

WIRTSCHAFTSUNIVERSITÄT WIEN
Vienna University of Economics and Business

Bachelor Thesis

Titel of Bachelor Thesis (english) The Motivation of Proprietary Software Companies to Engage with
Open-Source Software Ecosystems

Titel of Bachelor Thesis (german) Die Motivation proprietäre Software Unternehmen, sich mit Open
Source Software-Ökosystemen auseinanderzusetzen

Author
(last name, first name):

Gerger Konrad

Student ID number:
1027118

Degree program:
Bachelor of Business and Economics, BSc (WU)

Examiner
(degree, first name, last name):

 ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

I hereby declare that:

1. I have written this Bachelor thesis myself, independently and without the aid of unfair or unauthor-ized
resources. Whenever content has been taken directly or indirectly from other sources, this has been
indicated and the source referenced.

2. This Bachelor Thesis has not been previously presented as an examination paper in this or any other

form in Austria or abroad.

3. This Bachelor Thesis is identical with the thesis assessed by the examiner.

4. (only applicable if the thesis was written by more than one author): this Bachelor thesis was
written together with

The individual contributions of each writer as well as the co-written passages have been
indicated.

 15.11.2019

 Date

Signature

WIRTSCHAFTSUNIVERSITÄT WIEN
Vienna University of Economics and Business

The Motivation of Proprietary Software
Companies to Engage with Open Source

Software Ecosystems.

Institution
Vienna University of Economics and Business
Institute for Management Information Systems

Supervisor
ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

Author
Konrad Gerger

H1027118
2019-09-19

1 Introduction

I

Table of Contents
1 Introduction ___ 3

1.1.1 Free and Open Source Software ___ 4
1.1.2 Proprietary and FOSS Software __ 4
1.1.3 Shareware, Freeware and Public Domain Software ____________________________________ 5
1.1.4 Intellectual Property, Foundations and Licenses ______________________________________ 6
1.1.5 Relevant Open Source Terms ___ 8

1.2.1 Early Binary Era (1950) ___ 10
1.2.2 SAP, Microsoft and BASIC (1970) ___ 11
1.2.3 Free Software Movement and UNIX (1980) ___ 12
1.2.4 GNU/Linux (1990) ___ 14
1.2.5 Post Dot-Com Crisis (2000) __ 17
1.2.6 The Rise of the Start-Up Era (2010) __ 19

2 Products and Strategies of OSS Projects ___________________________________ 21

2.1.1 Mobile Devices ___ 21
2.1.2 Infrastructure and Supercomputer __ 21
2.1.3 Desktop Operating Systems ___ 22

2.3.1 Enterprise Resource Planning Software __ 26
2.3.2 Shifting from On-Premise to Cloud __ 27
2.3.3 ERP Market __ 28

2.4.1 Dipping Market ___ 29
2.4.2 Pull- and Push-Markets ___ 30
2.4.3 Collaboration ___ 30

3 Open Source at Proprietary Companies ____________________________________ 31

3.1.1 Innovation Capabilities ___ 32
3.1.2 Increasing Sales ___ 33
3.1.3 Reducing Costs ___ 34

1 Introduction

II

3.1.4 Case Study SAP ___ 35

3.2.1 Licenses Incompatibility __ 36
3.2.2 Malicious Code Contribution ___ 36
3.2.3 Security of Retired and Unpatched Libraries __ 37
3.2.4 System Stability ___ 37
3.2.5 Monetary Risks ___ 37
3.2.6 Legal Risks ___ 37

3.3.1 Consuming Open Source __ 38
3.3.2 Contributing to Open Source __ 39
3.3.3 Owning Open Source Software ___ 40

4 Open Source Software at SAP __ 42

4.1.1 Contributor License Agreement Tool __ 44
4.1.2 SAP Cloud Platform __ 45
4.1.3 Openui5 and SAPUI5 ___ 46
4.1.4 Chevrotain ___ 48
4.1.5 SNAP! ___ 48
4.1.6 BUILD ___ 49

4.2.1 Linux Foundation __ 50
4.2.2 Apache Software Foundation __ 53
4.2.3 Eclipse Foundation __ 53
4.2.4 OpenStack Foundation ___ 54
4.2.5 Cloud Foundry Foundation __ 54
4.2.6 jGit ___ 55
4.2.7 Cloud Foundry __ 55
4.2.8 Kubernetes __ 56

5 Conclusion ___ 57

6 Glossary ___ 60

7 References ___ 61

1 Introduction

Page 3

1 Introduction
While there have been several studies connecting the behavior and the motivation of

adopting open source software (InfM90), there is hardly any literature about the

motivation of former proprietary software companies starting to engage with the open-

source ecosystem. Although a collaborative way with open source comminutes was

already seen as a vital source of new input, recent events have shown that open source

software has gained importance around the proprietary software industry. This thesis

considers different factors such as society, technology, and industry to understand the

context of changes and which circumstances are influencing an adoption decision.

Further research studies have primary discussed the motivation of software developers

to contribute to the open source ecosystem (JosT13), whereas this study will focus on

organizations as a collective group of individuals.

This bachelor thesis aims to analyze the motivation of former strictly proprietary

software companies, such as SAP, to engage with open-source software. There will

be a detailed view of the reasons behind such adaptations, and it will evaluate those

transitions from a variety of aspects, as described above such as social, industrial and

technological developments and their influences. Those aspects need to be further

inspected from two dimensions: vertical and horizontal. Therefore, across different

industries and eras of technological evolvements on a time axis. However, to limit the

scope of the thesis, it will be focused on a narrow area of business-relevant software

products and providers of ERP systems and its enabling technologies. Especially

Cloud Computing and peripheries like APIs, Dockers and licensing system, which can

be considered as enabling technologies.

This thesis should be supportive in achieving a better understanding of proprietary

software companies and their motivation for such strategic decisions. Moreover, it

should clarify which shifts and influences led to pro open source strategies.

The opening chapters will be dedicated to the definition and history of the broad area

of open source software to give a solid foundation for further explanations. As well as,

an overview of essential synonyms and developments.

1 Introduction

4

 Definition
In this chapter, there will be some definitions of relevant license types for this thesis,

including the classification of free and open-source software and the distinction

between them and proprietary software. This section will be followed by an overview

of significant events of the software industry and technologically evolutions.

1.1.1 Free and Open Source Software
Open source software is a licensed software with permanent permission to study,

modify, and distribute to anyone and any purpose (Open07).

The differences between free software and open source software (FOSS) is less

noticeable than the difference between FOSS to proprietary software. Free software

was the initial countermovement to proprietary software. In 1989, an alternative term

was sought, since “free” was often mistaken for “free of charge” which was seen to

harm the business side of the industry. Besides, the term “Free Software Movement”

was perceived among the developer community and the software marked as

moralizing and confrontational (FrWi18).

1.1.2 Proprietary and FOSS Software
Proprietary software differentiates from FOSS in many aspects. As the name already

indicates, the source code is accessible by everyone, as opposed to proprietary

software where the source code is restricted. With the purchase of a proprietary

license, the buyer only buys specific and limited rights to use the product, making the

user dependent on the issuing company. That may be problematic in several

situations, such as if an error occurs and the problem is not solved, or the selling

company goes out of business and stops the support of their software. Also, the

implementation of restricted software might be problematic if custom-made changes

are required, or further software components need to be connected.

There are also some distinct differences between proprietary and open software in

respect of the development process. The former is commonly build within a restricted

number of institutions and partners. The number of developers involved might be

relatively small compared to open- and community-developed projects. Furthermore,

proprietary software is mostly developed with a pre-defined goal to solve a given or

1 Introduction

5

predicted problem. Therefore, a proprietary developed software solution will be rather

programmed with specific functions for a specified targeted audience. The

requirements are often laid out by sales staff, trend and market analysts, and top

management to position the product to maximize profits. When creating such projects,

it is common to create a schedule and a budget plan, as well as a release plan with a

specific proprietary license, in order to create a commercially successful product.

By contrast, behind free and open software, there is often a whole community where

potential future users are usually exposed early to the features and functions of the

developed software. That process makes it possible to develop the software taking the

end user's needs into consideration and reduces the chance that the software misses

the target audience. The motivation behind open source projects evolves mainly out of

a specific need for a solution to a problem, rather than to gain profits. That focus and

empathy for a specific problem and the focused effort to overcome that with a

collaborative and community-based development approach is an advantage of open

software development. In order to guarantee the openness and independence of

software over an uncertain amount of time, non-profit trade organizations can be

established to govern such projects.

In chapter 4, there will be an overview of existing foundations and how they are placed

in the open source ecosystem and how proprietary software companies can

collaborate with such institutions.

1.1.3 Shareware, Freeware and Public Domain Software
It is important to distinguish open source software from shareware, freeware, or public

domain software. Shareware and freeware are a kind of proprietary software

distributed without a fee. However, those licenses commonly grant no access to the

source code of the software, and further, restricts the possibility to modify or

redistribute without the author's permission. While shareware is commonly distributed

free of charge, it has often an intent to monetize indirectly. This can be, for instance,

accomplished through a free personal usage, but with a pricing model for commercial

usage, or the software might have limitations that can be unlocked with an upgrade.

WinRAR is one example of shareware software (ShWi18).

1 Introduction

6

Freeware is defined as a product free of charge and without any other fees. However,

the software is categorized as proprietary software, due to the restricted access to its

source code. The software functions as a black box, thus the user has no insights

about underlying written code. One example of freeware is Skype or Adobe PDF

Reader (FrWa18).

Public domain is a creation with no specified ownership, trademark, or patent. It can

be modified, redistributed, and sold without a prior grant of permission. The author of

the creation must actively mark it for public usage (SoWi18).

Open-source software is commonly created within a community of developers.

Because of that approach, it has some advantages in comparison to proprietary

software. However, there are also cases where open access might bear

disadvantages, therefore, another way to create software might be more beneficial.

The following chapters will explain some of the relevant terms and concepts to get a

better understanding of some of the critical characteristics of open-source software.

1.1.4 Intellectual Property, Foundations and Licenses
A piece of software becomes open-source software once it is intentionally licensed

under an open-source license. This software might be distributed for free, and it gives

open access to its source code; all this happens with specific rules, which are defined

by its licenses. Since the Berne Convention in 1988, every creation gets by default

exclusive copyright, even without an explicit registration for such. Inherent copyright is

given to the initial author of the creation itself. Therefore, it regulates the intellectual

property, and it is enforced by civil law and by the World Intellectual Property

Organization, also known as WIPO (RiIn17).

On the other hand, open-source licenses are often issued and regulated by

foundations, which are organizations that oversee the usage rights and assure quality

standards. By reviewing software, they can ensure that standard criteria are met and

can grant an individual license. The role of foundations is much broader than just

granting licenses and there is a more detailed observation in the upcoming chapters.

1 Introduction

7

This section will contain a brief overview of the most used FOSS licenses in the

industry:

GNU General Public License – is a widely used FOSS license and was initially written

by Richard Stallman. There are currently three different versions of the licenses

released. The licenses are used by software applications and operating systems like

Linux or the GNU Compiler Collection (GnWi18). It is run by the Free Software

Foundation (FSF) and embodies the principles of copyleft, the four freedoms of the

free software movement.

Copyleft – is a form of copyright. However, it distinguishes itself by granting usage

rights rather than restricting the underlying creation. It was founded as a

countermovement to conventional copyright by R. Stallman (CoWi18).

Four Freedoms – is the fundamental concept of the free software movement, which

has the following four pillars (GnFr96):

Freedom 0: The freedom to run the software as wished.

Freedom 1: The freedom to study how a program works.

Freedom 2: The freedom to redistribute copies of software.

Freedom 3: The freedom to distribute copies of modified versions.

Affero General Public Licenses (AGPLv3) – is a strong copyleft license based on

GPLv2. The license is governed by Affero, Inc. (AfWi18). It is compatible with the

GPLv3 license; however, due to the strongly restricted usage, compatibility problems

might occur. Therefore, many open source projects like to avoid that license; for

example, Google prohibits the usage of this license in all their open-source projects

(OpTh16).

Apache Licenses (APL) – is a permissive and free license distributed by the Apache

Software Foundation (ApcW18). The foundation has released two versions of the

license since it was founded in 2000. The advantage of this license for many

businesses is that it is less restrictive compared, for example, to the GNU GPL.

However, it regulates all relevant areas for open source projects like the distribution,

1 Introduction

8

modification, and redistribution of the underlying software for any purpose. Due to

these advantages, it is the preferred open source license by companies like Google,

SAP, and Microsoft.

Mozilla Public License (MPL) – is an open and permissive license released in 2013

by the Mozilla Foundation. It allows the indirect combination of different GNU GPL

licenses and is therefore useful to integrate for larger open projects (MPLW18).

Berkeley Software Distribution (BSD licenses) – The BSD licenses is an open and

permissive license governed by Regents of the University of California. It is in the third

version and is less restrictive than other FOSS licenses such as the GNU GPL. BSD

licenses are commonly used and have become a synonym for licenses with minimum

restrictions (BSDW18).

Finally, several software companies started to release their open source licenses

(CoFr18). They can serve those companies to prevent specific legal issues, but they

can also impose barriers for developer communities to adopt or combine software with

those licenses. Some examples of licenses distributed from proprietary companies are:

• Apple Public Source Licenses

• IBM Public License

• Microsoft Public License

1.1.5 Relevant Open Source Terms
Open Source Organizations - several organizations have formed around open-

source software developments to govern the projects. For example, Eclipse, an

integrated development environment (IDE), was initially founded at IBM. In 2004, it

was established as a separate entity and eventually became an independent open-

source foundation (EcWi18).

Cloud Foundry was initially a department at VMWare; in 2011, it became an

independent foundation (ClWi18). It was beneficial for those companies to form an

external and independent foundation for several reasons. One primary advantage is

that the independent foundation is not bound to the usual corporate restrictions.

Therefore, contributions from external parties or institutions can be managed with

1 Introduction

9

substantially less bureaucracy. That enables the organizations to operate and make

decisions in less time. Thereby it is not necessary that only one company forms an

external organization. By establishing a neutral place, several companies can

contribute to a project. Another essential aspect of such independent organizations is

the neutrality of the project. Since developing a project together with another

company imposes the risk that one of the parties might restrict the access to the

project over time or acts in another destructive way, an external organization can

reduce the risk of losing an investment.

An example is a collaboration between RackSpace Hosting and NASA, which

created the OpenStack project (OpTh10). OpenStack is open-source software for the

virtualization of servers in cloud computing and is mainly integrated as an IaaS

solution. The jointly developed software also included risks for RackSpace, since

their competitors would get access to their work. However, since the project had the

potential to become a new standard for virtualizing machines and high adoption rates

were predicted, RackSpace decided to find other ways to generate income with the

software. It is crucial for such a platform to be widely adopted to deliver user value.

Also, the project needed to reach a certain number of users to set a de facto web

standard to become useful, and that was only possible if enough developers and

companies would adopt it. By licensing the project under an open source license, the

chances to reach the critical mass were increased. Eventually, the project was a

success, and soon after, several companies and developers started to contribute to

OpenStack.

Community - One critical differentiation between open source and proprietary

software is the community-based development aspect. Although open source, not per

se means community created, the majority of projects choose this collaborative way to

develop software. A widely used tool to manage contributions to the project is Git. Git

is a platform where developers can upload their creations, get feedback, and improve

the software further. Linus Torvalds founded Git in 2005 to manage a large number of

contributions to the Linux project (GiWi18). Besides managing contributions, it is also

a useful tool to review errors and other components and to get user feedback.

1 Introduction

10

Moreover, it makes it possible to test new extensions of a program in a separate and

safe environment while the main program continues to work. Therefore, developers

can test an alternative version and iterate it further before a stable and final version is

integrated into the whole project. This minimizes the downtime of a program and

improves the user experience.

A fork describes when the source code of an open source project is duplicated, and

the copy becomes an independent project (FoWi18). Due to the allowance that free

and open source licenses grants, that is, the right to modify and redistribute the source

code, an enormous number of variations can arise. That makes FOSS software very

versatile and adjustable so that the specific needs of customers can be addressed and

solved.

 Historical Evolution of Open Source
The Open Source Movement started almost as early as the computer era itself, to get

a better understanding of this emerging technology and its impact, there will be an

overview of historical events and its contributors.

The origins of the Free Software Movement reaches back to the 1950s, which

eventually led to the Open Source Movement in the late ’90s of the last century. In the

upcoming chapter, an overview will be provided of the previous technological

evolutions and how those shaped the way current technologies are used today.

1.2.1 Early Binary Era (1950)
The University of Pennsylvania developed one of the first fully electronic computers in

1945 (EnWi18). It was funded by the US Army in 1943 and was initially created to

calculate the trajectory of flying objects such as missiles and to study thermonuclear

weapons. The total cost of the project was 487,000 USD, which amounts to around

6,8 million USD in 2017 (ErRa07). Once the computer was running, the press referred

to it as the super-brain, and already suggested the use for academic and business

purposes.

A couple of years later, the first computer for commercial usage entered the market:

BINAC. Most of the early computers were established in academic areas, where it was

studied and developed further.

1 Introduction

11

Within this time, the first businesses started to profit from this new technology. One of

the most challenging aspects of early computers was the storing of information; this

problem was solved with large magnetic disks.

In 1959, IBM released the computer language COBOL, which stands for Common

Business-Oriented Language. It was used in operating business applications and for

solving mathematical problems (CoWi18). In the following years, IBM overtook this

young industry and established itself as the market leader by providing electronic

devices.

1.2.2 SAP, Microsoft and BASIC (1970)
When IBM decided to discontinue a project in the area of artificial intelligence for

enterprise program software, five engineers saw an opportunity to start their own

business in 1972. Eventually, in the same year, the group founded the company SAP,

which stands for Systems Analysis and Program-Development (SaWi18). The

engineers developed a fully digital system for payroll and accounting tasks, instead of

mechanical punch cards, the industry-standard at that time. The system was able to

process information in near real-time and introduced a substantial improvement to the

previous system.

Three years later, in 1975, Bill Gates entered a partnership with IBM, and Microsoft

was founded. The original software from Microsoft was an interpreter called BASIC for

the Altair 8800. Both the software and the computer were famous among hobbyists.

Despite the rising sales numbers of the Altair 8800 computer, Gates only sold a fraction

of his BASIC software compared to the hardware units sold. Eventually, he realized

that hobbyists had found a way to copy his software illegally and to avoid paying its

fee. This early software was stored on a paper roll with holes. Students just made

physical copies of the software without paying the fees. The software itself was sold

for 500, - USD or for 75, - USD if purchased together with the hardware from IBM. As

a reaction to the illegal software usage, Bill Gates wrote an open letter to the hobby

community and claimed that it was justified to charge fees for software. The community

did not accept his attempt to collect royalties. Consequently, further software releases

had no access to the source code and restricted the unauthorized usage of the

underlying software or any modification.

1 Introduction

12

Some of the computer hobbyists criticized those restrictions of the source code and

started a counter-movement, which will be described in the upcoming chapter.

1.2.3 Free Software Movement and UNIX (1980)
A couple of years earlier, AT&T’s Bell Research Laboratories was working on a new

operating system called UNIX. The underlying language was C, and through its high-

level characteristics, adaptations with other computer systems were possible. It would

later become the foundation of many other relevant operating systems like Mac OS X

and Linux (UnWi18). Because of an antitrust case, AT&T was not permitted to charge

any fees for its operating system, forcing the company to give a license free of charge

to any interested user.

Because of the free access to the software, it soon became well-known among

academic communities and businesses. Eventually, users started to report bugs, gave

feedback on how to solve occurring errors, and even to create new versions of the

software. In the early ’80s, AT&T launched an internet platform called “Usenet” to

support the communities around the operating system and to manage the contributions

to the software. However, AT&T was working on a workaround for the antitrust lawsuit

and decided to separate the UNIX division into smaller external companies, so-called

“Baby Bells.” Consequently, since the antitrust lawsuit did not apply to Bell’s

laboratory’s external units anymore, the software company was able to charge a

distribution fee for its operating system. Many consumers had already invested in the

hardware, which was running the UNIX operating system. Therefore, many users saw

themselves forced to pay a license fee or to bear the costs of switching to a new

operating system.

Richard Stallman, who, at that time, was researching on the UNIX kernel at MIT, saw

the changes as a threat to the developer community and created a countermovement.

In order to give computer owners an alternative to the suddenly imposed fees for the

UNIX operating system, he started to develop a free accessible software called GNU,

the GPL licenses, and a foundation to support the free software movement.

The former MIT researcher was also seen as one of the fundamental contributors to

the history of the Open-Source software industry. However, he did not count himself

as part of the Open-Source movement. Instead, he prefers to refer to himself as a part

1 Introduction

13

of the so-called Free Software Movement. Nonetheless, his work and contributions to

the FOSS community and even to the software industry, in general, had a significant

impact.

Richard Stallman was a former student at Harvard University, where he graduated

magna cum laude in physics. After his studies, he started to work at MIT in the

department for artificial intelligence and on several projects in that area. The university

was among the first to implement the Usenet system, which was an early form of

internet. Therefore, different academic institutions were able to collaborate in a new

way. Stallman was an early adopter of this technology and was working with other

academic groups on software projects. They began sharing test results, source codes,

solutions and started to debug software errors. Among those groups, the first hacker

community was formed. When the University introduced a new security system, which

required every employee to use passwords, Stallman pointed out that a simple

password can lead to a false sense of security and should not be trusted completely.

In an attempt to demonstrate the weakness of a simple password, he back engineered

a majority of his colleagues’ passwords and sent them an email with their password.

He asked all of them to use a simple “enter” comment instead of a password to show

the disinterest to the administration and the management of the company. Almost a

third of his colleagues followed his approach. The hacker community had different

approaches to show their opinions, and most of the time, it was pursuing a playful and

noble way of showing their advantage in programming skills. However, there were also

so-called black hat hackers, who were trying to harm their victims in contrast to white

hat hackers.

A few years later, MIT introduced new software systems for their offices and printers.

However, one of the printer software was encountering a simple software error. In an

attempt to solve the problem, Stallman noticed that the source code was restricted. As

a result, Stallman was concerned about those new business practices in the software

industry and soon started to explore possibilities to combat those changes. In his belief,

it was needed to preserve the way of sharing and exploring software that he

experienced in the academic environment. For him, open access to an underlying

program was an essential right. Many companies in the industry had a different opinion

on this topic at that time.

1 Introduction

14

He eventually started to create an operating system, which would be open and stay

open for everyone who wants to use it. The operating system should include all

necessary tools which were initially provided by the UNIX operating system. He started

to create a similar operating system to the original proprietary software in order to

reduce switching costs and to give customers a choice. The program he created was

called “GNU,” which was an acronym for “Gnu is Not Unix.” In 1984, he resigned from

his position at MIT, to make sure his free software has as little influence from external

institutes as possible. Since creating an operating system was an extensive project,

he implemented pieces of already existing free shared software units as much as

possible. One year later, large parts of GNU software were completed, and the first

interested persons began to ask for copies (OpSt99).

In 1985, when more members joined to work on the project, he founded the Free

Software Foundation (FSF). It was later registered as the official foundation and it was

overseeing the contributions to the projects and the business side of the program.

Stallman also launched in this year the FSF Manifesto. A document explaining the

importance and mechanics of the copyleft concept and the Free Software Movement

(PhGn85).

However, despite the effort on the operating system, a crucial part was still not

completed: the kernel, GNU Hurd (LiGn10). The kernel is the centerpiece of every

operating system and is responsible for managing the data flow between the hardware

and the software components; it is compiled in the binary system. Even today, the GNU

kernel project, which is known under the agronomy “Hurd” is not fully completed.

The next chapter explains how GNU was able to be completed without first finishing

the kernel.

1.2.4 GNU/Linux (1990)
At the beginning of 1990, a fundamental technology shift took place. While the internet

had already been around for more than two decades, it was only in use on university

campuses, government departments, and some businesses. However, with the

introduction of internet browsers and in-line images, the internet gained popularity with

individual users. In 1991, Linus Torvalds made his early version for a computer kernel

public. Shortly after, Richard Stallman, who still had difficulty finishing the GNU Hurd

1 Introduction

15

kernel, started to collaborate with Torvalds to combine both projects. The outcome was

a success, and the first GNU/Linux release was launched. Since it was licensed under

a GPL with the open copyleft license, soon, different kinds of forks and

implementations started.

One year later, in 1992, SAP released a new version of their proprietary business

software, called R/3. The software marked a cornerstone in the history of the company

and a shift in technology and their business model (SaWi18).

The industry was shifting from mainframe computing to a client/server-based

approach. As they scaled their businesses, SAP noted that many companies across

different industries had a demand for similar software integrations. With R/3, a package

of different software components was formed and covered areas such as Customer

Relationship Management - CRM, Supply Chain Management – SCM, and Human

Resource Management – HRM. The business model shifted from a value shop to a

value chain approach (JoOp10). That allowed the proprietary software company to

deepen their software integration into the businesses of their customers. Resulting, in

faster and better adjustable software components and improved communication

systems within the businesses and the departments of their customers.

Besides the evolvement of their product line, SAP ported their business software to

run on several UNIX and UNIX-like operating systems. They matched the systems with

IBM’s Work-Station product line-up, which were popularly sold hardware units at that

time. Additionally, SAP further integrated their products with Oracle Server, making it

possible to outsource customers’ data centers.

In 1993, two prominent open-source companies were founded: Debian and Red Hat.

Both distributed a Linux fork very successfully. Their business model was mainly

around implementation and service agreements.

In 1994, Linux was released for the first time as a complete desktop operating system,

and the community around the distribution multiplied rapidly.

Four years later, in 1998, the name Open Source was established. The term “Free

Software” was often misunderstood, and it was believed that it harmed software sales,

so an alternative was searched. Open-source software should have nearly the same

1 Introduction

16

freedom as free software. Nonetheless, it should follow a different approach than the

copyleft system in favor of businesses.

However, when Richard Stallman continued to work on free software rather than on

open source software, he argued that both movements, despite their differences, must

work together against the proprietary software industry (FrRi07). This idea was

acknowledged by the proprietary software industry, which started to recognize the

potential competition from open source licensed software. In 1998, some documents

were leaked to Richard Stallman, which would later be referred to as the Halloween

Documents, since they were published to the public around the 31st of October

(HaWi18). The documents were written by a Microsoft program manager and

contained detailed explanations of the market position, strength and weakness

analysis of open source contributions, and how they could be a potential threat against

the established proprietary company.

Apple and Netscape also saw the potential threat and released their open-source

licenses: APSL and NPL. However, since the licenses were incompatible with many

already existing FOSS licenses, especially the GPL, many developer communities saw

them instead as marketing tools rather than real open collaborations and received

harsh criticism (ApRi07).

However, the Open Source Movement grew steadily and received more attention as

an alternative with a broad spectrum of supporters. In 1999, the Open Source Initiative

received a historic latter: A company was asking the OSI community to certify their

source code and declare it officially as open source, to avoid a situation like

encountered it Apple with their APSL release. Many companies followed that approach

and asked for certification from the organization.

In the same year, Google and VMWare were established. One year later, Salesforce

was founded, which will later become a strong opponent in the CRM market for SAP.

At that time, many internet-based businesses made their companies public and went

to the stock market to raise funds. In addition to the possibilities that new technology

made available, the US signed off the Taxpayer Relive Act of 1997 (DoWi18). The act

reduced the taxes on the upper margins of capital gains and fueled the stock market

1 Introduction

17

further. Many companies were soon after well-funded, and stockholders had high

expectations. However, software companies were following a very aggressive growth

business model and tended to over-evaluate their expected sales numbers.

In contrast to traditional business concepts where companies invested in physical

machines and assets, many of the "Dot-Com" companies spent nearly their entire

funds on marketing. Additionally, they often distributed their products for free or at a

high discount in order to gain market share. Besides that, governments were investing

significant funds into telecommunication infrastructure and technologies. However, the

expansion trend turned when Alan Greenspan, at this time, Chairman of the US

Federal Reserve, announced a rise in interest rates; stakeholders started to ask for

earnings to cover their interests at their banks. Soon many investors began to realize

that their investments and trust companies had cash flow problems and that those

investments were too optimistically evaluated.

In the first half of the year 2000, many investors needed to sell their stock before Tax

Day to cover their taxes for the previous year gains. When Microsoft was charged guilty

of monopolization, the market started to dip and resulted in a 25% decline in the

NASDAQ market in April 2000, and in just six months the internet marked plunged and

bottomed out at a 75% decrease, forcing many companies into bankruptcy. After this

event, which is also known as the burst of the Dot-com bubble, the industry needed to

define how internet products and services are evaluated more sustainably.

1.2.5 Post Dot-Com Crisis (2000)
The recent internet industry collapse shadowed the early 2000s. Despite the crisis in

the stock markets SAP, Amazon and eBay were experiencing positive sales numbers.

Microsoft and SAP were deepening their partnership and started to increase their

product integration, such as Microsoft SQL Server. That server was a direct competitor

of Oracle, and almost half of SAPs customers were running their business application

on Oracle servers. However, Oracle and SAP continued their business cooperation.

Nonetheless, in 2004, Oracle started to buy EPR business application provider

companies systemically. Those acquisitions positioned Oracle as a direct competitor

of SAP. Eventually, a fierce competition started, and several lawsuits were filed in the

upcoming years (OrWi18).

1 Introduction

18

In 2004, the same year that Facebook entered the market, SAP launched its new

product: SAP ERP Central Component. The software is based on its successor R/3

and is suited for a range of different lines of businesses (LOBs). Once again, the

introduction of the new product marks a cornerstone of technological advances in the

business software environment and the strategy of SAP (SAWi18). Since the further

integration of software-supported elements at all sorts of business-relevant areas was

strengthened, more fluid communication between different departments was realized.

Regarding the business model, SAP changed to a more holistic view of software

integration. The company started to consider different parties, also referred to as a

"value network" business model (VaWi18). It differentiates between internal and

external stakeholders, the communication streams, and if the tangible or intangible

information is passed on.

However, SAP’s sales numbers were mainly coming from traditional ERP systems. In

2005, Alex Atzberger, a Harvard student and later SAP employee, pointed out in a

university thesis that SAP is overlooking the transformation to cloud computing and the

emerging CRM market with new competition from Salesforce (AtBu16).

In 2006, Twitter entered the market, and Amazon launched their Amazon Web Service

(AWS). So far, the cloud computing industry was mainly dominated by Oracle,

Microsoft, and IBM; nonetheless, new competitors were entering fast, and the market

was about to change substantially in the following years.

In 2007, GitHub entered the market and steadily became a de facto standard for open

and shared software projects. In the same year, Oracle bought SUN Microsystem for

7 billion US dollars (OrWi18). SUN was a large hardware manufacturer and software

developer, and one of the largest UNIX/Linux operating systems distributor. Soon after,

the software provider also acquired MySQL. The takeover was concerning for the

open-source community, and in fact, Oracle discontinued a range of products from

SUN’s product line, including OpenSolaris and StarOffice (SuWi18).

In 2010, SAP introduced SAP HANA: which is an in-memory cloud platform and

marked the next decade for the company and the transformation from ERP to cloud

computing.

1 Introduction

19

In 2010, SAP bought Sybase, a company specialized in data servers, information

management, and mobile data usage (SaHi18) in order to step into the server market.

In 2012, and the following years SAP increased its focus on cloud computing

technologies and bought several cloud-based companies. Two of the acquired

companies were Ariba, an online procurements system, and Concur, an online

expense management solution. Both purchases were strategically made to enter the

cloud market and extend the portfolio for their customers. In the same year, SAP

launched a new product: SAP HANA Cloud Platform, which is a Platform as a Service

(PaaS) for business applications.

Also, in 2012, SAP moved their entire SAP Business Suite product line to SAP HANA

and was starting the transformation to the cloud-based area. The board recognized the

importance of cloud computing and saw that customers want to integrate and

eventually buy a variety of online applications. Primarily because of the rise of the

internet and the implementation of online applications, the industries started to

accelerate.

1.2.6 The Rise of the Start-Up Era (2010)
Theano, an open-source machine learning library, was started on GitHub in 2011.

In 2014, Satya Nadella became the CEO of Microsoft and changed fundamentally how

the company interacts within the open-source ecosystem. In the same year, Cloud

Foundry was announced to be open and governed from an independent foundation.

In 2015, Google released TensorFlow under an Apache 2.0 License. The program is

an algorithm library that supports a range of AI-applications and provides deep learning

mechanics. The project was initially started in 2011 at Google Brain as a proprietary

machine-learning library (TeWi18). It helps with the automation of software

components, enables image and speech recognition, and is becoming a core

innovation for many software features of Google's product line, especially its search

engine.

In the same year, Microsoft opened its machine learning library, Cognitive Toolkit, to

the public. It is part of Microsoft's Cortana speech assistant and Skype.

1 Introduction

20

Likewise, in 2015, Elon Musk founded a non-profit AI research initiative, OpenAI. The

project aims to fight the concentration of knowledge in the area of AI/ML within a few

companies and to even-out competitive advantages (OpAi18). Musk also stated his

concerns for uncontrolled artificial intelligence and the potential threat to humankind

publicly.

One year later, Amazon opened its machine learning library to the public. When

compared to Google’s library, it instead focuses on product recommendation rather

than on speech recognition (AmWi16).

SAP Cloud Platform, a Platform-as-a-Service (PaaS), was released in 2016. The

platform is built on open source technologies and developed with SUSE.

In 2017, the Montreal Institute for Learning Algorithms eventually released a stable

software version of their open-source machine learning library Theano. The library

became fast a popular software due to its free and open access, and the focus on

academics graded us for mathematical expressions.

2 Products and Strategies of OSS Projects

21

2 Products and Strategies of OSS Projects
In this chapter, is an overview of areas where OSS plays a significant role and how

that might have changed over the years. There will also be a reflection on why FOSS

and the proprietary software industry co-existed in parallel and why in the last two

decades, the conversation about the adaptation of open source shifted. There will also

be an explanation of different strategical attempts and how business models might

have changed regarding technical evolutions.

 Where to find Open Source
The free software movement was, in many aspects, a countermovement to the

development of the proprietary software industry. Besides the community and

collaborations aspects, a strong idealistic ideology was increasingly influencing the

decisions of the free software movement. The open-source movement was formed to

distinguish from the FSM, and to have a more pragmatic approach and to appeal to

business aspects. On the other hand, the increase in popularity among commercial

FOSS software represented a potential competition for proprietary software

companies. Despite the fierce competition, open-source software started to have a

vast influence on many information technology areas.

2.1.1 Mobile Devices
The global smartphone production, as part of the manufacturing industry, represents

a multi-trillion USD global market (WMU18). Around 1,5 billion smartphone units were

shipped worldwide in 2016 (MoOp18). The market was dominated by the Android

operating system, with 87.5% in 2016. Resulting in the majority of globally used mobile

devices running on open-source software, which is licensed under APL 2.0, and GNU

GPL 2.0 (AnWi18).

2.1.2 Infrastructure and Supercomputer
Another area that is primarily dominated by open-source software in the field of

supercomputers and infrastructure, such as severs. The top 500 supercomputers use

Linux exclusively as an operating system (LinW18). Large publicly traded companies

such as Amazon opted to build their software on Linux distributions like their cloud

2 Products and Strategies of OSS Projects

22

server product EC2. Another example is the web-server market, which is mostly

dominated by Linux distributions like Apache HTTP Server and NGINX (OSOp16).

2.1.3 Desktop Operating Systems
Despite operating systems for all kinds of devices, as a private desktop operating

system, only 1,6% of users chose to install Linux on their private machines in 2018

(LiSt18). Similar to those numbers, products like LibreOffice, OpenOffice, VLC Media

Player, or Firefox have a relatively lower adoption rate compared to other commercial

products. It makes evident that the market dynamics for business to consumer markets

(B2C) differ from business to business markets (B2B). The reasons for such

differences can be based on the different approaches taken, like marketing efforts,

consumer behavior, and technical support. In the upcoming chapter, there will be a

more detailed explanation of the possible advantages and disadvantages of open

versus closed source software.

 Open Source versus Closed Source Code
The success of open-source software in the areas mentioned above can be traced

back to a set of reasons. In general, because of the way how the software is created

and how open licenses work, it follows a more inclusive approach. This results in higher

adoption of open standards and therefore increases the versatility of the software.

Another factor is the independence of any private or public traded software provider.

The asymmetric control by a single vendor can impose a set of risks for the software

consumer. Those are important factors when it comes to a variety of software users

like government-owned programs. Such programs might be systems, which are used

for weather forecasts, earthquake predictions, genome sequencing, or nuclear

warhead simulations (SuTh18). In such matters, to rely on a single vendor and closed

source code would introduce a weakness. Moreover, those programs might deal with

or generate sensitive data. To minimize the possibilities of data leaks and to ensure

high reliability of generated information, open source-based software can help achieve

some of those requirements.

Despite the advantages of open source developed software, there are drawbacks to

consider. Resulting from the high adjustability from OSS, open software often needs

extensive additional adjustments and customizations. Depending on the tech-

2 Products and Strategies of OSS Projects

23

savviness of a potential software consumer, proprietary software might be more

appealing. Specifically, proprietary software is, in general, more consumer-need

oriented; help for implementation, training, and maintenance are often available as

side products. Proprietary companies created profitable business solutions around

their products to generate secondary income streams. Most of the time, they actively

consider customer needs in order to retain them and are more likely to act actively to

adjust to those needs. However, that can result in an asymmetrical dependence and

lead to a vendor lock-in, which is another possible disadvantage of closed source

software. Because of that dependence, proprietary software provider tends to charge

higher prices for their services and products.

 Technological Evolution
It used to be that the consideration of open source products for business software such

as accounting and human resource programs was primarily based on factors like total-

cost-of-ownership, maintenance, support, security, and usability of the software.

Nowadays, the conversation is increasingly based upon features, compatibility, and

which network effects can be realized due to a possible higher adaptation of specific

software standards.

Those changes can be based on a variety of influences such as technological

evolutions, change in consumer behavior, and new market strategies of the software

providing companies.

Don Tapscott and Anthony Williams explained in their book, Wikinomics, how the

industry and society, in general, have changed through the decreased communication

costs in the last two decades caused by the internet (WiAn06). The idea is based on

scaling economics; by releasing open and free accessible products, the number of

users can be increased and therefore is stimulating markets around their products and

growing the overall market size. Some of the companies that gave free access to

products and knowledge found themselves to be very successful.

In conclusion to their studies represents an open access strategy, not necessarily an

altruistic move; instead, it is good business acumen.

2 Products and Strategies of OSS Projects

24

Hal Varian expressed a comparable market behavior in a formula and discussed these

dynamics in his book, Information Rules (HalH98):

Reward = (Total value added to the industry) * (Our share of industry value)

Google, Microsoft, and IBM are known for following a similar strategy with their AI and

ML libraries TensorFlow, DSSTNE, and many more (TeGo17). The motivation behind

opening years of research and possible competitive advantage can provide a variety

of advantages: First, if the industry gets stimulated due to new technologies, then

market growth can be accelerated. Yet another factor is that open collaboration attracts

more extensive access to experts, especially in the academic environment.

On the other hand, many similar open-source projects are emerging fast and gathering

large communities like Torch, Theano, or Keras. These are machine learning libraries,

which use open source licenses and are widely acknowledged within academic

research institutes. Thus, to be successful in that area, proprietary companies are

urged to follow a new strategy (AiGo18).

In order to establish a new machine learning library successfully, it is essential to

appeal not just to businesses, but also academic communities and young developers.

Google eventually released TensorFlow, licensed with Apache 2.0 in 2015.

TensorFlow is a library with mathematical algorithms also used for machine learning,

such as neural networks and deep learning. It was internally developed as part of the

Google Brain team, which researches in the area of artificial intelligence. Moreover,

the ML-library is well documented, and Google provides courses and learning material

for free to students and businesses.

Another trend which is in favor of open source is that applications and software in

general, are becoming increasingly Internet-based rather than on-premises. Services

are consumed on a variety of devices, which causes the whole software industry to

shift to a more mobile-friendly environment. Experts are referring to this as the

computing power utility (WaIn08). This is similar to the constant supply of water,

electricity, oil, and gas, which can be consumed at any time and where the consumed

amounts are what is billed. The establishment of infrastructure to distribute those

utilities was a fundamental factor for the previous industrial revolution. The

2 Products and Strategies of OSS Projects

25

commoditized power of the internet is providing businesses with high-end and state of

the art computing power on a per-use cost model. Therefore, companies can

implement a more extensive range of software products based on scalable cost models

and at the same time, reduce the risk of opportunity costs. Simultaneously, there is an

increasing offer of web-based applications and microservices which are providing

features like machine learning, speech recognition, and image recognition for

companies that are not specialized in any of those areas.

Those services require different approaches like orchestrating APIs, accessing several

thousand servers, and virtual machines to reach computing power comparable to a

supercomputer (HCP). A collective of companies are actively and passively involved,

and many different technical approaches are combined, to achieve such results.

Since many applications need to cross-communicate to achieve features like those

listed above, standards and open communities are becoming increasingly important.

Initiatives like OpenAPI, Kubernetes, and OpenStack are providing places for

companies to engage in those developments and to influence decisions about possible

new standards.

Open source organizations are representing a vital solution to co-create complex

programs. Consequently, open access is pivotal to establishing new software and

increasing the adoption rate. Platforms like OpenStack or OpenAPI are becoming more

valuable to each involved member. The more users are in the network.

Several proprietary companies are trying to profit from the increased popularity and

faster adoption rate of open-sourced software. For example, there are free courses

about open source languages issued by Apple to give access to their software

language, Swift. Google tries to accelerate the machine learning market to open source

its TensorFlow library, as described above.

Technological evolutions do not solely drive those changes. Human and social aspects

are evenly influencing the changes in the software market and how open source is

embraced by former proprietary software companies. For example, Satya Nadella,

CEO of Microsoft and former SUN employee, is profoundly influencing how the

company is changing its strategy with open-source software. The same goes for CEOs

2 Products and Strategies of OSS Projects

26

like Jeff Bezos from Amazon or Sundar Pichai from Google, who are embracing open

source and supporting the ecosystem.

2.3.1 Enterprise Resource Planning Software
ERP stands for Enterprise Resource Planning and describes in general systems that

support business processes with software and technology. Those systems are used in

supporting areas such as distribution chains, customer relation management,

production planning, as well as human resource and accounting (EnWi18). Those

systems collect, store, and interpret a broad set of information throughout all connected

business units.

The German software producer SAP saw early on the need for such enterprise support

and was influential in establishing the ERP market as it is known today. One of their

products, named R/3, is the third iteration of their “real-time” data processing software

and was released in 1992 (R3Wi18). With R/3, SAP introduced a 3-level tier system

which is differing between three layers: presentation, application, and database layer.

Together with this structural separation, a client/server structure was established. This

structure enabled single source and cantered storage systems for individual data sets,

which used to be distributed across different systems within a company. Furthermore,

it can be accessed from different access points within a corporation and externally

connected partner companies.

An example of such a system integration would be if an employee is submitting a

request for holidays, the system communicates with the HR software, which

corresponds with the finance software, which processes the right paycheck

automatically and informs managers if rescheduling is necessary. Eventually, an

external catering company would be notified that one lunch meal less is required for a

given period. Those integrated process can be implemented with ERP systems; they

helped business in the last century to experience a production increase and to focus

on their core competencies.

Around 2012, it became popular for software providers to start offering products also

as mobile phone applications, for example, Concur. The expense management

software, which was acquired by SAP in 2014, handles travel expenses of employees

2 Products and Strategies of OSS Projects

27

and functions as a trip booking software. The system can be accessed via a web

browser or a smartphone application and communicates to the backend of the

intergraded ERP system.

However, those mobile software applications are rather handled as an external

component of the business software system. Although most of them are well-integrated

solutions, the externality introduced a variety of drawbacks, including increased

response time from applications, and separation of data sets across the attached and

central system, resulting in cumbersome user experience. The challenge of the

following decade was to integrate all those extensions seamlessly on one platform and

to reduce data silos and create a compiled access point for personal information, which

could still run across different platforms and devices (AbOp18, 2018).

2.3.2 Shifting from On-Premise to Cloud
Traditionally ERP programs are hosted on local servers, also referred to as on-

premise. On-premise hosted programs have a set of advantages and disadvantages.

Though the migration from locally hosted programs to cloud solutions is a complex

task, business software providers are nonetheless pushing towards the shift to cloud-

hosted programs.

On-premise hosted programs offer a better individualization of the program and

greater control over the data. In general, there are high one-time payments to install

the software and often require additional hardware to set up the system.

Cloud computing describes an aggregation of remotely hosted computing resources

utilized by a client. The client can be a website, mobile application, or desktop program,

or used for storage and computing power (WhOp16).

“Cloud computing is shared pools of configurable computer system resources and

higher-level services that can be rapidly provisioned with minimal management effort,

often over the Internet. Cloud computing relies on sharing of resources to achieve

coherence and economies of scale, similar to a public utility.” (CloW18)

In order to run programs on a cloud server, it needs to have an operating system,

library, and the application. All those components are installed on "virtual machines".

The virtualization makes it possible to run the application on any environment that

2 Products and Strategies of OSS Projects

28

supports those programs, whether it is hosted online or on a physical machine. This

results in an application that is more portable and enabled to run in an environment

which supports that proses.

The advantages of cloud-hosted over the on-premises hosted programs can be a

shorter implementation time and faster software updated from the vendor, resulting in

a more reliable system. Mostly, it does not rely on additional hardware, and rather than

a one-time payment, it is offered as a service and is sold as a monthly subscription.

(AdER15)

2.3.3 ERP Market
The proprietary ERP market represents a large area of the software industry and is

dominated by a small number of software providers. However, a large portion of the

ERP market demand is met with second and third-tier software providers (ApTo17).

Open-source ERP, on the other hand, is concentrated among three market segments

(UnSc15). The first segment represents companies, which have the required

knowledge and skills within their company to implement an open-source system. Since

this can represent a complicated process, many businesses with insufficient or little

knowledge in software implementation are less likely to integrate an open ERP system

successfully.

The second segment is small and mid-sized companies (SME). One of the most

outstanding arguments for this group is to save on license fees and to have a flexible

system. However, they might need to make a bigger one-time investment upfront and

need to compare the total cost of ownership over the life period of the integration.

The last segment is the governments and research institutions. This group can be

classified with their requirement of a completely open system due to their restrictions

and specific needs.

 Business Strategy
Over the last couple of decades, a variety of business strategies have evolved. In this

area, proprietary and non-proprietary software companies tend to have different

approaches. However, it can be observed that former strictly proprietary software

2 Products and Strategies of OSS Projects

29

companies start to use open source components as a go-to-market strategy and to

build a community around their products in order to generate traction for their brand.

Open Core describes a functioning software that is open source and freely available.

Around the center is a palette of add-ons commercially available, which extends the

software by various features and functions. Those offers often come in bundles

together with services and help to enrichen its value. This strategy lowers the barrier

to try out the software and is common around open source software businesses

Close Core, on the other hand, is practiced rather by proprietary software companies

that have a dominate selling product. It is common to open source a fully functioning

add-on component. By making the additional product freely available, those add-ons

are more attractive to a broader audience and generate visibility for the core product.

Cloud-hosted services are built with open source code and can be made available

as platform-as-a-service. They generate income by selling additional components,

such as the ability to monitor dashboards and integration features, as well as other

services and support.

Vendor lock-in, which is a common practice in the software and, specifically, the

proprietary EPR market (VenWi18). Customers are lured into a system by buying one

component and then adding on additional products and building up switching costs.

However, consumer expectations and the speed of innovation have changed

drastically over the last two decades. It is becoming more common that customers are

open to paying as they use and try out new products if they fit their needs.

2.4.1 Dipping Market
Dipping markets or Winner-takes-it-all Markets are defined by an unequal distribution

of customers, where the product with a slight advantage over the competing products

gets most of the customers (WinWi18). These apply to markets like the sports industry,

certain design markets or search engines, and are increasingly experienced in the

software industry. This implies that dipping markets make it challenging to calculate

marketing budgets or other sorts of resources since the gain from reaching the first

spot is exponentially higher. On the other hand, the risk for such markets is that if the

product fails, all the investments made might be worthless. Therefore, it is becoming

2 Products and Strategies of OSS Projects

30

increasingly important for software companies to penetrate a market in a short time

with their product in order to be successful, which explains the interest of closed source

companies to lower the barriers to access their products

2.4.2 Pull- and Push-Markets
A push strategy implements active communication with the end customer to promote

the product. It is often applied if a new product is launched or in markets that are not

transparent. In contrast, pull marketing represents a situation where a product or brand

is so desirable that customers will seek the product themselves and possibly buy it.

2.4.3 Collaboration
In some cases, open source is a strategy to get several companies working on one

project, like in the case of OpenStack, as described in the first chapter. By registering

the software under an Open Source license, legal questions regarding the ownership

can be addressed. It also serves as a kind of guarantee that it will be available for one

of the creators for an extended period of time. On top of that, the project can be shared

among other communities such as universities or other entities of the companies

without the risk of interfering with internal or external company policies.

3 Open Source at Proprietary Companies

31

3 Open Source at Proprietary Companies
In this chapter, it will be examined why former strictly proprietary software companies

are starting to consider distributing open source software. There will be a separation

between possible motivation and risks, and there will be a close observation of different

ways a software company can engage with the open source ecosystem.

 Incentives and Advantages of Open Source Engagement
There is a wide variety of publications that review the motivational background of

individual developers to engage with open source software. It ranges from a general

perspective on intrinsic motivation, discussed by Edward L. Deci in his book “Intrinsic

Motivation and Determination in Human Behavior,” to extrinsic motivation like status,

career improvements and financial aspects of individuals, explained by Krishnamurthy

in 2006 and general motivation from Lerner and Triole in 2002.

However, in this thesis, the focus will be on the motivation of a company to engage

with open source software, where a company is defined as a legal entity that engages

in business and is a collective of different individuals, which serve different interest

groups of stockholders.

A company’s prime objective is to generate value and to persist over time. All activities

that support that aim can be classified as goal-enabling and are of increasing

importance as the market tends to get saturated with growing competition.

It can be distinguished between three arguments, which are possible drivers behind

the motivation to engage with open source software: One is reducing costs, second to

gain innovating abilities, and lastly, to increase sales (WhIM12). However, conducted

studies revealed that those categorizations might miss one argument: moral obligation.

All companies included in the studies stated that they want to give back to the FOSS

community, which is an essential indicator. It signals that the company is willing to

reinvest, and that can build trust.

3 Open Source at Proprietary Companies

32

3.1.1 Innovation Capabilities
It is argued that if open source software has an advantage over proprietary software,

it is the greater ability to innovate (HipMI05). Due to effects such as Linus’s Law and

access to a broader community, many studies have pointed out the positive effects on

innovation (LiWi18).

Software Standards are defined as terms, concepts, formats, or styles of

documentation, which are widely recognized and commonly agreed on by software

creators in order to ensure quality standards and to understand other products. One

definition for standards by ISO, an international institution for standardization, is: "A

document that provides requirements, specifications guidelines or characteristics that

can be used consistently to ensure that materials, products, processes, and services

are fit for their purpose." (IsoIs18) Standards are voluntary, which means that they can

be seen as guidelines, but not everybody needs to adopt them. When Apple excluded

the 3,5mm audio port from their distributed phones, they changed from the standard

for audio to their proprietary lightning connector. That promotes wireless headphones

and sales for their proprietary lightning dongle.

Closed Standards can be concealed to the public, including the documentation and

specifications. Those standards can be distributed according to specific terms and

conditions and might come with costs such as license fees.

Open standards are seen to be increasingly essential to increase efficient

communication about the expanding number of devices and applications. The Open

Source Initiative believes that open standards should embrace: no internal secrets,

availability, royalty-free patents, no NDA agreements, and no OSR-Incompatible

Dependencies (OsiO18).

The active involvement in the development of a new open standard can be beneficial

for commercial companies due to various reasons. On the one hand, they can be

implemented early in new products. On the other hand, the involvement also allows

businesses to contribute and possibly form the new standard. Upon consideration, that

may explain why companies become an early part of different open initiatives like

OpenAPI (OpeWi18).

3 Open Source at Proprietary Companies

33

3.1.2 Increasing Sales
Commercial companies are, in general, motivated to increase sales numbers. This can

be done through direct marketing activities; however, other activates can also

contribute to sales numbers and generate income.

Secondary products, as described in the previous chapter about software strategy, in

an open core, can increase the sale of additional commercially available software

components. Proprietary software companies, per contra, will instead have a closed

core and distribute open software as an add-on. Such a practice can have a positive

effect on the core product due to its higher agility and broader feature set.

Compliment services are widely offered in the software industry and represent a valid

secondary income source. They can be offered in the form of training, certificates,

technical support, or consulting services (FitzT06).

Thought leadership can be attained by active contributions to a software community,

and it signals a high level of knowledge and applied skills. A company can give panel

talks, participate in a conference, and host meetups. That can have a positive impact

on brand awareness and attract more stockholders; moreover, it can attract future

hires.

Time to market, also called TTM, refers to time spent between the idea to the final

product release. There are no official standards for this measurement, but it is an

indicator for industries to compare costs and product cycles. Open-source software

components can have a positive impact on the TTM due to the reuse of code and

accessing feedback from a broader community.

Another effect of open-sourcing source code can be the reduced friction to consume

and to try the product. In an increasingly saturated market, it is of importance to

penetrate the market with software products in a short amount of time to gain profits.

Due to the maximizing effects on the zero acquisition costs, proprietary software

companies can use that to their advantage.

3 Open Source at Proprietary Companies

34

3.1.3 Reducing Costs
Cost reduction due to the usage of Free and Open Source software might seem like a

valid argument for its utilization. Software development can be accomplished faster

due to the use of freely available software. However, those advantages must be held

accountable when considering the overall cost of software, also referred to as total-

cost-of-ownership. Since free and open-sourced software code can include broken or

malicious parts, it is required to review possible implementations carefully. That can

expand the expected development length of a project considerably. Another factor to

be considered with FOSS is that it is possible that documentation might not be up to

date, incomplete, or missing. Those are factors that need to be considered before the

code is reused. In an upcoming chapter, there will be a more detailed observation of

which factors of an open-source software implementation need to be considered and

how those might affect the final product regarding its distribution.

The technologies and the industry are changing rapidly regarding technological

evolutions, but also to how technology is consumed and how technology is taught and

learned. It became a standard that young developers use platforms such as GitHub

and other networks to grow their experience and reputation. Senior developers prefer

working environments where they can use such platforms. On the other hand,

companies are interested in keeping the training time for new employees is as low as

possible to reduce costs. Therefore, it is increasingly attractive for employers to provide

such tools which are widely used already.

Proactive saving by contributing to the early stages of open source projects can be

another aspect of why a proprietary software company might be interested in engaging

with a non-proprietary software company. For example: when consuming open-source

software, the code might fit to a high degree in the already existing system and

products of a company. However, the last part of the implementation might require

reconfiguring a large part of the software. Also, that task can be only accomplished

with the necessary technical knowledge and resources. If a commercial company can

actively contribute to an open-source project of interest, it might be able to influence

the product and can start early to consider how to implement the free source code.

That may result in saving time and resources. Moreover, by contributing to an open-

source project, the company can gather feedback from the developer community. That

3 Open Source at Proprietary Companies

35

feedback can reveal new methods to solve problems, which ensures that the quality of

the code can be further improved, as opposed to purely in-house development.

Hiring talent can represent a challenging task for a software company; it is seen as a

critical must in order to stay competitive in the market over an extended period. Access

to an active community can help bridge the labor gap and get highly qualified support

for projects.

3.1.4 Case Study SAP
When SAP developed its proprietary high-level programming language ABAP in 1983

(AbWi18), it represented a competitive advantage for the company. It was developed

to fit their current needs and their entire product line. Moreover, due to their

implemented restrictions, it was possible to charge higher margins, not only that,

additional services could be sold, such as training and support packages.

The proprietary character of the language also represented some drawbacks. The

number of developers who used the language was very limited, and due to the

restricted usage, it was less attractive to young professionals.

Moreover, due to the less restrictive character of freely available and open languages

such as Java, PHP, or Python, they attracted more developers in the first place.

Secondly, due to the amount of available research, institutes and academic

environments had more interested in improving and developing them further.

However, ABAP is still a language of significant importance for SAP and their

customers, given the large number of applications that are built on it. Nevertheless, it

is becoming difficult to hire talent for this proprietary language. In late 2018, SAP

released a runtime environment for their cloud platform offered as a platform as a

service, offering ABAP developers the ability to run programs in the Cloud Foundry

Environment of the Sap Cloud Platform; giving customers the chance to cloud-enable

their ABAP based programs and connect them via remote APIs to a broad variety of

cloud applications. The language supports an Eclipse environment and enables the

importing and managing of development statues via Git, offering access to other open-

source projects (AbSa18).

3 Open Source at Proprietary Companies

36

 Possible Disadvantages of Open Source Engagement
As the previous chapter shows, an open-source engagement can have a positive

impact on commercial software companies and might contribute to various strategic

business plans. Nonetheless, the usage of open source code might bear some

disadvantages and should be considered.

3.2.1 Licenses Incompatibility
In general, software code and specific open-source code are primarily defined by its

license. Over the years, a large number of software licenses were created. They each

have their own characteristics, therefore, serving different purposes and coming with

a different set on requirements. In general, due to copyright laws, once a part of the

free or open-source code is implemented into a project, it passes on its usage right

with its possible limitations. Hence, some combinations of licenses work in favor of

each other and permit each other to work in parallel. On the contrary, it might occur

that two licenses contradict each other and may cause conflicts. Moreover, it can

become challenging to create a proprietary software product once open-source

licenses are included since it might not be permitted to sell or restrict the usage rights.

Besides license incompatibilities, there are also compliance restrictions due to antitrust

laws. In this sense, once an external developer contributes to an open project, the

submitted code might be copyrighted. Additionally, in the case that the developer is

employed, the contributions might be owned by the software company. Therefore, it is,

in some cases, essential to file agreements with all contributors to try to avoid legal

actions. There will be a more in-depth review of CLAs in an upcoming chapter, which

will point out different kinds of agreements and in which cases they are applicable.

3.2.2 Malicious Code Contribution
Due to the accessibility of an open system, it can also be a source of security

vulnerability. Malicious code, leaking areas, or gateways might be introduced and can

cause severe problems. It is argued that open-source software, in general, might be

more secure, since it is tested and reviewed by a wide variety of software experts with

different aspects. However, a planned security gateway can be implemented and used

deconstructivity, if the necessary security reviews have not proceeded and access

rights are correctly managed.

3 Open Source at Proprietary Companies

37

3.2.3 Security of Retired and Unpatched Libraries
Open-source software is often managed by a voluntary gathering of developers

connected remotely; software projects can get outdated once the community ceases

to exist or becomes smaller. As a result, new security updates might not be

implemented, and libraries might become unpatched. That is problematic if the source

code is implemented without a thorough and careful compliance review.

3.2.4 System Stability
There is always a chance that implemented code causes conflicts with the existing

code. In order to avoid more significant losses, a regular building plan and

implemented automated tests are required to avoid more significant problems along

the way of the project. If a problematic area is not spotted early o, it might cause a

crash of the program, and back-engineering might become a resourceful task.

3.2.5 Monetary Risks
Projects naturally bear the risk of failing and might fail to monetize successfully if this

is important for a project’s sustainability. The risk is over-proportionally higher if a long

development cycle is in place, with possibly several hundred developers, and in some

cases, an innovative product. There is always a chance of non-acceptance by the

market; features of the product might become outdated or become faced with stiff

competition, thus impeding growth. Nevertheless, open-source and community-based

approaches are ideal to bootstrap a project. This can have a positive effect on keeping

costs down and expenditures very low until the project starts to sustain itself.

3.2.6 Legal Risks
Open source is based on licenses with foundations in place to govern those licenses

and hold companies and developers accountable for applying them correctly;

consequently, there will always be a legal risk. It is good to be proactive and become

involved early in order to manage licenses correctly and state user and contributor

rights, from the beginning of a project according to legislation. However, there is always

be a chance that certain rights be overlooked, or some other kind of legal breach

occurs. When an open community of different individuals is gathered, different opinions

and beliefs can conflict, and they might disagree at specific points of a project. If no

3 Open Source at Proprietary Companies

38

consensus can be found, a fork might be the right solution, and the community splits

into two different projects.

 Engagement with the Open Source Ecosystems
In general, there are three different ways to distinguish how a company can engage

with open source software: consume, contribute, and own their own open source

software. There are different implementations of each of the engagements. A company

might consider why to interact, how to act accordingly, and define what it means to

engage successfully. All three ways have different social, technical, and legal

implementations. In this chapter, those aspects will be reviewed as well as how to

measure the maturity of the software and how to avoid risks.

3.3.1 Consuming Open Source
Open Source software is an inherent part of the software industry. There is a vast

amount of open and free solutions available to be consumed. As described in a

previous chapter, open source represents an important part of infrastructure software,

desktop systems, and niche software applications. Consequently, large parts of the

Internet Backbone are built with open-source software. Besides projects for general

public interest, sizeable proprietary software companies such as IBM, Ford, Wal-Mart,

Exxon, GM, Amazon Inc., and SAP are just a small sample of the immense scale where

open software is used successfully. Within those examples, the most frequently used

open operating systems are Linux and FreeBSD. Regarding infrastructure Apache

Web server, MySQL and PostgreSQL are to mention here and can be counted as the

most prominent ones. Whereas for desktop applications Open Office and BIND are

vastly distributed (PaOS04).

Nevertheless, when consuming open source software, the applicable company needs

to consider a variety of different factors such as overall costs, transition costs, and how

to measure success. Those considerations need to be made before large applications

are integrated and can lead to severe problems for the company from a long-term

perspective.

3 Open Source at Proprietary Companies

39

3.3.2 Contributing to Open Source
Besides consuming open source software, proprietary software companies can also

actively contribute to an open source software project. That has many advantages and

can showcase the technological advantages and knowledge of a company, which is a

positive message for finance and technology markets.

Another aspect of open contribution is that often, those projects work on important

future enabling technologies. Consequently, if a company can have an impact on how

the resulting end-product will be defined, that will lead to competitive advantages.

The proprietary software company SAP saw in 2004 the strategic and significant

importance of the Eclipse SDK. The company, therefore, became one of the founding

members soon and contributed to several other Eclipse projects such as jGit, eGit,

Mat, and Tycho (LiSa19). There will be a more detailed overview of OSS projects

where SAP was involved in the upcoming chapter.

In detail, this means that if a company implements an open-source software

application, it might fit, to a certain extent, out of the box. However, it is likely that

adjustments need to be made to meet the requirements. If a company can be part of

the development process of a possible new standard, they can be sure to have

essential features built-in from the start.

Moreover, by openly communicating which are wanted features, or even contributing

code to the development community, feedback can be generated. In general, feedback

from various parties leads to a higher quality of the product. Often, proactive

engagement is beneficial and results in less overall development costs for the

applicable company. Important to note is that acquiring the skills to implement and

develop with newly released software can be decreased, for example, in the case of

Kubernetes or Cloud Foundry and multi-cloud applications.

Large scale projects are often governed by independent foundations, which has

several advantages over single-owned open source projects. Those foundations help

govern projects within a neutral area, independently from the contributing

organizations and unaffected by a possible dispute between two contributing parties.

3 Open Source at Proprietary Companies

40

Those initiatives are also founded to guarantee a neutral and long sustainable success

of a project over an extended period.

SAP is a member of several open software sources and is actively contributing to those

projects. A detailed overview of those engagements within the open-source ecosystem

is part of chapter 4.

3.3.3 Owning Open Source Software
The third category with open source software engagement would be to own it. Dep-

side to create the software, it could be bought from or donated by another organization.

Regardless of how a company becomes the leading entity behind open-source

software, there are some essential tasks to keep the project vital. Such tasks include

keeping the audience engaged and motivated, establishing rules and agreements as

well as keeping a well-documented and well-built system in place, in order to hold on

to a good reputation.

When building community-based software, their attention should be drawn to its

community. Many FOSS projects are created with free contributions from an extended

group of developers. One of the advantages of open source might be that arguably, it

provides a source of free labor, but that is not for granted. Those developers taking

part in open communities have their motivation; they need to have a shared sense of

a common goal to keep the audience successfully involved. In general, the benefits

should be even, and the community should benefit as much from the project as the

owner itself. Therefore, their contributions must be evaluated accordingly, and open

source projects should remain open.

In order to keep an open project thriving, it must be observed that a public engagement

of the project is equally important. That presence can attract new developers and can

be accomplished by hosting public events, presenting panel talks, interviews,

generating blog articles, or publishing to newspapers as well as publishing videos

explaining basic concepts of the project. Ultimately, there are many ways to interact

with the communities inside and outside a project. Importance remains on the

communication of the core values and the possible significance of the project.

3 Open Source at Proprietary Companies

41

Besides the community aspect, another critical factor is the establishing of a project

approval process: open source project communities can have several thousand

participants, with contributions across different time zones. It is increasingly essential

to the size of the community, to make use of an automated process wherever it is

possible. Just a few processes, such as approvals, CLAs agreements, and status

updates, can take up a significant amount of time if not addressed in a self-organized

way.

Besides automation, there should be a library of guidelines and frequently asked

questions established. Those guidelines should be easy to access and give a broad

range of essential information. Within FAQs, there should be instructions on how to

respond accordingly to specific issues or bugs, how to deal with difficult circumstances,

and how to avoid common problems. That can help in many cases to get questions

answered before a community member needs to answer individually. Not only that, but

those guidelines can also help in case of a possible disagreement to find a consensus,

and to set a variety of community rules to keep the environment professional and to

keep the focus on the main project goals. Because such guidelines are standard within

open projects, an organization can make use of already existing contribution model

templates rather than having to recreate those mechanisms. The adoption of such

templates can help accelerate the start of a project and might support in remaining

focused on core tasks while minimizing some risks.

4 Open Source Software at SAP

42

4 Open Source Software at SAP
SAP SE, the German ERP software provider, has been best known for its proprietary

products. Nonetheless, the company has a long history of open source; this chapter

will give an overview of different open source products, both used and produced.

Furthermore, this chapter covers a selection of projects the company is actively

contributing to.

One of the first official engagements with open source can be traced back to 1998

when SAP started to port their leading product R/3 to Linux. This engagement enabled

businesses to choose their preferred operating system; with this, the company gained

access to a new market segment.

Three years later, in 2001, SAP formed a set of definitions and guidelines on how to

process and consume open-source software. The formalized documents contained

aspects such as open-source licenses, security, and control restrictions on exports.

In 2004, the company became a founding member of the Eclipse Foundation and

contributed actively to several projects from the foundation, such as jGit, eGit, Mat,

and Tycho (LiSa19).

The company decided in 2008 to enable more employees to contribute to external

open source projects. Therefore, a guide was established on how SAP developers

should engage with external communities to stay compliant and to prevent legal

problems.

Two years later, in 2010, SAP formalized further how to develop and engage with the

open-source ecosystem and introduced a systematic scanning process. It became part

of every project and helped the company stay compliant and obtain security goals.

By 2014, SAP open-sourced a Contributor Licenses Agreement system on GitHub,

which automated the license agreement from developers to contribute to an open

project. There will be further details on the open-source tool in the following section.

In the same year, SAP joined the Cloud Foundry, which marks another cornerstone in

the history of the company investing in the open-source community (ClSa17).

4 Open Source Software at SAP

43

Cloud Foundry is an open-source service platform and makes multi-cloud hosting

possible; besides that, it provides different applications; for example, a tool for software

development lifecycles, called BOSH.

The partnership grew from a single developer to make some pull requests, to several

teams containing more than 80 employees working full time on different projects, for

example the afore-mentioned BOSH application, multi-cloud hosting, API connection,

and several more (SaCo18). One of the latest projects is in partnership with IBM and

Asus to integrate server-less applications and Kubernetes and to enable a hybrid cloud

solution.

In 2016, SAP opened a BOSH OpenStack CPI Dojo in Waldorf, Germany, in

cooperation with further developers from SUSE Linux. The Dojo concept was founded

at the Cloud Foundry after they observed how long it took developers to gain submitter

status in an OSS project. The submitter status is an indicator that a developer is full-

time, contributing to one of the Cloud Foundry projects. The Dojo provides a 6 to 12

weeks training program for a developer to acquire the necessary skills in a fast-paced

environment. SAP has established worldwide 8 Dojos, where they continuously train

developers and contribute to open source projects (ClDo18).

In 2017 SAP joined the Hyperledger program as a premier member. Hyperledger is a

part of the Linux Foundation and develops and conducts research on blockchain

technologies (HyLi17).

In the same year, SAP joined the Cloud Native Computing Foundation and the Open

API Initiative (SaLi17). There will be a more detailed perspective on those

engagements in the upcoming section.

In 2018, the German ERP provider entered an agreement with Google and Intel to

deliver a serverless cloud solution on the public GCP cloud with significant

performance improvements for customers (PaGo18).

In the same year, SAP established a centralized internal organization to regulate and

oversee all open source activity. The so-called Open Source Program Office, in short

OSPO, consists of a virtual and global team and has a focus on streamlining open

source engagements and on being a single point of contact for OSS-related inquiries.

4 Open Source Software at SAP

44

Moreover, the department is overseen by the CTO of SAP, which results in better

integration with the company (LiSa19).

Based on those engagements, it can be observed that there is a general endeavor to

establish and strengthen the contact with external open projects. In the upcoming

section, there will be a more detailed review of open source projects which were

launched by SAP.

 Software Tools
This chapter will present an overview of open-source software projects initiated by the

German software provider SAP. There is a wide variety of projects in this category

since SAP is actively motivating and enabling its employees to contribute to open

projects. Nonetheless, this section of the chapter will be focused on a selection of the

most relevant open source software projects maintained by SAP.

4.1.1 Contributor License Agreement Tool
There are many ways how a company can handle legal rights for software

contributions. If an internal employee is working and contributing to an internal project,

the rights are most certainly owned by the employing company. However, once an

external developer is contributing to a project, the question of who can claim ownership

of the creation arises, primarily if the external contributor is employed at an

organization or company. Even if the contribution is for an open project, intellectual

ownership of the creation is still relevant.

In order for an SAP to manage software contributions to their open projects, they

created an open-source tool to automate agreements: The Contributor License

Agreement Tool also referred to as CLA. The open program supports the agreement

process of ownership-related topics: CLA gives the agreeing parties the security that

legal claims upon ownership of submitted creations are defined. The parties agree that

they are willing to give up any further right and that they are legally able to contribute.

It is especially essential if, for example, competing companies or their employees, in

some cases, even unintended, are contributing to projects.

SAP's open CLA tool was released for the first time to the public in 2014 under an

Apache License, Version 2.0. It was created in collaboration with the developer team

4 Open Source Software at SAP

45

form GitHub. The project itself is hosted on GitHub and is openly accessible to

interested individuals. It is used by a respected, large number of other companies and

organizations, which forked the project and created their own version (SaCl19).

In order to have a consistent and robust agreement system for all projects, every single

contribution needs to be signed off with the CLA assistant. The agreement is signed

with every pull request from the project; every contributing developer needs to agree

to the CLA. The software authenticates the signee and updates the status of the pull

request. This process is integrated into the hosting platform; in this case, the GitHub

platform (GiCl19). Therefore, an uninterrupted chain of agreements is created for the

developer and the company to stay as compliant as possible.

4.1.2 SAP Cloud Platform
SAP Cloud Platform provides a single space for all SAP cloud applications. It functions

as an open Platform-as-a-Service, which can be run on the SAP HANA database. The

program was and is developed together with SUSE with open source technologies.

Initially, it was developed within the SAP HANA Cloud Platform with the name SAP

NetWeaver Cloud. Since then, the platform grew steadily, and many features and

programs where added over time.

One function of the platform is to establish a connection between on-premises and

cloud-hosted applications to work together, as well as third-party applications. The

platform embraces open standards, including Java, JS, Node.js, and it works together

with Cloud Foundry. The latter enables the platform to host multiple third-party cloud

services such as AWS, MS Azure, GCP, Alibaba, to name a few (CloS17).

Due to the close relation to the Cloud Foundry and the BOSH development cycle, it

supports customers in iterating on new ideas with an increased pace compared to

conventional methods, and it seems the development cycle affects the go-to-market

time positively. SAP provides several SDKs for different developer platforms, such as

for Apple iOS and Android. Those SDKs come with documentation and additional

material, and supplies developers with already existing libraries to accelerate their

creation of applications (CPWi19).

4 Open Source Software at SAP

46

The cloud platform is continuously growing and implementing new emerging

technologies like Dockers and Kubernetes. Moreover, it gives customers the ability to

try out different new technologies such as Blockchain, Machine Learning, IoT, Big

Data, and different analytic tools.

The following applications are hosted and made available on the SAP Cloud Platform.

4.1.3 Openui5 and SAPUI5
In 2013, SAP decided to open their framework and follow a dual-license strategy. The

company released openUI5 under the Apache 2.0 license. One year later, in 2014, the

OpenUI5 team was open for contributions made via GitHub.

SAP UI5 is a JavaScript Web toolkit for user interfaces. The program represents a

library for user interfaces and works together with SAP Fiori, which is the companies

design language. SAP Ui5 is available as an open and closed source variation. Both

versions are almost identical and differentiate mainly due to their different licenses.

The UI5 library contains more than 200 frontend controls and follows a Model-View-

Controller approach.

The program was initially developed under a proprietary license to provide a consistent

design language for web applications for the company and its customers. Previously,

SAP introduced new user interface libraries with each new product release. It provided

many advantages to separate products and designs to keep a consistent experience

across several applications and to represent a unified brand.

Various applications follow those design principles or have similar expressions

enabling a consistent appearance; thus, user experience can be achieved throughout

different programs. The program is built with JavaScript and XML code generated

compliant HTML, which enables the program to keep its consistency across different

platforms and runtimes. Further worth mentioning is its compatibility to work together

with OData and JSON API’s (FiSa17).

Initially, the internal project name of the software library was “Phoenix.” In 2009 SAP

developers worked on a strategy to keep a consistent UI experience over a long period

of time and across different applications and product releases. Moreover, they tried to

solve a problem that occurred due to the fact that the previous UI frameworks were

4 Open Source Software at SAP

47

tightly coupled with the backend of SAP’s technology stack, which became a

bottleneck when briefly changing the appearance of the program. The developer team

behind the software believed that the software needed to be opened to a broader and

external community to increase its potential. They saw the benefit of collaborating with

different software communities and sharing their creation with other projects.

Around the year 2013, as smartphones and mobile devices became increasingly

crucial for businesses and private persons, the perception was shifting towards a

mobile-first and mobile-friendly workplace. As a result, a variety of mobile apps where

created, this trend was observable in a wide range of businesses and industries. Many

companies soon had a variety of programs and different mobile applications. However,

most companies tried to have the right consistency within their application

appearances. Since SAP UI5 was proprietary software, customers were not permitted

to implement its user interface experience in other third-party applications, which made

it difficult for SAP’s customers to achieve a consistent appearance. Another problem

software developer encountered with the original proprietary character of the software

was that feedback from partners, and even internal employees were not permitted to

be implemented to improve the software because of license issues.

Another item in the list of arguments for SAP to open source was that their Ui5

application caused a shortage of talent hiring possibilities for UI departments. Since

new hired developers were not familiar with the application, training costs, and getting

up to speed times were higher compared to other areas. Furthermore, SAP considered

the positive impact from external communities to develop the library further and expand

its potential behind its primary purpose. Since the way how programs were developed

shifted to a more open approach and many developers preferred to work with open

frameworks in order not to be tied to one platform, SAP needed to change their

approach to stay relevant in the developer communities, especially outside of the SAP

ecosystem.

SAP Ui5 remained as a SAP internal build version of the same software. It is a

downstream product of the OpenUi5 and marginally enhanced with some additional

features. SAP Ui5 is made available to SAP customers bundled with other software

components and comes together with a service agreement. There is a full team within

4 Open Source Software at SAP

48

SAP working on Ui5 to improve its functionalities. On the other hand, OpenUi5 is

hosted on GitHub; it has several versions, nightly builds, betas, and final releases. It

has an active community with over 40,000 Comments (Dec. 2018), 360 releases, and

56 Branches. The GitHub provided bug-tracking program is additionally used to

improve the software.

For SAP, this project represents a success in various ways. Overall it enables the

company, together with a community around the product, to contribute and further

develop the program.

4.1.4 Chevrotain
Chevrotain is similar to OpenUi5 and represents a code parsing library for JavaScript

and NodeJS. It was developed by SAP and is licensed under an Apache 2.0 license

and released to the public in 2015 via GitHub. Despite the large variety of parser

building toolkits available, the development was initiated by one SAP employee who

wanted to develop his own version with specific customizations. Since the public

release, Shahar Soel, also known under his developer name bd82 only commits to the

project in his own time and, therefore, strictly separates the work he is doing at SAP

and his commitment within the open program. The community around that library is

significantly smaller compared to the other projects. In December of 2018, the project

counted on GitHub 1,568 submitted commits, 22 branches, 122 releases, and 20 active

contributors (OpSa18).

4.1.5 SNAP!
Snap! is a visual programming language based on connected block segments. It was

developed by SAP in cooperation with the University of Berkeley in 2011. The

language aims to support the learning and teaching of basic programming concepts

for any age. It was inspired by Scratch, which was developed at the MIT Media Lab

(ScWi18). The software is distributed under an open-source AGPL v1 license and was

initially developed by Brian Harvey and Jens Moenig in 2011 (SnWi18).

The software is written in JavaScript, and the interface is accessible via any standard

web browser. Unlike Scratch, Snap! has enriched features like more advanced

concepts, allowing to teach more complex content to even advanced software

4 Open Source Software at SAP

49

students. (SnWi18). The programming language is helping to bridge the gap between

several educational target groups. Besides Berkeley and SAP, many other educational

and private institutions are using the software to teach and to discuss different

architectural concepts and basic programming fundamentals.

4.1.6 BUILD
Build is a SAP internally developed design tool, which also allows a non-technical user

to create interactive prototypes. It utilizes different input types and can automatically

convert paper doodles into a functioning mockup prototype. The program was

launched in 2014 under an Apache 2.0v license. It is made available and hosted on

GitHub. Besides the source code, a functioning version can be accessed with any

standard web browser (BuGi14).

Furthermore, the program has the capability to use real sample data and to tap into a

broad technology stack such as Mongo.DB, Express, AngularJS, and Node.js. It

follows the SAP Fiori design guidelines and can access UI frameworks such as

OpenUI5 (BuBu18).

4 Open Source Software at SAP

50

 Contributions
SAP is part of several open source and general software foundations. Each of them

serves a specific purpose and supports the company in various ways. Working in a

community on potentially disruptive new technologies seems to appeal to the software

company. A contribution has several dynamics; however, two aspects are to be

considered: The more companies are working on innovation, the more likely it is that

they get established. The other aspect is to predict specific trends. Companies with

extensive research and development departments tend to be more accurate about

such predictions.

In general, contributing companies are not just donating funds to a foundation, but

instead, they are actively engaged in the development of innovation, contributing core

competencies in various fields of technology. Another advantage of an external

foundation is the neutrality and agility they can operate. Some foundations need to

exist over several decades to deliver tangible results.

Many of the following foundations seem to work on technologies that might enable the

next generation of future applications and technologies. To be part of such foundations

comes with a high price. Therefore, companies are making sure that the investment is

placed carefully in order to extract potential wins in the form of skills, knowledge, and

future-ready applications.

4.2.1 Linux Foundation
The Linux Foundation is a non-profit trade organization, which has its origins in 1993.

In the same year, the first Linux mailing list was introduced and received global

attention. In 2000 the foundation was officially established after the merge of two large

Linux groups.

The foundation serves various purposes: it helps to manage Linux communities,

oversees projects, fosters innovation, and forms a neutral place for Linux and open-

source projects to develop and evolve. The website Linux.com is hosted by the

organization as well, which is developing into a platform for tutorials and guidelines on

how to engage with the open source ecosystem.

4 Open Source Software at SAP

51

For the last couple of years, the foundation has been broadening its scope of interest

to new emerging open source technologies and is increasingly becoming an umbrella

organization for a set of different foundations. SAP is engaging with a variety of those

newer foundations, which will be part of the upcoming sections. Those new areas

include technologies such as blockchain, cloud computing, Kubernetes, Dockers,

drones, and a range of further projects like OpenAPI and Open Container Initiative.

SAP is a member of the foundation since 2017; the membership presents for the

company an essential step for its open-source strategy. There are several benefits,

and it is seen as a reliable indicator of the increasing importance of open source

technologies in the industry.

The Node.js Foundation is part of the Linux Foundation and was established in 2015.

The organization was founded to support the adoption of the Node.js and other

modules, which is accomplished by an open governance model and therefore

encourages engagement and participation from partners and members. The open-

governed aspect should also guarantee the long-term success of the organization and

possibly enables the continued improvement over an extended period.

Node.js itself is a JavaScript run-time environment that operates cross-platform and

runs JavaScript outside of an internet browser. It has an MIT open-source license and

supports a variety of operating systems.

The foundation is essential, aside from its cross-platform capabilities, with their applied

skills and development in JavaScript technologies. JavaScript is a core technology in

the SAP Cloud Platform, and it is essential for the company to have that technology up

to date, and upcoming changes implement as early as possible to give their customers

the best experience.

Google donated the Cloud Native Computing Foundation to the Linux Foundation

in 2015. It is an open-source and not-for-profit organization to build a collaborative

community to improve and develop cloud and cloud-related technologies primarily in

the area of application speed and scaling. The foundation established a variety of

projects to serve those purposes, and a large community has formed around the

organization to distribute and to learn the new evolutions in the fast-growing area of

4 Open Source Software at SAP

52

cloud computing. Since 2017, SAP is a member of the foundation and is jointly working

on its improvements alongside companies such as Amazon, MS, Oracle, VMware, and

many more. The decision of SAP to join the foundation is supporting the company in

several ways, but one crucial area is the development of a hybrid cloud model, which

SAP is already implementing, it can still be further enhanced to give customers an

extra reliable and faster integration from on-premises and cloud-hosted applications

(SaCN17).

The CNCF is working on a broad set of essential projects which are of potential value

to SAP. The projects contain Kubernetes, Container, or Envoy. These projects are

concentrated around the possibility of exploring the capabilities of cloud computing and

are seen as critical areas and seed technologies for further improvements in that

particular area. Kubernetes, for instance, is one of the sub-projects of the foundation,

it is an open-source framework for the automation of deployment and control of

applications using containerization and clustering. The orchestrating tool is also used

as an alternative to virtualized runtimes. The software makes it possible to run web

applications in different environments, such as on-premises and cloud (KuWi18).

The Hyperledger project is founded and governed by the Linux Foundation and was

established to improve blockchain technologies and provide guidelines and

educational courses for interested organizations. The project is concentrated on open

source blockchain technologies and combines a variety of tools and communities to

enable synergy effects, and it helps the technology mature and grow. SAP is part of

the project in addition to several other industry-leading cooperation such as IBM,

Cisco, Fujitsu, Intel, Red Hat, and VMware (HyWi18).

The OpenAPI Initiative is part of the Linux Foundation and was a donation of

SmartBear Software. The original project name was Swagger Specification and

consisted mainly of a set of rules and guidelines to formalize the APIs. The OpenAPI

initiative helps to uniform the way REST APIs are defined. (AbOp16). REST APIs is

short for Representational State Transfer; they provide guidelines for establishing web

services and connections between applications (ReWi18).

SAP joined the initiative in 2017 and thus further strengthened their effort on improving

cloud technologies. For SAP, the initiative represents a cornerstone; it supports the

4 Open Source Software at SAP

53

company’s development of modern applications and development environments. In

that sense, cloud-native applications are increasingly built upon microservices, which

rely heavily on APIs.

The OpenAPI Initiative is working on ways to improve data exchange between all kinds

of different programs and devices, which is especially essential when it comes to IoT

technologies. Those devices rely on seamless communications between various

programs, third-party applications, and other devices to work efficiently. SAP supports

that course and has opened their web-based applications such as S/4HANA, S/4HANA

Cloud, and further SaaS web products to support the REST full standards (ApSp18).

Customers can manage their APIs with the SAP API Business Hub and the API

Manager, which gives them a centralized place to receive real-time data about API

usage (ApCl18).

4.2.2 Apache Software Foundation
The Apache Software Foundation is an open, not-for-profit trade decentralized

organization to support open-source software; it was established in 1999 (ApWi18).

The foundation governs open source licenses and gives training, guidance, and

support in the establishing process of open-source software. As for the organizational

structure of the foundation, it is an independent entity and organized as a meritocracy.

Companies can take part via memberships that are only handed to volunteering

organizations that support Apache projects actively. Their focus is on the continuous

development in areas such as web servers, Big data, and, therefore, applications like

Hadoop, KAFKA, and spark, which are becoming increasingly important.

4.2.3 Eclipse Foundation
The Eclipse Foundation is a not-for-profit, independent organization to support open-

source software, frameworks and development environments. It holds more than 275

member organizations and has established a vendor-neutral, transparent, open, and

global community. It supported more than 350 open source projects in 2018 in a broad

range of technologies such as business intelligence, cloud computing, IoT, and web

tool automation development. The initial project of the foundation was the Eclipse SDK

platform. The software is a development environment supporting a significant number

of different developer languages (EcWi18). SAP is one of the founding members and

4 Open Source Software at SAP

54

has been on board since 2004. Together the organizations are researching in a broad

range of projects, for example, jGit and EGit. In an upcoming section of this thesis,

there will be a review of those Git software projects produced by SAP and partners.

4.2.4 OpenStack Foundation
OpenStack is an open platform for cloud computing technologies; it provides an

Infrastructure-as-a-service (IaaS). It primarily focuses on virtual runtime software

support. The project was initially founded jointly by NASA and Rackspace in 2010. Two

years later, in 2012, the project was opened to the public and accessible to business

partners. Since then, the project serves more than 60,000 individual members globally

in more than 180 countries. In 2016 OpenStack established a new organizational

structure and had been governed by the OpenStack Foundation ever since. The

foundation is vital for SAP in business application relevant areas such as networking,

storage management, and identification (OpWi18).

4.2.5 Cloud Foundry Foundation
The Cloud Foundry Foundation is an independent and not-for-profit organization that

governs a range of open source cloud-related software applications.

Initially, the Cloud Foundry Foundation was developed by Chris Richardson in 2008,

which was acquired by SpringSource the following year in 2009 (CFWi18). However,

SpringSource was sold shortly after the acquisition of VMware. Nonetheless, the

original open-source software application, Cloud Foundry, was further developed and

produced despite those events. The software allows to host applications on multiple

cloud providers and was officially released to the public in 2011 (ClWI18). VMware

initiated a spin-off together with General Electric to establish the company Pivotal to

monetize the product (WiVM18). In 2015 VMware decided to release the Cloud

Foundry project as a collaborative project and granted all rights to the Linux

Foundation. Due to the neutral character of the foundation, the project was able to

develop further with no restrictions based on company rules or be converted into

closed source software for profit.

4 Open Source Software at SAP

55

The foundation gathered vast interest around software companies, and SAP became

a member in 2017 and opened a Cloud Foundry Dojo in Walldorf, Germany, where

several employees from both organizations work jointly on cloud software (ClSA18).

4.2.6 jGit
The Git application supports the management and tracking of changes submitted to a

software project. It is an essential tool for open source communities and was initially

developed by Linus Torvalds in 2005. Different versions of Git became part of

development tools such as the Eclipse IDE (GiWi218).

jGit supports working in a Java environment with communications between Eclipse

and a Git SCM. It can pull and push requests from code repositories and work with

several branches of the project and commit them back to the project. Therefore, it

handles a part of the organizational work around a software project. jGit itself is

composed in Java and makes it suitable for developers to update their Git repositories

without the need to use another external compiler library (EcjG17).

In 2008, Shawn Pearce and four other SAP members joined the Eclipse eGit/jGit

project alongside engineers from other companies. Two years later, in 2010, Eclipse

started to use jGit within their IDE.

4.2.7 Cloud Foundry
Cloud Foundry is a platform as a Service (PaaS) and is openly governed by the Cloud

Foundry Foundation and its partner members. The platform provides a multi-cloud

application, which allows running a wide variety of software languages, browser-based

with the integration of several instances and programs (CfWi18).

In 2018 SAP had 68 developers working together with Cloud Foundry on both the core

and extensions to develop new projects, contribute actively to existing software, and

enabling the further integration of open source software around SAP. Most of the

developers contribute full time to those projects, and besides contributing code also

pull requests are reviewed (SaCl18).

4 Open Source Software at SAP

56

4.2.8 Kubernetes
Kubernetes help to reduce the complexity with containerized frameworks and works

alongside the SAP Cloud Platform to manage several cloud applications. It is an Open

Source project which was initially founded by Google Inc. in 2014 (KubW18). It was

created to manage a large scale of applications across different servers, to handle a

scalable amount of data without compromising a running system. In 2015, Google

teamed up with the Linux Fountain to create an independent organization: The Cloud

Native Computing Foundation - CNCF. The foundation oversees the open API initiative

and helps to formalize the project development and to make contributions from external

individuals and companies possible (KuTe16). SAP became a member of the CNCF

in this early stage and therefore strengthened itself to establish a Cloud-as-a-Service

model besides its Platform-as-a-Service offers.

Since then, to project has reached considerable interest across the cloud industry, and

in 201, it was one of the top 10 projects on GitHub and one of the highest contributors

to the Linux Foundation (KuCo17).

5 Conclusion

57

5 Conclusion
To conclude this thesis, few reasons can be isolated to answer the initial question of

why a proprietary software company engages with open-source software. It needs to

be acknowledged that not all contributing factors of a company deciding whether to

engage with the open-source software ecosystem or not, can be considered. Instead,

due to the observations on the matter, some different aspects of why an engagement

might be beneficial are pointed out here. In this thesis, the focus was set on the

proprietary software provider SAP SE to generate a profound understanding of

possible motivating factors of a single case. Therefrom follows concluding aspects that

contributed to their structural shift to increase open source activities.

One of the initial engagements with open source software was the porting of the SAP

R/3 product to Linux in 1998. Due to the early success of providing software to the

open-source market, the company started to explore other areas where Linux could be

adopted and might lead to a sales increase.

Open and different forms of co-innovation represent the most compelling argument for

engaging with open source for Peter Giese, director of SAP’s Open Source Program

Office (SaLi19). This form of collaboration can lead to a set of positive benefits for a

company.

Prahalad and Hamel pointed out (1990) that the concentration of a company on its

core competencies increases its chances of succeeding in markets (CCWi90).

Furthermore, it increases innovation capabilities in certain niche technology areas. The

collaborative combination of knowledge and core competencies can help a group of

companies with research and development projects. Due to the collaborative effort of

companies and open communities, the chance to set a new standard increase with the

size and number of the participating members. If a critical adoption of new technologies

and formats is reached, it can establish new standards comparable to the precipices

introduced by Utterback and Abernathy of the Dominant Design (DDWi19).

Another aspect that is suiting to proprietary software providers is to be close to so-

called innovation hubs. In taking part in an open developer community that is working

5 Conclusion

58

on the development of new standards such as OpenAPI, a company can influence and

adapt important technology as early as possible.

Besides the increase of innovation capabilities and eliminating the risk of unforeseen

disruptive technologies, another decisive factor is the access to talent pools.

Companies are in constant competition for new potential hires in key technologies. It

is seen as one of the mission-critical tasks of a company to attract and hire the best

talents in an industry in order to stay relevant to the market. Open source communities

have proven themselves as an excellent reference for human resources. Besides

having a collective understanding of a specific topic, members of open communities

are more likely to be higher intrinsically motivated. That can have a two-sided effect:

besides having access to a talented community, it also reduces the costs of acquiring

new employees.

Gray and Balmer pointed out in their studies the importance of a managed corporate

image and reputation to be observed by customers as an innovative organization. By

actively engaging with open source communities, a positive reputation can be

maintained and increased as a technological advocate company. However, when

consuming open-source software, companies stated that moral obligations to invest

back to the open-source ecosystem is part of using open source (OSTJ03).

Since 1998, when SAP made its products for Linux available, the company has

engaged with the open-source ecosystem. However, the company is instead

recognized as a traditional proprietary software company. That is likely due to two

reasons: first, the majority of products of the ERP company are only able to be obtained

as closed source software. The company can be regarded as successful with this

strategy in an economic aspect. The second reason for the lack of awareness for SAP’s

open-source engagements is that insufficient marketing campaigns were released to

promote their free products. This is also due to the different characteristics of how open

source products are distributed in comparison to proprietary products.

Nonetheless, SAP decided to advert its engagement more and to streamline its

engagements. Because of this, the company introduced a new department, the open-

source program office (OSPO). The department consists of globally located members

from different entities and is a centralized place for all topics surrounding open-source

5 Conclusion

59

software. It seems to be of increased importance for technologies like cloud computing

and artificial intelligence, which are predominantly developed by open communities. It

is likely that this trend contributed to the shift of the industry towards open source

technologies.

Finally, one can conclude that former strictly proprietary software providers are

increasingly engaging with open source technologies to increase their competitive

advantage (CAWi87). This is also due to the increased importance of open

technologies as described above and to the ubiquitous integrated character of those

emerging technologies, which will eventually bypass the current trend based on the

technology life cycle (LifC09).

It is to point out that an engagement with the open-source ecosystem is often

observable on a broad-spectrum, including consuming, owning, and contributing to

open projects. Although there is already a long history of such engagements, they

have, so far, not been promoted publicly in the same manner as we can observe it in

the recent decade of 2010.

6 Glossary

60

6 Glossary
AI Artificial Intelligence

ASF Apache Software Foundation

AWS Amazon Web Service

B2B Business to Business

B2C Business to Consumer

BASIC Beginner's All-purpose Symbolic Instruction Code

COBOL

CRM

Common Business-Oriented Language Customer

Relationship Management

ERP

FOSS

Enterprise Resource Planning

Free and Open Source Software

FSM Free Software Movement

GCP Google Cloud Platform

GNU GNU is not UNIX

HCP High-Performance Computing

HRM Human Resource Management

IaaS Infrastructure-as-a-Service

IDE Integrated Development Environment

LOB Line of Business

ML Machine Learning

OSI Open Source Initiative

PaaS

SAP

Platform-as-a-Service

Plasmid-Based

SCM Supply Chain Management

SME

SaaS

Small and mid-sized companies

Software-as-a-Service

7 References

61

7 References
AbOp16. (2016). OpenAPIs - About. Retrieved 12 09, 2018, from

https://www.openapis.org/about

AbOp18. (2018, 2019 05). Abas-erp.com - closed-source-open-source-erp. Retrieved from
https://abas-erp.com/en/news/closed-source-open-source-erp: 28

AbSa18. (2017). blogs.sap.com - Overview of ABAP in SAP Cloud Platform. Retrieved 11
26, 2018, from https://blogs.sap.com/2017/09/26/overview-of-abap-in-sap-cloud-
platform/

AbWi18. (2018). en.wikipedia.org - ABAP. Retrieved 11 25, 2018, from
https://en.wikipedia.org/w/index.php?title=ABAP&oldid=867639666

AdER15. (2015). ERP SoftwareBlog - The Advantages and Disadvantages of Cloud and On-
Premise ERP Systems. Retrieved 04 22, 2019, from
https://www.erpsoftwareblog.com/2015/12/the-advantages-and-disadvantages-of-
cloud-and-on-premise-erp-systems/

AfWi18. (2018). Wikipedia - Affero. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Affero_General_Public_License&oldid=845
529400

AiGo18. (2015). ai.googleblog.com - TensorFlow - Google’s latest machine learning system,
open sourced for everyone. Retrieved 12 30, 2018, from
https://ai.googleblog.com/2015/11/

AmWi16. (2016). Wired.com - Amazon's Giving away the AI Behind its Product
Recommendations. Retrieved 12 16, 2018, from
https://www.wired.com/2016/05/amazons-giving-away-ai-behind-product-
recommendations/

AnWi18. (2018). Android - Wikipedia. Retrieved 11 15, 2018, from
https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=868047
026

ApCl18. (2018). Cloudplatform.sap.com - SAP Cloud Platform API Management. Retrieved
05 12, 2019, from https://cloudplatform.sap.com/capabilities/product-info.SAP-Cloud-
Platform-API-Management.e39ffff0-6b34-4611-9989-20da901caa47.html

ApcW18. (2018, 08 12). Wikipedia - Apache License. Retrieved 12 10, 2018, from
https://en.wikipedia.org/w/index.php?title=Apache_License&oldid=873376586

ApRi07. (2007). Richart Stallman - The Problems with older versions of the Apple Public
Source License (APSL) . Retrieved 01 16, 2019, from
https://www.gnu.org/philosophy/historical-apsl.en.html

ApSp18. (2018). SAP - API. Retrieved 05 12, 2019, from https://api.sap.com

ApTo17. (2017). Appsruntheworld.com - ERP Software. Retrieved 04 24, 2019, from
https://www.appsruntheworld.com/top-10-erp-software-vendors-and-market-forecast/

7 References

62

ApWi18. (2018). Wikipedia - Apache Software Foundation. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=The_Apache_Software_Foundation&oldid=
871213657

AtBu16. (2016). businessinsider - This SAP president has a fabulous career because he
spent one sad and lonely holiday at work. Retrieved 11 23, 2018, from
https://www.businessinsider.de/from-lonley-holiday-to-sap-president-2016-
3?r=US&IR=T

BSDW18. (2018). Wikipedia -BSD Licenses. Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?title=BSD_licenses&oldid=873127188

BuBu18. (2018, 10 12). Build.me - Introduction. Retrieved 12 16, 2018, from
https://www.build.me/blog

BuGi14. (2014). Github - BUILD-Overview. Retrieved 12 14, 2018, from
https://github.com/SAP/BUILD/wiki/BUILD-Overview

CAWi87. (2019). Wikipedia.org - Competitive Advantage. Retrieved 05 29, 2019, from
https://en.wikipedia.org/w/index.php?title=Competitive_advantage&oldid=877552305

CCWi90. (2019). Wikipedia.org - Core Competency. Retrieved 05 26, 2019, from
https://en.wikipedia.org/w/index.php?title=Core_competency&oldid=891869621

CFWi18. (2018). Wikipedia - Cloud Foundry. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=866855488

CfWi18. (2018). Wikipedia.org - Cloud Foundry. Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=863673611

ClDo18. (2018, 10 12). Cloud Foundry - Dojo Engieering. Retrieved 05 05, 2019, from
https://www.cloudfoundry.org/engineering/

CloS17. (2017, 12 1). SAP - Cloud Platform . Retrieved 05 10, 2019, from
https://cloudplatform.sap.com/index.html

CloW18. (2018). Cloud Computing - Wikipedia. Retrieved 11 20, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_computing&oldid=869660970

ClSa17. (2017, 10 2). Cloudplatform.sap.com - Cloud Foundry. Retrieved 11 23, 2018, from
https://cloudplatform.sap.com/enterprise-paas/cloudfoundry.html

ClSA18. (2018). Cloudplatform.sap.com - SAP Cloud Platform Multi-Cloud and Cloud
Foundry. Retrieved 12 09, 2018, from https://cloudplatform.sap.com/enterprise-
paas/cloudfoundry.html

ClWi18. (2018). Cloud Foundry Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=866855488

ClWI18. (2018, 10 2). Wikipedia.org - Cloud Foundry. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Cloud_Foundry&oldid=866855488

CoFr18. (2018). Wikipedia - Comparison of free and open-source software licenses.
Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?title=Comparison_of_free_and_open-
source_software_licenses&oldid=873409120

7 References

63

CoWi18. (2018). COBOL Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=COBOL&oldid=866770674

CoWi18. (2018). Wikipedia - Copyleft. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Copyleft&oldid=867678706

CPWi19. (2019). Wikipedia - SAP_Cloud_Platform. Retrieved 05 10, 2019, from
https://en.wikipedia.org/w/index.php?title=SAP_Cloud_Platform&oldid=887997567

DDWi19. (2019). Wikipedia.org - Dominant Design. Retrieved 05 25, 2019, from
https://en.wikipedia.org/w/index.php?title=Dominant_design&oldid=868941106

DocCr18. (2018). www.crunchbase.com - Docker. Retrieved 11 26, 2018, from
https://www.crunchbase.com/organization/docker#section-overview

DocWi18. (2018). Wikipedia - Cloud Foundry. Retrieved 11 26, 2018, from
https://en.wikipedia.org/wiki/Cloud_Foundry

DoWi18. (2018). Wikipedia - Dot-com bubble. Retrieved 11 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Dot-com_bubble&oldid=867445707

EcjG17. (2017). Eclipse.org - jGit. Retrieved 05 24, 2019, from https://www.eclipse.org/jgit/

EcWi18. (2018). Eclipse Foundation Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Eclipse_Foundation&oldid=866377135

EcWi18. (2018). Wikipedia - Eclipse Foundation. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Eclipse_Foundation&oldid=866377135

EnWi18. (2018, 6 2). Wikipedia - ENIAC . Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=ENIAC&oldid=866436282

EnWi18. (2018). Wikipedia - Enterprise resource planning. Retrieved 02 10, 2019, from
https://en.wikipedia.org/w/index.php?title=Enterprise_resource_planning&oldid=8818
75356

ErRa07. (2007, 01 01). rarenewspapers - Open Innovation. Retrieved 07 26, 2018, from
http://www.rarenewspapers.com/view/606375?imagelist=1

FiSa17. (2017, 10 2). Sap.com - Best UI5 APP Ever. Retrieved 05 10, 2019, from
https://blogs.sap.com/2017/01/13/best-ui5-app-ever-.../

FitzT06. (2006). Fitzgerald, B. - The transformation of open source software. MIS Quarterly,
30(3), 587–598.

FoWi18. (2018). Fork Software Development Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Fork_(software_development)&oldid=8631
13214

FrRi07. (2015). Richard Stallman - Why Open Source misses the point of Free Software.
Retrieved 01 17, 2019, from https://www.gnu.org/philosophy/open-source-misses-the-
point.en.html

FrWa18. (2018). Wikipedia - Freeware. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Freeware&oldid=870022180

7 References

64

FrWi18. (2018, 08 26). Wikipedia - Free Software Initiative. Retrieved 09 20, 2018, from
https://en.wikipedia.org/w/index.php?title=Alternative_terms_for_free_software&oldid
=820618860

GiCl19. (2019). Github.com - cla-assistant. Retrieved 05 08, 2019, from
https://github.com/cla-assistant/cla-assistant

GiWi18. (2018, 08 21). Wikipedia - Git. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Git&oldid=864178382

GiWi218. (2018, 12 1). Wikipedia - Structure of Git Systems. Retrieved 05 23, 2019, from
https://en.wikipedia.org/w/index.php?title=Git&oldid=896664456

GnFr96. (1996). GNU.org - The Free Software Definition. Retrieved 12 11, 2018, from
http://www.gnu.org/philosophy/free-sw.en.html

GnWi18. (2018). Wikipedia - GNU General Public License. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?title=GNU_General_Public_License&oldid=8731
25522

HalH98. (1998). Carl Shapiro, Hal Varian - Information Rules: A Strategic Guide to the
Network Economy. US: Harvard Business School Press.

HaWi18. (2018). Wikipedia - Halloween documents. Retrieved 01 17, 2019, from
https://en.wikipedia.org/w/index.php?title=Halloween_documents&oldid=861165138

HipMI05. (2005). Democratizing innovation. Cambridge. Massachusetts: MIT Press - von
Hippel, E.

HyLi17. (2017). www.linuxfoundation.org - Hyperledger Welcomes SAP as Premier Member.
Retrieved 11 23, 2018, from https://www.linuxfoundation.org/press-
release/2017/03/hyperledger-welcomes-sap-as-premier-member/

HyWi18. (2018). Wikipedia - Hyperleger. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Hyperledger&oldid=872076238

InfM90. (1990). Information Technology Implementation Research: A Technological Diffusion
Approach - R. B. Cooper, R. W. Zmud (36/2 ed.). Management of Science.

IsoIs18. (2016). www.iso.org - develop and publish International Standards. Retrieved 11 26,
2018, from https://www.iso.org/standards.html

JoBa18. (2018). SAP Blog Open Source Monday Baker, Jonathan. Retrieved 11 03, 2018,
from https://blogs.sap.com/2018/03/19/open-source-monday-is-the-license-important/

JoOp10. (2010). Hedman, Jonas - EVOLUTION OF BUSINESS MODELS: A CASE STUDY
OF SAP. Retrieved 11 11, 2018, from
http://openarchive.cbs.dk/bitstream/handle/10398/8725/Jonas_Hedman_2.pdf?seque
nce=1

JosT13. (2013). Some Simple Economics of Open Source - Josh Lerner, Jean Tirole (02
ed.). The Journal of Industrial Economics.

KubW18. (2018). Wikipedia.org - Kubernetes. Retrieved 10 31, 2018, from
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=866646107

7 References

65

KuCo17. (2017, 09 29). Containerjournal.com - Kubernetes. (containerjournal) Retrieved 11
03, 2018, from https://containerjournal.com/2017/09/29/sap-commits-kubernetes-
container-orchestrator/

KuTe16. (2016). Techcrunch.com - Kubernetes. Retrieved 10 31, 2018, from
https://techcrunch.com/2015/07/21/as-kubernetes-hits-1-0-google-donates-
technology-to-newly-formed-cloud-native-computing-foundation-with-ibm-intel-twitter-
and-others/

KuWi18. (2018). Wikipedia - Kubernetes. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=Kubernetes&oldid=872771944

LifC09. (2009). Wikipedia.org - Technology_life_cycle. Retrieved 06 01, 2019, from
https://en.wikipedia.org/w/index.php?title=Technology_life_cycle&oldid=898111673

LiGn10. (2012, 09 25). Stallman, Richard- gnu.org - Linux and GNU. Retrieved 10 15, 2018,
from https://www.gnu.org/gnu/linux-and-gnu.en.html

LinW18. (2018). Wikipedia.org - Linux. Retrieved 11 15, 2018, from
https://en.wikipedia.org/w/index.php?title=Linux&oldid=868885407

LiSa19. (2019). The Linux Foundation - SAP: One of Open Source’s Best Kept Secrets.
Retrieved 05 04, 2019, from https://www.linuxfoundation.org/blog/2019/01/sap-one-
of-open-sources-best-kept-secrets/

LiSt18. (2018). Linux Market Share - gs.statcounter.com. Retrieved 11 15, 2018, from
http://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201702-
201802

LiWi18. (2018). Wikipeadia - Linus's Law. Retrieved 04 28, 2019, from
https://en.wikipedia.org/w/index.php?title=Linus%27s_Law&oldid=875114029

MoOp18. (2018). Wikipedia - Mobile operating system. Retrieved 04 13, 2019, from
https://en.wikipedia.org/w/index.php?title=Mobile_operating_system&oldid=89160978
9

MPLW18. (2018). Wikipedia - Mozilla Public License. Retrieved 12 13, 2018, from
https://en.wikipedia.org/w/index.php?title=Mozilla_Public_License&oldid=866467919

OpAi18. (2018). Wikipedia - OpenAi. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=OpenAI&oldid=872793154

Open07. (2007, 03 22). opensource.org. Retrieved 11 03, 2018, from Open Source Initiative:
https://opensource.org/docs/definition.php

OpeWi18. (2018). en.wikipedia.org - OpenAPI. Retrieved 11 26, 2018, from
https://en.wikipedia.org/w/index.php?title=OpenAPI_Specification&oldid=867550802

OpSa18. (2018, 12 2). Blogs.sap.com - Open Source Monday Chevrotain. Retrieved 05 10,
2019, from https://blogs.sap.com/2018/02/04/open-source-monday-chevrotain/

OpSt99. (1999). Stallman, Richard- Open Sources: Voices from the Open Source
Revolution. O'Reilly & Associates, Inc. Retrieved from
https://www.gnu.org/gnu/thegnuproject.en.html

OpTh10. (2010). Therigister.co.uk - Nasa Rackspace Openstack. Retrieved 12 13, 2018,
from https://www.theregister.co.uk/2010/07/19/nasa_rackspace_openstack/?page=2

7 References

66

OpTh16. (2016). opensource.google.com - Thirdparty Licenses. Retrieved 12 11, 2018, from
https://opensource.google.com/docs/thirdparty/licenses/

OpWi18. (2018). Wikipedia OpenStack. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=OpenStack&oldid=870677124

OrWi18. (2018). Oracle Corporation - Wikipedia. Retrieved 11 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Oracle_Corporation&oldid=868216249

OsiO18. (2018). opensource.org - The Open Source Definition Version 1.9. Retrieved 11 26,
2018, from https://opensource.org/osr-rationale

OSOp16. (2016). opensource.com - Robin Muilwijk - Top 5 open source web servers.
Retrieved 01 16, 2019, from https://opensource.com/business/16/8/top-5-open-
source-web-servers

OSTJ03. (2003). The Journal of Systems and Software - Open source software: an
evaluation. Alfonso Fuggetta, 66, 70-90.

PaGo18. (2018). cloud.google.com - Available first on Google Cloud: Intel Optane DC
Persistent Memory. Retrieved 11 23, 2018, from
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-
optane-dc-persistent-memory

PaOS04. (2004). Paul Kavanagh- Where Open Source Is Successful. In Open Source
Software Implementation and Management (pp. Pages 19-40). Digital Press.

PhGn85. (85). gnu.org - Philosophy. Retrieved 12 5, 2018, from
http://www.gnu.org/philosophy/free-sw.en.html

R3Wi18. (2018). Wikipedia - SAP R/3. Retrieved 02 10, 2019, from
https://en.wikipedia.org/w/index.php?title=SAP_R/3&oldid=861427978

ReWi18. (2018, 12 2). Wikipedia - Representational State Transfer. Retrieved 12 09, 2018,
from
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=872
203836

RiIn17. (2017). Rightsdirect.com. Retrieved 11 03, 2018, from
https://www.rightsdirect.com/international-copyright-basics/

SaCl18. (2018). Sap.com - SAP Cloud Platform. Retrieved 12 18, 2018, from
https://news.sap.com/2017/10/sap-cloud-platform-and-open-source-all-in/

SaCl19. (2014). SAP - CLA-assistant. Retrieved 05 08, 2019, from https://cla-assistant.io

SaCN17. (2017). Cncf.io - Cloud Native Computing Foundation Welcomes SAP As Platinum
Member. Retrieved 12 09, 2018, from
https://www.cncf.io/announcement/2017/10/11/cloud-native-computing-foundation-
welcomes-sap-platinum-member/

SaCo18. (2018). cloudplatform.sap.com. Retrieved 11 23, 2018, from
https://cloudplatform.sap.com/cloudfoundry/cf-contributions.html

SaHi18. (2018). www.sap.com - SAP: A 46-year history of success. Retrieved 11 23, 2018,
from https://www.sap.com/corporate/en/company/history.2001-2010.html#2001-2010

7 References

67

SaLi17. (2017). www.linuxfoundation.org - In Joining Cloud Native Computing Foundation,
SAP Steps Up Its Open Source Commitment. Retrieved 11 23, 2018, from
https://www.linuxfoundation.org/blog/2017/09/joining-cloud-native-computing-
foundation-sap-steps-open-source-commitment/

SaLi19. (2019). Linuxfoundation.org - SAP: One of Open Source’s Best Kept Secrets.
Retrieved 05 26, 2019, from https://www.linuxfoundation.org/blog/2019/01/sap-one-
of-open-sources-best-kept-secrets/

SAWi18. (2018). SAP ERP - Wikipedia. Retrieved 11 11, 2018, from
https://en.wikipedia.org/w/index.php?title=SAP_ERP&oldid=867817710

SaWi18. (2018). Wikipedia - SAP SE. Retrieved 12 15, 2018, from
https://en.wikipedia.org/w/index.php?title=SAP_SE&oldid=872245407

ScWi18. (2018, 10 30). Wikipedia - Scratch. Retrieved 12 10, 2018, from
https://en.wikipedia.org/w/index.php?title=Scratch_(programming_language)&oldid=8
66532637

ShWi18. (2018, 08 28). Wikipedia - Shareware. Retrieved 09 10, 2018, from Wikipedia:
https://en.wikipedia.org/w/index.php?title=Shareware&oldid=846878603

SnWi18. (2018, 09 28). Wikipedia - Snap! (programming language). Retrieved 12 10, 2018,
from Wikipedia:
https://en.wikipedia.org/w/index.php?title=Snap!_(programming_language)&oldid=86
1562040

SoWi18. (2018). Wikipedia - Public-Domain Software. Retrieved 12 11, 2018, from
https://en.wikipedia.org/w/index.php?title=Public-domain_software&oldid=869332992

SuTh18. (2018). Ahmed Ibrahim, Craig ValliIan McAteer, Junaid Chaudhry. The Journal of -
A security review of local government using NIST CSF, 74(10), pp 5171–5186.

SuWi18. (2018). Wikipedia - SUN Microsystems. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=Sun_Microsystems&oldid=873668765

TeGo17. (2017). Kunal Parikh - why Google open-sourced TensorFlow. Retrieved 11 21,
2018, from https://hub.packtpub.com/google-opensorced-tensorflow/

TeHu18. (2018). TensorFlow Packhub. Retrieved 11 15, 2018, from
https://hub.packtpub.com/google-opensorced-tensorflow/

TesW18. (2018). Tesla Inc, - Wikipedia. Retrieved 11 15, 2018, from
https://en.wikipedia.org/w/index.php?title=Tesla,_Inc.&oldid=868708607

TeWi18. (2018). Wikipedia - TensorFlow. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=TensorFlow&oldid=871761161

UiGi14. (2014). GitHub - SAP OpenUI5. Retrieved 05 10, 2019, from
https://github.com/SAP/openui5

UnSc15. (2015, 10 9). ScienceDirect - Understanding Enterprise Open Source Software
Evolution. Retrieved 04 24, 2019, from https://pdf.sciencedirectassets.com/280203/1-
s2.0-S1877050915X00251/1-s2.0-S1877050915027441/main.pdf?x-amz-security-
token=AgoJb3JpZ2luX2VjEPr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXV

7 References

68

zLWVhc3QtMSJIMEYCIQC8HtrYdigI4SbPVxG5C0D51Ar%2BMlo8qvEH%2FS37YO
Y1gQIhAPOYBYBZ

UnWi18. (2018). UNIX Wikipedia. Retrieved 11 03, 2018, from
https://en.wikipedia.org/w/index.php?title=Unix&oldid=864040442

UpsSa18. (2018). news.sap.com - New SAP Upscale Commerce Solution Extends Customer
Experience Ecosystem with Open Integration Tools. Retrieved 11 23, 2018, from
https://news.sap.com/2018/10/sap-upscale-commerce-extends-customer-experience-
ecosystem-open-integration-tools/

VaWi18. (2018). Wikipedia - Value Network. Retrieved 12 16, 2018, from
https://en.wikipedia.org/w/index.php?title=Value_network&oldid=865014546

VenWi18. (2018). en.wikipedia.org - Vendor Lock-in. Retrieved 11 23, 2018, from
https://en.wikipedia.org/w/index.php?title=Vendor_lock-in&oldid=870220812

WaIn08. (2008). InfoWorld.com - What Cloud Computing Really Means - Eric Knorr, Galen
Gruman. http://skysolutions.co.zw/docs/What_Cloud_Computing_Really_Means.pdf,
14(13), 3.

WhIM12. (2012). Why do commercial companies contribute to open source software?
International Journal of Information Management, 32, 106-117.

WhOp16. (2016). What is the cloud - opensource.com. Retrieved 11 23, 2018, from
https://opensource.com/resources/cloud

WiAn06. (2006). Anthony D. Williams - Wikinomics: How Mass Collaboration Changes
Everything. US: Tantor Media.

WinWi18. (2018). en.wikipedia.org - Winner-take-all market. Retrieved 11 23, 2018, from
https://en.wikipedia.org/w/index.php?title=Winner-take-all_market&oldid=859399550

WiVM18. (2018). Wikipedia - VMware. Retrieved 12 09, 2018, from
https://en.wikipedia.org/w/index.php?title=VMware&oldid=872748453

WMU18. (https://www.unido.org/sites/default/files/files/2018-
06/World_manufacturing_production_2018_q1.pdf). World Manufacturing Production.
United Nations Industrial Development Organization.

