

WIRTSCHAFTSUNIVERSITÄT WIEN
Vienna University of Economics and Business

Bachelor Thesis

I hereby declare that

1. I have written this Bachelor thesis independently and without the aid of unfair or unauthorized

resources. Whenever content was taken directly or indirectly from other sources, this has been

indicated and the source referenced.

2. this Bachelor thesis has neither previously been presented for assessment, nor has it been

published.

3. this Bachelor thesis is identical with the assessed thesis and the thesis which has been submit-

ted in electronic form.

4. (only applicable if the thesis was written by more than one author): this Bachelor thesis was

written together with first name(s), last name(s). The individual contributions of each writer as

well as the co-written passages have been indicated.

Date

 Signature

English title of the Bachelor
Thesis

ooRexx and the Apache PDFBox Library –

Nutshell Examples for Managing a PDF File

German title of the Bachelor
Thesis

ooRexx und die Apache PDFBox-Library –

Nutshell-Beispiele für die Verwaltung von PDF-Dateien

Author
last name, first name(s)

Dobrea, Cristina Nicoleta

Student ID number 0652377

Degree program J 033 561

Examiner
degree, first name(s), last name

ao. Univ.Prof. Mag. Dr. Rony G. Flatscher

Bachelor Thesis

ooRexx and the Apache PDFBox Library –

Nutshell Examples for Managing a PDF File

Summer Term 2012

Author: Cristina Nicoleta Dobrea

Enrollment Number: 0652377

Examiner: ao. Univ.Prof. Mag. Dr.

Rony G. Flatscher

Cristina Nicoleta Dobrea
1

ooRexx and the Apache PDFBox Library

Abstract

This paper provides short examples for working with the Apache PDFBox library. Basic

information about the structure of a PDF file is provided to ease understanding. The nutshell

examples are written in ooRexx. The functionality of the Java library is imported using

BSF4ooRexx.

Keywords

ooRexx, BSF4ooRexx, PDFBox, PDF, object oriented programming

Content

2

Acknowledgements

Two people have helped and comfort me while writing the bachelor thesis and deserve my
appreciation. I now take the opportunity to thank them for their involvement.

First of all, thank you Prof. Dr. Flatscher for encouraging me to take over this ambitions
project. Also, thank you for keeping faith that I will successfully handle this venture.

Second, I would like to express my gratitude to a dear friend who reviewed my progress and
helped me to overcome difficulties.

Cristina Nicoleta Dobrea
3

ooRexx and the Apache PDFBox Library

Content

Table of Contents
Content ... 3

1. Introduction .. 5

2. PDF – The Portable Document Format ... 6

2.1. The Acrobat Layers .. 6

2.2. Document Structure .. 8

3. Involved Components .. 10

3.1. The Apache PDFBox Library ... 10

3.2. Involved Languages ... 11

3.2.1. The Principles of Object Oriented Programming ... 11

3.2.2. Java... 13

3.2.3. ooRexx ... 14

3.2.4. BSF4ooRexx ... 15

4. Installation Guide .. 17

4.1. ooRexx ... 17

4.2. BSF4ooRexx ... 17

4.3. Apache PDFBox .. 17

5. Used Environment .. 18

6. Managing a PDF File – Nutshell Examples .. 19

6.1. Create a New Document and Add Text ... 19

6.2. Add Image to PDF .. 22

6.3. Merge PDF Documents .. 24

6.4. Extract Text from PDF File ... 25

6.5. Search for String in PDF File .. 28

6.6. Split Up a PDF File by Handling Individual Pages ... 31

6.7. Split Up a PDF File by Sections .. 34

6.8. Create New Bookmark... 36

6.9. Get Bookmarks on a Single Level .. 39

6.10. Get the Complete Bookmark Structure of a PDF File .. 42

6.11. Encrypt a PDF Document ... 48

7. Conclusion and Outlook ... 51

8. Bibliography ... 52

List of Abbreviations .. 56

Content

4

Table of Source Code Listings
Listing 1: Using the BSF class – option1 .. 16

Listing 2: Using the BSF class – option 2 ... 16

Listing 3: Using the BSF class – option 3 ... 16

Listing 4: PDF file creation and text insertion ... 19

Listing 5: Image insertion ... 22

Listing 6: Merging documents ... 24

Listing 7: Text extraction - ooRexx stream object .. 25

Listing 8: Text extraction - Java stream object ... 26

Listing 9: Searching for a string .. 28

Listing 10: Splitting up a PDF file: handling page objects .. 31

Listing 11: Splitting up a PDF file: creating a splitting algorithm ... 34

Listing 12: Creating new bookmarks.. 36

Listing 13: Extracting outline information: bookmarks on a single level 39

Listing 14: Extracting outline information: the complete outline structure 45

Listing 15: Encrypting a PDF document .. 48

Table of Figures

Figure 1: Structure of a PDF Document [PDF Reference, Page 113] .. 9

Figure 2: Searching for a string - outcome ... 29

Figure 3: Creating new bookmarks - outcome ... 38

Figure 4: Extracting outline information: bookmarks on a single level - outcome 41

Figure 5: Graphical display of ordered data tree ... 42

Figure 6: Extracting outline information: the complete outline structure – outcome 46

Figure 7: Encrypting a PDF document - outcome ... 50

Table Directory

Table 1: All Acrobat Layers [Adobe1] .. 7

Table 2: Class hierarchy for PDType1Font [PDFBox PDType1Font] ... 21

Table 3: Standard fonts available via PDType1Font class [PDFBox Standard 14 Fonts] 21

Table 4: Class hierarchy for FileInputStream [Java FileInputStream] .. 22

Table 5: Class PDPageDestination and subclasses ... 37

Cristina Nicoleta Dobrea
5

ooRexx and the Apache PDFBox Library

1. Introduction

Developers will know that even though writing code is mainly about processing information,

sharing the outcome is an important aspect of their activity. The electronic infrastructure for

data exchange has become increasingly stable over the last two decades. On the other hand,

growing differences between operating systems and other software hold the hazard of

slowing down data circulation. As a consequence of this development, the Portable

Document Format has gained great popularity. This file format is an effective solution to

compatibility issues due to different hardware and software settings across computers.

While solutions for creating and reading PDF files are widely available, few people possess

the knowledge and the ability to manage content and manipulate components of a PDF file. It

is the challenge of this thesis to divulge basic knowledge about a PDF file’s structure and

provide a practical method for file administration.

To fulfill this challenging assignment, a whole set of nutshell examples illustrates how certain

tasks can be achieved by using the PDFBox package. The language the programs are

written in is ooRexx, extended by the BSF4ooRexx package for bridging the full Java

functionality to ooRexx. In order to confer a strong awareness for the presented practice,

some theoretical notions and backgrounds are explained in the initial chapters of this paper.

First, the file format centric of this research, the Portable Document Format, is introduced.

Technical details relevant to further proceedings are highlighted.

Next, all components involved in the creation of the examples are described in detail, starting

with the basic principle of object oriented programming the languages obey. To permit the

developer to re-enact the examples, instructions for installing all required components are

provided. In addition, the environment used in creating the nutshell examples is displayed.

After consolidation of knowledge and requirements for working with ooRexx and the Apache

PDFBox, the nutshells are presented as a solution to one scientific problem at a time. The

nutshells are listed in increasing order of functionality and complexity. They are meant to be

executed in the provided order, but can be carried out in arbitrary order.

Additional information is supplied whenever new classes and methods are implemented. The

full source code has been inserted in the paper, since the programs represent the fulfillment

of the research assignment.

The last section of this paper summarizes the added value provided by the implementation of

the PDFBox and drafts conceivable use-case.

PDF – The Portable Document Format

6

2. PDF – The Portable Document Format

One of the main problems that had to be solved in the digital area was the compatibility of

documents across users, computers and operating systems. While sharing content became

increasingly easy, displaying it in the original manner was a problem yet to be solved. In the

early 1990s a multitude of competing file formats were developed to answer to this demand.

Amongst them was the Portable Document Format (PDF) developed by ‘Adobe Systems’.

First released in 1993, the Adobe solution for creating and reading PDF files was not free of

charge. The second version, released one year later, allowed users to freely open and print

out PDF files true to the original. The suitable application for creating PDF files remained

chargeable until 2007. By 2008, the PDF became an open standard (ISO 32000:1:2008).

Ever since, the Portable Document Format became the most popular file sharing format,

independent of the hardware and the software used. [Wiki1]

Adobe published six editions of the program, continuously improving its functionality. Since

the release of the open standard, three further extension levels have been made available by

Adobe in collaboration with contributing experts.

2.1. The Acrobat Layers

On a technical level, every PDF file consists of multiple layers. Each layer of abstraction has

its own independent set of rules. The lowest level of them all contains the raw data to be

included in the document. A PDF file consists of objects of the following types: Boolean,

numbers, stings, names, arrays, dictionaries - collections of objects indexed by names,

streams and the null object. The second layer is the COS Layer. On this level, data is

organized into a data tree. The Portable Document (PD) layer, also called PDModel

aggregates the simple objects and organizes them into logical structure like paragraphs. In

addition, useful intermediate level structures like Fonts and Images can now be implemented.

[Parker]

There are, however more layers to a PDF file. The following table provides an accurate

overview:

Package Description
Acrobat_Color_Layer AcroColor is an HFT that allows you to access the AcroColor engine

(ACE), which controls color profile management for Adobe Acrobat.
Plug-ins can import the AcroColor HFT to use the color management
methods.

Acrobat_Forms_Layer The Acrobat Forms plug-in exports its own Host Function Table
(HFT), whose methods can be used by other plug-ins.

Cristina Nicoleta Dobrea
7

ooRexx and the Apache PDFBox Library

AS_Layer The Acrobat Support (AS) layer of the core API provides a variety of
utility methods, including platform-independent memory allocation
and fixed-point math utilities. In addition, it allows plug-ins to replace
low-level file system routines used by Acrobat (including read, write,
reopen, remove file, rename file, and other directory operations). This
enables Acrobat to be used with other file systems, such as on-line
systems.

AV_Layer The Acrobat Viewer (AV) layer of the core API (also known as
AcroView) allows plug-ins to control Acrobat and modify its user
interface. Using the AV methods, a plug-in can add menus and menu
items, add buttons to the toolbar, open and close files, display simple
dialog boxes, and perform many other application-level tasks. Plug-
ins must use AV layer methods to be accessible through the Acrobat
viewer's user interface.

COS_Layer The Cos layer provides access to the low-level object types and file
structure used in PDF files. PDF documents are trees of Cos objects.
Cos objects represent document components such as bookmarks,
pages, fonts, and annotations, as described in Section 3.6,
"Document Structure", in the PDF Reference.

Digital_Signatures Digital signatures allow a person to attest to something about a
document by signing their name to it. An Acrobat signature in a
document is bound to that document in such a way that altering the
signed document or moving the signature to a different document
invalidates the signature.

Error_Messages
PDFEdit_Layer The PDFEdit API provides easy access to PDF page contents. With

PDFEdit, your plug-in can treat a page's contents as a list of objects
rather than manipulating the content streams marking operators.

PDF_Library
PD_Layer The Portable Document (PD) layer of the core API (also called

PDModel) is a collection of object methods enabling plug-ins to
access and manipulate most data in a PDF file.

PDSEdit_Layer PDF files are well known for representing the physical layout of a
document; that is, the page markings that comprise the page
contents. In addition, PDF versions 1.3 and later provide a
mechanism for describing logical structure in PDF files. This includes
information such as the organization of the document into chapters
and sections, as well as figures, tables, and footnotes.

Table 1: All Acrobat Layers [Adobe1]

The PDModel is the most important layer to the purpose of this paper. The upcoming nutshell

examples aim to access and manipulate the data of a PDF file. The way of operating objects

will be explained in detail later in this paper.

PDF – The Portable Document Format

8

2.2. Document Structure

A PDF file can be regarded as a data tree. Objects within the file constitute the tree nodes.

Relationships between the node items are captured in dictionaries.

The root element of the document structure tree is called the document catalog. “The catalog

contains references to other objects defining the document’s contents, outline, article threads,

named destinations, and other attributes. In addition, it contains information about how the

document should be displayed on the screen, such as whether its outline and thumbnail

page images should be displayed automatically and whether some location other than the

first page should be shown when the document is opened” [PDF Reference, page 112]. The

figure below illustrates the entries of the catalog dictionary and the hierarchical relationships

between them.

One of the dictionaries of the document catalog is the ‘Page Tree’ dictionary, which contains

all of the document page objects. “The leaves of the page tree are page objects, each of

which is a dictionary specifying the attributes of a single page of the document” [PDF

Reference, page 119].

How to access certain node items of the document catalog will be shown in the nutshell

examples of this paper. Further details are provided when dealing with the dictionaries and

objects in question.

Cristina Nicoleta Dobrea
9

ooRexx and the Apache PDFBox Library

Figure 1: Structure of a PDF Document [PDF Referenc e, Page 113]

Involved Components

10

3. Involved Components

Several components have been used in generating the nutshell examples presented later on

in this paper. At the very top, the Apache PDFBox Library is used for working with PDF files.

Since the Apache PDFBox Library is a Java tool, the Bean Scripting Framework for Open

Object Rexx is needed to enable developer’s access to the Java library from ooRexx.

The following section will provide a description of the relevant components mentioned above.

3.1. The Apache PDFBox Library

Adobe still holds the patent for the Portable Document Format, but permits the development

of complying software under a royalty-free license [Adobe2]. One of the applications leant on

the PDF standard is the PDFBox, licensed under the Apache License v2.0. The PDFBox is

an open source Java library allowing access to the inner layers of a PDF file and facilitating

creation, manipulation and text extraction of the document and its components, to name just

a few. [PDFBox1]

The convenience of using the PDFBox rises out of the embedding of PDF files in self-

developed software. Since the main purpose of developing software is the processing of

information, the outcome can be captured in a PDF document and made available for other

users independent of used applications, software and hardware. The PDFBox also allows

importing content from a PDF file for further processing.

Following the principles of the object oriented paradigm, the PDFBox library is a collection of

classes with inbuilt methods for creating or accessing every item matching the PDF file

format. Documentation for all available classes is published at the PDFBox site at the

Apache webpage. Packages of the application programming interface (API) are split up

according to features they possess. Inside these packages, classes are hierarchically

ordered and subclasses inherit the methods of parent classes. The packages are in

compliance with other Java libraries and do not require a complex installation procedure.

Cristina Nicoleta Dobrea
11

ooRexx and the Apache PDFBox Library

3.2. Involved Languages

The first part of this chapter describes the two programming languages used in the creation

of the examples. Java, as well as ooRexx, is an object oriented programming language.

Since this paper presents an introduction to using ooRexx and BSF4ooRexx, the author does

not expect the reader to possess in depth knowledge of the components involved. Before

shortly presenting the two mentioned languages, a short introduction in the principles of

object oriented programming (OOP) is meant to create a fundamental understanding for the

sections to come.

3.2.1. The Principles of Object Oriented Programmin g

There are four fundamental styles of programming languages, called paradigms, one of

which is the object oriented paradigm. The main idea behind OOP is the usage of objects,

characterized by its behavior and capable of interacting and carrying out tasks. [Husband et

al.]

This principle is similar to the “human interaction with real world phenomena”. Objects are

the instances of classes. A class represents a concept and defines the proprieties and

functions of its appending objects. It can be used as a template for creating objects. Since

objects of a class have many similarities, the functionality can be easily manipulated by

changing the class rather than changing each individual object. [Nørmark]

Thinking of the real world, every item that surrounds us can be thought of as an object.

Objects can be categorized into groups according to their characteristics. For example, think

of a hand as a general concept. This general concept represents a ‘class’. The hand has its

own individualities like the form and the set of functions it can fulfill. The human body has two

objects of the type hand. In addition to the general functionality of any hand, a particular

hand object, be it the right hand or the left one, has additional or slightly changed properties.

[Nirosh]

Old procedural, non-object oriented programming mainly consists of a list of commands to be

carried out. Items are created manually and properties are assigned individually. Increased

complexity of the application typically leads to vast program size and increased vulnerability

of the code. Since every piece of the code can be modified, it represents a potential source

of errors. In contrast, in OOP, “data as well as operations are encapsulated in objects.

Information hiding is used to protect internal properties of an object. Objects interact by

means of message passing”. [Nørmark]

Involved Components

12

Other characteristics of OOP are:

“Classes are organized in inheritance hierarchies”. Each class is an extension or

specialization of the preceding class, while the object inherits properties from all parent

classes. To stick with the example of human body parts, the class ‘finger’ is a subclass of

‘hand’, which is also a subclass of ‘human body part’. As a result, the class ‘finger’ inherits

the proprieties of both, ‘hand’ and ‘human body part’. Inheriting functionality from other

classes substantially eases the effort of programming and allows defining a fine-grained set

of specialized functions for every subclass. [Nørmark]

The object-oriented paradigm has gained great popularity in recent times and many

programming languages now support OOP.

Cristina Nicoleta Dobrea
13

ooRexx and the Apache PDFBox Library

3.2.2. Java

The Java programming language has been developed by James Gosling and released by

Sun Microsystems – which eventually became the Oracle Corporation – by 1995. Java

follows the object oriented paradigm of programming. Since 2007, most of the Java

technologies were published under the GNU General Public License.

Developers tried to implement as few platform dependencies as possible. This would

guarantee that a code, once written, would run on other machines and not fail due to different

operating systems. James Gosling summarized this principle as “WORA: write once, run

anywhere”.

Other principles lying at the very bottom of Java are:

- ‘It should be "simple, object-oriented and familiar"
- It should be "robust and secure"
- It should be "architecture-neutral and portable"
- It should execute with "high performance"
- It should be "interpreted, threaded, and dynamic"’ [Wiki2]

The current version is the Java Standard Edition 7, released in 2011, extended by a number

of updates. Recent statistics show that, even though Java has lost leadership among most

used programming languages, it is still far away from fading. [Tiobe]

Involved Components

14

3.2.3. ooRexx

“Rexx is a procedural programming language that allows programs and algorithms to be

written in a clear and structured way. It is easy to use by experts and casual users alike.

Rexx has been designed to make easy the manipulation of the kinds of symbolic objects that

people normally deal with such as words and numbers. Although Rexx has the capability to

issue commands to its host environment and to call programs and functions written in other

languages, Rexx is also designed to be independent of its supporting system software when

such commands are kept to a minimum.” [RexxLA]

The birth year of the Restructured Extended Executor (Rexx) language interpreter is known

to be 1979, when the IBM employee Mike F. Cowlishaw laid the fundament of a "human

centric language". Several years later, Rexx became the official strategic procedural

(scripting) language of IBM's operating systems. [Flatscher]

In the late 1980’s, work began for developing an object oriented version of Rexx, fulfilling the

programming needs of the time. It was only 1997 that the commercial available successor of

Rexx, the object Rexx was released. By the mid 2000’s, IBM handed the source code for

Rexx and object Rexx to the ‘Rexx Language Association’. Rexx and its successor became

available as open source software. In 2005, the Object Oriented Rexx was released.

[Flatscher]

“Open Object Rexx (ooRexx) is an Open Source project providing a free implementation of

Object Rexx. ooRexx is distributed under Common Public License (CPL) v1.0. Object Rexx

is an enhancement of classic Rexx; a powerful, full-featured programming language which

has a human-oriented syntax. The Open Object Rexx interpreter allows you to write

programs procedurally as well as in an object-oriented fashion. Its main benefits include:

• Easy to use and easy to learn

• Upwardly compatible with classic Rexx

• The ability to issue commands to multiple environments

• Offers powerful functions

• Based on English-like commands

• Enhanced with full object orientation

• Designed for object-oriented programming, and also allows Rexx conventional

programming

• Provides a standard Rexx API to develop external function libraries written in C”

[ooRexx1]

Cristina Nicoleta Dobrea
15

ooRexx and the Apache PDFBox Library

“Open Object Rexx includes features typical of an object-oriented language, such as

subclassing, polymorphism, and data encapsulation. It is an extension of the classic Rexx

language, which has been expanded to include classes (a base set of classes is supplied),

objects, and methods. These extensions do not replace classic Rexx functions or preclude

the development or running of classic Rexx programs.

Open Object Rexx is fully compatible with earlier versions of IBM REXX Interpreters that

were not object-oriented and compatible with other Open Source Rexx interpreters currently

available.” [ooRexx1]

3.2.4. BSF4ooRexx

As mentioned before, the Apache PDFBox is a Java library. The first challenge when

managing a PDF file by using the ooRexx programming language is establishing a

connection to Java objects and allowing implementation of Java methods. For means of

addressing Java classes and objects, the Bean Scripting Framework for object oriented Rexx

(BSF4ooRexx) has been developed as an extension for ooRexx. This library allows bridging

full functionality of the Java Runtime Environment to the human-centric programming

language ooRexx without requiring knowledge of the Java programming language.

Whenever the BSF class is used to camouflage Java as ooRexx, the fully qualified Java

class name has to be provided. Moreover, when importing a Java class, use of the exact

case is mandatory. Afterwards, the imported Java class can be used in the code as any

regular ooRexx class.

Objects created from Java classes can be addressed by supplying the correct method name

and arguments, as given in the Java documentation. However, the syntax will be written in

ooRexx, ensuring less programming effort compared to programming in Java.

Using BSF.cls, the developer can create Java objects and operate with the build-in

arguments and functions. BSF needs fully qualified Java class names. Note that the use of

the exact case is mandatory. To bridge any Java class to ooRexx, the user can chose

between two different options regarding the syntax:

For one, the statement ‘name=BFS.import(“className”)’ at the beginning of the

source code imports the class without instantiating an object. This procedure is

recommended whenever multiple objects of the same class needs to be created, since it

avoids redundancy of repeatedly importing the same class for multiple objects. To create an

Involved Components

16

affiliated object, simply use the syntax ‘object1=name~new’ .

Listing 1: Using the BSF class – option1

Another option for importing Java classes is importing a class and creating an object at once.

This action is performed by the statement ‘object2=.bsf~new(“className”)’. This

procedure is practical since the importing of the classes and the creating of object are tied

together, increasing transparency and preventing extensive length of the application code.

--import and instanciate class
doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")

--supply BSF class
::requires BSF.cls

Listing 2: Using the BSF class – option 2

By now, regardless of the procedure chosen, the class has been imported and am object

created. Class names for the PDFBox are available in the PDFBox documentation and can

be looked up on the Apache PDFBox Website. To handle the object, implement the methods

provided in the documentation. The methods listed in the documentation are typically

displayed as ‘method(argument)’ . In contrast to Java, ooRexx does not call for the

brakes after the method name if no argument is provided.

Also, for loading a class in order to access the class methods, the following syntax is

adequate: ‘object3=BSF.loadClass(“className”)~method’

--import class to retrieve methods
doc =BSF.loadClass("org.apache.pdfbox.pdmodel.PDDocument") ~save

--supply BSF class
::requires BSF.cls

Listing 3: Using the BSF class – option 3

Last, at the end of the code, a ‘::requires’ directive is used to address the BSF.cls class.

The BSF4ooRexx project was registered at SourceForge.net and is available free of charge.

--import Java class
importdoc = BSF.import("org.apache.pdfbox.pdmodel.PDDocument")

--create class object
doc = importdoc ~new()

--supply class BSF
::requires BSF.cls

Cristina Nicoleta Dobrea
17

ooRexx and the Apache PDFBox Library

4. Installation Guide

To help with the application of the required programs, the following section supplies

instructions for correct installation of all the involved components as they have been

described above.

4.1. ooRexx

For download, the ooRexx.net website will redirect the user to the SourceForge.net site of

ooRexx. Choose the package which description is closest to your operating system and

environment. Download the file and follow the installation procedure, as it is self-explanatory.

4.2. BSF4ooRexx

For download of the ooRexx extension for addressing Java classes and objects, go to the

BSF4ooRexx homepage at SourceForge.net and download the latest version of the package,

available for ooRexx version 4.1.0 or higher. Download and unzip the archive and choose the

installation according to your operating system. A new CLASSPATH variable should now

have been added to the environment variables.

4.3. Apache PDFBox

Installation of the Apache PDFBox is quite simple and not at all time consuming, provided the

right package is being retrieved. The Apache PDFBox is an open source project. This means

that the project is and will remain available free of charge.

To install the PDFBox library, visit the PDFBox homepage and navigate to the download

section. The newest available version is automatically suggested for download. If the user

desires to load a different version, a link will lead to all previous releases.

For means of quick installation, download the pre-build standalone binary version provided

as a .jar file. This standalone version contains all classes of the PDFBox. Check the integrity

of the download by verifying the signature and the checksums, as recommended in the

download section of the website.

After download and verification, add the file path to the CLASSPATH system variable of the

environment variable. The PDFBox library is now ready for use.

Used Environment

18

5. Used Environment

The following operating system was running on the computer involved in creating the nutshell

examples:

Windows 7 Enterprise Edition with Service Pack 1, 64-bit system.

The ooRexx version 4.1.0.6441 published by the Rexx Language Association has been used

for creating the examples of this paper.

It has been extended by the BSF4ooRexx package 4.10 as released in June 2012.

Also, the Java version running on the machine the examples have been created on is 7.0.40

– 32 bit.

For creating the nutshell examples, the Apache PDFBox version 1.7.0. has been installed.

By the end of July 2012, a newer version - PDFBox 1.7.1.- has been released. Although

creating the code was accomplished by using the older library, full compatibility with the new

release has been tested.

In addition, the VIM editor version 7.3 has been used for writing the code. Version 7.1 or

higher supports the ooRexx syntax.

Cristina Nicoleta Dobrea
19

ooRexx and the Apache PDFBox Library

6. Managing a PDF File – Nutshell Examples
In this chapter, the actual source code for handling a PDF file by using the Apache PDFBox

with ooRexx and BSF4ooRexx is presented. Eleven nutshell examples have been created to

illustrate accomplishment of diverse tasks. The complete source code has been added to

each section, since it represents the completion of the assignment. Whenever needed,

additional information on classes and objects are provided, same as definitions of PDF file

components.

6.1. Create a New Document and Add Text

The first example illustrates how a new writeable document is created. In order to accomplish

this task, some simple steps need to be taken as demonstrated below.

--create a new file and add a blank page

doc = .bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")

page = .bsf ~new("org.apache.pdfbox.pdmodel.PDPage")

doc ~addPage(page)

--create a content stream to hold data

contentStream = .bsf ~new("org.apache.pdfbox.pdmodel.edit.PDPageContentStream " , doc , page)

--create font object

font = BSF.loadClass("org.apache.pdfbox.pdmodel.font.PDType1Font") ~HELVETICA_BOLD

--define content stream

contentStream ~beginText

contentStream ~setFont(font , 12)

contentStream ~moveTextPositionByAmount(100, 700)

contentStream ~drawString("This is page ONE of ONE")

contentStream ~endText

contentStream ~close

--close and save the file

doc ~save(doc.pdf)

doc ~close

::requires BSF.cls

Listing 4: PDF file creation and text insertion

In the current example, four Java classes have been imported.

The PDDocument class (fully qualified Java class name:

Managing a PDF File – Nutshell Examples

20

org.apache.pdfbox.pdmodel.PDDocument) is an extension of the

java.lang.Object class. “This class is the in-memory representation of the PDF

document.” PDDocument is used to create a new PDF file. For the document to be valid, at

least one page needs to be added. This can be accomplished by using the PDPage class

(fully qualified Java class name: org.apache.pdfbox.pdmodel.PDPage), another

extension of the java.lang.Object class. “This represents a single page in a PDF

document“. After creating a new file and adding a blank page, the document needs to be

saved and closed.

If adding text to the document is desired, two other classes need to be implemented. The first

one, PDPageContentStream, creates the data stream for writing to the page object.

“A content stream is a PDF stream object whose data consists of a sequence of instructions

[…]. The instructions are represented in the form of PDF objects, using the same object

syntax as in the rest of the PDF document. However, whereas the document as a whole is a

static, random-access data structure, the objects in the content stream are intended to be

interpreted and acted upon sequentially. Each page of a document is represented by one or

more content streams” [PDF Reference, Page 126]. It is mandatory to close the object after

finishing text operations, using the ~close method.

The PDPageContentStream object (org.apache.pdfbox.pdmodel.edit.

PDPageContentStream) needs specification of two parameters: the document and the

page of the document it will write to.

Additionally, the following methods need to be defined:

~beginText - the beginning of the text operations

~setFont(PDFont font, float fontSize)- the PDFont class is discussed in the

upcoming paragraph

~moveTextPositionByAmount(float x, float y)- specify the desired location for

text insertion

~drawString(String text)- this will draw a string at the specified location

~endText- marks the ending of the text operation

~close - close the content stream

To create a new font object, the class PDFont or one of its subclasses is needed. In the

current example, one of the PDF base fonts was selected (Helvetica Bold). The following

listing shows the class hierarchy of PDType1Font:

Cristina Nicoleta Dobrea
21

ooRexx and the Apache PDFBox Library

java.lang.Object

 org.apache.pdfbox.pdmodel.font.PDFont

 org.apache.pdfbox.pdmodel.font.PDSimpleFont

 org.apache.pdfbox.pdmodel.font.PDType1Font

Table 2: Class hierarchy for PDType1Font [PDFBox PDType1Font]

 “The PDF specification states that a standard set of 14 fonts will always be available when

consuming PDF documents. In PDFBox these are defined as constants in the PDType1Font

class.” [PDFBox Standard 14 Fonts]

Standard Font

PDType1Font.TIMES_ROMAN

PDType1Font.TIMES_BOLD

PDType1Font.TIMES_ITALIC

PDType1Font.TIMES_BOLD_ITALIC

PDType1Font.HELVETICA

PDType1Font.HELVETICA_BOLD

PDType1Font.HELVETICA_OBLIQUE

PDType1Font.HELVETICA_BOLD_OBLIQUE

PDType1Font.COURIER

PDType1Font.COURIER_BOLD

PDType1Font.COURIER_OBLIQUE

PDType1Font.COURIER_BOLD_OBLIQUE

PDType1Font.SYMBOL

PDType1Font.ZAPF_DINGBATS

Table 3: Standard fonts available via PDType1Font c lass [PDFBox Standard 14 Fonts]

After completion of all of these steps, save the document by setting the desired file name as

a string parameter and close the document.

References for this example:

[PDFBox PDDocument]

[PDFBox PDPage]

[PDF Box PDPageContentStream]

[PDFBox PDType1Font]

[PDFBox Standard 14 Fonts]

Managing a PDF File – Nutshell Examples

22

6.2. Add Image to PDF

The second example demonstrates how an image can be added to a PDF file.

--prepare new document

doc = .bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")

page = .bsf ~new("org.apache.pdfbox.pdmodel.PDPage")

doc ~addPage(page)

--prepare image

input =.bsf ~new("java.io.FileInputStream" , "image1.jpg")

image = .bsf ~new("org.apache.pdfbox.pdmodel.graphics.xobject.PDJpeg" , doc , input)

--define content stream

stream = .bsf ~new("org.apache.pdfbox.pdmodel.edit.PDPageContentStream " , doc , page)

stream ~drawImage(image ,55,80)

stream ~close

--save and close file

doc ~save("ImageNowPdf.pdf")

doc ~close

::requires bsf.cls

Listing 5: Image insertion

First, a new document is created and a blank page is inserted. This action is the same as

described in detail for the previous nutshell example. Second, the content stream presented

before is created.

Since the data to be written in the file is a stream of bytes in contrast to characters as was

the case in the previous example, the PDPageContentStream is not sufficient to handle data

extraction from a file and embed it into another. To solve this issue, the Java FileInputStream

has been used in the current exemplification.

java.lang.Object

 java.io.InputStream

 java.io.FileInputStream

Table 4: Class hierarchy for FileInputStream [Java FileInputStream]

Cristina Nicoleta Dobrea
23

ooRexx and the Apache PDFBox Library

 “A FileInputStream obtains input bytes from a file in a file system. What files are available

depends on the host environment. FileInputStream is meant for reading streams of raw bytes

such as image data” [Java FileInputStream]. By setting the image’s file name as a parameter

of the FileInputStream object, a connection to the file is established.

Next, an object of the PDJpeg class (org.apache.pdfbox.pdmodel.graphics.xobject.PDJpeg),

an image class for Jpeg files, is used to import the image.

“An external object (XObject) is an object defined outside the content stream and referenced

as a named resource. The interpretation of an XObject depends on its type. An image

XObject defines a rectangular array of color samples to be painted; a form XObject is an

entire content stream to be treated as a single graphics object” [PDF Reference, Page 165].

The parameters used with the PDJpeg object are the destination document of the image and

the stream containing the Jpeg data – in our case the FileInputStream.

After preparation of the image by following the described steps, the image can now be added

to the ContentStream and drawn at the specified coordinates. To draw the image according

to the default size, the method ~drawImage(PDXObjectImage image, float x,

float y) has been implemented. To modify the dimensions of the image, use the method

~drawXObject(PDXObject xobject, float x, float y, fl oat width,

float height).

Close the content stream, then save and close the file according to the previous example

after completing the operation.

References for this example:

[PDFBox PDDocument]

[PDFBox PDPage]

[PDF Box PDPageContentStream]

[PDFBox PDJpeg]

[Java FileInputStream]

Managing a PDF File – Nutshell Examples

24

6.3. Merge PDF Documents

This nutshell example demonstrates a simple, jet very effective way to merge two or more

PDF files. In preparation for the example, two new documents are created by running the first

nutshell example presented. ‘doc1.pdf’ contains the text “This is page ONE of TWO”, and,

accordingly, ‘doc2.pdf’ contains the text “This is page TWO of TWO”. This is relevant since

we will use the created documents in further examples.

--add source documents to merge

merger =.bsf ~new("org.apache.pdfbox.util.PDFMergerUtility")

merger ~addSource("doc1.pdf")

merger ~addSource("doc2.pdf")

--set destination file name and perform operation

merger ~setDestinationFileName("newdoc.pdf")

merger ~mergeDocuments

::requires BSF.cls

Listing 6: Merging documents

The class PDFMergerUtility (fully qualified Java name:

org.apache.pdfbox.util.PDFMergerUtility) is capable of receiving a list of documents and

merge them, saving the result in a new document. In the example shown above, the two

documents’ names are the arguments of the method ~addSource, while the new

document is specified as a parameter of ~setDestinationFileName.

Another way to use the class PDFMergerUtility is by instantiating the merger object and

using the method ~appendDocument (PDDocument destination, PDDocument

source). This way, the content of one document will be appended to another one without

changing the destination file.

References for this example:

[PDFBox PDFMergerUtility]

Cristina Nicoleta Dobrea
25

ooRexx and the Apache PDFBox Library

6.4. Extract Text from PDF File

This example demonstrated how text can be extracted from an existing PDF file. Since the

deployed class is not entirely compatible with the ooRexx stream object for writing into

destination files, the objective of this example is performed through two different approaches:

First, the ooRexx stream object is deployed, and then the stream classes of Java are used.

--load the document

source ="newdoc.pdf"

importdoc =BSF.loadClass("org.apache.pdfbox.pdmodel.PDDocument")

doc =importdoc ~load(source)

--get content

stripper =.bsf ~new("org.apache.pdfbox.util.PDFTextStripper")

msge=stripper ~getText(doc)

--print out content

say "content of" source ":"

say msge

--create and write content to destination file

dest ="newdoc.txt"

output =.stream~new(dest)

output ~lineout(msge)

say "content saved in " dest

call syssleep 5

::requires BSF.cls

Listing 7: Text extraction - ooRexx stream object

The source file for this example is the previously created “newdoc.pdf”. The text content of

the document is spread on two separate pages. To get access to the document’s content,

the class PDFTextStripper si implemented. Using this class allows importing the text from

any PDF file, regardless of its formatting and page arrangement.

To simply import the text to ooRexx, the method ~getText(PDDocument doc) is

implemented. After doing so, the character string is sent to the ooRexx stream object to write

in the destination file. For illustration purpose, the complete text is printed out in the

Command Prompt window and inserted into a new TXT file.

The current example is designed to use ooRexx’ own stream object. Therefore the full

functionality of the PDFTextStripper class is not available due to the absence of a Java

Managing a PDF File – Nutshell Examples

26

output writer as requested for some methods’ argument. For example, the method

~writeText(PDDocument doc, Writer outputStream) demands for the java.io

subclass OutputStreamWriter. Delivering the ooRexx stream object as an argument results

into an error, pointing out an invalid method argument.

To bypass this problem, we loaded the PDF file’s content to the main program as an

intermediary step and then proceeded to printing it out to the destination file.

However, another option and a way to access full functionality of the

org.apache.pdfbox.util.PDFTextStripper class is the usage of Java stream

classes as shown below:

--load the source document and create the output st ream

source ="newdoc.pdf"

importdoc =BSF.loadClass("org.apache.pdfbox.pdmodel.PDDocument")

doc =importdoc ~load(source)

dest ="newdoc2.txt"

outputstream =.bsf ~new("java.io.FileOutputStream" , dest)

--get content and write it to the output stream

stripper =.bsf ~new("org.apache.pdfbox.util.PDFTextStripper")

outputwr =.bsf ~new("java.io.OutputStreamWriter" , outputstream)

--create buffer

buffwr =.bsf ~new("java.io.BufferedWriter" , outputwr)

--write from source document to destination file

stripper ~writeText(doc , buffwr)

buffwr ~close

::requires BSF.cls

Listing 8: Text extraction - Java stream object

The following Java classes are used to ensure full functionality:

- java.io.FileOutputStream - establish connection to destination file

- java.io.OutputStreamWriter - writing to destination file through the previous

created connection

- java.io.BufferedWriter - using a buffer for efficient writing (deployment
optional, but recommended)

By importing these classes via BSF4ooRexx, writing directly from the source t to the

destination file can be achieved, without any need for intermediary steps.

Cristina Nicoleta Dobrea
27

ooRexx and the Apache PDFBox Library

Which one of the presented practices will be used depends to some extent on the action to

be performed, but is mainly up to the user and his preferences and precognition.

References for this example:

[PDFBox PDDocument]

[PDFBox PDFTextStripper]

[Java FileOutputStream]

[Java OutputStreamWriter]

[Java BufferedWriter]

[ooRexx, page 84 – Writing a text file]

Managing a PDF File – Nutshell Examples

28

6.5. Search for String in PDF File

In previous examples, we have demonstrated how text can be extracted out of a PDF File.

The current example aims at searching for specific text within a PDF Document. For this

purpose, the file ‘doc2.pdf’ is used as the source file. The file contains the string “This is

document TWO of TWO” and was created by implementing the actions described in the first

nutshell example. The assignment for the current example is to search for the word “TWO”

inside the PDF document and return the number of times the string has been identified.

Listing 9: Searching for a string

The current example presents the search procedure by importing the text out of the PDF

document and deploying some ooRexx built-in functions.

First of all, we need to import the character string from inside the source document. The

procedure has already been discussed and the task accomplished by using the class

PDFTextStripper. The sting obtained is labeled ‘stry’ for ‘string Y’. The string we are

searching for, in our case “TWO”, is named ‘strx’ for ‘string X’. Additionally, a counter is set

up to detain the number of matches. This counter is labeled ‘count’ and initially set to 0.

--import text from source document, get text

stripper =.bsf ~new("org.apache.pdfbox.util.PDFTextStripper")

doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")

stry = stripper ~getText(doc ~load("DOC2.pdf"))

say "Given string is: "

say stry

--define string to search for

strx ="Two"

say "Searching for string: "

say strx

--define variable to memorize position of match

stamp =pos(strx ,stry)

count =0 –set up the match counter

do while stamp > 0 --enter loop if match was found

 count =count +1 --increment counter

 say "Match number " count " found at position " stamp

 stamp =pos(strx ,stry ,stamp +length(strx)) --define position to start next search

end

call syssleep 5

::requires BSF.cls

Cristina Nicoleta Dobrea
29

ooRexx and the Apache PDFBox Library

Next, a stamp is defined to memorize the position of the match. To fulfill this task, the

function POS(needle,haystack) is implemented.

“POS (Position) returns the position of one string, needle, in another, haystack. It

returns 0 if needle is a null string or not found or if start is greater than the length of haystack.

By default, the search starts at the first character of the receiving string (that is, the value

of start is 1), and continues to the end of the string. You can override this by specifying start,

the point at which the search starts, and length, the bounding limit for the search. If

specified, start must be a positive whole number and length must be a non-negative whole

number.” [ooRexx2]

If the value of the created parameter is greater than 0, meaning a match has been found, a

loop is entered for further processing of the initial string. First, the counter is incremented to

store the number of times string X has been found. Second, to continue searching for string

X inside string Y, the stamp parameter is modified to continue searching, starting at the

position of the first letter of the previous match, plus the length of string X.

If, however, there is no need to retrieve the position where matches have been found, the

ooRexx built-in function COUNTSTR(needle,haystack) can be applied. This function

“returns a count of the occurrences of needle in haystack that do not overlap.” Moreover, the

string can be replaced by using the function CHANGESTR(needle,haystack,newneedle)

can be implemented to achieve the desired outcome.

 [ooRexx2]

Figure 2: Searching for a string - outcome

Further development of the presented code can include features like highlighting of text

sections by determining the coordinates of the section and drawing a colored box behind the

text.

For the sake of completeness, the following annotation has to be discussed:

Managing a PDF File – Nutshell Examples

30

Importing the text from de PDF document brings about two extra characters. To be more

precise, the string Y “This is page TWO of TWO” only consists of 23 letters. Jet 25

characters are imported, of which the last two are white-space characters and are not

visually displayed in the Command Prompt interface.

References for this example:

[PDFBox PDDocument]

[PDFBox PDFTextStripper]

[oorexx2 – POS(position); countStr]

Cristina Nicoleta Dobrea
31

ooRexx and the Apache PDFBox Library

6.6. Split Up a PDF File by Handling Individual Pag es

The following two examples illustrate how to split up a PDF document by using different

approaches1.

The current nutshell example is meant to split up a document into individual pages. Although

this example does not involve deployment of any new classes, it shows how multiple pages

of the same file can be appealed for further handling. This practice will be used whenever an

action is performed to more than one pages of a PDF file, for instance adding a header or

creating bookmarks (see example ‘Creating new bookmarks’).

-- import source document
doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("newdoc.pdf")

--retrieve all pages
allpages = doc ~getDocumentCatalog ~getAllPages --returns List of PDPage objects

say "---"
say "OPTION 1 - Java ArrayList"
say "allpages:" allpages

a=doc ~getNumberOfPages
a = a - 1
do i = 0 to a
 page = allpages ~get(i)
 docx =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")
 docx ~addPage(page)
 name ="split_01_" i "_JavaArrayList.pdf"
 say name
 docx ~save(name)
end
say "---"

say "OPTION 2 - Java Array"
say "turning into a genuine Java array, that will be ma de into an ooRexx array:"
arr =allPages ~toArray -- turn into an array

do i =1 to arr ~items -- iterate like in ooRexx: first element has index # 1 !

 docx ~addPage(arr [i])
 name ="split_02_" i "_JavaArray.pdf"
 say name
 docx ~save(name)
end
say "---"
call syssleep 5

::requires BSF.cls

Listing 10: Splitting up a PDF file: handling page objects

First, the source document is imported. This is the original file which will be separated into

individual files. For this example, we use the document “newdoc.pdf” that has been created

1
 This example was completed with support provided by Prof. Rony G. Flatscher, to whom I am very thankful

Managing a PDF File – Nutshell Examples

32

in the previous example by merging two documents. By applying new measures, the action

performed in the earlier example will be undone. Second, the document catalog is imported.

For details on data content of the document catalog, please review the section “PDF – The

Portable Document Format” of this paper.

Next, from the document catalog, enter the ‘Page Tree’ and retrieve all page objects

available within the document. Note that the method ~getAllPages returns a Java

ArrayList holding PDPage objects.

It is important to be aware that the ArrayList currently storing information about nodes and

pages is a Java type object. The main difference between collection classes in Java and in

ooRexx is the index it starts with. In ooRexx, indexing of the collection class objects

commence at 1, since this programming language was developed to be similar to the human

communication and logic. However, indexing in Java starts at 0. This incompatibility can

cause errors since the code is written in ooRexx and the index difference is easily overlooked.

Although getting the individual pages from the ArrayList for further handling is possible if

considering the Java indexing scheme, an additional more convenient way of storing

PDPage obejcts is presented in this example: turning the Java ArrayList into an Array which

will be converted by BSF4ooRexx into an ooRexx Array. This method will help bypassing any

errors connected to different index.

OPTION1: Java ArrayList

The first way of handling page objects is by working directly with the objects stored in the

ArrayList. From the received page list, individual page objects can now be appealed for

further processing by supplying the index value of the page in question, as shown below:

After retrieving the ArrayList containing the individual pages, a loop is built to create an

individual file for each one of them. The loop counter is called ‘a’ and equals the number of

pages of the document. Since the same action is applied to every page of the source

document, the loop is set up to repeat itself ‘a’ times.

Although the number of pages is equal to the number of position in the Java array, the index

difference needs to be considered. Page 1 of the document occupies the position at index 0

of the array. To obtain equality, ‘a’ and ‘i’ are matched by subtracting one unit from the

counter ‘a’ (a = a - 1).

Now, the actual page handling can be performed. Every page object stored in the array is

individually retrieved and assigned to a new document. Denotation and saving of each

Cristina Nicoleta Dobrea
33

ooRexx and the Apache PDFBox Library

document is itemized before repeating the chain of actions for the next PDPage object.

OPTION 2: Java Array

To avoid errors arising from differences in indexing, the method ~toArray is applied to the

ArrayList, resulting into a genuine Java array. The Java Array is automatically converted into

an ooRexx-Array by BSF4ooRexx and therefore index of the collection class object

commence at 1.

From here on, the procedure is similar to the one presented in the first option: a loop is set

up to iterate for every item in the array. Inside the loop, every object is inserted into a new

PDDocument object and saved under a different name.

Although both options return a valid outcome in terms of page handling and creation of

separate documents for each page, the second option additionally provides a solution to

issues arising out of index incompatibility between Java and ooRexx. The author therefor

recommends deployment of the second alternative presented.

References for this example:

[PDFBox PDDocument]

[PDFBox PDDocumentCatalog]

[ooRexx Array]

[Java Array]

[Java ArrayList]

Managing a PDF File – Nutshell Examples

34

6.7. Split Up a PDF File by Sections

This example illustrates how a document containing multiple pages can be split up into

several smaller documents by using the class Splitter.

--load the source document

doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("newdoc.pdf")

--set the splitting algorithm

splitter =.bsf ~new("org.apache.pdfbox.util.Splitter")

count = 1

splitter ~setSplitAtPage(count)

--create list of results, turn into array

doclist =splitter ~split(doc) ~toArray

say "Creating files:"

--create individual documents

do i =1 to doclist ~items

 docx = doclist ~at(i)

 name ="split_03_" i "_JavaArray.pdf"

 say name

 docx ~save(name)

end

call syssleep 3

::requires BSF.cls

Listing 11: Splitting up a PDF file: creating a spl itting algorithm

The document to be split up is loaded by using the class PDDocument. Again, we use the

document ‘newdoc.pdf’ that has been created before and consists of two pages containing

the text “This is page ONE of TWO” and “This is page TWO of TWO”.

The only additional PDFBox class needed to perform the splitting operation is

org.apache.pdfbox.util.Splitter, a direct subclass of java.lang.Object.

The ~setSplitAtPage(int split) method helps defining an algorithm for splitting

the document into several other document. Note that the int split argument is zero

based. Since ‘newdoc.pdf’ only consists of two pages, the variable needs to be set at a value

of 1.

Next, a list is created to store the individual, newly created documents until they are saved.

Same as seen in the previous example, the list is corresponding to a Java ArrayList. By

Cristina Nicoleta Dobrea
35

ooRexx and the Apache PDFBox Library

turning the Java ArrayList into a genuine Java Array object and by using BSF4ooRexx, we

are able to work with the Array as an ooRexx collection class object. Appealing the Array

object can now be performed by implementing the ooRexx methods for the Array class. In

addition, index of the array corresponds to the ooRexx notation scheme and is no longer

zero-based.

The loop is similar to the one created in the previous example, except for the fact that entire

document sections are saved as new files instead of inserting individual pages into newly

created document. This circumstance eliminates the need of importing and instantiating the

PDDocument class for creating the individual files.

Alternatively, the method ~createNewDocument can be used directly with the splitting

object to create a new document to write the contents to. The splitting feature of the PDFBox

can be personalized by creating an arbitrary splitting algorithm to be applied to a document.

References for this example:

[PDFBox PDDocument]

[PDFBox Splitter]

[Java Array]

[Java ArrayList]

Managing a PDF File – Nutshell Examples

36

6.8. Create New Bookmark

The current example illustrates the creation of bookmarks on every page of a document. To

do so, we proceed using the PDF file ‘newdoc.pdf’ containing two pages, that has been

created before.

Listing 12: Creating new bookmarks

As a logical first step the PDDocument object ‘newdoc.pdf’ is loaded. After doing so, the

document catalog can be accessed. This can easily be done by sending the command

~getDocumentCatalog to the PDDocument object. After importing the document catalog,

the developer is able to set the document outline storing future bookmark items.

“A PDF document may optionally display a document outline on the screen, allowing the user

to navigate interactively from one part of the document to another. The outline consists of a

tree-structured hierarchy of outline items (sometimes called bookmarks), which serve as a

visual table of contents to display the document’s structure to the user.” [PDF Reference,

Page 554]

Having gained access to the document’s catalog, an outline directory can now be added to

facilitate the navigation of the document. This can be accomplished by creating an object

from the class PDDocumentOutline, a class representing the document outline for PDF

documents. A document outline is comparable to a data tree structure or hierarchy,

displaying name and/or position of the document sections.

-- load document
doc=.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("newdoc.pdf")

--create new outline for document
outline =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.outline.PDDocumentOutline")
doc~getDocumentCatalog ~setDocumentOutline(outline)

--set root element for the tree
root =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.outline.PDOutlineItem")
root ~setTitle("All Pages")
outline ~appendChild(root)

--get list of all PDPage objects
allpages = doc ~getDocumentCatalog ~getAllPages ~toArray

--loop
do i = 1 to allpages ~items
 --creating bookmarks and setting their destinati on
 page = allpages ~at(i)
 destination =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.destination.PDPageFitDestination")
 destination ~setPage(page)
 bookmark =.bsf ~new("org.apache.pdfbox.pdmodel.interactive.documentnavi gation.outline.PDOutlineItem")
 bookmark ~setDestination(page)

 --name the node and add to outline
 title ="page" i +1
 bookmark ~setTitle(title)
 root ~appendChild(bookmark)
end

--open nodes for display
root ~openNode
outline ~openNode
doc~save("newdoc2.pdf")

::requires BSF.cls

Cristina Nicoleta Dobrea
37

ooRexx and the Apache PDFBox Library

To set the root element of the newly added outline, a first item will be added to the bookmark

tree. Creation of corresponding elements can be complete by using the PDOutlineItem class.

This class allows not only creation of elements, but also permits navigation and manipulation

of outline items, as will be shown in subsequent examples. After having created the root

element labeled “All Pages”, the item can be added to the outline. This task is perform by

using method ~appendChild(PDOutlineItem outlineNode).

As the next step, we need to access the indivual pages of the document. The PDDocument

class provides a method named ~getAllPages, which returns the hierarchical structure of

PDPageNode and PDPages, storing this objects in a Java ArrayList. As shown before, the

ArrayList will be transformed into a Java Array, converted to an ooRexx array object by

BSF4ooRexx.

To automate the creation of bookmarks for every page, a loop has been created. To find out

how many bookmarks will be created, we use the command line allpages~items . This

method returns the numbers of items stored in the array to be used as a parameter for the

loop to be created.

Inside the loop, every PDPage object is invoked from its position on the array called

“allpages”. The destination for the bookmark is set individually for every existing page of the

document. The following list displays the class hierarchy for the class PDPageDestination

and its known subclasses:

java.lang.Object

 org.apache.pdfbox.pdmodel.interactive.documentnavi gation.desti
nation.PDDestination

 org.apache.pdfbox.pdmodel.interactive.documentnavigation.
destination.PDPageDestination

Direct known subclasses:

PDPageFitDestination
PDPageFitHeightDestination
PDPageFitRectangleDestination
PDPageFitWidthDestination
PDPageXYZDestination
Table 5: Class PDPageDestination and subclasses

After setting the destination, a new bookmark can be created pointing at it. Additionally, the

title of the bookmark is customized to mirror the page it points to. As final step, the created

Managing a PDF File – Nutshell Examples

38

outline items have to be inserted into the document outline. Once again, we use the

command ~appendChild to pin the created items to the root element.

As a result of the performed actions, the edited document now comprises an outline

containing the root element “All Pages” and two bookmarks pointing at the two PDPage

objects. In order to display the bookmark nodes, the outline, as well as the root element, is

opened using the method ~openNode . We proceed to saving the document as “newdoc2.pdf”

Figure 3: Creating new bookmarks - outcome

References for this example:

[PDFBox PDDocument]

[PDFBox PDDocumentCatalog]

[PDFBox PDDocumentOutline]

[PDFBox PDOutlineItem]

[PDFBox PDDestination]

[PDFBox PDPageFitDestination]

Cristina Nicoleta Dobrea
39

ooRexx and the Apache PDFBox Library

6.9. Get Bookmarks on a Single Level

This nutshell example describes the procedure for obtaining the bookmark elements for the

upper level of the bookmark structure. Preceding the algorithm is possible in order to

retrieve the entire outline structure of the document. However, the basic principle of entering

and appending the nodes of the outline is hereby presented.

--load source document

doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("rexxpg.pdf")

--get catalog and outline

outline =doc ~getDocumentCatalog ~getDocumentOutline

--start navigation at first node

itm =outline ~getFirstChild

--loop

a=0

do while a<outline ~getOpenCount --find number of same level nodes

 say "Item= " itm ~getTitle --extract node name

 itm =itm ~getNextSibling --move to next node

 a =a+1

end

say "number of bookmarks on first level: " a

call syssleep 5

::requires BSF.cls

Listing 13: Extracting outline information: bookmar ks on a single level

First we import a source document. To demonstrate the magnitude of this example, we use a

different PDF file with a vast structure of bookmark elements. Accordingly, we employ the

Open Object Rexx Programming Guide, named ‘rexxpg.pdf’. This document can be found in

the documentation folder for ooRexx. Given the current computer setting, the file was found

in ‘C:\Program Files (x86)\ooRexx\doc’. The programming guide is also available for

download at http://www.oorexx.org/docs/rexxpg/rexxpg.pdf

The first step is importing the source file, as seen before. Next, the document catalog is

imported for obtaining access to the PDF file’s objects. From the document catalog, get the

document outline. This is a directory containing all bookmark nodes of the document.

Interestingly enough, the only class that needs to be imported is the PDDocument class. By

sending the message ~getDocumentCatalog to the PDDocument object, a connection to

Managing a PDF File – Nutshell Examples

40

the PDDocumentCatalog class is established. Without importing this class, we are able to

use the method ~getDocumentOutline embedded in it. This is possible due to the basic

characteristics of object oriented programming, where every object carries information about

available methods. Once an object is imported, the user is able to handle it by using the

class’ methods.

After having acquired access to the document’s outline, we can now appeal the first node

element of the structure tree. We therefore select the first child of the outline by sending the

message ~getFirstChild to the PDOutlineNode object. The object returned is of the type

PDOutlineItem – again, no import of this class is needed.

After connecting to the first node, a loop helps automating the next step for every other node

of the same degree. As loop count, the counter ‘a’ is created. Using this approach not only

helps determine the number of bookmark items of the level, but also eases exiting the loop

after addressing each item. For the beginning, the counter is set to 0.

Next, the counter is compared to the number of bookmarks items of the first level. Therefore,

we fetch the number of direct child elements of the outline by using the ~getOpenCount

method. Since we are examining the upper level of the document’s outline, the nodes are

likely to be open. Keep in mind that this is not necessarily true for other objects in the outline

tree. In our example, there are 18 items to examine. The loop is set up to be traversed as

long as the counter ‘a’ is smaller than 18.

Now, we retrieve the title of the bookmark item and move on to the next one. To do so, the

methods ~getTitle and ~getNextSibling are used. After doing these two operations,

the counter ‘a’ is augmented by 1 and the loop starts again, performing the same operations

for another element.

The following screenshot displays the outcome of the program:

Cristina Nicoleta Dobrea
41

ooRexx and the Apache PDFBox Library

Figure 4: Extracting outline information: bookmarks on a single level - outcome

To continue collecting information about the outline tree, access child items of the once

already inspected. Set up another loop by using the method ~getFirstChild once again

for every item and check if and how many items the branch of the outline tree holds. Move on

to other items by using ~getNextSibling.

The approach of this example is suited for a document with a limited number of outline tree

levels, because querying the items count is necessary for every level of every branch.

Another approach for getting the complete outline structure of the document is presented in

the upcoming example.

References for this example:

[PDFBox PDDocument]

[PDFBox PDDocumentCatalog]

[PDFBox PDDocumentOutline]

Managing a PDF File – Nutshell Examples

42

6.10. Get the Complete Bookmark Structure of a PDF File

This example supplies a similar functionality as the previous one, displaying the bookmarks

items of a PDF file’s outline. For this example, however, a different approach was used. The

previous example involved looking up the number of times the loops has to be traversed. We

assumed that the document outline is limited in its complexity and all outline nodes are open.

Although this procedure delivers a valid result, we are now using another approach to

automate the search and display of bookmarks. Accordingly, the algorithm for navigation

across an infinite tree structure is presented previous to its implementation in the code.

To simplify the understanding of the principle, we use the following bookmark structure to

illustrate an ordered data tree:

1. Parent Item

1.1. Child Item

1.1.1. Grandchild Item

1.1.2. Grandchild Item

1.1.3. Grandchild Item

1.2. Child Item

1.2.1. Grandchild Item

1.2.2. Grandchild Item

Figure 5: Graphical display of ordered data tree

Regarding the graphic above, we first need to figure out a way to access the nodes in the

desired display order. Using the approach of the previous example, we could display all

same level nodes at a time. Accessing another level and displaying it would lead up to the

following outcome (unless manually adjusted and provided the nodes are open):

1.

1.1. 1.2.

1.1.2 1.1.3 1.1.4 1.1.2 1.1.2

Cristina Nicoleta Dobrea
43

ooRexx and the Apache PDFBox Library

1. Parent Item

1.1. Child Item

1.2. Child Item

1.1.1. Grandchild Item

1.1.2. Grandchild Item

1.1.3. Grandchild Item

1.2.1. Grandchild Item

1.2.2. Grandchild Item

This representation is not the desired outcome. Therefore, navigation of the tree needs to

respect the following steps:

- Start at the root element

- Move to first child

- Continue moving down in rank by appending the first grandchild item, until there is no

subsequent level left to navigate to

- On the lowest level, move to next same-ranked item

- Search for children of this item and, if available, repeat the steps above for as long as

this is possible.

By now, we have queried the following nodes of the tree:

1. Parent Item

1.1. Child Item

1.1.1. Grandchild Item

1.1.2. Grandchild Item

1.1.3. Grandchild Item

Now we need to move on to node 1.2. To do so, we need to go up one level and search for

another item of the same rank as 1.1. By following this step, we are now located on the 1.2.

node. By repeating the same steps implemented from the beginning, we can now appeal

inferior rank items of this branch. After completing this interrogation, we once again move to

the upper level of “Child” items. Since there is no other node to apply these steps to and no

node that has not been examine, the search for bookmark items is now complete.

Translating the presented search algorithm into code resulted into the following program:

Managing a PDF File – Nutshell Examples

44

--load document, enter outline tree and navigate to root item
doc =.bsf ~new("org.apache.pdfbox.pdmodel.PDDocument") ~load("rexxpg.pdf")
root =doc ~getDocumentCatalog ~getDocumentOutline
itm =root ~getFirstChild

--protection variables
lvl = 0
a = 1
q = 0
--create stream
outputobject = .stream~new("rexxpg.txt")

--loop
do while a \= 0
 if lvl = -1 then do
 a = 0
 end

 else do
 msge = "" —-insert new line to destination file
 do i = 0 to lvl
 msge = msge "->"
 end

 --write to stream
 msge = msge itm ~getTitle --get node name
 outputobject ~lineout(msge) --pass node name to stream

 --navigate down the outline tree
 if itm ~getFirstChild \== .nil then do
 itm = itm ~getFirstChild
 lvl =lvl +1
 end

 else do
 if itm ~getNextSibling \== .nil then do
 itm = itm ~getNextSibling
 end

 else do
 q = 1
 do while q = 1
 if lvl = 0 then do
 q = 0
 end

 else do
 --navigare up the outline tree
 if itm ~getParent ~getNextSibling \==.nil then do
 q = 0
 end

 else do
 itm = itm ~getParent
 lvl = lvl - 1
 end
 end
 end

 if itm ~getParent \== .nil then do
 itm = itm ~getParent
 lvl = lvl - 1
 if lvl \= -1 then do
 itm = itm ~getNextSibling
 end
 end

 else do

Cristina Nicoleta Dobrea
45

ooRexx and the Apache PDFBox Library

 a = 1
 end
 end
 end
 end
end

::requires BSF.cls
Listing 14: Extracting outline information: the com plete outline structure

To demonstrate the amplitude of the programs functionality, the Open Object Rexx

Programming Guide, named ‘rexxpg.pdf’ is once again used as source file. The methods

~getDocumentCatalog and ~getDocumentOutline are cascaded to enter the outline

tree.

In this example, ooRexx’ own stream is implemented to write to a TXT file. This measure is

deployed since the collection of nodes is too extensive to be depicted in the Command

Prompt interface.

Some protection variables are used to keep track of the outline levels examined and help

breaking the looping at some point. Accordingly, the counter ‘lvl’ is set up to memorize the

current position on the tree. Since the displayed bookmark elements of the outline are not

same-level as the root element, we set the counter ‘lvl’ to 0. As seen on the example data

tree, we first navigate down the outline and slowly go back up in rank. Search is completed

when the counter ‘lvl’ is equal to -1, since navigation as arrived back at the root element.

The ‘itm’ object is an object of the type PDOutlineItem. At the beginning, the root element is

set to be named ‘itm’. As we move from one node to another, ‘itm’ is the label for the node

we are situated on at the time. To write the name of the node to the TXT file, we apply the

~getTitle method to the item and pass the data on to the stream. To keep track of the

items rank even after being written in the destination file, the symbol “->” is used for every

level preceding the actual node rank. This means passing the symbol “->” times ‘lvl’ to the

stream.

As demonstrated on the simple data tree at the beginning of this section, navigating down

the tree using the method ~getFirstChild is pursued for as long as this is possible. The

statement “for as long as this is possible” is translated into object oriented programming code

by comparing the sighted object to ‘the Nil Object’. This is one of the basic primitive objects

and contains no data. Arriving at the Nil Object means that there are no child elements left to

inspect. The same technique is used when navigating up in rank or to related same-level

objects.

To apply the procedure described at the top of this section, loops are built inside other loops.

Managing a PDF File – Nutshell Examples

46

Whenever navigation jumps down in level, the counter ‘lvl’ is increased by one. This event is

undone by the time we travel back up on the precedent level. In addition to ‘lvl’, the

protection parameters ‘a’ and ‘q’ are used to break the looping whenever the search

algorithm leads to the Nil Object.

For every loop, there have been implemented two branches: one if the condition is fulfilled

and one if it is not. The visual arrangement of the IF-ELSE pairs is meant to facilitate the

reading of the code. After having gained knowledge of the principles applied, comprehension

of the presented code should be easy.

The following screenshot displays a part of the retrieved results written into the destination

TXT file.

Figure 6: Extracting outline information: the compl ete outline structure – outcome
(fragment)

By using this program, automated search for bookmark items can be accomplished for vast

outline trees effortless, regardless of the number of items contained. Also, helpful features

can be built on top of this program by connecting the bookmark item to the underlying page

object and finding the location of the bookmark. Possible applications include extracting

selected section of the document by setting the text extraction to only process pages

between two chosen bookmarks, or searching for a string at a predefined section of the

document.

References for this example:

[PDFBox PDDocument]

Cristina Nicoleta Dobrea
47

ooRexx and the Apache PDFBox Library

[PDFBox PDDocumentCatalog]

[PDFBox PDDocumentOutline]

[ooRexx, page 84 - Writing a Text File]

[ooRexx, page 59 - The NIL Object (.nil)]

Managing a PDF File – Nutshell Examples

48

6.11. Encrypt a PDF Document

The last example delivers the simplest method for securing a document by deploying

encryption and equipping the file with special user permissions.

--create document, add one page

doc = .bsf ~new("org.apache.pdfbox.pdmodel.PDDocument")

page = .bsf ~new("org.apache.pdfbox.pdmodel.PDPage")

doc ~addPage(page)

--set access permissions

ap =.bsf ~new("org.apache.pdfbox.pdmodel.encryption.AccessPermiss ion")

ap~setCanExtractContent(.false)

ap~setCanPrint(.false)

ap~setCanModify(.false)

--set access passwords

ownerpass = "master"

userpass = "user"

--apply policy to document

stnd = .bsf ~new("org.apache.pdfbox.pdmodel.encryption.StandardProte ctionPolicy" ,ownerpass , userpass , ap)

stnd ~setEncryptionKeyLength(128)

doc ~protect(stnd)

doc ~save("encryted.pdf")

doc ~close

::requires BSF.cls

Listing 15: Encrypting a PDF document

For demonstration purpose, a new blank file is created. Providing customized access

permissions for a PDF document can be accomplished by following a two-step procedure:

defining security features and applying the security policy to the document.

A standard configured PDF file has no special access permissions and is vulnerable to

changes and interference. To secure a document, first the desired security features need to

be defined. Therefore, several objects are instantiated from the class

org.apache.pdfbox.pdmodel.encryption.AccessPermission. The main features

available within the class for security configuration are:

- “print the document

- modify the content of the document

- copy or extract content of the document

- add or modify annotations

- fill in interactive form fields

- extract text and graphics for accessibility to visually impaired people

Cristina Nicoleta Dobrea
49

ooRexx and the Apache PDFBox Library

- assemble the document

- print in degraded quality

This class can be used to protect a document by assigning access permissions to recipients.

In this case, it must be used with a specific ProtectionPolicy. When a document is decrypted,

it has a currentAccessPermission property which is the access permissions granted to the

user who decrypted the document.” [Class AccessPermission]

After defining the access permission to be applied, the protection features are attached to the

document by using the StandardProtectionPolicy class. Aside from the access permission,

the StandardProtectionPolicy object requires a master password and a user password as

arguments.

“Opening the document with the correct owner password (assuming it is not the same as the

user password) allows full (owner) access to the document. This unlimited access includes

the ability to change the document’s passwords and access permissions.

Opening the document with the correct user password (or opening a document that does not

have a user password) allows additional operations to be performed according to the user

access permissions specified in the document’s encryption dictionary.” [PDF Reference,

page 96]

Additionally, setting the encryption key length in bits is required.

After applying the protection policy, an interactive graphical user interface will appear on

attempting to open the document in question, prompting the user to insert either the user

password or the master password.

The screenshot below demonstrates the efficient application of security restriction to the

holder of the user password:

Managing a PDF File – Nutshell Examples

50

Figure 7: Encrypting a PDF document - outcome

When trying to handle a PDF file out of the command line, an encrypted document will return

an error due to insufficient access permissions. Therefore, the following two methods need to

be applied directly to the PDDocument object when importing the file:

- isEncrypted – use this method to verify if document requires decryption

- decrypt(String password) – use this method to provide a password for

decryption

Furthermore, the method ~getCurrentAccessPermission will return the current access

permission for the provided password.

References for this example:

[PDFBox PDDocument]

[PDFBox PDPage]

[PDFBox AccessPermission]

[PDFBox StandardProtectionPolicy]

Cristina Nicoleta Dobrea
51

ooRexx and the Apache PDFBox Library

7. Conclusion and Outlook

The nutshell examples presented in this paper are meant to ensure an easy way of creating

and managing a PDF file. The main purpose of this paper was to demonstrate the

practicability of the PDFBox package. Therefore eleven nutshells have been developed as a

solution to different issues a user is often confronted with.

The examples can be applied in arbitrary order or combined for greater impact. However, the

benefit that a developer will gain by using the Apache PDFBox library consists in the

incorporation of a PDF file in constructing programs.

The PDF file format is widely spread. Most computer users are likely to have access to a

PDF reader tool, which is available free of charge. By storing data in a PDF file, the content,

as well as the formatting, can be shared without alterations caused by hardware or software

setting.

Using a PDF file when developing a program, can disclose new possibilities. For instance,

the outcome of data processing can be stored inside a PDF file and sent out for review or

further discussions. Compatibility issues can be completely avoided. Another option is to

automatically import data from a form, by retrieving the information in interactive elements of

a PDF file. In this scenario, an electronic form can be mailed to participant users, regardless

of the platform the individuals are using.

Operating the PDFBox library by using the ooRexx programming language assures for the

full range of functions available with the classes of the PDFBox and still provides the

advantages of the simple, human-centric language ooRexx. The presented nutshell

examples demonstrated the easy usage of the Java classes imported to ooRexx by the Bean

Scripting Framework. The examples are short and very powerful and also confer a detail

understanding of actions performed ‘behind the scenes’ to a PDF file and its components.

Although only limited capacity of the BSF library has been shown, the reader should now be

aware of the reduction of complexity BSF4ooRexx introduces in creating source code.

After carefully reading the information and the source code provided in this paper and

studying the PDFBox package, there are no limitations for managing a PDF file. If this is the

case, the target of this paper has been achieved.

Bibliography

52

8. Bibliography

[Adobe1] Acrobat and PDF Library API Reference: All Acrobat Layers
http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9_1_HTMLHelp/API_R
eferences/Acrobat_API_Reference/package-summary.html
Retrieved on 2012-07-25

[Adobe2] Developer Support: Legal Notices for Developers
http://partners.adobe.com/public/developer/support/topic_legal_notices.ht
ml
Retrieved on 2012-08-03

[Flatscher] Resurrecting REXX, Introducing Object Rexx, 2006
http://wi.wu-
wien.ac.at/rgf/rexx/misc/ecoop06/ECOOP2006_RDL_Workshop_Flatsche
r_Paper.pdf
Retrieved on 2012-08-30

[Husband et al.] Husband, Mark; Nguyen, Dung; Wong, Stephen: Principles of Object-
Oriented Programming, 2008.
http://florida.theorangegrove.org/og/file/33bf62f3-8ad1-7dde-e23f-
6f17aca953c7/1/OOProgramming.pdf
Retrieved on 2012-08-10

[Java Array] Oracle: Class java.util.Arrays
http://docs.oracle.com/javase/6/docs/api/java/util/Arrays.html
Retrieved on 2012-11-13

[Java ArrayList] Oracle: Class java.util.ArrayList<E>
http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html
Retrieved on 2012-11-13

[Java BufferedWriter] Oracle: Class java.io.BufferedWriter
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/BufferedWriter.html
Retrieved on 2012-08-26

[Java FileInputStream] Oracle: Class java.io.FileInputStream
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/FileInputStream.html
Retrieved on 2012-08-26

[Java FileOutputStream] Oracle: Class java.io.FileOutputStream
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/FileOutputStream.htm
l
Retrieved on 2012-08-26

[Java
OutputStreamWriter]

Oracle: Class java.io.OutputStreamWriter
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/OutputStreamWriter.h
tml
Retrieved on 2012-08-26

Cristina Nicoleta Dobrea
53

ooRexx and the Apache PDFBox Library

[Nirosh] Nirosh: Introduction to Object Oriented Programming Concepts (OOP)
and More, 25.01.2011
http://www.codeproject.com/Articles/22769/Introduction-to-Object-
Oriented-Programming-Concep
Retrieved on 2012-08-10

[Nørmark] Nørmark, Kurt: Functional Programming in Scheme, Programming
Paradigms, 07.07.2010
http://people.cs.aau.dk/~normark/prog3-
03/html/notes/paradigms_themes-paradigm-overview-section.html
Retrieved on 2012-08-10

[ooRexx] Ashley, W. David; Flatscher, Rony G.; Hessling, Mark; McGuire, Rick;
Miesfeld, Mark; Peedin, Lee; Wolfers, Jon: ooRexx Programming Guide,
Version 4.1.0 Edition, 2010.
www.oorexx.org/docs/rexxpg/rexxpg.pdf
Retrieved on 2012-08-03

[ooRexx1] What is Open Object Rexx?
http://www.oorexx.org/about.html
Retrieved on 2012-08-30

[ooRexx2] Built-In Functions. ooRexx Reference
http://www.oorexx.org/docs/rexxref/x23579.htm
Retrieved on 2012-11-21

[Parker] Parker, Thom: Navigating the Internal Structure of a PDF Document.
http://www.planetpdf.com/developer/article.asp?ContentID=navigating_th
e_internal_struct
Retrieved on 2012-07-19

[PDF Box
PDPageContentStream]

Apache: Class org.apache.pdfbox.pdmodel.edit.PDPageContentStream
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/edit/PDPag
eContentStream.html
Retrieved on 2012-08-16

[PDF Reference] Adobe Systems Incorporated: PDF Reference fifth edition – Adobe®
Portable Document Format, Version 1.6
http://stuff.mit.edu/afs/sipb/contrib/doc/specs/software/adobe/pdf/PDFRef
erence16-v4.pdf
Retrieved on 2012-08-26

[PDFBox
AccessPermission]

Apache: Class org.apache.pdfbox.pdmodel.encryption.AccessPermission
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/encryption/
AccessPermission.html
Retrieved on 2012-09-16

Bibliography

54

[PDFBox PDDestination]

Apache: Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.destination.P
DDestination
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/destination/PDDestination.html
Retrieved on 2012-09-06

[PDFBox PDDocument] Apache: Class org.apache.pdfbox.pdmodel.PDDocument
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/PDDocume
nt.html
Retrieved on 2012-08-16

[PDFBox
PDDocumentCatalog]

Apache: Class org.apache.pdfbox.pdmodel.PDDocumentCatalog
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/PDDocume
ntCatalog.html
Retrieved on 2012-08-30

[PDFBox
PDDocumentOutline]

Apache Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.outline.PDDo
cumentOutline
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/outline/PDDocumentOutline.html
Retrieved on 2012-08-30

[PDFBox
PDFMergerUtility]

Apache: Class org.apache.pdfbox.util.PDFMergerUtility
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/util/PDFMergerUtility
.html
Retrieved on 2012-09-02

[PDFBox
PDFTextStripper]

Apache: Class org.apache.pdfbox.util.PDFTextStripper
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/util/PDFTextStripper.
html
Retrieved on 2012-08-20

[PDFBox PDJpeg]

Apace: Class org.apache.pdfbox.pdmodel.graphics.xobject.PDJpeg
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/graphics/xo
bject/PDJpeg.html
Retrieved on 2012-08-18

[PDFBox PDOutlineItem]
Apache: Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.outline.PDOu
tlineItem
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/outline/PDOutlineItem.html
Retrieved on 2012-09-06

[PDFBox PDPage]

Apache: Class org.apache.pdfbox.pdmodel.PDPage
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/PDPage.ht
ml
Retrieved on 2012-08-16

Cristina Nicoleta Dobrea
55

ooRexx and the Apache PDFBox Library

[PDFBox
PDPageFitDestination]

Apache: Class
org.apache.pdfbox.pdmodel.interactive.documentnavigation.destination.P
DPageFitDestination
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/interactive/
documentnavigation/destination/PDDestination.html
Retrieved on 2012-09-06

[PDFBox PDType1Font]

Apache: Class org.apache.pdfbox.pdmodel.font.PDType1Font
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/font/PDTyp
e1Font.html
Retrieved on 2012-08-16

[PDFBox Splitter]

Apache: Class org.apache.pdfbox.util.Splitter
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/util/Splitter.html
Retrieved on 2012-09-05

[PDFBox Standard 14
Fonts]

Apache: Developers Guide – Fonts
http://pdfbox.apache.org/userguide/fonts.html
Retrieved on 2012-10-02

[PDFBox
StandardProtectionPolic
y]

Apache: Class
org.apache.pdfbox.pdmodel.encryption.StandardProtectionPolicy
http://pdfbox.apache.org/apidocs/org/apache/pdfbox/pdmodel/encryption/
StandardProtectionPolicy.html
Retrieved 2012-09-16

[PDFBox1] Apache PDFBox - Java PDF Library
http://pdfbox.apache.org/
Retrieved on 2012-07-12

[RexxLA] The Rexx Language Association: What is Rexx?
http://www.rexxla.org/rexxlang/
Retrieved on 2012-08-30

[Tiobe] TIOBE Programming Community Index for October 2012
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
Retrieved on 2012-10-27

[Wiki1] Wikipedia: The Portable Document Format
http://de.wikipedia.org/w/index.php?title=Portable_Document_Format
&oldid=109758542
Retrieved on 2012-07-16

[Wiki2] Wikipedia: Java (programming language)
http://en.wikipedia.org/w/index.php?title=Java_(programming_language)&

oldid=519946505

Retrieved on 2012-10-27

List of Abbreviations

56

List of Abbreviations
API Application programming interface

BSF Bean Scripting Framework

BSF4ooRexx Bean Scripting Framework for object oriented Rexx

cls class

CPL Common Public License

int integer

OOP Object oriented programming

ooRexx Object oriented Rexx

PDF Portable Document Format

Rexx Restructured Extended Executor

