone of Microsoft is to deliver a phone which in-
tegrates the things people really want to do and puts those things in front of the
user. On the Start screen of the phone, the user will find “live tiles” that show
real-time content such as social media updates, weather data or contacts. They
will be updated on the fly with real information [Micr02]. Each installed applica-

tion on the phone can be pinned to the Start screen.

| “Back” | “Start” | “Search”

Figure 1: The Windows Phone [Ciap11]

A Windows Phone also must have three hardware buttons, which are named
“Back”, “Start” and “Search”. The Back button will take the user one step back
in the navigation sequence. It has a similar function as the back button in a
browser. The Start screen of the Phone can be viewed with the Start button
and with a click on the Search button, the Bing search engine of Microsoft is

launched.

2.2 Hardware Requirements Page 5

2.2 Hardware Requirements

Windows Phone devices have to meet technical requirements to run the OS.
Microsoft has made these technical specifications for hardware manufacturers
to ensure that there is a consistent user experience across all devices. In the
past, Windows Mobile was often installed on devices whose hardware was not
designed for the OS, which has impacted a negative user experience. The
Phone needs [cf. Getz11, 42-46]:

« a common set of hardware controls and buttons that include the Start,

Search, and Back button,

* a capacitive touch screen with at least four contact points,

* a screen with a resolution of 480 x 800 pixels,

* A-GPS, accelerometer, ambient light sensor and proximity sensor,

* a camera with five mega pixels or more,

« a Direct X9 acceleration and the phone is working with the current ARM-
v7 processor with 1 GHz or more.

The Windows Phone supports known touch gestures such as [MSDNO02]:

* Tap: activation and release of the screen with one finger
* Double-Tap: tow tabs in succession

* Hold: A finger touches the screen constantly and remains a longer time
on the same position.

* Drag: The screen is activated with a finger, moves on the screen and will
then be released.

* Flick: A finger drags across the screen and is lifted up without stopping
(e.g. scrolling in a list).

* Pinch: Two fingers press on the screen and move around (e.g. rotate a
picture).

» Scale: Two fingers are spread apart or brought together to zoom in or
out.

2.3 Software Architecture

With Windows Phone the software architecture has changed fundamentally.
Figure 2 shows an overview of the structure and then the various components

are described in more detail.

Page 6 2.3 Software Architecture

Applications Eitiswottes
PP Siverhght | XNA | HTML JavaSeript
App Madel | [Ul Medel " [Cloud Integration
Bing
Management Shell Frame Location
Licensing Session Naotifications
Software Updates = | Direct 3D | Windows Live ID

Kermel Security Storage Networking GPS, WI-FI, ...
Windows Phone Hardware

Figure 2: Software Architecture of the Windows Phone [cf. Pren01]

Hardware & Kernel

On the bottom there is the Windows Phone Hardware which was covered in the
chapter 2.2. On the top of the Hardware there is the Kernel that provides basic
services like Security, Storage, Networking and the device drivers for GPS,
WLAN, accelerometer, etc. Details about the structure, the drivers and APIs
(native and managed) are not publicly accessible, so a normal application de-

veloper will not come into contact with this [cf. Getz11 p.53].

App Model

The App Model handles the management, the licensing, the isolation of the in-
stalled applications and the software updates. For the deployment of an applic-
ation the XAML Application Package (XAP-archive). An application for Windows
Phone is not a native application and will be loaded and executed in a host pro-

cess. Itis running in a sandbox with limited privileges [cf. Getz11 p.49].

Ul Model

The Ul Model contains the Shell Frame Management and the Navigation Mod-
el. The Shell Frame Management is responsible for the composing of the user

interface (Figure 3).

2.3 Software Architecture Page 7

Direct3D

Figure 3: Shell Frame [Pren02]

In the Navigation Model every application is stored in a session. As already
mentioned, the navigation of the Phone is similar to the navigation of web
pages in a browser. A manipulation of the session information is not possible
[cf. Getz11 p.51].

Cloud Integration

Windows Phone is very focused on the cloud. The Cloud Integration provides
services like Windows Live ID to synchronize e-mails, the calendar and the con-
tacts if the Live ID is connected with a hotmail account. Also it includes the Bing
search, location information and a notification service. Windows Azure is the
cloud computing platform of Microsoft that provides various services (e.g. a
SQL database) [cf. Getz11 p.52].

Applications

On the very top there is the Application Runtime which is built on the .NET
Common Language Runtime (CLR). This is the layer which is designed for the
developer. It includes the Silverlight and XNA framework which are used to de-
velop applications for the phone. Also HTML/Javascript is supported, but can
only be executed in the browser. In contrast to Windows Mobile it is not pos-
sible to install drivers on the phone. The access to the phone is strongly restric-
ted. The functions of the phone can only be used via API calls [cf. Getz11
p.48].

2.4 The Metro Design

Metro is a codename for a typography-based design language created by

Microsoft. Is was originally developed and used for the Windows Phone 7 inter-

Page 8 2.4 The Metro Design

face. The inspiration for the design comes from the public transport system
which has the focus on displaying important information. The Metro design em-
phasis on simplicity and should enable a unique experience to the user. After
the release of Windows Phone Microsoft also included the Metro principle to
Xbox 360 and Windows 8 [Trip12].

2.5 Silverlight for Windows Phone

Silverlight is a cross-browser, cross platform technology for writing and running
rich internet applications (RIA) for the web, the desktop and the Windows
Phone [MSDNO3]. For the Windows Phone OS 7.1 Silverlight 4 is used
[MSDNO4]. Silverlight is a subset of the .NET framework and includes a mini-
Common Language Runtime (CLR) [Hube10]. Silverlight applications can only
be written in compiled, managed code. Managed code? is developed in .NET
framework and the code can only be executed under the management of the
CLR (Figure 4) [Meha09]. The applications are hosted within a web server, web
page or the mobile device. Therefore Silverlight uses the XAP-file that contains
the .NET application code [Soda01]. The XAP-file is explained in chapter 3.5
(The XAP-File).

Source coda Bytacoda Mative coda

C& compiler
C#

VB.NET complla CLR
VEB.NET —rb CIL code ——P NHative code

Other .MET| Tther compiter
language

Cormpile time) Fwntime
Figure 4: Managed Code [Wiki01]
In Silverlight for Windows Phone the programming language VB.Net and C# (C
Sharp) can be used. Furthermore, in the development process of Silverlight
there is a strict distinction between the Ul and the program logic. It uses the Ex-

tensible Application Markup Language (XAML) to define the Ul and the code-

2 Unmanaged Code is developed outside the .NET framework and the applications do not run under the
control of CLR (e.g. C++ can be used to write such applications) [Meha09].

2.5 Silverlight for Windows Phone Page 9

behind (C#) defines the application logic. So there are always two files that be-
long together (a file with a .xaml extension for the Ul and a .xaml.cs for the
code-behind). The markup (Ul) is joined to the code-behind file through the
definition of a partial class. With a partial class you can split the definition of a
class over two or more files. The parts of one class are combined when the ap-
plication is compiled [MSDNO5].

2.5.1 XAML and Code-Behind

XAML is a declarative XML-based language and is used to initialize structured
values and objects to create visible Ul elements such as buttons, text fields,
etc. The elements are defined in an object element tag in angle brackets. List-
ing 1 shows a simple Button within a Grid. The elements also contain addition-
al attributes for their appearance e.g. the elements have a Name, a literal dis-
tance (Margin) or the Button has a Content. An attribute is defined with the at-
tribute syntax followed by an operator (=) and the value in a string with quota-

tion marks.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
<Button Content="Button" Height="72" Margin="159,149,0,0"
Name="buttonl" Width="160" />
</Grid>

Listing 1: Grid and Button-Definition in XAML
The elements in XAML are mapped to CLR object instances and the attributes

become the properties and events of the object [Anat08].

Listing 2 displays an excerpt of an XAML file of a Windows Phone Application
that was generated by Visual Studio. The project was named PhoneApplica-
tion1. By default, the file named MainPage.xaml is the starting page of the ap-
plication. The opening tag indicates that the MainPage will derive from the
PhoneAppliationPage (which derives from Page Class). The x:Class attribute
defines the code-behind. The first xmlns namespace declares the file as a
XAML document. The second namespace (xmlns:x) is required for elements
with a x prefix (e.g. x:Class is one of them). The two namespaces are stand-

ard for a Silverlight application.

<phone:PhoneApplicationPage
x:Class="PhoneApplicationl.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Page 10 2.5 Silverlight for Windows Phone

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
</phéaé:PhoneApplicationPage>
Listing 2: XAML File (Excerpt) - Windows Phone Application Template
In the C#-Code (MainPage.xaml.cs) you will see that its class is MainPage and it
inherits from the PhoneApplicationPage. Also the used namespace which is the
project name will be found (PhoneApplicationl). In Listing 3 also the connec-
tion of the XAML and C#-Code is visually displayed.

namespace PhopeApplicationl
{
public parf\ial class MainPage : PhoneApplicationPage
{
}
}
<phone:PhoneApplicgkionPégé \
x:Class="PhoneApplicationl.MainPage"
</phone:PhoneApplicationPage>

Listing 3: Connection of XAML and Code-Behind

3 Basics Page 11

3 Basics

In this chapter the integrated development environment (IDE) will be described
and the famous “Hello World” application is built and run. Also the automatically
generated files of Visual Studio and the structure of an Windows Phone project
will be discussed in a greater detail. And finally, the XAP-file and the application

life cycle are presented.

3.1 Windows Phone SDK 7.1

The Windows Phone Software Development Kit (SDK) 7.1 contains all the tools
which are needed to develop applications for the Windows Phone. It is for free

and can be obtained from: http://create.msdn.com/en-US/.

This work will cover Visual Studio 2010 Express and the Windows Phone Emu-
lator to develop Silverlight applications. Expression Blend is a design tool to
create a graphical, XAML-based interface. Each Silverlight project of Visual
Studio can be opened in Expression Blend to edit the Ul. Expression Blend is
not described in detail, because the author focuses on the development of ap-

plication with code-behind and their aspects.

When the installation process of the SDK has started and if there is already a
version of Visual Studio 2010 (e. g. Professional) on the system then the tools
of the Windows Phone SDK will be integrated in the existing version, assuming
the same language is used. In this paper Visual Studio 2010 Professional with
the integrated SDK tools is used. For the further work Visual Studio 2010 Ex-

press for Windows Phone is referred as Visual Studio.

3.2 Visual Studio Express

When the installation process of the SDK is successfully completed, Visual Stu-
dio can be launched. In the menu item File — New Project a new project can
be created. Then a New Project dialog box appears (Figure 5). Visual Studio

provides for each programming language several project templates.

Page 12 3.2 Visual Studio Express

r 5
New Project l D |
Recent Templates [.NET Framework 4 = | Sort by: [Default

Installed Templates

| Search Installed Templates R |

. Vi 2
X § icﬂ Windows Phone Application 9 Visual C& Type: Visual C
4 Visual C# A project for creating a Windows Phone
Windows application
Web icﬂ Windows Phone Databound Application Visual C2
Office =
Cloud ot Windows Phone Class Library Visual C#
Reporting
SharePoint iC# Windows Phone Panorama Application Visual C#
Silverlight
o Sitverlight for Windaws Phone| icﬂ Windows Phone Pivot Application Visual C#
Test
WCF icﬁ Windows Phone Silverlight and XMNA Application Visual C#
Workflow
NA Game Studio 4.0 =cH Windows Phone Audio Playback Agent Visual C#
Other Languages
Other Project Types o X X .
CH#| Windows Phone Audio Streaming Agent Visual C#
Databasze

Test Projects

;WECﬁ Windows Phone Scheduled Task Agent Visual C#
Online Templates

Name: HelleWorld e
Location: ChUsers\Charlie O'BrientDocumentstVisual Studio 20104 Prajects\BachelorThesish, -
Selution name: Helle\World Create directory for solution

|| Add to source control

B B | o= B
,

Figure 5: New Project Dialog - Visual Studio

Under Visual C# — Silverlight for Windows Phone(#1, Figure 5), there are sev-
eral templates for the Windows Phone. For the “Hello World” example and for
all further examples in this work the template Windows Phone Application (#2,
Figure 5) is used. Also the templates Windows Phone Databound Application,
Windows Phone Panorama Application and Windows Phone Pivot Application
are discussed during this work. Windows Phone Class Library is just a simple

C# class.

After renaming the project with “HelloWorld” (#3, Figure 5) and confirming with
the OK button (#4, Figure 5), a dialog appears where the OS of the Windows
Phone for which you want to develop can be selected (Figure 6). In this work al-

ways the latest version (Windows Phone OS 7.1) is used.

New Windows Phone Applicati X

Select the Windows Phone Platferm you want to target for this application.

Target Windows Phone O5 Version:
[Windows Phone 057.1 -]

Windows Phone 057.0
Windows Phone 057.1

[OK | [Cancel

Figure 6: Choose Operating System

3.2 Visual Studio Express Page 13

Then, after pressing the OK button, Visual Studio will create a new project.
When a new project in Visual Studio is loaded, it creates all necessary files to
start with the development of applications. By default, Visual Studio displays a
Design Viewer (#1, Figure 7), a XAML-Editor (#2, Figure 7), a Solution Explorer
(#3, Figure 7), a Properties Window (#4, Figure 7) and an Error List where Er-
rors, Warnings and Messages are displayed during the development process
(#5, Figure 7).

00 HelloWorld - Microsoft Visual Studio . (s e e e [ESREeE)
Fle Edit View Project Build Debug Tesm Data Format Tools Test Window Help
i ~ &= 5| |WindowsPhone Emulstor +| | Debug ~| | [# |Param A G B -

7 4

1o | B 1%

=2 EIEE
-4 Solution 'HelloWorld (L project)
4 [HelloWorld

oft.c

winfx/2006/xaml/presentation”

MY APPLICATION

page name

ATION™ Style="{stat}c
n="9,-7,0,0" Stylefy

ck x
</stackPanel>

<!-~ContentPanel - place addis
4 Commor

n
N soe O Reso
IsEnabled o @
(= | PhoncApplicationPage PhoncApplicationPage & et
rust

rrrrr

Figure 7: Visual Studio Project — “Hello World” Start Screen

On the left side of the main window there is a Toolbox tab. With a click on the
tab, the Toolbox window is displayed. When the pin icon is clicked, the toolbar
is shown at all times in the main windows (Figure 8). The Toolbox contains the
most Ul elements. An Ul element from the Toolbox can easily be added via

drag and drop into the designer.

i | Toolbox

? 4 Windows Phone Controls
c k Pointer

§_ & AdControl

E iCi Border

[sb] Button

Figure 8: Toolbox

Page 14 3.3 Structure of the Project

3.3 Structure of the Project

The Solution Explorer of a Windows Phone project shows the contents of a pro-
ject. In this chapter the structure of the “HelloWorld” example is discussed in a

greater detail.
3.3.1 The Solution Explorer

Figure 9 shows the Solution Explorer of the “Hello World” project. In the menu

item Project — Show All Files all files in the explorer can be shown.

Solution Explorer

=l 221
_j Solution 'HelloWaorld' (1 project)
4 7] HelloWorld

=d| Properties

3] References

i obj

= Appxaml

-]

5] Applicationlcon.png
4] Background.png

= MainPagexaml

5] SplashScreenlmage.jpg

Figure 9: Solution Explorer - "Hello World" Application

3.3.2 Properties Folder

The folder Properties (Figure 10) contains three files: AppManifest.xml, As-
semblyinfo.cs and WMAppManifest.xml.

Solution Explorer

= || 2 |[2] & -4
_g Solution 'HelloWorld' (1 project)
s .5 HelloWorld
a4 | i Properties
-+ AppManifestxml
#] Assemblylnfo.cs
& WMAppManifestml

Figure 10: Properties Folder - Solution Explorer

3.3 Structure of the Project Page 15

The AppManifest.xml is required to generate the application package (XAP-file).
If the file is opened in the project, it is still almost empty. When Visual Studio is
building an application, the file will be filled with content. Thus a detailed de-
scription of the file can be found in chapter 3.5 (The XAP-File).

The next file is the Assemblyinfo.cs. It contains meta data about the application

e.g.: title, version or a copyright note (Listing 4).

[assembly: AssemblyTitle("HelloWorld")]
[assembly: AssemblyCopyright("Copyright @ 2012")]
[assembly: AssemblyVersion("1.0.0.0")]

[assembly: AssemblyFileVersion("1.0.0.0")]
[assembly: NeutralResourcesLanguageAttribute("en-US")]

Listing 4: Excerpt AssemblyInfo.cs

The last file in the Properties folder is the WMAppManifest.xml. This file is also
included in the XAP-file (chapter 3.5). It is used in the Windows Phone Market-
place submission process and for installation on the device [MSDNOG]. Listing 5
shows the WMAppManifest.xml for the “Hello World” project. The Deployment
element describes the used namespace and the platform version. The App ele-
ment contains information such as the ProductID, Version, type of application
(Genre), etc. In the IconPath element the icon for the application list on the
phone is defined. The Capabilities element contains information about the
used functions of the application (e.g. the microphone, sensors, push notifica-
tion, etc). The Task element describes the first page that will be loaded when
the application starts (by default it is the dummy page MainPage.xaml). Finally,

in the Tokens element the image for the life tile of the application is defined.

<?xml version="1.0" encoding="utf-8"?>

<Deployment xmlns="http://schemas.microsoft.com/windowsphone/2009/deployment"
AppPlatformVersion="7.1">
<App xmlns="" ProductID="{4a8de78d-148c-4d00-b265-06f88ff4cbd6}"

Title="HelloWorld" RuntimeType="Silverlight" Version="1.0.0.0"

Genre="apps.normal” Author="HelloWorld author" Description="Sample description"
Publisher="HelloWorld">

<IconPath IsRelative="true" IsResource="false">ApplicationIcon.png</IconPath>

<Capabilities>
<Capability Name="ID_CAP_GAMERSERVICES"/>
<Capability Name="ID_CAP_IDENTITY_DEVICE"/>

<Capability Name="ID_CAP_APPOINTMENTS"/>
</Capabilities>
<Tasks>
<DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>
</Tasks>
<Tokens>

Page 16 3.3 Structure of the Project

<PrimaryToken TokenID="HelloWorldToken" TaskName="_default">
<TemplateType5>
<BackgroundImageURI IsRelative="true"
IsResource="false">Background.png</BackgroundImageURI>
<Count>0</Count>
<Title>HelloWorld</Title>
</TemplateType5>
</PrimaryToken>
</Tokens>
</App>
</Deployment>

Listing 5: WMAppManifest.xml - "Hello World" project

3.3.3 References Folder

The References folder as shown in Figure 11 contains the references to the

used Silverlight Class Libraries.

Solution Explorer

= || 20| [2] Ei
Solution 'HelloWorld' (1 project)
4 7] HelloWorld
=d| Properties
4 | References
2 Microsoft.Phone
3 Microsoft.Phone.lnterop
2 mscorlib
2 mscorlib.extensions
3 system
3 System.Core
3 Systemn.Met
3 System Windows
3 System.xml

Figure 11: References Folder - Solution Explorer

3.3.4 “Bin” and “obj” Folder

When the project is built by Visual Studio the Bin folder will contain the files for
the deployment of the application and the obj folder contains files which are

used for compiling the application.
3.3.5 Images

The project also contains three images. The Applicationlcon.png and the Back-
ground.png have already been described in chapter 3.3.2 in the WMAppMani-
fest.xml. The third image named SplashScreenimage.png is displayed on the

device or emulator, when the program is initializing.

3.3 Structure of the Project Page 17

3.3.6 Silverlight files

By default, Visual Studio creates two major Silverlight files (Figure 12). The first
file is the App Class which consists of the App.xaml and App.xaml.cs. The Page
Class includes the MainPage.xaml and the MainPage.xaml.cs and is the class

which contains the visuals on the screen. It is also referred to as page.

Solution Explorer * O X

= | & (2] *—"9—2‘,
j Solution 'HelloWorld' (1 project)
4 |5 HelloWorld
=d| Properties
-3 Reference
@ = Appxaml
‘#] Appaxaml.cs
& Applicationlcon.png
& Background.png

4 % MainPagexaml
‘%] MainPagesxaml.c

Figure 12: Silverlight Files

j

With a double click on a .xaml file the XAML-Editor (Figure 7) is opened and

with a double click on a .xaml.cs the C#-Editor is opened.

A LELErEEe k= MainPagexaml
,'3_’| “i% HelloWoarld.MainPage
E- 12 using Microsoft.Phone.Controls;
13
14 [Flnamespace HelloWorld
15 [{
16 [public partial class MainPage : PhoneApplicationPage
17 {
18 /f Constructeor
19 [public MainPage()
28 {
21 InitializeComponent();
22 1
23 }
24 |}

Figure 13: C#-Editor

When the program starts, the App class creates an object of the type Phone-
ApplicationFrame [cf. Getz11 p.104]. This is the top level container for the en-
tire application. Then, in this frame the page objects with the contents are dis-
played. By default, the application will navigate automatically to the Main-
Page.xaml which is defined in the WMAppManifest.xml. The developer can cre-
ate multiple pages to present the content [MSDNO7]. A new page can be cre-

ated in the menu item Project — Add New ltem... .

Page 18 3.3 Structure of the Project

The App Class

The App class is the entry point for the application. Listing 6 shows the XAML-
Code for the “Hello World” project. The root element is Application where the
App class will be derived from. The x:Class defines the code-behind file. It spe-
cifies that a class named App in the namespace HelloWorld derives from the
Silverlight Application class. The following two XML namespaces were already
described in chapter 2.51 (XAML and Code-Behind). The other two
namespaces (xmlns:phone and xmlns:shell) are unique to the phone. Then,
global resources such as colour schemes or brushes for the entire application
can be defined. The file also contains events for the application life cycle, which

is covered in chapter 3.6 (The Application Life-Cycle).

<Application
x:Class="HelloWorld.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone">

<!--Application Resources-->
<Application.Resources>
</Application.Resources>
<Application.ApplicationLifetimeObjects>
<!--Required object that handles lifetime events for the application-->

<shell:PhoneApplicationService
Launching="Application_Launching" Closing="Application_Closing"
Activated="Application_Activated" Deactivated="Application_Deactivated"/>
</Application.ApplicationLifetimeObjects>

</Application>

Listing 6: App.xaml - "Hello World"

Important parts of the code-behind of the App class are explained in the course
of this paper and are therefore not listed here (cf chapter 3.4.1 Frame Rate

Counters, chapter 3.6 The Application Life-Cycle).

The Page Class

The central element of every program is the Page class. Listing 7 shows the
XAML-Code of the MainPage class. After the opening tag the x:Class element
indicates the used namespace (HelloWorld) and the class name (MainPage)
which is also used in the code-behind file (MainPage.xaml.cs). Then the follow-
ing XML namespace declarations are the same as in the App.xaml. The d and

the mc namespace are required for XAML design programs Expression Blend

3.3 Structure of the Project Page 19

and the designer in Visual Studio. Additionally there are some StaticResource

stettings (FontFamily, FontSize and Foreground) for the page [cf. Petz10 p.14].

<phone:PhoneApplicationPage
x:Class="HelloWorld.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"
FontFamily="{StaticResource PhoneFontFamilyNormal}"
FontSize="{StaticResource PhoneFontSizeNormal}"
Foreground="{StaticResource PhoneForegroundBrush}"
SupportedOrientations="Portrait" Orientation="Portrait"
shell:SystemTray.IsVisible="True">

</phone:PhoneApplicationPage>

Listing 7: MainPage.xaml (Excerpt) - "Hello World" Application

The SupportedOrientation and Orientation attribute will be described in
chapter 4.1 (Orientation) and the shell:SystemTray.IsVisible attribute is for
the visibility of the system tray on a page (Figure 14).

" —
stem lray [—
Y y MY APPLICATION

Figure 14: System Tray

Listing 8 shows the MainPage.xaml.cs file. By default, the file contains some
namespaces and a constructor in the MainPage class. In C# namespaces are
included with the using directive. The namespaces that begin with System.Win-
dows are for Silverlight classes and the Microsoft.Phone.Controls namespace

includes the class PhoneApplicationPage [cf. Petz10 p.13].

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;
using Microsoft.Phone.Controls;

namespace HelloWorld

{

public partial class MainPage : PhoneApplicationPage

{

Page 20 3.3 Structure of the Project

// Constructor
public MainPage()

{
}

InitializeComponent();

}

)
Listing 8: MainPage.xaml.cs - "Hello Word" Application

During the build process of the application the program generates a file named
MainPage.g.i.cs, which is located in the /obj/Debug directory. This file is for in-
ternal use of the compiler [cf Petz10 p.14]. The constructor of the MainPage
class in the MainPage.xaml.cs (Listing 8) has a method named InitializeCom-
ponent (). If you place the cursor on the name of the method and press the F12
key a new window with the file MainPage.g.i.cs will be displayed on the view
and you will see the definition of the method (Listing 9). With the LoadComponent
method the corresponding XAML file will be read to get information about the

application (e.g.: the application or page title).

public void InitializeComponent() {
if (_contentLoaded) {
return;
}
_contentLoaded = true;
System.Windows.Application.LoadComponent(this, new System.Uri
("/HelloWorld;component/MainPage.xaml", System.UriKind.Relative));
this.LayoutRoot =
((System.Windows.Controls.Grid) (this.FindName("LayoutRoot")));
this.TitlePanel =
((System.Windows.Controls.StackPanel)(this.FindName("TitlePanel")));
this.ApplicationTitle =
((System.Windows.Controls. TextBlock) (this.FindName("ApplicationTitle")));
this.PageTitle =
((System.Windows.Controls. TextBlock) (this.FindName("PageTitle")));
this.ContentPanel =
((System.Windows.Controls.Grid) (this.FindName("ContentPanel™)));

Listing 9: MainPage.g.i.cs - InitializeComponent Method

This file can be ignored by the developer. During the development process it is
possible that this file pops up due to an exception. Then the developer should
not fix the problem in this file because the real problem is probably in the cor-
responding XAML file [cf Petz10 p.14].

The body in the MainPage.xaml also contains by default some nested ele-
ments. Figure 15 shows the “Hello World” project. By default a page contains a
Grid named LayoutRoot as the basic layout container with two rows (#1, Figure
15). Then a StackPanel with two TextBlock elements are placed in the first row

(#2, Figure 15) and another Grid which is named ContentPanel (#3, Figure 15)

3.3 Structure of the Project Page 21

in the second row. Also an ApplicationBar as a comment is created (#4, Fig-
ure 15). For the “Hello World” project the TextBlock named PageTitle was se-
lected on the Page Designer. Then the element is highlighted in the Page De-
signer and in the XAML-Editor. After that the value of the Text attribute was
changed from “page name” to “Hello World” in the Properties Window (#5, Fig-
ure 15).

MainPageaaml %

<!--LayoutRoot is the root grid where all page content is placed-->

q
17 [<Grid x:Name="LayoutRoot™ Background="Transparent">
3 18 E Grid.RawDefinition»
=] 19 <RowDefinition Height="Auto"/>
20 <RowDefinition Height="*"/>
21 </Grid.RowDefinitions>
22 4 (@ Mai
‘.“;1"‘_ . = : 23 9 <I--TitlePanel contains the name of the application and page titl{ ﬂﬁ‘ssmmmmgej;g
He”o WOrld 2475 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">
f L 25 <TextBlock x:Name="ApplicationTitle"” Text="MY APPLICATION" Sty
26 <TextBlock x:Name="PageTitle" Text="Hello World" Margin="9,-7
27 </StackPanels> 3
28 9
29 <l--ContentPanel - place additional content here-->
30 <Grid x:Name="ContentPanel” Grid.Row="1" Margin="12,0,12,0"></Grig
31 </Grid>
32
33 <!--sample code showing usage of ApplicationBar--»
34 <! --<phone:PhoneApplicationPage.ApplicationBar>
35 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
36 <shell:ApplicationBarIconButton IconUri="/Images/appbar_butto:
37 o <shell:ApplicationBarIconButton IconUri="/Images/appbar_buttol J fextBiock PageTitie
38 <shell:ApplicationBar.MenuTtems> 5 Properc: | o Events
39 <shell:ApplicationBarMenultem Text="MenuItem 1"/> = B0 E) [sewen ~
40 <shell:ApplicationBarMenuItem Text="MenuItem 2"/> B
41 </shell:ApplicationBar.Menultems> « Common
. . DataCont: =]
42 </shell:ApplicationBar> She v
Emn ‘4/3 </Dhone:PhgneADDlicationPaEe.ADDlicationBar>——> = &Hemwm

Figure 15: Default XAML Elements - "Hello World" Application

3.4 The Emulator

Now, the ,Hello World* application is complete and ready for debug and run. In

the standard toolbar there is a bar for debugging (Figure 16).

P Windows Phone Emulator ~ Debug - ||m rnain
Windows Phone Device Debug
Windows Phone Emulator l Release

Configuration Manager...

Figure 16: Debugging Bar - Visual Studio

First, the deployment target can be chosen, either a Windows Phone Device or
the Windows Phone Emulator. The deployment on real device is only possible
after a registration of a developer phone in the App Hub. Secondly, the Debug
or Release modus can be chosen or the Configuration Manager dialog can be
opened. For all projects in this work the Windows Phone Emulator and the De-
bug modus is selected. With the Play button or with the F5 key, Visual Studio
builds the project, starts the emulator and launches the application. In Figure 17

the “Hello World” application is deployed in the emulator.

Page 22 3.4 The Emulator

MY APPLICATION

Hello World

Figure 17: Emulator - "Hello World" Application

The emulator is a virtual machine of the phone in which either the Windows
Phone OS 7.0 or the Windows Phone OS 7.1 runs [Wild12].

3.4.1 Frame Rate Counters

When you run an application in the emulator, you can see some numbers at the
right top corner on the screen. These numbers are frame rate counters and can

be used to monitor the performance of an application [MSDNOS].

Composition Thread FPS
User Interface Thread FPS

Texture Memory Usage

Intermediate Surface Counter

Figure 18: Frame Rate Counters [MSDNO8]

The following description is directly taken from the MSDN library [MSDNO8]:

Frame rate counter Description

Composition (Render) Thread |The rate at which the screen is updated.

3.4 The Emulator Page 23

Frame Rate (FPS)

User Interface Thread Frame Rate | The rate at which the Ul thread is running.
(FPS)

Texture Memory Usage The video memory and system memory copies
of textures being used in the application.

Texture Memory Usage The video memory and system memory copies
of textures being used in the application.

Surface Counter The number of explicit surfaces being passed
to the GPU for processing.

Intermediate Surface Counter The number of implicit surfaces generated as
a result of cached surfaces.

Screen Fill Rate Counter The number of pixels being painted per frame
in terms of screens. A value of 1 represents
480 x 800 pixels.

The frame rate counters can also be disabled. The code for the frame rate
counters can be found in the App.xaml.cs (Listing 10). To disable the frame rate
counters the EnableFrameRateCounter property must be set to false or the

code line can simply be commented out.

public partial class App : Application
{
public App()
{
// Show graphics profiling information while debugging.
if (System.Diagnostics.Debugger.IsAttached)
{
// Display the current frame rate counters.
Application.Current.Host.Settings.EnableFrameRateCounter = true;
}
}

Listing 10: Frame Rate Counters - App.xaml.cs
3.5 The XAP-File

The XAP-file is the application package. Once Visual Studio has built the pro-
ject, the XAP-file can be found in the /Bin/Debug directory (Figure 19). It is a
compressed zip archive with an .XAP extension and contains all files to run the
application [cf. Petz10 p.20]. This file is also called the XAP-archive.

Page 24 3.5 The XAP-File

Solution Explorer > X

= || &Y
; Solution 'HelloWorld' (1 project)
4 (F HelloWorld
=d| Properties
«J] References

% HelloWorld.xap

Figure 19: XAP-File - "Hello World" application

The XAP-archive is the file which is hosted on the emulator or on a device. This
file must also be submitted to the App Hub to publish the application in the mar-

ketplace.

If you navigate with the Windows Explorer to the /Bin/Debug directory of the
Visual Studio project and rename the .xap extension with .zip you can see the
files inside of the archive (Figure 20). The XAP-archive contains the compiled
DLL file of the “Hello World” project (HelloWorld.dll), three images which were
already described in chapter 3.3.5 and the WMAppManifest.xml (cf. Chapter
3.3.2 Properties Folder).

ESESEESCS)
" A = 1
WA UIE C:\Visual Studio 2010\Projects\HelloWorld\HelloWerld\Bin'Debug\HelloWerld.zip 'J k4 || AetioWorid.zip durchsuchen)l
- - —— e e
Datei Bearbeiten Ansicht Extras 7
Organisieren Alle Dateien extrahieren =~ ﬂ
HelloWorld = Mame ° Typ Komprimierte GraBe Kennwortg... Gré
HelloWorld _
. '@Appllcatmnlcun.png PNG-Datei 2KB Mein
in
| AppManifestxaml Windows-Markupdatei 1KE Mein
Debug .
5 '@ Background.png PNG-Datei 4KE Mein |
o
5 . %] HelloWoerld.dll Anwendungserweiterung 5KE Mein
Properties = _
=, SplashScreenlmage.jpg JPEG-Bild 4KE Mein
IsolatedStorage) . :
) | WMAppManifest.xml XML-Datei 1KB Mein
MyFirstApp
Nenes Verreirhnis ad]| n :
HelloWorld.dll Komprimierte Gré... 4,01 KB Verhaltnis: 62% Typ: Anwendungserweiterung
GroBe: 10,5 KB Anderungsdatum: 07.01.2012 03:05

Figure 20: Explorer - "HelloWorld.zip"

The application package also contains the AppManifest.xaml. As in chapter
3.3.2 briefly mentioned, the file is filled with contents in the build process and

the code is now shown in Listing 11.

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" EntryPointAssembly="Hello-
World"
EntryPointType="HelloWorld.App" RuntimeVersion="4.7.50308.0">

<Deployment.Parts>

<AssemblyPart x:Name="HelloWorld" Source="HelloWorld.dll" />

</Deployment.Parts>

</Deployment>

Listing 11: AppManifest.xaml - "Hello World" Application

3.5 The XAP-File Page 25

The file contains the deployment details to run the application. The Deployment
node describes the application and contains a child node (AssemblyPart). In
the Deployment node the EntryPointAssembly (which defines the main as-
sembly in the child node), the EntryPointType and the RuntimeVersion of
Silverlight is defined [Piet08]. The entry point HelloWorld.App will also be
found in the beginning of the App.xaml file (Listing 12).

<Application
x:Class="HelloWorld.App"

;}Applicatiom
Listing 12: Entry Point — App.xaml (Excerpt)

3.6 The Application Life-Cycle

The OS of the Windows Phone has been designed in such a way that only one
application can be actively running in the foreground at a given time. Other ap-
plications will be paused or closed in order to save resources. For example an
incoming phone call can interrupt the execution of an application or the user
navigates to another application. Therefore, it is important for the developers to
consider and understand the application life cycle to ensure a consistent user
experience. Often it is necessary that application settings and data are stored, if
an application is deactivated or terminated [cf. Getz11 p.377]. A Windows
Phone has four states:

* Launched

» Activated

e Deactivated

 Closed

By default, each App.xaml.cs file contains methods for the application states as

shown in Listing 13.

public partial class App : Application
{
private void Application_Launching(object sender, LaunchingEventArgs e)

{
}

private void Application_Activated(object sender, ActivatedEventArgs e)

{
}

Page 26 3.6 The Application Life-Cycle

private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{
}

private void Application_Closing(object sender, ClosingEventArgs e)

{
}

)
Listing 13: App.xaml.cs - Methods Application Life-Cycle
Launched & Closed

The launched and the closed states are very simple. When the application is
started, first the constructor is executed and then the method
Application_Launching is called. Subsequently, the application runs. If you
then use the back button of the Windows Phone to go one step back, the ap-

plication will be closed (#1, Figure 21).

Deactivated

Activated

Figure 21: Application Life-Cycle

Deactivated and Activated

When the application is running and the user navigates to the Start screen of
the phone (#2, Figure 21), the application will be deactivated. Then, if the back
button is pressed to navigate one step back (#3, Figure 21) the application is
activated. When the user clicks the start button again to return to the start page,
the application is deactivated (#4, Figure 21) and when the back button in the
activated state is pressed (#5, Figure 21) the application will be terminated (be-
cause the navigation sequence has returned to the beginning). If an application
is deactivated, the application is still in the memory of the phone and informa-
tion about the application is stored (e.g. specific user settings, input data from

the user or the last activated page), so when the application is reactivated the

3.6 The Application Life-Cycle Page 27

record about the application is loaded and the user has the impression that the
application never paused. But the OS can terminate a deactivated application,
to release resources. Therefore, a deactivated application can be dormant (still
in the memory), or tombstoned (the application is terminated). So the tomb-
stoned state is not predictable for the developer. Of course, when the applica-
tion is tombstoned the state data is also stored, but you do not know exactly

what (e.g. the input data of the user is lost).

In the following example a new project named ApplicationLifeCycle was created
in order to demonstrate the application life cycle again for a better understand-
ing. Also the dormant and tombstoned state will be discussed in a greater detail
and a method to handle the tombstoned event will be presented. The example
is based on a example in the book “Entwickeln fur Windows Phone 7.5" of
Patrick Getzmann [cf. Getz11 377-384].

On the top of the App.xaml.cs file a System.Diagnostics namespace is in-
cluded to get an output in the Debug Console of Visual Studio. Then above the
constructor a public static string named id is implemented to store a
new Global Unique Identity (GUID). Each method of the application states con-
tains a command that will display the state and die GUID in the Debug Console
(Output Window) of Visual Studio. Under the menu item Debug — Windows —

Output the output window can be displayed in Visual Studio.

using System.Diagnostics;

namespace ApplicationLifeCycle

{
public partial class App : Application

{
public static string id = Guid.NewGuid().ToString();

/// Constructor for the Application object.
public App()
{

}
private void Application_Launching(object sender, LaunchingEventArgs e)
{
Debug.WriteLine("Launching " + App.id);
}

private void Application_Activated(object sender, ActivatedEventArgs e)

{
Debug.WriteLine("Activated " + App.id);
if (le.IsApplicationInstancePreserved)

Page 28 3.6 The Application Life-Cycle

{
MessageBox.Show("The Application was tombstoned!");

}
}
private void Application_Deactivated(object sender, DeactivatedEventArgs e)
{

Debug.WritelLine("Deactivated " + App.id);
}
private void Application_Closing(object sender, ClosingEventArgs e)
{

Debug.WriteLine("Closing " + App.id);

}
o

}
Listing 14: Application Life-Cycle Example

When the application is started the output window shows “Launching “ and the
App.id (Figure 22).

Show output from: | Debug

‘UL Task' (Managed): Loaded 'Microsoft.Phone.Interop.dll’

|_aunching 75ecf49b-c5bd-48bf-afe7-f4bbbdada2ab |
n

& Find Symbol Results [, Call Hierarchy B8 Error List

Figure 22: Launching

If you press the Start button on the emulator, the application will be deactivated

(dormant by default) as shown in Figure 23.

Show output from: | Debug
'UI Task' (Managed): Loaded 'System.Runtime.Serialization.dll’
|Deacti'u'ated 75ect49b-c5b4-48bF-afa7-Ff4bbbdada2as |

Figure 23: Deactivated (Dormant)

When the back button is pressed, the application will get the state activated and
with another click on the back button the application is closed (Figure 24). In
each state the GUID in the output windows was the same which means that the

instance of the application is still the same.

Show output from: | Debug

Deactivated 75ecf49b-cSb4-48bf-afa7-Fibbb4ada2as
Activated 7Secf49b-cSb4-48bf-af67-f4bbbdada2as

Figure 24: Activated and Closing

In Visual Studio it is possible to simulate the tombstoned state (the application
is terminated by the OS and the state data is saved). Therefore, under the
menu item Project — ApplicationLifeCycle Properties... the project properties
must be opened. In the Debug tab “Tombstone upon deactivation while debug-

ging” have to be activated (Figure 25).

3.6 The Application Life-Cycle Page 29

ApplicationLifeCycle™ X

Applicaticn
Debug™

Build

| Tombstone upon deactivation while debugging
Build Events

Figure 25: ApplicationLifeCycle Properties

Then the application can be started again and when the initialization is com-
pleted and after pressing the Start button the application is set to the deactiv-

ated status (Figure 26).

Show output from: | Debug

| Launching f5892545-88be-49e8-bfB6-1d4e58155213 |
'UI Task' (Managed): Loaded 'Svstem.Runtime.Seriglization.dll’
Deactivated f5892545-98be-4%9e@-bFE6-1d4e58155213

Figure 26: Deactivated (Tombstoned)

When the application is reactivated via the back button the output window looks
like as Figure 27. Note that there is another GUID than for the launching and
deactivated output. This means that a new instance of the application has star-

ted and the application was tombstoned.

Show output from: | Debug

| Activated bbdbb268-88bd-4d3c—a-ce2—a8c?9ea4a—'b8 |

Figure 27: Output Window - Activated

In Listing 14 within the Application_Activated method the IsApplicationIn-
stancePreserved property of events args is implemented. If this property is true,
the application was dormant and if the value is false the application was tomb-
stoned. Now, when the program is activated as shown in Figure 27 the emulat-

or should show a message box (Figure 28).

The Application was tombstoned!

Figure 28: MessageBox Activated State

The tombstoned status can be handled on the page basis of an application.
Each page in the application will inherit from the PhoneApplicationPage class,
which will inherit from the Page class. This class has a method named onNavig-
atedTo, which will be called when a page becomes the active page in a frame.

Another method is the onNavigatedFrom, which will be called when the page is

Page 30 3.6 The Application Life-Cycle

no longer the active page in a frame [MSDNO9]. To use this method in a page

of an application, the base method must be overridden.

The PhoneApplicationPage class has a property named State. This property is
a dictionary where objects with a string key (key/value pair) can be saved and

loaded.

Listing 15 shows the implementation of the OnNavigatedTo and OnNavigated-
From method and the use of the State dictionary. For demonstration purposes
the id string which was created in the example above (Listing 14) will be saved.
In the OnNavigatedFrom method the id is saved in the State dictionary with the
key id. When the page is loaded, the onNavigatedTo method is invoked. If an
id is saved in the dictionary and the value is the same as the current App.id,
the application was in a dormant state, otherwise the application was tomb-
stoned. When there is no object in the dictionary, which has the key id, the ap-

plication was launched.

protected override void OnNavigatedFrom(System.Windows.Navigation.NavigationEventArgs e)

{

base.OnNavigatedFrom(e);
this.State.Remove("id");
this.State.Add("id", App.id);

}

protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)

{

base.OnNavigatedTo(e);
if (this.State.ContainsKey("id"))

if (this.State["id"].Equals(App.id))
{

MessageBox.Show("The Application was dormant" + this.State["id"].ToString());
}

else

{
MessageBox.Show("The Application was tombstoned" + this.State["id"].ToString());

}
}

else

{
X

MessageBox.Show("The Application is launched" + App.id.ToString());

}
Listing 15: State Dictionary

4 Mobile Applications with Silverlight Page 31

4 Mobile Applications with Silverlight

This chapter is devoted to the development of Silverlight applications for Win-
dows Phone with Visual Studio. It covers topics such as orientation, building a
user interface, navigation through pages, stores data and deals with push noti-

fications.

4.1 Orientation

Windows Phone supports three orientations: namely portrait, landscape left and
landscape right. The orientation for a page is defined in the XAML file. The
value of the SupportedOrientations attribute in a XAML file (Listing 16) con-
tains the supported format of a page. The possible values are: Portrait, Land-
scape and PortraitOrLandscape. So you can restrict your application to a spe-
cific orientation or you can allow it to change the orientation when the phone is
turned. In the Orientation attribute you can define which orientation the page

should have when it is loaded.

<phone:PhoneApplicationPage

SupportedOrientations="PortraitOrLandscape"” Orientation="Portrait"
OrientationChanged="PhoneApplicationPage_OrientationChanged"

</phéaé:PhoneApplicationPage>
Listing 16: Page Orientation in XAML

With the implementation of the OrientationChanged event in Listing 16, which
is fired when the physical orientation of the device has changed, there is the
possibility to create an event handler in the code-behind to manipulate ele-
ments of the user interface. Listing 17 shows a method which will be called
when the OrientationChanged event has fired. In this method a TextBlock in
the XAML file that is named PageTitle will display another Text, if the orienta-

tion of the device has changed.

public partial class MainPage : PhoneApplicationPage

{

private void PhoneApplicationPage_OrientationChanged(
object sender, OrientationChangedEventArgs e)

{
if (e.Orientation == PageOrientation.LandscapeRight)
{ this.PageTitle.Text = "Landscape right"; }

Page 32 4.1 Orientation

else if (e.Orientation == PageOrientation.LandscapelLeft)
{ this.PageTitle.Text = "Landscape left"; }
else

{ this.PageTitle.Text = "Portrait"; }
}
¥

Listing 17: Page Orientation in Code-Behind

Figure 29 shows the deployment of the example.

Portrait

La r'u.'_‘f-:-';r.'_‘ape left ' La n-d'sr_ape right

Figure 29: Page Orientation - Emulator

4.2 Layout

As already mentioned in chapter 3.3.6 (The Page Class), when a new Windows
Phone Application application is created by Visual Studio, the MainPage.xaml
contains by default two layout containers, a grid and a stack panel. These are
the two basic elements to design a layout of a page. The containers themselves
do not have any user interface, but they are determined to arrange elements on
the screen. Each container can include one or more child elements (layout con-

tainers and visible Ul elements).
421 Grid

The Grid is a good choice for most routine layouts and is very important. It is
generally arranged in rows and columns and is very similar to a HTML table.
Listing 18 shows a simple grid that was added to the MainPage.xaml of a new
project. With the attribute ShowGridLines the rows and columns are visible in
the emulator. With the properties Grid.RowDefinitions and Grid.-
ColumnDefinitions new columns and rows can be created. The Height attrib-

ute sets the row height and the width attribute the column width. The star sizing

4.2 Layout Page 33

value (3*) means a weighted proportion of the available space while an abso-

lute value (e.g. 123) is expressing pixels.

<Grid x:Name="GridContent" ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition Height="3*" />
<RowDefinition Height="3*" />
<RowDefinition Height="3*"/>
</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="5*" />
<ColumnDefinition Width="5*" />

</Grid.ColumnDefinitions>

<TextBlock Grid.Column="@" Grid.Row="@" Text="Row © / Column 0"
VerticalAlignment="Center" HorizontalAlignment="Center"/>

<TextBlock Grid.ColumnSpan="2" Grid.Row="1" Text="Row 1 / Column 2"
VerticalAlignment="Center" HorizontalAlignment="Center"/>

<TextBlock Grid.Column="1" Grid.Row="2" Text="Row 1 / Column 2"
VerticalAlignment="Center" HorizontalAlignment="Center"/>

</Grid>
Listing 18: Grid-Definition in XAML
Additionally, three TextBlock elements have been created in this XAML-Code
and with the Grid.Column and the Grid.Row attribute you can define the loca-
tion for a control element in the grid. Figure 30 shows this application in the

emulator.

MY AFFUICATION

Portrait

MY APPLICATION

Landscape right

Gp

Row 0/ G

Figure 30: Grid Row and Columns

Page 34 4.2 Layout

4.2.2 Stack Panel

The Stack Panel is also a layout container for control elements of the user inter-
face. In contrast to the grid, the children of the StackPanel do not overlap. By
default, the elements are arranged from top to bottom. With the orientation

attribute the vertical arrangement of the elements can be changed (Listing 19).

<Grid x:Name="GridContent" ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition Height="5*" />
<RowDefinition Height="5*" />
</Grid.RowDefinitions>

<StackPanel >
<Button Content="Buttonl" Height="71" Width="160" />
<Button Content="Button2" Height="71" Width="160" />
<Button Content="Button3" Height="71" Width="160" />
</StackPanel>

<StackPanel Grid.Row="1" Orientation="Horizontal">
<Button Content="Button" Height="71" Width="160" />
<Button Content="Button" Height="71" Width="160" />
<Button Content="Button" Height="71" Width="160" />
</StackPanel>
</Grid>

Listing 19: StackPanel-Definition in XAML

Figure 31 shows the StackPanel in the emulator.

Figure 31: The Stack Panel

4.2.3 Pivot and Panorama

When you create a new project with Visual Studio, you have several templates
to choose from. There is also a Windows Phone Panorama Application and a

Windows Phone Pivot application available (cf. chapter 3.2). Both concepts are

4.2 Layout Page 35

very similar. The space for the content is wider than the actual width of the
device [cf. Petz10 p.712]. Listing 20 shows the XAML-Code for a panorama
page. The Microsoft.Phone.Controls namespace is required, because this in-
cludes the pivot and panorama class. By default, you can find in the Grid which
is named LayoutRoot two panorama items. They include a ListBox with a
DataTemplate which contains a StackPanel and two TextBlock elements. In
the ItemSource attribute of the ListBox and in the Text attribute of the two
TextBlock elements you will find curly braces with a Binding statement with a
property. This is the syntax for data binding which will be covered in chapter 4.5
(Data Binding).

<phone:PhoneApplicationPage
xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"

<!--LayoutRoot is the root grid where all page content is placed-->
<Grid x:Name="LayoutRoot" Background="Transparent">

<!--Panorama control-->
<controls:Panorama Title="my application">
<controls:Panorama.Background>
<ImageBrush ImageSource="PanoramaBackground.png"/>
</controls:Panorama.Background>

<!--Panorama item one-->
<controls:Panoramaltem Header="first item">
<!--Double line list with text wrapping-->
<ListBox Margin="0,0,-12,0" ItemsSource="{Binding Items}">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Margin="0,0,0,17" Width="432" Height="78">
<TextBlock Text="{Binding LineOne}" TextWrapping="Wrap"
Style="{StaticResource PhoneTextExtralLargeStyle}"/>
<TextBlock Text="{Binding LineTwo}" TextWrapping="Wrap"
Margin="12,-6,12,0"
Style="{StaticResource PhoneTextSubtleStyle}"/>
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</controls:PanoramaIltem>

<!--Panorama item two-->
<controls:Panoramaltem Header="second item">

</controls:PanoramaItem>
</controls:Panorama>
</Grid>
</phone:PhoneApplicationPage>

Listing 20: Panorama Layout - XAML

A pivot page contains instead of the Panoramaltem a PivotItem as shown in

Listing 21. The code is very similar to the panorama page.

Page 36 4.2 Layout

<phone:PhoneApplicationPage

xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"

<Grid x:Name="LayoutRoot" Background="Transparent">
<controls:Pivot Title="MY APPLICATION">

<!--Pivot item one-->
<controls:PivotItem Header="first">
<ListBox x:Name="FirstListBox" Margin="0,0,-12,0"
ItemsSource="{Binding Items}">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Margin="0,0,0,17" Width="432" Height="78">
<TextBlock Text="{Binding LineOne}" TextWrapping="Wrap"
Style="{StaticResource PhoneTextExtralLargeStyle}"/>
<TextBlock Text="{Binding LineTwo}"
TextWrapping="Wrap" Margin="12,-6,12,0"
Style="{StaticResource PhoneTextSubtleStyle}"/>
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</controls:PivotItem>

<!--Pivot item two-->
<controls:PivotItem Header="second">

</controls:Pivot>
</Grid>

</ph(.3r.1é:PhoneApplicationPage>
Listing 21: Pivot Page - XAML

On the left side in Figure 32 a default pivot page is shown. On the right side
there is a standard panorama page. Both pages are only one page object. In-
side the pivot page the user can navigate to various pivot items with a link in the
Header (Listing 21 Header="first" and Header="second"). In the panorama
page the user can navigate to the next panorama item with the flick touch ges-

ture.

MY APPLICATION

first

runtime one

second
runtime one first item

second item

runtime one
M 12

runtime two X .
f runtime two runtime one

. i v Maseonag ik cumzan bibendkim
runtime three .
runtime three runtime two

. _ Dictumest elerfend facis Tauabus
runtime four) .
e runtime four runtime three

¥ Habita s -
runtime thre
Habitant ang um
abrtis

runtime five i _
L runtime five
runtime six

runtime six runtime fou:l

rintimea cavan

Figure 32: Pivot and Panorama Page

4.2 Layout Page 37

The pivot page can be used to present collections of information sliced to sev-
eral subsets. The idea is to group similar data [Bosc11]. For example, the

search result of Bing is displayed in a pivot page (Figure 33).

% : Windows at Sprint™

Pivot ltems

WWW.SpriNt.com

marketing

Figure 33: Bing - Search Result

The panorama page is used to slide through a big content. The content is di-
vided to different blocks which are assigned to different horizontal items

[Kart12]. Figure 34 show the concept of a panorama page.

My panorama

first item < fcond item third item

this
item
has
F]

short
list
of

is content is very wide and can be panned horizontally.

strings
that
you
an

serall

Figure 34: Panorama Example [Wilc10]

Page 38 4.3 Smartphone Controls

4.3 Smartphone Controls

The control elements are used for the interaction with the user. On the one
hand there are elements that use the touch interface (e.g. Button, CheckBox,
etc.) and on the other hand there are elements (e.g. TextBox, PasswordBox) that
are used for the input of the user with the keyboard. The toolbox in Visual Stu-
dio will provide most of the supported user interface elements for a phone ap-
plication. A comprehensive overview of all supported controls in Silverlight for
Windows Phone OS 7.1. will be found in the MSDN library [MSDN10]. In this
chapter the basic elements which were also used in the most programming ex-

amples in this work will be described.
4.3.1 Button

The Button is used to trigger an action after touch. In the following example a

message box will be displayed, after the button was pressed.

<Button Content="Button" Height="72" Width="160" Margin="135,249,161,286"
Name="buttonl" Click="buttonl_Click" />

Listing 22: Button-Definition in XAML

A click event with an event handler (buttonl_Click) was added to the Button
tag. For this click event a method in the code-behind file which shows the mes-

sage box is implemented.

private void buttonl_Click(object sender, RoutedEventArgs e)

{

}
Listing 23: Code-Behind - Button Click Event

4.3.2 HyperlinkButton

MessageBox.Show("Button was pressed!");

The HyperlinkButton is used to navigate to other pages in an application. The
NavigateUri property contains the link to the destination page. In the Target-

Name property the target frame can be specified (_blank or _self).

<HyperlinkButton Content="Button" Height="30" Width="200" Name="button"
NavigateUri="/Examples/Button.xaml" TargetName="_blank"/>

Listing 24: HyperlinkButton-Definition in XAML

4.3 Smartphone Controls Page 39

4.3.3 TextBlock

The TextBlock element is primarily used to display text.

<TextBlock Margin="40,375,94,39" Name="textBlockl" TextWrapping="Wrap"
Text="Lorem ipsum dolor sit amet, consetetur sadipscing elitr"/>

Listing 25: TextBlock-Definiton in XAML

The Text property contains the text. By default, the content will be shown
without a line break. With the TextWrapping property an automatic line break
can be effected (Figure 35).

i

n Y

Lorem ipsum dolor sit amet,
“=dconsetetur sadipscing elitr

L] o

|
Figure 35: TextBlock - TextWrapping

4.3.4 CheckBox

The CheckBox is used to select and clear an option in an application. The con-
trols allow the user to select a combination from a list of options. The important

property is IsChecked, which can have three states (true, false or null).

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
<CheckBox Content="CheckBox" Margin="26,18,228,516"
Name="checkBox1" IsChecked="{x:Null}"/>
<Button Content="Button" Margin="6,97,20,425"
Name="buttonl" Click="buttonl_Click" />

</Grid>
Listing 26: CheckBox-Definition in XAML

At runtime, the state of the CheckBox can be queried. The following code-behind
shows a method for a click event of the Button, which will display the state of

the MessageBox.

private void buttonl_Click(object sender, RoutedEventArgs e)

{
if (this.checkBox1.IsChecked == null)

{

MessageBox.Show("CheckBox state is null!");

else if (this.checkBox1.IsChecked == true)
{

}

else

{

MessageBox.Show("CheckBox state is true!");

Page 40 4.3 Smartphone Controls

MessageBox.Show("CheckBox state is false!");

}
}

Listing 27: Code-Behind - CheckBox Query

4.3.5 RadioButton

In contrast to CheckBox, a RadioButton is used when there is a list of options
and they are mutually exclusive. In other words, when a non-selected button is
selected, a previously selected button will be deactivated. In XAML this is real-
ized by the GroupName property that allows you to differentiate multiple groups
of mutually exclusive buttons [cf. Petz10 p.273]. The central property is again

IsChecked with a boolean return type.

<RadioButton Content="RadioButtonl" Height="72" Margin="50,388,0,147"
Name="radioButtonl" GroupName="Groupl" IsChecked="True"/>

<RadioButton Content="RadioButton2" Height="72" Margin="50,359,0,0"
Name="radioButton2" GroupName="Groupl"/>

Listing 28: RadioButton-Definition in XAML

O RadioButton1

. RadioButton2

Figure 36: RadioButtons

4.3.6 TextBox, PasswordBox and Keyboard Input

The Textbox and the PasswordBox are the two text entry controls. For the major-
ity of the devices which will not have a physical keyboard, the software input

panel (SIP) is used when one of these controls have received focus.

<TextBox Height="72" Margin="47,130,49,405" Name="textBox1"
Text="TextBox" Width="361" />
<PasswordBox Height="72" Margin="48,246,48,289" Name="passwordBox1"
Width="361"/>

Listing 29: TextBox and PasswordBox-Defintion in XAML

In the TextBox it is possible to assign an attribute named InputScope. With the
InputScope you can suggest a specific keyboard for the input field (e.g. for
numbers, email address, etc.). This attribute can be defined in the XAML-Code
or in the code-behind file. If the definition is made in the code-behind, the de-
veloper can make use of the IntelliSense of Visual Studio which will provide the

possible values for the InputScope (Figure 37).

4.3 Smartphone Controls Page 41

public partial class MainPage : PhoneApplicationPage

{ // Censtructor
public MainPage()
{
InitializeComponent();
textBoxl.InputScope = new InputScope()
¢ Names = {new InputScopelame() { NameValue = Inpu:Sccpelaan'e'-;’a'_ue.E| I
s = DateMonthMame
= DateYear
} & Default
= Digits
& EmailNameQOrAddress
¥ = EmailSmtpiddress

=0 EmaillserName
= EnumString
= FileName M

Figure 37: InputScope IntelliSense

Figure 38 shows an example where the value “EmailNameOrAddress” was
chosen for the input scope. The input panel will provide keys (e.g. “@” or

“.com”) to enter an email address.

page name

=)

w
o
=
[
o
o
o
&
a
s

.com

Figure 38: Emulator InputScope

Page 42 4.3 Smartphone Controls

4.3.7 ApplicationBar

The ApplicationBar is an alternative to standard controls such as buttons. It
can be used instead of creating an own menu. If a new page is added to a pro-
ject, an ApplicationBar in the XAML file is included as a comment. The Ap-
plicationBar contains up to four buttons. Additional, menu items can be ad-
ded. As shown in Figure 39, the ApplicationBar is always on the bottom of a
page when it is displayed and stays in the same place relative to the phone
whenever the phone rotates. When the SupportedOrientations property is set
to PortraitOrLandscape, the images of the ApplicationBar turns sideways [cf.
Petz10 p.235].

MY APPLICATION

page name

a2
MY APPLICATION

page name

Figure 39: Emulator - ApplicationBar

In the XAML-Code (Listing 30) the Iconuri and Text attribute are required.

<phone:PhoneApplicationPage.ApplicationBar>
<shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
<shell:ApplicationBarIconButton IconUri="/Images/appbar.add.rest.png"
Text="Hinzufligen"/>
<shell:ApplicationBarIconButton IconUri="/Images/appbar.cancel.rest.png’
Text="Abbrechen"/>
<shell:ApplicationBarIconButton IconUri="/Images/appbar.check.rest.png"
Text="Ubernehmen"/>
<shell:ApplicationBarIconButton IconUri="/Images/appbar.delete.rest.png’
Text="LOschen"/>
<shell:ApplicationBar.MenuItems>
<shell:ApplicationBarMenuItem Text="MenuItem 1"/>
</shell:ApplicationBar.MenuItems>
</shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Listing 30: ApplicationBar-Definition in XAML

4.3 Smartphone Controls Page 43

The Windows Phone SDK provides several icons for the application bar. After a
standard installation you will find these icons in the following directory: C:\Pro-
gram Files\Microsoft SDKs\Windows Phone\v7.1\Icons. In the folder named
light you will find black images on a white background and in the dark folder
white images on a black background. The icons can easily be added via drag
and drop from the Windows Explorer into the Solution Explorer of Visual Studio.
Make sure that the Built Action property of each icon is set to Content (Figure
40), because the application bar is not smart enough to find the icons, if the
Built Action is Resource [cf. Petz10 p.233].

appbar.add.rest.png File Properties -
o=z et
4

Build Action Content

Copy to Output Directory Do not copy
Custom Tool

Custom Tool Mamespace

Figure 40: Properties Window - ApplicationBar

4.4 Navigation

As mentioned in chapter 3.3.6 (Silverlight files) a Windows Phone Application is
based on pages similar to a website. If an application consists of more than one
page, then it must be possible for the user to navigate between the pages. A
simple solution is the HyplerlinkButton which was already covered in chapter
4.3.2 (HyperlinkButton). The following solutions are based on a new project

which includes three page objects (MainPage, SecondPage and ThirdPage).
441 Code-Behind Solution

The advantage of navigation in the code-behind is that any XAML element can
be used for the navigation. This is made possible by the NaviagtionService
class. In the following example a Button on MainPage.xaml is used to navigate
to the SecondPage.xaml after the button is pressed. In the Click event attribute

the name of the event handler buttonl_Click gets defined.

Page 44 4.4 Navigation

<Grid x:Name="ContentPanel” Grid.Row="1" Margin="12,0,12,0">
<Button Content="Navigate to Page 2" Height="72" Width="321"
Margin="78,78,57,457" Name="buttonl" Click="buttonl_Click" />
</Grid>
Listing 31: XAML Button for Navigation
In the code-behind the Navigate method of the NavigationService class is
called. A new URI object is instantiated and the page name and the URI type

(Relative, Absolute or RelativeOrAbsolute) are passed as parameters.

private void buttonl_Click(object sender, RoutedEventArgs e)

{

NavigationService.Navigate(new Uri("/SecondPage.xaml",
UriKind.Relative));

}
Listing 32: Code-Behind Navigation

4.4.2 Passing Parameters

A simple method to pass data from one page to another page during navigation
is to specify a name-value pair in the URI. The following example shows how a
string data from a TextBox on MainPage.xaml is passed to a TextBlock on the

SecondPage.xaml.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

<Button Content="Navigate to Page 2" Height="72" Width="321"
Margin="77,262,57,273" Name="button2" Click="button2_Click" />

<TextBox Height="72" Margin="77,184,54,351" Name="textBox1"
Text="TextBox" Width="325" />

</Grid>

Listing 33: XAML Button and TextBox for Passing Parameter

In the code-behind the NavigationService class is used. After the page name
a question mark gets added to specify the name-value pair. As name
parameter is used (which is an arbitrary name) and the string from the TextBox

is the value.

private void button2_Click(object sender, RoutedEventArgs e)

{

NavigationService.Navigate(new Uri("/SecondPage.xaml?parameter="
+ textBoxl.Text, UriKind.Relative));

}

Listing 34: Code-Behind for Navigation and Passing Parameter

In the code-behind of the destination page (SecondPage.xaml.cs) the
OnNavigatedTo method is implemented to dispaly the passed parameter in the

TextBlock.

4.4 Navigation Page 45

protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)

{
base.OnNavigatedTo(e);

string parameter = String.Empty;
if (NavigationContext.QueryString.TryGetValue("parameter", out parameter))

textBlockl.Text = parameter;

}

}
Listing 35: Code-Behind to Display the Parameter

4.4.3 Sharing Data

Passing data via a name-value pair in the URI works perfectly. A more elegant
way to provide data is to store the data in the App class (App.xaml.cs), which
also corresponds more to the object orientated idea. All pages in a Silverlight
application for Windows Phone have access to the App class. This class can be
used to store data. For the following example a public property is added in the

App.xaml.cs above the constructor.

public partial class App : Application

{
public String Parameter2 { get; set; }

Listin; 36: Public String in App.xaml.cs

This property can be used in each page instance of the project. In the
ManPage.xaml.cs another TextBox named textBox2 and a Button named
button3 is added. In the method for the click event of the Button the
Application.Current property returns a reference to the instance of the class
that derives from Application and must be casted to an App. Then the text,
which is contained in textBox2 will be stored in the property that was defined in

the App class and the the navigation to the ThirdPage.xaml occurs.

private void button3 Click(object sender, RoutedEventArgs e)
{
App app = (Application.Current as App);
app.Parameter2 = this.textBox2.Text;
NavigationService.Navigate(new Uri("/ThirdPage.xaml",
UriKind.RelativeOrAbsolute));
}

Listing 37: Code-Behind to Store Data

In the destination page the following code is used within the constructor to read

the value of the property.

public ThirdPage()
{

Page 46 4.4 Navigation

InitializeComponent();
App app = (Application.Current as App);
textBlockl.Text = app.Parameter2;

}
Listing 38: Code-Behind to Read the Property

4.5 Data Binding

Because of the strict distinction between the Ul and the program logic in Silver-
light applications, it is often necessary that an Ul element reflects the changes
on a data object in the code-behind. A connection, or data binding allows a flow
between a Ul element and a data object or between two Ul elements. The ex-
amples in this chapter are based on the examples in the book “Entwickeln flr
Windows Phone 7.5” [cf. Getz11 227-239].

4.5.1 Simple Data Binding

Listing 39 shows a data binding between two Ul elements (a Slider and a
TextBox). The TextBox shows the value of the Slider and if a value (0-10) is
typed in the TextBox, the Slider will be adjusted (if text is entered nothing hap-
pens). Therefore, the Text property of the TextBox contains the binding syntax
which means that there is a binding to the value of the sliderl element. The
Mode property TwoWay determines a data flow in both directions (from the source

to the target and vice versa).

<Slider Margin="90,222,92,312" Name="sliderl" Width="275" />
<TextBox Height="72" Width="275" Margin="90,332,92,203" Name="textBox1"
Text="{Binding Path=Value, ElementName=sliderl, Mode=TwoWay}" />

Listing 39: Data Binding of two Ul Elements

There are three types of binding:
* OneTime: The value from the source to the target is passed only once.
* OneWay: This is the default mode. The data can only flow from the
source to the target.
* TwoWay: The data can flow in both directions, from the source to the

target and vice versa.

4.5 Data Binding Page 47

4.5.2 Change Notification

The INotifyPropertyChanged interface is another foundation of data binding. It
will be implemented to business objects in the code-behind in order to push
changes from a source (e.g. changes to a property of a data object) to a target
(e.g. a Ul control in XAML). The following example shows the implementation of

the interface with a oneWay binding.

In the XAML file a TextBlock, a TextBox and a Button were added. The Text-
Block contains the binding to a data object and shows the property FirstName
of a Student object. In the TextBox, the user can enter a new name for the stu-

dent, which will be confirmed with a button.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
<TextBlock Height="39" Margin="52,51,125,546" Name="textBlock2"
Text="{Binding FirstName}" />
<TextBox Height="72" HorizontalAlignment="Left" Margin="52,133,0,431"
Name="textBox1l" Text="New Firstname" Width="279" />
<Button Content="Change Firstname" Height="72" Margin="52,211,125,353"
Name="buttonl" Click="buttonl Click" />

</Grid>
Listing 40: Change Notification - XAML-Code

The user interface is shown in Figure 41.

il = 10:12

WMY APPLICATION -

Data Binding Il

Change Firstname

Figure 41: Change Notification Ul

In the code-behind file (Listing 41) a new instance of the class Student is de-
clared and in the constructor the object is initialized. The DataContent property
is used to display the properties of the object in the TextBlock. The class Stu-
dent implements the INotifyPorpertyChanged interface. For the interface the
namespace System.ComponentModel is required. Then an event named Proper-

tyChanged is defined and will be fired if a property is changed. The setter meth-

Page 48 4.5 Data Binding

od of the property will call a method named NotifyPropertyChanged and the

binding element will be updated if the value of the property has changed.

using System.ComponentModel;

namespace DataBindingII

{
public partial class MainPage : PhoneApplicationPage
{
Student s = new Student();
// Constructor
public MainPage()
{
InitializeComponent();
s.FirstName = "Jane";
s.LastName = "Doe";
s.StudentNumber = 21;
ContentPanel.DataContext = s;
}
public class Student : INotifyPropertyChanged
{
private string firstName;
public string FirstName
{
get
{
return firstName;
}
set
{
firstName = value;
NotifyPropertyChanged("FirstName");
}
}
public event PropertyChangedEventHandler PropertyChanged;
private void NotifyPropertyChanged(string info)
{
if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(info));
}
}
}
private void buttonl_Click(object sender, RoutedEventArgs e)
{
s.FirstName = textBoxl.Text;
}
}
}

Listing 41: Change Notification - Code-Behind

4.5.3 Data Binding with a Generic List

The following example shows the data binding of a generic list and a ListBox

element. In the XAML file a ListBox with an DataTemplate is used. A DataTem-

4.5 Data Binding Page 49

plate is used to specify the visualization of your data objects [MSDN11]. For
each object in the list, an instance of this template will be created. The Data-
Template contains a StackPanel (cf. chapter 4.2.2) and three TextBlock ele-

ments, which contain the binding to the object property.

<ListBox Margin="67,100,69,101" Name="1lbStudents" >
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel>
<TextBlock Text="{Binding FirstName}" />
<TextBlock Text="{Binding LastName}" />
<TextBlock Text="{Binding StudentNumber}" Padding="0,0,0,10" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

Listing 42: Data Binding - XAML ListBox

The code-behind defines how the generic list will be created and assigned to
the ListBox element. In contrast to the previous example (Listing 41) the Item-
Source property must be used to display the list in the ListBox because of the
IEnumerable object type. The DataContext property does not generate tem-
plates and expects an object type (and not an IEnumerable type object)
[Soda02].

namespace DataBindingIII

{
public partial class MainPage : PhoneApplicationPage
{
List<Student> students = new List<Student>();
// Constructor
public MainPage()

{
InitializeComponent();
Student s1 = new Student();
sl.FirstName = "Jane";
sl.LastName = "Doe";
sl.StudentNumber = 1234567,
students.Add(s1);
Student s2 = new Student();
s2.FirstName = "John";
s2.LastName = "Doe";
s2.StudentNumber = 7654321;
students.Add(s2);
1bStudents.ItemsSource = students;
}
public class Student
{
public string FirstName { get; set; }
public string LastName { get; set; }
public long StudentNumber { get; set; }
b

Page 50 4.5 Data Binding

}
Listing 43: Data Binding - Code-Behind Generic List

MY APPLICATION

Data Binding Ill

Figure 42: Data Binding with a Generic List

4.6 Data Storage

As a Silverlight application for Windows Phone is running in a sandbox, there is
no direct access to the underlying file system of the OS. But the application can
use the isolated storage to store the application's data such as settings of the
application, files, folders or relational data. Isolated storage is a concept in
.NET and is a kind of virtual folder. The physical location of the isolated storage
can vary for each OS and the user do not know where the file exactly is stored.
An application simply uses the .NET classes to create and access the files
[Manj04]. Isolated also means that one application can not see or use the data
from another application and vice versa. If two applications need the same data

an online storage (cloud service) is required.

The examples in chapter 4.6.1, 4.6.2 and 4.6.4 are based on the isolated stor-
age explanation in the book “Windows Phone 7-Apps” of Christian Bleske [cf.
Bles11 215-217].

4.6 Data Storage Page 51

4.6.1 IsolatedStorageSettings

The following example shows, how the class IsolatedStorageSettings can be
used. The user can change the background colour of an application and the
colour will be saved if the application is deactivated or closed. First, a new pub-
lic property named Background of the type Brush is added to the App.xaml.cs

above the constructor.

public partial class App : Application

{
public Brush Background { get; set; }

}
Listing 44: Background Property - App.xaml.cs

In the class MainPage the namespace System.I0.IsolatedStorage must be in-
cluded. The property that was defined in the App.xaml.cs will be called after the
constructor. If the property contains a value it will be added to the ContentPan-
el. To change and save a new colour value, a button with the event
btnColor_Click was created. Within the method, a random colour will be cre-

ated and added to the background and saved in the public property of the App

class.
using System.IO.IsolatedStorage;
using System.IO;
namespace IsolatedStoragel
{
public partial class IsolatedStorage : PhoneApplicationPage
{
public IsolatedStorage()
{
InitializeComponent();
Brush brush = (Application.Current as App).Background;
if (brush != null)
{
ContentPanel.Background = brush;
}
}
private void btnColor_Click(object sender, RoutedEventArgs e)
{
Random random = new Random();
SolidColorBrush solidColorBrush = new SolidColorBrush(Color.FromArgb(255,
(byte)random.Next(256), (byte)random.Next(256), (byte)random.Next(256)));
ContentPanel.Background = solidColorBrush;
(Application.Current as App).Background = solidColorBrush;
}
}
}

Page 52 4.6 Data Storage

Listing 45: MainPage.xaml.cs - IsolatedStroageSettings

Then for each state of the application (Launching, Activated, Deactivated
and Closing) the background colour must be saved or loaded. Therefore, two

methods are implemented in the App.xami.cs.

private void Application_Launching(object sender, LaunchingEventArgs e)

LoadSettings();
}
private void Application_Activated(object sender, ActivatedEventArgs e)
{
LoadSettings();
}
private void Application_Deactivated(object sender, DeactivatedEventArgs e)
{
SaveSettings();
}
private void Application_Closing(object sender, ClosingEventArgs e)
{
SaveSettings();
}

Listing 46: App.xaml.cs - IsolatedStorageSettings

The SaveSettings and LoadSettings methods use the IsolatedStorageSet-

tings object to store a key-value based data in the isolated storage.

void SaveSettings()

{
IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;
if (Background is SolidColorBrush)
settings["backgroundColor"] = (Background as SolidColorBrush).Color;
settings.Save();
}
void LoadSettings()
{
IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;
Color color;
if (settings.TryGetValue<Color>("backgroundColor", out color))
Background = new SolidColorBrush(color);
}

Listing 47: App.xaml.cs - Save and Load Method

4.6.2 IsolatedStorageFile

To create files and directories in the isolated storage the class IsolatedStor-
ageFile must be used. The System.I0 and System.IO.IsolatedStroage

namespace is required to access this class. In the following example a directory

4.6 Data Storage Page 53

named Subdirectoryl will be created and the content from a TextBox will be

saved in a file named HelloWorld.txt.

To create a new directory, a new object of the type IsolatedStorageFile is re-
quired. With the method GetUserStoreForApplication you get a new instance
of the IsolatedStorageFile class. For the folder the method CreateDirectory

with the name of the directory is invoked.

using System.IO;
using System.IO.IsolatedStorage;
namespace IsolatedStorageIl
{
public partial class MainPage : PhoneApplicationPage
{
// Constructor
public MainPage()
{
try
{
IsolatedStorageFile file =
IsolatedStorageFile.GetUserStoreForApplication();
file.CreateDirectory("Subdirectoryl”);
}
catch (IsolatedStorageException iso)
{
//error handling
}
}
}
}

Listing 48: MainPage.xaml.cs - IsolatedStorageFile

In the MainPage.xaml a TextBox named textboxl, a TextBlock, a Load and
Save button was added. The two buttons have a click event. Additionally a
Loaded event (Loaded="PhoneApplicationPage_Loaded") was added (Listing 49). The
Loaded event is used in the code-behind to disable the Load button on screen if

no file exist.

<phone:PhoneApplicationPage
x:Class="IsolatedStorageIIl.MainPage"

Loaded="PhoneApplicationPage_Loaded"
<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
<Button Content="Load" Margin="72,284,224,269"
Name="loadBtn" Click="loadBtn_Click" />
<Button Content="Save" Margin="255,284,40,269"
Name="saveBtn" Click="saveBtn_Click" />
<TextBox Margin="70,204,39,360" Name="textBox1" />

Page 54 4.6 Data Storage

<TextBlock Margin="83,182,40,411" Name="textBlockl"
Text="Enter Text:" />
</Grid>
</Grid>

</ph;he:PhoneApplicationPage>
Listing 49: XAML Code - Input IsolatedStorageFile
The code-behind method for the Loaded event is shown below. Here the
FileExists method is used to check whether the file exists or not. If so, the but-

ton is enabled, otherwise not.

private void PhoneApplicationPage_Loaded(object sender, RoutedEventArgs e)
{
IsolatedStorageFile file =
IsolatedStorageFile.GetUserStoreForApplication();
if (!file.FileExists("Subdirectoryl/HelloWorld.txt"))
{
loadBtn.IsEnabled = false;
}
}

Listing 50: Loaded Method

Listing 51 shows the method for the save button, which will store the file. In this
example the using statement wraps the objects. The using statement is for
classes that support the IDisposable interface. If the object is no longer needed,
the allocated resources are released (before the garbage collector comes)
[will12].

The method of the click event of the save button contains the code to write the
file. First, an object of the type IsolatedStorageFile is declared and instanti-
ated. With the CreateFile method a new file in the isolated storage is created,
opened and the IsolatedStorageFileStream is returned from the method. If
the file already exists, the original file is deleted and recreated. Subsequently,
with a StreamWriter the text of the textBox is written into the file, the content

textBox is cleared and the load button enabled.

private void saveBtn_Click(object sender, RoutedEventArgs e)
{

using (IsolatedStorageFile file =
IsolatedStorageFile.GetUserStoreForApplication())

{
using (IsolatedStorageFileStream stream =

file.CreateFile("Subdirectoryl/HelloWorld.txt"))

{

using (StreamWriter sw = new StreamWriter(stream))
{

sw.Write(textBox1l.Text);

sw.Close();

textBox1l.Text = "";

loadBtn.IsEnabled = true;

4.6 Data Storage Page 55

}
Listing 51: Save Button - IsolatedStorageFile

The method for the load event is very similar to the save event which is shown
below. Instead of the CreateFile Method the OpenFile method is used and a

StreamWriter is required to read the content of the file.

private void loadBtn_Click(object sender, RoutedEventArgs e)
{
using (IsolatedStorageFile file =
IsolatedStorageFile.GetUserStoreForApplication())
{
using (IsolatedStorageFileStream stream =
file.OpenFile("Subdirectoryl/HelloWorld.txt", FileMode.Open))
{
using (StreamReader sr= new StreamReader(stream))
{
textBox1l.Text = sr.ReadToEnd();
}
}
}
}

Listing 52: Load Button - IsolatedStorageFile

4.6.3 Isolated Storage Explorer Tool

The Windows Phone SDK provides a useful tool for dealing with the isolated
storage. It is the Isolated Storage Explorer Tool (ISETool.exe). With this line-
command tool you can list, copy and replace files and directories in the isolated
storage of the phone. After a standard installation of the SDK the tool will be
found in the following folder: C:\Program Files\Microsoft SDKs\Windows
Phone\v7.1\Tools\IsolatedStorageExplorerTool\ISETool.exe. The tool
works with the emulator as well as with a developer device. To use the ISETool,
the emulator or device must be running and the ProductID of the application is
needed. The ProductID attribute is contained in the WPAppManifest.xml file of
the project. Figure 43 shows the ID for the application, which was created in

this chapter.
WhAppManifestxm| X REETTERERE R MainPage.xaml

<?uml version="1.8" encoding="utf-8"?>

—l<Deployment xmlns="http://schemas.microsoft.com/windowsphone/2089/deployment™ AppPlatformver
-] <App xmlns="" ProductID="{|ff3h21eS—Sl?e—425f—Sﬁ?d—?acced?d29d3]-" Title="IsclatedStorageII”
<IconPath IsRelative="true™ IsResource="false"»ApplicationIcon.png</IconPath>

Figure 43: ProductID - WMAppManifes.xml

Page 56 4.6 Data Storage

In the command-prompt of Windows you can navigate to the ISETool (Figure
44).

EA Eingabeaufforderung |) e

C:“Program Files\Microsoft SDHs“Windows Phone*w?.1%Tools\IsolatedStorageExploreri

Figure 44: ISETool

Then the following command will copy the isolated storage to a folder named

,_temp® on drive ,,D:“.
ISETool.exe ts xd ff3b21e8-817e-425f-807d-7acced7d2ed3 D:_temp

With ,,ISETool.exe” the program is run. The command-line option ,,ts“ copies
the isolated storage directory from the emulator to the computer and ,,xd*
stands for the emulator. After that the ProductID and the target directory fol-

lows. When the program is executed a download report is listed (Figure 45).

B Eingabeaufforderung |ﬂ‘£_hj

C=“FProgram Files“Microsoft S5DKs“UWindows Phonew?.1%Tools“IsolatedS8torageExplorer|P
Tool>I53ETool.exe ts xd £f3b2ileB-817e—425f-88Yd—Yacced?d2edld D:~_temp

Download Started ... Into Folder: D:_temp

Download Successful Into Folder: D:s_tenp

%:\{;ugram Files“Microszoft EDKs“MWindows Phonew?_1%Tools“IsolatedStorageExplorerg
oo

Figure 45: Download IsolatedStorageFile

When the download is successful the target folder contains the isolated storage
from the emulator. Figure 46 shows the file and directory which was created in
the chapter 4.6.2.

= | = 5
@\,_/ﬂ < Lokaler Datentrdger (D:) » _temp » LsclatedStere b Subdirectoryl v|"¢|| Subdirectoryl durchsuchen }J'
Datei Bearbeiten Ansicht Extras 7
Organisieren » J Offnen = Drucken Brennen Meuer Ordner =« [0
4 Lokaler Datentrager (D:) “ MName "] HelloWorld.xt - Editor [EE -
4 temp
3 HelloWorld.txt i i i ?
4 IeolatedStore = |Qatel Bearbeiten Format Ansicht ? |
Hello world! -
Shared -
Subdirectoryl

Figure 46: IsolateStorageFile

4.6 Data Storage Page 57

4.6.4 XmlSerializer

To write simple text files, the method in chapter 4.6.2 is sufficient. If, however,
more complex objects and their data should be stored, you need a different
solution. With the XmlSerializer objects can be written in an XML file and then

be read again. For this, the System.Xml.Serialization reference is needed.

The following example shows how a generic list can be stored in an XML file. A
list named student with two objects is created. In region serialize the two ob-
jects will be stored in a file named Students.xml and in region deserialize the
file will be read again and displayed in a 1listBox named 1bStudents. In both
regions, a new instance of IsolatedStorageFile class and IsolatedStorage-
FileStream class is created. These have already been presented in Chapter
4.6.2. In serialize a new object of XxmlSerializer is created. A parameter of
the type List<Student> is passed. With the method Serialize the stream and
the list are passed. Then the list is cleared. In region deserialize the method
Deserialize is called. As parameter the stream is passed again. The return
value is converted back to an object of the type List. Then the list is assigned
to a XAML Ul element (1istBox) named 1bStudents.

using System.IO;
using System.IO.IsolatedStorage;
using System.Xml.Serialization;

namespace XMLSerzializer

{
public partial class MainPage : PhoneApplicationPage

{
private List<Student> student;
// Constructor
public MainPage()
{

InitializeComponent();
student = new List<Student>();

student.Add(new Student() { FirstName = "Jane",
LastName = "Doe", StudentNumber = 123456 });
student.Add(new Student() { FirstName = "John",
LastName = "Doe", StudentNumber = 987654 });

#region "serialize"
using (IsolatedStorageFile file =
IsolatedStorageFile.GetUserStoreForApplication())
{
using (IsolatedStorageFileStream stream =
file.CreateFile("Students.xml"))

{

XmlSerializer xs = new XmlSerializer(typeof(List<Student>));

Page 58 4.6 Data Storage

xs.Serialize(stream, student);
student = null;
}
}

#endregion

region "deserialize"
using (IsolatedStorageFile file =
IsolatedStorageFile.GetUserStoreForApplication())
{
using (IsolatedStorageFileStream stream =
file.OpenFile("Students.xml", FileMode.Open))
{
XmlSerializer xs = new XmlSerializer(typeof(List<Student>));
student = (List<Student>)xs.Deserialize(stream);
1bStudents.ItemsSource = student;
}
3

#endregion

}

public class Student

{
public long StudentNumber {get; set;}
public string FirstName { get; set; }
public string LastName { get; set; }

}
Listing 53: XML Serializer

With the ISETool, the created file can be viewed (Listing 54).

<?xml version="1.0"?>
<ArrayOfStudent xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<Student>
<StudentNumber>123456</StudentNumber>
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Student>
<Student>
<StudentNumber>987654</StudentNumber>
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Student>
</ArrayOfStudent>

Listing 54: XML File - Isolated Storage

4.6.5 LINQ to SQL

With Windows Phone OS 7.1 local databases can be created. In the previous
version (OS 7.0) only third-party solutions were available. Microsoft implemen-
ted LINQ to SQL to work with databases. LINQ to SQL is an object-orientated
approach, which maps an object model to a data model of a relational data-
base. The object model is expressed in the programming language. When an

application is running, the LINQ to SQL runtime will translate the Language In-

4.6 Data Storage Page 59

tegrated Query (LINQ) to the Structured Query Language (SQL) and sends
them to the database. The results of the database are then translated back to

objects that you can work with in your own programming language.

The following example which is based on the MSDN library [MSDN12], shows a
list that uses a local database as a storage where students with their first name,
last name and student number can be added and deleted. Figure 47 displays

the application.

MY APPLICATION

Students

First Name;
Last Name:

Student Number:

Create Entry Delete Entry

Figure 47: Ul - LINQ to SQL

In the TextBox elements you can enter the data of a student and with the
Create Entry button the entry will be added to a ListBox and stored in the
database. To delete an entry, the desired entry must be selected in the ListBox
(shown in red in Figure 47) and can then be removed from the list and

database with the Delete Entry button.

For the user interface the following XAML-Code is implemented instead of the
Grid named LayoutRoot of the default page. A ListBox with data binding (cf.

Page 60 4.6 Data Storage

chapter 4.5.3) is added to display the database entries. Two Button elements
(one for insertion and one for deletion) with a click event, three TextBox
elements for the input and three TextBlock elements for the description of the
input fields. Note that the text box for the student number has the attribute

inputscope="number", in order to change the keyboard layout for the input.

<Grid x:Name="ContentPanel" Margin="12,160,12,0" Grid.RowSpan="2">
<Grid.RowDefinitions>
<RowDefinition Height="5*"/>
<RowDefinition Height="5*"/>
</Grid.RowDefinitions>
<ListBox ItemsSource="{Binding 1lbStudents}" x:Name="1lbStudent"
Margin="6,6,12,11" Height="287">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel>
<TextBlock Text="{Binding FirstName}" />
<TextBlock Text="{Binding LastName}" />
<TextBlock Text="{Binding StudentNumber}" Margin="0,0,0,10" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
<Button Content="Create Entry" Height="72" Width="226" Margin="9,232,230,0"
Name="btnCreateEntry" Click="btnCreateEntry_Click" Grid.Row="1"/>
<Button Content="Delete Entry" Height="72" Width="226" Margin="224,232,6,0"
Name="btnDeleteEntry" Click="btnDeleteEntry Click" Grid.Row="1"/>
<TextBox Height="72" Margin="164,9,6,223" Name="txtBoxFirstName"
Text="" Width="286" Grid.Row="1" />
<TextBox Height="72" Margin="164,78,6,154" Name="txtBoxLastName"
Text="" Width="286" Grid.Row="1" />
<TextBox Height="72" Margin="164,151,6,81" Name="txtBoxStudentNumber"
Text="" Width="286" Grid.Row="1" InputScope="number"/>
<TextBlock Height="30" Margin="12,30,286,244" Name="textBlockl"
Text="First Name:" Grid.Row="1"/>
<TextBlock Height="30" Margin="12,103,286,171" Name="textBlock2"
Text="Last Name:" Grid.Row="1"/>
<TextBlock Height="30" Margin="12,180,286,94" Name="textBlock3"
Text="Student Number:" Grid.Row="1" />
</Grid>

Listing 55: XAML-Code - LINQ to SQL

In the following section, the required classes and methods for the application
will be explained step by step. In addition, the entire code-behind file (Main-

Page.xaml.cs) will be found in the appendix (Appendix I).

First, for each database application a reference to the assembly
System.Data.Linq is required. The assembly can be added under the menu

item Project -> Add Reference. Then, the following namespaces are required.

using System.Data.Lingq;

using System.Data.Linq.Mapping;
using System.ComponentModel;

using System.Collections.ObjectModel;

Listing 56: Namespaces for LINQ to SQL

4.6 Data Storage Page 61

Below the MainPage class, the Student class (Listing 57) is added which
represents the table of the database. With the Table attribute as a
metainformation on the top of the class, the Student class is associated with
the Student table in the database. The additional parameter Name specifies the

table name and is optional.

The properties of the class are decorated with the attribute Column and describe
the table columns. The Column attribute has a variety of properties for an exact
mapping to the database. The id property is declared as the primary key.

IsDbGenerated means that the database will generate the primary key.

DbType describes the data mapping between the object model type (CLR) and
the database type (SQL). For the other columns in the example there is no type
defined and thus the automatic mapping is used. A detailed “Type Mapping
Run-time Behavior Matrix” overview can be found on the Microsoft Developer
Network under http://msdn.microsoft.com/en-gb/library/bb386947.aspx
[MSDN13].

In addition, the id column contains a CanBeNull property with the value false
which indicates that the column can not be empty and an AutoSync property
that specifies the primary key is inserted only at the entry (for performance

reasons).

The Student class also implements the INotifyPropertyChanged and the
INotifyPropertyChanging interface. The former was already explained in
chapter 4.5.2 . The latter one is used for a better memory management of LINQ
to SQL. The change tracking of LINQ to SQL works by default with two copies
of an object. One object will remain unchanged and the other one can be
changed by the application. With the two objects the LINQ to SQL runtime can
determine which properties have been updated and submit only the changes to
the database. “The INotifyPropertyChanging interface allows the application
to notify the DataContext (Listing 58) when it is modifying a property that will ul-
timately be submitted as an update to the database. The DataContext can use
that notification as a trigger to create the copy. This way, only the items that are

actually changing need to be duplicated” [MSDN14].

‘ [Table(Name = "Student")]

Page 62 4.6 Data Storage

public class Student : INotifyPropertyChanged, INotifyPropertyChanging
{

private int id;

private string firstName;

[Column(IsPrimaryKey = true, IsDbGenerated = true, DbType = "INT NOT NULL Identity",
CanBeNull = false, AutoSync = AutoSync.OnInsert)]
public int ID

{
get
{

return id;

¥
set
{
if (id != value)
{
NotifyPropertyChanging("ID");
id = value;
NotifyPropertyChanged("ID");
}
¥
}
[Column]
public string FirstName
{
get
{
return firstName;
}
set
{

if (firstName != value)

{
NotifyPropertyChanging("FirstName");
firstName = value;
NotifyPropertyChanged("FirstName");

}

}
}

public event PropertyChangedEventHandler PropertyChanged;
private void NotifyPropertyChanged(string propertyName)

{
if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
¥
}

public event PropertyChangingEventHandler PropertyChanging;

private void NotifyPropertyChanging(string propertyName)

{
if (PropertyChanging != null)
{
PropertyChanging(this, new PropertyChangingEventArgs (propertyName));
¥
}

}
Listing 57: Student Table - LINQ to SQL

Below the MainPage and Student class the StudentsDataContext class (Listing
58) is added. The class acts as a link between the database table and the
objects and inherits from the DataContext class. The class is responsible for
reading, writing, updating, deleting table entries and also for tracking changes.

The DBConnectionString specifies the connection to the database which is

4.6 Data Storage Page 63

named Students.sdf. Then the base(connectionString) constructor is called
and the connection string is passed. Finally a database table named

StudentsTable is declared.

public class StudentsDataContext : DataContext
{
public static string DBConnectionString = "Data Source=isostore:/Students.sdf";
public StudentsDataContext(string connectionString)
: base(connectionString)

{13

public Table<Student> StudentsTable;

}
Listing 58: Data Context — LINQ to SQL

Listing 59 shows the code to create the database. The code is added to
App.xaml.cs inside the class constructer for the App class that the database is

present before the main page runs.

using (StudentsDataContext db = new StudentsDataContext
(StudentsDataContext.DBConnectionString))

if (db.DatabaseExists() == false)
{

}

db.CreateDatabase();

}
Listing 59: Create Database — LINQ to SQL

Above the class constructor in the MainPage class a global variable of the type
StudentsDataContext studentdDB is declared, which will be instantiated in the
constructor (Listing 60). Thus, the entire class has access to the
StudentsTable. The ObservableCollection is used for binding the data to the
Ul

private StudentsDataContext studentsDB;

private ObservableCollection<Student> students;
public ObservableCollection<Student> Students

{
get
{
return students;
b
set
{
if (students != value)
{
students = value;
NotifyPropertyChanged("Students");
¥
b
b

// Constructor
public MainPage()
{

InitializeComponent();

studentsDB = new StudentsDataContext

Page 64 4.6 Data Storage

(StudentsDataContext.DBConnectionString);
this.DataContext = this;

}
Listing 60: ObservableCollection - LINQ to SQL

Below the class constructor the oOnNaviagtedTo method (Listing 61) is
implemented in which the query is executed. The result of the query is placed
into a Students collection. Then the collection is assigned to a Ul element

(1istBox) named 1bStudents.

protected override void OnNavigatedTo
(System.Windows.Navigation.NavigationEventArgs e)
{
var studentsInDB = from Student student in studentsDB.StudentsTable
select student;

Students = new ObservableCollection<Student>(studentsInDB);
1bStudent.ItemsSource = students;
base.OnNavigatedTo(e);

}
Listing 61: OnNavigatiedTo - LINQ to SQL
Following, the OnNavigatedTo method, the NotifyPropertyChanged method for
data binding and the click events for the Ul buttons are defined (Listing 62).

In the CreateButton a new Student is instantiated and the contents of the input
fields are assigned to the properties of the Student. Then the object is added to
the collection. The InsertOnSubmit method belongs to the StudentsTable and
will register the object for insertion to the database. With the SubmitChanges

method the object will be added to the database.

In the method for the delete button the selected ListBox item will be casted into
a new Student object. Then the object is removed from the collection,
registered for deletion (DeleteOnSubmit) and finally removed from the database

(SubmitChanges).

public event PropertyChangedEventHandler PropertyChanged;
private void NotifyPropertyChanged(string propertyName)

{
if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs (propertyName));
}
}

private void btnCreateEntry_Click(object sender, RoutedEventArgs e)
{
Student newStudent = new Student();
{
newStudent.FirstName = txtBoxFirstName.Text;
newStudent.LastName = txtBoxLastName.Text;
newStudent.StudentNumber = Int64.Parse(txtBoxStudentNumber.Text);

4.6 Data Storage Page 65

}

Students.Add(newStudent);
studentsDB.StudentsTable.InsertOnSubmit(newStudent);
studentsDB.SubmitChanges();

1bStudent.ItemsSource = students;

txtBoxFirstName.Text = "";
txtBoxLastName.Text = "";
txtBoxStudentNumber.Text = "";
}
private void btnDeleteEntry_Click(object sender, RoutedEventArgs e)
{
Student deleteStudent = (Student)lbStudent.SelectedItem;
Students.Remove(deleteStudent);
studentsDB.StudentsTable.DeleteOnSubmit(deleteStudent);
studentsDB.SubmitChanges();
}

Listing 62: Methods for the Delete and Create Button - LINQ to SQL
4.7 Push Notifications

Push Notifications are messages that are sent from a web service or web ap-
plication (cloud services) to an application on the Windows Phone. Moreover,
Toast and Tile Notifications can be received even though the application is not
running. The information will be pushed by the cloud service in order to notify
the user that something of interest has happened (e.g. news in a social network

or weather alert). There are three types of Push Notifications:

Toast Notifications: A Toast Notification is an overlay message on the top of

the user's current screen.

Tile Notifications: A Tile Notification is represented on the Tile on the Start

Page.

Raw Notifications: A Raw Notification has no visual representation. They are
used to send information to an application and can only be processed when the

application is running, otherwise the information will be discarded.

Page 66 4.7 Push Notifications

e

® Title Content

e

Internet Explorer Test Title

Toast Notification

Tile Notification

Figure 48: Notifications

Push Notification Architecture

Figure 49 shows the various components that are involved in a Push Notifica-
tion. As a first step the application on the phone will request a Push Notification
URI from the push client service (#1, Figure 49). Then the push client service
will negotiate (#2, Figure 49) with the Microsoft Push Notification Service
(MPNS) and return an URI to the application (#3, Figure 49) that uniquely iden-
tifies the device on the network. In the next step the application can provide the
URI to the requested service (#4, Figure 49). Now the cloud service can send
notifications to the registered device(s). It will send a HTTP POST message
with an XML payload to the MPNS by using the URI which was provided by the
phone (#5, Figure 49). Then the MPNS will route the message as a Push
Notification to the phone (#6, Figure 49) [MSDN15].

Pushnctifcationto oevce

Figure 49: Concept of Push Notifications [MSDN15]

4.7 Push Notifications Page 67

The concepts of the three Push Notifications are very similar. Each notification
has an appropriate payload, except Raw Notifications. They do not have a par-
ticular payload format. There is no system-wide way to display a raw notification

and they can contain whatever data you like.

Because of the similarities of the different types of notification, in the following
example only a Toast Notification is described in detail. In the appendix there is
a complete example of Tile (Appendix II) and Raw Notification (Appendix II).
The examples of the notifications are based on the examples in the book “Ent-
wickeln fur Windows Phone 7.5” [cf. Getz11 660-683].

4.7.1 Toast Notification

Toast Notifications have the property that the received message will disappear
after a few seconds when the application is not running. The Notification can
contain three elements. A Title which is defined as wp:Textl in the XML
schema, a Content defined as wp:Text2 and a Parameter as wp:parm. Either
the Title or Content must be filled and the Parameter element can only be set
on Windows Phone OS 7.1 or greater. This example contains two projects, one
Windows Phone Application for receiving the Toast Message and a Console
Application that acts as web service for demonstration purposes. If only the
Windows Phone SDK is used to develop applications (and not a full version of
Visual Studio as in this work), Visual C# 2010 Express is needed to build a con-
sole application. It can be obtained under: http://www.microsoft.com/express
[Micr07].

For the Windows Phone Application the following namespaces are required.

using System;

using System.Diagnostics;

using System.Windows;

using Microsoft.Phone.Controls;
using Microsoft.Phone.Notification;

Listing 63: Toast Notification - Namespaces

At the beginning of the class (Listing 64), a channelName which is an arbitrary
name for the channel of the application is created and a HttpNotification-
Channel object is declared. The HttpNotificationChannel is the key class and

creates a channel between the MPNS and the Push Client. Then in the con-

Page 68 4.7 Push Notifications

structor the Find method will search for an existing channel object. If there is
none a new channel with the channelName will be instantiated. Then an event
handler for the event ChannelUriUpdated follows. Also an event handler follows
in the case of an error (ErrorOccured) and for receiving Toast Notifications

while the application is running (ShellToastNotificationReceived).

With the call of channel.Open the channel will be opened and the BindToShell-
Toast method will activate the channel for the toast events. The event handler
channel ShellToastNofificatonsReceived shows how to react to a toast noti-
fication when the application runs. Only toast and raw notifications can be
viewed within a running application. With the asynchrone method BeginInvoke
of the Dispatcher class the notification is shown in a MessageBox. In the chan-
nel_ChannelUriUpdated event the URI is shown in the output window of Visual
Studio. This is only for testing purposes because normally the URI is passed

back to the cloud service.

namespace ReceiveToast
{
public partial class MainPage : PhoneApplicationPage
{
string channelName = "ToastNotification";
HttpNotificationChannel channel;
// Constructor
public MainPage()

{

InitializeComponent();

channel = HttpNotificationChannel.Find(channelName);

if (channel == null)

{
channel = new HttpNotificationChannel(channelName);
channel.ChannelUriUpdated += channel_ChannelUriUpdated;
channel.ErrorOccurred += channel_ErrorOccured;
channel.ShellToastNotificationReceived +=

channel_ShellToastNotificationReceived;

channel.Open();
channel.BindToShellToast();

)

else

{
channel.ChannelUriUpdated += channel_ChannelUriUpdated;
channel.ErrorOccurred += channel ErrorOccured;
channel.ShellToastNotificationReceived +=

channel_ShellToastNotificationReceived;
)
}

void channel_ShellToastNotificationReceived(object sender,
NotificationEventArgs e)
{
Dispatcher.BeginInvoke(() => MessageBox.Show(String.Format
("{e} {1}", e.Collection["wp:Textl"], e.Collection["wp:Text2"])));

void channel_ErrorOccured(object sender,
NotificationChannelErrorEventArgs e)
{

switch (e.ErrorType)

4.7 Push Notifications Page 69

case ChannelErrorType.ChannelOpenFailed:
break;

}

void channel_ChannelUriUpdated(object sender,
NotificationChannelUriEventArgs e)
{

}

Debug.WriteLine(e.ChannelUri.ToString());

}

}
Listing 64: Receive Toast Notification

When the application is started, the channel URI can be found in the output

window of Visual Studio.

Output

Show cutput frem: | Debug - % | =

'UI Task' (Managed): Loaded 'System.Xml.dll’

'UI Task' (Managed): Loaded '‘Applicaticns\Install\CCBSFEC3-3431-4B89-8184-141EC31739
'UI Task' (Managed): Loaded 'Microsoft.Phone.dll’

'UI Task' (Managed): Loaded 'Microsoft.Phone.Interop.dll’
http://db3.notifv.live.net/throttledthirdpartyv/81 .88/ 88H7 78] cankudSkYs5 DNt JHAaAAR AL

‘ IGIARES (=] Output

Figure 50: Channel URI

The URI in Figure 50 is used in the console application for sending the Push

Notification.

For the console application the following namespaces are required:

using System;
using System.Text;
using System.Net;
using System.IO;

Listing 65: Send Toast-Namespaces

In the Main class a url string is defined and contains the channel URI which
was generated in the example above (Figure 50). In the variable data (Listing
66) the payload for a toast massage is created. Then a HTTP web request
(WebRequest) that posts the Toast Notification to the Microsoft Push Notification
Service is created. The ContentType is text/xml and the Method is POST. POST is
the only method which will be allowed to sent Push Notifications. Additionally,
the request object has two mandatory key/value pairs in the header property.
The value toast indicates that it is a toast message and the Notification-
Class determines the priority of the notification message. Then the payload of

the notification will be transformed to a byte array for the request stream. In the

Page 70 4.7 Push Notifications

try block the request stream is posted to the Microsoft Push Notification Ser-
vice. Each sent notification gets a response. The response object contains in-

formation about the transmission which will be displayed in the console.

namespace SendToast

{
class Program
{
static void Main(string[] args)
{
string url = "http://db3.notify.live.net/throttledthirdparty/01.00/AAH64HM3bkh" +
"0QJ0I4j32ucHqAgAAAAADAQAAAAQUZMS5207I1z0EQ2NDIDRKISMEVFMEQ" ;
string data = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
"<wp:Notification xmlns:wp=\"WPNotification\">" +
"<wp:Toast>" +
"<wp:Textl>Hello</wp:Textl>" +
"<wp:Text2>This is a toast notification!</wp:Text2>" +
"<wp:Param>/SecondPage.xaml?parameter=Hello World!</wp:Param>" +
"</wp:Toast> " +
"</wp:Notification>";
WebRequest request = WebRequest.Create(url);
request.ContentType = "text/xml";
request.Method = "POST";
request.Headers.Add("X-WindowsPhone-Target", "toast");
request.Headers.Add("X-NotificationClass", "2");
byte[] bytes = Encoding.UTF8.GetBytes(data);
using (Stream requestStream = request.GetRequestStream())
{
requestStream.Write(bytes, @, bytes.Length);
try
{
HttpWebResponse response = (HttpWebResponse)request.GetResponse();
string notificationStatus = response.Headers["X-NotificationStatus"];
string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
string connectionStatus = response.Headers["X-DeviceConnectionStatus"];
Console.Write(String.Format("X-NotificationStatus:{@}\r\nX-Subscription" +
"Status:{1}\r\nX-DeviceConnectionStatus:{2}",
notificationStatus, subscriptionStatus, connectionStatus));
Console.ReadKey();
catch (WebException ex)
{
Console.Write("WebExeption occured with Statuscode:" +
((HttpWebResponse)ex.Response).StatusCode.ToString());
Console.ReadKey();
¥
}
}
}
¥

Listing 66: Send Toast Notification

4.7 Push Notifications Page 71

Figure 51 shows the status of a successful delivered message.

-

files/1/C/Users/Charlie O'Brien.. Lo | B s

H—HotificationStatus:HReceived
Hn—SubscriptionStatustActive

H—DeviceConnectionStatus:Connected

L i} 3

Figure 51: Response Toast Natification

4.7.2 Tile Notification

The process of sending a Tile Notification is very similar to Toast Notification.
Only the header elements and the payload of the HTTP request is different.
The X-WindowsPhone-Target element (Listing 66) in the header contains token
instead of toast. Listing 67 shows the content of the payload. It contains a title

string, an URI for a background image and a count element.

<?xml version=\"1.0\" encoding=\"utf-8\"?>
<wp:Notification xmlns:wp=\"WPNotification\">
<wp:Tile>
<wp:BackgroundImage>URI backgroung image</wp:BackgroundImage>
<wp:Count>count</wp:Count>
<wp:Title>title</wp:Title>
</wp:Tile>
</wp:Notification>

Listing 67: Payload Tile Notification

An application tile on the Start screen of the emulator or device can be created
when the user taps and holds the application in the application list and then se-

lects “pin to start”.

4.7.3 Raw Notification

Raw notifications do not have a particular payload format. When the X-Win-
dowsPhone-Target is not present in the Header of the HTTP request it is a raw

notification.

Page 72 5 Testing

5 Testing

This chapter deals with the testing of an application. First, the debugging fea-
ture of Visual Studio is described, then a unit testing framework is presented

and finally the use of the Marketplace Test Kit is covered.

5.1 Debugging

In Visual Studio, it is possible to set so-called breakpoints in the code-behind
editor that pauses the execution of an application. The menu Debug provides
items such as: Start Debugging (F5), Start without Debugging (Ctrl+F5), Step
Into (F11), Step Over (F10) and Toggle Breakpoint (F9). With Toggle Break-
point (F9) you can set a breakpoint at a certain point in the source code. Also
with a mouse click within the C#-Editor at the left side in the gray area a break-
point can be placed. If the application is executed, Visual Studio stops at the
breakpoint. Then, with Step Into (F11) the code is executed line by line. If you
reach a point where a method is called, Visual Studio branches in this method.
With Step Over (F10) it is not branched.

Mainpagesamics o [e e A

“T§ Debugging.MainPage
12 | using Microsoft.Phone.Controls;
13
14 [Fnamespace Debugging
15 | {
16 = public partial class MainPage : PhonefpplicationPage
17 7
18 /f Constructor
19 = public MainPage()
20 {
21 InitializeComponent();
22
23 int numberl, number2, result;
24 numberl = 5;
25 number2 = 73

= 26 result = numberl + number‘25|

100% - 4

Mame Yalue Type
+ i@ this {Debugging.MainPage} | Debugging.MainPage

¥ numberl 5 int
¥ number? 7 int
W result 0 int

Figure 52: Breakpoint During Execution

5.2 NUnit for Windows Phone Page 73

5.2 NUnit for Windows Phone

NUnit is a unit testing framework for .NET languages. “Unit tests are one of the
corner stones of Extreme Programming (XP)” [Well09]. One programmer writes
the source code, while the other one writes test cases. The open source com-
munity CodePlex provides a version of NUnit for Windows Phone for an auto-
mated testing. With this project a single developer can implement tests for an
application. The project can be downloaded at http://nunitwindows
phone7.codeplex.com/. After the download, the project must be extracted to a
directory. When the project is opened in Visual Studio, the startup project Test-
Samples has to be selected. The Properties (Figure 54) dialog can be opened
when the solution (#1, Figure 53) is marked in the Solution Explorer via the item
menu Project — Properties .

Solution Explorer > B x

= B
(1] _j Solution 'NUnitTestRunnerWPT' (3 projects)
4 [NUnitTestRunnerWP7
=d| Properties
2] References

Figure 53: Solution Explorer - NUnit for Windows Phone

Solution ‘NUnitTestRunnerWP7 Property Pages

a Common Properties Current selection:

Startup Project

@ Single startup project

Project Dependencies
TestSamples -

Debug Source Files

Configuration Properties Multiple startup projects:
Project Action
NUnitTestRunnerWrP7 Mone
SampleTestsAssembly Mone
TestSamples Mone

Figure 54: Solution Properties

The following example is based on an example in the book “Windows Phone7-
Apps entwickeln” of Christian Bleske [cf. Bles11 316-323]. The two created
classes can also be found in the appendix (Appendix IV). First, a class named
Calc is created in the project “TestSamples”. It contains two methods, Add’® and

Div as shown in Listing 68.

3 In this method, an error was made on purpose to demonstrate the functionality.

Page 74 5.2 NUnit for Windows Phone

namespace TestSamples

{
public class Calc

{
public Calc()
{
}
public int Add(int parameterl, int parameter2)
{

return parameterl - parameter2;

}

public double Div(double parameterl, double parameter2)

{
return parameterl / parameter2;

}

}
Listing 68: TestSamples - Calc

Then another class named CalcTest is created which contains the test cases
(Listing 69). For this class the namespace Nunit.Framework is required. The
attribute TestFixture indicates that this class contains test cases and the

methods get the attribute Test.

using NUnit.Framework;

namespace TestSamples

{
[TestFixture]

public class CalcTest

{
public CalcTest()

{
X

[Test]
public void TestAdd()
{

}

[Test]
public void TestDiv()
{

}

}
Listing 69: TestSamples - CalcTest

The developer of NUnit has also implemented Assertions to compare a result of
a method with a specified value. The class Assert contains Comparison Tests,
Condition Tests and Utility Methods.

5.2 NUnit for Windows Phone Page 75

Comparison Tests

For comparison tests there are two methods available, Assert.AreEqual and
Assert.AreSame. The first one compares the result of a method with a value

and the latter one compares references to an objects.

[Test]

public void TestAdd()

{
Calc ¢ = new Calc();
Assert.AreEqual(30, c.Add(1e, 20));

}

[Test]

public void ObjektTest()

{
ObjektA a = new ObjektA();
ObjektA c = new ObjektA();
a=c;
Assert.AreSame(c, a);

}

Listing 70: Comparison Tests
Condition Tests
Condition Tests allow testing of true or false statements. For this the methods

Assert.IsTrue, Assert.IsFalse, Assert.IsNull and Assert.IsNotNull are

available.

[Test]
public void TestResultIsTrue()

{
Calc ¢ = new Calc();

Assert.IsTrue(c.ResultIsTrue());
}

Listing 71: Condition Test

Utility Methods

With Utility Methods the developer can implement own testing methods. There
are Assert.Ignore and Assert.Fail. Listing 72 shows the Assert.Fail meth-
od. The method TestFail creates an object of the class Calc and calls the
method Returnvalue. If the returned value is greater then 2, the parameter of

the method Fail is shown.

Page 76 5.2 NUnit for Windows Phone

[Test]
public void TestFail()

{

Calc ¢ = new Calc();
if (c.Returnvalue() > 2)

{
}

Assert.Fail("Fehler!");

}
Listing 72: Utility Method

When the application is started, there is a run button. When the button is

pressed, the tests will be executed (Figure 55).

MUnRit Test Runner

NUnNIt Tests

ExternalSampleTests.ExternalSampleTe

*.f st

Passed 48 ms

/ CalcTest.ObjektTest

Passed 28 ms

« CalcTest.TestAdd

5063 ms

CalcTest. TestDiv
v

Passed 22 ms

as CalcTest.TestFail
106 ms

Passed : 4 Ignored : 0

6290 ms Total : 6

Figure 55: Emulator - NUnit Tests
5.3 Marketplace Test Kit

The Marketplace Test Kit contains a set of automated and manual tests. The kit
helps the developer to prepare an application to be accepted in the Market-
place [MSDN16]. This tool is only available for Windows Phone OS 7.1. For ex-

ample it contains a validation of the XAP-archive size and the content files.

5.3 Marketplace Test Kit Page 77

There is also a capability detection. It shows the used capabilities of the applic-

ation that must be specified in the WMAppManifest.xml of the XAP-archive.

The Marketplace Test Kit can be opened when the project is marked in the
Solution Explorer of Visual Studio under the menu item Project — Open Mar-

ketplace Test Kit.

Page 78 6 Deployment

6 Deployment

This chapter describes how a completed application will be published. It in-
cludes the registration process in the App Hub, the submission flow and the

certification requirements.

6.1 The App Hub

A developer account on the App Hub is needed to publish an application in the
marketplace. Furthermore, an account enables the registration of a developer
device (up to three) [MSDN17]. The registration of a phone is also the only way

to deploy and test an application on a real device during development process.

For the membership there is an annual fee (USD 99,00 as of March 2012).

Only students have the possibility for a free membership.

For the registration there are some prerequisites. First, a Windows Live ID is
needed. Under https://signup.live.com/ an ID can be created. Then, cur-
rently, the membership payment can only be purchased with a credit card (as of
March 2012). Students need a valid DreamSpark registration
(https://www.dreamspark.com) which has to be associated with the Windows
Live ID. This is required during the registration process as a student in the App
Hub. If problems occur during the registration process to verify your student

status, you can contact the support of the App Hub.

6.2 Submission and Certification Page 79

6.2 Submission and Certification

Figure 56 shows the application submission flow.

TR) xap xap
OB Visual Studio 2010 * App il " xaPFile M an!
App Creation Submission J | Validation |
t.p Adding (S _ Certification G
Metadata i J " Testing dil * Signing dil
it |

Wlndoﬁs Phone
Marketplace

Figure 56: App Submission Flow [Chat11]

In the App Hub you can create a new application submission and in the first

step you have to upload the XAP-archive.

—Zmsdr

B & APP HUB

Windows Phone

App Submission
submit an app!
Figure 57: App Hub - Upload
After the XAP-archive is uploaded, a detailed description of an application has
to be made. The application must be assigned to a specific category (e.g.

games, music, social). Then you have to provide a description, keywords and

images for the artwork (e.g. screenshots and application tiles).

Page 80 6.2 Submission and Certification

App Submission

tell us about your app
Figure 58: App Hub - Description

In the next step you have to specify the price for the application. To distribute
the application for free the price must be set to 0,00. Also the target market

must be selected (e.g. worldwide distribution, Europe only, etc.).

App Submission

Figure 59: App Hub - Price

In the final step you can enter information for the testers of Microsoft and you
have to choose an option when the application will be published (e.g. “As soon

as it's certified”).
App Submission
DTSRI

app testing and certification

Figure 60: App Hub - Information for Testers

With a click on the “Submit” button, Microsoft will check the application. If all the

data for the application is present, the app will be submitted.

App Submission
EED DN NI

Thank you! Your app has been submitted.
Figure 61: App Hub - Submit

6.3 Certification Requirements Page 81

6.3 Certification Requirements

The submitted application have to meet several policies and requirements be-
fore it is signed by Microsoft. There are:

* Application Policies

+ Content Policies

* Application Submission Requirements

» Technical Certification Requirements

» Additional Requirements for Specific Application Types

Examples for these policies are: the size of the application (max 225 MB), con-
tents regarding violence, alcohol, drugs and so on. The details can be found on
the MSDN network under http://msdn.microsoft.com/en-
us/library/hh184843%28v=vs.92%29.aspx [MSDN18].

Page 82 7 Conclusion

7 Conclusion

With the Windows Phone SDK the development of mobile applications for Win-
dows Phone is very comfortable. The MSDN library represents a very good
documentation of the programming languages of Microsoft and is developer
friendly. Also in the forums and in the blogs of MSDN the developer will find
solutions quickly, if there are problems in a project. With regard to Silverlight,
the distinction between the Ul and the program logic is an interesting concept,
because the designers can concentrate on the visual appearance of the applic-

ation and the programmers to the logic.

Whether Microsoft will win with the Windows Phone in market share of smart-
phones remains to be seen. In any case, they are moving toward to closed sys-
tems and that should be viewed from a critical point of view. Proprietary and
closed systems lead to concentration that allows the operators of the platform

to benefit from network effects.

From the perspective of users and developers there is also power shift in favour
of the vendors of the operating system and the operators of the platform. A
reason for concern is the power to restrict content. Microsoft can decide which
applications can run on the phone and which not. Now their business includes

the approval of content, which opens the door to censorship.

Also, the lock-in effect in economics must be considered. Lock-in effect means
to make a customer dependent on a vendor for a product or service due to high
switching costs to another vendor. From a economic point of view, these lock-in

strategies have a negative effect on the welfare.

Xl

References

[Anat08]

[Bles11]

[Bosc11]

[Chat11]

[Ciap11]

[Getz11]

[Hube10]

[Kart12]

[Manj04]

Nandini S Anatharam: XAML and Silverlight. 2008, http://www.-
codeproject.com/Articles/24991/XAML-and-Silverlight, retrieved on
2012-04-13

Bleske, Christian: Windows Phone 7-Apps entwickeln. 2011,
Franzis Verlag GmbH

Andrea Boschin: Windows Phone 7 - Part #5: Panorama and
Pivot controls. 2011, http://www.silverlightshow.net/items/Win-
dows-Phone-7-Part-5-Panorama-and-Pivot-controls.aspx, re-
trieved on 2012-04-23

Chatterjee, Amit: Submitting the Windows Phone application to
the Marketplace. 2011,
http://blogs.msdn.com/b/amit_chatterjee/archive/2011/07/30/sub-
mitting-the-windows-phone-application-to-the-marketplace.aspx,
retrieved on 2012-03-07

Ciappara, Clive: Windows Phone 7 Development. 2011,
http://ciappara.com/2011/01/23/windows-phone-7-development/,
retrieved on 2012-03-07

Getzmann P., Hackfort S., Nowak P: Entwickeln fur Windows
Phone 7.5. Arichitektur, Framework, APIs. 2011, O'Reilly Verlag
Gmbh & Co. KG

Huber, Thomas Claudius: Silverlight 4. 2010, http://www.galileo-
computing.de/download/dateien/2320/galileocomputing_silver-
light_4.pdf, retrieved on 2012-02-27

Karthikeyan, Anbarasan: Working With Panorama Control in Win-
dows Phone 7. 2012, http://www.c-
sharpcorner.com/UploadFile/ae35ca/working-with-panorama-con-

trol-in-windows-phone-72/, retrieved on 2012-04-23

T Manijaly: Isolated Storage in .NET to store application data.
2004, http://www.codeproject.com/Articles/6535/Isolated-Stor-
age-in-NET-to-store-application-data, retrieved on 2012-04-15

Xl

[Meha09]

[Micr01]

[Micr02]

[MicrO3]

[Micr04]

[MicrO5]

[Micr06]

[Micr07]

[MSDNO1]

Puran Mehra: Managed code and unmanaged code in .NET.
2009, http://www.c-sharpcorner.com/uploadfile/puranindia/man-

aged-code-and-unmanaged-code-in-net/, retrieved on 2012-04-13

Microsoft: Visual Basic XNA. 2012, http://code.msdn.microsoft.-
com/windowsdesktop/Visual-Basic-XNA-29¢cd4963, retrieved on
2012-04-23

Microsoft News Center: Windows Phone 7: A Fresh Start for the
Smartphone. 2010,
http://www.microsoft.com/Presspass/Features/2010/oct10/10-
11WP7main.mspx, retrieved on 2012-03-05

Microsoft News Center: ‘People-Centric’ Windows Phone 7.5 Up-
date Released. 2011, http://www.microsoft.com/Presspass/Fea-
tures/2011/sep11/09-27WindowsPhone75.mspx, retrieved on
2012-03-16

Microsoft Answers: The Windows Marketplace for Mobile for win-
dows mobile 6.x devices is closing. 2012, http://answers.mi-
crosoft.com/en-us/winphone/forum/wp6n-wpmarketplace/the-win-
dows-marketplace-for-mobile-for-windows/ead87a1f-1291-429c-
a1ac-2406c684367b?tm=1331232502343, retrieved on 2012-03-
16

Microsoft: Windows Phone-Updateverlauf. 2012, http://www.mi-
crosoft.com/windowsphone/de-at/howto/wp7/basics/update-his-

tory.aspx, retrieved on 2012-03-16

Microsoft: Windows Phone SDK 7.1. 2012, http://www.microsoft.-
com/download/en/details.aspx?displaylang=en&id=27570, re-
trieved on 2012-03-16

Microsoft: Microsoft Visual Studio. 2012, http://www.microsoft.-
com/visualstudio/en-us/products/2010-editions/express, retrieved
on 2012-04-23

MSDN: The Silverlight and XNA Frameworks for Windows Phone.
2012, http://msdn.microsoft.com/en-
us/library/ff402528%28v=vs.92%29.aspx, retrieved on 2012-03-05

Xl

[MSDNO2]

[MSDNO3]

[MSDNO4]

[MSDNOS5]

[MSDNO6]

[MSDNO7]

[MSDNOS]

[MSDNOO]

[MSDN10]

[MSDN11]

MSDN: Gesture Support for Windows Phone. 2012, http://msdn.-
microsoft.com/en-us/library/ff967546%28v=vs.92%29.aspx, re-
trieved on 2012-03-14

MSDN: Silverlight Overview. 2012, http://msdn.microsoft.com/en-
us/library/bb404700%28v=vs.95%29.aspx, retrieved on 2012-03-
12

MSDN: What's New in Silverlight for Windows Phone. 2012,
http://msdn.microsoft.com/en-
us/library/hh237342%28v=vs.95%29.aspx, retrieved on 2012-03-
12

MSDN: x:Class Attribute. 2012, http://msdn.microsoft.com/en-
us/library/cc189082%28v=vs.95%29.aspx, retrieved on 2012-03-
19

MSDN: Application Manifest File for Windows Phone. 2012,
http://msdn.microsoft.com/en-
us/library/ff769509%28v=vs.92%29.aspx, retrieved on 2012-03-01

MSDN: PhoneApplicationPage Control for Windows Phone. 2012,
http://msdn.microsoft.com/en-
us/library/ff402539%28v=vs.92%29.aspx, retrieved on 2012-03-02

MSDN: Frame Rate Counters in Windows Phone Emulator. 2012,
http://msdn.microsoft.com/en-
us/library/gg588380%28v=vs.92%29.aspx, retrieved on 2012-04-
21

MSDN: Page Class. 2012, http://msdn.microsoft.com/en-us/lib-
rary/ms611620%28v=vs.92%29.aspx, retrieved on 2012-03-03

MSDN: Controls in Silverlight for Windows Phone. 2012,
http://msdn.microsoft.com/en-
us/library/ff426932%28v=vs.95%29.aspx, retrieved on 2012-03-04

MSDN: DataTemplate Class. 2012, http://msdn.microsoft.com/en-
us/library/system.windows.datatemplate.aspx, retrieved on 2012-
04-15

XV

[MSDN12]

[MSDN13]

[MSDN14]

[MSDN15]

[MSDN16]

[MSDN17]

[MSDN18]

[Petz10]

[Piet08]

MSDN: How to: Create a Basic Local Database Application for
Windows Phone. 2012, http://msdn.microsoft.com/en-
us/library/hh202876%28v=vs.92%29.aspx, retrieved on 2012-03-
19

MSDN: SQL-CLR Type Mapping (LINQ to SQL). 2012,
http://msdn.microsoft.com/en-gb/library/bb386947.aspx, retrieved
on 2012-04-19

MSDN: Local Database Best Practices for Windows Phone. 2012,
http://msdn.microsoft.com/en-
us/library/hh286406%28v=VS.92%29.aspx#BKMK _Minimizing-
MemoryUsage, retrieved on 2012-04-23

MSDN: Push Notifications Overview for Windows Phone. 2012,
http://msdn.microsoft.com/en-
us/library/ff402558%28v=vs.92%29.aspx, retrieved on 2012-03-17

MSDN: Windows Phone Marketplace Test Kit. 2012, http://msdn.-
microsoft.com/en-us/library/hh394032%28v=vs.92%29.aspx, re-
trieved on 2012-04-23

MSDN: How to: Register Your Phone for Development. 2012,
http://msdn.microsoft.com/en-
us/library/ff769508%28v=vs.92%29.aspx, retrieved on 2012-03-07

MSDN: Application Certification Requirements for Windows
Phone. 2012, http://msdn.microsoft.com/en-
us/library/hh184843%28v=vs.92%29.aspx, retrieved on 2012-03-
07

Petzold, Charles: Programming Windows Phone 7. 2010,
http://download.microsoft.com/download/5/0/A/50A39509-D015-
410F-A8F2-A5511E5A988D/Microsoft_Press _ebook Program-
ming_Windows_Phone_7_PDF.pdf, Microsoft Press

Pietschmann, Chris: Silverlight: Anatomy of an .XAP file. 2008,
http://pietschsoft.com/post/2008/03/Silverlight-Ana-
tomy-of-an-XAP-file.aspx, retrieved on 2012-03-02

XV

[Pren01]

[Pren02]

[Shin11]

[Soda01]

[Soda02]

[Trip12]

[Well09]

[WikiO1]

[Wilc10]

[Wild12]

[Will12]

Prengel, Frank: Die neue Anwendungsplattform im Uberblick.
2010, http://www.microsoft.com/germany/msdn/webcasts/librar-
y.aspx?id=1032453737, retrieved on 2012-03-19

Prengel, Frank: Architektur der Anwendungsplattform von Win-
dows Phone 7. 2010,
http://www.microsoft.com/germany/msdn/webcasts/library.aspx?
id=1032453977, retrieved on 2012-03-12

Shinder, Debra: Windows Phone 7 Security Implications. 2011,
http://www.windowsecurity.com/articles/Windows-Phone-7-Secur-

ity-Implications.html, retrieved on 2012-02-26

Sodani, Dinesh: What is Silverlight. 2010, http://beyondrelational.-
com/blogs/dinesh/archive/2010/08/01/what-is-silverlight.aspx, re-
trieved on 2012-02-07

Sodani, Dinesh: Different Ways to Bind Data Grid in Silverlight. ,
http://beyondrelational.com/blogs/dinesh/archive/2010/09/28/dif-
ferent-ways-to-bind-data-grid-in-silverlight.aspx, retrieved on
2012-03-04

Tripathi, Mani: Understanding Metro Style Applications. 2012,
http://www.infosysblogs.com/microsoft/2012/01/understanding_me

tro_style_appl.html, retrieved on 2012-03-05

Wells, Don: Unit Tests. 2009, http://www.extremeprogram-

ming.org/rules/unittests.html, retrieved on 2012-03-13

Wikipedia: Common Language Runtime. 2012, http://en.wikipedi-

a.org/wiki/Common_Language Runtime, retrieved on 2012-03-12

Wilcox, Jeff: Panorama and Pivot controls for Windows Phone de-
velopers. 2010, http://www.jeff.wilcox.name/2010/08/look-

ing-ahead-at-panorama-and-pivot/, retrieved on 2012-04-23

Wildermuth, Shawn: Essential Windows Phone 7.5. 2012, Pear-

son Education, Inc.

Wille, Christoph: Das using Schllsselwort. , http://www.aspheute.-
com/artikel/20020318.htm, retrieved on 2012-03-04

XVI

[Zieg10] Ziegler, Chris: Microsoft talks Windows Phone 7 Series develop-
ment ahead of GDC: Silverlight, XNA, and no backward compatib-
ility. 2010, http://www.engadget.com/2010/03/04/mi-
crosoft-talks-windows-phone-7-series-development-ahead-of-gdc/,
retrieved on 2012-02-26

XVII

Appendix

The appendix contains the complete source code for four examples of the work.

Appendix |

Listing 73 shows the complete code of the file MainPage.xaml.cs from the ex-
ample in chapter 4.6.5 LINQ to SQL.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

using Microsoft.Phone.Controls;

using System.Data.Linq;

using System.Data.Linq.Mapping;

using System.ComponentModel;

using System.Collections.ObjectModel;

namespace StudentsDatabase

{

public partial class MainPage : PhoneApplicationPage

{

private StudentsDataContext studentsDB;

private ObservableCollection<Student> students;
public ObservableCollection<Student> Students

{
get
{
return students;
}
set
{
if (students != value)
{
students = value;
NotifyPropertyChanged("Students");
¥
}
¥

// Constructor
public MainPage()

{
InitializeComponent();
studentsDB = new StudentsDataContext
(StudentsDataContext.DBConnectionString);
this.DataContext = this;
}

protected override void OnNavigatedTo
(System.Windows.Navigation.NavigationEventArgs e)
{
var studentsInDB = from Student student in studentsDB.StudentsTable
select student;

XVIII

Students = new ObservableCollection<Student>(studentsInDB);
base.OnNavigatedTo(e);
1bStudent.ItemsSource = students;

}

public event PropertyChangedEventHandler PropertyChanged;
private void NotifyPropertyChanged(string propertyName)

{
if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
¥
¥
private void btnCreateEntry_Click(object sender, RoutedEventArgs e)
{
Student newStudent = new Student();
{
newStudent.FirstName = txtBoxFirstName.Text;
newStudent.LastName = txtBoxLastName.Text;
newStudent.StudentNumber = Int64.Parse(txtBoxStudentNumber.Text);
¥
Students.Add(newStudent);
studentsDB.StudentsTable.InsertOnSubmit(newStudent);
studentsDB.SubmitChanges();
1bStudent.ItemsSource = students;
txtBoxFirstName.Text = "";
txtBoxLastName.Text = "";
txtBoxStudentNumber.Text = "";
¥
private void btnDeleteEntry_Click(object sender, RoutedEventArgs e)
{
Student deleteStudent = (Student)lbStudent.SelectedItem;
Students.Remove(deleteStudent);
studentsDB.StudentsTable.DeleteOnSubmit(deleteStudent);
studentsDB.SubmitChanges();
¥
¥
//Table

[Table(Name = "Student")]
public class Student : INotifyPropertyChanged, INotifyPropertyChanging
{

private int id;

private string firstName;

private string lastName;

private long studentNumber;

[Column(IsPrimaryKey = true, IsDbGenerated = true, DbType = "INT NOT NULL Identity",
CanBeNull = false, AutoSync = AutoSync.OnInsert)]
public int ID

{
get
{
return id;
¥
set
{
if (id !'= value)
{
NotifyPropertyChanging("ID");
id = value;
NotifyPropertyChanged("ID");
¥
}
¥
[Column]

public string FirstName

{

XIX

get
{
return firstName;
}
set

if (firstName != value)

{

NotifyPropertyChanging("FirstName");
firstName = value;
NotifyPropertyChanged("FirstName");

}

}
}
[Column]
public string LastName
{
get
{
return lastName;
}
set

if (lastName != value)

{

NotifyPropertyChanging("LastName");
lastName = value;
NotifyPropertyChanged("LastName");

}

}
}
[Column]
public long StudentNumber
{
get
{
return studentNumber;
}
set

if (studentNumber != value)

{
NotifyPropertyChanging("StudentNumber");
studentNumber = value;
NotifyPropertyChanged("StudentNumber");

}

}
}

public event PropertyChangedEventHandler PropertyChanged;

private void NotifyPropertyChanged(string propertyName)

{
if (PropertyChanged != null)
{
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
}
¥

public event PropertyChangingEventHandler PropertyChanging;

private void NotifyPropertyChanging(string propertyName)

{
if (PropertyChanging != null)
{
PropertyChanging(this, new PropertyChangingEventArgs (propertyName));
}
}
¥
//Datacontext

public class StudentsDataContext : DataContext

{

XX

public static string DBConnectionString = "Data Source=isostore:/Students.sdf";

public StudentsDataContext(string connectionString)
: base(connectionString)

{1

public Table<Student> StudentsTable;

}

Listing 73: Project "StudentDatabase" - MainPage.xaml.cs

XXI

Appendix Il

Listing 74 shows the code-behind to receive and Listing 75 to send a Tile Noti-

fication (cf. chapter 4.7 Push Notifications).

using System;

using System.Collections.Generic;
using System.Linqg;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

using Microsoft.Phone.Controls;
using System.Diagnostics;

using Microsoft.Phone.Notification;

namespace ReceiveTile

{

public partial class MainPage : PhoneApplicationPage

{

string channelName = "TileNotification";
HttpNotificationChannel channel;

// Constructor
public MainPage()

{
InitializeComponent();
channel = HttpNotificationChannel.Find(channelName);
if (channel == null)
{
channel = new HttpNotificationChannel(channelName);
channel.ChannelUriUpdated += channel_ChannelUriUpdated;
channel.ErrorOccurred += channel_ErrorOccured;
channel.Open();
channel.BindToShellTile();
}
else
{
channel.ChannelUriUpdated += channel_ChannelUriUpdated;
channel.ErrorOccurred += channel ErrorOccured;
}
}

void channel_ErrorOccured(object sender,
NotificationChannelErrorEventArgs e)

{
switch (e.ErrorType)
{
case ChannelErrorType.ChannelOpenFailed:
break;
}
}

void channel_ChannelUriUpdated(object sender,
NotificationChannelUriEventArgs e)

{

XXl

Debug.WriteLine(e.ChannelUri.ToString());

}

Listing 74: Project "ReceiveTile" — MainPage.xaml.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Net;

using System.IO;

namespace SentTile

{
class Program
{
static void Main(string[] args)
{
string url = "http://db3.notify.live.net/throttledthirdparty/01.00/AAH64H" +
"M3bkh0QJ0I47j32ucHgAgAAAAADAEAAAAQUZMS520jIz0EQ2NDIDRKISMEVFMEQ" 5
string data = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
"<wp:Notification xmlns:wp=\"WPNotification\">" +
"<wp:Tile>" +
"<wp:BackgroundImage></wp:BackgroundImage>" +
"<wp:Count>3</wp:Count>" +
"<wp:Title>New Messages</wp:Title>" +
"</wp:Tile> " +
"</wp:Notification>";
WebRequest request = WebRequest.Create(url);
request.ContentType = "text/xml";
request.Method = "POST";
request.Headers.Add("X-WindowsPhone-Target", "token");
request.Headers.Add("X-NotificationClass", "1");
byte[] bytes = Encoding.UTF8.GetBytes(data);
using (Stream requestStream = request.GetRequestStream())
{
requestStream.Write(bytes, 0, bytes.Length);
try
{
HttpWebResponse response = (HttpWebResponse)request.GetResponse();
string notificationStatus = response.Headers["X-NotificationStatus"];
string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
string connectionStatus = response.Headers["X-DeviceConnectionStatus"];
Console.Write(String.Format("X-NotificationStatus:{@}\r\nXx-" +
"SubscriptionStatus:{1}\r\nX-DeviceConnectionStatus:{2}",
notificationStatus, subscriptionStatus, connectionStatus));
Console.ReadKey();
catch (WebException ex)
{
Console.Write("WebExeption occured with Statuscode:" +
((HttpWebResponse)ex.Response).StatusCode.ToString());
Console.ReadKey();
}
¥
¥
¥
}

Listing 75: Project "SentTile" - Program.cs

XXl

Appendix Il

Listing 76 shows the XAML-code for the Ul. Listing 77 shows the code-behind
to receive and Listing 78 to send a Raw Notification (cf. chapter 4.7 Push Noti-

fications).

<phone:PhoneApplicationPage
x:Class="ReceiveRaw.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"
xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"
FontFamily="{StaticResource PhoneFontFamilyNormal}"
FontSize="{StaticResource PhoneFontSizeNormal}"
Foreground="{StaticResource PhoneForegroundBrush}"
SupportedOrientations="Portrait" Orientation="Portrait"
shell:SystemTray.IsVisible="True">

<!--LayoutRoot is the root grid where all page content is placed-->
<Grid x:Name="LayoutRoot" Background="Transparent">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="*"/>
</Grid.RowDefinitions>

<!--TitlePanel contains the name of the application and page title-->
<StackPanel x:Name="TitlePanel" Grid.Row="@" Margin="12,17,0,28">
<TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"
Style="{StaticResource PhoneTextNormalStyle}"/>
<TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0"
Style="{StaticResource PhoneTextTitlelStyle}"/>
</StackPanel>

<!--ContentPanel - place additional content here-->
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
<ListBox Margin="26,26,37,222" Name="1bStudents" >
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel>
<TextBlock Text="{Binding FirstName}" />
<TextBlock Text="{Binding LastName}" />
<TextBlock Text="{Binding StudentNumber}" Padding="0,0,0,10" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</Grid>
</Grid>

</phone:PhoneApplicationPage>
Listing 76: Project "ReceiveRaw" - MainPage.xaml

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

XXIV

using Microsoft.Phone.Controls;
using System.Diagnostics;

using Microsoft.Phone.Notification;
using System.IO;

using System.IO.IsolatedStorage;
using System.Xml.Serialization;

namespace ReceiveRaw
{
public partial class MainPage : PhoneApplicationPage
{
string channelName = "RawNotification";
HttpNotificationChannel channel;
private List<Student> student;

// Constructor
public MainPage()

{

InitializeComponent();

student = new List<Student>();

channel = HttpNotificationChannel.Find(channelName);

if (channel == null)

{
channel = new HttpNotificationChannel(channelName);
channel.ChannelUriUpdated += channel_ChannelUriUpdated;
channel.ErrorOccurred += channel_ErrorOccured;
channel.HttpNotificationReceived += channel HttpNotificationReceived;
channel.Open();
channel.BindToShellTile();

}

else

{
channel.ChannelUriUpdated += channel_ChannelUriUpdated;
channel.ErrorOccurred += channel_ErrorOccured;
channel.HttpNotificationReceived += channel_HttpNotificationReceived;

}

}

void channel_ErrorOccured(object sender,
NotificationChannelErrorEventArgs e)

{
switch (e.ErrorType)
{
case ChannelErrorType.ChannelOpenFailed:
break;
}
}

void channel_ChannelUriUpdated(object sender,
NotificationChannelUriEventArgs e)

{
Debug.WriteLine(e.ChannelUri.ToString());
¥
void channel_HttpNotificationReceived(object sender, HttpNotificationEventArgs e)
{
string message;
using (StreamReader reader = new StreamReader(e.Notification.Body))
XmlSerializer xs = new XmlSerializer(typeof(List<Student>));
student = (List<Student>)xs.Deserialize(reader);
message = reader.ReadToEnd();
¥
//Dispatcher.BeginInvoke(() => MessageBox.Show(message));
Dispatcher.BeginInvoke(() => lbStudents.ItemsSource = student);
}

public class Student

{
public long StudentNumber { get; set; }
public string FirstName { get; set; }

XXV

public string LastName { get; set; }

}
}

Listing 77: Project "ReceiveRaw" - MainPage.xaml.cs

XXVI

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Net;

using System.IO;

namespace SendRaw

{
class Program
{
static void Main(string[] args)
{
string url = "http://db3.notify.live.net/throttledthirdparty/01.00/AAEQxeTQY0O" +
"T5R42SYg6203a8AgAAAAADAQAAAAQUZM520j1z0EQ2NDIDRKISMEVFMEQ" 5
string data = "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
"<ArrayOfStudent>" +
"<Student>" +
"<StudentNumber>123456</StudentNumber>" +
"<FirstName>Jane</FirstName>" +
"<LastName>Doe</LastName>" +
"</Student>" +
"<Student>" +
"<StudentNumber>987654</StudentNumber>" +
"<FirstName>Jane</FirstName>" +
"<LastName>Doe</LastName>" +
"</Student>" +
"</ArrayOfStudent>";
WebRequest request = WebRequest.Create(url);
request.ContentType = "text/xml";
request.Method = "POST";
request.Headers.Add("X-NotificationClass", "3");
byte[] bytes = Encoding.UTF8.GetBytes(data);
using (Stream requestStream = request.GetRequestStream())
{
requestStream.Write(bytes, 0, bytes.Length);
try
{
HttpWebResponse response = (HttpWebResponse)request.GetResponse();
string notificationStatus = response.Headers["X-NotificationStatus"];
string subscriptionStatus = response.Headers["X-SubscriptionStatus"];
string connectionStatus = response.Headers["X-DeviceConnectionStatus"];
Console.Write(String.Format("X-NotificationStatus:{@}\r\nx-" +
"SubscriptionStatus:{1}\r\nX-DeviceConnectionStatus:{2}",
notificationStatus, subscriptionStatus, connectionStatus));
Console.ReadKey();
catch (WebException ex)
{
Console.Write("WebExeption occured with Statuscode:" +
((HttpWebResponse)ex.Response).StatusCode.ToString());
Console.ReadKey();
¥
¥
¥
¥
}

Listing 78: Project "SendRaw" - Program.cs

XXVII

Appendix IV

Listing 79 and Listing 80 show the complete code the test cases in chapter 5.2

NUnit for Windows Phone.

using System;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Ink;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace TestSamples

{
public class Calc
{
public Calc()
{
}
public int Add(int parameterl, int parameter2)
{
return parameterl - parameter2;
}
public double Div(double parameterl, double parameter2)
{
return parameterl / parameter2;
}
public bool ResultIsTrue()
{
return true;
}
public int ReturnValue()
{
return 3;
}
}
public class ObjektA
{
public ObjektA()
{
}
}
}

Listing 79: Project "TestSamples" - Calc.cs

using System;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;

using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using NUnit.Framework;

XXVIII

namespace TestSamples
{
[TestFixture]
public class CalcTest
{
public CalcTest()
{
}

//Comparison Tests

[Test]

public void TestAdd()

{
Calc ¢ = new Calc();
Assert.AreEqual(30, c.Add(1e, 20));

}

[Test]

public void TestDiv()

{
Calc ¢ = new Calc();
Assert.AreEqual(5, c.Div(10,2));

}

[Test]

public void ObjektTest()

{
ObjektA a = new ObjektA();
ObjektA ¢ = new ObjektA();
a=c¢;
Assert.AreSame(c, a);

}

//Condition Test

[Test]

public void TestResultIsTrue()

{
Calc ¢ = new Calc();
Assert.IsTrue(c.ResultIsTrue());

}

//Utility Method
[Test]
public void TestFail()
{
Calc ¢ = new Calc();
if (c.Returnvalue() > 2)

{
}

Assert.Fail("Fehler!");

}
}

Listing 80: Project "TestSamples" - CalcTest.cs

	Table of Contents
	List of Figures
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Motivation and Goal
	1.2 Version Numbers and Names
	1.3 Structure of this Paper

	2 Phone and Application Platform
	2.1 The Windows Phone
	2.2 Hardware Requirements
	2.3 Software Architecture
	2.4 The Metro Design
	2.5 Silverlight for Windows Phone
	2.5.1 XAML and Code-Behind

	3 Basics
	3.1 Windows Phone SDK 7.1
	3.2 Visual Studio Express
	3.3 Structure of the Project
	3.3.1 The Solution Explorer
	3.3.2 Properties Folder
	3.3.3 References Folder
	3.3.4 “Bin” and “obj” Folder
	3.3.5 Images
	3.3.6 Silverlight files

	3.4 The Emulator
	3.4.1 Frame Rate Counters

	3.5 The XAP-File
	3.6 The Application Life-Cycle

	4 Mobile Applications with Silverlight
	4.1 Orientation
	4.2 Layout
	4.2.1 Grid
	4.2.2 Stack Panel
	4.2.3 Pivot and Panorama

	4.3 Smartphone Controls
	4.3.1 Button
	4.3.2 HyperlinkButton
	4.3.3 TextBlock
	4.3.4 CheckBox
	4.3.5 RadioButton
	4.3.6 TextBox, PasswordBox and Keyboard Input
	4.3.7 ApplicationBar

	4.4 Navigation
	4.4.1 Code-Behind Solution
	4.4.2 Passing Parameters
	4.4.3 Sharing Data

	4.5 Data Binding
	4.5.1 Simple Data Binding
	4.5.2 Change Notification
	4.5.3 Data Binding with a Generic List

	4.6 Data Storage
	4.6.1 IsolatedStorageSettings
	4.6.2 IsolatedStorageFile
	4.6.3 Isolated Storage Explorer Tool
	4.6.4 XmlSerializer
	4.6.5 LINQ to SQL

	4.7 Push Notifications
	4.7.1 Toast Notification
	4.7.2 Tile Notification
	4.7.3 Raw Notification

	5 Testing
	5.1 Debugging
	5.2 NUnit for Windows Phone
	5.3 Marketplace Test Kit

	6 Deployment
	6.1 The App Hub
	6.2 Submission and Certification
	6.3 Certification Requirements

	7 Conclusion
	References
	Appendix
	Appendix I
	Appendix II
	Appendix III
	Appendix IV

