WIRTSCHAFTSUNIVERSITAT WIEN
Vienna University of Economics and Business WIRTSCHAFTS

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

/e
“equis LR aacse <G AMBA

An Introduction to Web Application Development —
Combining Jakarta Server Pages with Programs Written in
Scripting Languages

Bachelor Thesis by Dimitry-J. Lux
Supervised by ao.Univ.Prof. Dr. Rony G. Flatscher

Abstract: This thesis aims to communicate all knowledge necessary to enable the reader
to develop web applications quickly and efficiently. To achieve this goal, three key tools
are used: The Open Object Rexx scripting language, the Bean Scripting Framework for
Open Object Rexx and the Apache Tomcat Software. Tag libraries are used to combine
these components. After discussing the main technological components, nutshell
examples with increasing complexity are used to guide the reader.

Methodology: This thesis commences with a review of the technologies used. Given the
nature of the topic, most information has been gathered from online sources, mainly
documentations, tutorials as well as selected scientific papers. These core components
were then utilized to create nutshell examples, demonstrating possible
implementations.

Contents

(O VLI =L 5 |
LT 0= T 1]
I ES3 11 L1 TN 1l
(M0 17N 2 2T \Y}
O TN 210 016 Lo T 1
P2 I =To3 =T N[@ TI 1| =F N 1
2.1. SYSTEM PROGRAMMING LANGUAGES AND SCRIPTING PROGRAMMING LANGUAGEScccvvvivneinnnnnn. 2
N N 7 3
2.3. JAVA AND SCRIPTING LANGUAGES.....cuuiiiitteieiet e et e et e e st e e e e s e e s et e e s et e s e eaba e e eesa e seba e erarases 4

D T TN 1 = 2 T 4
2.3.2. Bean Scripting FramMEWOIKcocueiiiiiieiieiiiiee ettt sttt e e ibe e e sabe e e e s ennneeas 4

2.4, OPEN OBJIECT REXX . iutuiittiiitiiiitiiititettiettesstsestesstasettesaaesstsesaetaaes st e raetsteettersnesstaeesnaestneestnneres 5
2.5. BEAN SCRIPTING FRAMEWORK FOR OPEN OBJIECT REXX ..uiituiiiiiiiiieiiiieiiesieeetiseseessisesanssanessnenes 5
2.6. HYPERTEXT TRANSFER PROTOCOL ...ctttiiiuiitiieii ettt ettt e et e et s et esaes st s e st e s sasesa e saaessbasesanssanessneren 6
2.7. HYPERTEXT MARKUP LANGUAGE.cctttiitiiiitieiiietie ettt et e st s et et e s st s e st et et s ettt e saa e st s esanssaaestnenen 7

P T 1N 2 NS = AV = 5 TN 8
2.9, JAKARTA SERVER PAGES......uiitiiitiiit et e it e ettt e et e st e et e et et e e s et s e et e s ab s e aa e saaeasbasesassanestnsanes 8
a0 O AN =N od o =] [0 PPN 9
2.11. OPEN-SOURCE SOFTWARE ...ctuuiittiittitttestteestetstesstasestesstsestessnessteestetsnesstrertnetseeetiersneesnees 10
2.11.1. Apache Software FOUNGALION..........ciiiiiiiie it 11
2.11.2. Eclipse Foundation, Jakarta NameSPaACEcoccuuiieiiiiiieiiiiii et 11
2.12. BRINGING IT ALL TOGETHER ..etuiittiittiiitisit ettt ietaess e et e st s ettt e saaes st s esaesaas st sesanesstsetnseraneesnnns 12

3. APACHE TOMCAT FUNDAMENTALS ..otutitttiittetttteeteseteestesstesstasessaessteetaessneestsestetstaeetntersesstaresnaessnns 13
1 700 O 0T 1 1= 13
3.2. DEPLOYING WEB APPLICATIONStuutittittttttttettetsteesteeetesstesttessnessteessersnesstasestaetsteeetniersneesrnes 14
3.3. RUNNING AND STOPPING TOMCAT .uuttttiitnieetetetttetetesetaeeea e st seta e saaes st esaetanesetnserassstesesnsereneasrnres 15
I] (07N Y, Y X] = = TR 16

4. INTRODUCING WEB APPLICATIONS /HELLOWORLDcouiiitiiiiiiiiieiii ettt e et et e e et e s e et e e sanesaaanas 16
4.1. WEB APPLICATION ARCHITECTUREcuuiitttiitteetttieeteteaeetaesaesstsesaetsnseaneraesstsesnaessesetnseranessrnees 17
4.2. INTRODUCING JAKARTA SERVER PAGES /HELLOWORLD/HELLOWORLD « ISP ..uuiivuriiuneitniertnersneesniersneesnnnns 18
R TN Y o B 111 1YY 18
N 1Y Y = 11 O 015 1 (=] 0| S 19

4.3. BSF TAGLIB, EXPRESSIONS, STYLING /HELLOWORLD/HELLOWORLD _EXT e ISP seveeevvrvrurnnnieeeeerennrnnnneeenneenns 21
4.4, WELCOME FILES /HELLOWORLD/ INDEX « HTML et etuseusanessesnsesssnenesnsesessnssnsesnssssssnsensesnssnsesnsensesnsensennns 24
4.5. INTRODUCING COOKIES /HELLOWORLD/ LASTVISIT « ISP .iuuutituserunestniesnnessnsesnerenesssnsesnessnesesnsersnsesnnees 25
4.6. COMBINING USER INPUT AND COOKIES /HELLOWORLD/GREETING « JSP.uuuiivuniirneirnesstniessersneeesniersneesnns 27
4.7. DELETING COOKIES, EXTERNAL SCRIPTS /HELLOWORLD/GREETING_EXT e JSPuriieieieieieieieieeeieeereeeneeeeeeees 29
D DATABASE CONNECTION .. ttutttttittt ettt testeteteetaesaaesstaeestetaaaseta e eaatateetaetaaesstateraetateetnsestntssteesnasssnns 31
5.1, JAVA DATABASE CONNECTIVITY tuttuutttuetentsetnteeterenseetaseeaessnsesnseraeestsessetenesetreenessieeesnrerneesnre 31
5.2. JAVA NAMING AND DIRECTORY INTERFACE ...uuivutiitteeitiieieeteteettsetaesstsesnesenesetsesaaessssessersnsssnnees 32

6. E-COMMERCE EXAMPLE /TREESHOP....... oottt et e e e s e et e e e e eeeaeeaaas 33
6.1. REQUIRED SETUP STEPSciitttuuitieeeteetittiaieeeeetesttntaataeeseeststannaaeaeeeestataeetererrtaaeeeserrneas 33
6.1.1. Serving StAtiC CONENTeiiiii ittt e e e e e e e e e e s e bbb e e ee e e e e e e neneees 33
6.1.2. Database CONfIQUIALIONooiiiiiiiiee e e e e e 34
6.1.3. Tomcat’'s Handling of . Jar FilSc.coiiiiiiiiiii e 35

6.2. READING DATA / TREESHOP / PRODUCTLIST « ISP 1ututivtniitunettuertnesssneessersnesstneessessnesstnsessnessnseesnsersneesnnees 36

6.3. WRITING DATA, SECURITY ASPECTS /TREESHOP/SIGNUP « JSP...uuituiiitniitniestsersnesstnsersnessteesnessneessns 38

6.3.1. The MEthOAS GET QNU POST ...ttt e e e e et e e e e s s e e et s e e e s e e aeabaans 39
6.3.2. Securely StOriNg PASSWOITSc.cuuuiiiiiiiiieiiiiiie sttt e et e et e s anbee e e eees 39
TR G T (@] I 0 T=T ot o o SRR 41
6.3.4. Hypertext Transfer ProtoCOl SECUIE...........coiiiiiiiiiee e 42
6.4. CREATING AN ONLINE SHOP, SESSIONS /TREESHOP/INDEX « ISP ..cvuuiieuietniersnersnsetnersnsssneesnsersneasnns 42
R o N o e W] o e [L= = G OSSP PUPTPT 44
N (Y =T o T=To (v =] R o= SO PRPTRN 45
6.5. CREATING A SHOPPING CART /TREESHOP/ SHOPPINGCART « ISP .vuuitutiieneetniessnersnsssnersnssssnsesnsersneassnnes 46
6.6. LOGGING IN /TREESHOP / LOGIN « ISP 1uuuiiruriisnesetueessnersneestnessnessssesssessnesstnsessessnesstnsessnessneeesniersneesnnnes 47
6.7. LOGGING OUT, INVALIDATING A SESSION /TREESHOP /LOGOUT « ISP 1utivuiitnernniieneetnersnessneesnsersneasnns 48
6.8. CONCLUDING THE PURCHASE PROCESS /TREESHOP / CHECKOUT « ISP .evuiiitnierteitteeetnieesnessneessnsessneesnnnns 48
7. ADVANCED EXAMPLES /TREESHOP /ADMINouuiiiiiiiiiitieie ittt eeeea e e st e e s et e s s eaan e e s eaanesssabaeesesnnaeees 48
7.1. UPLOADING FILES /TREESHOP/ ADMIN/ ADDPRODUCTS « HTML 1uvvtuiiiunitnseisnsssneessssssnsssnersnssssnsesnersneessnns 49
7.1.1. Upload Servlet /treeshop/admin/upload..............cccccccoiiiiiiiiiiiii e, 50
7.2. SENDING E-MAILS /TREESHOP/ ADMIN/ SENDNEWSLETTER « ISP cuuutuunetnsersnessnesnserensstnsersnsssneesnsersneesnnnes 51
7.2.1. E-Mail Servlet /treeshop/admin/mailerccccccccciiiiiiii e 53
7.2.2. Sending and Receiving E-Mails With MailHOQcooiiiiiiiiii e 56
7.3. UNSUBSCRIBING FROM E-MAILS /TREESHOP / ADMIN/UNSUBSCRIBE « ISP ..uivvuivuniirnneetniernnersnneesniersneesnnns 57
7.4. COMMON GATEWAY INTERFACE .. .cuuiittiittieitteetteteteettsesaesateseta e sanes st sesaetanesstaseran sttt sesnseraneasrnres 58
IOt] (o1 I U L] [] N 58
F AN 2 =1 o = LU I 1 TS 59
A.1l. SOFTWARE REQUIRED TO BEGIN....uuiiitiieiiiiii e e e e e ettt e et e e et e e e et e e e e et e e s ebaeeeesba e eeesaneees 59
A.2. SOFTWARE REQUIRED FOR ADVANCED EXAMPLESuittiiiiiiiiiiiiiee i eeee st et e st st e e st e saaessaaneeen 60
B. TOMCAT INSTALLATION GUIDEuiituittniitteitiieitiessteestesstesstessnesstasessesstasstatersesstressesssessssessnessnnees 60
O LS N @] Y T S I 66
[T 1 T =5 PP 67
[0 2 A N ES 7Y N 1T R 67
D.2. SETTING UP A POSTGRESQL ENVIRONMENT VARIABLEuuutututututnentnennntnnnnnnnnnnnrnnnnnnnnnnnnnnnnnrnnnnes 73
D.3. STARTING THE DATABASE SERVERiituiitttiitteitiietueteteetasetan st sesaetsnsetasesaessn et eranesstereenesenns 74
D.4. SETTING UP A DATABASE FOR TREESHOPivuiitiiiitiiiieitiieetestteestesaaesstasssanesstsssnesanesstessnesanns 74
E. MAILHOG INSTALLATION GUIDE ...cuuiiiuiitiieititit ettt e ste et e et e s eeaa e saaes st se st e sabaseaa e sanessteesaesaneestnenen 77
[l =3 21O TR O] N[== i 77
RS I I RS YN T o T 2 78
L= = = N =5 S 80
LY X =T £ = o J S 92
Figures
FIGURE 1: HTTP REQUEST HEADERcieetiietitteee ettt e et e e et e e et e e e et e e e e e e e s eaaneeeetneeeenanaeees 6
FIGURE 2: HTTP RESPONSE HEADERuuiiituiittiii et iteete et tee st s e et ettt e sttt e st e s st s e st esaa s st e sanesabsetneraneastans 7
FIGURE 3: TOMCAT_HOME DIRECTORYututtteteteeiiaaititteeteteseaaatsteseeeeesssaassbsseneaesssasnnbeeeteeessannrnnneeaeeesennns 13
FIGURE 4: APACHE COMMONS DAEMON SERVICE MANAGER TASKBAR ICONccuuiiiiiiiiiciiceieeeie e 15
FIGURE 5: HELLWORLD . ISP IN WEB BROWSER ... cuuiiitiiiiiiiii ettt et et e st s e st et e st s e sane s st e s sassanssansenen 21
FIGURE 6: HELLOWORLD_EXT . ISP IN WEB BROWSER ... ccciiiiitiitiiiieeeieeiiitis e e e e e s eeaiainn e e e s eeatatn s e e e e aesasannnnneeeas 24
FIGURE 7: LASTVISIT. ISP IN WEB BROWSER ON FIRST VISIT cunieuiitiitiiiieeieiee e etee e et e s s et s s ea e ansenesaneenseens 26
FIGURE 8: LASTVISIT. 3SP IN WEB BROWSER ON CONSECUTIVE VISIT citutiiiiiiiiiiiiieeiieeeise e ee e esieesaaeesaneeea 26

FIGURE 9: GREETING . ISP IN WEB BROWSER ON FIRST VISIT...uuiiiiiiiiiiiiiiiiee e es et sa s e st e s e san e ean 28

FIGURE 10:
FIGURE 11:
FIGURE 12:
FIGURE 13:

FIGURE 14

FIGURE 15:
FIGURE 16:
FIGURE 17:
FIGURE 18:
FIGURE 19:
FIGURE 20:
FIGURE 21:
FIGURE 22:
FIGURE 23:
FIGURE 24
FIGURE 25:
FIGURE 26:
FIGURE 27:
FIGURE 28:
FIGURE 29:
FIGURE 30:
FIGURE 31:
FIGURE 32:
FIGURE 33:
FIGURE 34:
FIGURE 35:
FIGURE 36:

Listing
LISTING 1:
LISTING 2:
LISTING 3:
LISTING 4:
LISTING 5:
LISTING 6:
LISTING 7:
LISTING 8:
LISTING 9:

LISTING 10:
LISTING 11:
LISTING 12:
LISTING 13:

LISTING 14

LISTING 15:
LISTING 16:
LISTING 17:
LISTING 18:
LISTING 19:
LISTING 20:
LISTING 21:
LISTING 22:
LISTING 23:

GREETING. ISP IN WEB BROWSER CONSECUTIVE VISIT . .iiiieieiiiiieeeite et e e e e e e s eeeaanes 28
ENTITY-RELATIONSHIP MODEL DATABASE SHOPuiiiitieeietieeeeetiaeeeesteeeeetieesetaeeesatnaeeeesnnaaees 33
PRODUCTLIST . ISP INWEB BROWSERccuuiiiiii ettt e e et e e e et e e et e e e e st e e e eeaaaeees 38
JSESSIONID COOKIE IN WEB BROWSER.....tuuuiiiieeiietittieieeeeeresstnnaeseeessessntnnseeesessssinnaeeesseenns 43
: TREESHOP MAIN PAGE IN WEB BROWSER.iiiiiiiiiiii ettt et e e e e et e e e et e e et e e e erannas 43
SHOPPINGCART . ISP IN WEB BROWSER ...uuiiiiiiiieiiiiieeeeet i e e eete e e e ets e e e et s e s eanneeesetaeeesannseesnnneeenenn 46
SENDNEWSLETTER . ISP IN WEB BROWSERccttuiiiiiiieeeeti e ee et e ettt e e e et e e e et e e et e e e et e e e saaneeeeaaan 53
NEWSLETTER INWEB BROWSERuuiiiitiiiiiiiiee et eteee e et e e et e e et e e e et e e e eeaa e e e eaan e esataeaeesannaaes 57
UNSUBSCRIBE . ISP IN WEB BROWSERcuuiiiiiiiiieiiiiieee et e ettt e ettt e e ettt e e e et e e e et e e eeaa e e e ssaneeeaaan 58
TOMCAT 10 DOWNLOAD PAGEcoititiiii et e e et e e s e e e e e e an s e e e e e e eeatan e e as 61
TOMCAT 10 SETUP WELCOMEuuiiiiiiieieite e et e et e et e e ettt e e et e e et e e e et e e e e et e e s ebaeeeeatanns 62
TOMCAT 10 SETUP LICENSE AGREEMENTcctttttieieeeteettntinieeeseresstnneseeeeesssntneeeessessmees 62
TOMCAT 10 SETUP CHOOSE COMPONENTS ...ttttttieteeetiettttiiieeeeeresstnneseeeessssstneeeasssssmnees 63
TOMCAT 10 SETUP CONFIGURATION ...uiittieeeiitieeeeiateeeettaeeeeataaeeeeateesstaaeesstneeesnaeessraaasesannns 64
TOMCAT 10 SETUP JAVA VIRTUAL MACHINEouuiiiiiiieiitiiee et e et ee et e et e e e e et e e e eranaes 65
TOMCAT 10 SETUP CHOOSE INSTALL LOCATION . .cvvuiieiiiiieeeeii e eee e et e e et e e e e s e e eaanas 65
TOMCAT 10 SETUP FINISH .uuiiiiiiieiiii et e et e e et e e e et e e e e e e e e et e e e eata e e sanan e e s etaneeeeannnes 66
POSTGRESQL SETUP WELCOMEettttttttteteeststessesssaessssnsssesssssssssssssssssssssssssnsmsssmsssmsssmsmemmmnne 67
POSTGRESQL SETUP INSTALLATION DIRECTORY ..tuuuiiiieiieeiiniinienesesessiinnnseessesssnsiesssessssnnnns 68
POSTGRESQL SETUP SELECT COMPONENTS ...ctttttttiisieeeteettrtiiesesesesstinnsseesseesssssnsesssesssssnnns 69
POSTGRESQL SETUP DATA DIRECTORYeuttttutttseeususssesssnsnnssnssnssssnsssnnssnsnsssmsmsmsmsmsmsmmmmmmmmmnne 69
POSTGRESQL SETUP PASSWORDcttttttttteutsssesneeesesssssnsnssnssnsssssssnsssmsssmsmsmsmsmmmsmsmmmmmmmmmmmm 70
POSTGRESQL SETUP PORT ..itttiiiiiiititiiiii ettt et e ettt s e s e e e s aaa b n s s e e e s eeabnbn s e e e e e e eanranns 71
POSTGRESQL SETUP ADVANCED OPTIONSuutttttttstesstssesseessnssnessnnsnsnsnsnnnsssmsmsmsmsmsmsmmmmmmmmmmne 71
POSTGRESQL SETUP PRE INSTALLATION SUMMARYuuuuuruutsteeseerennnennnnmnnensnsmnmnmsmsmemnmsmmmnmnne 72
POSTGRESQL SETUP READY TO INSTALL..uuuiiiiitiiiiitinseeeteeeisiinsesesesessiinnnseesseesssnssesssesssssnnns 72

POSTGRESQL SETUP FINISH....uuuiiiiiiitiiiiii e e et eetiiss e seestrbn s e e e s e s eaabns s e e e s eesaabn s e e e s eeeannanns 73
S
HELLOWORLD « ISP 1ttt eeeteetutttunseseeeseestessaaseeeseesssssanseesseseesssanaeeeeasenstesanseeeeeestabseeeaeeesntnnaneeeaeenes 18
HELLOWORLD « ISP JSP DIRECTIVES ..cttutuiitieetieeittiie s e e eeeeeatts s e e e e eeeastaaaeseeeseeatatasaeeaaesastnnnaaeaasanes 18
HELLOWORLD « ISP HT ML START TAGS ..uuiiiiiiiieiiiiii ittt e e ettt e e e s e e tabn s e e e e e e aantnaeeaaaaanes 19
HELLOWORLD « ISP SCRIPT TAG ... iiiiiiiiiiiiiieeeteeetttin s e e e teeeastiseeeaeseesbasasseeeseestasseeeaaseastannaaseeaaenns 20
HELLOWORLD . ISP GENERATED HTML CODE.......uuiiiiiiiiiiiiiiiiie e eeeeeiiise e e e e eeetates e e e e e e eantn e e e eaaaanes 21
HELLOWORLD _EXT ¢ ISP . ttttttutuustesesesesssunsssessseestsssnnsesssesessssnnaasesesenssssnseesseesssssnnseeesesesssnnnseneeeeenes 22
HELLOWORLD_EXT. ISP PRINTING HTML TAGS.....cc oo 22
HELLOWORLD_EXT.JSP GENERATED HTML CODE.......ciitiiiiiiieiiiecieeiiiin e eeeiiin e a e e eaai s e e e aaees 22
HELLOWORLD_EXT . ISP EXPRESSION TAG ...iiiiiiiiiiiiiieieietiitiiiie s e e e s eestens s e s e s eeatnbn s e e e aeesantannnneesanenes 23

HELLOWORLD_EXT . ISP INLINE STYLINGcettiiittteiiieeeesiittre e e e e s e st e e e s s e e e e e s e sennnneeeeee s 23
HELLOWORLD_EXT e ISP BSIF CLASS ..ceiiitiiiii ittt ettt eeaa e e e e s e ea e 24
LASTVISTT ISP tetuiiitneetteetueeetaeeeteeauaesta e saaessssesasessnsstaresanessanestnsessnesssnresnsessneestnsesnessneessnsennn 25
GREETING ¢ ISP . tttuuetitteeeeett e e ettt e e e e et e ee e st e e e e aan e e e saaeeeetanaeeesan e e ssannesetanaaeestnsaeesnnnaestnnaaeesnnnns 27
: GREETING_EX.JSP RESOURCE LOGOUT BUTTON . .utuuiiiiiiiiieiiiiiis e e e es ettt s e e e et e e e e e s enaannn e 29
GREETING_EXT . ISP ATTRIBUTE SRC..cetiiiieieieiiieieieteietetetateteteteteteteteteteteteteteteteteretererererererererereees 30
LOGOUT ¢ REX 4 eetttueesttuneesettaeeestnessssnnsesetanaaeesan e sssnnasstasaaessansasssnnnaasstanaasssnnsasssnnneeestnnaasnnnnsares 31
SERVER « XML CONTEXT TAG .1 ietiitiieiteeitieete et e et e et e et e e et e eat e et e e sa e e st e eaaeeaaeesaeeaneestneesneernns 34
CONTEXT o XML 1uueeettieeeett e e e et e e e e et e e e e et e e e e e eeesta e eeeata e e s aanneesetanaesesan e s esnnaesstnseeesnnnasssnnaeaesnnnns 36
PRODUCT LIS T ¢ ISP ettt eetttt e eeett e e ettt e eee et eee et e e e st eeeata e aessanasstanaaeestaseasannnasesnnaaeesnnasesnnaaesnan 37
CREATEUSER « REX JBCRYPT HASHPW .. .ceevtiteeeesteesetaeeeeeta e e e eeaeee s et e e e eaan e e s eaane e e s st eeensansesesaneeeernnns 40
CREATEUSER . REX PREPARESTATEMENT «..evtuuieiitteetetteeeeatnseeesnineesstaaesesanesesnneesstneesssnnaasssnnaesesnnnns 41
MAINPAGE . REX ROUTINE CREATEPRODUCT ..vuuiitueitneieteettiersnesetneesteesteessnsessnesstnsesnessneessnsesnneesnnes 44
MAINPAGE « REX CARTARRAYtuuiiiitetittee ettt ee ettt e e e e taeeeseta e e e e ata e e saaaeesetaaaeestneessnanasetnnaeeesnnnns 45

LISTING 24
LISTING 25

LISTING 32

LISTING 37

T MAINPAGE « REX B D T TABLE CART «ittuiitttiittiettt ettt etetsetaesaaesstaeestessasstsesanesstasestsessnsssnsersnessrnes 45
2 SHOPPINGCART . REX CREATE GUEST CART . .tuuiiiiiiitieeeie e e et ie e e et e e e e e e st eeeeatn s e e eana e e s anaeeeeeanaes 46
LISTING 26:
LISTING 27:
LISTING 28:
LISTING 29:
LISTING 30:
LISTING 31:
: WEB . XML UPLOADER SERVLET CONFIGURATION ...uuuiiiiiiiiiitiinieeeeereettniaeseeessessstnnnseeeessssssnnnenees 50
LISTING 33:
LISTING 34:
LISTING 35:
LISTING 36:
TMAILER . ISP CREATE IMESSAGE ittt eieiieee ettt e e ettt e e et e e e et s e e e e e e e et e e e eatn s e e e ana e e s eaneeeeaannes 54
LISTING 38:
LISTING 39:
LISTING 40:
LISTING 41.:
LISTING 42:
LISTING 43:
LISTING 44
LISTING 45:
LISTING 46:
LISTING 47:
LISTING 48:
LISTING 49:
LISTING 50:
LISTING 51.:
LISTING 52:

SHOPPINGCART . REX ROUTINE CREATEPRODUCT BUTTONScvtiiiiiiiiie ettt 47
SHOPPINGCART . REX MINUS BUTTON ...citiiiiiiiiiiciiie ettt e e e et e e e et e e e e et e e et e e e eaaaans 47
LOGIN . REX JBCRYPT CHECKPW tevvuutereruueesstunaeeesunesesnneesstnsaeeesnnesesnnssesssnnaesnsnnsesesnnseerssnneesennnseres 48
LOGOUT . ISP INVALIDATE SESSIONuuuiiiitteeiiitieeetiieeeeeteeee ettt e eeetaeeeeataaeesetaeesesnnaeesstnaasesanaees 48
LINK RESOURCE IN SUBDIRECTORY ..eetutuuuieieeeteettutiieresesssstnneseeesesssntneeesessssmnaeessesssnmn 49
ADDPRODUCTS . HTML UPLOAD FORM ...uuniiiti ettt e ettt e e et e e et e e e e et e e eeeaan s 49

UPLOADER . ISP FILE PROCESSING.....cittutiiiiiie ettt ee ettt e et e e e e ee e e e et e e e et e e e e st e e e eeaan e eetaeeeeesanns 51
SENDNEWSLETTER . ISP CREATE CHECKBOX ..vuuiiiitiieeeitinieeeeniseesetnseeseanneesetnnaeesstneeassnnsesssnnaesesnnnns 52
TN = 1 O ST T Y 2 53
MAILER . ISP SELECT RECEIVERSittuiiiiiiiieee ittt e et e e et e e et te e e et e e e e e st e e e eaaa e e e et e eeesannns 54

MAILER. ISP CREATE MESSAGE CONTENT....ciitiiiiiiiiiie e ettt ettt 55
MAILER . ISP SEND MESSAGEciiiiiiiiiiieieieie ettt 56
POSTGRESQL SETUP START DATABASE MANAGEMENT SYSTEM ...ccvvvviiiiieeeieieeiiiinnneeeeeeveninnns 74
POSTGRESQL SETUP CREATE DATABASE SHOPuvuuiiiiiiitiitiiiisseesseesistinsesesssesssssnnsessssessssnnns 74
POSTGRESQL SETUP CONNECT TO DATABASE SHOP.......uuutututurutetnrsrnnernnnnnnnnsnnrsrsnennnnnnmnmsmennnes 74
POSTGRESQL SETUP CREATE TABLE TREE .. ittttttutuunieseteteestuninseessenssntnnneeessssssmsnneesseesmnmnn 75
POSTGRESQL SETUP CREATE TABLE CUSTOMER .vvvvuunieeesererstssnsseesserssssinnsesesssessnsnnnseessssssnsnnns 75
POSTGRESQL SETUP CREATE TABLE CART...uuutttutttutetstststsressnnsnsssnsnssnsssssssssnnssssnsssssmnmnmnnnmnnnnns 75
POSTGRESQL SETUP CREATE USER CATTUS .iivtttutiuiieeeeereittininnseessesssstinnsesesssessssnnseesssessssnnns 75
POSTGRESQL SETUP GRANT ALL RIGHTS TO CATTUS ...vutututetuturntetnrnrnnernenrnrnnnnnrsrennennnnenensrennnes 76
POSTGRESQL SETUP GRANT SEQUENCE RIGHTS TREE_ID TO CATTUS trvvuunieeeerieerrnnnnnseeeeeesnnnnnns 76
POSTGRESQL SETUP GRANT SEQUENCE RIGHTS CUSTOMER_ID TO CATTUS eeevvveervirinseeeeeeeennnnns 76

POSTGRESQL SETUP INSERT PRODUCTS IN TREEvuvututututsrstusnsssnsnnnnnnnnnnnnnnnsnsssssssnnnmssnnsnnnnnns 76
POSTGRESQL SETUP INSERT USERS IN CUSTOMER .v.uueeeteretstesnnseesserssnsinnsesesssesssnnnnseessssssssnnns 77
DEBUG CODE SNIPPET ...tttttttutttutttststatntatststsssnssssnsnsnnns 77

LISTING 53: SSLITLS E-MAIL UTILITY ¢ttt ittt ettt ettt ettt sttt e e s e e s 79
Glossary

API Application Programming Interface

ASF Apache Software Foundation

BSF Bean Scripting Framework

BSF400Rexx Bean Scripting Framework for Open Object Rexx
CGI Common Gateway Interface

CSsS Cascading Style Sheets

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP address Internet Protocol Address

Jakarta EE Jakarta Enterprise Edition

JAR Java Archive

Java EE Java Enterprise Edition

JDBC Java Database Connectivity

JDK Java Development Kit

INDI Java Naming and Directory Interface
JRE Java Runtime Environment

JspP Jakarta Server Pages

JSR Java Specification Request

MIME Multipurpose Internet Mail Extensions
0ORexx Open Object Rexx

OWASP Open Web Application Security Project
SMTP Simple Mail Transmission Protocol
SMTPS Simple Mail Transmission Protocol Secure
SQL Structured Query Language

SSL Secure Socket Layer

Taglib Tag Library

TLD Tag Library Descriptor

TLS Transport Layer Security

Tomcat Apache Tomcat Software

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAR Web Application Archive

Webapp Web Application

Windows Microsoft Windows

1. Introduction

The World Wide Web was invented by Sir Tim Berners-Lee at the European
Organization for Nuclear Research. In 1990 he created the first web client and server, as
well as the specifications for Uniform Resource Identifiers (URI), the Hypertext Transfer
Protocol (HTTP) and the Hypertext Markup Language (HTML) [1]. With HTTP being a
stateless protocol [2, p. 1], in the beginning web pages were simple, static sources of
information. Today users of the internet are used to performing complex tasks all from
within their web browser.

While the task of developing such web applications might seem daunting at first, the
tools used in this thesis will allow beginners to quickly create their own dynamic web
pages. The Apache Tomcat Software (Tomcat) offers the necessary infrastructure, most
notably, the Jakarta Server Pages (JSP) technology. By interlacing HTML code with the
human-oriented [3] Open Object Rexx (0oRexx) programming language, programs can
be created with minimal prior knowledge. The Sourceforge site of the Bean Scripting
Framework for ooRexx (BSF400Rexx) includes Tag Libraries (taglibs), which can be used
to accomplish this. In addition, BSF400Rexx allows the usage of countless internal and
external Java classes, all from within ooRexx. By using these tools for web development,
the only limiting factor to creating web applications is one’s imagination.

This thesis was written with the ooRexx programming language in mind. While the
development of web applications is being covered from the very beginning, basic
knowledge of ooRexx and HTML is recommended. Nonetheless, the components used
support a multitude of other existing scripting languages.

To begin with, 2. Technologies will discuss the underlying technologies of the internet
and Java web applications. From 4. Introducing Web Applications /helloworld onwards,
nutshell examples are used to demonstrate the concepts discussed. Put together, these
examples will form a functioning shopping website. In case the reader would like to use
any of the shown code, be it in full or a fragment, the author encourages such usage, in
hope it will help.

For a collection of hyperlinks to all the software mentioned and the nutshell examples,
please refer to the appendix: A.1. Software Required to Begin. This thesis should be
accompanied by a .zip archive, containing the previously mentioned nutshell examples
and necessary support files; the directory ZIP_ARCHIVE\ is used to reference its contents.

2. Technologies

A Java web application is built upon a Java Runtime Environment provided by a web
server and a combination of components such as JSPs, Jakarta Servlets, JavaBeans, and
static pages like HTML [4, Sec. 1.2.].

This section will introduce the core technologies used for web development. First the
programming languages to create the programs are discussed, followed by the
infrastructure that enables them to be accessed over the internet. Should the reader be

familiar with these topics, she might wish to jump directly to: 3. Apache Tomcat
Fundamentals

2.1. System Programming Languages and Scripting Programming
Languages

In 1998 Ousterhout predicted that: “scripting languages will handle many of the
programming tasks in the next century better than system programming languages” [s,

p. 23].

System programming languages were designed to abstract from assembly languages to
make the development process faster. While statements of assembly languages
correspond directly to machine instructions, system languages require a compiler which
translates the source code into binary instructions. Scripting languages abstract even
further, with power and ease of use in mind [5, pp. 23-24]. After compilation, a program
can be executed multiple times with different input data [6].

Machine language code consists of strings of 1’s and @’s which represent the numeric
codes for operations that a computer can execute. These binary digits, also called bits,
are difficult to read and write for humans and differ between various computer
architectures [7].

“System programming languages were designed for building data structures and
algorithms from scratch, starting from the most primitive computer elements such as
words of memory. In contrast, scripting languages are designed for gluing: They assume
the existence of a set of powerful components and are intended primarily for connecting
components” [5, p. 23].

Scripting languages use interpreters instead of compilers. The translation does not
happen all at once, but instruction by instruction [6]. This allows a quicker development
process without compile times. Additionally, programmers are more flexible since the
applications are programmed at runtime [5, p. 26]. In contrast to system languages,
scripting languages are usually kept in source form [8].

“Scripting languages are higher level than system programming languages in the sense
that a single statement does more work on average” [s, p. 26].

While system programming languages are strongly typed, scripting languages do not
share this trait. Typing refers to variables being declared a particular type such as integer
or string. A strongly typed language offers performance gains since the compiler only
needs to load specific instructions. While potential errors are detected during compile
time, errors in scripting languages occur when a value is used. Scripting languages are
generally typeless; variables can freely switch data types. This results in the

interchangeability of code and data, easing the process of combining different
components. Overall, strongly typed languages are more restrictive and less flexible, yet
more performant [5, pp. 24-27].

With the increase of computing power, this performance difference is increasingly
negligible. Nonetheless, in case of an application where performance is crucial, a system
programming language might be the better choice. This is particularly the case for
programs that are slow to change. On the other hand, scripting languages are
particularly useful for programs implementing a graphical user interface, connect
through the internet or utilize component frameworks like Java Beans [5, pp. 27-28].
Real life enterprise systems are usually made up of many programs working together,
like web servers and database servers. Therefore, system administration, web
applications and document processing are areas where the application of scripting
languages is preferred [8].

2.2. Java

Even though, the Java system programming language is not being directly used for the
creation of the example web applications, it is still used as an underlying component
throughout this work. Therefore, a basic understanding of its architecture is required.

The main feature of the Java programming language is its architecture-neutral
approach. Instead of machine code its compiler creates so called bytecode that runs on
the Java Virtual Machine [9, Ch. 4]. The platform is software only and runs on top of
hardware or software environments. In addition to the Java Virtual Machine, the Java
platform also includes the Java Application Programming Interface (API) [10].

“The API is a large collection of ready-made software components that provide many
useful capabilities. It is grouped into libraries of related classes and interfaces; these
libraries are known as packages” [10].

After source code is written and saved with the . java extension, it needs to be compiled
into a .class file by the javac compiler. A .class file contains bytecode which then gets
read and executed by the Java Virtual Machine [10].

The Java Language Classes, java.lang, contain the base types and are always imported
into a compilation unit. They include the fundamental classes, such as object or the so-
called wrapper classes for primitive types like Booleans. The complete Java system also
includes the libraries: java.io, java.util and java.awt [9, Ch. g]. These core libraries
enable a huge variety of features, such as network communications, security
management or file handling [11].

In addition, external libraries are used to extend the functionality of Java. These reusable
bits and pieces can be used to add missing functionality or help a programmer write less
code and therefore save time. Beginners can use them to create programs including

features, they would not be able to create by themselves. A library consists of a bundle
of packages, which hold Java classes and interface definitions [11].

Notably, a library’s application programming interface documentation is one of its most
crucial components. Javadoc reads the comments in a library’s code, to create an API
documentation, holding reference information to ease usage [11].

Libraries usually come packaged as . jar files [11]. These Java Archives are defined by the
.jar extension and are based on .zip files. They are used to package multiple files
together, compressing them to decrease size. While they usually hold multiple .class

files, whole applications can be packaged this way, also including pictures and audio
files [12].

2.3. Java and Scripting Languages

Generally, code written in a scripting language can be compiled into Java bytecode,
enabling its execution on the Java Virtual Machine.

2.3.1. JSR-223

The Java Specification Request (JSR) 223 was released at the end of the year 2006 [13]. It
enables the embedding of scripts in Java applications and the access of Java objects from
within scripts. A script written in compliance with JSR-223 can access the entire
standard Java library. Equally important, a Java application written with JSR-223 in mind
allows the embedding of scripts without the need to specify a scripting language [14,
Sec. 1].

“A program specification describes the results that a program is expected to produce -- its
primary purpose is to be understood not executed. Specifications provide the foundation
for programming methodology” [15].

The Java Scripting API is defined by JSR-223 and comes included with the Java Standard
Edition since version 6 [16]. Its classes and interfaces can be found in the javax.scipt
package. It contains the ScriptEngineManager class, which discovers script engines using
the .jar file service discovery mechanism. After discovery, a ScriptEngine object gets
instantiated to perform interpretation [14, Sec. 2]. The ScriptEngine’s eval method can
then be used to execute a script that has been given as input parameter, returning the
resulting value [17].

2.3.2. Bean Scripting Framework

“JavaBeans are classes that encapsulate many objects into a single object (the bean)” [18].

The Bean Scripting Framework resulted from a research project of Sanjiva Weerawarana
at IBM in 1999. Its goal was to access JavaBeans from scripting language environments.
The project continued as an open-source project at IBM before it was donated to the
Apache Software Foundation at version 2.3 [19].

“Bean Scripting Framework (BSF) is a set of Java classes which provides scripting language
support within Java applications, and access to Java objects and methods from scripting
languages” [20].

The framework’s two main classes are the BSFManager and the BSFEngine [20]. The
BSFManager class gets instantiated when an application decides to run a script. It is then
used to register beans, load script engines, and run scripts. Furthermore, the BsFManager
registers all available script engines, loads, and unloads them. Each Java Virtual Machine
can run multiple BSFManagers but each BSFManager can only load one engine per language
[21]. The BSFEngine abstracts a scripting language’s capabilities and allows generic
handling of script execution and object registration within the execution context of a
given language [20].

Releases under the newer version 3.x use the JSR-223 API [22]. The Open Object Rexx
programming language is supported with its own BSF engine: BSF400Rexx.

2.4. Open Object Rexx

All the nutshell examples accompanying this thesis have been created using the ooRexx
scripting language. Even if the reader is not familiar with this language, its easily
understandable syntax might help with the development of web applications in another
language.

Initially developed in 1979 by Mike F. Cowlishaw, the Rexx programming language
aimed to make the programming of IBM mainframes easier to understand and more
human centric. After gaining popularity in the industry, the language evolved in 1997
by implementing object-oriented features, resulting in the IBM product Object Rex. In
2004 the source code was given to the Rexx Language Association, which released the
first open-source version, called Open Object Rexx. This powerful yet extensible
language is available for all major operating systems [23, pp. iii-v].

2.5. Bean Scripting Framework for Open Object Rexx

In 2001, the Bean Scripting Framework for Rexx was first introduced at the 12"
International Rexx Symposium by Rony G. Flatscher. In this first iteration, based on a
seminar paper by Peter Kalender, the Rexx and Object Rexx interpreters were
incorporated into the BSF framework. Henceforth, it was possible for Java programs to
cooperate with and invoke Rexx and Open Rexx programs [24, p. 5]. Two years later, a
further improved version with the ability to start Java from Rexx programs, was
presented. It enabled the usage of Java as a Rexx function library [25, p. 5]. In 2009, the
first BSF400Rexx version was released, implementing new features made possible by
native ooRexx APIs introduced with ooRexx 4.0 [26, p. 4].

One of BSF400Rexx’s main achievements is to camouflage Java, allowing the ooRexx
user to utilize Java class objects without requiring extensive Java knowledge. The user

can send messages to so-called proxy classes, which will be forwarded to the Java object
they represent. This is achieved by the Bean Scripting Framework supporting module
BSF.cls. It constructs an object-oriented interface to the Java Runtime Environment,
enabling access to features such as Java arrays [27, pp. 13-20].

2.6. Hypertext Transfer Protocol

The focus now shifts on technologies enabling programs to communicate over the
internet. Before a client and a server can start communicating, they need to agree on
common rules for data transmission and the information’s structure. These rules are
established in form of a protocol [28].

“A web server stores and delivers the content for a website - such as text, images, video,
and application data - to clients that request it. The most common type of client is a web
browser program, which requests data from your website when a user clicks on a link or
downloads a document on a page displayed in the browser” [29].

The most popular protocol of the Internet, the Hypertext Transfer Protocol, is an
asymmetric, stateless pull protocol, running on the application layer. The client sends a
request and gets a response from the server. This request is most often based on a
Uniform Resource Locator, which the browser converts to a request [30].

“A URL (Uniform Resource Locator) is used to uniquely identify a resource over the web.
URL has the following syntax: protocol://hostname:port/path-and-file-name” [30].

The protocol typically runs over a TCP/IP connection, but also allows other reliable
transport methods. Given its stateless nature, requests are not connected, and are not
aware of previous communications. The negotiation of data type and representation
systems are independent from the way the data is transferred [30].

In addition to the get request method, post is used to send data to the webserver, while
delete requests its deletion [30]. A typical HTTP request can be seen in the image below,
where get is used to request the Tomcat 10 documentation web page.

Request Headers (372 B)

GET /tomcat-10.0-doc/index.html HTTP/1.1

Host: tomcat.apache.org

User-Agent: Mozilla/5.@ (Windows NT 10.8; Win64; x64; rv:85.0)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,
Accept-Language: en-US,en;qg=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Figure 1: HTTP Request Header

First, the request line specifies the protocol and which resource is requested from the
specified host. Afterwards, headers inform the contacted server about what type of files
can be received, as well as other information, like the preferred language and the user’s
browser, which is referred to as User-Agent.

After the request is sent, the server replies with a response message. As can be seen in
the figure below, instead of a request line it begins with a status code. For example, the
Code 404 means that the requested resource cannot be found [30].

Response Headers (356 B)
f { !

HTTP/1.1 2806 OK

Date: Thu, 21 Jan 2821 ©01:04:27 GMT
Server: Apache

Last-Modified: Wed, 09 Dec 2026 13:01:0@ GMT
ETag: "39e7-5b6B7abac/9ad-gzip™
Accept-Ranges: bytes

Vary: Accept-Encoding
Content-Encoding: gzip
Access-Control-Allow-Origin: *
Content-Length: 4276

Keep-Alive: timeout=5, max=20800
Connection: Keep-Alive
Content-Type: text/html

Figure 2: HTTP Response Header

While the response header also includes additional information like the length of the
content sent, the message’s body contains the requested resource.

2.7. Hypertext Markup Language

While first intended to describe scientific documents, the Hypertext Markup Language
soon became the core markup language of the World Wide Web [31, Sec. 1.1.].

HTML is used to define the structure of a web page. A tree of elements, such as <head>,
<body>, or <p> is used to describe how a document is to be displayed [32]. Each element
consists of a starting and an end tag, with the content displayed in between:
<Tag>Content</Tag>. Additionally, elements can have attributes placed in their start tag:
<form method="post”> [31, Sec. 1.9.].

It is important to note that: “HTML documents represent a media-independent
description of interactive content. HTML documents might be rendered to a screen, or
through a speech synthesizer, or on a braille display” [31, Sec. 1.9.].

When a web browser parses such a document, it transforms it into a Document Object
Model (DOM) tree and stores it in memory. While this representation of a web page is
static in nature, scripts can be used to manipulate it [31, Sec. 1.9.].

The presentation of such a document can be altered using Cascading Style Sheets (CSS):
“The CSS1 language is human readable and writable, and expresses style in common

desktop publishing terminology” [33]. CSS rules can be either applied by an external file,
or within the HTML document itself, in form of inline styling.

2.8. Jakarta Servlets

A servlet is a program running inside a web server that creates a customized response
for each incoming HTTP request. For example, after a user has filled in a form, a web
page will be tailormade according to the input parameters. Another example would be
the creation of a user-specific webpage, displaying data from a database or time sensitive
information, such as stock quotes. As a result, the response is not the same for each
request, but changes dynamically [34, Sec. 1.]. This is achieved by mapping Java
programs to client requests that supply an URL. The servlet specification defines how
these programs need to be structured [35, p. 2].

“lava servlet is the foundation of the Java server-side technology, JSP (JavaServer Pages),
JSF (JavaServer Faces), Struts, Spring, Hibernate, and others, are extensions of the servlet
technology” [34, Sec. 1.]. The advantages of the mature Java programming language can
be fully accessed: server- and platform-independency, reusability, portability, and high
performance [36].

The necessary run time environment for a servlet is provided by a Java Server.
Additionally, it handles all networking services and resources necessary, while also
managing the life cycle of servlets [37]. For example, it decodes and formats mime-based
requests and formats mime-based responses [38, Sec. 1.2.]. The Multipurpose Internet
Mail Extension (mime) is used to specify the subtype, encoding and media type of data
[39, Sec. 1.]. Security is enhanced by the servlet being part of the web server, and
therefore inheriting its security measures [37]. Jakarta Servlets of the Version 5.0
support HTTP/1.1 and HTTP/2.0. It is important to note that the server can modify
HTTP requests before and after the processing of the servlet to allow caching 38, Sec.
1.2.].

When creating a servlet, one can either extend the jakarta.servlet.GenericServlet
interface or the jakarta.servlet.http.HttpServlet interface. The more specific
HttpServlet includes methods supporting the HTTP protocol like doGet, which handles
HTTP get requests [40]. The init method represents the beginning of a servlet’s
lifecycle. It then handles all client calls with the service method, before retiring with
the destroy method [41]. By default, only a single instance is created for each servlet
declaration [38, Sec. 2.2.].

2.9. Jakarta Server Pages

“A JSP page is a text-based document that describes how to process a request to create a
response” [4, Sec. Overview].

Jakarta Server Pages are closely related to servlets and are built based on their
specification [42]. The most common application of JSPs is in the form of HTML and
XML content. They enable concepts like web applications, servlet contexts, sessions,
requests, and responses [4, Sec. Overview]. While HTTP is the default protocol for
requests and responses, other protocols are also accepted, if the container supports
them [4, Sec. 1.1.].

“From a coding perspective, the most obvious difference between them is that with servlets
you write Java code and then embed client-side markup (like HTML) into that code,
whereas with JSP you start with the client-side script or markup, then embed JSP tags to
connect your page to the Java backend” [42].

Before being requested by clients during the request phase, JSPs need to be translated
to a servlet class by the container. The result is referred to as a JSP implementation class.
Translation is performed once per page and can take place on request or at deployment
time. After the class is instantiated at request time, responses are created for
corresponding incoming requests. [4, Sec. Overview]. In short, after translation the JSP
will be indistinguishable from any other servlet.

Most significantly, JSPs functionality can be extended by Tag Libraries. Within the
libraries, tag handlers, implementing the BodyTag interface class are found [35, p. 10].
They introduce custom actions, to be used manually or by Java development tools [43].

The Tag Library Descriptor (TLD) is used to describe the Tag Library in form of an XML
file and uses the extension .t1d. It allows JSP containers to interpret pages that use a tag
library. Additionally, a TagLibraryvalidator class can be used to check whether a JSP
page is valid according to a set of expected constraints [4, Sec. 7.3.].

JSPs can contain fragments written in a scripting language, which are referred to as
scriptlets [44]. While Java is the default scripting language, other languages can be
added using two different methods. First, new languages can be declared at the
beginning of a JSP. However, some containers only support Java to be used this way.
Secondly, a tag library can be used to enable scripting language support by means of a
custom action. This approach is beneficial since it is portable between containers, all of
which must support the tag extension mechanism. Equally important, this approach
allows using multiple different scripting languages on the same page [45, p. 34].

2.10. Apache Tomcat

“Apache Tomcat is a long-lived, open source Java servlet container that implements
several core Java enterprise specs, namely the Java Servlet, JavaServer Pages (JSP), and
WebSockets APIs” [46].

In 1997 the American software developer James Duncan Davidson started to work as an
engineer for JavaSoft, which at the time was a part of Sun Microsystems. While working
on the Java Web Server he created a reference implementation for the Java Servlet

9

specification, called the Java Servlet Web Development Kit [47]. In 1999 the project was
donated to the Apache Software Foundation and was thereafter called Tomcat. In 2005
Tomcat became a top-level Apache project to be managed by itself [48]. Tomcat refers
to multiple components working together, mainly Catalina, Jasper and Coyote.

“Catalina provides Tomcat's actual implementation of the servlet specification; when you
start up your Tomcat server, you're actually starting Catalina” [49]. This is also the
reason why Tomcat’s home/installation is often referred to as CATALINA_HOME [50]. The
Java class catalina not only provides the servlet container’s main functionality, but is
also responsible for its configuration, security, and logging [49].

The Jasper JSP engine is used to implement the Jakarta Server Pages specification. It
compiles JSPs into Java code to be used by Catalina as servlets. It can detect changes at
runtime and consecutively recompile a JSP [51]. Therefore, any changes made become
immediately visible.

The Coyote HTTP/1.1 Connector enables Tomcat to work as a stand-alone web server. It
gets instantiated and listens for connections on a specified TCP port number [52]. The
current implementation supports the HTTP/2 protocol, using the class
org.apache.coyote.http2.Http2Protocol [53]. Without this class, a dedicated HTTP
server like the Apache HTTP Server would be required. If needed, Tomcat can be
connected to an Apache HTTP server by means of a connection module [54].

Since Tomcat is often also referred to as a web server, it is important to establish the
difference between a webserver and a web container. A web server is used to store and
deliver web pages to clients. To accomplish this, the HTTP protocol is used, which also
allows the transmission of information provided by clients [55]. JSPs and servlets are
referred to as web components, to be used, they require an environment provided by a
web container [4, Sec. 1.1.1.]. Therefore, every web container can be referred to as a web
server, while not every web server is a web container. Furthermore, a web container
utilizing the Jakarta Servlet API can be referred to as a servlet container.

2.11. Open-Source Software

Most of the software mentioned throughout this thesis is open-source, meaning that its
source code is freely available for anyone to inspect, modify and enhance. This approach
not only allows control and security but also the creation of a community [56].

“Open source projects, products, or initiatives embrace and celebrate principles of open
exchange, collaborative participation, rapid prototyping, transparency, meritocracy, and
community-oriented development” [56].

Open-source software is usually released under a license, stating the terms of usage,
modification, and redistribution. Copyleft licenses, like the GNU General Public
License, allow the creation of derivative works, but require them to keep using the same
license. In contrast, permissive licenses allow the user to freely use, modify and

10

redistribute the software [57]. The Apache license is an example for a license that is
permissive.

2.11.1. Apache Software Foundation

The Apache Software Foundation is a not-for-profit corporation established in 1999. An
all-volunteer board oversees over 350 open-source projects and supports them with a
framework for intellectual property and financial contributions [58].

“The mission of the Apache Software Foundation (ASF) is to provide software for the
public good” [58].

The Apache Tomcat Software is released under the Apache License version 2.0 [59]. At
the time of writing, in January 2021, the current version of the Apache License is 2.0,
which was approved in the year 2004. Most importantly, software released under this
license can be reproduced and used to create derivates without paying royalties. To offer
legal protection, the license is revoked should an entity file a lawsuit claiming patent
infringement by the creator or a contributor [60]. All the example programs created for
this thesis are licensed under the Apache License 2.0. Therefore, should the reader deem
them useful, free usage is encouraged.

2.11.2. Eclipse Foundation, Jakarta Namespace

The Eclipse Foundation is a not-for-profit organization with over 275 members, focusing
on open-source projects [61]. It was initially created by IBM in the year 2001 [62].

“The Eclipse Foundation provides our global community of individuals and organizations
with a mature, scalable, and business-friendly environment for open-source software
collaboration and innovation” [61].

Until 2019, Jakarta Servlets and Jakarta Server Pages were officially known as Java
Servlets and Java Server Pages. This name change goes hand in hand with the rebranding
of Java Enterprise Edition (Java EE) to Jakarta Enterprise Edition (Jakarta EE), the set of
specifications under which the Java Servlet specification was originally released. In the
year 2017, the then owner of Java Enterprise Edition, Oracle, decided to donate it to the
Eclipse Foundation. These events resulted in the rebranding, using a new name chosen
by the community. On September 10, 2019 the first version using the Jakarta namespace
was released, Jakarta EE8. The release changed all the included specifications names,
including the Java Servlet, which is referred to as Jakarta Servlet from this point onward

[63].

While the Standard Edition of the Java Platform enables the development and
deployment of desktop and server applications, its Enterprise Edition is focused on
large, multi-tiered enterprise applications [64]. “The focus of the Jakarta EE platform is
not to bundle a bunch of unrelated APIs. The purpose of Jakarta EE is to ensure that a

11

variety of useful enterprise APIs work in harmony” [65]. Most noteworthy, Java web
servers are defined as standardized services in this bundle [35, p. 1].

TomEE is a version of Tomcat, that builds on the standard edition, by adding all the
API's composing Jakarta EE. Only a single of those API’s is required for the web
applications accompanying this thesis, namely Jakarta Mail. To simplify, it has been
added to the standard Tomcat version as a standalone .jar file [65]. Alternatively,
TomEE could have been used instead.

Tomcat 10 was the first version to implement this change in namespace, which is
reflected in the naming of all primary packages [66]. To give an example, the cookie
class is referred to as jakarta.servlet.http.Cookie in Tomcat version 10 and
javax.servlet.http.Cookie in Tomcat version g.

This namespace change is directly related to this thesis, since at the time of writing, in
early 2021, the Apache Tomcat Software Version 10 was still in its Beta phase.
Nonetheless, to future proof this work, it is fully based on Tomcat 10. Should the reader
prefer the stable version Tomcat 9, most components should be near identical. The
exception being, that, instead of the examples found directly in the zip archive, the ones
in the directory zIP_ARCHIVE\javax_for_Tomcat@9 need to be used instead. They are near
identical, the only difference being the above-mentioned name change, realized in the
tag library used and the cookie class. For more information on the usage of Tomcat 9
please refer to the appendix: C. Using Tomcat 9

2.12. Bringing It All Together

The conventions and structure of Java web applications are used in tandem with the
Apache Tomcat Software to provide the necessary infrastructure for web development.
The web container handles all incoming HTTP requests and outgoing HTTP responses.
Meanwhile, the logic necessary is implemented by JSPs, containing custom tags that
enable code written in a scripting language.

These tags originate from one of two tag libraries created by Rony G. Flatscher for
BSF400Rexx, using either the BSF or the JSR-223 framework. Originally based on two,
now deprecated, tag libraries, they were released in the fall of 2020 in the form of
jakarta.ScriptTaglLibs.jar and javax.ScriptTaglLibs.jar [35, pp.10-1]. Scripts that are
invoked this way are supplied with the implicit objects normally available to a standard
Java Scriptlet inside of a JSP. Most notably request, response and out [45, p. 35]. These
objects give programs the ability to interact over the internet.

Although, this approach allows the usage of many different scripting languages, ooRexx
has been selected as the programming language of choice. The necessary script engine,
RexxScriptEngine, is made available by BSF400Rexx [67, p. 5]. Additionally, BSF400Rexx
enables the inclusion of countless external Java libraries.

12

Hence, the script runs on the server, generating dynamic content based on the request
sent by the user. This technique is also referred to as server-side scripting. Whereas, the
client is not required to support the scripting language used, increased latency might
be a disadvantage for some applications [68]. After processing, the user receivesa HTML
document that gets rendered by a web browser.

3. Apache Tomcat Fundamentals

The following chapter introduces the Apache Tomcat Software, communicating all
knowledge required to run the complementary example web applications included with
this thesis. At this stage, ooRexx, BSF4ooRexx and Tomcat should be installed.
Download links for the first two components can be found in the appendix: A.1.

Software Required to Begin, as well as a detailed installation guide for Tomcat: B. Tomcat
Installation Guide

3.1. TOMCAT_HOME

The author uses TOMCAT_HOME to describe Tomcat’s home/installation directory. The
figure below shows its contents.

» Local Disk (C:) » Program Files » Apache Software Foundation » Tomcat 10.0

o~

MName Date modified Type Size

bin 10.12.2020 16:39 File folder

conf 10.12.2020 16239 File folder

lib 10.12.2020 16:39 File folder

logs 10.12.2020 16:39 File folder

temp 10,12.2020 16:39 File folder

webapps 10.12.2020 16:39 File folder

waork 10.12.2020 16:39 File folder
|| LICEMSE File 60 KB
|| MOTICE File 3KE
| | RELEASE-MOTES File 3 KE
tomecat.ico IrfanView [CO File 22 KB
Uninstall.exe Application 20 KB

Figure 3: TOMCAT_HOMIE Directory

TOMCAT_HOME\bin contains scripts in the form of .bat files. Mainly, startup.bat and
shutdown.bat, which can be used to start and stop the server.

TOMCAT_HOME\conf holds multiple files used to configure the software’s properties. The
server.xml file is used to change the initial server configuration on startup, for example
it points to external static resources. The file web.xml is used to deploy and configure
web applications. The files in this folder serve as a default, for certain parameters to be
overwritten by a web.xml file specific to a web application [69].

13

TOMCAT_HOME\1ib contains .jar files that are shared among all web applications. The files
placed in this directory are not only accessible to all web applications but are also used
by Tomcat itself. Files that are necessary for basic functionality, like catalina.jar and
jasper.jar come preinstalled [70].

TOMCAT_HOME\logs contains log-files, useful for debugging and testing self-written web
applications. Particularly, for each day the server is run, a file called tomcatie-
stderr.yyyy-mm-dd.log is created, containing error messages. This file is particularly
useful to detect the cause of exceptions. Also, it might prove useful to regularly delete
old log files to quickly find relevant entries. To make deletion possible, the Tomcat
server needs to be shut down. For convenience, all files within the log folder can be
deleted since Tomcat will automatically recreate all necessary files during the next
startup.

TOMCAT_HOME\webapps is the directory where all web applications can be found.
Depending on the installation parameters chosen, this folder might already come
shipped with default applications.

TOMCAT_HOME \work is used by Tomcat for intermediate files during runtime. For example,
once a JSP is compiled, the result is placed here [71].

3.2. Deploying Web Applications

“Deploying your application means putting it on a Web server so that it can be used either
through the Internet or an intranet” [72].

To begin with, the two demo web application shipped with this work need to be
deployed and made accessible. There are two ways to accomplish deployment, either by
deploying a web application exploded or in the form of a web archive file.

Web Application Archives use the .war file extension and contain all necessary files for
a web project. Everything that is needed such JSPs, scripts and the configuration files
are contained in a single archive. They are quite like . jar files and can be created from
the command line with the jar tool included in the Java Development Kit. For example,
the command jar -cvf projectname.war * will create a web archive from all the files
found in a directory [73].

The usage of .war files is especially convenient because they use the .zip format [74].
Instead of using the command line, it is also possible to create a simple .zip archive
and giving it the .war file extension. To view its contents, .war files can also be unpacked
by any compression software.

Lesson Learned: When web applications are shipped as .war files, all required files are
expected to be already included. Special attention needs to be given to .jar files.

After placing a .war file in TOMCAT_HOME\webapps, within a single minute, the software will
automatically unpack the files in a new folder of the same name. Afterwards, all files

14

can be conveniently viewed. Once a .war file is unpacked it is considered exploded.
Similarly, after deleting a .war file, Tomcat will automatically undeploy the
corresponding web application.

When web applications are in development, they are usually deployed exploded. A
folder in the webapps directory is created and the files inside are modified without the
need to compress them into a single file. Since any changes made on a JSP are
immediately reflected on the corresponding web page, it is possible to edit them while
the server is running, and the web application is deployed.

Furthermore, all web servers compliant with Jakarta EE, handle web applications the
same way, allowing identical .war files to be used with different Java webservers, like
IBM WebSphere. They all handle the .war files as an independent application, using its
directory as a virtual root [75]. Therefore, any concepts used for web application
development with Apache Tomcat can be directly transferred to other Java web servers.

While .war files contain multiple .jar files, .ear files contain multiple .war files. This
format used by the Jakarta EE platform to create application packages [76].

At this point the reader is encouraged to copy the .war files helloworld.war and
treeshop.war to TOMCAT_HOME\webapps. While the web application called helloworld will
be the subject of the next sections, treeshop will be discussed at a later stage. The files
can be found in the root of the complementary archive. In case the reader prefers to use
Tomcat 9, the files found in the directory zIP_ARCHIVE\javax_for_tomcat9 need to be
used instead.

3.3. Running and Stopping Tomcat

There are multiple ways to start the Apache Tomcat software. The previously mentioned
scripts startup.bat and shutdown.bat found in TOMCAT_HOME\bin exist for all platforms.
On some operating systems, they might have the file extension . sh.

On the Microsoft Windows (Windows) operating system the Apache Commons
Daemon Service Manager, which creates a taskbar icon, is run from the start menu entry
Monitor Tomcat. It can be found in the folder Apache Tomcat 10.0 Tomcat1e and offers a
convenient way to configure, start and stop the server.

Figure 4: Apache Commons Daemon Service Manager Taskbar Icon

The reason why Tomcat cannot be started by conventional methods lies in its nature as
a service. On Windows, Windows services run in their own Windows session and are
used for applications that require long-running functionality, without interfering with
other users on the same machine. Additionally, they allow a different security context

[77].

15

Therefore, yet another way to control the status of Tomcat is accessed by typing
services.msc in the Windows Powershell or the Command Prompt. A list of all services
will be displayed. By right-clicking on Apache Tomcat 10.0 Tomcat1e, the server can be
started and stopped. Furthermore, the commands sc and net can be used to control
Windows services from the command line.

Once running, Tomcat can be reached from the URL: http://localhost:8080

Localhost is a top-level domain, referring to the current computer and is
interchangeable with the Internet Protocol address (IP address) 127.0.0.1. The number
127 at the beginning of the address triggers a so-called loopback; the request is not
forwarded to the internet but handled by the local computer instead. This feature is
mainly used by administrators and for testing purposes [78].

Ports are interfaces on a computer to which other devices can connect to, facilitating
communication. The ports are numbered starting from o to 65535. Ports numbered o to
1023 are also called well-known ports, which are reserved for common services like the
HTTP protocol, which has the port 8o assigned to it [79]. During the Tomcat
installation process, the HTTP connector port got assigned to 808o. Here Tomcat’s
Coyote component is listening for incoming requests.

In case the reader has defined a different port during installation, the URL needs to be
changed accordingly. Any differences concerning the usage of Tomcat 9 are in name
only.

3.4. Tomcat Manager

Among other features, the Tomcat Manager gives an overview of all installed web
applications and allows them to be deployed, undeployed and reloaded, all without
necessitating a restart [8o]. This is particularly useful for environments where multiple
people work together and for users preferring a graphical interface.

If it has been selected during installation, the Tomcat Manager can be accessed from:
http://localhost:8080/manager

When started, the application asks for the username and password given during the
installation. The users and their passwords are defined in the file tomcat-users.xml
which can be found in TOMCAT_HOME\conf.

4. Introducing Web Applications /heiioworid

Thus, after introducing the fundamentals of working with Tomcat, the web pages
contained in the application helloworld will introduce the reader to web application
development.

At this point, the file helloworld.war should have been placed in TOMCAT_HOME\webapps.
During deployment of the software, the web archive’s contents are exploded

16

http://localhost:8080/
http://localhost:8080/manager

automatically. The folder structure directly influences the path from which pages are
accessed: Files in the directory TOMCAT_HOME\webapps\helloworld, are accessed from the
URL: http://localhost:8080/helloworld

The directory TOMCAT_HOME \webapps\helloworld is referred to as the application’s context
path [74]. To allow generalization across different web applications, this thesis uses the
path WEBAPP\ to refer to this directory.

4.1. Web Application Architecture

Some elements are common to all Java based web applications. The directory
WEBAPP\WEB-INF contains all resources necessary to run an application. Typically it holds
.jars, .tlds and the web.xml file. Notably, resources contained in this folder are not
made accessible to web users [81].

The web.xml file contains the Web Application Deployment Descriptor. It is used by the
JSP container to gather general configuration information [4, Sec. 3.1.]. The main web . xm1
file can be found in TOMCAT_HOME\conf, while the version specific to a web application is
located at WeEBAPP\WEB-INF. The latter is used in case deviating or additional
configuration parameters are required. [82]. For example, it holds information used to
name and describe web applications in the Tomcat Manager. At a later stage, this file
will be used to add application specific configuration parameters.

Should a tag library be used, matching Tag Library Descriptors are essential to the
functioning of a web application. To minimize potential errors and to showcase their
interchangeability, both Tag Library Descriptor files for the JSR-223 (script.jsr223.t1d)
as well as the BSF (script-bsf.tld) tag library were placed in helloworld\WEB-INF.

The directory WEBAPP\WEB-INF\1lib contains Java .class files in .jar archives. Like the
web.xml file, the contained libraries are specific to the web application and take
precedence over any classes loaded from TOMCAT_HOME.

For the web applications shipped with this thesis to function, two Java Archives are
always needed. First, the file jakarta.ScriptTaglLibs.jar holds the actual BSF and JSR-
223 tag libraries. Tomcat 9 users will find the file javax.ScriptTaglLibs.jar instead. The
bsf4ooRexx-v641-20210205-bin.jar includes the Bean Scripting Framework, the bridge
between Java and ooRexx.

This leaves the question, whether to place the classes necessary for a web application in
TOMCAT_HOME\1ib or WEBAPP\WEB-INF\1lib. For the application helloworld, the author has
chosen to package all necessary .jar files in helloworld\WEB-INF\lib. Therefore, the
reader is not required to make any additional changes after deployment.

Generally, the benefit of not requiring the user to modify her Tomcat installation
outweighs the redundancy of having multiple identical . jar files. As a result, helloworld

17

http://localhost:8080/helloworld

run effortlessly after being placed in the webapps folder. Nonetheless, other factors
complicating this issue will be discussed later.

4.2. Introducing Jakarta Server Pages /helloworld/helloworld.jsp

The listing below gives an overview of the document helloworld.jsp, found in
helloworld\. At first glance, the Jakarta Server Page is almost identical to a standard
HTML page. By interweaving static and dynamic content the JSP gets transformed into
a Rexx Server Page.

<%@ session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>

<%(@ uri="/WEB-INF/script-jsr223.tld" prefix="s" %>

<IDOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<title>hello, world</title>

</head>

<header>

<s:script type="rexx">
request, response, out

greeting =
out~println(greeting)
</s:script>

</header>
</html>
Listing 1: helloworld.jsp

4.2.1. JSP Directives

All JSPs share a common set of characteristics and begin with the so-called directives,
containing messages to the JSP container. All directives follow the syntax: <%@ directive
attr="value" %>. The three existing directive types are page, taglib and include [4, Sec.
1.10.].

The page directive is used to communicate page dependent properties to the JSP
container. It can occur multiple times and at any position in the document, except for
the pageEncoding and contentType attributes, which are expected to appear at the
beginning. Attributes are limited to a single instance, except for import and pageEncoding
[4, Sec. 1.10.1.].

<%@ session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>

<@ uri="/WEB-INF/script-jsr223.tld" prefix="s" %>
Listing 2: helloworld.jsp JSP Directives

To begin with, the session attribute of the page directive is used to identify a user across
multiple requests. The identification is made possible by means of a cookie, or

18

alternatively by rewriting the URL [83]. This simple web page, with the only goal of
displaying information requires no session.

The pageEncoding attribute determines the encoding of the JSP itself, while the
contentType attribute defines the mime-type and character encoding of the response.
Additionally, the character encoding can be defined by charset [4, Sec. 1.10.1.].

Encoding is particularly important for webpages since they might contain text in many
different languages. Characters on computers are stored as bytes, which need to be
mapped to characters using a specific code. The characters in this context are grouped
into character sets. Many different character sets exist for different purposes and
languages; for the use case of creating a web page, the Unicode UTF-8 is recommended.
UTF-8 includes a multitude of characters, for almost any possible situation, making it
unnecessary to switch or convert between encodings throughout a project [84].
Furthermore, it ensures maximum compatibility with different languages. If the
pageEncoding is not explicitly declared, 150-8859-1 will be used instead [4, Sec. 4.1.1.].

In the second line, the taglib directive declares that a tag library is used to extend the
page’s functionality. The uri attribute points to the Tag Library Descriptors exact
location in the directory WEBAPP\WEB-INF. The declared prefix attribute s is used to
indicate the usage of one of the library’s custom actions throughout the document [4,
Sec. 1.10.2.].

The include directive is used to insert text, data, or code of a specified resource at JSP
translation time [4, Sec. 1.10.3.]. In this example the directive has been omitted.

4.2.2. JSP Main Content

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8" />
<title>hello, world</title>
</head>

<header>

Listing 3: helloworld.jsp HTML Start Tags

The main contents of the JSP follow the directives. The <!DOCTYPE html> declaration
informs the browser about the nature of the document and that its author is following
HTML 5. Having the doctype declaration at the beginning of a web page is good practice
and a sign of quality [85]. Similarly, it is a good idea to declare the charset as UTF-8 once
again. The previously declared charset attribute, found in the directives, is sent in the
HTTP response header. Should the server configuration change or the page gets saved
locally, the HTTP response header would be missing [86]. For this situation, the charset
gets declared again. Even though, UTF-8 is the standard charset that will be applied to
any HTMLj5 page in case none is given, the web browser’s behavior is not guaranteed,
especially for older web browsers [87].

19

<s:script type="rexx">
request, response, out

greeting =
out~println(greeting)
</s:script>

Listing 4: helloworld.jsp Script Tag

Afterwards, scripting code is used to display a message in the document’s header. The
dynamic content starts with the previously declared taglib prefix s. The attribute type
defines the scripting language used, in this case Open Object Rexx. If the JSR-223 taglib
is used, this attribute also allows to supply a mime-type or a file-extension [35, p. 11].

Alternatively, many other scripting languages could be used. For example, the addition
of the file jython.jar would allow the insertion of code written in the Python
programming language in place of ooRexx [88, p. 19]. In case needed, this
implementation even allows to mix many different scripting languages and Java, all on
the same JSP [35, pp. 22-23].

At the beginning of the script, the objects request, response and out are fetched. These
objects are part of the implicit objects, nine of which are created by the JSP engine
during translation phase [89]. Invoking scripts by means of the tag libraries developed
by Rony G. Flatscher, supplies the three mentioned implicit objects automatically as
arguments, merely requiring them to be fetched. With ooRexx, this is done with the
instruction USE ARG [35, p. 23].

The requests object provides data the client has transmitted when initially requesting
the page, usually it originates from forms. The response object modifies or delays the
response that is sent in return. The third fetched object out, is responsible for writing
content to the HTML page the user receives. Furthermore, it enables the formatting of
messages [37].

After fetching the implicit objects, the script defines a greeting string and stores it in
the variable greeting. The out object refers to an instance of the Java class Jspwriter.
Next, its println method is used to print the characters and terminating the line
afterwards [9o]. As a result, the greeting previously defined will be displayed in the
HTML page header. The closing tags conclude this first script. Since no HTML tags have
been given, the println method prints the sentence in verbatim without any formatting
applied.

The following figure showcases the HTML document the user receives when requesting
helloworld.jsp from: http://localhost:8080/helloworld/helloworld.jsp

20

http://localhost:8080/helloworld/helloworld.jsp

E hello, world X +

&« ¢ @ @ [localhost:8080/helloworld/helloworldjsp *** T A IN @

Hello, world! {Sent from Open Object Rexx)

Figure 5: hellworld.jsp in Web Browser

As can be seen, the resulting page looks like a standard web page, the parts generated
by the script are indistinguishable from the static HTML parts.

<!'DOCTYPE htmli>

<html>

<head>

<meta charset="UTF-8" />
<title>hello, world</title>
</head>

<header>

Hello, world! (Sent from Open Object Rexx)

</header>
</html>

Listing 5: helloworld.jsp Generated HTML Code

Lesson Learned: For URLs, upper- and lower-casing matters, they need to reflect the
JSP’s exact name.

From this point onwards, the contents of WEBAPP\WEB-INF, as well as the page directives
and HTML code up to the header can be copied and reused as standard building blocks.
The next example page, helloworld_ext.jsp, builds on the first.

4.3. BSF Taglib, Expressions, Styling /helloworld/helloworld_ext.jsp

<%@ session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>

<%@ uri="/WEB-INF/script-bsf.tld" prefix="s" %>

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8" />

<link rel="stylesheet" href="css/treeshop.css">
<title>hello, world</title>

</head>

<header>

<s:script type="rexx">
greeting =

21

'<hl1>'greeting'</h1>"
</s:script>

</header>
<body>

<p>The time right now: <s:expr type="rexx"> ()</s:expr></p>

<s:script type="rexx">
'<p style="color:blue" >'pp(
) </p>’

</s:script>

</body>
</html>
Listing 6: helloworld_ext.jsp

Compared to the first page, this document’s head includes the link tag. It is used to
extend the document with additional resources. The rel attribute, standing for relation,
is communicating the nature of the linked resource [91]. A stylesheet of the type .css,
which is located by the URL: css/shop. css has been added. This path is relative, referring
to the location of the document requesting the resource. Therefore, the file is found in:
helloworld/css/treeshop.css. It is also possible to utilize an absolute path, by giving a
full URL. However, relative paths are best practice, should the domain or computer
change, all absolute paths would need to be changed otherwise [92].

Moving on, the first block has been both simplified and extended at the same time. The
simplification is achieved using the Rexx SAy instruction which, thanks to the used tag
library, results in the same result as the println method. The script’s standard output
file is redirected to the out implicit object. Conveniently, the ScriptTaglLib removes the
prompt REXXout> which gets prepended by the RexxScriptEngine, allowing to write
proper HTML content to the JSP [35, p. 22].

greeting =

'<h1>'greeting'</h1>"'
Listing 7: helloworld_ext.jsp Printing HTML Tags

<header>

<hl>Hello, world! (Sent from Open Object Rexx)</hl>

Listing 8: helloworld_ext.jsp Generated HTML Code

Additionally, this demonstrates how HTML tags can be used to format outputs of
scripting languages. First the tag <hi> gets printed in single quotation marks.
Afterwards the variable greeting is inserted, followed by a closing tag, once again in
single quotation marks. This approach allows weaving together outputs and HTML tags,
generating dynamic content that is formatted according to HTML conventions. The

22

result, that gets sent to the end user, looks like simple, static HTML code, leaving no
trace of ever containing scripting content.

Lesson Learned: This approach requires extra care when using quotation marks. Since
double quotation marks are needed to specify attributes within tags, single quotation
marks are used for SAY instructions.

While for other scripting languages the out object in combination with the println
method is a universal way to write HTML content to a JSP, all examples will use the say

instruction from this point onwards.

<p>The time right now: <s:expr type="rexx"> ()</s:expr></p>
Listing 9: helloworld_ext.jsp Expression Tag

In addition to script, the expr tag can be used to fetch the result of an expression defined
in a scripting language [93]. In the example, the body of the generated HTML document
includes a paragraph outside of the script. It is used to demonstrate how the expression
tag is used to intertwine the output of the ooRexx time() function with standard HTML
code. The function returns a timestamp, which is consecutively displayed on the web
page. The output reflects the point in time, at which the page was originally generated.
Since HTML is static by nature, expressions allow quick enhancements with dynamic
content.

Next, the script tag is used once again, demonstrating how multiple scripting elements
can be added to a single JSP.

'<p style="color:blue" !important>'pp(

) '</p>'
Listing 10: helloworld_ext.jsp Inline Styling
The first thing to note is the use of a style attribute, indicating a CSS rule by means of
inline styling. Overall, the CSS 2.1 version has over go properties, allowing in-depth
customization of a web page, including fonts, tables, and backgrounds [94, Sec. 2.1.].

The rule consists of the declaration color:blue. When looking at the external stylesheet
shop. css, the selector for a paragraph, p, already exists. The web page helloworld_ext.jsp
therefore has two different style sources which might conflict with each other. A
cascading order is used to determine the applicable value, which also gives the
stylesheet its name. Since the declaration in the HTML document is declared ! important
it always takes precedence. Then, the BSF400Rexx public function pp is used to place
the text inside square brackets.

Lesson Learned: When creating and changing style elements in an external .css file, the
changes might not be immediately reflected on the actual web page. The reason being,
that the web browser usually caches front end resources. The hard refresh feature might
prove useful by clearing the cache and reloading all resources. For example, a hard fresh
can be performed by the button combination CTRL-Shift-R when using Firefox on
Windows [95].

23

Listing 11: helloworld_ext.jsp BSF Class

In contrast to the first example, the BSF tag library is used. Most importantly, when
using this taglib, ::REQUIRES “BSF.CLS” needs to be included at the end of a script.
Without its addition, public routines, and classes of the BSF400Rexx framework will not
be functional. When using the JSR-223 taglib the directive can be omitted. The BSF.cLS
which is part of BSF400Rexx is used to define public routines and classes. For example,
public routines offer functions such as the creation of Java arrays, while public classes
such as BSF_PROXY enable sending ooRexx Messages to Java proxy objects [96]. Therefore,
to avoid inexplicable errors or missing content, it is good practice to always include this
directive when using the BSF taglib.

The choice of taglib hardly matters when ooRexx is used. Nonetheless, both the BSF and
the JSR-223 tag library exist to ensure maximum compatibility and the ability to run
programs without making changes. Afterall, some applications still use Apache BSF and
some scripting language implementations only support the BSF framework [35, pp. 10,
23]. For example, programming languages like Groovy internally prefer the BSF
framework, while older languages might not offer JSR-223 support at all.

hello, world Sl = a

c @ © | O localhost:8080/helloworld/helloworld_extjsp *** T A IN DO ® | =

Hello, world! (Sent from Open Object Rexx)

ow: 16:35:59
is made possible by the BSF taglib]

Figure 6: helloworld_ext.jsp in Web Browser

All the differences in the page’s look and feel stem from the applied stylesheet.

4.4. Welcome Files /helloworld/index.html

This is a good point to mention welcome files. If no specific page is requested, Tomcat
redirects the wuser to a welcome file. For example, the URL:
http://localhost:8080/helloworld opens the welcome page for the helloworld web
application. A welcome file can be placed in WEBAPP\, as well as in any subfolders. Tomcat
will first look for a welcome file declared in the web application’s web.xml file. It will
then check for the existence of the following files: index.html = index.htm = index.jsp

[97].

24

http://localhost:8080/helloworld

4.5. Introducing Cookies /helloworld/lastvisit.jsp

In previous parts of this thesis, the HTTP protocol and its stateless nature have been
discussed. Cookies are a solution to the problem that different HTTP requests cannot
be related to each other. Most website features that are taken for granted, like shopping
carts, are enabled by cookies.

To maintain state, the server sends information in the Set-Cookie HTTP response
header, to be stored by the client’s browser. When the user contacts the same server at
a later point in time, the previously received cookie data gets sent back in the Cookie
HTTP request header. By changing the path and domain attributes, the scope of a cookie
can be altered. By default, the cookie only gets sent to exact path from where the web
page has been requested from. Each cookie is represented by a cookie-pair consisting of
cookie-name and cookie-value. Should a web browser receive a cookie with the same
cookie-name, domain-value and path-value as an existing cookie, the stored data gets
replaced with the newly received values [98, Sec. 8.6.].

Furthermore, cookies include a Max-Age attribute; after the stated number of seconds
has passed, the cookie gets deleted. Similarly, cookies can include an Expires attribute,
which indicates the time and date at which the cookie expires. Should the cookie have
both the Max-Age and the Expires attribute, the Max-Age attribute takes precedence. The
cookie’s Domain attribute indicates the hosts it gets transmitted to [98, Sec. 8.6.].

While the first parts of the page lastvisit.jsp are identical to the previous example, the
document’s body contains code utilizing cookies.

<s:script type="rexx">
request, response, out

lastVisit =
allCookies = request~getCookies

allCookies \= singleCookie allCookies

singleCookie~name = lastVisit = singleCookie~value

lastVisit == '<p>This is your first visit!</p>'
‘<p>Your last visit was at: 'lastVisit'</p>'

cookie = ~new)
cookie~setMaxAge (60*60*24)

response~addCookie(cookie)

</s:script>

Listing 12: lastvisit.jsp

The method getcookies is used to gather all cookies that are included in the request. It
results in an array of all transmitted cookies or .nil in case no cookies exist [99]. This
array is assigned the variable allcookies.

25

If cookies are present, a D0 OVER loop iterates over all the cookies contained in the newly
created array. It is necessary to first check for the existence of cookies, since a .nil value
for allcookies would otherwise result in an error. If a cookie with the name lastvisit is
present, its value will be assigned to a variable of the same name. In this case, a short
message about the users last visit will be displayed, otherwise she will be informed that
this is her first visit.

Afterwards, a cookie is created by utilizing the class jakarta.servlet.http.Cookie. A
name and value are given with the constructor [100]. In the final step the method
setMaxAge is used to define the cookie’s expiration date. Since this value is given in
seconds, a small mathematical operation is used to define a maximum age of one day.
After the cookie is created, the addCookie method is used to add the cookie named
lastvisit to the response that gets sent to the client. As value, the built in Open Object
Rexx function time() is used to store a timestamp, corresponding to the exact moment
in time when the code is executed [101]. For all future visits, this timestamp will be
displayed and afterwards updated. Unless the visits are further apart than one day, after
which the cookie will automatically be deleted.

hello, world | last visit Xa +

¢ g © [localhost:80¢ sl 1/lastvisit.js Y

Hello, world! (Sent from Open Object Rexx)

Figure 7: lastvisit.jsp in Web Browser on First Visit

hello, world | last visit X

&« C @ ©O [localhost:80¢ : 1 /lastvisit.js -

Hello, world! (Sent from Open Object Rexx)

vas at: 16:43:43

Figure 8: lastvisit.jsp in Web Browser on Consecutive Visit

26

Although simple, this third nutshell example might prove useful; it shows how cookies
are created, transmitted, and afterwards accessed.

4.6. Combining User Input and Cookies /helloworld/greeting.jsp

The next example page, greeting.jsp, shows how information provided by the user can
be stored and reused with a cookie. A visitor is asked for her name, allowing the web
page to personally greet her on future visits. Again, the relevant code can be found in a
script located in the document’s body.

<s:script type="rexx">
request, response, out

allCookies = request~getCookies

username =
allCookies \= singleCookie allCookies
singleCookie~name = username = singleCookie~value

username ==
‘<p>Hello, what is your name?</p>'
‘<form>'
‘<label for="username">Username:</label>’
'<input type="text" name="username" required>'
'<input type="submit" value="Ok">'
‘</form>"

‘<p>Welcome back, 'username'!</p>"’

request~getParameter() \=
cookie = ~new

request~getParameter(D)
cookie~setMaxAge(60*60*24)
response~addCookie(cookie)
response~sendRedirect(request~getRequestURI())

</s:script>
Listing 13: greeting.jsp

After fetching the implicit objects and any cookies attached to the request, the script
first checks whether a cookie called username is existent or not. Should none exist, a form
is generated, asking the user to input her name. Since no submission method is
declared, the default method get is used, appending the data to the URL. The action
attribute is used to define a form’s processing agent [102, Sec. 17.13.]. To clarify, here the
web page is given, to which the submitted data is sent. Since this is a single page
application, the form data is sent to the same page. For HTMLs it is sufficient to simply
omit the action attribute to achieve this. HTML4 on the other hand, requires a value for
the action attribute to function [103].

27

Lesson Learned: In HTML, elements like <input type="text”> should always be
accompanied by a label. This will help users who use screen readers or have trouble
clicking on small fields [104].

To avoid unexpected behavior and potential malfunctions, it is important to design a
web page in a way to make common mistakes impossible. One such scenario would be
a user not entering a name, for example by prematurely submitting the form. This
scenario would result in an awkward greeting message. Avoiding this can be done
without any additionally code, in a simple but elegant way. The required attribute can
be given for input types such as text, url, email or password, only allowing forms to be
submitted if the field has been filled [105]. Therefore, when the page is visited for the
first time, the following form is displayed.

ER hello, world | greeting X + 5

= & Q 0] D localhost o e X IN O ®

Hello, world! (Sent from Open Object Rexx)

Figure 9: greeting.jsp in Web Browser on First Visit

On form submission, the page is reloaded, and the request will contain the parameter
username. For this situation, the IF loop at the end of the program is activated and a
cookie is created. The method getParameter is used to fetch the username previously
provided. The corresponding name for the parameter is declared by the form’s text input
field, using the name attribute.

Finally, the sendRedirect method of the response object is used to refresh the page. This
is accomplished by fetching the current page address with the getRequestURI method.

E hello, world | greeting X + T O

C @ © D localhost e oo 1Y IND ® =

Hello, world! (Sent from Open Object Rexx)

Figure 10: greeting.jsp in Web Browser Consecutive Visit

28

Since the request now contains a cookie called username, the form and cookie creation
are skipped, and the personalized greeting is displayed instead.

Like any other program, code is executed top to bottom. Therefore, on each visit, the
script uses three IF blocks to change the web page accordingly. If a username exists in
form of a cookie, a personalized greeting is displayed. If not, a form is generated asking
for a name. If the page is reloaded as the result of a form submission, the third 1F block
creates a cookie.

By directing form submissions to the same page, they originate from and adding IF
loops, simple, self-contained web applications can be created on a single JSP.

4.7. Deleting Cookies, External Scripts /helloworld/greeting_ext.jsp

The next example page greeting_ext.jsp builds on the previous one, adding a logout
button to demonstrate how the previously stored name can be removed. At first glance,
the page looks almost identical, yet the structure has been improved. Depending on the
existence of a cookie containing a username, either a login form or a logout button is
displayed. The HTML code to generate those components is stored in a ::RESOURCE
directive, which can be found at the bottom of the script.

logoutButton

<form>
<input type="hidden" name="logoutButton" value="1">

<input type="submit" value="Logout">
</form>

Listing 14: greeting_ex.jsp Resource Logout Button

A :RESOURCE contains an unlimited number of strings up until the : :END directive, which
are stored in a Stringtable. The name given to the resource serves as an index, in this
case, logoutButton, for which all the lines given are stored in an array. Afterwards the
entries are fetched with the environment symbol .RESOURCES and the given name
~logoutButton [106, p. 3]. This feature, which has been introduced in ooRexx 5.0 can
prove particularly useful for reusing static HTML building blocks [35, p. 23]. Another
benefit of this feature is the ability to effortlessly write HTML code without quotation
marks.

Additionally, this example highlights how an input of the type hidden is used to attach
data to a request. After the button is clicked, the request will include the parameter
logoutButton with the value 1 attached. Essentially, information about the user’s
previous actions is transmitted, enabling state without utilizing cookies.

With this newest addition, the web page has four possible behaviors, depending on the
information attached to the request. In case a cookie containing a username is present,
a personalized greeting is displayed, otherwise the user will be asked to input a name.
Should the request indicate that the user has just filled in the form or wishes to logout,

29

a cookie needs to be either created or deleted. While the first two behaviors are
programmed directly in the JSP, the latter two are implemented by an external script.

The following line of code adds the external script to the body of the document:

<s:script type="rexx" src="code/logout.rex" cacheSrc="false" />
Listing 15: greeting_ext.jsp Attribute src

The linked script logout.rex is stored in the directory helloworld\code. Like the addition
of a .css file, the path is relative. The script tag’s src attribute allows the inclusion of an
external file, containing code in the specified language. Additionally, the cachesrc
attribute is set to false. If a web page is still under development, it is highly
recommended to set this attribute to false, preventing the file from being cached and
instead rereading it each time it is used. If the attribute is omitted, it is set to true by
default, necessitating a full server restart for changes to be reflected on the JSP [35, p.
1.

Additionally, multiple optional attributes for the script and expr tags are available,
mainly for the purpose of debugging. For example, throwexception will halt the JSP
processing in case an error is encountered, while debug can be used to inject debug
information. By default, these attributes come set to false. Furthermore, the name
attribute allows the script to be given a name, while setting arguments to false disables
the implicit objects request, response and out to be submitted as arguments to the
script. Moreover, slot allows a developer to include a string, to be later fetched from
inside the invoked script, facilitating information flow between components [35, p. 11].
Finally, reflect creates a HashMap object, holding information about the taglib,
namespace and current attribute values [93].

Unique to the JSR-223 taglib is the compile attribute [35, p. 11]. By using a script in its
compiled form, performance can be dramatically improved, especially if the code
includes mathematic calculations. Compiling a script only makes sense if it is going to
be reused multiple times, otherwise the conversion and compilation process needs to
be considered [107].

The sample web application that comes with the tag libraries, demoRexx contains

examples showcasing these features. For a download link, please refer to: A.1. Software
Required to Begin

request, response, out

request~getParameter(
cookie = ~new (

request~getParameter(
cookie~setMaxAge(60*60*24)
response~addCookie(cookie)
response~sendRedirect(request~getRequestURI())

request~getParameter(
removerCookie = ~new (

30

removerCookie~setMaxAge (9)
response~addCookie(removerCookie)

response~sendRedirect(request~getRequestURI())

Listing 16: logout.rex

The implicit objects request, response and out that are made available to a script, found
inside a JSP can be accessed by an external script in the same fashion. The first IF loop
of the script logout.rex contains the previously used code to store a username in a
cookie. Should the request contain any value for the parameter logoutButton, the second
IF loop is activated.

Since there is no specific method to delete cookies, instead a new cookie with the same
name and an empty value is created, with its maxAge set to zero [108]. By adding this
cookie to the response, the existing cookie is being replaced and the page gets refreshed
afterwards. The maxAge attribute then causes this cookie to be deleted after zero seconds
have passed. Since no cookie exists, the user is presented with the form to fill in a
username once again.

While the page would still function, should the tag referring to an external script be at
a different position, it has been placed at the beginning of the body on purpose. First,
placing it inside the document’s head might seem intuitive, but could easily result in it
being overlooked. Afterall, the first lines of a web application might consist of copy and
pasted building blocks, making modifications inconvenient. Since the page is executed
like any other program, from top to bottom, placing it at the end of the body might
result in unnecessary loading times. If any of the two IF loops found in the external file
are activated, the page is refreshed, rendering the creation of other parts useless.

5. Database Connection

More sophisticated web applications require access to a persistent data source and the
ability to freely add, delete and modify information. The separation of data and logic
offers high flexibility and the chance to improve and update components separately.
The ability to easily backup critical data is also a requirement for most operations. The
following chapter describes the components necessary to connect a web application to
a database.

5.1. Java Database Connectivity

In general, any database management system can be used, the only requirement being
the availability of the Java Database Connectivity (JDBC) API.

JDBC is used to connect to a database, issue queries and commands, and to handle result
sets. It can be implemented for both client-side and server-side connections. In a first
layer, the Java application communicates with the JDBC manager through the JDBC API.

31

Afterwards, in a second layer, the JDBC manager communicates with the database
driver [109].

The architecture for the system can be visualized as being three tiered. The user
remotely accesses the web application from a web browser. The web application
processes the user input and queries a database storing persistent data. The database
sends back the result of the query to the application, which in turn uses it to create a
web page for the user [110].

Each time a user connects to the database, resources are committed to creating,
maintaining, and closing the connection. To allow a high number of users simultaneous
and responsive access, the connections can be pooled and reused by means of
connection pooling. Instead of closing and reopening connections for every request, the
connections are cached and consecutively reused. For example, each PostgreSQL
connection can take up to 1.3 megabytes in memory, multiplied by the number of
connections, this number can easily skyrocket [111].

“It lets your database scale effectively as the data stored there and the number of clients
accessing it grow. Traffic is never constant, so pooling can better manage traffic peaks
without causing outages” [111].

Nonetheless, connection pooling can result in problems, if handled incorrectly. A so-
called database connection pool leak can occur if a web application does not explicitly
close objects related to the database connection, resulting in those resources being
unavailable and a failure of the data connection [112].

5.2. Java Naming and Directory Interface

In many cases, applications utilize different services, provided by different components.
For the given use case, a web application needs to find and cooperate with a database.
The Java Naming and Directory Interface (JNDI) allows for different components to find
each other.

Especially for distributed system, naming services are of great importance. Innovations
like powerful microprocessors, high-speed computer networks and the miniaturization
of computer systems have made distributed systems a possibility. Multiple autonomous
computing elements are working together, while appearing as a single coherent system
to the user [113, pp. 967-968]. For example, it might be plausible for the web application
and the database to be running on different machines.

Names are used to refer to an entity, which can be practically anything, for example a
host or a file. Those entities can then be used to perform operations on them. Each
entity has one or multiple access points, which are another, special kind of entity. Their
name is called an address. For example, a host, running a webserver is an entity whose
access point is a combination of IP address and port. Since addresses are usually not
readable in a human friendly way and might change over time, names are preferred [114].

32

Not only offers JNDI a single location for programs to find resources by name, but it also
provides a common interface to existing naming services. In addition to naming, JNDI
also offers directory services, which manage the storage and distribution of shared
information [115].

6. E-Commerce Example /treeshop

From this point onward, all examples will be based on a fictional company, selling trees
to be planted in the name of a buyer. A new web application has been created to
showcase their products, including the ability for users to login and access a shopping
cart. Furthermore, administrators can add new products and send promotional e-mails
to customers. All content will be dynamically created, according to entries in a database.

The complementary database’s data structure is kept minimalistic on purpose, only
containing three tables with basic data. One to hold the products, another for the
customers and a cart to connect them, realizing a many-to-many relationship. The
following entity-relationship model is representative for the necessary database entries:

tree customer
PK | tree_id PK | customer_id
name username
cart
price] password
PKJFK1 | tree_id
height] receives_mail
PKFK2 | customer_id
picture]
quantity

Figure 11: Entity-Relationship Model Database shop

6.1. Required Setup Steps

Highly Recommended: All setup steps are summarized to be viewed and copied from
the URL: http://localhost:8080/helloworld/support

For the examples to function, the user is required to perform three configuration steps.
First, Tomcat’s configuration needs to be changed to enable the server to serve static
files, like pictures. Then, a database management system needs to be installed and set
up. Finally, two . jar files need to be copied to TOMCAT_HOME\1ib.

6.1.1. Serving Static Content

Displaying pictures of available products to customers is an essential feature of any
online shop. In general, static files can be served directly by a web application using the
DefaultServlet. But, since web applications are often deployed from .war files, any

33

http://localhost:8080/helloworld/support

additions or changes would require redeployment [16]. Additionally, between
redeployments, files might get lost.

Since the shopping website is intended to keep functioning, even if new products are
added during deployment, this approach would not work. Later examples will introduce
a way to add new products, including pictures. These pictures are to be stored in a
directory outside of the web application, with the database only holding the path to
access them.

To enable Tomcat to serve them and any other static content like stylesheets or HTML
pages, from an external directory, some extra configuration steps are necessary.

The file server.xml can be found in TOMCAT_HOME/conf. The <host> element is found at

the bottom of the document and needs to be extended with the following line: <Context
docBase="C:\Program Files\Apache Software Foundation\Tomcat 10.0\files\"

path="/files" />
This change allows Tomcat to independently serve files from a specified path, to be
accessed directly, or to be used by web applications. The listing below shows the very
bottom of the file server.xml and can be used as reference.

<Context docBase

path />
</Host>

</Engine>
</Service>
</Server>
Listing 17: server.xml Context Tag

Docbase is used to indicate the directory where the static files are to be stored. Generally,
the direct path to any folder on the machine running Tomcat can be given. TOMCAT_HOME
has been chosen, since it is assumed that all readers have a directory with the exact or
at least a similar path. For this purpose, the folder files needs to be created in
TOMCAT_HOME.

Furthermore, the path attribute is used to define the URL, that files will be made
accessible from; in this case: http://localhost:8080/files. For example, after the image
Maple.jpg has been placed in TOMCAT_HOME\files, it can be accessed from the URL:
http://localhost:8080/files/Maple.jpg [116].

The directory of the complementary archive: zIP_ARCHIVE\supportfiles contains a
folder named files that has already been set up with six sample product pictures. For
the website to be properly displayed, it is necessary to copy the folder files to
TOMCAT_HOME and to restart Tomcat after the configuration has been concluded.

6.1.2. Database Configuration

For the web application to function, the database needs to hold three tables and allow
a specific user to access them. The appendix contains detailed instruction starting from

34

http://localhost:8080/files/Maple.jpg

downloading the database management system to adding six example products: D.
PostgreSQL

6.1.3. Tomcat’s Handling of .jar Files

To ensure smooth development of new web applications, copying bsf4ooRexx-v641-
20210205-bin.jar (or newer) and postgresql-42.2.18.jar (or newer) to TOMCAT_HOME\1lib
is essential. Both files can be found in: zIP_ARCHIVE\supportfiles. Additionally,
bsf4ooRexx-v641-20210205-bin.jar needs to be deleted from helloworld\WEB-INF\1lib.
The rest of this section discusses why these steps are necessary.

By default, Tomcat creates four classloaders, while ignoring the CLASSPATH environment
that is used by standard Java environments. The loading of classes also slightly differs
from what is standard practice for Java, where classes are in a parent-child relationship
to each other [117].

In Tomcat’s default configuration, the classloader on top of the hierarchy is called
Bootstrap and loads classes provided by the Java Virtual Machine and the extensions
directory of the Java Runtime Environment. Next, the webappX classloader makes classes
available to a specific web application. To accomplish this, it looks for classes located in
the directories WEBAPP\WEB-INF\1lib and WEBAPP\WEB-INF\classes. Next the System
classloader loads classes required to initialize Tomcat as well as classes for logging and
the Apache Commons Daemon project. Only then, the common classloader loads classes
from TOMCAT_HOME\1ib [117]. To summarize, Tomcat first loads classes from WEBAPP\WEB-
INF and only then from TOMCAT_HOME\lib. Should the same class be present in both
locations it gets loaded from WEBAPP\WEB-INF.

Tomcat uses a separate classloader for each web application deployed. BSF400Rexx
caches Java classes to increase performance. If those cached classes are used by a
classloader that did not originally load them, runtime errors might occur [35, p. 22].
Therefore, should multiple webapps be using BSF400Rexx, the bsf4ooRexx-v641-
20210205-bin.jar (or newer) needs to be placed in the TOMCAT_HOME\1ib directory instead
of WEBAPP\WEB-INF\1lib. This approach allows a single instance of the BSF400Rexx library
to be used for all web applications deployed on the web server. Otherwise, only the first
application using the library will function normally.

Since the focus of this thesis now switches from the helloworld web application to
treeshop, this step is made necessary. To prevent errors, it is also required to delete
bsf4ooRexx-v641-20210205-bin.jar from helloworld\WEB-INF\1ib. It has originally been
included to provide an easier introduction.

Additionally, it is recommended to place all JDBC drivers in the TOMCAT_HOME\lib
directory. In case PostgreSQL is used, the driver is packaged in the file postgresql-
42.2.18.jar (or newer). This file can be found in ZIP_ARCHIVE/supportfiles;
alternatively, a download link can be found in: A.2. Software Required for Advanced

35

Examples. In contrast to other required .jar files, this file comes not included with the
treeshop web application. Therefore, it is essential for the reader to manually copy it.

This is due to a broken service provider mechanism, which enables drivers to announce
themselves without specific registration. Tomcat’s JRE Memory Leak Prevention
Listener fixes this issue by loading all drivers on server startup. If the . jar file is placed
inside the web application though, the listener will not be able to find the driver.
Instead, it will be loaded by the first web application requiring it. This approach can
lead to various errors and unexpected behavior [112].

6.2. Reading Data /treeshop/productlist.jsp

For database access to function, a web application’s WEBAPP\META-INF directory needs to
contain a file called context.xml. This context is used to specify additional configuration
information. While entering the data source solely in this file is sufficient, it is
recommended to also define the resource in the previously mentioned web.xml file,
mainly to document a web application’s resource requirements [118]. Since these files
are specific to the web application, they already come shipped with the .war file,
requiring no further action from the reader.

<Context>

<Resource name auth
type driverClassName
url

username password maxTotal maxIdle
maxWaitMillis removeAbandonedOnBorrow
removeAbandonedTimeout />
</Context>
Listing 18: context.xml

First, the name to be used by JNDI and attributes relating to the driver are specified. The
url attribute is used to point to the database server’s IP address and a database name.
The database shop should be fully set up at this point. For complete instructions, please
refer to: D. PostgresQL. Should the reader prefer a different database management
system the entries need to be adjusted accordingly.

It is also necessary to specify the username and password of a previously created user.
The web application will use the given credentials to login and perform operations on
the database. It is beneficial to create a unique user, since only the minimum rights
needed can be assigned and actions taken by the application therefore quickly be
identified. For this purpose, the user cattus has been previously created and assigned
the password tomtom12.

Lesson Learned: When working with databases, a proper configuration is important.
Should the given user not have the necessary permissions, nothing will work.
Additionally, often a problem’s source cannot be easily identified using Tomcat’s logs.
Should inexplicable problems occur, it is therefore recommended to apply the debug
method shown in the appendix: F. Debug Code Snippet

36

To mitigate any possible database connection pool leaks the two attributes
removeAbandonedOnBorrow and removeAbandonedTimeout are added. After a database
connection has been left idle for the specified amount of time, it is terminated
automatically [112].

To begin with, productlist.jsp gives a quick overview of the products currently listed
in the database.

<s:script type="rexx">
cntxt = ~new (
ds = cntxt~lookup(
con = ds~getConnection

stmt = con~createStatement

qry =
rs = stmt~executeQuery(qry)

"'
rs~next
SAY '<1li>'rs~getstring()':' rs~getstring() €</1i>!

"’

rs~close
stmt~close
con~close
</s:script>

Listing 19: productlist.jsp

First, the InitialContext class gets instantiated. Since this class is already included in
the Java Standard Edition, no additional class files are needed. A context represents a
set of bindings that all share the same naming convention. The created object gives
access to the most basic methods, like naming or looking up objects [19]. The use of
Tomcat further simplifies the configuration since it provides a JNDI InitialContext
implementation instance, that gets configured for each web application during its initial
deployment. Resources are placed in the JNDI namespace under java:comp/env [118].
Therefore, no further JNDI configuration is necessary and the database can be accessed
effortlessly, using the lookup method.

After the context has been configured, the getConnection method is used to establish a
connection. Once again, it is recommended to use the script’s first three lines as
standard building blocks for future web pages.

The executeQuery method of the Statement interface uses a SQL (Structured Query
Language) statement as input parameter and returns a ResultSet object, containing the
data returned from the query [120]. The ResultSet interface represent the data of the
query in form of a table. The data is navigated by a cursor, which is initially at a position
before the first row. The next method is used to advance the cursor along the table’s
rows. By default, the type is set as TYPE_FORWARD_ONLY, meaning that it is not possible to

37

go backwards and that the object is not sensitive to changes of the underlying data. The
ResultSet offers a multitude of methods to access any desired data, for example the
getstring Method can be used to retrieve data from a column by name [121]. A po loop
iterates through entries of the result set, each representing a row in the output of the
database query.

This example’s query resulted in a row for each tree that is sold. Its name and price are
fetched and displayed as part of a list. Afterwards, the cursor of the ResultSet is
advanced to the next row, until none are left. Since the list’s entries are dynamically
created, should any new entries be added in the future, the page will automatically
adapt.

For good practice and to avoid errors, the ResultSet, Connection, Statement and the later
discussed preparedstatement should always be explicitly closed. Especially with
connection pools, it is uncertain at what time statements and preparedStatements are
otherwise closed [122].

Lesson Learned: If connections are not properly closed, the web page will break.

treeshop | productlist XN + = O

< c ® © [localhost:8080/iree s L INBD © | =

At this moment, the following products are

available:

Oak: 50€
Birch: 100€
Willow: 150€
Beech: 180€
Pine: 250€
Maple: 300€

Figure 12: productlist.jsp in Web Browser

6.3. Writing Data, Security ASpects /treeshop/signup.jsp

Most dynamic web applications not only make data available, but also allow the user to
interact and provide new data. As a minimum, almost all modern websites allow users
to create a personal account.

While the writing of new data is relatively straightforward and quite like the previously
shown solution, the storage of user provided data requires the consideration of
additional security aspects. Not only does the user’s data need to be stored safely, but
the web application itself needs to be protected from unwanted manipulation by ill-
intentioned actors.

38

The page signup.jsp starts like the previously shown pages and continues to display a
form for a user to enter an e-mail address as username and a password, which needs to
be repeated. Once again, all three fields have been set as required, not allowing the user
to proceed without filling them first. This is particularly important since blank form
fields might result in erroneous database entries.

Additionally, a checkbox can be ticket, for users who wish to receive promotional e-
mails. The automatic generation of said e-mails will be implemented in a later example.
At this point, the user’s consent is requested to flag the newly created account
accordingly. Even though, according to the European Union’s General Data Protection
Regulation, direct marketing e-mails about products or services can be sent to existing
customers, any other promotional e-mails require prior consent [123]. Generally, it is
good practice to only send e-mails to users who explicitly wish to receive them, not only
to avoid complaints, but also to build a positive brand image. Consent should be given
in the form of a clear, affirmative action; therefore, the checkbox needs to be explicitly
clicked on and the corresponding label is not formulated ambiguously [124].

After the form data has been transmitted to the web server, the external script
createuser.rex is activated and only progresses if both passwords entered match and
the e-mail address has not previously been registered.

6.3.1. The Methods GeT and posT

The first important difference can be observed in the form using the post method,
instead of the default, get.

post signals the webserver that data is being sent and attaches it to the body of the
message. In contrast, the data transmitted by a get request is appended to the URL and
therefore easily visible. Not only might it be concerning for the user to see potentially
sensitive data such as passwords in plain text, get requests are usually cached by web
browsers and might additionally appear in their history. In conclusion, it is good
practice to default to post, especially when dealing with forms of this nature [125].

6.3.2. Securely Storing Passwords

[t is imperative not to store users’ passwords as plain text. Vulnerabilities previously
unknown or other security risks might result in a compromised database. Passwords are
especially sensitive since users might use the same password for multiple websites [126].

The suggested solution to safe password storage is the application of a cryptographic
hash function. It takes an input, the preimage, and generates a unique cryptographic
fingerprint, called digest, for it. Each fingerprint is unique to an input and irreversible,
making it impossible to backtrack to the original input [127].

“A hash function is a function that deterministically maps an arbitrarily large input space
into a fixed output space” [127].

39

A good hash function needs to be deterministic and therefore always create the same
digest for a given preimage. It should also create a fixed output size for any input.
Thirdly, it should be uniform and therefore generate outputs that are evenly spread
across all possible values. In case of a cryptographic hash function, it additionally should
be one-way and therefore invertible. To conclude, the only way possible to get access to
the preimage is by trying out all possible combinations in a so-called brute force attack
[127].

Since some users might use similar or identical passwords, that might otherwise result
in the same fingerprint, the concept of salting is introduced. Before the cryptographic
hash function is performed, a unique, randomly created string is attached to the user’s
password. Otherwise, an attacker in possession of all the stored hash values, who
managed to guess one of them correctly, might have access to all the other user’s
accounts that use the same password [128].

The Open Web Application Security Project (OWASP) suggests to strictly use third
party libraries to implement the necessary algorithms. While Java itself offers
cryptographic functionality and the creation of a message digest, there is too much
room for error when creating a custom solution. For example, the widely used SHA-256
algorithm is simply too fast. OWASP recommends the Berypt hashing algorithm as the
default choice [128]. A fast algorithm greatly reduces the time it takes to brute force a
password.

The Blowfish encryption algorithm, developed by Provos and Maziéres, allows users to
increase the verification time, by modifying the cost value. This allows adjustment to
increasing processor speeds and heightened security. It is based on their Eksblowfish
Algorithm and offers a possible salt space so large, that it makes the precomputation of
hash values based on common passwords incredibly difficult, since the required storage
would be enormous [129, pp. 6-11]. The goal should be to find a balance between
performance impact and security, tailored to the CPU speeds of the current day and age.
It is also worthy to note, that should the algorithm be too taxing, an attacker might be
able to perform a denial-of-service attack on the webserver [128].

Conveniently, the implementation of Bcrypt not only makes the process of password
storage much more secure, but also extremely simple. Damien Miller offers the
functionality of Berypt in form of a Java library called jBcrypt, which comes included
with the treeshop web application.

bcrypt = ~new ()

fingerprint = bcrypt~hashpw(pwl,bcrypt~gensalt(12))

Listing 20: createuser.rex jBcrypt hashpw

The method hashpw takes the user’s input and a salt value to output the hash value in
string format. Since the library also offers a secure method to create the salt value, the
method gensalt is used. Most curiously, this method takes the previously discussed

40

work factor as input. Even though jBcrypt-0.4 uses a work factor of 10 as default,
OWASP recommends raising it to 12 [128].

6.3.3. SQL Injection

Before showcasing how the username and hashed password are stored, injection flaws
need to be discussed. OWASP identifies injection as the number one web application
security risk. A hostile individual might send untrusted data as part of a command or a
query, to trick the interpreter to execute unintended commands or accessing data
without authorization [130].

Su and Wasserman find web applications being susceptible to a large class of malicious
attacks know as command injection attacks: “This is because queries are constructed
dynamically in an ad hoc manner through low-level string manipulations. This is ad hoc
because databases interpret query strings as structured, meaningful commands, while
web applications often view query strings simply as unstructured sequences of characters”

[110, p. 1].

To give an easy example, on an unprotected database anybody could enter user; DROP
TABLE customer; in a field requesting a username. This could result in the following, or
similar SQL query, should the web application forward the user input directly to the
database: SELECT * FROM customer WHERE username = user; DROP TABLE customer; This
could lead to destroyed databases and data exposure [131].

There is a quite simple solution to this problem, instead of the previously used statement
interface, the extended version PreparedStatement can be used. When a SQL query is
executed, it first gets parsed and compiled. Afterwards, the data acquisition path is
planned and optimized. In the final step the query is executed, and the result gets
returned. In comparison to the normal statement, which goes through the four steps
when the query is executed, Preparedstatement performs the first three steps when the
statement is created and only performs the last step during execution. Not only does
this increase the speed of database access and allows other features like batch
processing, but all special characters are automatically escaped [132]. Escaping special
characters results in them being treated as regular parts of a string, removing any ability
to influence the essence of a query [133]. The above-mentioned exploit is therefore not
possible since the user input is strictly treated as a normal string with no power to
change the database query. In conclusion, when dealing with database queries based on
user inputs, the minimum-security measure suggested is using the PreparedStatement
interface.

prepstmt = con~prepareStatement(

)

prepstmt~setString(1,username)

prepstmt~setString(2,fingerprint)
prepstmt~executeUpdate
prepstmt~close

Listing 21: createuser.rex prepareStatement

41

The parts of the query where user inputs are used are omitted and instead filled with
question marks. In the next lines the setString method is used to replace the question
marks with the values the user has provided.

6.3.4. Hypertext Transfer Protocol Secure

Above all, the most important security measure necessary to facilitate a secure web
application is the use of the Hypertext Transfer Protocol Secure (HTTPS) in place of
regular HTTP. The Transport Layer Security (TLS) protocol, which was formerly known
as Secure Sockets Layer (SSL) protocol, is used to encrypt data traffic by means of an
asymmetric public key infrastructure. Otherwise, both protocols work the same. In
contrast, all information sent by the regular HTTP protocol is sent as plaintext and
therefore extremely vulnerable [134].

Tomcat supports the use of SSL/TLS but requires additional configuration steps [135].
To prove one’s identity, it is necessary to obtain a certificate for a domain from a
certificate authority. Since this work focusses on the development of web applications
on a Tomcat server, running on a local network, the HTTPS protocol is not further
discussed. Should the reader decide to make a web application accessible over the
internet, the use of HTTPS as an absolute necessity.

All the described security measures are suggested as a bare minimum, with
encouragement to invest additional time in research.

6.4. Creating an Online ShOp, Sessions /treeshop/index. jsp

After establishing how database access works, now the focus shifts to the main page of
the treeshop web application.

The main difference compared to previous examples is the usage of sessions. While
sessions utilize cookie technology, they are more advanced and require the server to
store data for each user. In contrast to cookies, the user only stores and transmits a
session id, which the server uses to access data corresponding to it. For web
development, using sessions is quite like using cookies, the only difference being slightly
different methods used.

Since the data is stored by the server and not transmitted, the usage of sessions is more
secure. Compared to cookies, which have a maximum size of 4 kilobytes, sessions can
hold up to 128 megabytes each. To summarize, sessions and cookies both store user
related data, the first on the web server, the latter on the user’s web browser [136].

Tomcat makes the implementation of sessions very easy; they are automatically created
by setting the session attribute of the page directive to true. The HttpSession interface
is used to create a session id for each user and to store it in a cookie called 3SESSIONID,
which gets sent with each request. If cookies are disabled, the URL is rewritten instead
[137]. Consecutively, objects related to a session id can be stored and accessed.

42

Additionally, general information about the session is retrievable. For example, the time
of session creation can be requested with the method getCreationTime [138]. The figure
below shows the JSESSIONID cookie, which is created upon first visiting a web page of

the treeshop web application.

D Cookies Mame Value

@htt;:r:,-",-"lcncalhcnzt:E‘-DED JSESSIONID S5FF2A156A215.. localhost Jtreeshop

Figure 13: JSESSIONID Cookie in Web Browser

Since the default timeout value for Tomcat sessions is only thirty minutes, the web.xml
file needs to be adjusted to extend this duration. By changing the session-timeout
attribute of the session-config keyword, the lifetime can be easily extended [139]. Once
again, the web.xml specific to the treeshop web application comes already edited,
therefore the reader is not required to change it. The value has been set to 24 times 60
minutes, as a result a guest’s data will be deleted after one day has passed.

Throughout this example, a user’s login status is verified by means of a session. For this
purpose, the use of a session instead of a cookie is highly beneficial for security. Were
the user information directly transmitted with a cookie, a third party could easily
replicate a cookie with a particular user’s id to gain access. If a session token is
transmitted instead, a unique value is generated each time the user logs in.
Furthermore, sessions expire after a shorter time span has passed [140].

The main page of treeshop is created by the file index.jsp, two ooRexx scripts are used
to build its components:

Welcome, Enjoy the Trees!

Figure 14: treeshop Main Page in Web Browser

43

6.4.1. mainpage.rex

The body of the shopping website’s main page is created by the external script
mainpage.rex. After the implicit objects, request, response and out are fetched, the
method request~getSession is used to get access to data related to the session.

To begin with, the contents of the main page are built by querying all entries for the
table tree, which contains all available products and information related to them. The
routine createProduct uses this data to create a box for each product, displaying related
information and enabling the user to put a specified quantity into the shopping cart. To
enable the web page to adapt to any given number of products, these boxes are
organized in a grid layout. The necessary styling parameters have been defined in the
linked stylesheet.

createProduct
name, picture, price, height, tree_id

‘<div class="grid-item">'
'<h2>"'name'</h2>"
‘'
'<p>Price: 'price'€</p>"
'<p>Height: "height'm</p>"’

'<form name="choice" method="post">'
'<input type="hidden" name="choice" value=
'<select name="quantity">'

‘<option value="1">1</option>"
‘<option value="2">2</option>’
‘<option value="3">3</option>’
‘<option value="4">4</option>"
‘<option value="5">5</option>"
'</select>'
'<input type="submit" value="Buy">'
'</form>"
'</div>"’
Listing 22: mainpage.rex Routine createProduct

tree_id'">

The attribute src of the tag specifies the URL of an image. The database entries
for the images all look the same way: /files/IMAGENAME. jpg. The slash at the beginning
of the path indicates a relative URL, referring to the current page. For example, the web
page loads /files/Maple.jpg from: http://localhost:8080/files/Maple.jpg. The main
advantage of this approach is, should the domain change, the web application will still
work as intended [141]. Another benefit is the opportunity to easily modify the page. In
case the pictures need to be loaded from another source, the only thing that needs to
change is the URL stored in the database.

The script contains the necessary code for two approaches to handling the page’s
shopping cart. Depending on the session containing the attributed logged, the quantity
chosen for a given product is processed differently.

44

http://localhost:8080/files/Maple.jpg

A guest user’s shopping cart is stored in a simple Java array, consisting of integers for
both the index and the corresponding element. The index refers to a product id,
referring to an item in the database, while the element specifies the quantity chosen.
The array is stored in the session, allowing it to potentially scale in size. Special attention
is given to products already present in the cart, instead of overwriting the quantity, it
needs to be updated instead.

session~getAttribute(
cartArray = ~bsf.createJavaArray(

session~setAttribute(,cartArray)

cart = session~getAttribute(
cart[choice] ==
cart[choice] = quantity

cart[choice] = cart[choice] + quantity

Listing 23: mainpage.rex cartArray

Should the user be logged in, her shopping cart is stored in the database instead, using
a preparedStatement to add entries.

qary =

prepstmt = con~prepareStatement(qgry)
prepstmt~setInt(1l,session~getAttribute(

prepstmt~setInt(2,choice)
prepstmt~setInt(3,quantity)
prepstmt~setInt(4,quantity + cartquantity)
prepstmt~executeUpdate

prepstmt~close

Listing 24: mainpage.rex Edit Table cart

When looking at the query, the user’s choice of products gets inserted in the table cart
as a combination of customer_id and tree_id, realizing the many-to-many relationship,
in addition to the quantity chosen. Since each combination of values is defined as
unique in the database, should a query attempt to duplicate it, an exception will occur.
By using ON CONFLICT, this situation is resolved by updating the values, combining the
new quantity chosen with the one previously stored.

6.4.2. userheader. rex

This script, creating the header for multiple web pages, demonstrates how external
scripts can be conveniently reused. It enhances the header with the current number of
products in the shopping cart, as well as multiple buttons and a personalized greeting.
These elements adapt dynamically, according to the user’s login status.

45

6.5. Creating a Shopping Cart /treeshop/shoppingcart.jsp

A shopping cart button, found in the header, redirects to the page shoppingcart.jsp. It
allows to review all items stored in the cart, as well as adding, removing, or fully deleting
products. The main functionality is held in the script shoppingcart.rex.

Bl treeshop | shoppingcart el -+ o

< c @ © D locathost A IN @D ® =

Your Shopping Cart
ttems in Cart: 4 QECSITIND

. Subtotal: 200 €

Willow

Figure 15: shoppingcart.jsp in Web Browser

Just like the main page, the script is split into two parts, which get executed based on
the user’s logins status.

cart = session~getAttribute(
totalprice =
cartsupp = cart~supplier
‘<div id="cartcontainer">'
cartsupp~available
gry = cartsupp~index
stmt = con~createStatement
rs = stmt~executeQuery(gry)

rs~next
totalprice += rs~getString() * cartsupp~item

createProduct rs~getString(), rs~getString(
rs~getString(), rs~getString(), cartsupp~item,
rs~getString(), cartsupp~index

rs~close
stmt~close
cartsupp~next

"</div>"'
con~close

printtotal totalprice
Listing 25: shoppingcart.rex Create Guest Cart

46

A supplier is created if an array, representing a guest’s shopping cart, is stored in the
session. Each iteration yields cartsupp~index, an index referring to a product id and
cartsupp~item, its corresponding quantity. The index is used to retrieve product
information from the database. Additionally, the total price of all items gets updated
during each iteration, to be printed together with a checkout button at the bottom of
the page. This is accomplished by the routine printtotal.

'<form method="post">"
'<input type="hidden" name="tree_id" value="'treeid'">'
'<input type="hidden" name="qty" value="'quantity'">'

‘<input type="submit" name="actn" value="+">'
'<input type="submit" name="actn" value="-">'
'<input type="submit" name="actn" value="del">'
'</form>"'
Listing 26: shoppingcart.rex Routine createProduct Buttons

The routine createProduct uses this information to create a box for each product in the
shopping cart, similar to the approach chosen for the main page. Additionally, the
routine creates three buttons, +, -, and delete, to manipulate the cart’s contents. The
listing above shows the code used to create them. When one of the buttons is clicked,
the request not only contains the desired action, but also the corresponding product id
and its current quantity. This information is added by a hidden attribute, which needs
to be dynamically adjusted for each product.

request~getParameter(==
id request~getParameter(
request~getParameter() -

cart[id] =

response~sendRedirect(request~getRequestURI)

Listing 27: shoppingcart.rex Minus Button

Three 1F blocks correspond to the generated buttons and get activated once they are
clicked. The minus button is shown, since it necessitates to consider a situation, where
the quantity reaches zero. In this case, the index value is set to .nil, indicating the
product to be nonexistent. The same logic applies to the delete button where the value
is set to .nil straight away. The plus button works in the same fashion, replacing
subtraction with addition when it comes to modifying the quantity.

Should the user be logged in, the operations are similar in concept, except for the Java
array being displaced by the database.
6.6. Logging IN /treeshop/login.jsp

Previously shown pages adapt according to a user’s login status. To make this possible,
the page login.jsp takes a user’s credentials and checks their validity. On success, the
login status is stored in the session. Once again, the form input is processed by an
external script called login.rex.

47

The script first uses a database query to determine the existence of the given username.
If this is not the case, a label is used to jump to the same block of code that is used to
display a message for a wrongly entered password. Thus, it is not made obvious whether
the entered password is incorrect, or the e-mail address is nonexistent in the database.
Otherwise, a third party would easily be able to determine if the owner of an e-mail
address is a customer or not.

If the user exists, jBcrypt’s checkpw method uses the entered password and the hash
value stored in the user’s database entry for authentication. On success, TRUE is returned
and the attribute logged is added to the session, using the method setAttribute. By
setting the attribute value to the corresponding user id, a link to the database entry can
be established from this point onwards.

bcrypt = ~new (

bcrypt~checkpw(pw, ha)
session~setAttribute(
Listing 28: login.rex jBcrypt checkpw

It is a common scenario for a user to browse and add products to the cart as a guest.
Only on checkout, the user logs in, making it important that the shopping cart is not
lost during the process. Therefore, on login, all the products stored in the guest cart
need to be moved over to the database. Additionally, should any product be already
present in the database cart, instead of overwriting the quantity, it needs to be updated.
Like the way the shopping cart is displayed, a supplier is used to accomplish this. It is
used to iterate over the Java array, storing each item in the database. After copying all
its contents, the cart is deleted.

6.7. Logging Out, Invalidating a Session /treeshop/logout.jsp

Giving users the ability to log out is essential. To achieve this, the page logout.jsp is
being made accessible by logout buttons throughout the website. Once the page is
accessed, the method invalidate is used to clear the session and all its associated
parameters. Given its brief nature, this functionality is directly implemented on the JSP.

session~invalidate

Listing 29: logout.jsp Invalidate Session

6.8. Concluding the Purchase Process /treeshop/checkout.jsp

The final page checkout.jsp simply removes all currently stored entries for a specified
user from the cart table. The aim is to simulate a concluded purchase process. Should
a guest attempt to checkout, a prompt to login will be displayed. In a real-world use
case, the user would be asked for payment and shipping details instead.

7. Advanced Examples /treeshop/admin

This is a good moment to think about design decisions. For most examples until now,
all the code is stored either directly in the JSP or an external ooRexx script. While this

48

approach has advantages, like all the code being in a single place and the ability to
conveniently update it, the countless 1F blocks complicate programs unnecessarily and
result in redundantly executed lines of code. It might be beneficial to separate request
specific actions from the generation of content. This would also result in increased
efficiency, since less unnecessary elements need to be processed and loaded.
Nonetheless, for a beginner, the shown approach is a fantastic way to quickly develop
functional web pages. The conclusory web examples found in the subfolder admin of the
treeshop web application will be used to show a different approach.

While the contents of WEBAPP\WEB-INF are shared across all directories, each subdirectory
can be assigned its own resources and a unique welcome page:
http://localhost:8080/treeshop/admin. The folder structure directly influences the path
to access a web page. Also, special attention needs to be given to shared resources like
stylesheets.

<link rel="stylesheet" href="../css/treeshop.css">
Listing 30: Link Resource in Subdirectory

The two leading dots indicate for the resource to be accessed from its parent directory.
Therefore, the linked folder css is not found in the subdirectory treeshop\admin, but one
level up. This enables pages found in subfolders to use the same stylesheet as pages
directly placed in WEBAPP\.

7.1. Uploading Files /treeshop/admin/addproducts.html

Since entering data directly into the database can be time consuming and complicated,
the page addproducts.html offers the functionality to add new products to be sold on the
main shop page. Meanwhile, images are an essential part of modern web pages. This
example facilitates their upload, to be seamlessly named, stored, and integrated. Since
all of treeshop’s pages are dynamically created, newly added products will appear
momentarily.

The page addproducts.html displays a set of fields corresponding to the database’s
columns. To enable uploading files, a form needs to be given the attribute enctype with
the value multipart/form-data.

Lesson Learned: Should a program perform mathematical operations on user inputs, it
is essential to only allow numbers to be filled in the corresponding form field. This can
be achieved with input type="number".

<form action="uploader" method="post" enctype="multipart/form-data" id="mailform">
Listing 31: addproducts.html Upload Form

An enctype defines the document’s encoding type, with multipart/form-data allowing
file uploads. Usually, it is not necessary to specify a form’s encoding, with file uploads
being the exception [142].

49

http://localhost:8080/treeshop/admin/

In contrast to previous examples, no external .rex script is used to process the data,
instead the form points to the servlet uploader. For a JSP to be used this way, the web.xml
file specific to the web application needs to be edited, as can be seen in the listing below.
Should the reader have copied the nutshell examples, no further modifications are
necessary.

<servlet>
<servlet-name>uploader</servlet-name>
<jsp-file>/admin/code/uploader.jsp</jsp-file>
<multipart-config>
<location>C:\Program Files\Apache Software Foundation\Tomcat
10.0\files\</location>
<max-file-size>10000000</max-file-size>
<max-request-size>10000000</max-request-size>
</multipart-config>
</servlet>

<servlet-mapping>
<servlet-name>uploader</servlet-name>
<url-pattern>/admin/uploader</url-pattern>

</servlet-mapping>

Listing 32: web.xml Uploader Servlet Configuration

The file uploader.jsp is configured as a servlet named uploader. This enables further
configuration, otherwise only available to Java Servlets. For example, the load order,
initialization attributes and security roles can be configured [143]. Since the JSPs content
is written in the ooRexx language, a fully functional Rexx Servlet has been created.
Additionally, the servlet’s MultipartConfig, which controls file uploads, can be easily
modified.

To begin with the location for temporary files is specified. The proper location and
filename for the file will be chosen by the script at processing time. A temporary location
is necessary since the file is first written as a temporary file and only afterwards
processed to be stored permanently [144]. The maxRequestSize and maxFileSize Elements
are used to set a limit for the size of both the file and the request, in bytes [145]. Here
the maximum size has been set to the equal of 10 megabytes.

Additionally, the servlet is registered in the servlet-mapping. This map is used by the
container to resolve requests [143]. Henceforth, the servlet is accessible from the path:
http://localhost:8080/treeshop/admin/uploader. This configuration allows the JSP to
directly process the request generated by the form found on the page addproducts.html.
Since the request only gets sent to the servlet if needed, no more IF loops monitoring
request parameters are required.

7.1.1. Upload Servlet /treeshop/admin/upload

The servlet functions like any other JSP, the only difference being the omission of any
HTML start tags; after the JSP declarations, the script content immediately starts. Since
all form fields have been set as required, the requests will always contain all necessary

50

http://localhost:8080/treeshop/admin/uploader

form fields, as well as an uploaded file. The field values can be easily accessed like in any
other form, using the getParameter method. The script first checks the database for any
entries with an identical name. Should an entry with the same name exist, a warning is
displayed to the user. Whenever content needs to be displayed, the resources leadin
and leadout are used to create a proper HTML page.

Before a new product can be added to the database, the uploaded file needs to be
processed.

filename = name ||
location = || filename

request~getPart()~write(filename)

Listing 33: uploader.jsp File Processing

The product’s name has been given in the form and will be used together with the .jpg
file extension to name the file. The file is placed in the files folder, which has been
defined as a source for static content in: 6.1.1. Serving Static Content. The string
location gets stored in the database and is later used by the img tag to access the picture
from its relative path.

Lesson Learned: Before new files are uploaded, the designated folder to hold them
should already have been created. Otherwise, exceptions might occur.

The getPart method is used to access a specific part from the request. The file has been
given the name file in the form, which is used to fetch it. At this point, the file is stored
in the temporary location, defined in the MultiPartConfig found in the web.xml file. The
method write is used to write the file to the disk, using the previously given filename.
Since no specific path is given, it gets permanently stored in the temporary location
[146].

After writing the file to the disc, a confirmation page is generated for the user. The
resources leadin and leadout are used again, to create a proper HTML page. The HTML
conventions should always be followed, by using resources, this can easily be
accomplished.

Should multiple files be contained in the request, the method getpParts can be used to
get a collection of all Parts, to be iterated over [147].

After all fields are entered and an image is uploaded, the newly created product will
immediately be visible on all the application’s web pages.

7.2. Sending E-Mails /treeshop/admin/sendnewsletter.jsp

The final example page demonstrates how a web application can be used to send e-
mails. Since the database already includes product details and the customers’ e-mail
addresses, all information necessary to create a newsletter, promoting currently
available products, exists.

51

To begin with, the script found in the body of sendnewsletter.jsp creates a list of all
products in the database and allows them to be selected by a checkbox. The JSP
mailer.jsp is then used to create and send e-mail messages. Therefore, just like in the
previous example, a servlet called mailer needs to be registered in the web.xml file.

For this web application to function the .jar files containing Jakarta Mail and Jakarta
Activation are required. The demo web application already includes both. Jakarta Mail
was previously known as JavaMail and empowers Java applications to implement e-mail
functionality, such as sending and reading e-mail messages [150]. Jakarta Mail depends
on Jakarta Activation to function. According to the Eclipse Foundation, it is used to:
“determine the type of an arbitrary piece of data; encapsulate access to it; discover the
operations available on it; and instantiate the appropriate bean to perform the
operation(s)” [151].

Lesson Learned: The correct file jakarta.activation-2.0.0.jar should not be mixed up
with jakarta.activation-api-2.0.0.jar. Furthermore, version 2.0.0 of Jakarta Mail

requires Jakarta Activation to be using the Jakarta namespace, therefore Version 2.0.0
(or newer) should be used for both.

‘<form action="mailer" method="post" id="emailchoice">'
rs~next
"
"'
‘<label for="choice">'rs~getstring() '</label>"
'<input type="checkbox" name="choice"
value=""rs~getstring()" U></1i>!

rs~close
stmt~close
con~close
"<input type="submit" value="Send Newsletter to 'count' Receivers">'
SAY '</form>'
Listing 34: sendnewsletter.jsp Create Checkbox

The page sendnewsletter.jsp generates a form with a checkbox for each product in the
database. The listing above demonstrates how this checkbox is created. All the form’s
checkboxes have the name choice and the corresponding product id as value. The page
also uses a database query to count the total number of recipients, to dynamically
display them inside the submit button.

52

letter X+ = o

© DO localhost:80 esho £ IN @ ®

Create a New Newsletter

Oak

Birch

Willow

Beech

B

2
¥ Baie
=srves =)

Figure 16: sendnewsletter.jsp in Web Browser

7.2.1. E-Malil Servlet /treeshop/admin/mailer

After the form has been submitted, the servlet mailer.jsp first makes sure, that at least
one product has been selected, preventing an empty e-mail from being sent. Since
choice most likely has multiple values, instead of getParameter the method
getParameterValues is needed. It will fetch values related to all checkboxes ticked and
stores them in an iterable string array [152].

choices = request~getParameterValues(

choice =
productname choices

choice = choice || || productname ||

choice = choice~ (choice~length)

Listing 35: mailer.jsp Choicearray

To determine the products to be mentioned in the e-mail, first an empty string is
defined as the variable choice. The previously fetched string array is iterated over, to
create a list of product names, which is usable in a database query. For each iteration, a
new product is added until none are left. The string choice, which comes empty for the
first iteration, is gradually extended with product names, enclosed in single quotation
marks and a comma. On conclusion, the last comma is removed to ensure a functioning
database query. This is achieved by the delstr Method.

Delete String removes the character at the given position. By giving the length of the
whole string, the last character is deleted [101].

Concerning the receivers, when a user signs up for the web page, an e-mail address is
given, and newsletter preferences are stated. Therefore, a list of receivers can be easily
generated. It might be a mistake to simply set all the shop’s customers as receivers for a
single e-mail. Afterall, each of them would see a whole list of other customers in the

53

recipient field and personalization would be rendered impossible. Therefore, the script
sends a separate e-mail to each customer.

stmtl = con~createStatement

qryl =
rsl = stmtl~executeQuery(qryl)

emailcount =
rsl~next
Listing 36: mailer.jsp Select Receivers

In consequence, the database is queried for all customer entries that are signed up for
the mailing list. These entries have the Boolean column receives_mail set to TRUE. The
variable mailcount meanwhile keeps track of the number of e-mails sent. The created
resultSet then yields an e-mail address during each iteration, which is used to create
and send a personal e-mail. Since this first query will contain another, the variables stmt,
gry and rs have been numbered accordingly. Should the same variables be used for both,
they might overwrite each other and cause problems.

props = ~new(

session = bsf.loadclass()~getInstance(props)
msg = ~new (,session)

sender = ~new (

msg~setFrom(sender)

receiveraddress = rsl~getString(

receiver = ~new(,receiveraddress)
type = bsf.loadclass()
msg~addRecipient(type~to,receiver)

msg~setSubject(

Listing 37: mailer.jsp Create Message

To begin with, a Jakarta Mail session needs to be created. To instantiate the
corresponding class, a set of Java properties is necessary. The class java.util.Properties
creates a persistent set of properties where a key corresponds to a property, both of
which are strings [153]. For the approach taken, no special properties are necessary, they
need to be defined either way, since a set of properties is needed to create a mail session
instance.

Afterwards, a jakarta.mail.Session instance is created. It is used as a bridge to the
Jakarta Mail API, handling configuration and authentication. Using this session, the
message to be sent is created; more specifically, the subclass
jakarta.mail.internet.MimeMessage, which allows the use of different mime-types and
headers [154].

Now, sender and receiver are added to the newly created message; these addresses need
to be defined using the jakarta.mail.internet.InternetAddress class. While defining
the sender is straightforward, the receiver additionally requires the recipient type to be

54

set by the class jakarta.mail.Message$RecipientType. Afterall, the receiver can take the
form of 1o, cc or Bcc [155]. For this example, a simple T0 receiver is used, the address
being made available by the database. In case the exact same message needs to be sent
to multiple receivers, BcC can be used to declare them without disclosing a full list of
recipients. Besides, the subject is added.

The last piece missing is the message’s body. To create it, a second database query is
nested into the first.

stmt2 = con~createStatement

qry2 =
rs2 = stmt2~executeQuery(qry2)

rs2~next

linel = '<div style="float: left; margin-right: 10px;">"'

line2 '<h2>'rs2~getstring("name")'</h2>"'

line3 = '<img src="http://localhost:8080' || rs2~getString("picture")
height="120" width="150" />'

line4 = '<p>Price: 'rs2~getstring("price")' Euro</p>'

line5 "<p>Height:' rs2~getstring("height")"' Meters</p>'

line6 = '</div>'

i+=
product.i = linel || line2 || 1ine3 || line4 || 1line5 || line6

rs2~close
stmt2~close

text = '<html><head><meta charset="UTF-8" /></head><header>"

text = text || '<hl>Vist
treeshop</h1>"

text = text || '<hd><a
href="http://localhost:8080/treeshop/admin/unsubscribe. jsp?unsub="
receiveraddress'">Click Here to Unsubscribe</h4>'

count 1 i
text = text || product.count
END

text = text || '</body></html>"

msg~setContent (text,

Listing 38: mailer.jsp Create Message Content

The main problem of this approach is that the whole message body needs to be
contained in a single string. For this reason, and to easy formatting and the insertion of
pictures, the message is created by HTML text.

The database queries data for all the products that are contained in the string choice,
representing the checkboxes ticked on the previous page. A HTML segment for each
product is created, for their sum to be amalgamated to form the main message. For each

55

product, six lines of HTML code create a <div> section. Additionally, each iteration
increases the index value i by one. The six lines are then appended together to form a
single line and stored under the variable product.i, where i is used to index them
accordingly. This gives the script the flexibility needed to adapt to a varying number of
products.

The e-mail’s body commences with the necessary tags to properly define a HTML
document. Afterwards, a headline, linking to the shop’s main page is added, followed
by a receiver-specific link to unsubscribe. The feature to unsubscribe from newsletters
will be discussed at a later stage. Next, all the previously generated products are added
to the string, followed by HTML closing tags. The setContent method is then used to set
this string as the message’s body, finalizing it.

7.2.2. Sending and Receiving E-Mails with MailHog

The Jakarta Mail API is platform and protocol independent and can therefore be used
on any operation system and with most e-mail service providers allowing IMAP, POP3
or Simple Mail Transfer Protocol (SMTP) access [150]. Therefore, once this application
has been properly tested, it can be linked to an e-mail server, to send messages into the
real world.

During the first phases of testing, usually many e-mails need to be sent. To simplify this
process, the author suggests the use of an open-source tool called MailHog. The
appendix includes instructions on how to use it to set up a local SMTP test server: E.
MailHog Installation Guide. The process is incredibly easy and can be done within
minutes.

All incoming and outgoing e-mails will then be processed by MailHog, allowing to view
e-mails from the receiver’s perspective. The program creates an inbox, which can be
accessed from a web browser using the URL: http://localhost:8025. This approach
creates an environment that allows to refine the e-mails to be sent, as well as identifying
any possible flaws in the program.

transport = session~getTransport()
transport~connect(,1025, ,)
transport~sendMessage(msg,msg~getRecipients(type~to))

emailcount += 1

Listing 39: mailer.jsp Send Message

The session’s transport object is used to send e-mails. Its connect method establishes a
connection to the server, using the attributes host, port, username, and password.
Finally, the sendMessage method takes the previously created message and its recipients
as inputs to send the e-mail.

By default, MailHog uses the port 1025 on the local host to process e-mails. Since the
testing tool accepts any combination of username and password, placeholder values for

56

http://localhost:8025/

them will be used. Therefore, these configuration parameters will be used to
demonstrate the capabilities of the nutshell example.

Instead of using Java properties, this easy approach to sending e-mails with Jakarta Mail
sets the properties necessary at the final stage. Most noteworthy, the method
sendMessage is used instead of the more commonly used send [156, p. 52].

From newsletter@treeshop.com
Subject Here Are the Latest Products from treeshop!
To bigspender@quickmail.com

HTML Plain text Source

Vist treeshop

Click Here to Unsubscribe

Willow Beech Pine

Price: 50 Euro Price: 100 Euro Price: 150 Euro Price: 180 Euro Price: 250 Euro Price: 300 Euro

Height: 20 Meters Height: 15 Meters Height: 10 Meters Height: 40 Meters Height: 55 Meters Height: 40 Meters
Figure 17: Newsletter in Web Browser

Lesson Learned: The pictures in the e-mail are only visible if the Tomcat server is up

and running.

After the message has been refined to prove satisfactory, the next step would be to
change the credentials to those of a real-world e-mail service, fully enabling the
program’s functionality. Although, the regular SMTP protocol is used for testing
purposes, it is not secure and thus not recommended for everyday use. Therefore, like
HTTPS, the Simple Mail Transfer Protocol Secure (SMTPS), which uses the SSL/TLS
protocol needs to be used instead.

In addition to encrypting messages between the sender’s e-mail client and e-mail server,
SSL/TLS enables the use of digital certificates for identification purposes [157]. The
appendix includes the code necessary to facilitate secure transmission of e-mails when
using a real e-mail service provider: G. SSL/TLS E-Mail Utility

7.3. Unsubscribing from E-Mails /treeshop/admin/unsubscribe.jsp

The European Union’s General Data Protection Regulation requires that users can
object to receiving direct marketing e-mails at any time and that companies then must
stop using their data immediately [123]. To implement this regulation, each e-mail
includes a link to unsubscribe, containing a get request that gets dynamically created
for each receiver.

57

treeshop | unsubscribe XN + o m}

& (& Q 0] [3 localhost:508 - 3 5 sub= = oo % X IN @O @ =

Unsubscribing You from the Newsletter

Unsubscribe

Figure 18: unsubscribe.jsp in Web Browser

By rewriting the URL, the script in the body of unsubscribe.jsp can fetch the e-mail
address included in the request. It is appended to the URL, using the parameter unsub:
http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=bigspender@quickmail.co
m. Instead of immediately unsubscribing, the user is asked if she is certain and presented
with a button to confirm. Upon clicking it, the user’s e-mail address is forwarded to the
servlet unsubscriber. jsp. Please note, that to function, the servlet needs to be registered
in the web.xml file, just like in the previous examples. The servlet simply changes the
column receives_mail, found in the table customer, for the given user to FALSE. Upon
success, a confirmation message is displayed.

7.4. Common Gateway Interface

Not to forget, the Common Gateway Interface (CGI) offers the possibility to directly
execute a script on the web server, generating a response for each request. Just like with
JSPs, output methods can be used to create HTML pages. Tomcat allows the usage of
CGI scripts by registering them like any other servlet. Since every request leads to the
creation of a new process on the server, this approach can lead to significant
performance problems in high traffic situations. Compared to Jakarta Servlets, which
use Java, CGI scripts are dependent of the server’s operating system, interpreters, and
compilers. The request of a CGI script leads to its direct execution from the command
line [148, pp. 13-17]. This results in the programs being run outside of the Java Virtual
machine, bypassing the Java Security Manager.

Given all these limitations, CGI scripts are most commonly used during development
[149]. While this work focuses on the use of JSPs, this method is still briefly mentioned,
since it offers an alternative way to directly execute scripts.

8. Conclusion

After working with web applications extensively, one will never look at web pages the
same way. It is astonishing how technologies, that now exist for over twenty years, are
still used to create the modern world wide web we take for granted today. Furthermore,
the author hopes to inspire readers to create their own web applications. By using the

58

http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=bigspender@quickmail.com
http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=bigspender@quickmail.com

building blocks introduced in this thesis, in combination with countless available
external Java libraries, a beginner will be able to turn ideas into reality.

Three different approaches have been introduced: Adding scripting content directly to
a JSP, linking external scripts containing the logic, and configuring a JSP containing
script code as a servlet. While each of the approaches has its advantages and
disadvantages, they offer great insights into web development and enable adaptation to
a given situation.

For more sophisticated web applications, involving a team of developers, the
intermingling of programming logic and design components will prove problematic.
Such projects will use the model-view-controller design pattern, implemented by a
framework like Apache Struts. Nonetheless, the approaches shown allow the creation
of dynamic web applications in record time.

A. Prerequisites

This section not only contains a collection of hyperlinks to all the required software but
can also be used as a checklist. This work was finished in the beginning of the year 2021
and reflects the current development stage. For future use, the download locations
might change, and the software will be most likely be updated. The author recommends
downloading the latest versions currently available.

A.1l. Software Required to Begin

¢ Nutshell examples: http://wi.wu.ac.at/rgf/diplomarbeiten/

* An archive containing the demo applications should come included with this
work. In case it is missing, please search for this thesis in the collection
provided

% OpenJDK: https://bell-sw.com/pages/downloads/
" Liberica Full 10K should be chosen for maximum compatibility

® Any other Java implementation will also work, this distribution is merely a
suggestion

» Needs to match the ooRexx version used, a 64-bit ooRexx installation requires
a 64-bit version of Java, whereas a 32-bit version requires a matching 32-bit
installation

** ooRexx: https://sourceforge.net/projects/oorexx/
* Asa minimum, Version 5.0.0 needs to be installed

s BSF400Rexx: https://sourceforge.net/projects/bsf4oorexx/

59

http://wi.wu.ac.at/rgf/diplomarbeiten/
https://bell-sw.com/pages/downloads/
https://sourceforge.net/projects/oorexx/
https://sourceforge.net/projects/bsf4oorexx/

The file bsf4ooRexx-v641-20210205-bin.jar (or newer) can be found in the
downloaded archive, or once installed, in the installation directory of
BSF400Rexx

Also contains an Intelli] IDEA plugin, enabling text highlighting for ooRexx

Additionally, the latest version of the Tag Libraries (they already come

included with the web applications) can be downloaded from:
https://sourceforge.net/projects/bsfd4oorexx/files/Sandbox/rgf/taglibs/

e Also contains the demoRexx web application with additional examples

e Also contains a language injections file for Intelli] IDEA, enabling
ooRexx to be highlighted in HTML, XML and JSP documents

% Apache Tomcat 10 (Beta status in January 2021):

https:

//tomcat.apache.org/download-10.cgi

As an Alternative, Apache Tomcat 9 (Stable status in January 2021):
https://tomcat.apache.org/download-90.cgi

Before beginning the installation, it is recommended to inquire about the
current development status: https://tomcat.apache.org/whichversion.html

A.2. Software Required for Advanced Examples

7
A X4

0

*0

L)

°

X4

®,
*

B

PostgreSQL: https://www.postgresql.org/download/

PostgreSQL JDBC Driver: https://jdbc.postgresql.org/

Already comes included

jBerypt: https://www.mindrot.org/projects/jBCrypt/

Already comes included

Jakarta Mail: https://eclipse-ee4j.github.io/mail/

Already comes included

Jakarta Activation: https://eclipse-ee4j.github.io/jaf/

Already comes included

MailHog: https://github.com/mailhog/MailHog

. Tomcat Installation Guide

The following section will give a step-by-step installation guide for the Apache Tomcat
Software version 10.0.0 on the Microsoft Windows 10 Operating system. Before
beginning, as a minimum Java needs to be installed.

60

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/
https://tomcat.apache.org/download-10.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/whichversion.html
https://www.postgresql.org/download/
https://jdbc.postgresql.org/
https://www.mindrot.org/projects/jBCrypt/
https://eclipse-ee4j.github.io/mail/
https://eclipse-ee4j.github.io/jaf/
https://github.com/mailhog/MailHog

In case the reader prefers the stable Tomcat Version 9, the installation process is
identical.

Before beginning the installation, it is recommended to inquire about the current
developrnent status from: https://tomcat.apache.org/whichversion.html

The apache-tomcat-10.0.0.exe can be downloaded from the webpage:

https://tomcat.apache.org/download-10.cgi, by clicking on 32-bit/64-bit Windows
Service Installer.

10.0.0
Please see the README file for packaging information. It explains what every distribution contains.
Binary Distributions

* Core:
zip (pgp. sha512)
tar.gz (pgp. sha512)
32-bit Windows zip (pgp. sha512)
64-bit Windows zip (pgp. sha512)
o 32-bit/64-bit Windows Service Installer {pgp. sha512)
Full documentation:
o tar.gz (pgp. sha512)
Deployer:
o zip (pgp. sha512)
o tar.gz (pgp. sha512)
Embedded:
o tar.gz (pgp. sha512)
o zip (pgp. sha512)

o O O 0

Figure 19: Tomcat 10 Download Page

After downloading and executing the file apache-tomcat-10.0.0.exe, one is greeted with
the following window. It is worth to note, that under most Windows 10 configurations,
upon running the exe file, one is greeted with a popup from Windows User Account
Control, where it is necessary to grant the program permission to make changes on the
device. The installer being still labeled as Apache Tomcat g is most likely a result of the
software still being in Beta status.

61

https://tomcat.apache.org/whichversion.html
https://tomcat.apache.org/download-10.cgi

@ Apache Tomeat Setup - >

Welcome to Apache Tomcat Setup

Setup will guide you through the installation of Apache
Tomcat.

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue.,

o
[=5
-
U
c
(=)
0]
a
m
E
E
=
el
e
S
o
e
=

Apache Tomcat 9

Figure 20: Tomcat 10 Setup Welcome

After clicking the Next button, the License Agreement can be reviewed and needs to be
accepted by clicking on “I Agree”.

@ Apache Tomcat Setup —

License Agreement
Please review the license terms before instaling Apache Tomcat.

Press Page Down to see the rest of the agreement.

Apache License
Version 2.0, January 2004
http: {fwww. apache. orglicenses

TERMS AMD COMDITIONS FOR. USE, REPRODUCTION, AMD DISTRIBUTION
1. Definitions,

"License"™ shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document. W

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Apache Tomcat.

rullsoft Install System 3,04

<Back | IAgree | Cancel

Figure 21: Tomcat 10 Setup License Agreement

62

The following window allows the customization of components to be installed. It is

recommended to select a Full installation.

Choose Components

Cr, select the optional
components you wish to
install:

Space reguired: 19.0 MB

Select the type of install;

Full

Choaose which features of Apache Tomcat you want to install.

..
: Start Menu Items
i Documentation
Manager

Tomcat

; Host Manager
{ Examples

< Badk

Chedk the components you want to install and unchedk the components you don't want to
install. Clidk Mext to continue.

Description

Mext = Cancel

Figure 22: Tomcat 10 Setup Choose Components

The entries Start Menu Items, Documentation and Examples are self-explanatory and might

prove useful. The Manager entry is used to create a web application, accessible from:

http://localhost:8080/manager, with various functions like listing all users and currently

installed web applications, as well as the option to deploy and undeploy them [80].

Meanwhile, the Host manager is used for creating multiple websites on a single server

[158].

After choosing the desired components, the next window allows further configuration.

63

http://localhost:8080/manager

Configuration q;;

Tomcat basic configuration.

Server Shutdown Port 2005

HTTP/1.1 Connector Port 3080 ‘

Windows Service Name | Tomcatll |
Create shortouts for all users]
Tomcat Administrator Login @~ User Name | admin |
(optional)
Passlﬂ'ﬂrd | BERRERRRERRR DR ERREREE |
Roles | admin-gui,manager-gui |
« Back Mext = Cancel

Figure 23: Tomcat 10 Setup Configuration

Most importantly, by default, the Server Shutdown Port is set to -1, or disabled. Here, it
is highly recommended to choose another available port like 8005, the default shutdown
port. This port is used for the server to wait for a shutdown command. It is not
recommended to disable the port while running and stopping the server with the
standard shell scripts. When using the Apache Commons Daemon from the taskbar,
disabling it is an option [159]. Setting the Server Shutdown port allows the user to use
both the Apache Commons Daemon, as well as the standard shell scripts to start and
stop the server. The main part of this work describes in detail how Tomcat is used.

Additionally, it is recommended to pick a username and password, since this is the most
convenient way to set them. These credentials are used to access the Manager web
application.

The next part of the installation asks for the path of the Installed Java Runtime
Environment, which should be automatically detected.

64

@—.’F:"._T"ZFTE‘.T..’ Ava Virtual iViacning path selection -

Java Virtual Machine path selection,

Please select the path of a Java & or later JRE installed on your system,

| C:\Program Files'BelSoft\LibericaJDK-14-Fully

« Back Mext = Cancel

Java Virtual Machine "bc

Figure 24: Tomcat 10 Setup Java Virtual Machine

Afterwards, the installation path is chosen. In the figure below, the default path is left

unchanged.

Choose the folder in which to install Apache Tomcat.

Setup will install Apache Tomcat in the following folder. To install in a different folder, didk
Browse and select another folder. Click Install to start the installation.

Destination Folder

| C:\Program Files\Apache Software Foundation\Tomcat 10.0 Browse...

Space required: 19.0 MB
Space available: 174.6 GB

« Back Install Cancel

T

Choose Install Location '_h,_-

Figure 25: Tomcat 10 Setup Choose Install Location

65

After confirming the installation path, the software gets installed and the user is greeted
with the following window. If desired, the server can be immediately started.
Additionally, the Readme file can be viewed.

@ Apache Tomeat Setup —

Completing Apache Tomcat Setup

o
|
Q
£
[¥] Apache Tomcat has been installed on your computer.
4]
& Click Finish to dose Setup.
a
E Run Apache Tomcat
=
:: Show Readme
=1
E
i =
Apache Tomcat 9
< Back ” Finish Cancel

Figure 26: Tomcat 10 Setup Finish

C. Using Tomcat 9

At the time of writing, in January 2021, the Apache Tomcat 10 software was still in a Beta
status. Should the reader prefer the stable Version 9, small changes are necessary. The
reason being, that Tomcat 10 uses the Jakarta namespace, while Tomcat g uses the JavaX
namespace.

Instead of using the web applications helloworld.war and treeshop.war, modified
versions for Tomcat 9 can be found in the zip archive included with this work, more
precisely in the directory ZIP_ARCHIVE\javax_for_tomcat9.

The main difference is the tag library used, since it is already part of the web
applications, no further actions are required for the reader to perform. Therefore,
should the reader wish to create web applications and prefer using Tomcat 9, it is
instrumental to use the file javax.ScriptTaglLibs.jar instead of
jakarta.ScriptTaglLibs.jar.

Other than the taglib used, the main difference can be observed in the naming of certain
classes. For the examples shown in this thesis, the only difference is related to the
creation of cookies.

66

For example, while in the Jakarta version a cookie is created using the class
jakarta.servlet.http.Cookie, Tomcat 9 uses javax.servlet.http.Cookie instead. This
name change 1is not wuniversal; for example, both versions still use
javax.naming.InitialContext to refer to the InitialContext class. Furthermore, since the
latest version of Jakarta Mail is added as an external library, both Tomcat 9 and Tomcat
10 use the Jakarta namespace to send e-mails.

As a result, it is a good idea to keep this name change in mind, especially when
encountering inexplicable errors messages referring to classes not being found.

D. PostgreSQL

This section will be used to show all necessary steps to install and setup a PostgreSQL
database management system, enabling the full functionality of the treeshop web
application.

D.1. Installation

To begin with, the latest version of the PostgreSQL installer can be downloaded from:
https://www.postgresql.org/download/. At the time of writing the current version was
13.1. After downloading and executing the file postgresql-13.1-1-windows-x64.exe, one
is greeted with the following screen on the Microsoft Windows 10 operating system.
Usually, it is necessary to allow the application to make changes in a User Account
Control popup warning.

=

Setup - PostgreSQL

o E D B Welcome to the PostgreSOL Setup Wizard.

&y

PostgreSQL

< Back Mext = Cancel

Figure 27: PostgreSQL Setup Welcome

67

https://www.postgresql.org/download/

After clicking on the Next button, the installation directory is selected. For most
machines, the default directory should work just fine.

-»

Installation Directory »

Please specify the directory where PostgreSQL will be installed.

Installation Directory | C:\Proagram Files\PostgresQLy13 r':‘:'

VMware InstallBuilder
< Back Mext = Cancel

Figure 28: PostgreSQL Setup Installation Directory

Afterwards, the components to be installed are chosen. For the use case described, the
only mandatory option is PostgresQL Server. Users preferring a graphical interface
might wish to install pgAdmin 4. This tool allows to administer the database server from
within a web browser. This thesis uses the command line to perform the configuration
necessary though.

68

Select Components

you are ready to continue.

pgAdmin 4
Stack Builder
Command Line Tools

WMware InstallBuilder

< Back

-»

Select the components you want to install; dear the components you do not want to install. Click Next when

PostgreSQL Senver Click on a component to get a detailed description

Mext = Cancel

Figure 29: PostgreSQL Setup Select Components

The next window asks for a directory to store the actual data that gets managed in the

database management system. Per default, a directory within the default installation

directory is chosen. Again, for use on a private machine the default option is

recommended.

= Setup

Data Directory

Please select a directory under which to store your data.

i Data Directory C:'Program Files\PostgresQLY13\data r*:"

VMware InstallBuilder
< Back

4

Mext = Cancel

Figure 30: PostgreSQL Setup Data Directory

69

The next step requires choosing a password for the database superuser account
postgres. Should the database include sensitive data, it is necessary to choose a strong
password, since this account has all possible permissions. For Apache Tomcat, a
separate account will be added later, therefore this superuser password is usually not
repeated frequently after the configuration has been concluded.

=

Password »

Flease provide a password for the database superuser (postores).

Password I

Retype password eeessssene

m
e

< Back Mext = Cancel

Figure 31: PostgreSQL Setup Password

In the next step, the port, under which the database server is made accessible is chosen.
Once again, for the use on a private machine, the default port 5432 does not need to be
changed and is also used for the demo web applications.

70

Pleasze select the port number the server should listen on.

Port | 5432

| vMware InstallBuilder
< Back Mext = Cancel

Figure 32: PostgreSQL Setup Port

In the next step, the locale to be used is chosen. This setting affects the language,
alphabets, and number formatting used in the database cluster. By choosing the default
locale, the locale of the operating system is used [160].

¥ Setup _

Advanced Options »

Select the locale to be used by the new database duster.

| Locale |[Default locale] i

WMware InstallBuilder
< Back Mext = Cancel

Figure 33: PostgreSQL Setup Advanced Options

71

The next window summarizes all previously chosen options. The image below shows an

installation where all possible components are chosen, and the default parameters have

been left unchanged.

B Setup

Pre Installation Summary

The following settings will be used for the installation::

-»

| | Installation Directory: C:\Program Files\PostgreSQLY13
Server Installation Directory: C:\Program Files\PostgreSQLY13
Data Directory: C:\Program Files\PostaresQLY13\data
Database Port: 5432

Database Superuser: postgres

Operating System Account: NT ALUTHORITY YMetworkService
Database Service: postgresgl-x64-13

Stack Builder Installation Directory: C:\Program Files\PostgreSQLY13

Command Line Tools Installation Directory: C:\Program Files\PostgreSQLY13
pafdmin4 Installation Directory: C:\Program Files\PostgreSQLY13\pgAdmin 4

WMware InstallBuilder
< Back

MNext =

Cancel

Figure 34: PostgreSQL Setup Pre Installation Summary

The next window informs the user that the setup is ready to start the installation.

W Sctup

Ready to Install

Setup is now ready to begin installing PostgreSQL on your computer.

VMware InstallBuilder
< Back

MNext =

-»

Cancel

Figure 35: PostgreSQL Setup Ready to Install

72

After the installation is concluded, one is greeted by the window shown below. The
optional Stack Builder feature is not required for the use case described.

s

Completing the PostgresQL Setup Wizard

Q E D B Setup has finished installing PostgreSGQL on your computer,

Launch Stadk Builder at exit?

[] stack Builder may be used to download and install
additional tools, drivers and applications to
complement your PostgreSQL installation.

&

PostgreSQL

‘ < Back Finish Cancel

Figure 36: PostgreSQL Setup Finish

D.2. Setting Up a PostgreSQL Environment Variable

Even though, the database comes with a graphic administration interface called pgAdmin
4, this tutorial uses the command line to work with the database. To use PostgreSQL
from within the Windows PowerShell or the Command Prompt, it is necessary to add
the database management system to the system’s environment variables.

To accomplish this on Windows 10, first the About your PC window must be opened.
This window can be easily found by typing about in the Windows Search. After clicking
on Advanced system settings on the right, a smaller window with system properties is
opened.

After clicking on Environment Variables, a new window is opened. By selecting the
Variable path on the lower half under System variables and clicking on the Edit button,
the environment variables can be accessed.

By clicking on New and then Browse, the bin folder from the PostgreSQL installation
directory needs to be chosen: C:\Program Files\PostgresQL\13\bin. Afterwards, the
choice is confirmed by clicking on oK. After restarting all currently open Windows
Powershell and Command Prompt windows, the PostgreSQL database management
system can be accessed with the command psql.

73

D.3. Starting the Database Server

Like the Apache Tomcat software, the PostgreSQL server which allows access to the
databases is started and stopped by a corresponding Windows Service. By typing
services.msc in the Command Prompt or the Windows Powershell, all Windows
Services are listed. By right-clicking on the entry postresql-x64-13 the server can be
started or stopped.

D.4. Setting Up a Database for treeshop

This section will list all commands necessary, to prepare a database for the treeshop web
application. As an alternative to this guide, a support web page included with both web
applications offers a convenient way to quickly copy and paste all shown commands. It
can be accessed from: http://localhost:8080/helloworld/support and is highly
recommended.

To begin with, the command: psql postgres postgres allows access to the database
management system. psql is the environmental variable used to communicate to the
command line, that PostgreSQL is to be addressed. The repetition of the variable
postgres signals the database management system to access the default database
postgres as the superuser postgres. Afterwards, the password for the superuser account,
which has been defined during the installation process, needs to be entered. In this
context, the command line will give no feedback for letters entered if they are related
to passwords. At this point, one should be greeted by the following prompt:

Listing 40: PostgreSQL Setup Start Database Management System

Now, a new database called shop is created. It is used exclusively by the treeshop web
application.

Listing 41: PostgreSQL Setup Create Database shop

Afterwards, a connection to the newly created database is established.

Listing 42: PostgreSQL Setup Connect to Database shop

74

http://localhost:8080/helloworld/support

Next, the three tables required for treeshop to function are created. While tree holds all
products, customer contains all registered customers. The table cart is used to connect
them.

Y KEY,
NULL,
T NULL,

KEY,
NULL,

) NOT NULL,
DEFAULT FALSE

OM DELETE CASCADE,
ASCADE ON DELETE CAS

Listing 45: PostgreSQL Setup Create Table cart

All users and products have a unique id assigned to them using serial. This is done
automatically by the sequence object, made available by PostgreSQL. It creates a unique
identifier for each new row [161].

In the next step, the user cattus is created and given the password tomtom12. These
credentials are going to be used by Tomcat to access the database.

USER cattus WITH ENCRYPTED F D "tomtoml2';

Listing 46: PostgreSQL Setup Create User cattus

75

Since no schema has been defined, all previously created tables are assigned to the
schema public. The following commands grants the newly created user the necessary
rights to operate on the related tables.

shop=# GRANT ALL ON ALL TABLES

GRAMNT

b~y
SNOD=%#

Listing 47: PostgreSQL Setup Grant All Rights to cattus

Finally, special permissions need to be given, so that the new user may work on tables
using sequences. Even though sequences look like fields, they are single-row tables that
require explicit permission to perform functions on them. Each time a new row is added,
a function is performed by the database management system, to auto increment the
sequence number, which is stored in form of a bigint [162]. First, the rights are granted

for the sequence of the tree table.

Listing 48: PostgreSQL Setup Grant Sequence Rights tree_id to cattus

Afterwards, the operation is repeated for the table customer.

GRANT ALL ON SEQUENCE customer customer id se

Listing 49: PostgreSQL Setup Grant Sequence Rights customer_id to cattus

In the next step, six example products are added to the table tree.

Listing 50: PostgreSQL Setup Insert Products in tree

Afterwards, three example customer accounts are created. All entries follow the same
password convention: the password for bigspender@quickmail.com is bigspender.

76

Listing 51: PostgreSQL Setup Insert Users in customer

This concludes the setup process for the database. The treeshop should be fully

functional now.

E. MailHog Installation Guide

The MailHog software can be downloaded from the following web page:
https://github.com/mailhog/MailHog. By clicking on Releases on the right, both a 64-bit
and a 32-bit version can be found.

On the Microsoft Windows operation system, once downloaded, the file
MailHog_windows_amd64.exe / MailHog_windows_amd32.exe will open a Command Prompt
window on execution. As long as this window remains open, the software is running.

After configuring Jakarta Mail to send e-mails with the SMTP server on the localhost
and port 1025, all e-mails sent can be viewed from a web browser, using the URL:
http://localhost:8025. The username and password choice does not matter, any values
are accepted.

F. Debug Code Snippet

The following lines of code, written by Rony G. Flatscher, can be placed at the top and
bottom of a script, creating a detailed output of any exceptions that occur when the
program is run. This is particularly useful to determine problems related to database
operations.

strChain=ppJavaExceptionChain(co)~
~say(strChain)
strChain

Listing 52: Debug Code Snippet

77

https://github.com/mailhog/MailHog
http://localhost:8025/

G. SSL/TLS E-Mail Utility

The following utility, written by Rony G. Flatscher, can be added to an ooRexx program
to make the routine sendMailssL available. It offers functionality to send e-mails using

the SSL/TLS protocol. Afterwards, e-mails can be effortlessly sent by calling this routine

and giving it a set of input parameters in the following order: CALL sendMailSsL
fromAddress, password, toAdress, subject, text

#!/usr/bin/env rexx

namespace=determineNameSpace()

namespace~isNil
additional(

pkglLocal= ~package~local
pkglLocal~namespace=namespace

pkglLocal~Session =bsf.loadClass(namespace
pkgLocal~Message.RecipientType=bsf.loadClass(namespace

)

pkglLocal~Transport =bsf.loadClass(namespace
pkglLocal~Authenticator =bsf.loadClass(namespace

pkglLocal~PasswordAuthentication=bsf.importClass(namespace

)

pkgLocal~MimeMessage
=bsf.importClass(namespace
pkglLocal~InternetAddress
=bsf.importClass(namespace

pkgLocal~proxiedAuthenticator=bsf.createProxyClass(

)

BSF.CLS

determineNameSpace
no_javax
clz=bsf.loadClass(

no_javax:

no_jakarta
clz=bsf.loadClass(

no_jakarta:

sendMailSSL
fromAddress, password, toAddress, subject, text

props= ~new (
props~put (
props~put (
props~put(
props~put (
props~put (

jRxAuth=BsfCreateRexxProxy(~new(fromAddress, password))
jAuth= ~new(jRxAuth)

session= ~getDefaultInstance(props, jAuth)
msg= ~new(session)
msg~addRecipient(~to, ~new(toAddress))
msg~setSubject(subject)
msg~setText (text)
~bsf.invoke(

RexxAuthenticator

init
passwordAuthentication
from, password

passwordAuthentication= ~new (
password)

getPasswordAuthentication
passwordAuthentication
passwordAuthentication

sendMailSSL.getPackagelocal
~package~local

Listing 53: SSL/TLS E-Mail Utility

References

[1]

(2]

3]

[4]

(5]

6]

[7]

(8]

[9]

[10]

[11]

[12]

World Wide Web Consortium, "Tim Berners-Lee," World Wide Web Consortium, 16 July 2020.
[Online]. Available: https://www.w3.org/People/Berners-Lee/. [Accessed 10 September
2020].

R. Fielding, J. Gettys, M. J., F. H., L. Masinter, P. Leach and T. Berners-Lee, "Hypertext Transfer
Protocol -- HTTP/1.1," Internet Engineering Task Force, June 19999. [Online]. Available:
https://tools.ietf.org/html/rfc2616. [Accessed 10 September 2020].

Rexx Language Association, " About Open Object Rexx," Rexx Language Association, [Online].
Available: https://www.oorexx.org/about.html. [Accessed 26 December 2020].

Jakarta Server Pages Team, "Jakarta Server Pages Specification, Version 3.0," Eclipse
Foundation, 21 October 2020. [Online]. Available:
https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0.html. [Accessed 10
January 2021].

J. Ousterhout, "Scripting: Higher-Level Programming for the 21st Century," IEEE Compute, vol.
31, no. 03, pp. 23-30, 1998. [Online]. Available: https://web.stanford.edu/~ouster/cgi-
bin/papers/scripting.pdf. [Accessed 29 January 2021].

R. Sedgewick and K. Wayne, "8.2 Compilers, Interpreters, and Emulators," Princeton
University, 24 October 2006. [Online]. Available:
https://introcs.cs.princeton.edu/java/82compiler/. [Accessed 22 September 2020].

D. Hemmendinger, " Machine language," Encyclopaedia Britannica, 13 October 2016.
[Online]. Available: https://www.britannica.com/technology/machine-language. [Accessed 22
September 2020].

R. Toal, "Scripting Languages," Loyola Marymount University, [Online]. Available:
https://cs.Imu.edu/~ray/notes/scriptinglangs/. [Accessed 22 September 2020].

J. Gosling and M. Henry, "The Java Language Environment," Oracle, May 1996. [Online].
Available: https://www.oracle.com/java/technologies/language-environment.html.
[Accessed 23 September 2020].

Oracle, "About the Java Technology," Oracle, [Online]. Available:
https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html. [Accessed 23
September 2020].

C. Hermansen, "Using external libraries in Java," Opensource.com, 11 February 2020.
[Online]. Available: https://opensource.com/article/20/2/external-libraries-java. [Accessed
26 December 2020].

GeeksforGeeks, "Jar files in Java," GeeksforGeeks, 26 May 2017. [Online]. Available:
https://www.geeksforgeeks.org/jar-files-java/. [Accessed 26 December 2020].

80

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Oracle, "JSR 223: Scripting for the JavaTM Platform," Oracle, [Online]. Available:
https://jcp.org/en/jsr/detail?id=223. [Accessed 26 December 2020].

Oracle, "Java Platform, Standard Edition Java Scripting Programmer's Guide," Oracle,
[Online]. Available: https://docs.oracle.com/javase/10/scripting/toc.htm. [Accessed 24
September 2020].

A. Fleck, "Prologue on Program Specification," University of lowa, [Online]. Available:
http://homepage.divms.uiowa.edu/~fleck/spec.html. [Accessed 06 September 2020].

J. O'Conner, "Scripting for the Java Platform," Oracle, July 2006. [Online]. Available:
https://www.oracle.com/technical-resources/articles/javase/scripting.html. [Accessed 04
January 2021].

Oracle, "Interface ScriptEngine," Oracle, [Online]. Available:
https://docs.oracle.com/javase/10/docs/api/javax/script/ScriptEngine.html. [Accessed 24
September 2020].

GeeksforGeeks, "JavaBean class in Java," GeeksforGeeks, 14 September 2017. [Online].
Available: https://www.geeksforgeeks.org/javabean-class-java/. [Accessed 25 September
2020].

Apache Software Foundation, "BSF FAQ," Apache Software Foundation, 17 October 2011.
[Online]. Available: https://commons.apache.org/proper/commons-bsf/faq.html. [Accessed
25 September 2020].

Apache Software Foundation, "BSF Manual," Apache Software Foundation, 17 October 2011.
[Online]. Available: https://commons.apache.org/proper/commons-bsf/manual.html.
[Accessed 25 September 2020].

S. Weerawarana, M. J. Duftler, S. Ruby, O. Gruber, D. Schwarz and R. G. Flatscher, "Class
BSFManager," 13 September 2008. [Online]. Available:
http://wi.wu.ac.at:8002/rgf/rexx/bsf4rexx/current/docs/docs.apache.bsf/org/apache/bsf/BS
FManager.html. [Accessed 25 September 2020].

Apache Software Foundation, "BSF About," Apache Software Foundation, 2011 October 2011.
[Online]. Available: https://commons.apache.org/proper/commons-bsf/index.html.
[Accessed 25 September 2020].

R. G. Flatscher, Introduction to REXX and ooRexx, Vienna, Austria: Facultas, 2013.

R. G. Flatscher, "Java Bean Scripting With Rexx," in Proceedings of the "12th International
Rexx Symposium", Raleigh, North Carolina, USA, April 30th - May 2nd, 2001. [Online].
Available: http://wi.wu-
wien.ac.at:8002/rgf/rexx/orx12/JavaBeanScriptingWithRexx_orx12.pdf. [Accessed 29 January
2021].

R. G. Flatscher, "The Augsburg Version of BSF4Rexx," in Proceedings of the "The 14th
International Rexx Symposium", Raleigh, NorthCarolina, USA, May 2003. [Online]. Available:

81

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

http://wi.wu.ac.at:8002/rgf/rexx/orx14/2003 orx14_A_ BSF_by2.pdf. [Accessed 29 January
2021].

R. G. Flatscher, "The 2019 Edition of BSF4ooRexx," in Proceedings of the "The 2019
International Rexx Symposium", Hursley, Great Britain, September 2019. [Online]. Available:
https://www.rexxla.org/events/2019/presentations/201909-04_BSF4ooRexx.pdf. [Accessed
29 January 2021].

R. G. Flatscher, "Camouflaging Java as Object REXX," in Proceedings of the "2004 International
Rexx Symposium", Sindelfingen/Bdblingen, Germany, May 2004. [Online]. Available:
https://www.rexxla.org/events/2004/ronyf2.pdf. [Accessed 29 January 2021].

The Editors of Encyclopaedia Britannica, " Protocol," Encyclopaedia Britannica, 31 August
2018. [Online]. Available: https://www.britannica.com/technology/protocol-computer-
science. [Accessed 08 September 2020].

F5, "What Is a Web Server?," F5, [Online]. Available:
https://www.nginx.com/resources/glossary/web-server/. [Accessed 21 January 2021].

H.-C. Chua, "HTTP (HyperText Transfer Protocol)," Nanyang Technological University, 20
October 2009. [Online]. Available:
https://personal.ntu.edu.sg/ehchua/programming/webprogramming/HTTP_Basics.html.
[Accessed 07 January 2021].

World Wide Web Consortium, "HTML 5.2," World Wide Web Consortium, 14 December 2017.
[Online]. Available: https://www.w3.org/TR/htmI52/. [Accessed 27 December 2020].

w3schools, "HTML Introduction," w3schools, [Online]. Available:
https://www.w3schools.com/html/html_intro.asp. [Accessed 27 December 2020].

H. W. Lie and B. Bos, "Cascading Style Sheets, level 1," World Wide Web Consortium, 17
December 1996. [Online]. Available: https://www.w3.org/TR/REC-CS51-961217. [Accessed 15
December 2020].

H.-C. Chua, "Java Server-Side Programming," Nanyang Technological University, October
2012. [Online]. Available:
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html. [Accessed 01
September 2020].

R. G. Flatscher, "(BSF4)ooRexx and Java Web Server," in Proceedings of the "The 2020
International Rexx Symposium", Online, September 29th - October 1st 2020. [Online].
Available: https://www.rexxla.org/events/2020/presentations/202011-
ooRexxAndJavaWebServers-article.pdf. [Accessed 29 January 2021].

Oracle, "Java Servlet Technology Overview," Oracle, [Online]. Available:
https://www.oracle.com/java/technologies/servlet-technology.html. [Accessed 02
September 2020].

82

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A. Singh, "Introduction to Java Servlets," GeeksforGeeks, 23 October 2019. [Online].
Available: https://www.geeksforgeeks.org/introduction-java-servlets/. [Accessed 02
September 2020].

Jakarta Servlet Team, "Jakarta Servlet Specification, Version 5.0," Eclipse Foundation, 07
September 2020. [Online]. Available: https://jakarta.ee/specifications/servlet/5.0/jakarta-
servlet-spec-5.0.html. [Accessed 10 January 2021].

N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies," Internet Engineering Task Force, November 1996. [Online].
Available: https://tools.ietf.org/html/rfc2045. [Accessed 06 September 2020].

Eclipse Foundation, "Class HttpServlet," Eclipse Foundation, [Online]. Available:
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/http/HttpServlet.html.
[Accessed 02 September 2020].

Eclipse Foundation, "Interface Servlet," Eclipse Foundation, [Online]. Available:
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/servlet. [Accessed 02
September 2020].

M. Tyson, "What is JSP? Introduction to JavaServer Pages," InfoWorld, 29 January 2019.
[Online]. Available: https://www.infoworld.com/article/3336161/what-is-jsp-introduction-to-
javaserver-pages.html. [Accessed 02 September 2020].

Oracle, "JSP Tag Libraries," Oracle, [Online]. Available:
https://docs.oracle.com/cd/B14099 19/web.1012/b14014/taglibs.htm#i1012403. [Accessed
28 December 2020].

Oracle, "JSP Scriptlets," Oracle, [Online]. Available:
https://docs.oracle.com/javaee/5/tutorial/doc/bnaou.html. [Accessed 28 December 2020].

S. Ryabenkiy, Java Web Scripting and Apache Tomcat, Vienna, Austria: Vienna University of
Economics and Business, 2010. [Online]. Available:
http://wi.wu.ac.at:8002/rgf/diplomarbeiten/BakkStuff/2010/201007_Ryabenkiy/201007_Rya
benkiy_WebScripting_ApacheTomCat_TagLib.pdf. [Accessed 29 January 2021].

M. Tyson, "What is Tomcat? The original Java servlet container," InfoWorld, 19 December
2019. [Online]. Available: https://www.infoworld.com/article/3510460/what-is-apache-
tomcat-the-original-java-servlet-container.html. [Accessed 28 December 2020].

TEDBIlog, "James Duncan Davidson," TEDBlog, [Online]. Available:
https://blog.ted.com/author/duncandavidson/. [Accessed 01 September 2020].

Apache Software Foundation, "The Tomcat Story," Apache Software Foundation, [Online].
Available: https://tomcat.apache.org/heritage.html. [Accessed 01 September 2020].

MuleSoft, "Meet Tomcat Catalina," MuleSoft, [Online]. Available:
https://www.mulesoft.com/tcat/tomcat-catalina. [Accessed 28 December 2020].

83

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Apache Software Foundation, "Introduction," Apache Software Foundation, 03 December
2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/introduction.html.
[Accessed 28 December 2020].

Wikipedians, "Apache Tomcat," Wikipedia, 13 December 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Apache_Tomcat. [Accessed 28 December 2020].

Apache Software Foundation, "The Coyote HTTP/1.1 Connector," Apache Software
Foundation, [Online]. Available: https://tomcat.apache.org/tomcat-4.1-
doc/config/coyote.html. [Accessed 28 December 2020].

The Apache Software Foundation, "The HTTP2 Upgrade Protocol," The Apache Software
Foundation, 03 December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-
doc/config/http2.html. [Accessed 28 December 2020].

Apache Software Foundation, "Apache HTTP Server HowTo," Apache Software Foundation,
09 March 2020. [Online]. Available: https://tomcat.apache.org/connectors-
doc/webserver_howto/apache.html. [Accessed 28 December 2020].

P. Manh, "The different between Web server, Web container and Application server,"
GitHub, 01 April 2020. [Online]. Available: https://ducmanhphan.github.io/2020-04-01-The-
difference-between-web-server-web-container-application-server/. [Accessed 02 September
2020].

Opensource.com, "What is open source?," Opensource.com, [Online]. Available:
https://opensource.com/resources/what-open-source. [Accessed 28 December 2020].

Opensource.org, "Frequently Answered Questions," Opensource.org, [Online]. Available:
https://opensource.org/faq. [Accessed 28 December 2020].

Apache Software Foundation, "What is the ASF?," Apache Software Foundation, [Online].
Available: https://www.apache.org/foundation/. [Accessed 01 September 2020].

Apache Software Foundation, "Apache Tomcat," Apache Software Foundation, [Online].
Available: https://tomcat.apache.org/. [Accessed 01 September 2020].

Apache Software Foundation, "Apache License, Version 2.0," Apache Software Foundation,
[Online]. Available: https://www.apache.org/licenses/LICENSE-2.0. [Accessed 01 September
2020].

Eclipse Foundation, "About the Eclipse Foundation," Eclipse Foundation, [Online]. Available:
https://www.eclipse.org/org/. [Accessed 06 September 2020].

Eclipse Foundation, "Explore Our Members," Eclipse Foundation, [Online]. Available:
https://www.eclipse.org/membership/exploreMembership.php. [Accessed 06 September
2020].

A. Tijms, "Transition from Java EE to Jakarta EE," Oracle, 27 February 2020. [Online].
Available: https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee.
[Accessed 02 September 2020].

84

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Oracle, "Java Documentation," Oracle, [Online]. Available:
https://docs.oracle.com/en/java/index.html. [Accessed 06 September 2020].

R. Monson-Haefel, "TomEE vs. Tomcat," Tomitribe, 05 December 2019. [Online]. Available:
https://www.tomitribe.com/blog/tomee-vs-tomcat/. [Accessed 28 December 2020].

Apache Software Foundation, "Tomcat 10 Software Downloads," Apache Software
Foundation, [Online]. Available: https://tomcat.apache.org/download-10.cgi. [Accessed 28
December 2020].

R. G. Flatscher, "'"RexxScript' — Rexx Scripts Hosted and Evaluated by Java (Package
javax.script)," in Proceedings of the “The 2017 International Rexx Symposium", Amsterdam,
The Netherlands, April 9th - 12th 2017. [Online]. Available:
http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf. [Accessed
29 January 2021].

Cloudflare, "What do client side and server side mean? | Client side vs. server side,"
Cloudflare, [Online]. Available:
https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-side/.
[Accessed 06 January 2021].

MuleSoft, "Tomcat Configuration - A Step By Step Guide," MuleSoft, [Online]. Available:
https://www.mulesoft.com/tcat/tomcat-configuration. [Accessed 28 December 2020].

Apache Software Foundation, "Application Developer's Guide," Apache Software Foundation,
03 December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-
doc/appdev/deployment.html. [Accessed 10 December 2020].

G. Shachor, "Tomcat 3.3 User's Guide," Apache Software Foundation, [Online]. Available:
https://tomcat.apache.org/tomcat-3.3-doc/tomcat-ug.html#directory_structure. [Accessed
28 December 2020].

Microfocus, "Deploying and Running Your Application," Microfocus, [Online]. Available:
https://supportline.microfocus.com/documentation/books/sx22sp1/pidepl.htm. [Accessed
29 December 2020].

JavaTpoint, "War File," JavaTpoint, [Online]. Available: https://www.javatpoint.com/war-file.
[Accessed 29 December 2020].

Baeldung, "How to Deploy a WAR File to Tomcat," Baeldung, 12 February 2020. [Online].
Available: https://www.baeldung.com/tomcat-deploy-war. [Accessed 29 December 2020].

Uniface, "Creating and Deploying a Web Application WAR File," Uniface, [Online]. Available:
https://u.uniface.info/docs/1000/uniface/webApps/webDeployment/Prepare_your_Web_en
vironment.htm. [Accessed 29 December 2020].

Filelnfo, ".EAR File Extension," Filelnfo, 22 March 2019. [Online]. Available:
https://fileinfo.com/extension/ear. [Accessed 29 December 2020].

85

[77]

[78]

[79]

[80]

[81]

(82]

[83]

(84]

[85]

(86]

(87]

(88]

[89]

Microsoft, "Introduction to Windows Service Applications," Microsoft, 30 March 2017.
[Online]. Available: https://docs.microsoft.com/en-us/dotnet/framework/windows-
services/introduction-to-windows-service-applications. [Accessed 18 September 2020].

A. Sharma, "What is Local Host?," GeeksforGeeks, 09 August 2019. [Online]. Available:
https://www.geeksforgeeks.org/what-is-local-host/. [Accessed 13 September 2020].

K. Vijay Kulkarni, "14 common network ports you should know," Red Hat, 04 October 2018.
[Online]. Available: https://opensource.com/article/18/10/common-network-ports.
[Accessed 17 September 2020].

Apache Software Foundation, "Manager App How-To," Apache Software Foundation, 03
December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/manager-
howto.html. [Accessed 29 December 2020].

MuleSoft, "The Tomcat Web app Quick Reference Guide," MuleSoft, [Online]. Available:
https://www.mulesoft.com/tcat/tomcat-webapp. [Accessed 29 December 2020].

R. Nazarov, "Tomcat web.xml Configuration Example," Java Code Geeks, 18 March 2015.
[Online]. Available: https://examples.javacodegeeks.com/enterprise-java/tomcat/tomcat-
web-xml-configuration-example/. [Accessed 10 December 2020].

Eclipse Foundation, "Interface HttpSession," Eclipse Foundation, 2019. [Online]. Available:
https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/HttpSession.html.
[Accessed 21 October 2020].

R. Ishida, "Character encodings for beginners," W3C, 16 April 2015. [Online]. Available:
https://www.w3.org/International/questions/ga-what-is-encoding. [Accessed 21 October
2020].

O. Thereaux, "Don't forget to add a doctype," World Wide Web Consortium, 20 August 2002.
[Online]. Available: https://www.w3.0rg/QA/Tips/Doctype. [Accessed 22 October 2020].

webhint, "Use charset "utf-8," webhint, [Online]. Available: https://webhint.io/docs/user-
guide/hints/hint-meta-charset-utf-8/. [Accessed 14 December 2020].

Maggie, "Why is <meta charset="utf-8"> important?," DEV, 19 October 2020. [Online].
Available: https://dev.to/maggiecodes_/why-is-It-meta-charset-utf-8-gt-important-59hl.
[Accessed 14 December 2020].

N. Lengyel, BSF4o0Rexx: JSP with javax.script Languages, Vienna, Austria: Vienna University
of Economics and Business, 2020. [Online]. Available:
wi.wu.ac.at:8002/rgf/diplomarbeiten/Seminararbeiten/2020/202001_Lengyel BSF40oRexx-
JSP.pdf. [Accessed 29 January 2021].

C. Singh, "Jsp Implicit Objects," BeginnersBook, [Online]. Available:
https://beginnersbook.com/2013/11/jsp-implicit-objects/. [Accessed 22 October 2020].

86

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Apache Software Foundation, "Class JspWriter," Apache Software Foundation, [Online].
Available: https://tomcat.apache.org/tomcat-7.0-
doc/jspapi/javax/servlet/jsp/JspWriter.html. [Accessed 22 October 2020].

W3Schools, "HTML <link> Tag," W3Schools, [Online]. Available:
https://www.w3schools.com/tags/tag_link.asp. [Accessed 14 December 2020].

W3Schools, "HTML File Paths," W3Schools, [Online]. Available:
https://www.w3schools.com/html/html_filepaths.asp. [Accessed 14 December 2020].

R. G. Flatscher, "SourceForge BSF4ooRexx Taglibs Readme.md," 03 February 2021. [Online].
Available: https://sourceforge.net/projects/bsfAoorexx/files/Sandbox/rgf/taglibs/beta/.
[Accessed 05 February 2021].

B. Bos, T. Celik, I. Hickson and H. W. Lie, "Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification," World Wide Web Consortium, 12 April 2016. [Online]. Available:
https://www.w3.org/TR/CSS2/. [Accessed 15 December 2020].

FileCloud, "Tech tip: How to do hard refresh in Chrome, Firefox and IE?," FileCloud, 06 March
2015. [Online]. Available: https://www.getfilecloud.com/blog/2015/03/tech-tip-how-to-do-
hard-refresh-in-browsers/. [Accessed 04 January 2021].

R. G. Flatscher, "External BSF4ooRexx Functions - Overview," 08 December 2010. [Online].
Available: http://wi.wu-
wien.ac.at:8002/rgf/rexx/bsf4oorexx/current/additionalResources/refcardBSF4ooRexx.pdf.
[Accessed 14 December 2020].

Javatpoint, "welcome-file-list in web.xml," Javatpoint, [Online]. Available:
https://www.javatpoint.com/welcome-file-list. [Accessed 17 December 2020].

A. Barth, "HTTP State Management Mechanism," Internet Engineering Task Force, April 2011.
[Online]. Available: https://tools.ietf.org/html/rfc6265. [Accessed 27 September 2020].

Eclipse Foundation, "Interface HttpServletRequest," Eclipse Foundation, [Online]. Available:
https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/httpservietrequest.
[Accessed 22 October 2020].

Eclipse Foundation, "Class Cookie," Eclipse Foundation, [Online]. Available:
https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/Cookie.html.
[Accessed 22 October 2020].

W. D. Ashley, R. G. Flatscher, M. Hessling, R. McGuire, M. Miesfeld, L. Peedin, R. Tammer and

J. Wolfers, "Built-in Functions," Rexx Language Association, 14 August 2009. [Online].
Available: https://www.oorexx.org/docs/rexxref/x23579.htm. [Accessed 22 October 2020].

D. Ragget, A. Le Hors and I. Jacobs, "HTML 4.01 Specification," World Wide Web Consortium,
24 December 1999. [Online]. Available: https://www.w3.org/TR/htmIl401/. [Accessed 14
December 2020].

87

[103] F. Bohdrquez, "HTML Forms: The Action Attribute," Career Karma, 12 August 2020. [Online].
Available: https://careerkarma.com/blog/html-form-action/. [Accessed 16 December 2020].

[104] W3Schools, "HTML <label> Tag," W3Schools, [Online]. Available:
https://www.w3schools.com/tags/tag_label.asp. [Accessed 04 January 2021].

[105] w3schools, "HTML <input> required Attribute," w3schools, [Online]. Available:
https://www.w3schools.com/tags/att_input_required.asp. [Accessed 20 December 2020].

[106] R. G. Flatscher and G. Miiller, "ooRexx 5 Yielding Swiss Army Knife Usability," in The
Proceedings of the Rexx Symposium for Developers and Users, Hursley, Great Britain, 2019.
[Online]. Available: https://epub.wu.ac.at/7412/1/201909-03_SwissArmyKnife_article.pdf.
[Accessed 29 January 2021].

[107] V. Kaplan, "Compiling Scripts to Get Compiled Language Performance," EPS Software
Corp/CODE Magazine, [Online]. Available:
https://www.codemag.com/Article/2001071/Compiling-Scripts-to-Get-Compiled-Language-
Performance. [Accessed 06 January 2021].

[108] baeldung, "Handling Cookies and a Session in a Java Servle," baeldung, 28 February 2020.
[Online]. Available: https://www.baeldung.com/java-servlet-cookies-session. [Accessed 23
October 2020].

[109] M. Tyson, "What is JDBC? Introduction to Java Database Connectivity," InfoWorld, 11 April
2011. [Online]. Available: https://www.infoworld.com/article/3388036/what-is-jdbc-
introduction-to-java-database-connectivity.html. [Accessed 12 November 2020].

[110] Z. Su and G. Wassermann, "The Essence of Command Injection Attacks in Web Applications,"
in Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Charleston, South Carolina, USA, January 11-13, 2006. [Online]. Available:
https://web.cs.ucdavis.edu/~su/publications/popl06.pdf. [Accessed 29 January 2021].

[111] M. Aboagye, "Improve database performance with connection pooling," Stack Overflow, 14
October 2020. [Online]. Available: https://stackoverflow.blog/2020/10/14/improve-
database-performance-with-connection-pooling/. [Accessed 15 November 2020].

[112] Apache Software Foundation, "JNDI Datasource How-To," Apache Software Foundation, 06
October 2020. [Online]. Available: https://tomcat.apache.org/tomcat-9.0-doc/jndi-
datasource-examples-howto.html. [Accessed 12 November 2020].

[113] M. van Steen and A. S. Tanenbaum, "A brief introduction to distributed systems," Computing,
vol. 98, no. 10, pp. 967-1009, 2016. [Online]. Available:
https://link.springer.com/article/10.1007/s00607-016-0508-7. [Accessed 29 January 2021].

[114] F.T. Marchese, "Naming," Pace University Seidenberg School of CSIS, [Online]. Available:
http://csis.pace.edu/~marchese/CS865/Lectures/Chap5/Chapter5.htm. [Accessed 11
November 2020].

88

[115] T. Sundsted, "JNDI overview, Part 2: An introduction to directory services," InfoWorld, 21
February 2000. [Online]. Available: https://www.infoworld.com/article/2076901/jndi-
overview--part-2--an-introduction-to-directory-services.html. [Accessed 11 November 2020].

[116] S. Claridge, "Serving static content (including web pages) from outside of the WAR using
Apache Tomcat," More Of Less, 04 April 2014. [Online]. Available:
https://www.moreofless.co.uk/static-content-web-pages-images-tomcat-outside-war/.
[Accessed 21 December 2020].

[117] Apache Software Foundation, "Class Loader How-To," Apache Software Foundation, 03
December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/class-
loader-howto.html. [Accessed 10 December 2020].

[118] Apache Software Foundation, "JNDI Resources How-To," Apache Software Foundation, 06
October 2020. [Online]. Available: https://tomcat.apache.org/tomcat-9.0-doc/jndi-resources-
howto.html. [Accessed 12 November 2020].

[119] T. Sundsted, "JNDI overview, Part 1: An introduction to naming services," InfoWorld, 01
January 2000. [Online]. Available: https://www.infoworld.com/article/2076888/jndi-
overview--part-1--an-introduction-to-naming-services.html. [Accessed 11 November 2020].

[120] Oracle, "Interface Statement," Oracle, [Online]. Available:
https://cr.openjdk.java.net/~iris/se/15/latestSpec/api/java.sql/java/sql/Statement.html.
[Accessed 18 November 2020].

[121] Oracle, "Interface ResultSet," Oracle, [Online]. Available:
https://cr.openjdk.java.net/~iris/se/15/latestSpec/api/java.sql/java/sql/ResultSet.html.
[Accessed 18 November 2020].

[122] J. Holy and M. Mare, "JDBC: What resources you have to close and when?," DZone, 13
February 2013. [Online]. Available: https://dzone.com/articles/jdbc-what-resources-you-
have. [Accessed 20 December 2020].

[123] European Union, "Data protection and online privacy," European Union, 09 March 2020.
[Online]. Available: https://europa.eu/youreurope/citizens/consumers/internet-
telecoms/data-protection-online-privacy/index_en.htm. [Accessed 25 December 2020].

[124] A. Beylkin, "Opt in checkboxes & consent for email marketing," Words on Marketing,
[Online]. Available: https://www.amandabeylkin.com/marketing-blog/opt-in-checkboxes-
consent-email-marketing/. [Accessed 25 December 2020].

[125] R. Degges, "Everything You Ever Wanted to Know About Secure HTML Forms," Twilio, 30
September 2017. [Online]. Available: https://www.twilio.com/blog/2017/09/everything-you-
ever-wanted-to-know-about-secure.html-forms.html. [Accessed 18 November 2020].

[126] G. Barré, "How to store a password in a web application?," Meziantou's Blog, 17 June 2019.
[Online]. Available: https://www.meziantou.net/how-to-store-a-password-in-a-web-
application.htm. [Accessed 19 November 2020].

89

[127] H. Qureshi, "Hash Functions," Nakamoto, 29 December 2019. [Online]. Available:
https://nakamoto.com/hash-functions/. [Accessed 19 November 2020].

[128] OWASP, "Password Storage Cheat Sheet," OWASP, [Online]. Available:
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pass
word-hashing-algorithms. [Accessed 20 November 2020].

[129] N. Provos and D. Maziere, "A Future-Adaptable Password Scheme," in Proceedings of the
FREENIX Track: 1999 USENIX Annual Technical Conference, Monterey, California, USA, June 6—
11, 1999. [Online]. Available:
https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf. [Accessed 29 January
2021].

[130] OWASP, "OWASP Top Ten," OWASP, [Online]. Available: https://owasp.org/www-project-
top-ten/. [Accessed 18 November 2020].

[131] W3Schools, "SQL Injection," W3Schools, [Online]. Available:
https://www.w3schools.com/sql/sql_injection.asp. [Accessed 22 January 2021].

[132] P. Kumar, "JDBC Statement vs PreparedStatement — SQL Injection Example," JournalDev,
[Online]. Available: https://www.journaldev.com/2489/jdbc-statement-vs-
preparedstatement-sql-injection-example. [Accessed 18 November 2020].

[133] B. Brumm, "How to Escape Single Quotes in SQL," Database Star, 01 May 2017. [Online].
Available: https://www.databasestar.com/sql-escape-single-quote/. [Accessed 18 November
2020].

[134] Cloudflare, "What Is HTTPS?," Cloudflare, [Online]. Available:
https://www.cloudflare.com/learning/ssl/what-is-https/. [Accessed 19 November 2020].

[135] Apache Software Foundation, "SSL/TLS Configuration How-To," Apache Software Foundation,
03 December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/ssl-
howto.html. [Accessed 25 January 2021].

[136] Guru99, "Difference between Cookie and Session," Guru99, [Online]. Available:
https://www.guru99.com/difference-between-cookie-session.html. [Accessed 02 January
2021].

[137] Pankaj, "Session Management in Java — HttpServlet, Cookies, URL Rewriting," JournalDev,
[Online]. Available: https://www.journaldev.com/1907/java-session-management-servlet-
httpsession-url-rewriting. [Accessed 20 December 2020].

[138] JavaTPoint, "https://www.javatpoint.com/http-session-in-session-tracking," JavaTPoint,
[Online]. Available: https://www.javatpoint.com/http-session-in-session-tracking. [Accessed
20 December 2020].

[139] N. H. Minh, "How to configure session timeout in Tomcat," Codelava, 06 August 2019.
[Online]. Available: https://www.codejava.net/servers/tomcat/how-to-configure-session-
timeout-in-tomcat. [Accessed 20 December 2020].

90

[140] S. Kamani, "Web security essentials - Sessions and cookies," { Soham Kamani }, 08 January
2017. [Online]. Available: https://www.sohamkamani.com/blog/2017/01/08/web-security-
session-cookies/. [Accessed 03 January 2021].

[141] W3Schools, "HTML src Attribute," W3Schools, [Online]. Available:
https://www.w3schools.com/tags/att_img_src.asp. [Accessed 21 December 2020].

[142] C. Broadley, "Form Enctype HTML Code: Here’s How It Specifies Form Encoding Type,"
HTML.com, [Online]. Available: https://html.com/attributes/form-enctype/. [Accessed 23
December 2020].

[143] Oracle, " Creating and Configuring JSPs," Oracle, [Online]. Available:
https://docs.oracle.com/cd/E13222 01/wls/docs92/webapp/configurejsp.html. [Accessed 24
December 2020].

[144] Guru99, "JSP File Upload & File Download Program Examples," Guru99, [Online]. Available:
https://www.guru99.com/jsp-file-upload-download.html. [Accessed 24 December 2020].

[145] Apache Software Foundation, "Annotation Type MultipartConfig," Apache Software
Foundation, [Online]. Available: https://tomcat.apache.org/tomcat-10.0-
doc/servletapi/jakarta/servlet/annotation/MultipartConfig.html. [Accessed 24 December
2020].

[146] Eclipse Foundation, "Uploading Files with Jakarta Servlet Technology," Eclipse Foundation,
[Online]. Available: https://eclipse-ee4j.github.io/jakartaee-tutorial/servliets011.html.
[Accessed 24 December 2020].

[147] N. H. Minh, "Java File Upload Example with Servlet 3.0 API," Codelava, 27 June 2019.
[Online]. Available: https://www.codejava.net/java-ee/servlet/java-file-upload-example-
with-servlet-30-api. [Accessed 24 December 2020].

[148] L. Hubmaier, Tomcat Web Server: CGl vs. Servlet, Vienna, Austria: Vienna University of
Economics and Business, 2017. [Online]. Available:
http://wi.wu.ac.at:8002/rgf/diplomarbeiten/Seminararbeiten/2017/20171221_Hubmaier_To
mcatWithRexx.pdf. [Accessed 29 January 2021].

[149] Apache Software Foundation, "CGIl How To," Apache Software Foundation, 03 December
2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/cgi-howto.html.
[Accessed 06 January 2021].

[150] Eclipse Foundation, "Jakarta Mail FAQ," Eclipse Foundation, [Online]. Available:
https://eclipse-eedj.github.io/mail/FAQ#1. [Accessed 24 December 2020].

[151] The Eclipse Foundation, "Jakarta Activation," The Eclipse Foundation, [Online]. Available:
https://eclipse-eedj.github.io/jaf/. [Accessed 24 December 2020].

[152] S. Kandula, "Example on getParameterValues() method of Servlet Request," Javads, 28
January 2013. [Online]. Available: https://www.javads.com/java-servlet-tutorials/example-
on-getparametervalues-method-of-servlet-request/. [Accessed 24 December 2020].

91

[153] GeeksforGeeks, "Properties Class in Java," GeeksforGeeks, 24 November 2020. [Online].
Available: https://www.geeksforgeeks.org/java-util-properties-class-java/. [Accessed 24
December 2020].

[154] Tutorials Point, "JavaMail API - Core Classes," Tutorials Point, [Online]. Available:
https://www.tutorialspoint.com/javamail_api/javamail_api_core_classes.htm. [Accessed 24
December 2020].

[155] Eclipse Foundation, "Uses of Class jakarta.mail.Message.RecipientType," Eclipse Foundation,
[Online]. Available: https://jakarta.ee/specifications/mail/2.0/apidocs/jakarta/mail/class-
use/message.recipienttype. [Accessed 24 December 2020].

[156] G. Mayer, Scripting the ODF Toolkit (Proof of Concept), Vienna, Austria: Vienna University of
Economics and Business, 2012. [Online]. Available:
http://wi.wu.ac.at:8002/rgf/diplomarbeiten/2012_Mayer/201211_Mayer_Scripting_ ODF.pdf
. [Accessed 29 January 2021].

[157] P. Malek, "Everything You Need to Know About SMTP Security," Railsware Products, 14
August 2019. [Online]. Available: https://blog.mailtrap.io/smtp-
security/#Whats_SMTP_Is_it_secure. [Accessed 27 January 2021].

[158] R. Kumar, "How to Create VirtualHost in Tomcat 9/8/7," TecAdmin, [Online]. Available:
https://tecadmin.net/create-virtualhost-in-tomcat/. [Accessed 12 September 2020].

[159] Apache Software Foundation, "The Server Component," Apache Software Foundation,
[Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/config/server.html.
[Accessed 10 December 2020].

[160] PostgreSQL Global Development Group, "23.1. Locale Support," PostgreSQL Global
Development Group, [Online]. Available:
https://www.postgresgl.org/docs/current/locale.html. [Accessed 09 December 2020].

[161] PostgreSQL Global Development Group, "9.17. Sequence Manipulation Functions,"
PostgreSQL Global Development Group, [Online]. Available:
https://www.postgresql.org/docs/current/functions-sequence.html. [Accessed 18 December
2020].

[162] S. Weiss, "error handling: permission denied for sequence _id_seq...," /* Code Comments */,
20 November 2018. [Online]. Available: https://stephencharlesweiss.com/20181120-error-
handling-permission-denied-for-sequence-_id_seq/. [Accessed 18 December 2020].

Images Used

All images used, to create the web applications of this paper, originate from Pixabay.
They are licensed under the Pixabay License, which allows them to be used for free for

commercial and noncommercial use: https://pixabay.com/service/license/

92

https://pixabay.com/service/license/

Background: R. Balog, "Landscape Nature Forest Fog Misty Pine,” Pixabay, 26
September 2015. [Online]. Available: https://pixabay.com/photos/landscape-nature-
forest-fog-misty-975091/. [Accessed 20 January 2021].

Oak: K. Craft, "Tree Oak Landscape View Field Scenic Countryside,” Pixabay, 14 July
2012. [Online]. Available: https://pixabay.com/photos/tree-oak-landscape-view-field-
402953/. [Accessed 20 January 2021].

Birch: A. Crapuuyk, "Summer Landscape Background Dawn Fog Beautiful,” Pixabay, o9
July 2017. [Online]. Available: https://pixabay.com/photos/summer-landscape-
background-dawn-2913409/. [Accessed 20 January 2021].

Willow: M. Amber, "Weeping Willow Pond Water Swan Reflection Summer,” Pixabay, 11
July 2019. [Online]. Available: https://pixabay.com/photos/weeping-willow-pond-
water-swan-4334489/. [Accessed 20 January 2021].

Beech: Couleur, "Tree Beech Deciduous Tree Old Tree Gnarled Leaves,” Pixabay, 19
October 2017. [Online]. Available: https://pixabay.com/photos/tree-beech-deciduous-
tree-old-tree-3601155/. [Accessed 20 January 2021].

Pine: M. Szabolcs, "Pine Forest Pine Trees Forest Pine Trees Nature,” Pixabay, 20 August
2020. [Online]. Available: https://pixabay.com/photos/pine-forest-pine-trees-forest-
pine-5572944/. [Accessed 20 January 2021].

Maple: Free-Photos, "Maple Autumn Season Fall Foliage Sunset Scene,” Pixabay, o9
November 2015. [Online]. Available: https://pixabay.com/photos/maple-autumn-
season-fall-foliage-984420/. [Accessed 20 January 2021].

93

	Contents
	Figures
	Listings
	Glossary
	1. Introduction
	2. Technologies
	2.1. System Programming Languages and Scripting Programming Languages
	2.2. Java
	2.3. Java and Scripting Languages
	2.3.1. JSR-223
	2.3.2. Bean Scripting Framework

	2.4. Open Object Rexx
	2.5. Bean Scripting Framework for Open Object Rexx
	2.6. Hypertext Transfer Protocol
	2.7. Hypertext Markup Language
	2.8. Jakarta Servlets
	2.9. Jakarta Server Pages
	2.10. Apache Tomcat
	2.11. Open-Source Software
	2.11.1. Apache Software Foundation
	2.11.2. Eclipse Foundation, Jakarta Namespace

	2.12. Bringing It All Together

	3. Apache Tomcat Fundamentals
	3.1. TOMCAT_HOME
	3.2. Deploying Web Applications
	3.3. Running and Stopping Tomcat
	3.4. Tomcat Manager

	4. Introducing Web Applications /helloworld
	4.1. Web Application Architecture
	4.2. Introducing Jakarta Server Pages /helloworld/helloworld.jsp
	4.2.1. JSP Directives
	4.2.2. JSP Main Content

	4.3. BSF Taglib, Expressions, Styling /helloworld/helloworld_ext.jsp
	4.4. Welcome Files /helloworld/index.html
	4.5. Introducing Cookies /helloworld/lastvisit.jsp
	4.6. Combining User Input and Cookies /helloworld/greeting.jsp
	4.7. Deleting Cookies, External Scripts /helloworld/greeting_ext.jsp

	5. Database Connection
	5.1. Java Database Connectivity
	5.2. Java Naming and Directory Interface

	6. E-Commerce Example /treeshop
	6.1. Required Setup Steps
	6.1.1. Serving Static Content
	6.1.2. Database Configuration
	6.1.3. Tomcat’s Handling of .jar Files

	6.2. Reading Data /treeshop/productlist.jsp
	6.3. Writing Data, Security Aspects /treeshop/signup.jsp
	6.3.1. The Methods GET and POST
	6.3.2. Securely Storing Passwords
	6.3.3. SQL Injection
	6.3.4. Hypertext Transfer Protocol Secure

	6.4. Creating an Online Shop, Sessions /treeshop/index.jsp
	6.4.1. mainpage.rex
	6.4.2. userheader.rex

	6.5. Creating a Shopping Cart /treeshop/shoppingcart.jsp
	6.6. Logging In /treeshop/login.jsp
	6.7. Logging Out, Invalidating a Session /treeshop/logout.jsp
	6.8. Concluding the Purchase Process /treeshop/checkout.jsp

	7. Advanced Examples /treeshop/admin
	7.1. Uploading Files /treeshop/admin/addproducts.html
	7.1.1. Upload Servlet /treeshop/admin/upload

	7.2. Sending E-Mails /treeshop/admin/sendnewsletter.jsp
	7.2.1. E-Mail Servlet /treeshop/admin/mailer
	7.2.2. Sending and Receiving E-Mails with MailHog

	7.3. Unsubscribing from E-Mails /treeshop/admin/unsubscribe.jsp
	7.4. Common Gateway Interface

	8. Conclusion
	A. Prerequisites
	A.1. Software Required to Begin
	A.2. Software Required for Advanced Examples

	B. Tomcat Installation Guide
	C. Using Tomcat 9
	D. PostgreSQL
	D.1. Installation
	D.2. Setting Up a PostgreSQL Environment Variable
	D.3. Starting the Database Server
	D.4. Setting Up a Database for treeshop

	E. MailHog Installation Guide
	F. Debug Code Snippet
	G. SSL/TLS E-Mail Utility
	References
	Images Used

