WIRTSCHAFTSUNIVERSITAT WIEN
Vienna University of Economics and Business WIRTSCHARTS
UNIVERSITAT

Titel of Bachelor Thesis (english)

Titel of Bachelor Thesis (german)

Author

(last name, first name):
Student ID number:
Degree program:
Examiner

(degree, first name, last name):

I hereby declare that:

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

“Equis B8 aacss <"AMBA

ACCREDITED

Bachelor Thesis

The Motivation of Proprietary Software Companies to Engage with

Open-Source Software Ecosystems

Die Motivation proprietare Software Unternehmen, sich mit Open
Source Software-Okosystemen auseinanderzusetzen

Gerger Konrad

1027118

Bachelor of Business and Economics, BSc (WU)

ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

1. I have written this Bachelor thesis myself, independently and without the aid of unfair or unauthor-ized
resources. Whenever content has been taken directly or indirectly from other sources, this has been
indicated and the source referenced.

2. This Bachelor Thesis has not been previously presented as an examination paper in this or any other

form in Austria or abroad.

3. This Bachelor Thesis is identical with the thesis assessed by the examiner.

4. (only applicable if the thesis was written by more than one author): this Bachelor thesis was

written together with

The individual contributions of each writer as well as the co-written passages have been

indicated.

15.11.2019
Date

77

Signature

WIRTSCHAFTSUNIVERSITAT WIEN

Vienna University of Economics and Business wmﬁ?ﬁ?f

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

...................

The Motivation of Proprietary Software

Companies to Engage with Open Source
Software Ecosystems.

Institution
Vienna University of Economics and Business
Institute for Management Information Systems

Supervisor
ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

Author
Konrad Gerger
H1027118
2019-09-19

1 Introduction

Table of Contents

1 Introduction

1.1 Definition

1.1.1 Free and Open Source Software

1.1.2 Proprietary and FOSS Software

1.1.3 Shareware, Freeware and Public Domain Software
1.1.4 Intellectual Property, Foundations and Licenses

1.1.5 Relevant Open Source Terms

P I BRI S

1.2 Historical Evolution of Open Source

1.2.1 Early Binary Era (1950)

10

10

1.2.2 SAP, Microsoft and BASIC (1970)

11

1.2.3 Free Software Movement and UNIX (1980)

12

1.2.4 GNU/Linux (1990)

14

1.2.5 Post Dot-Com Crisis (2000)

17

1.2.6 The Rise of the Start-Up Era (2010)

19

2 Products and Strategies of OSS Projects

2.1 Where to find Open Source

2.1.1 Mobile Devices

21

21

21

2.1.2 Infrastructure and Supercomputer

21

2.1.3 Desktop Operating Systems

22

2.2 Open Source versus Closed Source Code

2.3 Technological Evolution

2.3.1 Enterprise Resource Planning Software

22

23

26

2.3.2 Shifting from On-Premise to Cloud

27

2.3.3 ERP Market

28

24 Business Strategy

2.4.1 Dipping Market

28

29

2.4.2 Pull- and Push-Markets

30

2.4.3 Collaboration

30

3 Open Source at Proprietary Companies

3.1 Incentives and Advantages of Open Source Engagement

3.1.1 Innovation Capabilities

31

31

32

3.1.2 Increasing Sales

33

3.1.3 Reducing Costs

34

1 Introduction

3.1.4 Case Study SAP 35

3.2 Possible Disadvantages of Open Source Engagement 36
3.2.1 Licenses Incompatibility 36

3.2.2 Malicious Code Contribution 36

3.2.3 Security of Retired and Unpatched Libraries 37

3.2.4 System Stability 37

3.2.5 Monetary Risks 37

3.2.6 Legal Risks 37

33 Engagement with the Open Source Ecosystems 38
3.3.1 Consuming Open Source 38

3.3.2 Contributing to Open Source 39

3.33 Owning Open Source Software 40

4 Open Source Software at SAP 42
41 Software Tools 44
4.1.1 Contributor License Agreement Tool 44

4.1.2 SAP Cloud Platform 45

4.1.3 Openui5 and SAPUI5 46

4.1.4 Chevrotain 48

4.1.5 SNAP! 48

4.1.6 BUILD 49

4.2 Contributions 50
4.2.1 Linux Foundation 50

4.2.2 Apache Software Foundation 53

4.2.3 Eclipse Foundation 53

4.2.4 OpenStack Foundation 54

4.2.5 Cloud Foundry Foundation 54

426 jGit 55

4.2.7 Cloud Foundry 55
4.2.8 Kubernetes 56

5 Conclusion 57
6 Glossary 60
7 References 61

1 Introduction Page 3

1 Introduction

While there have been several studies connecting the behavior and the motivation of
adopting open source software (InfM90), there is hardly any literature about the
motivation of former proprietary software companies starting to engage with the open-
source ecosystem. Although a collaborative way with open source comminutes was
already seen as a vital source of new input, recent events have shown that open source
software has gained importance around the proprietary software industry. This thesis
considers different factors such as society, technology, and industry to understand the
context of changes and which circumstances are influencing an adoption decision.
Further research studies have primary discussed the motivation of software developers
to contribute to the open source ecosystem (JosT13), whereas this study will focus on

organizations as a collective group of individuals.

This bachelor thesis aims to analyze the motivation of former strictly proprietary
software companies, such as SAP, to engage with open-source software. There will
be a detailed view of the reasons behind such adaptations, and it will evaluate those
transitions from a variety of aspects, as described above such as social, industrial and
technological developments and their influences. Those aspects need to be further
inspected from two dimensions: vertical and horizontal. Therefore, across different
industries and eras of technological evolvements on a time axis. However, to limit the
scope of the thesis, it will be focused on a narrow area of business-relevant software
products and providers of ERP systems and its enabling technologies. Especially
Cloud Computing and peripheries like APls, Dockers and licensing system, which can

be considered as enabling technologies.

This thesis should be supportive in achieving a better understanding of proprietary
software companies and their motivation for such strategic decisions. Moreover, it

should clarify which shifts and influences led to pro open source strategies.

The opening chapters will be dedicated to the definition and history of the broad area
of open source software to give a solid foundation for further explanations. As well as,

an overview of essential synonyms and developments.

1 Introduction 4

1.1 Definition

In this chapter, there will be some definitions of relevant license types for this thesis,
including the classification of free and open-source software and the distinction
between them and proprietary software. This section will be followed by an overview

of significant events of the software industry and technologically evolutions.

1.1.1 Free and Open Source Software
Open source software is a licensed software with permanent permission to study,

modify, and distribute to anyone and any purpose (Open0Q7).

The differences between free software and open source software (FOSS) is less
noticeable than the difference between FOSS to proprietary software. Free software
was the initial countermovement to proprietary software. In 1989, an alternative term
was sought, since “free” was often mistaken for “free of charge” which was seen to
harm the business side of the industry. Besides, the term “Free Software Movement”
was perceived among the developer community and the software marked as

moralizing and confrontational (FrWi18).

1.1.2 Proprietary and FOSS Software

Proprietary software differentiates from FOSS in many aspects. As the name already
indicates, the source code is accessible by everyone, as opposed to proprietary
software where the source code is restricted. With the purchase of a proprietary
license, the buyer only buys specific and limited rights to use the product, making the
user dependent on the issuing company. That may be problematic in several
situations, such as if an error occurs and the problem is not solved, or the selling
company goes out of business and stops the support of their software. Also, the
implementation of restricted software might be problematic if custom-made changes

are required, or further software components need to be connected.

There are also some distinct differences between proprietary and open software in
respect of the development process. The former is commonly build within a restricted
number of institutions and partners. The number of developers involved might be
relatively small compared to open- and community-developed projects. Furthermore,

proprietary software is mostly developed with a pre-defined goal to solve a given or

1 Introduction 5

predicted problem. Therefore, a proprietary developed software solution will be rather
programmed with specific functions for a specified targeted audience. The
requirements are often laid out by sales staff, trend and market analysts, and top
management to position the product to maximize profits. When creating such projects,
it is common to create a schedule and a budget plan, as well as a release plan with a

specific proprietary license, in order to create a commercially successful product.

By contrast, behind free and open software, there is often a whole community where
potential future users are usually exposed early to the features and functions of the
developed software. That process makes it possible to develop the software taking the
end user's needs into consideration and reduces the chance that the software misses
the target audience. The motivation behind open source projects evolves mainly out of
a specific need for a solution to a problem, rather than to gain profits. That focus and
empathy for a specific problem and the focused effort to overcome that with a
collaborative and community-based development approach is an advantage of open
software development. In order to guarantee the openness and independence of
software over an uncertain amount of time, non-profit trade organizations can be

established to govern such projects.

In chapter 4, there will be an overview of existing foundations and how they are placed
in the open source ecosystem and how proprietary software companies can

collaborate with such institutions.

1.1.3 Shareware, Freeware and Public Domain Software

It is important to distinguish open source software from shareware, freeware, or public
domain software. Shareware and freeware are a kind of proprietary software
distributed without a fee. However, those licenses commonly grant no access to the
source code of the software, and further, restricts the possibility to modify or
redistribute without the author's permission. While shareware is commonly distributed
free of charge, it has often an intent to monetize indirectly. This can be, for instance,
accomplished through a free personal usage, but with a pricing model for commercial
usage, or the software might have limitations that can be unlocked with an upgrade.

WInRAR is one example of shareware software (ShWi18).

1 Introduction 6

Freeware is defined as a product free of charge and without any other fees. However,
the software is categorized as proprietary software, due to the restricted access to its
source code. The software functions as a black box, thus the user has no insights
about underlying written code. One example of freeware is Skype or Adobe PDF
Reader (Frwa18).

Public domain is a creation with no specified ownership, trademark, or patent. It can
be modified, redistributed, and sold without a prior grant of permission. The author of

the creation must actively mark it for public usage (SoWi18).

Open-source software is commonly created within a community of developers.
Because of that approach, it has some advantages in comparison to proprietary
software. However, there are also cases where open access might bear
disadvantages, therefore, another way to create software might be more beneficial.
The following chapters will explain some of the relevant terms and concepts to get a

better understanding of some of the critical characteristics of open-source software.

1.1.4 Intellectual Property, Foundations and Licenses

A piece of software becomes open-source software once it is intentionally licensed
under an open-source license. This software might be distributed for free, and it gives
open access to its source code; all this happens with specific rules, which are defined
by its licenses. Since the Berne Convention in 1988, every creation gets by default
exclusive copyright, even without an explicit registration for such. Inherent copyright is
given to the initial author of the creation itself. Therefore, it regulates the intellectual
property, and it is enforced by civil law and by the World Intellectual Property

Organization, also known as WIPO (Riln17).

On the other hand, open-source licenses are often issued and regulated by
foundations, which are organizations that oversee the usage rights and assure quality
standards. By reviewing software, they can ensure that standard criteria are met and
can grant an individual license. The role of foundations is much broader than just

granting licenses and there is a more detailed observation in the upcoming chapters.

1 Introduction 7

This section will contain a brief overview of the most used FOSS licenses in the

industry:

GNU General Public License — is a widely used FOSS license and was initially written
by Richard Stallman. There are currently three different versions of the licenses
released. The licenses are used by software applications and operating systems like
Linux or the GNU Compiler Collection (GnWi18). It is run by the Free Software
Foundation (FSF) and embodies the principles of copyleft, the four freedoms of the

free software movement.

Copyleft — is a form of copyright. However, it distinguishes itself by granting usage
rights rather than restricting the underlying creation. It was founded as a

countermovement to conventional copyright by R. Stallman (CoWi18).

Four Freedoms — is the fundamental concept of the free software movement, which

has the following four pillars (GnFr96):
Freedom 0: The freedom to run the software as wished.
Freedom 1: The freedom to study how a program works.
Freedom 2: The freedom to redistribute copies of software.
Freedom 3: The freedom to distribute copies of modified versions.

Affero General Public Licenses (AGPLv3) — is a strong copyleft license based on
GPLv2. The license is governed by Affero, Inc. (AfWi18). It is compatible with the
GPLv3 license; however, due to the strongly restricted usage, compatibility problems
might occur. Therefore, many open source projects like to avoid that license; for
example, Google prohibits the usage of this license in all their open-source projects
(OpTh16).

Apache Licenses (APL) — is a permissive and free license distributed by the Apache
Software Foundation (ApcW18). The foundation has released two versions of the
license since it was founded in 2000. The advantage of this license for many
businesses is that it is less restrictive compared, for example, to the GNU GPL.

However, it regulates all relevant areas for open source projects like the distribution,

1 Introduction 8

modification, and redistribution of the underlying software for any purpose. Due to
these advantages, it is the preferred open source license by companies like Google,
SAP, and Microsoft.

Mozilla Public License (MPL) — is an open and permissive license released in 2013
by the Mozilla Foundation. It allows the indirect combination of different GNU GPL

licenses and is therefore useful to integrate for larger open projects (MPLW18).

Berkeley Software Distribution (BSD licenses) — The BSD licenses is an open and
permissive license governed by Regents of the University of California. It is in the third
version and is less restrictive than other FOSS licenses such as the GNU GPL. BSD
licenses are commonly used and have become a synonym for licenses with minimum
restrictions (BSDW18).

Finally, several software companies started to release their open source licenses
(CoFr18). They can serve those companies to prevent specific legal issues, but they
can also impose barriers for developer communities to adopt or combine software with

those licenses. Some examples of licenses distributed from proprietary companies are:

e Apple Public Source Licenses
e |IBM Public License

e Microsoft Public License

1.1.5 Relevant Open Source Terms

Open Source Organizations - several organizations have formed around open-
source software developments to govern the projects. For example, Eclipse, an
integrated development environment (IDE), was initially founded at IBM. In 2004, it
was established as a separate entity and eventually became an independent open-

source foundation (EcWi18).

Cloud Foundry was initially a department at VMWare; in 2011, it became an
independent foundation (CIWi18). It was beneficial for those companies to form an
external and independent foundation for several reasons. One primary advantage is
that the independent foundation is not bound to the usual corporate restrictions.

Therefore, contributions from external parties or institutions can be managed with

1 Introduction 9

substantially less bureaucracy. That enables the organizations to operate and make
decisions in less time. Thereby it is not necessary that only one company forms an
external organization. By establishing a neutral place, several companies can
contribute to a project. Another essential aspect of such independent organizations is
the neutrality of the project. Since developing a project together with another
company imposes the risk that one of the parties might restrict the access to the
project over time or acts in another destructive way, an external organization can

reduce the risk of losing an investment.

An example is a collaboration between RackSpace Hosting and NASA, which
created the OpenStack project (OpTh10). OpenStack is open-source software for the
virtualization of servers in cloud computing and is mainly integrated as an laaS
solution. The jointly developed software also included risks for RackSpace, since
their competitors would get access to their work. However, since the project had the
potential to become a new standard for virtualizing machines and high adoption rates
were predicted, RackSpace decided to find other ways to generate income with the
software. It is crucial for such a platform to be widely adopted to deliver user value.
Also, the project needed to reach a certain number of users to set a de facto web
standard to become useful, and that was only possible if enough developers and
companies would adopt it. By licensing the project under an open source license, the
chances to reach the critical mass were increased. Eventually, the project was a
success, and soon after, several companies and developers started to contribute to
OpenStack.

Community - One critical differentiation between open source and proprietary
software is the community-based development aspect. Although open source, not per
se means community created, the majority of projects choose this collaborative way to
develop software. A widely used tool to manage contributions to the project is Git. Git
is a platform where developers can upload their creations, get feedback, and improve
the software further. Linus Torvalds founded Git in 2005 to manage a large number of
contributions to the Linux project (GiWi18). Besides managing contributions, it is also

a useful tool to review errors and other components and to get user feedback.

1 Introduction 10

Moreover, it makes it possible to test new extensions of a program in a separate and
safe environment while the main program continues to work. Therefore, developers
can test an alternative version and iterate it further before a stable and final version is
integrated into the whole project. This minimizes the downtime of a program and

improves the user experience.

A fork describes when the source code of an open source project is duplicated, and
the copy becomes an independent project (FoWi18). Due to the allowance that free
and open source licenses grants, that is, the right to modify and redistribute the source
code, an enormous number of variations can arise. That makes FOSS software very
versatile and adjustable so that the specific needs of customers can be addressed and

solved.

1.2 Historical Evolution of Open Source
The Open Source Movement started almost as early as the computer era itself, to get
a better understanding of this emerging technology and its impact, there will be an

overview of historical events and its contributors.

The origins of the Free Software Movement reaches back to the 1950s, which
eventually led to the Open Source Movement in the late 90s of the last century. In the
upcoming chapter, an overview will be provided of the previous technological

evolutions and how those shaped the way current technologies are used today.

1.2.1 Early Binary Era (1950)

The University of Pennsylvania developed one of the first fully electronic computers in
1945 (EnWi18). It was funded by the US Army in 1943 and was initially created to
calculate the trajectory of flying objects such as missiles and to study thermonuclear
weapons. The total cost of the project was 487,000 USD, which amounts to around
6,8 million USD in 2017 (ErRa07). Once the computer was running, the press referred
to it as the super-brain, and already suggested the use for academic and business

purposes.

A couple of years later, the first computer for commercial usage entered the market:
BINAC. Most of the early computers were established in academic areas, where it was

studied and developed further.

1 Introduction 11

Within this time, the first businesses started to profit from this new technology. One of
the most challenging aspects of early computers was the storing of information; this

problem was solved with large magnetic disks.

In 1959, IBM released the computer language COBOL, which stands for Common
Business-Oriented Language. It was used in operating business applications and for
solving mathematical problems (CoWi18). In the following years, IBM overtook this
young industry and established itself as the market leader by providing electronic

devices.

1.2.2 SAP, Microsoft and BASIC (1970)

When IBM decided to discontinue a project in the area of artificial intelligence for
enterprise program software, five engineers saw an opportunity to start their own
business in 1972. Eventually, in the same year, the group founded the company SAP,
which stands for Systems Analysis and Program-Development (SaWi18). The
engineers developed a fully digital system for payroll and accounting tasks, instead of
mechanical punch cards, the industry-standard at that time. The system was able to
process information in near real-time and introduced a substantial improvement to the

previous system.

Three years later, in 1975, Bill Gates entered a partnership with IBM, and Microsoft
was founded. The original software from Microsoft was an interpreter called BASIC for
the Altair 8800. Both the software and the computer were famous among hobbyists.
Despite the rising sales numbers of the Altair 8800 computer, Gates only sold a fraction
of his BASIC software compared to the hardware units sold. Eventually, he realized
that hobbyists had found a way to copy his software illegally and to avoid paying its
fee. This early software was stored on a paper roll with holes. Students just made
physical copies of the software without paying the fees. The software itself was sold
for 500, - USD or for 75, - USD if purchased together with the hardware from IBM. As
a reaction to the illegal software usage, Bill Gates wrote an open letter to the hobby
community and claimed that it was justified to charge fees for software. The community
did not accept his attempt to collect royalties. Consequently, further software releases
had no access to the source code and restricted the unauthorized usage of the

underlying software or any modification.

1 Introduction 12

Some of the computer hobbyists criticized those restrictions of the source code and

started a counter-movement, which will be described in the upcoming chapter.

1.2.3 Free Software Movement and UNIX (1980)

A couple of years earlier, AT&T’s Bell Research Laboratories was working on a new
operating system called UNIX. The underlying language was C, and through its high-
level characteristics, adaptations with other computer systems were possible. It would
later become the foundation of many other relevant operating systems like Mac OS X
and Linux (UnWi18). Because of an antitrust case, AT&T was not permitted to charge
any fees for its operating system, forcing the company to give a license free of charge

to any interested user.

Because of the free access to the software, it soon became well-known among
academic communities and businesses. Eventually, users started to report bugs, gave
feedback on how to solve occurring errors, and even to create new versions of the
software. In the early 80s, AT&T launched an internet platform called “Usenet”’ to
support the communities around the operating system and to manage the contributions
to the software. However, AT&T was working on a workaround for the antitrust lawsuit
and decided to separate the UNIX division into smaller external companies, so-called
“‘Baby Bells.” Consequently, since the antitrust lawsuit did not apply to Bell's
laboratory’s external units anymore, the software company was able to charge a
distribution fee for its operating system. Many consumers had already invested in the
hardware, which was running the UNIX operating system. Therefore, many users saw
themselves forced to pay a license fee or to bear the costs of switching to a new

operating system.

Richard Stallman, who, at that time, was researching on the UNIX kernel at MIT, saw
the changes as a threat to the developer community and created a countermovement.
In order to give computer owners an alternative to the suddenly imposed fees for the
UNIX operating system, he started to develop a free accessible software called GNU,

the GPL licenses, and a foundation to support the free software movement.

The former MIT researcher was also seen as one of the fundamental contributors to
the history of the Open-Source software industry. However, he did not count himself

as part of the Open-Source movement. Instead, he prefers to refer to himself as a part

1 Introduction 13

of the so-called Free Software Movement. Nonetheless, his work and contributions to
the FOSS community and even to the software industry, in general, had a significant

impact.

Richard Stallman was a former student at Harvard University, where he graduated
magna cum laude in physics. After his studies, he started to work at MIT in the
department for artificial intelligence and on several projects in that area. The university
was among the first to implement the Usenet system, which was an early form of
internet. Therefore, different academic institutions were able to collaborate in a new
way. Stallman was an early adopter of this technology and was working with other
academic groups on software projects. They began sharing test results, source codes,
solutions and started to debug software errors. Among those groups, the first hacker
community was formed. When the University introduced a new security system, which
required every employee to use passwords, Stallman pointed out that a simple
password can lead to a false sense of security and should not be trusted completely.
In an attempt to demonstrate the weakness of a simple password, he back engineered
a majority of his colleagues’ passwords and sent them an email with their password.
He asked all of them to use a simple “enter” comment instead of a password to show
the disinterest to the administration and the management of the company. Almost a
third of his colleagues followed his approach. The hacker community had different
approaches to show their opinions, and most of the time, it was pursuing a playful and
noble way of showing their advantage in programming skills. However, there were also
so-called black hat hackers, who were trying to harm their victims in contrast to white

hat hackers.

A few years later, MIT introduced new software systems for their offices and printers.
However, one of the printer software was encountering a simple software error. In an
attempt to solve the problem, Stallman noticed that the source code was restricted. As
a result, Stallman was concerned about those new business practices in the software
industry and soon started to explore possibilities to combat those changes. In his belief,
it was needed to preserve the way of sharing and exploring software that he
experienced in the academic environment. For him, open access to an underlying
program was an essential right. Many companies in the industry had a different opinion

on this topic at that time.

1 Introduction 14

He eventually started to create an operating system, which would be open and stay
open for everyone who wants to use it. The operating system should include all
necessary tools which were initially provided by the UNIX operating system. He started
to create a similar operating system to the original proprietary software in order to
reduce switching costs and to give customers a choice. The program he created was
called “GNU,” which was an acronym for “Gnu is Not Unix.” In 1984, he resigned from
his position at MIT, to make sure his free software has as little influence from external
institutes as possible. Since creating an operating system was an extensive project,
he implemented pieces of already existing free shared software units as much as
possible. One year later, large parts of GNU software were completed, and the first

interested persons began to ask for copies (OpSt99).

In 1985, when more members joined to work on the project, he founded the Free
Software Foundation (FSF). It was later registered as the official foundation and it was
overseeing the contributions to the projects and the business side of the program.
Stallman also launched in this year the FSF Manifesto. A document explaining the
importance and mechanics of the copyleft concept and the Free Software Movement
(PhGn85).

However, despite the effort on the operating system, a crucial part was still not
completed: the kernel, GNU Hurd (LiGn10). The kernel is the centerpiece of every
operating system and is responsible for managing the data flow between the hardware
and the software components; it is compiled in the binary system. Even today, the GNU

kernel project, which is known under the agronomy “Hurd” is not fully completed.

The next chapter explains how GNU was able to be completed without first finishing

the kernel.

1.2.4 GNU/Linux (1990)

At the beginning of 1990, a fundamental technology shift took place. While the internet
had already been around for more than two decades, it was only in use on university
campuses, government departments, and some businesses. However, with the
introduction of internet browsers and in-line images, the internet gained popularity with
individual users. In 1991, Linus Torvalds made his early version for a computer kernel
public. Shortly after, Richard Stallman, who still had difficulty finishing the GNU Hurd

1 Introduction 15

kernel, started to collaborate with Torvalds to combine both projects. The outcome was
a success, and the first GNU/Linux release was launched. Since it was licensed under
a GPL with the open copyleft license, soon, different kinds of forks and

implementations started.

One year later, in 1992, SAP released a new version of their proprietary business
software, called R/3. The software marked a cornerstone in the history of the company

and a shift in technology and their business model (SaWi18).

The industry was shifting from mainframe computing to a client/server-based
approach. As they scaled their businesses, SAP noted that many companies across
different industries had a demand for similar software integrations. With R/3, a package
of different software components was formed and covered areas such as Customer
Relationship Management - CRM, Supply Chain Management — SCM, and Human
Resource Management — HRM. The business model shifted from a value shop to a
value chain approach (JoOp10). That allowed the proprietary software company to
deepen their software integration into the businesses of their customers. Resulting, in
faster and better adjustable software components and improved communication

systems within the businesses and the departments of their customers.

Besides the evolvement of their product line, SAP ported their business software to
run on several UNIX and UNIX-like operating systems. They matched the systems with
IBM’s Work-Station product line-up, which were popularly sold hardware units at that
time. Additionally, SAP further integrated their products with Oracle Server, making it

possible to outsource customers’ data centers.

In 1993, two prominent open-source companies were founded: Debian and Red Hat.
Both distributed a Linux fork very successfully. Their business model was mainly

around implementation and service agreements.

In 1994, Linux was released for the first time as a complete desktop operating system,

and the community around the distribution multiplied rapidly.

Four years later, in 1998, the name Open Source was established. The term “Free
Software” was often misunderstood, and it was believed that it harmed software sales,

so an alternative was searched. Open-source software should have nearly the same

1 Introduction 16

freedom as free software. Nonetheless, it should follow a different approach than the

copyleft system in favor of businesses.

However, when Richard Stallman continued to work on free software rather than on
open source software, he argued that both movements, despite their differences, must
work together against the proprietary software industry (FrRiO7). This idea was
acknowledged by the proprietary software industry, which started to recognize the
potential competition from open source licensed software. In 1998, some documents
were leaked to Richard Stallman, which would later be referred to as the Halloween
Documents, since they were published to the public around the 31st of October
(HaWi18). The documents were written by a Microsoft program manager and
contained detailed explanations of the market position, strength and weakness
analysis of open source contributions, and how they could be a potential threat against

the established proprietary company.

Apple and Netscape also saw the potential threat and released their open-source
licenses: APSL and NPL. However, since the licenses were incompatible with many
already existing FOSS licenses, especially the GPL, many developer communities saw
them instead as marketing tools rather than real open collaborations and received
harsh criticism (ApRi07).

However, the Open Source Movement grew steadily and received more attention as
an alternative with a broad spectrum of supporters. In 1999, the Open Source Initiative
received a historic latter: A company was asking the OSI community to certify their
source code and declare it officially as open source, to avoid a situation like
encountered it Apple with their APSL release. Many companies followed that approach

and asked for certification from the organization.

In the same year, Google and VMWare were established. One year later, Salesforce

was founded, which will later become a strong opponent in the CRM market for SAP.

At that time, many internet-based businesses made their companies public and went
to the stock market to raise funds. In addition to the possibilities that new technology
made available, the US signed off the Taxpayer Relive Act of 1997 (DoWi18). The act

reduced the taxes on the upper margins of capital gains and fueled the stock market

1 Introduction 17

further. Many companies were soon after well-funded, and stockholders had high
expectations. However, software companies were following a very aggressive growth

business model and tended to over-evaluate their expected sales numbers.

In contrast to traditional business concepts where companies invested in physical
machines and assets, many of the "Dot-Com" companies spent nearly their entire
funds on marketing. Additionally, they often distributed their products for free or at a
high discount in order to gain market share. Besides that, governments were investing
significant funds into telecommunication infrastructure and technologies. However, the
expansion trend turned when Alan Greenspan, at this time, Chairman of the US
Federal Reserve, announced a rise in interest rates; stakeholders started to ask for
earnings to cover their interests at their banks. Soon many investors began to realize
that their investments and trust companies had cash flow problems and that those

investments were too optimistically evaluated.

In the first half of the year 2000, many investors needed to sell their stock before Tax
Day to cover their taxes for the previous year gains. When Microsoft was charged guilty
of monopolization, the market started to dip and resulted in a 25% decline in the
NASDAQ market in April 2000, and in just six months the internet marked plunged and
bottomed out at a 75% decrease, forcing many companies into bankruptcy. After this
event, which is also known as the burst of the Dot-com bubble, the industry needed to

define how internet products and services are evaluated more sustainably.

1.2.5 Post Dot-Com Crisis (2000)

The recent internet industry collapse shadowed the early 2000s. Despite the crisis in
the stock markets SAP, Amazon and eBay were experiencing positive sales numbers.
Microsoft and SAP were deepening their partnership and started to increase their
product integration, such as Microsoft SQL Server. That server was a direct competitor
of Oracle, and almost half of SAPs customers were running their business application

on Oracle servers. However, Oracle and SAP continued their business cooperation.

Nonetheless, in 2004, Oracle started to buy EPR business application provider
companies systemically. Those acquisitions positioned Oracle as a direct competitor
of SAP. Eventually, a fierce competition started, and several lawsuits were filed in the

upcoming years (OrWi18).

1 Introduction 18

In 2004, the same year that Facebook entered the market, SAP launched its new
product: SAP ERP Central Component. The software is based on its successor R/3
and is suited for a range of different lines of businesses (LOBs). Once again, the
introduction of the new product marks a cornerstone of technological advances in the
business software environment and the strategy of SAP (SAWi18). Since the further
integration of software-supported elements at all sorts of business-relevant areas was

strengthened, more fluid communication between different departments was realized.

Regarding the business model, SAP changed to a more holistic view of software
integration. The company started to consider different parties, also referred to as a
"value network" business model (VaWi18). It differentiates between internal and
external stakeholders, the communication streams, and if the tangible or intangible

information is passed on.

However, SAP’s sales numbers were mainly coming from traditional ERP systems. In
2005, Alex Atzberger, a Harvard student and later SAP employee, pointed out in a
university thesis that SAP is overlooking the transformation to cloud computing and the

emerging CRM market with new competition from Salesforce (AtBu16).

In 2006, Twitter entered the market, and Amazon launched their Amazon Web Service
(AWS). So far, the cloud computing industry was mainly dominated by Oracle,
Microsoft, and IBM; nonetheless, new competitors were entering fast, and the market

was about to change substantially in the following years.

In 2007, GitHub entered the market and steadily became a de facto standard for open
and shared software projects. In the same year, Oracle bought SUN Microsystem for
7 billion US dollars (OrWi18). SUN was a large hardware manufacturer and software
developer, and one of the largest UNIX/Linux operating systems distributor. Soon after,
the software provider also acquired MySQL. The takeover was concerning for the
open-source community, and in fact, Oracle discontinued a range of products from
SUN’s product line, including OpenSolaris and StarOffice (SuWi18).

In 2010, SAP introduced SAP HANA: which is an in-memory cloud platform and
marked the next decade for the company and the transformation from ERP to cloud

computing.

1 Introduction 19

In 2010, SAP bought Sybase, a company specialized in data servers, information

management, and mobile data usage (SaHi18) in order to step into the server market.

In 2012, and the following years SAP increased its focus on cloud computing
technologies and bought several cloud-based companies. Two of the acquired
companies were Ariba, an online procurements system, and Concur, an online
expense management solution. Both purchases were strategically made to enter the
cloud market and extend the portfolio for their customers. In the same year, SAP
launched a new product: SAP HANA Cloud Platform, which is a Platform as a Service

(PaaS) for business applications.

Also, in 2012, SAP moved their entire SAP Business Suite product line to SAP HANA
and was starting the transformation to the cloud-based area. The board recognized the
importance of cloud computing and saw that customers want to integrate and
eventually buy a variety of online applications. Primarily because of the rise of the
internet and the implementation of online applications, the industries started to

accelerate.

1.2.6 The Rise of the Start-Up Era (2010)
Theano, an open-source machine learning library, was started on GitHub in 2011.

In 2014, Satya Nadella became the CEO of Microsoft and changed fundamentally how
the company interacts within the open-source ecosystem. In the same year, Cloud

Foundry was announced to be open and governed from an independent foundation.

In 2015, Google released TensorFlow under an Apache 2.0 License. The program is
an algorithm library that supports a range of Al-applications and provides deep learning
mechanics. The project was initially started in 2011 at Google Brain as a proprietary
machine-learning library (TeWi18). It helps with the automation of software
components, enables image and speech recognition, and is becoming a core
innovation for many software features of Google's product line, especially its search

engine.

In the same year, Microsoft opened its machine learning library, Cognitive Toolkit, to

the public. It is part of Microsoft's Cortana speech assistant and Skype.

1 Introduction 20

Likewise, in 2015, Elon Musk founded a non-profit Al research initiative, OpenAl. The
project aims to fight the concentration of knowledge in the area of Al/ML within a few
companies and to even-out competitive advantages (OpAi18). Musk also stated his
concerns for uncontrolled artificial intelligence and the potential threat to humankind

publicly.

One year later, Amazon opened its machine learning library to the public. When
compared to Google’s library, it instead focuses on product recommendation rather

than on speech recognition (AmWi16).

SAP Cloud Platform, a Platform-as-a-Service (PaaS), was released in 2016. The

platform is built on open source technologies and developed with SUSE.

In 2017, the Montreal Institute for Learning Algorithms eventually released a stable
software version of their open-source machine learning library Theano. The library
became fast a popular software due to its free and open access, and the focus on

academics graded us for mathematical expressions.

2 Products and Strategies of OSS Projects 21

2 Products and Strategies of OSS Projects

In this chapter, is an overview of areas where OSS plays a significant role and how
that might have changed over the years. There will also be a reflection on why FOSS
and the proprietary software industry co-existed in parallel and why in the last two
decades, the conversation about the adaptation of open source shifted. There will also
be an explanation of different strategical attempts and how business models might

have changed regarding technical evolutions.

2.1 Where to find Open Source

The free software movement was, in many aspects, a countermovement to the
development of the proprietary software industry. Besides the community and
collaborations aspects, a strong idealistic ideology was increasingly influencing the
decisions of the free software movement. The open-source movement was formed to
distinguish from the FSM, and to have a more pragmatic approach and to appeal to
business aspects. On the other hand, the increase in popularity among commercial
FOSS software represented a potential competition for proprietary software
companies. Despite the fierce competition, open-source software started to have a

vast influence on many information technology areas.

2.1.1 Mobile Devices

The global smartphone production, as part of the manufacturing industry, represents
a multi-trillion USD global market (WMU18). Around 1,5 billion smartphone units were
shipped worldwide in 2016 (MoOp18). The market was dominated by the Android
operating system, with 87.5% in 2016. Resulting in the majority of globally used mobile
devices running on open-source software, which is licensed under APL 2.0, and GNU
GPL 2.0 (AnWi18).

2.1.2 Infrastructure and Supercomputer

Another area that is primarily dominated by open-source software in the field of
supercomputers and infrastructure, such as severs. The top 500 supercomputers use
Linux exclusively as an operating system (LinW18). Large publicly traded companies

such as Amazon opted to build their software on Linux distributions like their cloud

2 Products and Strategies of OSS Projects 22

server product EC2. Another example is the web-server market, which is mostly
dominated by Linux distributions like Apache HTTP Server and NGINX (OSOp16).

2.1.3 Desktop Operating Systems

Despite operating systems for all kinds of devices, as a private desktop operating
system, only 1,6% of users chose to install Linux on their private machines in 2018
(LiSt18). Similar to those numbers, products like LibreOffice, OpenOffice, VLC Media
Player, or Firefox have a relatively lower adoption rate compared to other commercial
products. It makes evident that the market dynamics for business to consumer markets
(B2C) differ from business to business markets (B2B). The reasons for such
differences can be based on the different approaches taken, like marketing efforts,
consumer behavior, and technical support. In the upcoming chapter, there will be a
more detailed explanation of the possible advantages and disadvantages of open

versus closed source software.

2.2 Open Source versus Closed Source Code

The success of open-source software in the areas mentioned above can be traced
back to a set of reasons. In general, because of the way how the software is created
and how open licenses work, it follows a more inclusive approach. This results in higher
adoption of open standards and therefore increases the versatility of the software.
Another factor is the independence of any private or public traded software provider.
The asymmetric control by a single vendor can impose a set of risks for the software
consumer. Those are important factors when it comes to a variety of software users
like government-owned programs. Such programs might be systems, which are used
for weather forecasts, earthquake predictions, genome sequencing, or nuclear
warhead simulations (SuTh18). In such matters, to rely on a single vendor and closed
source code would introduce a weakness. Moreover, those programs might deal with
or generate sensitive data. To minimize the possibilities of data leaks and to ensure
high reliability of generated information, open source-based software can help achieve

some of those requirements.

Despite the advantages of open source developed software, there are drawbacks to
consider. Resulting from the high adjustability from OSS, open software often needs

extensive additional adjustments and customizations. Depending on the tech-

2 Products and Strategies of OSS Projects 23

savviness of a potential software consumer, proprietary software might be more
appealing. Specifically, proprietary software is, in general, more consumer-need
oriented; help for implementation, training, and maintenance are often available as
side products. Proprietary companies created profitable business solutions around
their products to generate secondary income streams. Most of the time, they actively
consider customer needs in order to retain them and are more likely to act actively to
adjust to those needs. However, that can result in an asymmetrical dependence and
lead to a vendor lock-in, which is another possible disadvantage of closed source
software. Because of that dependence, proprietary software provider tends to charge

higher prices for their services and products.

2.3 Technological Evolution
It used to be that the consideration of open source products for business software such
as accounting and human resource programs was primarily based on factors like total-

cost-of-ownership, maintenance, support, security, and usability of the software.

Nowadays, the conversation is increasingly based upon features, compatibility, and
which network effects can be realized due to a possible higher adaptation of specific

software standards.

Those changes can be based on a variety of influences such as technological
evolutions, change in consumer behavior, and new market strategies of the software

providing companies.

Don Tapscott and Anthony Williams explained in their book, Wikinomics, how the
industry and society, in general, have changed through the decreased communication
costs in the last two decades caused by the internet (WiAn06). The idea is based on
scaling economics; by releasing open and free accessible products, the number of
users can be increased and therefore is stimulating markets around their products and
growing the overall market size. Some of the companies that gave free access to

products and knowledge found themselves to be very successful.

In conclusion to their studies represents an open access strategy, not necessarily an

altruistic move; instead, it is good business acumen.

2 Products and Strategies of OSS Projects 24

Hal Varian expressed a comparable market behavior in a formula and discussed these

dynamics in his book, Information Rules (HalH98):
Reward = (Total value added to the industry) * (Our share of industry value)

Google, Microsoft, and IBM are known for following a similar strategy with their Al and
ML libraries TensorFlow, DSSTNE, and many more (TeGo17). The motivation behind
opening years of research and possible competitive advantage can provide a variety
of advantages: First, if the industry gets stimulated due to new technologies, then
market growth can be accelerated. Yet another factor is that open collaboration attracts

more extensive access to experts, especially in the academic environment.

On the other hand, many similar open-source projects are emerging fast and gathering
large communities like Torch, Theano, or Keras. These are machine learning libraries,
which use open source licenses and are widely acknowledged within academic
research institutes. Thus, to be successful in that area, proprietary companies are

urged to follow a new strategy (AiGo18).

In order to establish a new machine learning library successfully, it is essential to

appeal not just to businesses, but also academic communities and young developers.

Google eventually released TensorFlow, licensed with Apache 2.0 in 2015.
TensorFlow is a library with mathematical algorithms also used for machine learning,
such as neural networks and deep learning. It was internally developed as part of the
Google Brain team, which researches in the area of artificial intelligence. Moreover,
the ML-library is well documented, and Google provides courses and learning material

for free to students and businesses.

Another trend which is in favor of open source is that applications and software in
general, are becoming increasingly Internet-based rather than on-premises. Services
are consumed on a variety of devices, which causes the whole software industry to
shift to a more mobile-friendly environment. Experts are referring to this as the
computing power utility (Waln08). This is similar to the constant supply of water,
electricity, oil, and gas, which can be consumed at any time and where the consumed
amounts are what is billed. The establishment of infrastructure to distribute those

utilities was a fundamental factor for the previous industrial revolution. The

2 Products and Strategies of OSS Projects 25

commoditized power of the internet is providing businesses with high-end and state of
the art computing power on a per-use cost model. Therefore, companies can
implement a more extensive range of software products based on scalable cost models
and at the same time, reduce the risk of opportunity costs. Simultaneously, there is an
increasing offer of web-based applications and microservices which are providing
features like machine learning, speech recognition, and image recognition for

companies that are not specialized in any of those areas.

Those services require different approaches like orchestrating APls, accessing several
thousand servers, and virtual machines to reach computing power comparable to a
supercomputer (HCP). A collective of companies are actively and passively involved,

and many different technical approaches are combined, to achieve such results.

Since many applications need to cross-communicate to achieve features like those
listed above, standards and open communities are becoming increasingly important.
Initiatives like OpenAPI, Kubernetes, and OpenStack are providing places for
companies to engage in those developments and to influence decisions about possible

new standards.

Open source organizations are representing a vital solution to co-create complex
programs. Consequently, open access is pivotal to establishing new software and
increasing the adoption rate. Platforms like OpenStack or OpenAPI are becoming more

valuable to each involved member. The more users are in the network.

Several proprietary companies are trying to profit from the increased popularity and
faster adoption rate of open-sourced software. For example, there are free courses
about open source languages issued by Apple to give access to their software
language, Swift. Google tries to accelerate the machine learning market to open source

its TensorFlow library, as described above.

Technological evolutions do not solely drive those changes. Human and social aspects
are evenly influencing the changes in the software market and how open source is
embraced by former proprietary software companies. For example, Satya Nadella,
CEO of Microsoft and former SUN employee, is profoundly influencing how the

company is changing its strategy with open-source software. The same goes for CEOs

2 Products and Strategies of OSS Projects 26

like Jeff Bezos from Amazon or Sundar Pichai from Google, who are embracing open

source and supporting the ecosystem.

2.3.1 Enterprise Resource Planning Software

ERP stands for Enterprise Resource Planning and describes in general systems that
support business processes with software and technology. Those systems are used in
supporting areas such as distribution chains, customer relation management,
production planning, as well as human resource and accounting (EnWi18). Those
systems collect, store, and interpret a broad set of information throughout all connected

business units.

The German software producer SAP saw early on the need for such enterprise support
and was influential in establishing the ERP market as it is known today. One of their
products, named R/3, is the third iteration of their “real-time” data processing software
and was released in 1992 (R3Wi18). With R/3, SAP introduced a 3-level tier system

which is differing between three layers: presentation, application, and database layer.

Together with this structural separation, a client/server structure was established. This
structure enabled single source and cantered storage systems for individual data sets,
which used to be distributed across different systems within a company. Furthermore,
it can be accessed from different access points within a corporation and externally

connected partner companies.

An example of such a system integration would be if an employee is submitting a
request for holidays, the system communicates with the HR software, which
corresponds with the finance software, which processes the right paycheck
automatically and informs managers if rescheduling is necessary. Eventually, an
external catering company would be notified that one lunch meal less is required for a
given period. Those integrated process can be implemented with ERP systems; they
helped business in the last century to experience a production increase and to focus

on their core competencies.

Around 2012, it became popular for software providers to start offering products also
as mobile phone applications, for example, Concur. The expense management

software, which was acquired by SAP in 2014, handles travel expenses of employees

2 Products and Strategies of OSS Projects 27

and functions as a trip booking software. The system can be accessed via a web
browser or a smartphone application and communicates to the backend of the

intergraded ERP system.

However, those mobile software applications are rather handled as an external
component of the business software system. Although most of them are well-integrated
solutions, the externality introduced a variety of drawbacks, including increased
response time from applications, and separation of data sets across the attached and
central system, resulting in cumbersome user experience. The challenge of the
following decade was to integrate all those extensions seamlessly on one platform and
to reduce data silos and create a compiled access point for personal information, which

could still run across different platforms and devices (AbOp18, 2018).

2.3.2 Shifting from On-Premise to Cloud

Traditionally ERP programs are hosted on local servers, also referred to as on-
premise. On-premise hosted programs have a set of advantages and disadvantages.
Though the migration from locally hosted programs to cloud solutions is a complex
task, business software providers are nonetheless pushing towards the shift to cloud-

hosted programs.

On-premise hosted programs offer a better individualization of the program and
greater control over the data. In general, there are high one-time payments to install

the software and often require additional hardware to set up the system.

Cloud computing describes an aggregation of remotely hosted computing resources
utilized by a client. The client can be a website, mobile application, or desktop program,

or used for storage and computing power (WhOp16).

“Cloud computing is shared pools of configurable computer system resources and
higher-level services that can be rapidly provisioned with minimal management effort,
often over the Internet. Cloud computing relies on sharing of resources to achieve

coherence and economies of scale, similar to a public utility.” (CloW18)

In order to run programs on a cloud server, it needs to have an operating system,
library, and the application. All those components are installed on "virtual machines".

The virtualization makes it possible to run the application on any environment that

2 Products and Strategies of OSS Projects 28

supports those programs, whether it is hosted online or on a physical machine. This
results in an application that is more portable and enabled to run in an environment

which supports that proses.

The advantages of cloud-hosted over the on-premises hosted programs can be a
shorter implementation time and faster software updated from the vendor, resulting in
a more reliable system. Mostly, it does not rely on additional hardware, and rather than
a one-time payment, it is offered as a service and is sold as a monthly subscription.
(AJER15)

2.3.3 ERP Market
The proprietary ERP market represents a large area of the software industry and is
dominated by a small number of software providers. However, a large portion of the

ERP market demand is met with second and third-tier software providers (ApTo17).

Open-source ERP, on the other hand, is concentrated among three market segments
(UnSc15). The first segment represents companies, which have the required
knowledge and skills within their company to implement an open-source system. Since
this can represent a complicated process, many businesses with insufficient or little
knowledge in software implementation are less likely to integrate an open ERP system

successfully.

The second segment is small and mid-sized companies (SME). One of the most
outstanding arguments for this group is to save on license fees and to have a flexible
system. However, they might need to make a bigger one-time investment upfront and

need to compare the total cost of ownership over the life period of the integration.

The last segment is the governments and research institutions. This group can be
classified with their requirement of a completely open system due to their restrictions

and specific needs.

2.4 Business Strategy
Over the last couple of decades, a variety of business strategies have evolved. In this
area, proprietary and non-proprietary software companies tend to have different

approaches. However, it can be observed that former strictly proprietary software

2 Products and Strategies of OSS Projects 29

companies start to use open source components as a go-to-market strategy and to

build a community around their products in order to generate traction for their brand.

Open Core describes a functioning software that is open source and freely available.
Around the center is a palette of add-ons commercially available, which extends the
software by various features and functions. Those offers often come in bundles
together with services and help to enrichen its value. This strategy lowers the barrier

to try out the software and is common around open source software businesses

Close Core, on the other hand, is practiced rather by proprietary software companies
that have a dominate selling product. It is common to open source a fully functioning
add-on component. By making the additional product freely available, those add-ons

are more attractive to a broader audience and generate visibility for the core product.

Cloud-hosted services are built with open source code and can be made available
as platform-as-a-service. They generate income by selling additional components,
such as the ability to monitor dashboards and integration features, as well as other

services and support.

Vendor lock-in, which is a common practice in the software and, specifically, the
proprietary EPR market (VenWi18). Customers are lured into a system by buying one
component and then adding on additional products and building up switching costs.
However, consumer expectations and the speed of innovation have changed
drastically over the last two decades. It is becoming more common that customers are

open to paying as they use and try out new products if they fit their needs.

2.4.1 Dipping Market

Dipping markets or Winner-takes-it-all Markets are defined by an unequal distribution
of customers, where the product with a slight advantage over the competing products
gets most of the customers (WinWi18). These apply to markets like the sports industry,
certain design markets or search engines, and are increasingly experienced in the
software industry. This implies that dipping markets make it challenging to calculate
marketing budgets or other sorts of resources since the gain from reaching the first
spot is exponentially higher. On the other hand, the risk for such markets is that if the

product fails, all the investments made might be worthless. Therefore, it is becoming

2 Products and Strategies of OSS Projects 30

increasingly important for software companies to penetrate a market in a short time
with their product in order to be successful, which explains the interest of closed source

companies to lower the barriers to access their products

2.4.2 Pull- and Push-Markets

A push strategy implements active communication with the end customer to promote
the product. It is often applied if a new product is launched or in markets that are not
transparent. In contrast, pull marketing represents a situation where a product or brand

is so desirable that customers will seek the product themselves and possibly buy it.

2.4.3 Collaboration

In some cases, open source is a strategy to get several companies working on one
project, like in the case of OpenStack, as described in the first chapter. By registering
the software under an Open Source license, legal questions regarding the ownership
can be addressed. It also serves as a kind of guarantee that it will be available for one
of the creators for an extended period of time. On top of that, the project can be shared
among other communities such as universities or other entities of the companies

without the risk of interfering with internal or external company policies.

3 Open Source at Proprietary Companies 31

3 Open Source at Proprietary Companies

In this chapter, it will be examined why former strictly proprietary software companies
are starting to consider distributing open source software. There will be a separation
between possible motivation and risks, and there will be a close observation of different

ways a software company can engage with the open source ecosystem.

3.1 Incentives and Advantages of Open Source Engagement

There is a wide variety of publications that review the motivational background of
individual developers to engage with open source software. It ranges from a general
perspective on intrinsic motivation, discussed by Edward L. Deci in his book “Intrinsic
Motivation and Determination in Human Behavior,” to extrinsic motivation like status,
career improvements and financial aspects of individuals, explained by Krishnamurthy

in 2006 and general motivation from Lerner and Triole in 2002.

However, in this thesis, the focus will be on the motivation of a company to engage
with open source software, where a company is defined as a legal entity that engages
in business and is a collective of different individuals, which serve different interest

groups of stockholders.

A company’s prime objective is to generate value and to persist over time. All activities
that support that aim can be classified as goal-enabling and are of increasing

importance as the market tends to get saturated with growing competition.

It can be distinguished between three arguments, which are possible drivers behind
the motivation to engage with open source software: One is reducing costs, second to
gain innovating abilities, and lastly, to increase sales (WhIM12). However, conducted
studies revealed that those categorizations might miss one argument: moral obligation.
All companies included in the studies stated that they want to give back to the FOSS
community, which is an essential indicator. It signals that the company is willing to

reinvest, and that can build trust.

3 Open Source at Proprietary Companies 32

3.1.1 Innovation Capabilities

It is argued that if open source software has an advantage over proprietary software,
it is the greater ability to innovate (HipMI05). Due to effects such as Linus’s Law and
access to a broader community, many studies have pointed out the positive effects on
innovation (LiWi18).

Software Standards are defined as terms, concepts, formats, or styles of
documentation, which are widely recognized and commonly agreed on by software
creators in order to ensure quality standards and to understand other products. One
definition for standards by ISO, an international institution for standardization, is: "A
document that provides requirements, specifications guidelines or characteristics that
can be used consistently to ensure that materials, products, processes, and services
are fit for their purpose." (Isols18) Standards are voluntary, which means that they can
be seen as guidelines, but not everybody needs to adopt them. When Apple excluded
the 3,5mm audio port from their distributed phones, they changed from the standard
for audio to their proprietary lightning connector. That promotes wireless headphones

and sales for their proprietary lightning dongle.

Closed Standards can be concealed to the public, including the documentation and
specifications. Those standards can be distributed according to specific terms and

conditions and might come with costs such as license fees.

Open standards are seen to be increasingly essential to increase efficient
communication about the expanding number of devices and applications. The Open
Source Initiative believes that open standards should embrace: no internal secrets,
availability, royalty-free patents, no NDA agreements, and no OSR-Incompatible
Dependencies (0OsiO18).

The active involvement in the development of a new open standard can be beneficial
for commercial companies due to various reasons. On the one hand, they can be
implemented early in new products. On the other hand, the involvement also allows
businesses to contribute and possibly form the new standard. Upon consideration, that
may explain why companies become an early part of different open initiatives like
OpenAPI (OpeWi18).

3 Open Source at Proprietary Companies 33

3.1.2 Increasing Sales
Commercial companies are, in general, motivated to increase sales numbers. This can
be done through direct marketing activities; however, other activates can also

contribute to sales numbers and generate income.

Secondary products, as described in the previous chapter about software strategy, in
an open core, can increase the sale of additional commercially available software
components. Proprietary software companies, per contra, will instead have a closed
core and distribute open software as an add-on. Such a practice can have a positive

effect on the core product due to its higher agility and broader feature set.

Compliment services are widely offered in the software industry and represent a valid
secondary income source. They can be offered in the form of training, certificates,

technical support, or consulting services (FitzT06).

Thought leadership can be attained by active contributions to a software community,
and it signals a high level of knowledge and applied skills. A company can give panel
talks, participate in a conference, and host meetups. That can have a positive impact
on brand awareness and attract more stockholders; moreover, it can attract future

hires.

Time to market, also called TTM, refers to time spent between the idea to the final
product release. There are no official standards for this measurement, but it is an
indicator for industries to compare costs and product cycles. Open-source software
components can have a positive impact on the TTM due to the reuse of code and

accessing feedback from a broader community.

Another effect of open-sourcing source code can be the reduced friction to consume
and to try the product. In an increasingly saturated market, it is of importance to
penetrate the market with software products in a short amount of time to gain profits.
Due to the maximizing effects on the zero acquisition costs, proprietary software

companies can use that to their advantage.

3 Open Source at Proprietary Companies 34

3.1.3 Reducing Costs

Cost reduction due to the usage of Free and Open Source software might seem like a
valid argument for its utilization. Software development can be accomplished faster
due to the use of freely available software. However, those advantages must be held
accountable when considering the overall cost of software, also referred to as total-
cost-of-ownership. Since free and open-sourced software code can include broken or
malicious parts, it is required to review possible implementations carefully. That can
expand the expected development length of a project considerably. Another factor to
be considered with FOSS is that it is possible that documentation might not be up to
date, incomplete, or missing. Those are factors that need to be considered before the
code is reused. In an upcoming chapter, there will be a more detailed observation of
which factors of an open-source software implementation need to be considered and

how those might affect the final product regarding its distribution.

The technologies and the industry are changing rapidly regarding technological
evolutions, but also to how technology is consumed and how technology is taught and
learned. It became a standard that young developers use platforms such as GitHub
and other networks to grow their experience and reputation. Senior developers prefer
working environments where they can use such platforms. On the other hand,
companies are interested in keeping the training time for new employees is as low as
possible to reduce costs. Therefore, it is increasingly attractive for employers to provide

such tools which are widely used already.

Proactive saving by contributing to the early stages of open source projects can be
another aspect of why a proprietary software company might be interested in engaging
with a non-proprietary software company. For example: when consuming open-source
software, the code might fit to a high degree in the already existing system and
products of a company. However, the last part of the implementation might require
reconfiguring a large part of the software. Also, that task can be only accomplished
with the necessary technical knowledge and resources. If a commercial company can
actively contribute to an open-source project of interest, it might be able to influence
the product and can start early to consider how to implement the free source code.
That may result in saving time and resources. Moreover, by contributing to an open-

source project, the company can gather feedback from the developer community. That

3 Open Source at Proprietary Companies 35

feedback can reveal new methods to solve problems, which ensures that the quality of

the code can be further improved, as opposed to purely in-house development.

Hiring talent can represent a challenging task for a software company; it is seen as a
critical must in order to stay competitive in the market over an extended period. Access
to an active community can help bridge the labor gap and get highly qualified support

for projects.

3.1.4 Case Study SAP

When SAP developed its proprietary high-level programming language ABAP in 1983
(AbWi18), it represented a competitive advantage for the company. It was developed
to fit their current needs and their entire product line. Moreover, due to their
implemented restrictions, it was possible to charge higher margins, not only that,

additional services could be sold, such as training and support packages.

The proprietary character of the language also represented some drawbacks. The
number of developers who used the language was very limited, and due to the

restricted usage, it was less attractive to young professionals.

Moreover, due to the less restrictive character of freely available and open languages
such as Java, PHP, or Python, they attracted more developers in the first place.
Secondly, due to the amount of available research, institutes and academic

environments had more interested in improving and developing them further.

However, ABAP is still a language of significant importance for SAP and their
customers, given the large number of applications that are built on it. Nevertheless, it
is becoming difficult to hire talent for this proprietary language. In late 2018, SAP
released a runtime environment for their cloud platform offered as a platform as a
service, offering ABAP developers the ability to run programs in the Cloud Foundry
Environment of the Sap Cloud Platform; giving customers the chance to cloud-enable
their ABAP based programs and connect them via remote APIs to a broad variety of
cloud applications. The language supports an Eclipse environment and enables the
importing and managing of development statues via Git, offering access to other open-

source projects (AbSa18).

3 Open Source at Proprietary Companies 36

3.2 Possible Disadvantages of Open Source Engagement

As the previous chapter shows, an open-source engagement can have a positive
impact on commercial software companies and might contribute to various strategic
business plans. Nonetheless, the usage of open source code might bear some

disadvantages and should be considered.

3.2.1 Licenses Incompatibility

In general, software code and specific open-source code are primarily defined by its
license. Over the years, a large number of software licenses were created. They each
have their own characteristics, therefore, serving different purposes and coming with
a different set on requirements. In general, due to copyright laws, once a part of the
free or open-source code is implemented into a project, it passes on its usage right
with its possible limitations. Hence, some combinations of licenses work in favor of
each other and permit each other to work in parallel. On the contrary, it might occur
that two licenses contradict each other and may cause conflicts. Moreover, it can
become challenging to create a proprietary software product once open-source

licenses are included since it might not be permitted to sell or restrict the usage rights.

Besides license incompatibilities, there are also compliance restrictions due to antitrust
laws. In this sense, once an external developer contributes to an open project, the
submitted code might be copyrighted. Additionally, in the case that the developer is
employed, the contributions might be owned by the software company. Therefore, it is,
in some cases, essential to file agreements with all contributors to try to avoid legal
actions. There will be a more in-depth review of CLAs in an upcoming chapter, which

will point out different kinds of agreements and in which cases they are applicable.

3.2.2 Malicious Code Contribution

Due to the accessibility of an open system, it can also be a source of security
vulnerability. Malicious code, leaking areas, or gateways might be introduced and can
cause severe problems. It is argued that open-source software, in general, might be
more secure, since it is tested and reviewed by a wide variety of software experts with
different aspects. However, a planned security gateway can be implemented and used
deconstructivity, if the necessary security reviews have not proceeded and access

rights are correctly managed.

3 Open Source at Proprietary Companies 37

3.2.3 Security of Retired and Unpatched Libraries

Open-source software is often managed by a voluntary gathering of developers
connected remotely; software projects can get outdated once the community ceases
to exist or becomes smaller. As a result, new security updates might not be
implemented, and libraries might become unpatched. That is problematic if the source

code is implemented without a thorough and careful compliance review.

3.2.4 System Stability

There is always a chance that implemented code causes conflicts with the existing
code. In order to avoid more significant losses, a regular building plan and
implemented automated tests are required to avoid more significant problems along
the way of the project. If a problematic area is not spotted early o, it might cause a

crash of the program, and back-engineering might become a resourceful task.

3.2.5 Monetary Risks

Projects naturally bear the risk of failing and might fail to monetize successfully if this
is important for a project’s sustainability. The risk is over-proportionally higher if a long
development cycle is in place, with possibly several hundred developers, and in some
cases, an innovative product. There is always a chance of non-acceptance by the
market; features of the product might become outdated or become faced with stiff
competition, thus impeding growth. Nevertheless, open-source and community-based
approaches are ideal to bootstrap a project. This can have a positive effect on keeping

costs down and expenditures very low until the project starts to sustain itself.

3.2.6 Legal Risks

Open source is based on licenses with foundations in place to govern those licenses
and hold companies and developers accountable for applying them correctly;
consequently, there will always be a legal risk. It is good to be proactive and become
involved early in order to manage licenses correctly and state user and contributor
rights, from the beginning of a project according to legislation. However, there is always
be a chance that certain rights be overlooked, or some other kind of legal breach
occurs. When an open community of different individuals is gathered, different opinions

and beliefs can conflict, and they might disagree at specific points of a project. If no

3 Open Source at Proprietary Companies 38

consensus can be found, a fork might be the right solution, and the community splits

into two different projects.

3.3 Engagement with the Open Source Ecosystems

In general, there are three different ways to distinguish how a company can engage
with open source software: consume, contribute, and own their own open source
software. There are different implementations of each of the engagements. A company
might consider why to interact, how to act accordingly, and define what it means to
engage successfully. All three ways have different social, technical, and legal
implementations. In this chapter, those aspects will be reviewed as well as how to

measure the maturity of the software and how to avoid risks.

3.3.1 Consuming Open Source

Open Source software is an inherent part of the software industry. There is a vast
amount of open and free solutions available to be consumed. As described in a
previous chapter, open source represents an important part of infrastructure software,
desktop systems, and niche software applications. Consequently, large parts of the
Internet Backbone are built with open-source software. Besides projects for general
public interest, sizeable proprietary software companies such as IBM, Ford, Wal-Mart,
Exxon, GM, Amazon Inc., and SAP are just a small sample of the immense scale where
open software is used successfully. Within those examples, the most frequently used
open operating systems are Linux and FreeBSD. Regarding infrastructure Apache
Web server, MySQL and PostgreSQL are to mention here and can be counted as the
most prominent ones. Whereas for desktop applications Open Office and BIND are
vastly distributed (PaOS04).

Nevertheless, when consuming open source software, the applicable company needs
to consider a variety of different factors such as overall costs, transition costs, and how
to measure success. Those considerations need to be made before large applications
are integrated and can lead to severe problems for the company from a long-term

perspective.

3 Open Source at Proprietary Companies 39

3.3.2 Contributing to Open Source

Besides consuming open source software, proprietary software companies can also
actively contribute to an open source software project. That has many advantages and
can showcase the technological advantages and knowledge of a company, which is a

positive message for finance and technology markets.

Another aspect of open contribution is that often, those projects work on important
future enabling technologies. Consequently, if a company can have an impact on how

the resulting end-product will be defined, that will lead to competitive advantages.

The proprietary software company SAP saw in 2004 the strategic and significant
importance of the Eclipse SDK. The company, therefore, became one of the founding
members soon and contributed to several other Eclipse projects such as jGit, eGit,
Mat, and Tycho (LiSa19). There will be a more detailed overview of OSS projects

where SAP was involved in the upcoming chapter.

In detail, this means that if a company implements an open-source software
application, it might fit, to a certain extent, out of the box. However, it is likely that
adjustments need to be made to meet the requirements. If a company can be part of
the development process of a possible new standard, they can be sure to have

essential features built-in from the start.

Moreover, by openly communicating which are wanted features, or even contributing
code to the development community, feedback can be generated. In general, feedback
from various parties leads to a higher quality of the product. Often, proactive
engagement is beneficial and results in less overall development costs for the
applicable company. Important to note is that acquiring the skills to implement and
develop with newly released software can be decreased, for example, in the case of

Kubernetes or Cloud Foundry and multi-cloud applications.

Large scale projects are often governed by independent foundations, which has
several advantages over single-owned open source projects. Those foundations help
govern projects within a neutral area, independently from the contributing

organizations and unaffected by a possible dispute between two contributing parties.

3 Open Source at Proprietary Companies 40

Those initiatives are also founded to guarantee a neutral and long sustainable success

of a project over an extended period.

SAP is a member of several open software sources and is actively contributing to those
projects. A detailed overview of those engagements within the open-source ecosystem

is part of chapter 4.

3.3.3 Owning Open Source Software

The third category with open source software engagement would be to own it. Dep-
side to create the software, it could be bought from or donated by another organization.
Regardless of how a company becomes the leading entity behind open-source
software, there are some essential tasks to keep the project vital. Such tasks include
keeping the audience engaged and motivated, establishing rules and agreements as
well as keeping a well-documented and well-built system in place, in order to hold on

to a good reputation.

When building community-based software, their attention should be drawn to its
community. Many FOSS projects are created with free contributions from an extended
group of developers. One of the advantages of open source might be that arguably, it
provides a source of free labor, but that is not for granted. Those developers taking
part in open communities have their motivation; they need to have a shared sense of
a common goal to keep the audience successfully involved. In general, the benefits
should be even, and the community should benefit as much from the project as the
owner itself. Therefore, their contributions must be evaluated accordingly, and open

source projects should remain open.

In order to keep an open project thriving, it must be observed that a public engagement
of the project is equally important. That presence can attract new developers and can
be accomplished by hosting public events, presenting panel talks, interviews,
generating blog articles, or publishing to newspapers as well as publishing videos
explaining basic concepts of the project. Ultimately, there are many ways to interact
with the communities inside and outside a project. Importance remains on the

communication of the core values and the possible significance of the project.

3 Open Source at Proprietary Companies 41

Besides the community aspect, another critical factor is the establishing of a project
approval process: open source project communities can have several thousand
participants, with contributions across different time zones. It is increasingly essential
to the size of the community, to make use of an automated process wherever it is
possible. Just a few processes, such as approvals, CLAs agreements, and status
updates, can take up a significant amount of time if not addressed in a self-organized

way.

Besides automation, there should be a library of guidelines and frequently asked
questions established. Those guidelines should be easy to access and give a broad
range of essential information. Within FAQs, there should be instructions on how to
respond accordingly to specific issues or bugs, how to deal with difficult circumstances,
and how to avoid common problems. That can help in many cases to get questions
answered before a community member needs to answer individually. Not only that, but
those guidelines can also help in case of a possible disagreement to find a consensus,
and to set a variety of community rules to keep the environment professional and to
keep the focus on the main project goals. Because such guidelines are standard within
open projects, an organization can make use of already existing contribution model
templates rather than having to recreate those mechanisms. The adoption of such
templates can help accelerate the start of a project and might support in remaining

focused on core tasks while minimizing some risks.

4 Open Source Software at SAP 42

4 Open Source Software at SAP

SAP SE, the German ERP software provider, has been best known for its proprietary
products. Nonetheless, the company has a long history of open source; this chapter
will give an overview of different open source products, both used and produced.
Furthermore, this chapter covers a selection of projects the company is actively

contributing to.

One of the first official engagements with open source can be traced back to 1998
when SAP started to port their leading product R/3 to Linux. This engagement enabled
businesses to choose their preferred operating system; with this, the company gained

access to a new market segment.

Three years later, in 2001, SAP formed a set of definitions and guidelines on how to
process and consume open-source software. The formalized documents contained

aspects such as open-source licenses, security, and control restrictions on exports.

In 2004, the company became a founding member of the Eclipse Foundation and
contributed actively to several projects from the foundation, such as jGit, eGit, Mat,
and Tycho (LiSa19).

The company decided in 2008 to enable more employees to contribute to external
open source projects. Therefore, a guide was established on how SAP developers
should engage with external communities to stay compliant and to prevent legal

problems.

Two years later, in 2010, SAP formalized further how to develop and engage with the
open-source ecosystem and introduced a systematic scanning process. It became part

of every project and helped the company stay compliant and obtain security goals.

By 2014, SAP open-sourced a Contributor Licenses Agreement system on GitHub,
which automated the license agreement from developers to contribute to an open

project. There will be further details on the open-source tool in the following section.

In the same year, SAP joined the Cloud Foundry, which marks another cornerstone in

the history of the company investing in the open-source community (CISa17).

4 Open Source Software at SAP 43

Cloud Foundry is an open-source service platform and makes multi-cloud hosting
possible; besides that, it provides different applications; for example, a tool for software

development lifecycles, called BOSH.

The partnership grew from a single developer to make some pull requests, to several
teams containing more than 80 employees working full time on different projects, for
example the afore-mentioned BOSH application, multi-cloud hosting, APl connection,
and several more (SaCo18). One of the latest projects is in partnership with IBM and
Asus to integrate server-less applications and Kubernetes and to enable a hybrid cloud

solution.

In 2016, SAP opened a BOSH OpenStack CPIl Dojo in Waldorf, Germany, in
cooperation with further developers from SUSE Linux. The Dojo concept was founded
at the Cloud Foundry after they observed how long it took developers to gain submitter
status in an OSS project. The submitter status is an indicator that a developer is full-
time, contributing to one of the Cloud Foundry projects. The Dojo provides a 6 to 12
weeks training program for a developer to acquire the necessary skills in a fast-paced
environment. SAP has established worldwide 8 Dojos, where they continuously train

developers and contribute to open source projects (CIDo18).

In 2017 SAP joined the Hyperledger program as a premier member. Hyperledger is a
part of the Linux Foundation and develops and conducts research on blockchain

technologies (HyLi17).

In the same year, SAP joined the Cloud Native Computing Foundation and the Open
APl Initiative (SaLi17). There will be a more detailed perspective on those

engagements in the upcoming section.

In 2018, the German ERP provider entered an agreement with Google and Intel to
deliver a serverless cloud solution on the public GCP cloud with significant

performance improvements for customers (PaGo18).

In the same year, SAP established a centralized internal organization to regulate and
oversee all open source activity. The so-called Open Source Program Office, in short
OSPO, consists of a virtual and global team and has a focus on streamlining open

source engagements and on being a single point of contact for OSS-related inquiries.

4 Open Source Software at SAP 44

Moreover, the department is overseen by the CTO of SAP, which results in better

integration with the company (LiSa19).

Based on those engagements, it can be observed that there is a general endeavor to
establish and strengthen the contact with external open projects. In the upcoming
section, there will be a more detailed review of open source projects which were
launched by SAP.

4.1 Software Tools

This chapter will present an overview of open-source software projects initiated by the
German software provider SAP. There is a wide variety of projects in this category
since SAP is actively motivating and enabling its employees to contribute to open
projects. Nonetheless, this section of the chapter will be focused on a selection of the

most relevant open source software projects maintained by SAP.

4.1.1 Contributor License Agreement Tool

There are many ways how a company can handle legal rights for software
contributions. If an internal employee is working and contributing to an internal project,
the rights are most certainly owned by the employing company. However, once an
external developer is contributing to a project, the question of who can claim ownership
of the creation arises, primarily if the external contributor is employed at an
organization or company. Even if the contribution is for an open project, intellectual

ownership of the creation is still relevant.

In order for an SAP to manage software contributions to their open projects, they
created an open-source tool to automate agreements: The Contributor License
Agreement Tool also referred to as CLA. The open program supports the agreement
process of ownership-related topics: CLA gives the agreeing parties the security that
legal claims upon ownership of submitted creations are defined. The parties agree that
they are willing to give up any further right and that they are legally able to contribute.
It is especially essential if, for example, competing companies or their employees, in

some cases, even unintended, are contributing to projects.

SAP's open CLA tool was released for the first time to the public in 2014 under an

Apache License, Version 2.0. It was created in collaboration with the developer team

4 Open Source Software at SAP 45

form GitHub. The project itself is hosted on GitHub and is openly accessible to
interested individuals. It is used by a respected, large number of other companies and

organizations, which forked the project and created their own version (SaCl19).

In order to have a consistent and robust agreement system for all projects, every single
contribution needs to be signed off with the CLA assistant. The agreement is signed
with every pull request from the project; every contributing developer needs to agree
to the CLA. The software authenticates the signee and updates the status of the pull
request. This process is integrated into the hosting platform; in this case, the GitHub
platform (GiCI19). Therefore, an uninterrupted chain of agreements is created for the

developer and the company to stay as compliant as possible.

4.1.2 SAP Cloud Platform

SAP Cloud Platform provides a single space for all SAP cloud applications. It functions
as an open Platform-as-a-Service, which can be run on the SAP HANA database. The
program was and is developed together with SUSE with open source technologies.
Initially, it was developed within the SAP HANA Cloud Platform with the name SAP
NetWeaver Cloud. Since then, the platform grew steadily, and many features and

programs where added over time.

One function of the platform is to establish a connection between on-premises and
cloud-hosted applications to work together, as well as third-party applications. The
platform embraces open standards, including Java, JS, Node.js, and it works together
with Cloud Foundry. The latter enables the platform to host multiple third-party cloud
services such as AWS, MS Azure, GCP, Alibaba, to name a few (CloS17).

Due to the close relation to the Cloud Foundry and the BOSH development cycle, it
supports customers in iterating on new ideas with an increased pace compared to
conventional methods, and it seems the development cycle affects the go-to-market
time positively. SAP provides several SDKs for different developer platforms, such as
for Apple iOS and Android. Those SDKs come with documentation and additional
material, and supplies developers with already existing libraries to accelerate their

creation of applications (CPWi19).

4 Open Source Software at SAP 46

The cloud platform is continuously growing and implementing new emerging
technologies like Dockers and Kubernetes. Moreover, it gives customers the ability to
try out different new technologies such as Blockchain, Machine Learning, loT, Big

Data, and different analytic tools.

The following applications are hosted and made available on the SAP Cloud Platform.

4.1.3 Openuib and SAPUI5
In 2013, SAP decided to open their framework and follow a dual-license strategy. The
company released openUI5 under the Apache 2.0 license. One year later, in 2014, the

OpenUl5 team was open for contributions made via GitHub.

SAP UlI5 is a JavaScript Web toolkit for user interfaces. The program represents a
library for user interfaces and works together with SAP Fiori, which is the companies
design language. SAP Ui5 is available as an open and closed source variation. Both
versions are almost identical and differentiate mainly due to their different licenses.
The UI5 library contains more than 200 frontend controls and follows a Model-View-

Controller approach.

The program was initially developed under a proprietary license to provide a consistent
design language for web applications for the company and its customers. Previously,
SAP introduced new user interface libraries with each new product release. It provided
many advantages to separate products and designs to keep a consistent experience

across several applications and to represent a unified brand.

Various applications follow those design principles or have similar expressions
enabling a consistent appearance; thus, user experience can be achieved throughout
different programs. The program is built with JavaScript and XML code generated
compliant HTML, which enables the program to keep its consistency across different
platforms and runtimes. Further worth mentioning is its compatibility to work together
with OData and JSON API’s (FiSa17).

Initially, the internal project name of the software library was “Phoenix.” In 2009 SAP
developers worked on a strategy to keep a consistent Ul experience over a long period
of time and across different applications and product releases. Moreover, they tried to

solve a problem that occurred due to the fact that the previous Ul frameworks were

4 Open Source Software at SAP 47

tightly coupled with the backend of SAP’s technology stack, which became a
bottleneck when briefly changing the appearance of the program. The developer team
behind the software believed that the software needed to be opened to a broader and
external community to increase its potential. They saw the benefit of collaborating with

different software communities and sharing their creation with other projects.

Around the year 2013, as smartphones and mobile devices became increasingly
crucial for businesses and private persons, the perception was shifting towards a
mobile-first and mobile-friendly workplace. As a result, a variety of mobile apps where
created, this trend was observable in a wide range of businesses and industries. Many
companies soon had a variety of programs and different mobile applications. However,
most companies tried to have the right consistency within their application
appearances. Since SAP UI5 was proprietary software, customers were not permitted
to implement its user interface experience in other third-party applications, which made
it difficult for SAP’s customers to achieve a consistent appearance. Another problem
software developer encountered with the original proprietary character of the software
was that feedback from partners, and even internal employees were not permitted to

be implemented to improve the software because of license issues.

Another item in the list of arguments for SAP to open source was that their Ui5
application caused a shortage of talent hiring possibilities for Ul departments. Since
new hired developers were not familiar with the application, training costs, and getting
up to speed times were higher compared to other areas. Furthermore, SAP considered
the positive impact from external communities to develop the library further and expand
its potential behind its primary purpose. Since the way how programs were developed
shifted to a more open approach and many developers preferred to work with open
frameworks in order not to be tied to one platform, SAP needed to change their
approach to stay relevant in the developer communities, especially outside of the SAP

ecosystem.

SAP Ui5 remained as a SAP internal build version of the same software. It is a
downstream product of the OpenUi5 and marginally enhanced with some additional
features. SAP Ui5 is made available to SAP customers bundled with other software

components and comes together with a service agreement. There is a full team within

4 Open Source Software at SAP 48

SAP working on Ui5 to improve its functionalities. On the other hand, OpenUi5 is
hosted on GitHub; it has several versions, nightly builds, betas, and final releases. It
has an active community with over 40,000 Comments (Dec. 2018), 360 releases, and
56 Branches. The GitHub provided bug-tracking program is additionally used to

improve the software.

For SAP, this project represents a success in various ways. Overall it enables the
company, together with a community around the product, to contribute and further

develop the program.

4.1.4 Chevrotain

Chevrotain is similar to OpenUi5 and represents a code parsing library for JavaScript
and NodeJS. It was developed by SAP and is licensed under an Apache 2.0 license
and released to the public in 2015 via GitHub. Despite the large variety of parser
building toolkits available, the development was initiated by one SAP employee who
wanted to develop his own version with specific customizations. Since the public
release, Shahar Soel, also known under his developer name bd82 only commits to the
project in his own time and, therefore, strictly separates the work he is doing at SAP
and his commitment within the open program. The community around that library is
significantly smaller compared to the other projects. In December of 2018, the project
counted on GitHub 1,568 submitted commits, 22 branches, 122 releases, and 20 active
contributors (OpSa18).

4.1.5 SNAP!

Snap! is a visual programming language based on connected block segments. It was
developed by SAP in cooperation with the University of Berkeley in 2011. The
language aims to support the learning and teaching of basic programming concepts
for any age. It was inspired by Scratch, which was developed at the MIT Media Lab
(ScWi18). The software is distributed under an open-source AGPL v1 license and was

initially developed by Brian Harvey and Jens Moenig in 2011 (SnWi18).

The software is written in JavaScript, and the interface is accessible via any standard
web browser. Unlike Scratch, Snap! has enriched features like more advanced

concepts, allowing to teach more complex content to even advanced software

4 Open Source Software at SAP 49

students. (SnWi18). The programming language is helping to bridge the gap between
several educational target groups. Besides Berkeley and SAP, many other educational
and private institutions are using the software to teach and to discuss different

architectural concepts and basic programming fundamentals.

4.1.6 BUILD

Build is a SAP internally developed design tool, which also allows a non-technical user
to create interactive prototypes. It utilizes different input types and can automatically
convert paper doodles into a functioning mockup prototype. The program was
launched in 2014 under an Apache 2.0v license. It is made available and hosted on
GitHub. Besides the source code, a functioning version can be accessed with any

standard web browser (BuGi14).

Furthermore, the program has the capability to use real sample data and to tap into a
broad technology stack such as Mongo.DB, Express, AngulardS, and Node.js. It
follows the SAP Fiori design guidelines and can access Ul frameworks such as
OpenUl5 (BuBu18).

4 Open Source Software at SAP 50

4.2 Contributions

SAP is part of several open source and general software foundations. Each of them
serves a specific purpose and supports the company in various ways. Working in a
community on potentially disruptive new technologies seems to appeal to the software
company. A contribution has several dynamics; however, two aspects are to be
considered: The more companies are working on innovation, the more likely it is that
they get established. The other aspect is to predict specific trends. Companies with
extensive research and development departments tend to be more accurate about

such predictions.

In general, contributing companies are not just donating funds to a foundation, but
instead, they are actively engaged in the development of innovation, contributing core
competencies in various fields of technology. Another advantage of an external
foundation is the neutrality and agility they can operate. Some foundations need to

exist over several decades to deliver tangible results.

Many of the following foundations seem to work on technologies that might enable the
next generation of future applications and technologies. To be part of such foundations
comes with a high price. Therefore, companies are making sure that the investment is
placed carefully in order to extract potential wins in the form of skills, knowledge, and

future-ready applications.

4.2.1 Linux Foundation

The Linux Foundation is a non-profit trade organization, which has its origins in 1993.
In the same year, the first Linux mailing list was introduced and received global
attention. In 2000 the foundation was officially established after the merge of two large

Linux groups.

The foundation serves various purposes: it helps to manage Linux communities,
oversees projects, fosters innovation, and forms a neutral place for Linux and open-
source projects to develop and evolve. The website Linux.com is hosted by the
organization as well, which is developing into a platform for tutorials and guidelines on

how to engage with the open source ecosystem.

4 Open Source Software at SAP 51

For the last couple of years, the foundation has been broadening its scope of interest
to new emerging open source technologies and is increasingly becoming an umbrella
organization for a set of different foundations. SAP is engaging with a variety of those
newer foundations, which will be part of the upcoming sections. Those new areas
include technologies such as blockchain, cloud computing, Kubernetes, Dockers,

drones, and a range of further projects like OpenAPI| and Open Container Initiative.

SAP is a member of the foundation since 2017; the membership presents for the
company an essential step for its open-source strategy. There are several benefits,
and it is seen as a reliable indicator of the increasing importance of open source

technologies in the industry.

The Node.js Foundation is part of the Linux Foundation and was established in 2015.
The organization was founded to support the adoption of the Node.js and other
modules, which is accomplished by an open governance model and therefore
encourages engagement and participation from partners and members. The open-
governed aspect should also guarantee the long-term success of the organization and

possibly enables the continued improvement over an extended period.

Node.js itself is a JavaScript run-time environment that operates cross-platform and
runs JavaScript outside of an internet browser. It has an MIT open-source license and

supports a variety of operating systems.

The foundation is essential, aside from its cross-platform capabilities, with their applied
skills and development in JavaScript technologies. JavaScript is a core technology in
the SAP Cloud Platform, and it is essential for the company to have that technology up
to date, and upcoming changes implement as early as possible to give their customers

the best experience.

Google donated the Cloud Native Computing Foundation to the Linux Foundation
in 2015. It is an open-source and not-for-profit organization to build a collaborative
community to improve and develop cloud and cloud-related technologies primarily in
the area of application speed and scaling. The foundation established a variety of
projects to serve those purposes, and a large community has formed around the

organization to distribute and to learn the new evolutions in the fast-growing area of

4 Open Source Software at SAP 52

cloud computing. Since 2017, SAP is a member of the foundation and is jointly working
on its improvements alongside companies such as Amazon, MS, Oracle, VMware, and
many more. The decision of SAP to join the foundation is supporting the company in
several ways, but one crucial area is the development of a hybrid cloud model, which
SAP is already implementing, it can still be further enhanced to give customers an
extra reliable and faster integration from on-premises and cloud-hosted applications
(SaCN17).

The CNCF is working on a broad set of essential projects which are of potential value
to SAP. The projects contain Kubernetes, Container, or Envoy. These projects are
concentrated around the possibility of exploring the capabilities of cloud computing and
are seen as critical areas and seed technologies for further improvements in that
particular area. Kubernetes, for instance, is one of the sub-projects of the foundation,
it is an open-source framework for the automation of deployment and control of
applications using containerization and clustering. The orchestrating tool is also used
as an alternative to virtualized runtimes. The software makes it possible to run web

applications in different environments, such as on-premises and cloud (KuWi18).

The Hyperledger project is founded and governed by the Linux Foundation and was
established to improve blockchain technologies and provide guidelines and
educational courses for interested organizations. The project is concentrated on open
source blockchain technologies and combines a variety of tools and communities to
enable synergy effects, and it helps the technology mature and grow. SAP is part of
the project in addition to several other industry-leading cooperation such as IBM,
Cisco, Fujitsu, Intel, Red Hat, and VMware (HyWi18).

The OpenAPI Initiative is part of the Linux Foundation and was a donation of
SmartBear Software. The original project name was Swagger Specification and
consisted mainly of a set of rules and guidelines to formalize the APIls. The OpenAPI
initiative helps to uniform the way REST APIs are defined. (AbOp16). REST APIs is
short for Representational State Transfer; they provide guidelines for establishing web

services and connections between applications (ReWi18).

SAP joined the initiative in 2017 and thus further strengthened their effort on improving

cloud technologies. For SAP, the initiative represents a cornerstone; it supports the

4 Open Source Software at SAP 53

company’s development of modern applications and development environments. In
that sense, cloud-native applications are increasingly built upon microservices, which

rely heavily on APIs.

The OpenAPI Initiative is working on ways to improve data exchange between all kinds
of different programs and devices, which is especially essential when it comes to loT
technologies. Those devices rely on seamless communications between various
programs, third-party applications, and other devices to work efficiently. SAP supports
that course and has opened their web-based applications such as S/4AHANA, S/4AHANA
Cloud, and further SaaS web products to support the REST full standards (ApSp18).
Customers can manage their APIs with the SAP API Business Hub and the API
Manager, which gives them a centralized place to receive real-time data about API
usage (ApCl18).

4.2.2 Apache Software Foundation

The Apache Software Foundation is an open, not-for-profit trade decentralized
organization to support open-source software; it was established in 1999 (ApWi18).
The foundation governs open source licenses and gives training, guidance, and
support in the establishing process of open-source software. As for the organizational
structure of the foundation, it is an independent entity and organized as a meritocracy.
Companies can take part via memberships that are only handed to volunteering
organizations that support Apache projects actively. Their focus is on the continuous
development in areas such as web servers, Big data, and, therefore, applications like

Hadoop, KAFKA, and spark, which are becoming increasingly important.

4.2.3 Eclipse Foundation

The Eclipse Foundation is a not-for-profit, independent organization to support open-
source software, frameworks and development environments. It holds more than 275
member organizations and has established a vendor-neutral, transparent, open, and
global community. It supported more than 350 open source projects in 2018 in a broad
range of technologies such as business intelligence, cloud computing, loT, and web
tool automation development. The initial project of the foundation was the Eclipse SDK
platform. The software is a development environment supporting a significant number

of different developer languages (EcWi18). SAP is one of the founding members and

4 Open Source Software at SAP 54

has been on board since 2004. Together the organizations are researching in a broad
range of projects, for example, jGit and EGit. In an upcoming section of this thesis,

there will be a review of those Git software projects produced by SAP and partners.

4.2.4 OpenStack Foundation

OpenStack is an open platform for cloud computing technologies; it provides an
Infrastructure-as-a-service (laaS). It primarily focuses on virtual runtime software
support. The project was initially founded jointly by NASA and Rackspace in 2010. Two
years later, in 2012, the project was opened to the public and accessible to business
partners. Since then, the project serves more than 60,000 individual members globally
in more than 180 countries. In 2016 OpenStack established a new organizational
structure and had been governed by the OpenStack Foundation ever since. The
foundation is vital for SAP in business application relevant areas such as networking,

storage management, and identification (OpWi18).

4.2.5 Cloud Foundry Foundation
The Cloud Foundry Foundation is an independent and not-for-profit organization that

governs a range of open source cloud-related software applications.

Initially, the Cloud Foundry Foundation was developed by Chris Richardson in 2008,
which was acquired by SpringSource the following year in 2009 (CFWi18). However,
SpringSource was sold shortly after the acquisition of VMware. Nonetheless, the
original open-source software application, Cloud Foundry, was further developed and
produced despite those events. The software allows to host applications on multiple
cloud providers and was officially released to the public in 2011 (CIWI18). VMware
initiated a spin-off together with General Electric to establish the company Pivotal to
monetize the product (WiVM18). In 2015 VMware decided to release the Cloud
Foundry project as a collaborative project and granted all rights to the Linux
Foundation. Due to the neutral character of the foundation, the project was able to
develop further with no restrictions based on company rules or be converted into

closed source software for profit.

4 Open Source Software at SAP 55

The foundation gathered vast interest around software companies, and SAP became
a member in 2017 and opened a Cloud Foundry Dojo in Walldorf, Germany, where

several employees from both organizations work jointly on cloud software (CISA18).

4.2.6 jGit

The Git application supports the management and tracking of changes submitted to a
software project. It is an essential tool for open source communities and was initially
developed by Linus Torvalds in 2005. Different versions of Git became part of

development tools such as the Eclipse IDE (GiWi218).

jGit supports working in a Java environment with communications between Eclipse
and a Git SCM. It can pull and push requests from code repositories and work with
several branches of the project and commit them back to the project. Therefore, it
handles a part of the organizational work around a software project. jGit itself is
composed in Java and makes it suitable for developers to update their Git repositories

without the need to use another external compiler library (EcjG17).

In 2008, Shawn Pearce and four other SAP members joined the Eclipse eGit/jGit
project alongside engineers from other companies. Two years later, in 2010, Eclipse
started to use jGit within their IDE.

4.2.7 Cloud Foundry

Cloud Foundry is a platform as a Service (PaaS) and is openly governed by the Cloud
Foundry Foundation and its partner members. The platform provides a multi-cloud
application, which allows running a wide variety of software languages, browser-based

with the integration of several instances and programs (CfWi18).

In 2018 SAP had 68 developers working together with Cloud Foundry on both the core
and extensions to develop new projects, contribute actively to existing software, and
enabling the further integration of open source software around SAP. Most of the
developers contribute full time to those projects, and besides contributing code also

pull requests are reviewed (SaCl18).

4 Open Source Software at SAP 56

4.2.8 Kubernetes

Kubernetes help to reduce the complexity with containerized frameworks and works
alongside the SAP Cloud Platform to manage several cloud applications. It is an Open
Source project which was initially founded by Google Inc. in 2014 (KubW18). It was
created to manage a large scale of applications across different servers, to handle a
scalable amount of data without compromising a running system. In 2015, Google
teamed up with the Linux Fountain to create an independent organization: The Cloud
Native Computing Foundation - CNCF. The foundation oversees the open APl initiative
and helps to formalize the project development and to make contributions from external
individuals and companies possible (KuTe16). SAP became a member of the CNCF
in this early stage and therefore strengthened itself to establish a Cloud-as-a-Service

model besides its Platform-as-a-Service offers.

Since then, to project has reached considerable interest across the cloud industry, and
in 201, it was one of the top 10 projects on GitHub and one of the highest contributors
to the Linux Foundation (KuCo17).

5 Conclusion 57

5 Conclusion

To conclude this thesis, few reasons can be isolated to answer the initial question of
why a proprietary software company engages with open-source software. It needs to
be acknowledged that not all contributing factors of a company deciding whether to
engage with the open-source software ecosystem or not, can be considered. Instead,
due to the observations on the matter, some different aspects of why an engagement
might be beneficial are pointed out here. In this thesis, the focus was set on the
proprietary software provider SAP SE to generate a profound understanding of
possible motivating factors of a single case. Therefrom follows concluding aspects that

contributed to their structural shift to increase open source activities.

One of the initial engagements with open source software was the porting of the SAP
R/3 product to Linux in 1998. Due to the early success of providing software to the
open-source market, the company started to explore other areas where Linux could be

adopted and might lead to a sales increase.

Open and different forms of co-innovation represent the most compelling argument for
engaging with open source for Peter Giese, director of SAP’s Open Source Program
Office (SaLi19). This form of collaboration can lead to a set of positive benefits for a

company.

Prahalad and Hamel pointed out (1990) that the concentration of a company on its
core competencies increases its chances of succeeding in markets (CCWi90).
Furthermore, it increases innovation capabilities in certain niche technology areas. The
collaborative combination of knowledge and core competencies can help a group of
companies with research and development projects. Due to the collaborative effort of
companies and open communities, the chance to set a new standard increase with the
size and number of the participating members. If a critical adoption of new technologies
and formats is reached, it can establish new standards comparable to the precipices
introduced by Utterback and Abernathy of the Dominant Design (DDWi19).

Another aspect that is suiting to proprietary software providers is to be close to so-

called innovation hubs. In taking part in an open developer community that is working

5 Conclusion 58

on the development of new standards such as OpenAPI, a company can influence and

adapt important technology as early as possible.

Besides the increase of innovation capabilities and eliminating the risk of unforeseen
disruptive technologies, another decisive factor is the access to talent pools.
Companies are in constant competition for new potential hires in key technologies. It
is seen as one of the mission-critical tasks of a company to attract and hire the best
talents in an industry in order to stay relevant to the market. Open source communities
have proven themselves as an excellent reference for human resources. Besides
having a collective understanding of a specific topic, members of open communities
are more likely to be higher intrinsically motivated. That can have a two-sided effect:
besides having access to a talented community, it also reduces the costs of acquiring

new employees.

Gray and Balmer pointed out in their studies the importance of a managed corporate
image and reputation to be observed by customers as an innovative organization. By
actively engaging with open source communities, a positive reputation can be
maintained and increased as a technological advocate company. However, when
consuming open-source software, companies stated that moral obligations to invest

back to the open-source ecosystem is part of using open source (OSTJ03).

Since 1998, when SAP made its products for Linux available, the company has
engaged with the open-source ecosystem. However, the company is instead
recognized as a traditional proprietary software company. That is likely due to two
reasons: first, the majority of products of the ERP company are only able to be obtained
as closed source software. The company can be regarded as successful with this
strategy in an economic aspect. The second reason for the lack of awareness for SAP’s
open-source engagements is that insufficient marketing campaigns were released to
promote their free products. This is also due to the different characteristics of how open

source products are distributed in comparison to proprietary products.

Nonetheless, SAP decided to advert its engagement more and to streamline its
engagements. Because of this, the company introduced a new department, the open-
source program office (OSPO). The department consists of globally located members

from different entities and is a centralized place for all topics surrounding open-source

5 Conclusion 59

software. It seems to be of increased importance for technologies like cloud computing
and artificial intelligence, which are predominantly developed by open communities. It
is likely that this trend contributed to the shift of the industry towards open source

technologies.

Finally, one can conclude that former strictly proprietary software providers are
increasingly engaging with open source technologies to increase their competitive
advantage (CAWi87). This is also due to the increased importance of open
technologies as described above and to the ubiquitous integrated character of those
emerging technologies, which will eventually bypass the current trend based on the

technology life cycle (LifC09).

It is to point out that an engagement with the open-source ecosystem is often
observable on a broad-spectrum, including consuming, owning, and contributing to
open projects. Although there is already a long history of such engagements, they
have, so far, not been promoted publicly in the same manner as we can observe it in
the recent decade of 2010.

6 Glossary

6 Glossary

Al Artificial Intelligence

ASF Apache Software Foundation

AWS Amazon Web Service

B2B Business to Business

B2C Business to Consumer

BASIC Beginner's All-purpose Symbolic Instruction Code
COBOL Common Business-Oriented Language Customer
CRM Relationship Management

ERP Enterprise Resource Planning

FOSS Free and Open Source Software

FSM Free Software Movement

GCP Google Cloud Platform

GNU GNU is not UNIX

HCP High-Performance Computing

HRM Human Resource Management

laaS Infrastructure-as-a-Service

IDE Integrated Development Environment
LOB Line of Business

ML Machine Learning

osl Open Source Initiative

Paa$S Platform-as-a-Service

SAP Plasmid-Based

SCM Supply Chain Management

SME Small and mid-sized companies

SaaS Software-as-a-Service

7 References 61

7 References

AbOp16. (2016). OpenAPls - About. Retrieved 12 09, 2018, from
https://www.openapis.org/about

AbOp18. (2018, 2019 05). Abas-erp.com - closed-source-open-source-erp. Retrieved from
https://abas-erp.com/en/news/closed-source-open-source-erp: 28

AbSa18. (2017). blogs.sap.com - Overview of ABAP in SAP Cloud Platform. Retrieved 11
26, 2018, from https://blogs.sap.com/2017/09/26/overview-of-abap-in-sap-cloud-
platform/

AbWi18. (2018). en.wikipedia.org - ABAP. Retrieved 11 25, 2018, from
https://en.wikipedia.org/w/index.php?title=ABAP&oldid=867639666

AdER15. (2015). ERP SoftwareBlog - The Advantages and Disadvantages of Cloud and On-
Premise ERP Systems. Retrieved 04 22, 2019, from
https://www.erpsoftwareblog.com/2015/12/the-advantages-and-disadvantages-of-
cloud-and-on-premise-erp-systems/

AfWi18. (2018). Wikipedia - Affero. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Affero_General_Public_License&oldid=845
529400

AiGo18. (2015). ai.googleblog.com - TensorFlow - Google’s latest machine learning system,
open sourced for everyone. Retrieved 12 30, 2018, from
https://ai.googleblog.com/2015/11/

AmWi16. (2016). Wired.com - Amazon's Giving away the Al Behind its Product
Recommendations. Retrieved 12 16, 2018, from
https://www.wired.com/2016/05/amazons-giving-away-ai-behind-product-
recommendations/

AnWi18. (2018). Android - Wikipedia. Retrieved 11 15, 2018, from
https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=868047
026

ApCI18. (2018). Cloudplatform.sap.com - SAP Cloud Platform APl Management. Retrieved
05 12, 2019, from https://cloudplatform.sap.com/capabilities/product-info.SAP-Cloud-
Platform-APIl-Management.e39ffff0-6b34-4611-9989-20da901caa47.html

ApcW18. (2018, 08 12). Wikipedia - Apache License. Retrieved 12 10, 2018, from
https://en.wikipedia.org/w/index.php?title=Apache_License&oldid=873376586

ApRIiQ7. (2007). Richart Stallman - The Problems with older versions of the Apple Public
Source License (APSL) . Retrieved 01 16, 2019, from
https://www.gnu.org/philosophy/historical-apsl.en.html

ApSp18. (2018). SAP - API. Retrieved 05 12, 2019, from https://api.sap.com

ApTo17. (2017). Appsruntheworld.com - ERP Software. Retrieved 04 24, 2019, from
https://www.appsruntheworld.com/top-10-erp-software-vendors-and-market-forecast/

7 References 62

ApWi18. (2018). Wikipedia - Apache Software Foundation. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=The_Apache_Software_Foundation&oldid=
871213657

AtBu16. (2016). businessinsider - This SAP president has a fabulous career because he
spent one sad and lonely holiday at work. Retrieved 11 23, 2018, from
https://www.businessinsider.de/from-lonley-holiday-to-sap-president-2016-
3?7r=US&IR=T

BSDW18. (2018). Wikipedia -BSD Licenses. Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?title=BSD licenses&oldid=873127188

BuBu18. (2018, 10 12). Build.me - Introduction. Retrieved 12 16, 2018, from
https://www.build.me/blog

BuGi14. (2014). Github - BUILD-Overview. Retrieved 12 14, 2018, from
https://github.com/SAP/BUILD/wiki/BUILD-Overview

CAWI87. (2019). Wikipedia.org - Competitive Advantage. Retrieved 05 29, 2019, from
https://en.wikipedia.org/w/index.php?title=Competitive_advantage&oldid=877552305

CCWi90. (2019). Wikipedia.org - Core Competency. Retrieved 05 26, 2019, from
https://en.wikipedia.org/w/index.php?title=Core_competency&oldid=891869621

CFWi18. (2018). Wikipedia - Cloud Foundry. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=866855488

CfWi18. (2018). Wikipedia.org - Cloud Foundry. Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=863673611

CIDo18. (2018, 10 12). Cloud Foundry - Dojo Engieering. Retrieved 05 05, 2019, from
https://www.cloudfoundry.org/engineering/

CloS17. (2017, 12 1). SAP - Cloud Platform . Retrieved 05 10, 2019, from
https://cloudplatform.sap.com/index.html

CloW18. (2018). Cloud Computing - Wikipedia. Retrieved 11 20, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=869660970

Clsa17. (2017, 10 2). Cloudplatform.sap.com - Cloud Foundry. Retrieved 11 23, 2018, from
https://cloudplatform.sap.com/enterprise-paas/cloudfoundry.html

CISA18. (2018). Cloudplatform.sap.com - SAP Cloud Platform Multi-Cloud and Cloud
Foundry. Retrieved 12 09, 2018, from https://cloudplatform.sap.com/enterprise-
paas/cloudfoundry.htmi

CIWi18. (2018). Cloud Foundry Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=866855488

CIWI18. (2018, 10 2). Wikipedia.org - Cloud Foundry. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=866855488

CoFr18. (2018). Wikipedia - Comparison of free and open-source software licenses.
Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?titte=Comparison_of free_and_open-
source_software_licenses&oldid=873409120

7 References 63

CoWi18. (2018). COBOL Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=COBOL&oldid=866770674

CoWi18. (2018). Wikipedia - Copyleft. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Copyleft&oldid=867678706

CPWi19. (2019). Wikipedia - SAP_Cloud_Platform. Retrieved 05 10, 2019, from
https://en.wikipedia.org/w/index.php?title=SAP_Cloud_Platform&oldid=887997567

DDWi19. (2019). Wikipedia.org - Dominant Design. Retrieved 05 25, 2019, from
https://en.wikipedia.org/w/index.php?titte=Dominant_design&oldid=868941106

DocCr18. (2018). www.crunchbase.com - Docker. Retrieved 11 26, 2018, from
https://www.crunchbase.com/organization/docker#section-overview

DocWi18. (2018). Wikipedia - Cloud Foundry. Retrieved 11 26, 2018, from
https://en.wikipedia.org/wiki/Cloud_Foundry

DoWi18. (2018). Wikipedia - Dot-com bubble. Retrieved 11 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Dot-com_bubble&oldid=867445707

EcjG17. (2017). Eclipse.org - jGit. Retrieved 05 24, 2019, from https://www.eclipse.org/jgit/

EcWi18. (2018). Eclipse Foundation Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Eclipse_Foundation&oldid=866377135

EcWi18. (2018). Wikipedia - Eclipse Foundation. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Eclipse_Foundation&oldid=866377135

EnWi18. (2018, 6 2). Wikipedia - ENIAC . Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=ENIAC&oldid=866436282

EnWi18. (2018). Wikipedia - Enterprise resource planning. Retrieved 02 10, 2019, from
https://en.wikipedia.org/w/index.php?title=Enterprise_resource_planning&oldid=8818
75356

ErRa07. (2007, 01 01). rarenewspapers - Open Innovation. Retrieved 07 26, 2018, from
http://www.rarenewspapers.com/view/606375?imagelist=1

FiSa17. (2017, 10 2). Sap.com - Best UI5 APP Ever. Retrieved 05 10, 2019, from
https://blogs.sap.com/2017/01/13/best-ui5-app-ever-.../

FitzT06. (2006). Fitzgerald, B. - The transformation of open source software. MIS Quarterly,
30(3), 587-598.

FoWi18. (2018). Fork Software Development Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Fork_(software_development)&oldid=8631
13214

FrRiO7. (2015). Richard Stallman - Why Open Source misses the point of Free Software.
Retrieved 01 17, 2019, from https://www.gnu.org/philosophy/open-source-misses-the-
point.en.html

Frwa18. (2018). Wikipedia - Freeware. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Freeware&oldid=870022180

7 References 64

Frwi18. (2018, 08 26). Wikipedia - Free Software Initiative. Retrieved 09 20, 2018, from
https://en.wikipedia.org/w/index.php?title=Alternative_terms_for free software&oldid
=820618860

GiCI19. (2019). Github.com - cla-assistant. Retrieved 05 08, 2019, from
https://github.com/cla-assistant/cla-assistant

GiWi18. (2018, 08 21). Wikipedia - Git. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Git&oldid=864178382

GiWi218. (2018, 12 1). Wikipedia - Structure of Git Systems. Retrieved 05 23, 2019, from
https://en.wikipedia.org/w/index.php?title=Git&oldid=896664456

GnFr96. (1996). GNU.org - The Free Software Definition. Retrieved 12 11, 2018, from
http://www.gnu.org/philosophy/free-sw.en.html

GnWi18. (2018). Wikipedia - GNU General Public License. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?titte=GNU_General_Public_License&oldid=8731
25522

HalH98. (1998). Carl Shapiro, Hal Varian - Information Rules: A Strategic Guide to the
Network Economy. US: Harvard Business School Press.

HaWi18. (2018). Wikipedia - Halloween documents. Retrieved 01 17, 2019, from
https://en.wikipedia.org/w/index.php?title=Halloween_documents&oldid=861165138

HipMI05. (2005). Democratizing innovation. Cambridge. Massachusetts: MIT Press - von
Hippel, E.

HyLi17. (2017). www.linuxfoundation.org - Hyperledger Welcomes SAP as Premier Member.
Retrieved 11 23, 2018, from https://www.linuxfoundation.org/press-
release/2017/03/hyperledger-welcomes-sap-as-premier-member/

HyWi18. (2018). Wikipedia - Hyperleger. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Hyperledger&oldid=872076238

InfM90. (1990). Information Technology Implementation Research: A Technological Diffusion
Approach - R. B. Cooper, R. W. Zmud (36/2 ed.). Management of Science.

Isols18. (2016). www.iso.org - develop and publish International Standards. Retrieved 11 26,
2018, from https://www.iso.org/standards.html

JoBa18. (2018). SAP Blog Open Source Monday Baker, Jonathan. Retrieved 11 03, 2018,
from https://blogs.sap.com/2018/03/19/open-source-monday-is-the-license-important/

JoOp10. (2010). Hedman, Jonas - EVOLUTION OF BUSINESS MODELS: A CASE STUDY
OF SAP. Retrieved 11 11, 2018, from
http://openarchive.cbs.dk/bitstream/handle/10398/8725/Jonas_Hedman_2.pdf?seque
nce=1

JosT13. (2013). Some Simple Economics of Open Source - Josh Lerner, Jean Tirole (02
ed.). The Journal of Industrial Economics.

KubW18. (2018). Wikipedia.org - Kubernetes. Retrieved 10 31, 2018, from
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=866646107

7 References 65

KuCo17. (2017, 09 29). Containerjournal.com - Kubernetes. (containerjournal) Retrieved 11
03, 2018, from https://containerjournal.com/2017/09/29/sap-commits-kubernetes-
container-orchestrator/

KuTe16. (2016). Techcrunch.com - Kubernetes. Retrieved 10 31, 2018, from
https://techcrunch.com/2015/07/21/as-kubernetes-hits-1-0-google-donates-
technology-to-newly-formed-cloud-native-computing-foundation-with-ibm-intel-twitter-
and-others/

KuWi18. (2018). Wikipedia - Kubernetes. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=872771944

LifC09. (2009). Wikipedia.org - Technology life_cycle. Retrieved 06 01, 2019, from
https://en.wikipedia.org/w/index.php?title=Technology_life_cycle&oldid=898111673

LiGn10. (2012, 09 25). Stallman, Richard- gnu.org - Linux and GNU. Retrieved 10 15, 2018,
from https://www.gnu.org/gnu/linux-and-gnu.en.html

LinW18. (2018). Wikipedia.org - Linux. Retrieved 11 15, 2018, from
https://en.wikipedia.org/w/index.php?title=Linux&oldid=868885407

LiSa19. (2019). The Linux Foundation - SAP: One of Open Source’s Best Kept Secrets.
Retrieved 05 04, 2019, from https://www.linuxfoundation.org/blog/2019/01/sap-one-
of-open-sources-best-kept-secrets/

LiSt18. (2018). Linux Market Share - gs.statcounter.com. Retrieved 11 15, 2018, from
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201702-
201802

LiWi18. (2018). Wikipeadia - Linus's Law. Retrieved 04 28, 2019, from
https://en.wikipedia.org/w/index.php?title=Linus%27s_Law&oldid=875114029

MoOp18. (2018). Wikipedia - Mobile operating system. Retrieved 04 13, 2019, from
https://en.wikipedia.org/w/index.php?title=Mobile _operating_system&oldid=89160978
9

MPLW18. (2018). Wikipedia - Mozilla Public License. Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?title=Mozilla_Public_License&oldid=866467919

OpAi18. (2018). Wikipedia - OpenAi. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=0OpenAl&oldid=872793154

Open07. (2007, 03 22). opensource.org. Retrieved 11 03, 2018, from Open Source Initiative:
https://opensource.org/docs/definition.php

OpeWi18. (2018). en.wikipedia.org - OpenAPI. Retrieved 11 26, 2018, from
https://en.wikipedia.org/w/index.php?title=0OpenAPI_Specification&oldid=867550802

OpSa18. (2018, 12 2). Blogs.sap.com - Open Source Monday Chevrotain. Retrieved 05 10,
2019, from https://blogs.sap.com/2018/02/04/open-source-monday-chevrotain/

OpSt99. (1999). Stallman, Richard- Open Sources: Voices from the Open Source
Revolution. O'Reilly & Associates, Inc. Retrieved from
https://www.gnu.org/gnu/thegnuproject.en.html

OpTh10. (2010). Therigister.co.uk - Nasa Rackspace Openstack. Retrieved 12 13, 2018,
from https://www.theregister.co.uk/2010/07/19/nasa_rackspace_openstack/?page=2

7 References 66

OpTh16. (2016). opensource.google.com - Thirdparty Licenses. Retrieved 12 11, 2018, from
https://opensource.google.com/docs/thirdparty/licenses/

OpWi18. (2018). Wikipedia OpenStack. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=OpenStack&oldid=870677124

OrWi18. (2018). Oracle Corporation - Wikipedia. Retrieved 11 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Oracle_Corporation&oldid=868216249

OsiO18. (2018). opensource.org - The Open Source Definition Version 1.9. Retrieved 11 26,
2018, from https://opensource.org/osr-rationale

OSOp16. (2016). opensource.com - Robin Muilwijk - Top 5 open source web servers.
Retrieved 01 16, 2019, from https://opensource.com/business/16/8/top-5-open-
source-web-servers

OSTJ03. (2003). The Journal of Systems and Software - Open source software: an
evaluation. Alfonso Fuggetta, 66, 70-90.

PaGo18. (2018). cloud.google.com - Available first on Google Cloud: Intel Optane DC
Persistent Memory. Retrieved 11 23, 2018, from
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-
optane-dc-persistent-memory

Pa0S04. (2004). Paul Kavanagh- Where Open Source Is Successful. In Open Source
Software Implementation and Management (pp. Pages 19-40). Digital Press.

PhGn85. (85). gnu.org - Philosophy. Retrieved 12 5, 2018, from
http://www.gnu.org/philosophy/free-sw.en.html

R3Wi18. (2018). Wikipedia - SAP R/3. Retrieved 02 10, 2019, from
https://en.wikipedia.org/w/index.php?title=SAP_R/3&oldid=861427978

ReWi18. (2018, 12 2). Wikipedia - Representational State Transfer. Retrieved 12 09, 2018,
from
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=872
203836

Riln17. (2017). Rightsdirect.com. Retrieved 11 03, 2018, from
https://www.rightsdirect.com/international-copyright-basics/

SaCl18. (2018). Sap.com - SAP Cloud Platform. Retrieved 12 18, 2018, from
https://news.sap.com/2017/10/sap-cloud-platform-and-open-source-all-in/

SaCl19. (2014). SAP - CLA-assistant. Retrieved 05 08, 2019, from https://cla-assistant.io

SaCN17. (2017). Cncf.io - Cloud Native Computing Foundation Welcomes SAP As Platinum
Member. Retrieved 12 09, 2018, from
https://www.cncf.io/announcement/2017/10/11/cloud-native-computing-foundation-
welcomes-sap-platinum-member/

SaCo18. (2018). cloudplatform.sap.com. Retrieved 11 23, 2018, from
https://cloudplatform.sap.com/cloudfoundry/cf-contributions.html

SaHi18. (2018). www.sap.com - SAP: A 46-year history of success. Retrieved 11 23, 2018,
from https://www.sap.com/corporate/en/company/history.2001-2010.htmI#2001-2010

7 References 67

SaLi17. (2017). www.linuxfoundation.org - In Joining Cloud Native Computing Foundation,
SAP Steps Up Its Open Source Commitment. Retrieved 11 23, 2018, from
https://www.linuxfoundation.org/blog/2017/09/joining-cloud-native-computing-
foundation-sap-steps-open-source-commitment/

SaLi19. (2019). Linuxfoundation.org - SAP: One of Open Source’s Best Kept Secrets.
Retrieved 05 26, 2019, from https://www.linuxfoundation.org/blog/2019/01/sap-one-
of-open-sources-best-kept-secrets/

SAWi18. (2018). SAP ERP - Wikipedia. Retrieved 11 11, 2018, from
https://en.wikipedia.org/w/index.php?title=SAP_ERP&oldid=867817710

SaWi18. (2018). Wikipedia - SAP SE. Retrieved 12 15, 2018, from
https://en.wikipedia.org/w/index.php?title=SAP_SE&oldid=872245407

ScWi18. (2018, 10 30). Wikipedia - Scratch. Retrieved 12 10, 2018, from
https://en.wikipedia.org/w/index.php?title=Scratch_(programming_language)&oldid=8
66532637

ShWi18. (2018, 08 28). Wikipedia - Shareware. Retrieved 09 10, 2018, from Wikipedia:
https://en.wikipedia.org/w/index.php?title=Shareware&oldid=846878603

SnWi18. (2018, 09 28). Wikipedia - Snap! (programming language). Retrieved 12 10, 2018,
from Wikipedia:
https://en.wikipedia.org/w/index.php?title=Snap! (programming_language)&oldid=86
1562040

SoWi18. (2018). Wikipedia - Public-Domain Software. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Public-domain_software&oldid=869332992

SuTh18. (2018). Ahmed Ibrahim, Craig Vallilan McAteer, Junaid Chaudhry. The Journal of -
A security review of local government using NIST CSF, 74(10), pp 5171-5186.

SuWi18. (2018). Wikipedia - SUN Microsystems. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=Sun_Microsystems&oldid=873668765

TeGo17. (2017). Kunal Parikh - why Google open-sourced TensorFlow. Retrieved 11 21,
2018, from https://hub.packtpub.com/google-opensorced-tensorflow/

TeHu18. (2018). TensorFlow Packhub. Retrieved 11 15, 2018, from
https://hub.packtpub.com/google-opensorced-tensorflow/

TesW18. (2018). Tesla Inc, - Wikipedia. Retrieved 11 15, 2018, from
https://en.wikipedia.org/w/index.php?title=Tesla, Inc.&oldid=868708607

TeWi18. (2018). Wikipedia - TensorFlow. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=TensorFlow&oldid=871761161

UiGi14. (2014). GitHub - SAP OpenUI5. Retrieved 05 10, 2019, from
https://github.com/SAP/openui5

UnSc15. (2015, 10 9). ScienceDirect - Understanding Enterprise Open Source Software
Evolution. Retrieved 04 24, 2019, from https://pdf.sciencedirectassets.com/280203/1-
s2.0-S1877050915X00251/1-s2.0-S1877050915027441/main.pdf?x-amz-security-
token=AgoJb3JpZ2IuX2VEPr%2F %2F %2F %2F %2F %2F %2F %2F %2F %2FwWEaCXV

7 References 68

zLWVhc3QtMSJIMEYCIQC8HtrYdigl4SbPVxG5C0D51Ar%2BMIo8qvEH%2FS37YO
Y1gQIhAPOYBYBZ

UnWi18. (2018). UNIX Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Unix&oldid=864040442

UpsSa18. (2018). news.sap.com - New SAP Upscale Commerce Solution Extends Customer
Experience Ecosystem with Open Integration Tools. Retrieved 11 23, 2018, from
https://news.sap.com/2018/10/sap-upscale-commerce-extends-customer-experience-
ecosystem-open-integration-tools/

VaWi18. (2018). Wikipedia - Value Network. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=Value _network&oldid=865014546

VenWi18. (2018). en.wikipedia.org - Vendor Lock-in. Retrieved 11 23, 2018, from
https://en.wikipedia.org/w/index.php?title=Vendor_lock-in&oldid=870220812

Waln08. (2008). InfoWorld.com - What Cloud Computing Really Means - Eric Knorr, Galen
Gruman. http.//skysolutions.co.zw/docs/What_Cloud_Computing _Really Means.pdf,
14(13), 3.

WhIM12. (2012). Why do commercial companies contribute to open source software?
International Journal of Information Management, 32, 106-117.

WhOp16. (2016). What is the cloud - opensource.com. Retrieved 11 23, 2018, from
https://opensource.com/resources/cloud

WIiAN06. (2006). Anthony D. Williams - Wikinomics: How Mass Collaboration Changes
Everything. US: Tantor Media.

WinWi18. (2018). en.wikipedia.org - Winner-take-all market. Retrieved 11 23, 2018, from
https://en.wikipedia.org/w/index.php?title=Winner-take-all_market&oldid=859399550

WiVM18. (2018). Wikipedia - VMware. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=VMware&oldid=872748453

WMU18. (https://www.unido.org/sites/default/files/files/2018-
06/World_manufacturing_production_2018_q1.pdf). World Manufacturing Production.
United Nations Industrial Development Organization.

