WIRTSCHAFTSUNIVERSITAT WIEN
Vienna University of Economics and Business

English title of the Bachelor
Thesis

German title of the Bachelor
Thesis

Author

last name, first name(s)
Student ID number
Degree program
Examiner

degree, first name(s), last name

I hereby declare that

Bachelor Thesis

ooRexx and the Apache PDFBox Library -
Nutshell Examples for Managing a PDF File

ooRexx und die Apache PDFBox-Library -
Nutshell-Beispiele fir die Verwaltung von PDF-Dateien

Dobrea, Cristina Nicoleta

0652377

J 033 561

ao. Univ.Prof. Mag. Dr. Rony G. Flatscher

WIRTSCHAFTS
UNIVERSITAT

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

nnnnnnnnnn

1. I have written this Bachelor thesis independently and without the aid of unfair or unauthorized
resources. Whenever content was taken directly or indirectly from other sources, this has been
indicated and the source referenced.

2. this Bachelor thesis has neither previously been presented for assessment, nor has it been

published.

3. this Bachelor thesis is identical with the assessed thesis and the thesis which has been submit-

ted in electronic form.

4. (only applicable if the thesis was written by more than one author): this Bachelor thesis was
written together with first name(s), last name(s). The individual contributions of each writer as
well as the co-written passages have been indicated.

Date

Signature

WIRTSCHAFTS
UNIVERSITAT

WIEN VIENNA

Bachelor Thesis s

AND BUSINESS

ooRexx and the Apache PDFBox Library —
Nutshell Examples for Managing a PDF File

Summer Term 2012

Author: Cristina Nicoleta Dobrea

Enrollment Number: 0652377
Examiner: ao. Univ.Prof. Mag. Dr.

Rony G. Flatscher

ooRexx and the Apache PDFBox Library

Abstract

This paper provides short examples for working with the Apache PDFBox library. Basic
information about the structure of a PDF file is provided to ease understanding. The nutshell

examples are written in ooRexx. The functionality of the Java library is imported using
BSF4o00Rexx.

Keywords

ooRexx, BSF400Rexx, PDFBox, PDF, object oriented programming

Cristina Nicoleta Dobrea

Content

Acknowledgements

Two people have helped and comfort me while writing the bachelor thesis and deserve my
appreciation. | now take the opportunity to thank them for their involvement.

First of all, thank you Prof. Dr. Flatscher for encouraging me to take over this ambitions
project. Also, thank you for keeping faith that | will successfully handle this venture.

Second, | would like to express my gratitude to a dear friend who reviewed my progress and
helped me to overcome difficulties.

ooRexx and the Apache PDFBox Library

Table of Contents

L7001 (=] o1 S U T P PORPR PRSPPI 3
Lo INETOTUCTION ..ttt sttt b e s bbbt sa e b e neenesbe b e 5
2. PDF — The Portable DOCUMENTt FOIMAL.........cccovireieiiinereceeeeee e e 6
D O I o =1 Yol o] o = Al I 1Y USRS 6
2.2, DOCUMENT STFUCTUIEeeiiiiiiiiiiiiii it e 8
G T [01 0] 1Y/ =To I @do] .4 0o 0= o £ S U 10
3.1. The Apache PDFBOX LIDrary......c ittt ee e e ectrree e e e e e e naare e e e e e e nnraaaee s 10
3.2, INVOIVEA LANGUAEESeeeeiieeeee ettt e e e e ettt e e e e e e sttt te e e e e e s e snataaeeeeeseeeessnsasaeeeeeeeesnnsreaeeens 11
3.2.1. The Principles of Object Oriented Programmingcccceceeererenereeieneneneneenees 11
Be2.20 JAV ittt e 13
.2.3. OOREXX ittt e 14
3.2.4. BSFAOOREXX ...cueiuiiiiiiiiieieiets sttt s 15
4. INSEAHALION GUIE ...ttt 17
L o To 1 0= o PP PP 17
4.2, BSFAOOREXX ceeueiieiiieiie ettt ettt et e s e e s e e s e e e e e e e nreeas 17
e T Vo Y- Yol g Y= I o DT = 1o TSR 17
5. USEA ENVIFONMENT ...c..cuiiiiiiitiicti ettt sttt 18
6. Managing a PDF File — NUtShell EXamMPIEScccoviieecieiieeeececeetese et 19
6.1. Create a New Document and Add TeXE......cooueiriiiiiiiinieenee et 19
Lo Vo o I [0 0 T =S o TN = B 1 SR 22
6.3, Merge PDF DOCUMENTES...ccco e 24
6.4. EXtract TeXt from PDF Fileoooiiiiiiieiieeeeeee ettt et 25
6.5. Search for String in PDF Filecccccuiiiii ettt et e e et e e arre e s araeeean 28
6.6. Split Up a PDF File by Handling Individual Pages..........cccueieeeiiiiiiiiiee e 31
6.7. Split Up a PDF File by SECLIONSeviiieiiiiee ettt e e et e e e e e ae e 34
6.8. Create NeW BOOKMAIK......cccuiiiiiieie ettt ettt e e e e e sareesnee e 36
6.9. Get Bookmarks 0N @ SiNGle LEVEIcccuveieiiiiiiie ettt e rae e 39
6.10. Get the Complete Bookmark Structure of @ PDF File......cccccoveieeiiiiiieiieeeeeee e 42
6.11. ENCrypt @ PDF DOCUMIENT et s 48
7. Conclusion and OULIOOK..........ceoeieiiirirereee e 51
S T = 1101 ToT o | =T o] | 52
LiSt Of ADDreVIatioNS......oiiieee e s s e e e 56
3

Cristina Nicoleta Dobrea

Content

Table of Source Code Listings

Listing 1: Using the BSF Class — OPLIONDccioieiiiiiiceseseeese sttt sneas 16
Listing 2: Using the BSF Class — OPLION 2ocuioieiiieeeeceeeeeeeeeee et 16
Listing 3: Using the BSF Class — OPLiON 3.......ouioioieeeeseeeeseetee et 16
Listing 4: PDF file creation and teXt INSEItiON..........cccvecveviieecieri et 19
LiSting 5: IMAQE INSEITION........cciivieiecieceeiete ettt ettt e e re et e s resbe et e sbeereessessresresnseneas 22
Listing 6: Merging dOCUMENTS........c.ccveeeiiiiiceeieiteeeete sttt et a e te e ae st e ssaebesreesaesesseesnensaeses 24
Listing 7: Text extraction - 00ReXX stream OBJECL.........c.cccveeeviriceeeeee e 25
Listing 8: Text extraction - Java Stream ODJECT..........cccccvriririrereeer e 26
Listing 9: Searching fOr @ SNcoee ettt st ee e enees 28
Listing 10: Splitting up a PDF file: handling page ObJECtSccoeveieirininecceeee e 31
Listing 11: Splitting up a PDF file: creating a splitting algorithmccoceoeveiinnencncene 34
Listing 12: Creating NEeW DOOKMAIKS.......c.cccviiiriieieeseeee ettt ee e 36
Listing 13: Extracting outline information: bookmarks on a single level...........cccccoovvrennnnenne. 39
Listing 14: Extracting outline information: the complete outline structure..........cccccoeeveevevernenen. 45
Listing 15: Encrypting @ PDF dOCUMENL..........coiiieiiiiceeeseseeteste ettt st s sneas 48

Table of Figures

Figure 1: Structure of a PDF Document [PDF Reference, Page 113]........cccoecevvvvecvevvneeceennenne. 9
Figure 2: Searching for a String - OULCOMIEcceeviiiieieie et 29
Figure 3: Creating new bookmarks - OULCOMEcceecviiiiiieiieicceeeeeee e 38
Figure 4: Extracting outline information: bookmarks on a single level - outcome. 41
Figure 5: Graphical display of ordered data treecccceeeevieiieeeviiecere e 42
Figure 6: Extracting outline information: the complete outline structure — outcome 46
Figure 7: Encrypting a PDF dOCUMENt - OUICOMEcocuiiiieeieieieeeeereeeee et 50

Table Directory

Table 1: All Acrobat Layers [AAODEL]cooiieeeeeree ettt 7
Table 2: Class hierarchy for PDTypelFont [PDFBox PDTypelFont].......ccccoovvvinninieceenennene. 21
Table 3: Standard fonts available via PDTypelFont class [PDFBox Standard 14 Fonts] 21
Table 4: Class hierarchy for FileInputStream [Java FilelnputStream]..........ccccoceeevnenencncnene. 22
Table 5: Class PDPageDestination and SUDCIaSSES..........ccooviirieeiieeeee e 37

ooRexx and the Apache PDFBox Library

1. Introduction

Developers will know that even though writing code is mainly about processing information,
sharing the outcome is an important aspect of their activity. The electronic infrastructure for
data exchange has become increasingly stable over the last two decades. On the other hand,
growing differences between operating systems and other software hold the hazard of
slowing down data circulation. As a consequence of this development, the Portable
Document Format has gained great popularity. This file format is an effective solution to

compatibility issues due to different hardware and software settings across computers.

While solutions for creating and reading PDF files are widely available, few people possess
the knowledge and the ability to manage content and manipulate components of a PDF file. It
is the challenge of this thesis to divulge basic knowledge about a PDF file's structure and

provide a practical method for file administration.

To fulfill this challenging assignment, a whole set of nutshell examples illustrates how certain
tasks can be achieved by using the PDFBox package. The language the programs are
written in is ooRexx, extended by the BSF4o0Rexx package for bridging the full Java
functionality to ooRexx. In order to confer a strong awareness for the presented practice,
some theoretical notions and backgrounds are explained in the initial chapters of this paper.
First, the file format centric of this research, the Portable Document Format, is introduced.

Technical details relevant to further proceedings are highlighted.

Next, all components involved in the creation of the examples are described in detail, starting
with the basic principle of object oriented programming the languages obey. To permit the
developer to re-enact the examples, instructions for installing all required components are

provided. In addition, the environment used in creating the nutshell examples is displayed.

After consolidation of knowledge and requirements for working with ooRexx and the Apache
PDFBox, the nutshells are presented as a solution to one scientific problem at a time. The
nutshells are listed in increasing order of functionality and complexity. They are meant to be

executed in the provided order, but can be carried out in arbitrary order.

Additional information is supplied whenever new classes and methods are implemented. The
full source code has been inserted in the paper, since the programs represent the fulfillment

of the research assignment.

The last section of this paper summarizes the added value provided by the implementation of

the PDFBox and drafts conceivable use-case.

Cristina Nicoleta Dobrea

PDF — The Portable Document Format

2. PDF — The Portable Document Format

One of the main problems that had to be solved in the digital area was the compatibility of
documents across users, computers and operating systems. While sharing content became
increasingly easy, displaying it in the original manner was a problem yet to be solved. In the
early 1990s a multitude of competing file formats were developed to answer to this demand.

Amongst them was the Portable Document Format (PDF) developed by ‘Adobe Systems’.

First released in 1993, the Adobe solution for creating and reading PDF files was not free of
charge. The second version, released one year later, allowed users to freely open and print
out PDF files true to the original. The suitable application for creating PDF files remained
chargeable until 2007. By 2008, the PDF became an open standard (ISO 32000:1:2008).
Ever since, the Portable Document Format became the most popular file sharing format,

independent of the hardware and the software used. [Wikil]

Adobe published six editions of the program, continuously improving its functionality. Since
the release of the open standard, three further extension levels have been made available by

Adobe in collaboration with contributing experts.

2.1. The Acrobat Layers

On a technical level, every PDF file consists of multiple layers. Each layer of abstraction has
its own independent set of rules. The lowest level of them all contains the raw data to be
included in the document. A PDF file consists of objects of the following types: Boolean,
numbers, stings, names, arrays, dictionaries - collections of objects indexed by names,
streams and the null object. The second layer is the COS Layer. On this level, data is
organized into a data tree. The Portable Document (PD) layer, also called PDModel
aggregates the simple objects and organizes them into logical structure like paragraphs. In
addition, useful intermediate level structures like Fonts and Images can now be implemented.
[Parker]

There are, however more layers to a PDF file. The following table provides an accurate

overview:

Package Description

Acrobat_Color_Layer | AcroColor is an HFT that allows you to access the AcroColor engine
(ACE), which controls color profile management for Adobe Acrobat.
Plug-ins can import the AcroColor HFT to use the color management
methods.

Acrobat_Forms_Layer | The Acrobat Forms plug-in exports its own Host Function Table
(HFT), whose methods can be used by other plug-ins.

ooRexx and the Apache PDFBox Library

AS_Layer

The Acrobat Support (AS) layer of the core API provides a variety of
utility methods, including platform-independent memory allocation
and fixed-point math utilities. In addition, it allows plug-ins to replace
low-level file system routines used by Acrobat (including read, write,
reopen, remove file, rename file, and other directory operations). This
enables Acrobat to be used with other file systems, such as on-line
systems.

AV_Layer

The Acrobat Viewer (AV) layer of the core APl (also known as
AcroView) allows plug-ins to control Acrobat and modify its user
interface. Using the AV methods, a plug-in can add menus and menu
items, add buttons to the toolbar, open and close files, display simple
dialog boxes, and perform many other application-level tasks. Plug-
ins must use AV layer methods to be accessible through the Acrobat
viewer's user interface.

COS_Layer

The Cos layer provides access to the low-level object types and file
structure used in PDF files. PDF documents are trees of Cos objects.
Cos objects represent document components such as bookmarks,
pages, fonts, and annotations, as described in Section 3.6,
"Document Structure"”, in the PDF Reference.

Digital_Signatures

Digital signatures allow a person to attest to something about a
document by signing their name to it. An Acrobat signature in a
document is bound to that document in such a way that altering the
signed document or moving the signature to a different document
invalidates the signature.

Error_Messages

PDFEdit_Layer

The PDFEdit API provides easy access to PDF page contents. With
PDFEdit, your plug-in can treat a page's contents as a list of objects
rather than manipulating the content streams marking operators.

PDF_Library

PD_Layer

The Portable Document (PD) layer of the core API (also called
PDModel) is a collection of object methods enabling plug-ins to
access and manipulate most data in a PDF file.

PDSEdit_Layer

PDF files are well known for representing the physical layout of a
document; that is, the page markings that comprise the page
contents. In addition, PDF versions 1.3 and later provide a
mechanism for describing logical structure in PDF files. This includes
information such as the organization of the document into chapters
and sections, as well as figures, tables, and footnotes.

Table 1: All Acrobat Layers [Adobel]

The PDModel is the most important layer to the purpose of this paper. The upcoming nutshell

examples aim to access and manipulate the data of a PDF file. The way of operating objects

will be explained in detail later in this paper.

Cristina Nicoleta Dobrea

PDF — The Portable Document Format

2.2. Document Structure

A PDF file can be regarded as a data tree. Objects within the file constitute the tree nodes.

Relationships between the node items are captured in dictionaries.

The root element of the document structure tree is called the document catalog. “The catalog
contains references to other objects defining the document’s contents, outline, article threads,
named destinations, and other attributes. In addition, it contains information about how the
document should be displayed on the screen, such as whether its outline and thumbnalil
page images should be displayed automatically and whether some location other than the
first page should be shown when the document is opened” [PDF Reference, page 112]. The
figure below illustrates the entries of the catalog dictionary and the hierarchical relationships
between them.

One of the dictionaries of the document catalog is the ‘Page Tree’ dictionary, which contains
all of the document page objects. “The leaves of the page tree are page objects, each of
which is a dictionary specifying the attributes of a single page of the document” [PDF
Reference, page 119].

How to access certain node items of the document catalog will be shown in the nutshell
examples of this paper. Further details are provided when dealing with the dictionaries and

objects in question.

ooRexx and the Apache PDFBox Library

Content
stream
Thumbnail
Page s
Page Annotations
tree
Page
Outline
entry
Outhine E
hierarchy X
Outline
entry
Document catalog [
Thread Bead
Article .
threads [
Bead
I
Thread
Named
destinations
Interactive
form
Figure 1: Structure of a PDF Document [PDF Referenc e, Page 113]

Cristina Nicoleta Dobrea

Involved Components

3. Involved Components

Several components have been used in generating the nutshell examples presented later on
in this paper. At the very top, the Apache PDFBox Library is used for working with PDF files.
Since the Apache PDFBox Library is a Java tool, the Bean Scripting Framework for Open

Object Rexx is needed to enable developer’'s access to the Java library from ooRexx.

The following section will provide a description of the relevant components mentioned above.

3.1. The Apache PDFBox Library

Adobe still holds the patent for the Portable Document Format, but permits the development
of complying software under a royalty-free license [Adobe2]. One of the applications leant on
the PDF standard is the PDFBox, licensed under the Apache License v2.0. The PDFBox is
an open source Java library allowing access to the inner layers of a PDF file and facilitating
creation, manipulation and text extraction of the document and its components, to nhame just
a few. [PDFBox1]

The convenience of using the PDFBox rises out of the embedding of PDF files in self-
developed software. Since the main purpose of developing software is the processing of
information, the outcome can be captured in a PDF document and made available for other
users independent of used applications, software and hardware. The PDFBox also allows

importing content from a PDF file for further processing.

Following the principles of the object oriented paradigm, the PDFBox library is a collection of
classes with inbuilt methods for creating or accessing every item matching the PDF file
format. Documentation for all available classes is published at the PDFBox site at the
Apache webpage. Packages of the application programming interface (API) are split up
according to features they possess. Inside these packages, classes are hierarchically
ordered and subclasses inherit the methods of parent classes. The packages are in

compliance with other Java libraries and do not require a complex installation procedure.

10

ooRexx and the Apache PDFBox Library

3.2. Involved Languages

The first part of this chapter describes the two programming languages used in the creation
of the examples. Java, as well as ooRexx, is an object oriented programming language.
Since this paper presents an introduction to using ooRexx and BSF400Rexx, the author does
not expect the reader to possess in depth knowledge of the components involved. Before
shortly presenting the two mentioned languages, a short introduction in the principles of
object oriented programming (OOP) is meant to create a fundamental understanding for the

sections to come.

3.2.1. The Principles of Object Oriented Programmin g

There are four fundamental styles of programming languages, called paradigms, one of
which is the object oriented paradigm. The main idea behind OOP is the usage of objects,
characterized by its behavior and capable of interacting and carrying out tasks. [Husband et

al.]

This principle is similar to the “human interaction with real world phenomena”. Objects are
the instances of classes. A class represents a concept and defines the proprieties and
functions of its appending objects. It can be used as a template for creating objects. Since
objects of a class have many similarities, the functionality can be easily manipulated by

changing the class rather than changing each individual object. [Ngrmark]

Thinking of the real world, every item that surrounds us can be thought of as an object.
Objects can be categorized into groups according to their characteristics. For example, think
of a hand as a general concept. This general concept represents a ‘class’. The hand has its
own individualities like the form and the set of functions it can fulfill. The human body has two
objects of the type hand. In addition to the general functionality of any hand, a particular
hand object, be it the right hand or the left one, has additional or slightly changed properties.
[Nirosh]

Old procedural, non-object oriented programming mainly consists of a list of commands to be
carried out. Items are created manually and properties are assigned individually. Increased
complexity of the application typically leads to vast program size and increased vulnerability
of the code. Since every piece of the code can be modified, it represents a potential source
of errors. In contrast, in OOP, “data as well as operations are encapsulated in objects.
Information hiding is used to protect internal properties of an object. Objects interact by

means of message passing”. [N@rmark]

1 Cristina Nicoleta Dobrea

Involved Components

Other characteristics of OOP are:

“Classes are organized in inheritance hierarchies”. Each class is an extension or
specialization of the preceding class, while the object inherits properties from all parent
classes. To stick with the example of human body parts, the class ‘finger’ is a subclass of
‘hand’, which is also a subclass of ‘human body part’. As a result, the class ‘finger’ inherits
the proprieties of both, ‘hand’ and ‘human body part’. Inheriting functionality from other
classes substantially eases the effort of programming and allows defining a fine-grained set

of specialized functions for every subclass. [Ngrmark]

The object-oriented paradigm has gained great popularity in recent times and many

programming languages now support OOP.

12

ooRexx and the Apache PDFBox Library

3.2.2. Java

The Java programming language has been developed by James Gosling and released by
Sun Microsystems — which eventually became the Oracle Corporation — by 1995. Java
follows the object oriented paradigm of programming. Since 2007, most of the Java

technologies were published under the GNU General Public License.

Developers tried to implement as few platform dependencies as possible. This would
guarantee that a code, once written, would run on other machines and not fail due to different
operating systems. James Gosling summarized this principle as “WORA: write once, run

anywhere”.
Other principles lying at the very bottom of Java are:

‘It should be "simple, object-oriented and familiar"
- It should be "robust and secure”
- It should be "architecture-neutral and portable”
- It should execute with "high performance”
- It should be "interpreted, threaded, and dynamic™ [Wiki2]

The current version is the Java Standard Edition 7, released in 2011, extended by a number
of updates. Recent statistics show that, even though Java has lost leadership among most

used programming languages, it is still far away from fading. [Tiobe]

13 Cristina Nicoleta Dobrea

Involved Components

3.2.3. ooRexx

“Rexx is a procedural programming language that allows programs and algorithms to be
written in a clear and structured way. It is easy to use by experts and casual users alike.
Rexx has been designed to make easy the manipulation of the kinds of symbolic objects that
people normally deal with such as words and numbers. Although Rexx has the capability to
issue commands to its host environment and to call programs and functions written in other
languages, Rexx is also designed to be independent of its supporting system software when

such commands are kept to a minimum.” [RexxLA]

The birth year of the Restructured Extended Executor (Rexx) language interpreter is known
to be 1979, when the IBM employee Mike F. Cowlishaw laid the fundament of a "human
centric language”. Several years later, Rexx became the official strategic procedural

(scripting) language of IBM's operating systems. [Flatscher]

In the late 1980’s, work began for developing an object oriented version of Rexx, fulfilling the
programming needs of the time. It was only 1997 that the commercial available successor of
Rexx, the object Rexx was released. By the mid 2000’s, IBM handed the source code for
Rexx and object Rexx to the ‘Rexx Language Association’. Rexx and its successor became
available as open source software. In 2005, the Object Oriented Rexx was released.
[Flatscher]

“Open Object Rexx (0oRexx) is an Open Source project providing a free implementation of
Object Rexx. ooRexx is distributed under Common Public License (CPL) v1.0. Object Rexx
is an enhancement of classic Rexx; a powerful, full-featured programming language which
has a human-oriented syntax. The Open Object Rexx interpreter allows you to write
programs procedurally as well as in an object-oriented fashion. Its main benefits include:

« Easyto use and easy to learn

« Upwardly compatible with classic Rexx

« The ability to issue commands to multiple environments

» Offers powerful functions

« Based on English-like commands

« Enhanced with full object orientation

« Designed for object-oriented programming, and also allows Rexx conventional

programming
» Provides a standard Rexx API to develop external function libraries written in C”

[ooRexx1]

14

ooRexx and the Apache PDFBox Library

“Open Object Rexx includes features typical of an object-oriented language, such as
subclassing, polymorphism, and data encapsulation. It is an extension of the classic Rexx
language, which has been expanded to include classes (a base set of classes is supplied),
objects, and methods. These extensions do not replace classic Rexx functions or preclude

the development or running of classic Rexx programs.

Open Object Rexx is fully compatible with earlier versions of IBM REXX Interpreters that
were not object-oriented and compatible with other Open Source Rexx interpreters currently

available.” [ooRexx1]

3.2.4. BSF400Rexx

As mentioned before, the Apache PDFBox is a Java library. The first challenge when
managing a PDF file by using the ooRexx programming language is establishing a
connection to Java objects and allowing implementation of Java methods. For means of
addressing Java classes and objects, the Bean Scripting Framework for object oriented Rexx
(BSF4o0Rexx) has been developed as an extension for ooRexx. This library allows bridging
full functionality of the Java Runtime Environment to the human-centric programming

language ooRexx without requiring knowledge of the Java programming language.

Whenever the BSF class is used to camouflage Java as ooRexx, the fully qualified Java
class name has to be provided. Moreover, when importing a Java class, use of the exact
case is mandatory. Afterwards, the imported Java class can be used in the code as any

regular ooRexx class.

Objects created from Java classes can be addressed by supplying the correct method name
and arguments, as given in the Java documentation. However, the syntax will be written in

0oRexx, ensuring less programming effort compared to programming in Java.

Using BSF.cls, the developer can create Java objects and operate with the build-in
arguments and functions. BSF needs fully qualified Java class names. Note that the use of
the exact case is mandatory. To bridge any Java class to ooRexx, the user can chose

between two different options regarding the syntax:

For one, the statement ‘name=BFS.import(“className”)’ at the beginning of the
source code imports the class without instantiating an object. This procedure is
recommended whenever multiple objects of the same class needs to be created, since it

avoids redundancy of repeatedly importing the same class for multiple objects. To create an

15 Cristina Nicoleta Dobrea

Involved Components

--import Java class
importdoc = BSF.import("org.apache.pdfbox.pdmodel.PDDocument”)

--create class object
doc = importdoc ~new()

--supply class BSF
.. requires BSF.cls

affiliated object, simply use the syntax ‘objectl=name~new’

Listing 1: Using the BSF class — optionl

Another option for importing Java classes is importing a class and creating an object at once.
This action is performed by the statement ‘object2=.bsf~new(“className”)'. This
procedure is practical since the importing of the classes and the creating of object are tied

together, increasing transparency and preventing extensive length of the application code.

--import and instanciate class
doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")

--supply BSF class
.. requires BSF.cls

Listing 2: Using the BSF class — option 2

By now, regardless of the procedure chosen, the class has been imported and am object
created. Class names for the PDFBox are available in the PDFBox documentation and can
be looked up on the Apache PDFBox Website. To handle the object, implement the methods
provided in the documentation. The methods listed in the documentation are typically
displayed as ‘method(argument)’ . In contrast to Java, ooRexx does not call for the

brakes after the method name if no argument is provided.

Also, for loading a class in order to access the class methods, the following syntax is

adequate: ‘object3=BSF.loadClass(“className”)~method’

--import class to retrieve methods
doc =BSF.loadClass("org.apache.pdfbox.pdmodel.PDDocument") ~save

--supply BSF class
::requires BSF.cls

Listing 3: Using the BSF class — option 3

Last, at the end of the code, a ‘“::requires’ directive is used to address the BSF.cls class.

The BSF400Rexx project was registered at SourceForge.net and is available free of charge.

16

ooRexx and the Apache PDFBox Library

4. Installation Guide

To help with the application of the required programs, the following section supplies
instructions for correct installation of all the involved components as they have been

described above.

4.1. ooRexx

For download, the ooRexx.net website will redirect the user to the SourceForge.net site of
ooRexx. Choose the package which description is closest to your operating system and

environment. Download the file and follow the installation procedure, as it is self-explanatory.

4.2. BSF4o00Rexx

For download of the ooRexx extension for addressing Java classes and objects, go to the
BSF400Rexx homepage at SourceForge.net and download the latest version of the package,
available for ooRexx version 4.1.0 or higher. Download and unzip the archive and choose the
installation according to your operating system. A new CLASSPATH variable should now

have been added to the environment variables.

4.3. Apache PDFBox

Installation of the Apache PDFBox is quite simple and not at all time consuming, provided the
right package is being retrieved. The Apache PDFBox is an open source project. This means

that the project is and will remain available free of charge.

To install the PDFBox library, visit the PDFBox homepage and navigate to the download
section. The newest available version is automatically suggested for download. If the user

desires to load a different version, a link will lead to all previous releases.

For means of quick installation, download the pre-build standalone binary version provided
as a .jar file. This standalone version contains all classes of the PDFBox. Check the integrity
of the download by verifying the signature and the checksums, as recommended in the

download section of the website.

After download and verification, add the file path to the CLASSPATH system variable of the

environment variable. The PDFBox library is now ready for use.

17 Cristina Nicoleta Dobrea

Used Environment

5. Used Environment

The following operating system was running on the computer involved in creating the nutshell

examples:
Windows 7 Enterprise Edition with Service Pack 1, 64-bit system.

The ooRexx version 4.1.0.6441 published by the Rexx Language Association has been used

for creating the examples of this paper.
It has been extended by the BSF400Rexx package 4.10 as released in June 2012.

Also, the Java version running on the machine the examples have been created on is 7.0.40
— 32 bit.

For creating the nutshell examples, the Apache PDFBox version 1.7.0. has been installed.
By the end of July 2012, a newer version - PDFBox 1.7.1.- has been released. Although
creating the code was accomplished by using the older library, full compatibility with the new

release has been tested.

In addition, the VIM editor version 7.3 has been used for writing the code. Version 7.1 or

higher supports the ooRexx syntax.

18

ooRexx and the Apache PDFBox Library

6. Managing a PDF File — Nutshell Examples

In this chapter, the actual source code for handling a PDF file by using the Apache PDFBox
with ooRexx and BSF400Rexx is presented. Eleven nutshell examples have been created to
illustrate accomplishment of diverse tasks. The complete source code has been added to
each section, since it represents the completion of the assignment. Whenever needed,
additional information on classes and objects are provided, same as definitions of PDF file

components.

6.1. Create a New Document and Add Text

The first example illustrates how a new writeable document is created. In order to accomplish

this task, some simple steps need to be taken as demonstrated below.

--create a new file and add a blank page

doc = .bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")
page = .bsf ~new("org.apache.pdfbox.pdmodel.PDPage")
doc ~addPage(page)

--create a content stream to hold data
contentStream = .bsf ~new("org.apache.pdfbox.pdmodel.edit.PDPageContentStream ", doc, page)

--create font object
font = BSF.loadClass("org.apache.pdfbox.pdmodel.font.PDTypelFont") ~HELVETICA_BOLD

--define content stream

contentStream ~beginText

contentStream ~setFont(font , 12)

contentStream ~moveTextPositionByAmount(100, 700)
contentStream ~drawString("This is page ONE of ONE")
contentStream ~endText

contentStream ~close

--close and save the file
doc ~save(doc.pdf)

doc ~close

::requires BSF.cls

Listing 4: PDF file creation and text insertion

In the current example, four Java classes have been imported.

The PDDocument class (fully qualified Java class name:

19 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

org.apache.pdfbox.pdmodel.PDDocument) is an extension of the
java.lang.Object class. “This class is the in-memory representation of the PDF
document.” PDDocument is used to create a new PDF file. For the document to be valid, at
least one page needs to be added. This can be accomplished by using the PDPage class
(fully qualified Java class name: org.apache.pdfbox.pdmodel.PDPage), another
extension of the java.lang.Object class. “This represents a single page in a PDF
document”. After creating a new file and adding a blank page, the document needs to be

saved and closed.

If adding text to the document is desired, two other classes need to be implemented. The first

one, PDPageContentStream, creates the data stream for writing to the page object.

“A content stream is a PDF stream object whose data consists of a sequence of instructions
[...]- The instructions are represented in the form of PDF objects, using the same object
syntax as in the rest of the PDF document. However, whereas the document as a whole is a
static, random-access data structure, the objects in the content stream are intended to be
interpreted and acted upon sequentially. Each page of a document is represented by one or
more content streams” [PDF Reference, Page 126]. It is mandatory to close the object after

finishing text operations, using the ~close method.

The PDPageContentStream object (org.apache.pdfbox.pdmodel.edit.
PDPageContentStream) needs specification of two parameters: the document and the

page of the document it will write to.

Additionally, the following methods need to be defined:

~beginText - the beginning of the text operations

~setFont(PDFont font, float fontSize)- the PDFont class is discussed in the
upcoming paragraph

~moveTextPositionByAmount(float x, float y)- specify the desired location for
text insertion

~drawString(String text)- this will draw a string at the specified location

~endText- marks the ending of the text operation

~close - close the content stream

To create a new font object, the class PDFont or one of its subclasses is needed. In the
current example, one of the PDF base fonts was selected (Helvetica Bold). The following

listing shows the class hierarchy of PDTypelFont:

20

ooRexx and the Apache PDFBox Library

java.lang.Object
org.apache.pdfbox.pdmodel.font.PDFont
org.apache.pdfbox.pdmodel.font.PDSimpleFont

or g. apache. pdf box. pdnodel . f ont . PDTypelFont

Table 2: Class hierarchy for PDTypelFont [PDFBox PDTypelFont]

“The PDF specification states that a standard set of 14 fonts will always be available when
consuming PDF documents. In PDFBox these are defined as constants in the PDTypelFont
class.” [PDFBox Standard 14 Fonts]

PDTypelFont. TIMES_ROMAN
PDTypelFont. TIMES_BOLD
PDTypelFont. TIMES_ITALIC
PDTypelFont. TIMES_BOLD_ITALIC
PDTypelFont.HELVETICA
PDTypelFont.HELVETICA_BOLD
PDTypelFont.HELVETICA_OBLIQUE
PDTypelFont.HELVETICA_BOLD_OBLIQUE
PDTypelFont.COURIER
PDTypelFont.COURIER_BOLD
PDTypelFont.COURIER_OBLIQUE
PDTypelFont.COURIER_BOLD_OBLIQUE
PDTypelFont.SYMBOL
PDTypelFont.ZAPF_DINGBATS

Table 3: Standard fonts available via PDTypelFontc lass [PDFBox Standard 14 Fonts]
After completion of all of these steps, save the document by setting the desired file name as
a string parameter and close the document.

References for this example:
[PDFBox PDDocument]

[PDFBox PDPage]

[PDF Box PDPageContentStream]
[PDFBox PDTypelFont]

[PDFBox Standard 14 Fonts]

21 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

6.2. Add Image to PDF

The second example demonstrates how an image can be added to a PDF file.

--prepare new document

doc = .bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")
page = .bsf ~new("org.apache.pdfbox.pdmodel.PDPage")
doc ~addPage(page)

--prepare image
input =.bsf ~new("java.io.FilelnputStream" , 'imagel.jpg")
image = .bsf ~new("org.apache.pdfbox.pdmodel.graphics.xobject.PDJpeg" , doc, input)

--define content stream

stream = .bsf ~new("org.apache.pdfbox.pdmodel.edit.PDPageContentStream ", doc, page)
stream ~drawlmage(image , 55, 80)

stream ~close

--save and close file
doc ~save("ImageNowPdf.pdf")

doc ~close

::requires bsf.cls

Listing 5: Image insertion
First, a new document is created and a blank page is inserted. This action is the same as

described in detail for the previous nutshell example. Second, the content stream presented

before is created.

Since the data to be written in the file is a stream of bytes in contrast to characters as was
the case in the previous example, the PDPageContentStream is not sufficient to handle data
extraction from a file and embed it into another. To solve this issue, the Java FilelnputStream

has been used in the current exemplification.

java.lang.Object
java.io.InputStream

java.io. Fil el nput Stream

Table 4: Class hierarchy for FilelnputStream [Java FilelnputStream]

22

ooRexx and the Apache PDFBox Library

“A FilelnputStream obtains input bytes from a file in a file system. What files are available
depends on the host environment. FileInputStream is meant for reading streams of raw bytes
such as image data” [Java FileInputStream]. By setting the image’s file name as a parameter

of the FilelnputStream object, a connection to the file is established.

Next, an object of the PDJpeg class (org.apache.pdfbox.pdmodel.graphics.xobject.PDJpeg),

an image class for Jpeg files, is used to import the image.

“An external object (XObject) is an object defined outside the content stream and referenced
as a named resource. The interpretation of an XObject depends on its type. An image
XObject defines a rectangular array of color samples to be painted; a form XObject is an

entire content stream to be treated as a single graphics object” [PDF Reference, Page 165].

The parameters used with the PDJpeg object are the destination document of the image and

the stream containing the Jpeg data — in our case the FilelnputStream.

After preparation of the image by following the described steps, the image can now be added
to the ContentStream and drawn at the specified coordinates. To draw the image according

to the default size, the method ~drawlmage(PDXObjectimage image, float x,

float y) has been implemented. To modify the dimensions of the image, use the method
~drawXObject(PDXObject xobject, floatx, floaty, fl oat width,
float height).

Close the content stream, then save and close the file according to the previous example

after completing the operation.

References for this example:
[PDFBox PDDocument]

[PDFBox PDPage]

[PDF Box PDPageContentStream]
[PDFBox PDJpeg]

[Java FilelnputStream]

23 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

6.3. Merge PDF Documents

This nutshell example demonstrates a simple, jet very effective way to merge two or more
PDF files. In preparation for the example, two new documents are created by running the first
nutshell example presented. ‘docl.pdf’ contains the text “This is page ONE of TWQO”, and,
accordingly, ‘doc2.pdf’ contains the text “This is page TWO of TWQO”. This is relevant since

we will use the created documents in further examples.

--add source documents to merge

merger =.bsf ~new("org.apache.pdfbox.util. PDFMergerUtility")
merger ~addSource("docl.pdf")

merger ~addSource("doc2.pdf")

--set destination file name and perform operation
merger ~setDestinationFileName("newdoc.pdf*)

merger ~mergeDocuments

::requires BSF.cls

Listing 6: Merging documents

The class PDFMergerUtility (fully qualified Java name:
org.apache.pdfbox.uti. PDFMergerUtility) is capable of receiving a list of documents and
merge them, saving the result in a new document. In the example shown above, the two
documents’ names are the arguments of the method ~addSource, while the new

document is specified as a parameter of ~setDestinationFileName.

Another way to use the class PDFMergerUtility is by instantiating the merger object and
using the method ~appendDocument (PDDocument destination, PDDocument
source). This way, the content of one document will be appended to another one without

changing the destination file.

References for this example:
[PDFBox PDFMergerUtility]

24

ooRexx and the Apache PDFBox Library

6.4. Extract Text from PDF File

This example demonstrated how text can be extracted from an existing PDF file. Since the
deployed class is not entirely compatible with the ooRexx stream object for writing into
destination files, the objective of this example is performed through two different approaches:

First, the ooRexx stream object is deployed, and then the stream classes of Java are used.

--load the document

source ="newdoc.pdf"

importdoc =BSF.loadClass("org.apache.pdfbox.pdmodel.PDDocument")
doc =importdoc ~load(source)

--get content
stripper =.bsf ~new("org.apache.pdfbox.util. PDFTextStripper")
msge=stripper ~getText(doc)

--print out content
say "content of" source
say msge

--create and write content to destination file
dest ="newdoc.txt"

output =. strean~new(dest)

output ~lineout(msge)

say "content savedin" dest

call syssleep 5

;. requires BSF.cls

Listing 7: Text extraction - o0Rexx stream object

The source file for this example is the previously created “newdoc.pdf”. The text content of
the document is spread on two separate pages. To get access to the document’s content,
the class PDFTextStripper si implemented. Using this class allows importing the text from

any PDF file, regardless of its formatting and page arrangement.

To simply import the text to ooRexx, the method ~getText(PDDocument doc) is
implemented. After doing so, the character string is sent to the ooRexx stream object to write
in the destination file. For illustration purpose, the complete text is printed out in the

Command Prompt window and inserted into a new TXT file.

The current example is designed to use ooRexx’ own stream object. Therefore the full

functionality of the PDFTextStripper class is not available due to the absence of a Java

25 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

output writer as requested for some methods’ argument. For example, the method
~writeText(PDDocument doc, Writer outputStream) demands for the java.io
subclass OutputStreamWriter. Delivering the ooRexx stream object as an argument results

into an error, pointing out an invalid method argument.

To bypass this problem, we loaded the PDF file’s content to the main program as an

intermediary step and then proceeded to printing it out to the destination file.

However, another option and a way to access full functionality of the
org. apache. pdf box. uti| . PDFText Stri pper class is the usage of Java stream

classes as shown below:

--load the source document and create the output st ream

source ="newdoc.pdf"

importdoc =BSF.loadClass("org.apache.pdfbox.pdmodel.PDDocument”)
doc =importdoc ~load(source)

dest ="newdoc2.txt"

outputstream =.bsf ~new("java.io.FileOutputStream” , dest)

--get content and write it to the output stream
stripper =.bsf ~new("org.apache.pdfbox.util. PDFTextStripper")
outputwr =.bsf ~new("java.io.OutputStreamWriter" , outputstream)

--create buffer
buffwr =.bsf ~new("java.io.BufferedWriter" , outputwr)

--write from source document to destination file
stripper ~writeText(doc, buffwr)

buffwr ~close

::requires BSF.cls

Listing 8: Text extraction - Java stream object

The following Java classes are used to ensure full functionality:

- Java.io.FileOutputStream - establish connection to destination file

- java.io.OutputStreamWriter - writing to destination file through the previous
created connection
- Java.io.BufferedWriter - using a buffer for efficient writing (deployment
optional, but recommended)
By importing these classes via BSF4o00Rexx, writing directly from the source t to the

destination file can be achieved, without any need for intermediary steps.

26

ooRexx and the Apache PDFBox Library

Which one of the presented practices will be used depends to some extent on the action to

be performed, but is mainly up to the user and his preferences and precognition.

References for this example:
[PDFBox PDDocument]

[PDFBox PDFTextStripper]

[Java FileOutputStream]

[Java OutputStreamWriter]

[Java BufferedWriter]

[ooRexx, page 84 — Writing a text file]

27 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

6.5. Search for String in PDF File

In previous examples, we have demonstrated how text can be extracted out of a PDF File.
The current example aims at searching for specific text within a PDF Document. For this
purpose, the file ‘doc2.pdf’ is used as the source file. The file contains the string “This is
document TWO of TWO” and was created by implementing the actions described in the first
nutshell example. The assignment for the current example is to search for the word “TWO”

inside the PDF document and return the number of times the string has been identified.

--import text from source document, get text

stripper =.bsf ~new("org.apache.pdfbox.util. PDFTextStripper")
doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")

stry = stripper ~getText(doc~load("DOC2.pdf"))

say "Given string is: "

say stry

--define string to search for
strx ="Two"

say "Searching for string: "
say strx

--define variable to memaorize position of match
stamp =pos(strx , stry)

count =0 —set up the match counter
do while stamp > 0 --enter loop if match was found

count =count +1 --increment counter
say "Match number” count " found at position " stamp
stamp =pos(strx , stry , stamp +length(strx)) --define position to start next search
end

call syssleep 5
::requires BSF.cls

Listing 9: Searching for a string

The current example presents the search procedure by importing the text out of the PDF

document and deploying some ooRexx built-in functions.

First of all, we need to import the character string from inside the source document. The
procedure has already been discussed and the task accomplished by using the class
PDFTextStripper. The sting obtained is labeled ‘stry’ for ‘string Y'. The string we are
searching for, in our case “TWO”, is named ‘strx’ for ‘string X’. Additionally, a counter is set

up to detain the number of matches. This counter is labeled ‘count’ and initially set to O.

28

ooRexx and the Apache PDFBox Library

Next, a stamp is defined to memorize the position of the match. To fulfill this task, the

function POS(needle,haystack) is implemented.

“POS (Position) returns the position of one string, needle, in another, haystack. It
returns 0 if needle is a null string or not found or if start is greater than the length of haystack.
By default, the search starts at the first character of the receiving string (that is, the value
of start is 1), and continues to the end of the string. You can override this by specifying start,
the point at which the search starts, and length, the bounding limit for the search. If
specified, start must be a positive whole number and length must be a non-negative whole

number.” [ooRexx2]

If the value of the created parameter is greater than 0, meaning a match has been found, a
loop is entered for further processing of the initial string. First, the counter is incremented to
store the number of times string X has been found. Second, to continue searching for string
X inside string Y, the stamp parameter is modified to continue searching, starting at the

position of the first letter of the previous match, plus the length of string X.

If, however, there is no need to retrieve the position where matches have been found, the
ooRexx built-in function COUNTSTR(needle,haystack) can be applied. This function
“returns a count of the occurrences of needle in haystack that do not overlap.” Moreover, the
string can be replaced by using the function CHANGESTR(needle,haystack,newneedle)
can be implemented to achieve the desired outcome.

[o0Rexx2]

s : |
#4 C:\Program Files (x86)\coRexx\rexx.exe [ﬂlﬁ]

Given string is: -
This is page TWO of TWO

Searching for string:
TWO

Match number 1 found at position 14
Match number 2 found at position 21

Figure 2: Searching for a string - outcome

Further development of the presented code can include features like highlighting of text
sections by determining the coordinates of the section and drawing a colored box behind the

text.

For the sake of completeness, the following annotation has to be discussed:

29 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

Importing the text from de PDF document brings about two extra characters. To be more
precise, the string Y “This is page TWO of TWQO” only consists of 23 letters. Jet 25
characters are imported, of which the last two are white-space characters and are not

visually displayed in the Command Prompt interface.

References for this example:
[PDFBox PDDocument]

[PDFBox PDFTextStripper]
[oorexx2 — POS(position); countStr]

30

ooRexx and the Apache PDFBox Library

6.6. Split Up a PDF File by Handling Individual Pag es

The following two examples illustrate how to split up a PDF document by using different
approaches’.

The current nutshell example is meant to split up a document into individual pages. Although
this example does not involve deployment of any new classes, it shows how multiple pages
of the same file can be appealed for further handling. This practice will be used whenever an
action is performed to more than one pages of a PDF file, for instance adding a header or

creating bookmarks (see example ‘Creating new bookmarks’).

-- import source document
doc=.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("newdoc.pdf*)

--retrieve all pages

allpages = doc ~getDocumentCatalog ~getAllPages --returns List of PDPage objects
say "---"

say "OPTION 1 - Java ArrayList"

say "allpages:" allpages

a=doc ~getNumberOfPages

a=a-1
do i=0 to a
page = allpages -~get(i)
docx =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument”)
docx ~addPage(page)
name ="split 01 " i " JavaArrayList.pdf"
say name
docx ~save(name)
end
say "---"

say "OPTION 2 - Java Array"

say "turning into a genuine Java array, that will be ma de into an ooRexx array:"
arr =allPages ~toArray --turninto an array
do i=1 to arr ~items --iterate like in ooRexx: first element has index #1!

docx ~addPage(arr [i])

name ="split 02 " i " JavaArray.pdf"
say name
docx ~save(name)
end
say "---"

call syssleep 5

::requires BSF.cls

Listing 10: Splitting up a PDF file: handling page objects

First, the source document is imported. This is the original file which will be separated into

individual files. For this example, we use the document “newdoc.pdf’ that has been created

! This example was completed with support provided by Prof. Rony G. Flatscher, to whom | am very thankful

31 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

in the previous example by merging two documents. By applying new measures, the action
performed in the earlier example will be undone. Second, the document catalog is imported.
For details on data content of the document catalog, please review the section “PDF — The

Portable Document Format” of this paper.

Next, from the document catalog, enter the ‘Page Tree' and retrieve all page objects
available within the document. Note that the method ~getAllPages returns a Java

ArrayList holding PDPage obijects.

It is important to be aware that the ArrayList currently storing information about nodes and
pages is a Java type object. The main difference between collection classes in Java and in
ooRexx is the index it starts with. In ooRexx, indexing of the collection class objects
commence at 1, since this programming language was developed to be similar to the human
communication and logic. However, indexing in Java starts at 0. This incompatibility can

cause errors since the code is written in ooRexx and the index difference is easily overlooked.

Although getting the individual pages from the ArrayList for further handling is possible if
considering the Java indexing scheme, an additional more convenient way of storing
PDPage obejcts is presented in this example: turning the Java ArrayList into an Array which
will be converted by BSF400Rexx into an ooRexx Array. This method will help bypassing any

errors connected to different index.
OPTIONL1: Java ArrayList

The first way of handling page objects is by working directly with the objects stored in the
ArrayList. From the received page list, individual page objects can now be appealed for

further processing by supplying the index value of the page in question, as shown below:

After retrieving the ArrayList containing the individual pages, a loop is built to create an
individual file for each one of them. The loop counter is called ‘a’ and equals the number of
pages of the document. Since the same action is applied to every page of the source

document, the loop is set up to repeat itself ‘a’ times.

Although the number of pages is equal to the number of position in the Java array, the index
difference needs to be considered. Page 1 of the document occupies the position at index O
of the array. To obtain equality, ‘a’ and ‘' are matched by subtracting one unit from the

counter ‘a’ (a=a-1).

Now, the actual page handling can be performed. Every page object stored in the array is

individually retrieved and assigned to a new document. Denotation and saving of each

32

ooRexx and the Apache PDFBox Library

document is itemized before repeating the chain of actions for the next PDPage object.
OPTION 2: Java Array

To avoid errors arising from differences in indexing, the method ~toArray is applied to the
ArrayList, resulting into a genuine Java array. The Java Array is automatically converted into
an ooRexx-Array by BSF4o0Rexx and therefore index of the collection class object

commence at 1.

From here on, the procedure is similar to the one presented in the first option: a loop is set
up to iterate for every item in the array. Inside the loop, every object is inserted into a new

PDDocument object and saved under a different name.

Although both options return a valid outcome in terms of page handling and creation of
separate documents for each page, the second option additionally provides a solution to
issues arising out of index incompatibility between Java and ooRexx. The author therefor

recommends deployment of the second alternative presented.

References for this example:
[PDFBox PDDocument]
[PDFBox PDDocumentCatalog]
[ooRexx Array]

[Java Array]

[Java ArrayList]

33 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

6.7. Split Up a PDF File by Sections

This example illustrates how a document containing multiple pages can be split up into

several smaller documents by using the class Splitter.

--load the source document
doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument”) ~load("newdoc.pdf")

--set the splitting algorithm

splitter =.bsf ~new("org.apache.pdfbox.util.Splitter")
count =1

splitter ~setSplitAtPage(count)

--create list of results, turn into array
doclist =splitter ~split(doc) ~toArray

say "Creating files:"
--create individual documents
do i =1 to doclist ~items

docx = doclist ~at(i)
name ="split_ 03 " i " JavaArray.pdf"
say name

docx ~save(name)
end

call syssleep 3
::requires BSF.cls

Listing 11: Splitting up a PDF file: creating a spl itting algorithm

The document to be split up is loaded by using the class PDDocument. Again, we use the
document ‘newdoc.pdf’ that has been created before and consists of two pages containing
the text “This is page ONE of TWO” and “This is page TWO of TWO".

The only additional PDFBox class needed to perform the splitting operation is

org.apache.pdfbox.util. Splitter, a direct subclass of java.lang.Object.
The ~setSplitAtPage(int split) method helps defining an algorithm for splitting
the document into several other document. Note that the int split argument is zero

based. Since ‘newdoc.pdf’ only consists of two pages, the variable needs to be set at a value
of 1.

Next, a list is created to store the individual, newly created documents until they are saved.

Same as seen in the previous example, the list is corresponding to a Java ArrayList. By

34

ooRexx and the Apache PDFBox Library

turning the Java ArrayList into a genuine Java Array object and by using BSF4o00Rexx, we
are able to work with the Array as an ooRexx collection class object. Appealing the Array
object can now be performed by implementing the ooRexx methods for the Array class. In
addition, index of the array corresponds to the ooRexx notation scheme and is no longer
zero-based.

The loop is similar to the one created in the previous example, except for the fact that entire
document sections are saved as new files instead of inserting individual pages into newly
created document. This circumstance eliminates the need of importing and instantiating the

PDDocument class for creating the individual files.

Alternatively, the method ~createNewDocument can be used directly with the splitting
object to create a new document to write the contents to. The splitting feature of the PDFBox

can be personalized by creating an arbitrary splitting algorithm to be applied to a document.

References for this example:
[PDFBox PDDocument]
[PDFBox Splitter]

[Java Array]

[Java ArrayList]

35 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

6.8. Create New Bookmark

The current example illustrates the creation of bookmarks on every page of a document. To
do so, we proceed using the PDF file ‘newdoc.pdf’ containing two pages, that has been
created before.

-- load document
doc=.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("newdoc.pdf")

--create new outline for document
outline =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.outline.PDDocumentOutline”)
doc ~getDocumentCatalog ~setDocumentOutline(outline)

--set root element for the tree

root =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.outline.PDOutlineltem")
root ~setTitle("All Pages"

outline ~appendChild(root)

--get list of all PDPage objects

allpages = doc ~getDocumentCatalog ~getAllPages ~toArray
--loop
do i=1 to allpages -~items

--creating bookmarks and setting their destinati on

page = allpages ~at(i)

destination =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.destination.PDPageFitDestination"
destination ~setPage(page)

bookmark =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.outline.PDOutlineltem")

bookmark ~setDestination(page)

--name the node and add to outline

title ="page" i+1

bookmark ~setTitle(title

root ~appendChild(bookmark)
end

--open nodes for display

root ~openNode

outline ~openNode

doc ~save("newdoc2.pdf’)

::requires BSF.cls

Listing 12: Creating new bookmarks

As a logical first step the PDDocument object ‘newdoc.pdf’ is loaded. After doing so, the
document catalog can be accessed. This can easily be done by sending the command
~getDocumentCatalog to the PDDocument object. After importing the document catalog,

the developer is able to set the document outline storing future bookmark items.

“A PDF document may optionally display a document outline on the screen, allowing the user
to navigate interactively from one part of the document to another. The outline consists of a
tree-structured hierarchy of outline items (sometimes called bookmarks), which serve as a
visual table of contents to display the document’s structure to the user.” [PDF Reference,
Page 554]

Having gained access to the document’s catalog, an outline directory can now be added to
facilitate the navigation of the document. This can be accomplished by creating an object
from the class PDDocumentOutline, a class representing the document outline for PDF
documents. A document outline is comparable to a data tree structure or hierarchy,

displaying name and/or position of the document sections.

36

ooRexx and the Apache PDFBox Library

To set the root element of the newly added outline, a first item will be added to the bookmark
tree. Creation of corresponding elements can be complete by using the PDOutlineltem class.
This class allows not only creation of elements, but also permits navigation and manipulation
of outline items, as will be shown in subsequent examples. After having created the root
element labeled “All Pages”, the item can be added to the outline. This task is perform by

using method ~appendChild(PDOutlineltem outlineNode).

As the next step, we need to access the indivual pages of the document. The PDDocument
class provides a method named ~getAllPages, which returns the hierarchical structure of
PDPageNode and PDPages, storing this objects in a Java ArrayList. As shown before, the
ArrayList will be transformed into a Java Array, converted to an ooRexx array object by
BSF4o0Rexx.

To automate the creation of bookmarks for every page, a loop has been created. To find out
how many bookmarks will be created, we use the command line allpages~items . This
method returns the numbers of items stored in the array to be used as a parameter for the

loop to be created.

Inside the loop, every PDPage object is invoked from its position on the array called
“allpages”. The destination for the bookmark is set individually for every existing page of the
document. The following list displays the class hierarchy for the class PDPageDestination

and its known subclasses:

java.lang.Object

org.apache.pdfbox.pdmodel.interactive.documentnavi gation.desti
nation.PDDestination

or g. apache. pdf box. pdnodel . i nteracti ve. docunent navi gati on.
desti nati on. PDPageDesti nati on

Direct known subclasses:

PDPageFitDestination
PDPageFitHeightDestination
PDPageFitRectangleDestination
PDPageFitWidthDestination
PDPageXYZDestination

Table 5: Class PDPageDestination and subclasses

After setting the destination, a new bookmark can be created pointing at it. Additionally, the

title of the bookmark is customized to mirror the page it points to. As final step, the created

37 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

outline items have to be inserted into the document outline. Once again, we use the

command ~appendChild to pin the created items to the root element.

As a result of the performed actions, the edited document now comprises an outline
containing the root element “All Pages” and two bookmarks pointing at the two PDPage
objects. In order to display the bookmark nodes, the outline, as well as the root element, is

opened using the method ~openNode . We proceed to saving the document as “newdoc2.pdf”

55 newdoc2.pdf - Adobe Reader ~ N i LB G0N >
Datei Bearbeiten Anzeige Fenster Hilfe x
Q a @ | ‘ 3 L /2 ‘ =) @) [100% [~] ‘ h B ‘ ® 2 ‘ ol Werkzeuge | Kommentar
L) ‘lesexeichen K} 3
INEN 3
— | =P [AilPages |
,/// g page 1

IF page 2 This is page ONE of TWO

Figure 3: Creating new bookmarks - outcome

References for this example:
[PDFBox PDDocument]
[PDFBox PDDocumentCatalog]
[PDFBox PDDocumentOutline]
[PDFBox PDOutlineltem]
[PDFBox PDDestination]
[PDFBox PDPageFitDestination]

38

ooRexx and the Apache PDFBox Library

6.9. Get Bookmarks on a Single Level

This nutshell example describes the procedure for obtaining the bookmark elements for the
upper level of the bookmark structure. Preceding the algorithm is possible in order to
retrieve the entire outline structure of the document. However, the basic principle of entering

and appending the nodes of the outline is hereby presented.

--load source document
doc=.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("rexxpg.pdf")

--get catalog and outline
outline =doc ~getDocumentCatalog ~getDocumentOutline

--start navigation at first node
itm =outline ~getFirstChild

--loop

a=0

do whil e a<outline ~getOpenCount --find number of same level nodes
say "ltem=" itm ~getTitle --extract node name
itm =itm ~getNextSibling --move to next node
a =a+l

end

say "number of bookmarks on first level: " a

call syssleep 5
::requires BSF.cls

Listing 13: Extracting outline information: bookmar ks on a single level

First we import a source document. To demonstrate the magnitude of this example, we use a
different PDF file with a vast structure of bookmark elements. Accordingly, we employ the
Open Object Rexx Programming Guide, named ‘rexxpg.pdf’. This document can be found in
the documentation folder for ooRexx. Given the current computer setting, the file was found
in ‘C:\Program Files (x86)\0oRexx\doc’. The programming guide is also available for

download at http://www.oorexx.org/docs/rexxpa/rexxpd.pdf

The first step is importing the source file, as seen before. Next, the document catalog is
imported for obtaining access to the PDF file’'s objects. From the document catalog, get the

document outline. This is a directory containing all bookmark nodes of the document.

Interestingly enough, the only class that needs to be imported is the PDDocument class. By

sending the message ~getDocumentCatalog to the PDDocument object, a connection to

39 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

the PDDocumentCatalog class is established. Without importing this class, we are able to
use the method ~getDocumentOutline embedded in it. This is possible due to the basic
characteristics of object oriented programming, where every object carries information about
available methods. Once an object is imported, the user is able to handle it by using the

class’ methods.

After having acquired access to the document’s outline, we can now appeal the first node
element of the structure tree. We therefore select the first child of the outline by sending the
message ~getFirstChild to the PDOutlineNode object. The object returned is of the type

PDOutlineltem — again, no import of this class is needed.

After connecting to the first node, a loop helps automating the next step for every other node
of the same degree. As loop count, the counter ‘a’ is created. Using this approach not only
helps determine the number of bookmark items of the level, but also eases exiting the loop

after addressing each item. For the beginning, the counter is set to O.

Next, the counter is compared to the number of bookmarks items of the first level. Therefore,
we fetch the number of direct child elements of the outline by using the ~getOpenCount

method. Since we are examining the upper level of the document’s outline, the nodes are
likely to be open. Keep in mind that this is not necessarily true for other objects in the outline
tree. In our example, there are 18 items to examine. The loop is set up to be traversed as

long as the counter ‘a’ is smaller than 18.

Now, we retrieve the title of the bookmark item and move on to the next one. To do so, the
methods ~getTitle and ~getNextSibling are used. After doing these two operations,
the counter ‘a’ is augmented by 1 and the loop starts again, performing the same operations

for another element.

The following screenshot displays the outcome of the program:

40

ooRexx and the Apache PDFBox Library

s 5

@6 C:\Program Files (x86)\coRexx\rexx.exe o | E |

Open Object Rexx

Table of Contents

List of Figures

Chapter 1. About This Book

Chapter Meet Open Obhject Rexx <(ooRexx)

Chapter A Quick Tour of Traditional Rexx

Chapter Into the Object World

Chapter The Basics of Classes

Chapter A Closer Look at Objects

Chapter Commands

Chapter Input and Output

Chapter Rexx C++ Application Programming Interfaces
Chapter 18. Classic Rexx Application Programming Interfaces

ORI AWN

Appendix A. Distributing Programs without Source
Appendix B. Sample Rexx Programs

Appendix C. Notices

Appendix D. Common Public License Uersion 1.0
Index

of bookmarks on first level: 18

Figure 4: Extracting outline information: bookmarks on a single level - outcome

To continue collecting information about the outline tree, access child items of the once
already inspected. Set up another loop by using the method ~getFirstChild once again
for every item and check if and how many items the branch of the outline tree holds. Move on

to other items by using ~getNextSibling.

The approach of this example is suited for a document with a limited number of outline tree
levels, because querying the items count is necessary for every level of every branch.
Another approach for getting the complete outline structure of the document is presented in

the upcoming example.

References for this example:
[PDFBox PDDocument]
[PDFBox PDDocumentCatalog]
[PDFBox PDDocumentOutline]

41 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

6.10. Get the Complete Bookmark Structure of a PDF File

This example supplies a similar functionality as the previous one, displaying the bookmarks
items of a PDF file’s outline. For this example, however, a different approach was used. The
previous example involved looking up the number of times the loops has to be traversed. We
assumed that the document outline is limited in its complexity and all outline nodes are open.
Although this procedure delivers a valid result, we are now using another approach to
automate the search and display of bookmarks. Accordingly, the algorithm for navigation

across an infinite tree structure is presented previous to its implementation in the code.

To simplify the understanding of the principle, we use the following bookmark structure to

illustrate an ordered data tree:

1. Parentltem

1.1. Child Item
1.1.1. Grandchild Item
1.1.2. Grandchild Item
1.1.3. Grandchild Item

1.2. Child Item
1.2.1. Grandchild Item
1.2.2. Grandchild Item

1.2 11

1.1.2 1.1.: 1.1.4 1.1.2 1.1.2

Figure 5: Graphical display of ordered data tree

Regarding the graphic above, we first need to figure out a way to access the nodes in the
desired display order. Using the approach of the previous example, we could display all
same level nodes at a time. Accessing another level and displaying it would lead up to the

following outcome (unless manually adjusted and provided the nodes are open):

42

ooRexx and the Apache PDFBox Library

1. Parent Item

1.1. Child Item

1.2. Child Item
1.1.1. Grandchild Item
1.1.2. Grandchild Item
1.1.3. Grandchild Item
1.2.1. Grandchild Item
1.2.2. Grandchild Item

This representation is not the desired outcome. Therefore, navigation of the tree needs to

respect the following steps:

- Start at the root element

- Move to first child

- Continue moving down in rank by appending the first grandchild item, until there is no
subsequent level left to navigate to

- Onthe lowest level, move to next same-ranked item

- Search for children of this item and, if available, repeat the steps above for as long as

this is possible.

By now, we have queried the following nodes of the tree:

1. Parentltem
1.1. Child Item
1.1.1. Grandchild Item
1.1.2. Grandchild Item
1.1.3. Grandchild Item

Now we need to move on to node 1.2. To do so, we need to go up one level and search for
another item of the same rank as 1.1. By following this step, we are now located on the 1.2.
node. By repeating the same steps implemented from the beginning, we can now appeal
inferior rank items of this branch. After completing this interrogation, we once again move to
the upper level of “Child” items. Since there is no other node to apply these steps to and no

node that has not been examine, the search for bookmark items is now complete.

Translating the presented search algorithm into code resulted into the following program:

43 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

--load document, enter outline tree and navigate to root item

doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("rexxpg.pdf")
root =doc ~getDocumentCatalog ~getDocumentOutline

itm =root ~getFirstChild

--protection variables

v =0

a=1

q=20

--create stream

outputobject = . st ream-new("rexxpg.txt")

--loop

do while a\=0
if vl = -1 then do
a =0
end

el se do
msge = " —-insert new line to destination file
do i=0 to W
msge = msge "->"
end

--write to stream
msge = msge itm ~getTitle --get node name
outputobject ~lineout(msge) --pass node name to stream

--navigate down the outline tree
i f itm ~getFirstChild == .nil then do
itm = itm ~getFirstChild
vl =lvl +1
end

el se do

i f itm ~getNextSibling == .nil then do
itm = itm ~getNextSibling

end

el se do
q =1

do while q

if vl

q =0
end

1
0 then do

el se do
--navigare up the outline tree
i f itm ~getParent ~getNextSibling \==nil then do

q 0
end
el se do
itm = itm ~getParent
Ivl = -1
end
end
end
i f itm ~getParent == .nil then do
itm = itm ~getParent
Ivl = -1
if Ivl \= -1 then do
itm = itm ~getNextSibling
end
end
el se do

44

ooRexx and the Apache PDFBox Library

end

.. requires BSF.cls

Listing 14: Extracting outline information: the com plete outline structure

To demonstrate the amplitude of the programs functionality, the Open Object Rexx
Programming Guide, named ‘rexxpg.pdf’ is once again used as source file. The methods
~getDocumentCatalog and ~getDocumentOutline are cascaded to enter the outline

tree.

In this example, ooRexx’ own stream is implemented to write to a TXT file. This measure is
deployed since the collection of nodes is too extensive to be depicted in the Command

Prompt interface.

Some protection variables are used to keep track of the outline levels examined and help
breaking the looping at some point. Accordingly, the counter ‘Ivl' is set up to memorize the
current position on the tree. Since the displayed bookmark elements of the outline are not
same-level as the root element, we set the counter ‘IvI' to 0. As seen on the example data
tree, we first navigate down the outline and slowly go back up in rank. Search is completed

when the counter ‘IvI’ is equal to -1, since navigation as arrived back at the root element.

The ‘itm’ object is an object of the type PDOutlineltem. At the beginning, the root element is
set to be named ‘itm’. As we move from one node to another, ‘itm’ is the label for the node
we are situated on at the time. To write the name of the node to the TXT file, we apply the
~getTitle method to the item and pass the data on to the stream. To keep track of the
items rank even after being written in the destination file, the symbol “->" is used for every
level preceding the actual node rank. This means passing the symbol “->" times ‘IvI’ to the

stream.

As demonstrated on the simple data tree at the beginning of this section, navigating down
the tree using the method ~getFirstChild is pursued for as long as this is possible. The
statement “for as long as this is possible” is translated into object oriented programming code
by comparing the sighted object to ‘the Nil Object’. This is one of the basic primitive objects
and contains no data. Arriving at the Nil Object means that there are no child elements left to
inspect. The same technique is used when navigating up in rank or to related same-level

objects.

To apply the procedure described at the top of this section, loops are built inside other loops.

45 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

Whenever navigation jumps down in level, the counter ‘Ivl' is increased by one. This event is
undone by the time we travel back up on the precedent level. In addition to ‘IvI', the
protection parameters ‘a’ and ‘q’ are used to break the looping whenever the search

algorithm leads to the Nil Object.

For every loop, there have been implemented two branches: one if the condition is fulfilled
and one if it is not. The visual arrangement of the IF-ELSE pairs is meant to facilitate the
reading of the code. After having gained knowledge of the principles applied, comprehension

of the presented code should be easy.

The following screenshot displays a part of the retrieved results written into the destination
TXT file.

-
| rexxpg - Notepad [ESEERT)

File Edit Format View Help

-> Open Object Rexx -
-> Table of Contents

-> List of Figures

-> Chapter 1. About This Book

-> -> 1.1. who should Read This Book

-> -> 1.2. what You Should Know before Reading This Book
-> -> 1.3. Getting Help
-> -> -> 1.3.1. The Rexx Language Association Mailing List
-> -> -> 1.3.2. The Open Object Rexx SourceForge Site

-> -> -> 1.3.3. comp. lang.rexx Newsgroup

-> Chapter 2. Meet Open Object Rexx (0ORexx)

-> -> 2.1. The Main Attractions

m

-> -> -> 2.1.1. objectoriented Programming

-> -> -> 2.1.2. An EnglishLike Language

-> -> -> 2.1.3. CrossPlatform versatility

-> -> -> 2.1.4. Fewer Rules

-> -> -> 2.1.5. Interpreted, Not Compiled

-> -> -> 2.1.6. BuiltIn Classes and Functions

-> -> -> 2.1.7. Typeless variables -

<)

\ =

Figure 6: Extracting outline information: the compl ete outline structure — outcome
(fragment)

By using this program, automated search for bookmark items can be accomplished for vast
outline trees effortless, regardless of the number of items contained. Also, helpful features
can be built on top of this program by connecting the bookmark item to the underlying page
object and finding the location of the bookmark. Possible applications include extracting
selected section of the document by setting the text extraction to only process pages
between two chosen bookmarks, or searching for a string at a predefined section of the

document.

References for this example:
[PDFBox PDDocument]

46

ooRexx and the Apache PDFBox Library

[PDFBox PDDocumentCatalog]
[PDFBox PDDocumentOutline]

[ooRexx, page 84 - Writing a Text File]
[ooRexx, page 59 - The NIL Object (.nil)]

47

Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

6.11. Encrypt a PDF Document

The last example delivers the simplest method for securing a document by deploying

encryption and equipping the file with special user permissions.

--create document, add one page

doc = .bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")
page = .bsf ~new("org.apache.pdfbox.pdmodel.PDPage")
doc ~addPage(page)

--set access permissions

ap =.bsf ~new("org.apache.pdfbox.pdmodel.encryption.AccessPermiss
ap~setCanExtractContent(false)

ap~setCanPrint(.false)

ap~setCanModify(.false)

--set access passwords
ownerpass = "master"
userpass = "user"

--apply policy to document

stnd = .bsf ~new("org.apache.pdfbox.pdmodel.encryption.StandardProte
stnd ~setEncryptionKeyLength(128)

doc ~protect(stnd)

doc ~save("encryted.pdf")

doc ~close

;:requires BSF.cls

ion")

ctionPolicy" , ownerpass , userpass , ap)

Listing 15: Encrypting a PDF document

For demonstration purpose, a new blank file is created. Providing customized access
permissions for a PDF document can be accomplished by following a two-step procedure:

defining security features and applying the security policy to the document.

A standard configured PDF file has no special access permissions and is vulnerable to
changes and interference. To secure a document, first the desired security features need to
be defined. Therefore, several objects are instantiated from the class
or g. apache. pdf box. pdnodel . encrypti on. AccessPerm ssi on. The main features

available within the class for security configuration are:

- “print the document

- modify the content of the document

- copy or extract content of the document
- add or modify annotations

- fill in interactive form fields

- extract text and graphics for accessibility to visually impaired people

48

ooRexx and the Apache PDFBox Library

- assemble the document

- print in degraded quality

This class can be used to protect a document by assigning access permissions to recipients.
In this case, it must be used with a specific ProtectionPolicy. When a document is decrypted,
it has a currentAccessPermission property which is the access permissions granted to the

user who decrypted the document.” [Class AccessPermission]

After defining the access permission to be applied, the protection features are attached to the
document by using the StandardProtectionPolicy class. Aside from the access permission,
the StandardProtectionPolicy object requires a master password and a user password as

arguments.

“Opening the document with the correct owner password (assuming it is not the same as the
user password) allows full (owner) access to the document. This unlimited access includes

the ability to change the document’s passwords and access permissions.

Opening the document with the correct user password (or opening a document that does not
have a user password) allows additional operations to be performed according to the user
access permissions specified in the document’s encryption dictionary.” [PDF Reference,

page 96]
Additionally, setting the encryption key length in bits is required.

After applying the protection policy, an interactive graphical user interface will appear on
attempting to open the document in question, prompting the user to insert either the user

password or the master password.

The screenshot below demonstrates the efficient application of security restriction to the

holder of the user password:

49 Cristina Nicoleta Dobrea

Managing a PDF File — Nutshell Examples

"i encryted.pdf (SECURED) - Adobe Readel — -_ ——
w W W Document Properties
R2EeX | m /1 ‘ =) (| | Description: Security | Fonts I Custom I Advanced
ﬂ Secunity Settiags & Document Security
The document's Security Method restricts what can be done to the

Q This document has an open password or a document.

modify password.
ﬁ/ X i Security Method: Password Security Show Details... |

You cannot print or copy this document.

Permission Details Can be Opened by: Acrobat 5.0 and later

All contents of the document are encrypted and search engines cannot
access the document’'s metadata.
Document Restrictions Summary
Printing: Not Allowed
Document Assembly: Not Allowed
Content Copying: Not Allowed
Content Copying for Accessibility: Allowed
Page Extraction: Not Allowed
Commenting: Allowed
Filling of form fields: Allowed
Signing: Not Allowed

Creation of Template Pages: Not Allowed

Figure 7: Encrypting a PDF document - outcome

When trying to handle a PDF file out of the command line, an encrypted document will return
an error due to insufficient access permissions. Therefore, the following two methods need to
be applied directly to the PDDocument object when importing the file:

- isEncrypted —use this method to verify if document requires decryption
- decrypt(String password) — use this method to provide a password for
decryption
Furthermore, the method ~getCurrentAccessPermission will return the current access

permission for the provided password.

References for this example:
[PDFBox PDDocument]

[PDFBox PDPage]

[PDFBox AccessPermission]
[PDFBox StandardProtectionPolicy]

50

ooRexx and the Apache PDFBox Library

7. Conclusion and Outlook

The nutshell examples presented in this paper are meant to ensure an easy way of creating
and managing a PDF file. The main purpose of this paper was to demonstrate the
practicability of the PDFBox package. Therefore eleven nutshells have been developed as a

solution to different issues a user is often confronted with.

The examples can be applied in arbitrary order or combined for greater impact. However, the
benefit that a developer will gain by using the Apache PDFBox library consists in the

incorporation of a PDF file in constructing programs.

The PDF file format is widely spread. Most computer users are likely to have access to a
PDF reader tool, which is available free of charge. By storing data in a PDF file, the content,
as well as the formatting, can be shared without alterations caused by hardware or software

setting.

Using a PDF file when developing a program, can disclose new possibilities. For instance,
the outcome of data processing can be stored inside a PDF file and sent out for review or
further discussions. Compatibility issues can be completely avoided. Another option is to
automatically import data from a form, by retrieving the information in interactive elements of
a PDF file. In this scenario, an electronic form can be mailed to participant users, regardless

of the platform the individuals are using.

Operating the PDFBox library by using the ooRexx programming language assures for the
full range of functions available with the classes of the PDFBox and still provides the
advantages of the simple, human-centric language ooRexx. The presented nutshell
examples demonstrated the easy usage of the Java classes imported to ooRexx by the Bean
Scripting Framework. The examples are short and very powerful and also confer a detail

understanding of actions performed ‘behind the scenes’ to a PDF file and its components.

Although only limited capacity of the BSF library has been shown, the reader should now be

aware of the reduction of complexity BSF4o0Rexx introduces in creating source code.

After carefully reading the information and the source code provided in this paper and
studying the PDFBox package, there are no limitations for managing a PDF file. If this is the

case, the target of this paper has been achieved.

>1 Cristina Nicoleta Dobrea

Bibliography

8. Bibliography

[Adobel]

[Adobe2]

[Flatscher]

[Husband et al.]

[Java Array]

[Java ArrayList]

[Java BufferedWriter]

[Java FilelnputStream]

[Java FileOutputStream]

[Java
OutputStreamWriter]

Acrobat and PDF Library API Reference: All Acrobat Layers
http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9 1 HTMLHelp/API R
eferences/Acrobat API_Reference/package-summary.html

Retrieved on 2012-07-25

Developer Support: Legal Notices for Developers
http://partners.adobe.com/public/developer/support/topic_legal notices.ht
ml

Retrieved on 2012-08-03

Resurrecting REXX, Introducing Object Rexx, 2006

http://wi.wu-
wien.ac.at/rgf/rexx/misc/ecoop06/ECOOP2006 RDL Workshop Flatsche

r_Paper.pdf
Retrieved on 2012-08-30

Husband, Mark; Nguyen, Dung; Wong, Stephen: Principles of Object-
Oriented Programming, 2008.
http://florida.theorangegrove.org/og/file/33bf62f3-8ad1-7dde-e23f-
6f17aca953c7/1/0O0Programming.pdf

Retrieved on 2012-08-10

Oracle: Class java.util.Arrays
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html
Retrieved on 2012-11-13

Oracle: Class j ava. uti |l . ArrayLi st <E>
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html
Retrieved on 2012-11-13

Oracle: Class java.io.BufferedWriter
http://docs.oracle.com/javase/1.4.2/docs/api/javal/io/BufferedWriter.html
Retrieved on 2012-08-26

Oracle: Class java.io.FileInputStream
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/FilelnputStream.html
Retrieved on 2012-08-26

Oracle: Class java.io.FileOutputStream
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/FileOutputStream.htm
|

Retrieved on 2012-08-26

Oracle: Class java.io.OutputStreamWriter
http://docs.oracle.com/javase/1.4.2/docs/api/javal/io/OutputStreamWriter.h
tml

Retrieved on 2012-08-26

52

ooRexx and the Apache PDFBox Library

[Nirosh]

[Ngrmark]

[ooRexx]

[ooRexx1]

[ooRexx2]

[Parker]

[PDF Box

PDPageContentStream]

[PDF Reference]

[PDFBox
AccessPermission]

53

Nirosh: Introduction to Object Oriented Programming Concepts (OOP)
and More, 25.01.2011
http://www.codeproject.com/Articles/22769/Introduction-to-Object-
Oriented-Programming-Concep

Retrieved on 2012-08-10

Ngrmark, Kurt: Functional Programming in Scheme, Programming
Paradigms, 07.07.2010

http://people.cs.aau.dk/~normark/prog3-
03/html/notes/paradigms_themes-paradigm-overview-section.html
Retrieved on 2012-08-10

Ashley, W. David; Flatscher, Rony G.; Hessling, Mark; McGuire, Rick;
Miesfeld, Mark; Peedin, Lee; Wolfers, Jon: ooRexx Programming Guide,
Version 4.1.0 Edition, 2010.

www.oorexx.org/docs/rexxpa/rexxpg.pdf

Retrieved on 2012-08-03

What is Open Object Rexx?
http://www.oorexx.org/about.html
Retrieved on 2012-08-30

Built-In Functions. ooRexx Reference
http://www.oorexx.org/docs/rexxref/x23579.htm
Retrieved on 2012-11-21

Parker, Thom: Navigating the Internal Structure of a PDF Document.
http://www.planetpdf.com/developer/article.asp?ContentID=navigating_th
e_internal_struct

Retrieved on 2012-07-19

Apache: Class org.apache.pdfbox.pdmodel.edit.PDPageContentStream
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/edit/PDPag
eContentStream.html

Retrieved on 2012-08-16

Adobe Systems Incorporated: PDF Reference fifth edition — Adobe®
Portable Document Format, Version 1.6
http://stuff.mit.edu/afs/sipb/contrib/doc/specs/software/adobe/pdf/PDFRef
erencel6-v4.pdf

Retrieved on 2012-08-26

Apache: Class org.apache.pdfbox.pdmodel.encryption.AccessPermission
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/encryption/
AccessPermission.html

Retrieved on 2012-09-16

Cristina Nicoleta Dobrea

Bibliography

[PDFBox PDDestination]

[PDFBox PDDocument]

[PDFBox

PDDocumentCatalog]

[PDFBox

PDDocumentOutline]

[PDFBox

PDFMergerUTtility]

[PDFBox

PDFTextStripper]

[PDFBox PDJpeqg]

[PDFBox PDOutlineltem]

[PDFBox PDPage]

Apache: Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.destination.P
DDestination
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/destination/PDDestination.html

Retrieved on 2012-09-06

Apache: Class org.apache.pdfbox.pdmodel.PDDocument
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/PDDocume
nt.html

Retrieved on 2012-08-16

Apache: Class org.apache.pdfbox.pdmodel.PDDocumentCatalog
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/PDDocume
ntCatalog.html

Retrieved on 2012-08-30

Apache Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.outline.PDDo
cumentOutline
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/outline/PDDocumentQutline.html

Retrieved on 2012-08-30

Apache: Class org.apache.pdfbox.util. PDFMergerUtility
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/util/PDFMergerUtility
-html

Retrieved on 2012-09-02

Apache: Class org.apache.pdfbox.util. PDFTextStripper
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/util/PDFTextStripper.
html

Retrieved on 2012-08-20

Apace: Class org.apache.pdfbox.pdmodel.graphics.xobject.PDJpeg
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/graphics/xo
bject/PDJpeg.html

Retrieved on 2012-08-18

Apache: Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.outline.PDOu
tlineltem
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/outline/PDQOutlineltem.html

Retrieved on 2012-09-06

Apache: Class org.apache.pdfbox.pdmodel.PDPage
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/PDPage.ht
ml

Retrieved on 2012-08-16

54

ooRexx and the Apache PDFBox Library

[PDFBox
PDPageFitDestination]

[PDFBox PDTypelFont]

[PDFBox Splitter]

[PDFBox Standard 14
Fonts]

[PDFBox
StandardProtectionPolic

yl

[PDFBox1]

[RexxLA]

[Tiobe]

[Wiki1]

[Wiki2]

55

Apache: Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.destination.P
DPageFitDestination

http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/destination/PDDestination.html
Retrieved on 2012-09-06

Apache: Class org.apache.pdfbox.pdmodel.font.PDTypelFont
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/font/PDTyp
elFont.html

Retrieved on 2012-08-16

Apache: Class org.apache.pdfbox.util.Splitter
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/util/Splitter.html
Retrieved on 2012-09-05

Apache: Developers Guide - Fonts
http://pdfbox.apache.org/userguide/fonts.html

Retrieved on 2012-10-02

Apache: Class
org.apache.pdfbox.pdmodel.encryption.StandardProtectionPolicy
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/encryption/
StandardProtectionPolicy.html

Retrieved 2012-09-16

Apache PDFBox - Java PDF Library

http://pdfbox.apache.org/

Retrieved on 2012-07-12

The Rexx Language Association: What is Rexx?
http://www.rexxla.org/rexxlang/
Retrieved on 2012-08-30

TIOBE Programming Community Index for October 2012
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
Retrieved on 2012-10-27

Wikipedia: The Portable Document Format
http://de.wikipedia.org/w/index.php?title=Portable Document Format
&oldid=109758542

Retrieved on 2012-07-16

Wikipedia: Java (programming language)
http://en.wikipedia.org/w/index.php?title=Java (programming language)&
oldid=519946505

Retrieved on 2012-10-27

Cristina Nicoleta Dobrea

List of Abbreviations

List of Abbreviations

API Application programming interface
BSF Bean Scripting Framework

BSF400Rexx Bean Scripting Framework for object oriented Rexx

cls class

CPL Common Public License

int integer

OoOoP Object oriented programming
00Rexx Object oriented Rexx

PDF Portable Document Format
Rexx Restructured Extended Executor

56

