

An Introduction to Web Application Development –

Combining Jakarta Server Pages with Programs Written in

Scripting Languages

Bachelor Thesis by Dimitry-J. Lux

Supervised by ao.Univ.Prof. Dr. Rony G. Flatscher

Abstract: This thesis aims to communicate all knowledge necessary to enable the reader

to develop web applications quickly and efficiently. To achieve this goal, three key tools

are used: The Open Object Rexx scripting language, the Bean Scripting Framework for

Open Object Rexx and the Apache Tomcat Software. Tag libraries are used to combine

these components. After discussing the main technological components, nutshell

examples with increasing complexity are used to guide the reader.

Methodology: This thesis commences with a review of the technologies used. Given the

nature of the topic, most information has been gathered from online sources, mainly

documentations, tutorials as well as selected scientific papers. These core components

were then utilized to create nutshell examples, demonstrating possible

implementations.

i

Contents

CONTENTS ... I

FIGURES ... II

LISTINGS .. III

GLOSSARY ...IV

1. INTRODUCTION .. 1

2. TECHNOLOGIES ... 1

2.1. SYSTEM PROGRAMMING LANGUAGES AND SCRIPTING PROGRAMMING LANGUAGES 2
2.2. JAVA .. 3
2.3. JAVA AND SCRIPTING LANGUAGES ... 4

2.3.1. JSR-223 .. 4
2.3.2. Bean Scripting Framework .. 4

2.4. OPEN OBJECT REXX ... 5
2.5. BEAN SCRIPTING FRAMEWORK FOR OPEN OBJECT REXX ... 5
2.6. HYPERTEXT TRANSFER PROTOCOL ... 6
2.7. HYPERTEXT MARKUP LANGUAGE... 7
2.8. JAKARTA SERVLETS .. 8
2.9. JAKARTA SERVER PAGES .. 8
2.10. APACHE TOMCAT .. 9
2.11. OPEN-SOURCE SOFTWARE ... 10

2.11.1. Apache Software Foundation .. 11
2.11.2. Eclipse Foundation, Jakarta Namespace ... 11

2.12. BRINGING IT ALL TOGETHER ... 12

3. APACHE TOMCAT FUNDAMENTALS .. 13

3.1. TOMCAT_HOME .. 13
3.2. DEPLOYING WEB APPLICATIONS .. 14
3.3. RUNNING AND STOPPING TOMCAT ... 15
3.4. TOMCAT MANAGER ... 16

4. INTRODUCING WEB APPLICATIONS /HELLOWORLD ... 16

4.1. WEB APPLICATION ARCHITECTURE .. 17
4.2. INTRODUCING JAKARTA SERVER PAGES /HELLOWORLD/HELLOWORLD.JSP ... 18

4.2.1. JSP Directives ... 18
4.2.2. JSP Main Content ... 19

4.3. BSF TAGLIB, EXPRESSIONS, STYLING /HELLOWORLD/HELLOWORLD_EXT.JSP ... 21
4.4. WELCOME FILES /HELLOWORLD/INDEX.HTML .. 24
4.5. INTRODUCING COOKIES /HELLOWORLD/LASTVISIT.JSP ... 25
4.6. COMBINING USER INPUT AND COOKIES /HELLOWORLD/GREETING.JSP.. 27
4.7. DELETING COOKIES, EXTERNAL SCRIPTS /HELLOWORLD/GREETING_EXT.JSP.. 29

5. DATABASE CONNECTION ... 31

5.1. JAVA DATABASE CONNECTIVITY .. 31
5.2. JAVA NAMING AND DIRECTORY INTERFACE .. 32

6. E-COMMERCE EXAMPLE /TREESHOP ... 33

6.1. REQUIRED SETUP STEPS .. 33
6.1.1. Serving Static Content .. 33
6.1.2. Database Configuration .. 34
6.1.3. Tomcat’s Handling of .jar Files ... 35

6.2. READING DATA /TREESHOP/PRODUCTLIST.JSP ... 36

ii

6.3. WRITING DATA, SECURITY ASPECTS /TREESHOP/SIGNUP.JSP .. 38
6.3.1. The Methods GET and POST .. 39
6.3.2. Securely Storing Passwords ... 39
6.3.3. SQL Injection ... 41
6.3.4. Hypertext Transfer Protocol Secure .. 42

6.4. CREATING AN ONLINE SHOP, SESSIONS /TREESHOP/INDEX.JSP .. 42
6.4.1. mainpage.rex .. 44
6.4.2. userheader.rex... 45

6.5. CREATING A SHOPPING CART /TREESHOP/SHOPPINGCART.JSP .. 46
6.6. LOGGING IN /TREESHOP/LOGIN.JSP ... 47
6.7. LOGGING OUT, INVALIDATING A SESSION /TREESHOP/LOGOUT.JSP ... 48
6.8. CONCLUDING THE PURCHASE PROCESS /TREESHOP/CHECKOUT.JSP ... 48

7. ADVANCED EXAMPLES /TREESHOP/ADMIN ... 48

7.1. UPLOADING FILES /TREESHOP/ADMIN/ADDPRODUCTS.HTML ... 49
7.1.1. Upload Servlet /treeshop/admin/upload .. 50

7.2. SENDING E-MAILS /TREESHOP/ADMIN/SENDNEWSLETTER.JSP .. 51
7.2.1. E-Mail Servlet /treeshop/admin/mailer ... 53
7.2.2. Sending and Receiving E-Mails with MailHog .. 56

7.3. UNSUBSCRIBING FROM E-MAILS /TREESHOP/ADMIN/UNSUBSCRIBE.JSP .. 57

7.4. COMMON GATEWAY INTERFACE .. 58

8. CONCLUSION .. 58

A. PREREQUISITES .. 59

A.1. SOFTWARE REQUIRED TO BEGIN... 59
A.2. SOFTWARE REQUIRED FOR ADVANCED EXAMPLES .. 60

B. TOMCAT INSTALLATION GUIDE .. 60

C. USING TOMCAT 9 ... 66

D. POSTGRESQL .. 67

D.1. INSTALLATION .. 67
D.2. SETTING UP A POSTGRESQL ENVIRONMENT VARIABLE ... 73
D.3. STARTING THE DATABASE SERVER ... 74
D.4. SETTING UP A DATABASE FOR TREESHOP ... 74

E. MAILHOG INSTALLATION GUIDE .. 77

F. DEBUG CODE SNIPPET ... 77

G. SSL/TLS E-MAIL UTILITY .. 78

REFERENCES .. 80

IMAGES USED .. 92

Figures

FIGURE 1: HTTP REQUEST HEADER .. 6
FIGURE 2: HTTP RESPONSE HEADER .. 7
FIGURE 3: TOMCAT_HOME DIRECTORY .. 13
FIGURE 4: APACHE COMMONS DAEMON SERVICE MANAGER TASKBAR ICON .. 15
FIGURE 5: HELLWORLD.JSP IN WEB BROWSER ... 21
FIGURE 6: HELLOWORLD_EXT.JSP IN WEB BROWSER ... 24
FIGURE 7: LASTVISIT.JSP IN WEB BROWSER ON FIRST VISIT .. 26
FIGURE 8: LASTVISIT.JSP IN WEB BROWSER ON CONSECUTIVE VISIT ... 26

iii

FIGURE 9: GREETING.JSP IN WEB BROWSER ON FIRST VISIT.. 28
FIGURE 10: GREETING.JSP IN WEB BROWSER CONSECUTIVE VISIT .. 28
FIGURE 11: ENTITY-RELATIONSHIP MODEL DATABASE SHOP ... 33
FIGURE 12: PRODUCTLIST.JSP IN WEB BROWSER .. 38
FIGURE 13: JSESSIONID COOKIE IN WEB BROWSER .. 43
FIGURE 14: TREESHOP MAIN PAGE IN WEB BROWSER .. 43
FIGURE 15: SHOPPINGCART.JSP IN WEB BROWSER .. 46
FIGURE 16: SENDNEWSLETTER.JSP IN WEB BROWSER ... 53
FIGURE 17: NEWSLETTER IN WEB BROWSER .. 57
FIGURE 18: UNSUBSCRIBE.JSP IN WEB BROWSER .. 58
FIGURE 19: TOMCAT 10 DOWNLOAD PAGE ... 61
FIGURE 20: TOMCAT 10 SETUP WELCOME ... 62
FIGURE 21: TOMCAT 10 SETUP LICENSE AGREEMENT ... 62
FIGURE 22: TOMCAT 10 SETUP CHOOSE COMPONENTS .. 63
FIGURE 23: TOMCAT 10 SETUP CONFIGURATION .. 64
FIGURE 24: TOMCAT 10 SETUP JAVA VIRTUAL MACHINE ... 65
FIGURE 25: TOMCAT 10 SETUP CHOOSE INSTALL LOCATION ... 65
FIGURE 26: TOMCAT 10 SETUP FINISH ... 66
FIGURE 27: POSTGRESQL SETUP WELCOME ... 67
FIGURE 28: POSTGRESQL SETUP INSTALLATION DIRECTORY ... 68
FIGURE 29: POSTGRESQL SETUP SELECT COMPONENTS ... 69
FIGURE 30: POSTGRESQL SETUP DATA DIRECTORY .. 69
FIGURE 31: POSTGRESQL SETUP PASSWORD ... 70
FIGURE 32: POSTGRESQL SETUP PORT .. 71
FIGURE 33: POSTGRESQL SETUP ADVANCED OPTIONS .. 71
FIGURE 34: POSTGRESQL SETUP PRE INSTALLATION SUMMARY... 72
FIGURE 35: POSTGRESQL SETUP READY TO INSTALL ... 72
FIGURE 36: POSTGRESQL SETUP FINISH ... 73

Listings

LISTING 1: HELLOWORLD.JSP ... 18
LISTING 2: HELLOWORLD.JSP JSP DIRECTIVES ... 18
LISTING 3: HELLOWORLD.JSP HTML START TAGS ... 19
LISTING 4: HELLOWORLD.JSP SCRIPT TAG .. 20
LISTING 5: HELLOWORLD.JSP GENERATED HTML CODE .. 21
LISTING 6: HELLOWORLD_EXT.JSP ... 22
LISTING 7: HELLOWORLD_EXT.JSP PRINTING HTML TAGS .. 22
LISTING 8: HELLOWORLD_EXT.JSP GENERATED HTML CODE ... 22
LISTING 9: HELLOWORLD_EXT.JSP EXPRESSION TAG ... 23
LISTING 10: HELLOWORLD_EXT.JSP INLINE STYLING ... 23
LISTING 11: HELLOWORLD_EXT.JSP BSF CLASS .. 24
LISTING 12: LASTVISIT.JSP ... 25
LISTING 13: GREETING.JSP ... 27
LISTING 14: GREETING_EX.JSP RESOURCE LOGOUT BUTTON ... 29
LISTING 15: GREETING_EXT.JSP ATTRIBUTE SRC ... 30
LISTING 16: LOGOUT.REX .. 31
LISTING 17: SERVER.XML CONTEXT TAG .. 34
LISTING 18: CONTEXT.XML .. 36
LISTING 19: PRODUCTLIST.JSP .. 37
LISTING 20: CREATEUSER.REX JBCRYPT HASHPW ... 40
LISTING 21: CREATEUSER.REX PREPARESTATEMENT .. 41
LISTING 22: MAINPAGE.REX ROUTINE CREATEPRODUCT .. 44
LISTING 23: MAINPAGE.REX CARTARRAY ... 45

iv

LISTING 24: MAINPAGE.REX EDIT TABLE CART ... 45
LISTING 25: SHOPPINGCART.REX CREATE GUEST CART ... 46
LISTING 26: SHOPPINGCART.REX ROUTINE CREATEPRODUCT BUTTONS ... 47
LISTING 27: SHOPPINGCART.REX MINUS BUTTON .. 47
LISTING 28: LOGIN.REX JBCRYPT CHECKPW ... 48
LISTING 29: LOGOUT.JSP INVALIDATE SESSION .. 48
LISTING 30: LINK RESOURCE IN SUBDIRECTORY ... 49
LISTING 31: ADDPRODUCTS.HTML UPLOAD FORM ... 49
LISTING 32: WEB.XML UPLOADER SERVLET CONFIGURATION ... 50
LISTING 33: UPLOADER.JSP FILE PROCESSING ... 51
LISTING 34: SENDNEWSLETTER.JSP CREATE CHECKBOX .. 52
LISTING 35: MAILER.JSP CHOICEARRAY ... 53
LISTING 36: MAILER.JSP SELECT RECEIVERS ... 54
LISTING 37: MAILER.JSP CREATE MESSAGE ... 54
LISTING 38: MAILER.JSP CREATE MESSAGE CONTENT .. 55
LISTING 39: MAILER.JSP SEND MESSAGE ... 56
LISTING 40: POSTGRESQL SETUP START DATABASE MANAGEMENT SYSTEM .. 74
LISTING 41: POSTGRESQL SETUP CREATE DATABASE SHOP .. 74
LISTING 42: POSTGRESQL SETUP CONNECT TO DATABASE SHOP ... 74
LISTING 43: POSTGRESQL SETUP CREATE TABLE TREE ... 75
LISTING 44: POSTGRESQL SETUP CREATE TABLE CUSTOMER .. 75
LISTING 45: POSTGRESQL SETUP CREATE TABLE CART ... 75
LISTING 46: POSTGRESQL SETUP CREATE USER CATTUS .. 75
LISTING 47: POSTGRESQL SETUP GRANT ALL RIGHTS TO CATTUS .. 76
LISTING 48: POSTGRESQL SETUP GRANT SEQUENCE RIGHTS TREE_ID TO CATTUS 76
LISTING 49: POSTGRESQL SETUP GRANT SEQUENCE RIGHTS CUSTOMER_ID TO CATTUS 76
LISTING 50: POSTGRESQL SETUP INSERT PRODUCTS IN TREE ... 76
LISTING 51: POSTGRESQL SETUP INSERT USERS IN CUSTOMER ... 77
LISTING 52: DEBUG CODE SNIPPET .. 77
LISTING 53: SSL/TLS E-MAIL UTILITY .. 79

Glossary

API Application Programming Interface

ASF Apache Software Foundation

BSF Bean Scripting Framework

BSF4ooRexx Bean Scripting Framework for Open Object Rexx

CGI Common Gateway Interface

CSS Cascading Style Sheets

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP address Internet Protocol Address

Jakarta EE Jakarta Enterprise Edition

JAR Java Archive

Java EE Java Enterprise Edition

v

JDBC Java Database Connectivity

JDK Java Development Kit

JNDI Java Naming and Directory Interface

JRE Java Runtime Environment

JSP Jakarta Server Pages

JSR Java Specification Request

MIME Multipurpose Internet Mail Extensions

ooRexx Open Object Rexx

OWASP Open Web Application Security Project

SMTP Simple Mail Transmission Protocol

SMTPS Simple Mail Transmission Protocol Secure

SQL Structured Query Language

SSL Secure Socket Layer

Taglib Tag Library

TLD Tag Library Descriptor

TLS Transport Layer Security

Tomcat Apache Tomcat Software

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAR Web Application Archive

Webapp Web Application

Windows Microsoft Windows

1

1. Introduction

The World Wide Web was invented by Sir Tim Berners-Lee at the European

Organization for Nuclear Research. In 1990 he created the first web client and server, as

well as the specifications for Uniform Resource Identifiers (URI), the Hypertext Transfer

Protocol (HTTP) and the Hypertext Markup Language (HTML) [1]. With HTTP being a

stateless protocol [2, p. 1], in the beginning web pages were simple, static sources of

information. Today users of the internet are used to performing complex tasks all from

within their web browser.

While the task of developing such web applications might seem daunting at first, the

tools used in this thesis will allow beginners to quickly create their own dynamic web

pages. The Apache Tomcat Software (Tomcat) offers the necessary infrastructure, most

notably, the Jakarta Server Pages (JSP) technology. By interlacing HTML code with the

human-oriented [3] Open Object Rexx (ooRexx) programming language, programs can

be created with minimal prior knowledge. The Sourceforge site of the Bean Scripting

Framework for ooRexx (BSF4ooRexx) includes Tag Libraries (taglibs), which can be used

to accomplish this. In addition, BSF4ooRexx allows the usage of countless internal and

external Java classes, all from within ooRexx. By using these tools for web development,

the only limiting factor to creating web applications is one’s imagination.

This thesis was written with the ooRexx programming language in mind. While the

development of web applications is being covered from the very beginning, basic

knowledge of ooRexx and HTML is recommended. Nonetheless, the components used

support a multitude of other existing scripting languages.

To begin with, 2. Technologies will discuss the underlying technologies of the internet

and Java web applications. From 4. Introducing Web Applications /helloworld onwards,

nutshell examples are used to demonstrate the concepts discussed. Put together, these

examples will form a functioning shopping website. In case the reader would like to use

any of the shown code, be it in full or a fragment, the author encourages such usage, in

hope it will help.

For a collection of hyperlinks to all the software mentioned and the nutshell examples,

please refer to the appendix: A.1. Software Required to Begin. This thesis should be

accompanied by a .zip archive, containing the previously mentioned nutshell examples

and necessary support files; the directory ZIP_ARCHIVE\ is used to reference its contents.

2. Technologies

A Java web application is built upon a Java Runtime Environment provided by a web

server and a combination of components such as JSPs, Jakarta Servlets, JavaBeans, and

static pages like HTML [4, Sec. 1.2.].

2

This section will introduce the core technologies used for web development. First the

programming languages to create the programs are discussed, followed by the

infrastructure that enables them to be accessed over the internet. Should the reader be

familiar with these topics, she might wish to jump directly to: 3. Apache Tomcat

Fundamentals

2.1. System Programming Languages and Scripting Programming

Languages

In 1998 Ousterhout predicted that: “scripting languages will handle many of the

programming tasks in the next century better than system programming languages” [5,

p. 23].

System programming languages were designed to abstract from assembly languages to

make the development process faster. While statements of assembly languages

correspond directly to machine instructions, system languages require a compiler which

translates the source code into binary instructions. Scripting languages abstract even

further, with power and ease of use in mind [5, pp. 23-24]. After compilation, a program

can be executed multiple times with different input data [6].

Machine language code consists of strings of 1’s and 0’s which represent the numeric

codes for operations that a computer can execute. These binary digits, also called bits,

are difficult to read and write for humans and differ between various computer

architectures [7].

“System programming languages were designed for building data structures and

algorithms from scratch, starting from the most primitive computer elements such as

words of memory. In contrast, scripting languages are designed for gluing: They assume

the existence of a set of powerful components and are intended primarily for connecting

components” [5, p. 23].

Scripting languages use interpreters instead of compilers. The translation does not

happen all at once, but instruction by instruction [6]. This allows a quicker development

process without compile times. Additionally, programmers are more flexible since the

applications are programmed at runtime [5, p. 26]. In contrast to system languages,

scripting languages are usually kept in source form [8].

“Scripting languages are higher level than system programming languages in the sense

that a single statement does more work on average” [5, p. 26].

While system programming languages are strongly typed, scripting languages do not

share this trait. Typing refers to variables being declared a particular type such as integer

or string. A strongly typed language offers performance gains since the compiler only

needs to load specific instructions. While potential errors are detected during compile

time, errors in scripting languages occur when a value is used. Scripting languages are

generally typeless; variables can freely switch data types. This results in the

3

interchangeability of code and data, easing the process of combining different

components. Overall, strongly typed languages are more restrictive and less flexible, yet

more performant [5, pp. 24-27].

With the increase of computing power, this performance difference is increasingly

negligible. Nonetheless, in case of an application where performance is crucial, a system

programming language might be the better choice. This is particularly the case for

programs that are slow to change. On the other hand, scripting languages are

particularly useful for programs implementing a graphical user interface, connect

through the internet or utilize component frameworks like Java Beans [5, pp. 27-28].

Real life enterprise systems are usually made up of many programs working together,

like web servers and database servers. Therefore, system administration, web

applications and document processing are areas where the application of scripting

languages is preferred [8].

2.2. Java

Even though, the Java system programming language is not being directly used for the

creation of the example web applications, it is still used as an underlying component

throughout this work. Therefore, a basic understanding of its architecture is required.

The main feature of the Java programming language is its architecture-neutral

approach. Instead of machine code its compiler creates so called bytecode that runs on

the Java Virtual Machine [9, Ch. 4]. The platform is software only and runs on top of

hardware or software environments. In addition to the Java Virtual Machine, the Java

platform also includes the Java Application Programming Interface (API) [10].

“The API is a large collection of ready-made software components that provide many

useful capabilities. It is grouped into libraries of related classes and interfaces; these

libraries are known as packages” [10].

After source code is written and saved with the .java extension, it needs to be compiled

into a .class file by the javac compiler. A .class file contains bytecode which then gets

read and executed by the Java Virtual Machine [10].

The Java Language Classes, java.lang, contain the base types and are always imported

into a compilation unit. They include the fundamental classes, such as object or the so-

called wrapper classes for primitive types like Booleans. The complete Java system also

includes the libraries: java.io, java.util and java.awt [9, Ch. 9]. These core libraries

enable a huge variety of features, such as network communications, security

management or file handling [11].

In addition, external libraries are used to extend the functionality of Java. These reusable

bits and pieces can be used to add missing functionality or help a programmer write less

code and therefore save time. Beginners can use them to create programs including

4

features, they would not be able to create by themselves. A library consists of a bundle

of packages, which hold Java classes and interface definitions [11].

Notably, a library’s application programming interface documentation is one of its most

crucial components. Javadoc reads the comments in a library’s code, to create an API

documentation, holding reference information to ease usage [11].

Libraries usually come packaged as .jar files [11]. These Java Archives are defined by the

.jar extension and are based on .zip files. They are used to package multiple files

together, compressing them to decrease size. While they usually hold multiple .class

files, whole applications can be packaged this way, also including pictures and audio

files [12].

2.3. Java and Scripting Languages

Generally, code written in a scripting language can be compiled into Java bytecode,

enabling its execution on the Java Virtual Machine.

2.3.1. JSR-223

The Java Specification Request (JSR) 223 was released at the end of the year 2006 [13]. It

enables the embedding of scripts in Java applications and the access of Java objects from

within scripts. A script written in compliance with JSR-223 can access the entire

standard Java library. Equally important, a Java application written with JSR-223 in mind

allows the embedding of scripts without the need to specify a scripting language [14,

Sec. 1].

“A program specification describes the results that a program is expected to produce -- its

primary purpose is to be understood not executed. Specifications provide the foundation

for programming methodology” [15].

The Java Scripting API is defined by JSR-223 and comes included with the Java Standard

Edition since version 6 [16]. Its classes and interfaces can be found in the javax.scipt

package. It contains the ScriptEngineManager class, which discovers script engines using

the .jar file service discovery mechanism. After discovery, a ScriptEngine object gets

instantiated to perform interpretation [14, Sec. 2]. The ScriptEngine’s eval method can

then be used to execute a script that has been given as input parameter, returning the

resulting value [17].

2.3.2. Bean Scripting Framework

“JavaBeans are classes that encapsulate many objects into a single object (the bean)” [18].

The Bean Scripting Framework resulted from a research project of Sanjiva Weerawarana

at IBM in 1999. Its goal was to access JavaBeans from scripting language environments.

The project continued as an open-source project at IBM before it was donated to the

Apache Software Foundation at version 2.3 [19].

5

“Bean Scripting Framework (BSF) is a set of Java classes which provides scripting language

support within Java applications, and access to Java objects and methods from scripting

languages” [20].

The framework’s two main classes are the BSFManager and the BSFEngine [20]. The

BSFManager class gets instantiated when an application decides to run a script. It is then

used to register beans, load script engines, and run scripts. Furthermore, the BSFManager

registers all available script engines, loads, and unloads them. Each Java Virtual Machine

can run multiple BSFManagers but each BSFManager can only load one engine per language

[21]. The BSFEngine abstracts a scripting language’s capabilities and allows generic

handling of script execution and object registration within the execution context of a

given language [20].

Releases under the newer version 3.x use the JSR-223 API [22]. The Open Object Rexx

programming language is supported with its own BSF engine: BSF4ooRexx.

2.4. Open Object Rexx

All the nutshell examples accompanying this thesis have been created using the ooRexx

scripting language. Even if the reader is not familiar with this language, its easily

understandable syntax might help with the development of web applications in another

language.

Initially developed in 1979 by Mike F. Cowlishaw, the Rexx programming language

aimed to make the programming of IBM mainframes easier to understand and more

human centric. After gaining popularity in the industry, the language evolved in 1997

by implementing object-oriented features, resulting in the IBM product Object Rex. In

2004 the source code was given to the Rexx Language Association, which released the

first open-source version, called Open Object Rexx. This powerful yet extensible

language is available for all major operating systems [23, pp. iii-v].

2.5. Bean Scripting Framework for Open Object Rexx

In 2001, the Bean Scripting Framework for Rexx was first introduced at the 12th

International Rexx Symposium by Rony G. Flatscher. In this first iteration, based on a

seminar paper by Peter Kalender, the Rexx and Object Rexx interpreters were

incorporated into the BSF framework. Henceforth, it was possible for Java programs to

cooperate with and invoke Rexx and Open Rexx programs [24, p. 5]. Two years later, a

further improved version with the ability to start Java from Rexx programs, was

presented. It enabled the usage of Java as a Rexx function library [25, p. 5]. In 2009, the

first BSF4ooRexx version was released, implementing new features made possible by

native ooRexx APIs introduced with ooRexx 4.0 [26, p. 4].

One of BSF4ooRexx’s main achievements is to camouflage Java, allowing the ooRexx

user to utilize Java class objects without requiring extensive Java knowledge. The user

6

can send messages to so-called proxy classes, which will be forwarded to the Java object

they represent. This is achieved by the Bean Scripting Framework supporting module

BSF.cls. It constructs an object-oriented interface to the Java Runtime Environment,

enabling access to features such as Java arrays [27, pp. 13-20].

2.6. Hypertext Transfer Protocol

The focus now shifts on technologies enabling programs to communicate over the

internet. Before a client and a server can start communicating, they need to agree on

common rules for data transmission and the information’s structure. These rules are

established in form of a protocol [28].

“A web server stores and delivers the content for a website – such as text, images, video,

and application data – to clients that request it. The most common type of client is a web

browser program, which requests data from your website when a user clicks on a link or

downloads a document on a page displayed in the browser” [29].

The most popular protocol of the Internet, the Hypertext Transfer Protocol, is an

asymmetric, stateless pull protocol, running on the application layer. The client sends a

request and gets a response from the server. This request is most often based on a

Uniform Resource Locator, which the browser converts to a request [30].

 “A URL (Uniform Resource Locator) is used to uniquely identify a resource over the web.

URL has the following syntax: protocol://hostname:port/path-and-file-name” [30].

The protocol typically runs over a TCP/IP connection, but also allows other reliable

transport methods. Given its stateless nature, requests are not connected, and are not

aware of previous communications. The negotiation of data type and representation

systems are independent from the way the data is transferred [30].

In addition to the get request method, post is used to send data to the webserver, while

delete requests its deletion [30]. A typical HTTP request can be seen in the image below,

where get is used to request the Tomcat 10 documentation web page.

Figure 1: HTTP Request Header

7

First, the request line specifies the protocol and which resource is requested from the

specified host. Afterwards, headers inform the contacted server about what type of files

can be received, as well as other information, like the preferred language and the user’s

browser, which is referred to as User-Agent.

After the request is sent, the server replies with a response message. As can be seen in

the figure below, instead of a request line it begins with a status code. For example, the

Code 404 means that the requested resource cannot be found [30].

Figure 2: HTTP Response Header

While the response header also includes additional information like the length of the

content sent, the message’s body contains the requested resource.

2.7. Hypertext Markup Language

While first intended to describe scientific documents, the Hypertext Markup Language

soon became the core markup language of the World Wide Web [31, Sec. 1.1.].

HTML is used to define the structure of a web page. A tree of elements, such as <head>,

<body>, or <p> is used to describe how a document is to be displayed [32]. Each element

consists of a starting and an end tag, with the content displayed in between:

<Tag>Content</Tag>. Additionally, elements can have attributes placed in their start tag:

<form method=”post”> [31, Sec. 1.9.].

It is important to note that: “HTML documents represent a media-independent

description of interactive content. HTML documents might be rendered to a screen, or

through a speech synthesizer, or on a braille display” [31, Sec. 1.9.].

When a web browser parses such a document, it transforms it into a Document Object

Model (DOM) tree and stores it in memory. While this representation of a web page is

static in nature, scripts can be used to manipulate it [31, Sec. 1.9.].

The presentation of such a document can be altered using Cascading Style Sheets (CSS):

“The CSS1 language is human readable and writable, and expresses style in common

8

desktop publishing terminology” [33]. CSS rules can be either applied by an external file,

or within the HTML document itself, in form of inline styling.

2.8. Jakarta Servlets

A servlet is a program running inside a web server that creates a customized response

for each incoming HTTP request. For example, after a user has filled in a form, a web

page will be tailormade according to the input parameters. Another example would be

the creation of a user-specific webpage, displaying data from a database or time sensitive

information, such as stock quotes. As a result, the response is not the same for each

request, but changes dynamically [34, Sec. 1.]. This is achieved by mapping Java

programs to client requests that supply an URL. The servlet specification defines how

these programs need to be structured [35, p. 2].

“Java servlet is the foundation of the Java server-side technology, JSP (JavaServer Pages),

JSF (JavaServer Faces), Struts, Spring, Hibernate, and others, are extensions of the servlet

technology” [34, Sec. 1.]. The advantages of the mature Java programming language can

be fully accessed: server- and platform-independency, reusability, portability, and high

performance [36].

The necessary run time environment for a servlet is provided by a Java Server.

Additionally, it handles all networking services and resources necessary, while also

managing the life cycle of servlets [37]. For example, it decodes and formats mime-based

requests and formats mime-based responses [38, Sec. 1.2.]. The Multipurpose Internet

Mail Extension (mime) is used to specify the subtype, encoding and media type of data

[39, Sec. 1.]. Security is enhanced by the servlet being part of the web server, and

therefore inheriting its security measures [37]. Jakarta Servlets of the Version 5.0

support HTTP/1.1 and HTTP/2.0. It is important to note that the server can modify

HTTP requests before and after the processing of the servlet to allow caching [38, Sec.

1.2.].

When creating a servlet, one can either extend the jakarta.servlet.GenericServlet

interface or the jakarta.servlet.http.HttpServlet interface. The more specific

HttpServlet includes methods supporting the HTTP protocol like doGet, which handles

HTTP get requests [40]. The init method represents the beginning of a servlet’s

lifecycle. It then handles all client calls with the service method, before retiring with

the destroy method [41]. By default, only a single instance is created for each servlet

declaration [38, Sec. 2.2.].

2.9. Jakarta Server Pages

“A JSP page is a text-based document that describes how to process a request to create a

response” [4, Sec. Overview].

9

Jakarta Server Pages are closely related to servlets and are built based on their

specification [42]. The most common application of JSPs is in the form of HTML and

XML content. They enable concepts like web applications, servlet contexts, sessions,

requests, and responses [4, Sec. Overview]. While HTTP is the default protocol for

requests and responses, other protocols are also accepted, if the container supports

them [4, Sec. 1.1.].

“From a coding perspective, the most obvious difference between them is that with servlets

you write Java code and then embed client-side markup (like HTML) into that code,

whereas with JSP you start with the client-side script or markup, then embed JSP tags to

connect your page to the Java backend” [42].

Before being requested by clients during the request phase, JSPs need to be translated

to a servlet class by the container. The result is referred to as a JSP implementation class.

Translation is performed once per page and can take place on request or at deployment

time. After the class is instantiated at request time, responses are created for

corresponding incoming requests. [4, Sec. Overview]. In short, after translation the JSP

will be indistinguishable from any other servlet.

Most significantly, JSPs functionality can be extended by Tag Libraries. Within the

libraries, tag handlers, implementing the BodyTag interface class are found [35, p. 10].

They introduce custom actions, to be used manually or by Java development tools [43].

The Tag Library Descriptor (TLD) is used to describe the Tag Library in form of an XML

file and uses the extension .tld. It allows JSP containers to interpret pages that use a tag

library. Additionally, a TagLibraryValidator class can be used to check whether a JSP

page is valid according to a set of expected constraints [4, Sec. 7.3.].

JSPs can contain fragments written in a scripting language, which are referred to as

scriptlets [44]. While Java is the default scripting language, other languages can be

added using two different methods. First, new languages can be declared at the

beginning of a JSP. However, some containers only support Java to be used this way.

Secondly, a tag library can be used to enable scripting language support by means of a

custom action. This approach is beneficial since it is portable between containers, all of

which must support the tag extension mechanism. Equally important, this approach

allows using multiple different scripting languages on the same page [45, p. 34].

2.10. Apache Tomcat

“Apache Tomcat is a long-lived, open source Java servlet container that implements

several core Java enterprise specs, namely the Java Servlet, JavaServer Pages (JSP), and

WebSockets APIs” [46].

In 1997 the American software developer James Duncan Davidson started to work as an

engineer for JavaSoft, which at the time was a part of Sun Microsystems. While working

on the Java Web Server he created a reference implementation for the Java Servlet

10

specification, called the Java Servlet Web Development Kit [47]. In 1999 the project was

donated to the Apache Software Foundation and was thereafter called Tomcat. In 2005

Tomcat became a top-level Apache project to be managed by itself [48]. Tomcat refers

to multiple components working together, mainly Catalina, Jasper and Coyote.

“Catalina provides Tomcat's actual implementation of the servlet specification; when you

start up your Tomcat server, you're actually starting Catalina” [49]. This is also the

reason why Tomcat’s home/installation is often referred to as CATALINA_HOME [50]. The

Java class Catalina not only provides the servlet container’s main functionality, but is

also responsible for its configuration, security, and logging [49].

The Jasper JSP engine is used to implement the Jakarta Server Pages specification. It

compiles JSPs into Java code to be used by Catalina as servlets. It can detect changes at

runtime and consecutively recompile a JSP [51]. Therefore, any changes made become

immediately visible.

The Coyote HTTP/1.1 Connector enables Tomcat to work as a stand-alone web server. It

gets instantiated and listens for connections on a specified TCP port number [52]. The

current implementation supports the HTTP/2 protocol, using the class

org.apache.coyote.http2.Http2Protocol [53]. Without this class, a dedicated HTTP

server like the Apache HTTP Server would be required. If needed, Tomcat can be

connected to an Apache HTTP server by means of a connection module [54].

Since Tomcat is often also referred to as a web server, it is important to establish the

difference between a webserver and a web container. A web server is used to store and

deliver web pages to clients. To accomplish this, the HTTP protocol is used, which also

allows the transmission of information provided by clients [55]. JSPs and servlets are

referred to as web components, to be used, they require an environment provided by a

web container [4, Sec. 1.1.1.]. Therefore, every web container can be referred to as a web

server, while not every web server is a web container. Furthermore, a web container

utilizing the Jakarta Servlet API can be referred to as a servlet container.

2.11. Open-Source Software

Most of the software mentioned throughout this thesis is open-source, meaning that its

source code is freely available for anyone to inspect, modify and enhance. This approach

not only allows control and security but also the creation of a community [56].

“Open source projects, products, or initiatives embrace and celebrate principles of open

exchange, collaborative participation, rapid prototyping, transparency, meritocracy, and

community-oriented development” [56].

Open-source software is usually released under a license, stating the terms of usage,

modification, and redistribution. Copyleft licenses, like the GNU General Public

License, allow the creation of derivative works, but require them to keep using the same

license. In contrast, permissive licenses allow the user to freely use, modify and

11

redistribute the software [57]. The Apache license is an example for a license that is

permissive.

2.11.1. Apache Software Foundation

The Apache Software Foundation is a not-for-profit corporation established in 1999. An

all-volunteer board oversees over 350 open-source projects and supports them with a

framework for intellectual property and financial contributions [58].

“The mission of the Apache Software Foundation (ASF) is to provide software for the

public good” [58].

The Apache Tomcat Software is released under the Apache License version 2.0 [59]. At

the time of writing, in January 2021, the current version of the Apache License is 2.0,

which was approved in the year 2004. Most importantly, software released under this

license can be reproduced and used to create derivates without paying royalties. To offer

legal protection, the license is revoked should an entity file a lawsuit claiming patent

infringement by the creator or a contributor [60]. All the example programs created for

this thesis are licensed under the Apache License 2.0. Therefore, should the reader deem

them useful, free usage is encouraged.

2.11.2. Eclipse Foundation, Jakarta Namespace

The Eclipse Foundation is a not-for-profit organization with over 275 members, focusing

on open-source projects [61]. It was initially created by IBM in the year 2001 [62].

“The Eclipse Foundation provides our global community of individuals and organizations

with a mature, scalable, and business-friendly environment for open-source software

collaboration and innovation” [61].

Until 2019, Jakarta Servlets and Jakarta Server Pages were officially known as Java

Servlets and Java Server Pages. This name change goes hand in hand with the rebranding

of Java Enterprise Edition (Java EE) to Jakarta Enterprise Edition (Jakarta EE), the set of

specifications under which the Java Servlet specification was originally released. In the

year 2017, the then owner of Java Enterprise Edition, Oracle, decided to donate it to the

Eclipse Foundation. These events resulted in the rebranding, using a new name chosen

by the community. On September 10, 2019 the first version using the Jakarta namespace

was released, Jakarta EE8. The release changed all the included specifications names,

including the Java Servlet, which is referred to as Jakarta Servlet from this point onward

[63].

While the Standard Edition of the Java Platform enables the development and

deployment of desktop and server applications, its Enterprise Edition is focused on

large, multi-tiered enterprise applications [64]. “The focus of the Jakarta EE platform is

not to bundle a bunch of unrelated APIs. The purpose of Jakarta EE is to ensure that a

12

variety of useful enterprise APIs work in harmony” [65]. Most noteworthy, Java web

servers are defined as standardized services in this bundle [35, p. 1].

TomEE is a version of Tomcat, that builds on the standard edition, by adding all the

API’s composing Jakarta EE. Only a single of those API’s is required for the web

applications accompanying this thesis, namely Jakarta Mail. To simplify, it has been

added to the standard Tomcat version as a standalone .jar file [65]. Alternatively,

TomEE could have been used instead.

Tomcat 10 was the first version to implement this change in namespace, which is

reflected in the naming of all primary packages [66]. To give an example, the cookie

class is referred to as jakarta.servlet.http.Cookie in Tomcat version 10 and

javax.servlet.http.Cookie in Tomcat version 9.

This namespace change is directly related to this thesis, since at the time of writing, in

early 2021, the Apache Tomcat Software Version 10 was still in its Beta phase.

Nonetheless, to future proof this work, it is fully based on Tomcat 10. Should the reader

prefer the stable version Tomcat 9, most components should be near identical. The

exception being, that, instead of the examples found directly in the zip archive, the ones

in the directory ZIP_ARCHIVE\javax_for_Tomcat09 need to be used instead. They are near

identical, the only difference being the above-mentioned name change, realized in the

tag library used and the cookie class. For more information on the usage of Tomcat 9

please refer to the appendix: C. Using Tomcat 9

2.12. Bringing It All Together

The conventions and structure of Java web applications are used in tandem with the

Apache Tomcat Software to provide the necessary infrastructure for web development.

The web container handles all incoming HTTP requests and outgoing HTTP responses.

Meanwhile, the logic necessary is implemented by JSPs, containing custom tags that

enable code written in a scripting language.

These tags originate from one of two tag libraries created by Rony G. Flatscher for

BSF4ooRexx, using either the BSF or the JSR-223 framework. Originally based on two,

now deprecated, tag libraries, they were released in the fall of 2020 in the form of

jakarta.ScriptTagLibs.jar and javax.ScriptTagLibs.jar [35, pp. 10-11]. Scripts that are

invoked this way are supplied with the implicit objects normally available to a standard

Java Scriptlet inside of a JSP. Most notably request, response and out [45, p. 35]. These

objects give programs the ability to interact over the internet.

Although, this approach allows the usage of many different scripting languages, ooRexx

has been selected as the programming language of choice. The necessary script engine,

RexxScriptEngine, is made available by BSF4ooRexx [67, p. 5]. Additionally, BSF4ooRexx

enables the inclusion of countless external Java libraries.

13

Hence, the script runs on the server, generating dynamic content based on the request

sent by the user. This technique is also referred to as server-side scripting. Whereas, the

client is not required to support the scripting language used, increased latency might

be a disadvantage for some applications [68]. After processing, the user receives a HTML

document that gets rendered by a web browser.

3. Apache Tomcat Fundamentals

The following chapter introduces the Apache Tomcat Software, communicating all

knowledge required to run the complementary example web applications included with

this thesis. At this stage, ooRexx, BSF4ooRexx and Tomcat should be installed.

Download links for the first two components can be found in the appendix: A.1.

Software Required to Begin, as well as a detailed installation guide for Tomcat: B. Tomcat
Installation Guide

3.1. TOMCAT_HOME

The author uses TOMCAT_HOME to describe Tomcat’s home/installation directory. The

figure below shows its contents.

Figure 3: TOMCAT_HOME Directory

TOMCAT_HOME\bin contains scripts in the form of .bat files. Mainly, startup.bat and

shutdown.bat, which can be used to start and stop the server.

TOMCAT_HOME\conf holds multiple files used to configure the software’s properties. The

server.xml file is used to change the initial server configuration on startup, for example

it points to external static resources. The file web.xml is used to deploy and configure

web applications. The files in this folder serve as a default, for certain parameters to be

overwritten by a web.xml file specific to a web application [69].

14

TOMCAT_HOME\lib contains .jar files that are shared among all web applications. The files

placed in this directory are not only accessible to all web applications but are also used

by Tomcat itself. Files that are necessary for basic functionality, like catalina.jar and

jasper.jar come preinstalled [70].

TOMCAT_HOME\logs contains log-files, useful for debugging and testing self-written web

applications. Particularly, for each day the server is run, a file called tomcat10-

stderr.yyyy-mm-dd.log is created, containing error messages. This file is particularly

useful to detect the cause of exceptions. Also, it might prove useful to regularly delete

old log files to quickly find relevant entries. To make deletion possible, the Tomcat

server needs to be shut down. For convenience, all files within the log folder can be

deleted since Tomcat will automatically recreate all necessary files during the next

startup.

TOMCAT_HOME\webapps is the directory where all web applications can be found.

Depending on the installation parameters chosen, this folder might already come

shipped with default applications.

TOMCAT_HOME\work is used by Tomcat for intermediate files during runtime. For example,

once a JSP is compiled, the result is placed here [71].

3.2. Deploying Web Applications

“Deploying your application means putting it on a Web server so that it can be used either

through the Internet or an intranet” [72].

To begin with, the two demo web application shipped with this work need to be

deployed and made accessible. There are two ways to accomplish deployment, either by

deploying a web application exploded or in the form of a web archive file.

Web Application Archives use the .war file extension and contain all necessary files for

a web project. Everything that is needed such JSPs, scripts and the configuration files

are contained in a single archive. They are quite like .jar files and can be created from

the command line with the jar tool included in the Java Development Kit. For example,

the command jar -cvf projectname.war * will create a web archive from all the files

found in a directory [73].

The usage of .war files is especially convenient because they use the .zip format [74].

Instead of using the command line, it is also possible to create a simple .zip archive

and giving it the .war file extension. To view its contents, .war files can also be unpacked

by any compression software.

Lesson Learned: When web applications are shipped as .war files, all required files are

expected to be already included. Special attention needs to be given to .jar files.

After placing a .war file in TOMCAT_HOME\webapps, within a single minute, the software will

automatically unpack the files in a new folder of the same name. Afterwards, all files

15

can be conveniently viewed. Once a .war file is unpacked it is considered exploded.

Similarly, after deleting a .war file, Tomcat will automatically undeploy the

corresponding web application.

When web applications are in development, they are usually deployed exploded. A

folder in the webapps directory is created and the files inside are modified without the

need to compress them into a single file. Since any changes made on a JSP are

immediately reflected on the corresponding web page, it is possible to edit them while

the server is running, and the web application is deployed.

Furthermore, all web servers compliant with Jakarta EE, handle web applications the

same way, allowing identical .war files to be used with different Java webservers, like

IBM WebSphere. They all handle the .war files as an independent application, using its

directory as a virtual root [75]. Therefore, any concepts used for web application

development with Apache Tomcat can be directly transferred to other Java web servers.

While .war files contain multiple .jar files, .ear files contain multiple .war files. This

format used by the Jakarta EE platform to create application packages [76].

At this point the reader is encouraged to copy the .war files helloworld.war and

treeshop.war to TOMCAT_HOME\webapps. While the web application called helloworld will

be the subject of the next sections, treeshop will be discussed at a later stage. The files

can be found in the root of the complementary archive. In case the reader prefers to use

Tomcat 9, the files found in the directory ZIP_ARCHIVE\javax_for_tomcat9 need to be

used instead.

3.3. Running and Stopping Tomcat

There are multiple ways to start the Apache Tomcat software. The previously mentioned

scripts startup.bat and shutdown.bat found in TOMCAT_HOME\bin exist for all platforms.

On some operating systems, they might have the file extension .sh.

On the Microsoft Windows (Windows) operating system the Apache Commons

Daemon Service Manager, which creates a taskbar icon, is run from the start menu entry

Monitor Tomcat. It can be found in the folder Apache Tomcat 10.0 Tomcat10 and offers a

convenient way to configure, start and stop the server.

Figure 4: Apache Commons Daemon Service Manager Taskbar Icon

The reason why Tomcat cannot be started by conventional methods lies in its nature as

a service. On Windows, Windows services run in their own Windows session and are

used for applications that require long-running functionality, without interfering with

other users on the same machine. Additionally, they allow a different security context

[77].

16

Therefore, yet another way to control the status of Tomcat is accessed by typing

services.msc in the Windows Powershell or the Command Prompt. A list of all services

will be displayed. By right-clicking on Apache Tomcat 10.0 Tomcat10, the server can be

started and stopped. Furthermore, the commands sc and net can be used to control

Windows services from the command line.

Once running, Tomcat can be reached from the URL: http://localhost:8080

Localhost is a top-level domain, referring to the current computer and is

interchangeable with the Internet Protocol address (IP address) 127.0.0.1. The number

127 at the beginning of the address triggers a so-called loopback; the request is not

forwarded to the internet but handled by the local computer instead. This feature is

mainly used by administrators and for testing purposes [78].

Ports are interfaces on a computer to which other devices can connect to, facilitating

communication. The ports are numbered starting from 0 to 65535. Ports numbered 0 to

1023 are also called well-known ports, which are reserved for common services like the

HTTP protocol, which has the port 80 assigned to it [79]. During the Tomcat

installation process, the HTTP connector port got assigned to 8080. Here Tomcat’s

Coyote component is listening for incoming requests.

In case the reader has defined a different port during installation, the URL needs to be

changed accordingly. Any differences concerning the usage of Tomcat 9 are in name

only.

3.4. Tomcat Manager

Among other features, the Tomcat Manager gives an overview of all installed web

applications and allows them to be deployed, undeployed and reloaded, all without

necessitating a restart [80]. This is particularly useful for environments where multiple

people work together and for users preferring a graphical interface.

If it has been selected during installation, the Tomcat Manager can be accessed from:
http://localhost:8080/manager

When started, the application asks for the username and password given during the

installation. The users and their passwords are defined in the file tomcat-users.xml

which can be found in TOMCAT_HOME\conf.

4. Introducing Web Applications /helloworld

Thus, after introducing the fundamentals of working with Tomcat, the web pages

contained in the application helloworld will introduce the reader to web application

development.

At this point, the file helloworld.war should have been placed in TOMCAT_HOME\webapps.

During deployment of the software, the web archive’s contents are exploded

http://localhost:8080/
http://localhost:8080/manager

17

automatically. The folder structure directly influences the path from which pages are

accessed: Files in the directory TOMCAT_HOME\webapps\helloworld, are accessed from the

URL: http://localhost:8080/helloworld

The directory TOMCAT_HOME\webapps\helloworld is referred to as the application’s context

path [74]. To allow generalization across different web applications, this thesis uses the

path WEBAPP\ to refer to this directory.

4.1. Web Application Architecture

Some elements are common to all Java based web applications. The directory

WEBAPP\WEB-INF contains all resources necessary to run an application. Typically it holds

.jars, .tlds and the web.xml file. Notably, resources contained in this folder are not

made accessible to web users [81].

The web.xml file contains the Web Application Deployment Descriptor. It is used by the

JSP container to gather general configuration information [4, Sec. 3.1.]. The main web.xml

file can be found in TOMCAT_HOME\conf, while the version specific to a web application is

located at WEBAPP\WEB-INF. The latter is used in case deviating or additional

configuration parameters are required. [82]. For example, it holds information used to

name and describe web applications in the Tomcat Manager. At a later stage, this file

will be used to add application specific configuration parameters.

Should a tag library be used, matching Tag Library Descriptors are essential to the

functioning of a web application. To minimize potential errors and to showcase their

interchangeability, both Tag Library Descriptor files for the JSR-223 (script.jsr223.tld)

as well as the BSF (script-bsf.tld) tag library were placed in helloworld\WEB-INF.

The directory WEBAPP\WEB-INF\lib contains Java .class files in .jar archives. Like the

web.xml file, the contained libraries are specific to the web application and take

precedence over any classes loaded from TOMCAT_HOME.

For the web applications shipped with this thesis to function, two Java Archives are

always needed. First, the file jakarta.ScriptTagLibs.jar holds the actual BSF and JSR-

223 tag libraries. Tomcat 9 users will find the file javax.ScriptTagLibs.jar instead. The

bsf4ooRexx-v641-20210205-bin.jar includes the Bean Scripting Framework, the bridge

between Java and ooRexx.

This leaves the question, whether to place the classes necessary for a web application in

TOMCAT_HOME\lib or WEBAPP\WEB-INF\lib. For the application helloworld, the author has

chosen to package all necessary .jar files in helloworld\WEB-INF\lib. Therefore, the

reader is not required to make any additional changes after deployment.

Generally, the benefit of not requiring the user to modify her Tomcat installation

outweighs the redundancy of having multiple identical .jar files. As a result, helloworld

http://localhost:8080/helloworld

18

run effortlessly after being placed in the webapps folder. Nonetheless, other factors

complicating this issue will be discussed later.

4.2. Introducing Jakarta Server Pages /helloworld/helloworld.jsp

The listing below gives an overview of the document helloworld.jsp, found in

helloworld\. At first glance, the Jakarta Server Page is almost identical to a standard

HTML page. By interweaving static and dynamic content the JSP gets transformed into

a Rexx Server Page.

<%@ page session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>hello, world</title>
</head>
<header>

<s:script type="rexx">
USE ARG request, response, out

greeting = "Hello, world! (Sent from Open Object Rexx)"
out~println(greeting)
</s:script>

</header>
</html>
Listing 1: helloworld.jsp

4.2.1. JSP Directives

All JSPs share a common set of characteristics and begin with the so-called directives,

containing messages to the JSP container. All directives follow the syntax: <%@ directive

attr="value" %>. The three existing directive types are page, taglib and include [4, Sec.

1.10.].

The page directive is used to communicate page dependent properties to the JSP

container. It can occur multiple times and at any position in the document, except for

the pageEncoding and contentType attributes, which are expected to appear at the

beginning. Attributes are limited to a single instance, except for import and pageEncoding

[4, Sec. 1.10.1.].

<%@ page session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>
Listing 2: helloworld.jsp JSP Directives

To begin with, the session attribute of the page directive is used to identify a user across

multiple requests. The identification is made possible by means of a cookie, or

19

alternatively by rewriting the URL [83]. This simple web page, with the only goal of

displaying information requires no session.

The pageEncoding attribute determines the encoding of the JSP itself, while the

contentType attribute defines the mime-type and character encoding of the response.

Additionally, the character encoding can be defined by charset [4, Sec. 1.10.1.].

Encoding is particularly important for webpages since they might contain text in many

different languages. Characters on computers are stored as bytes, which need to be

mapped to characters using a specific code. The characters in this context are grouped

into character sets. Many different character sets exist for different purposes and

languages; for the use case of creating a web page, the Unicode UTF-8 is recommended.

UTF-8 includes a multitude of characters, for almost any possible situation, making it

unnecessary to switch or convert between encodings throughout a project [84].

Furthermore, it ensures maximum compatibility with different languages. If the

pageEncoding is not explicitly declared, ISO-8859-1 will be used instead [4, Sec. 4.1.1.].

In the second line, the taglib directive declares that a tag library is used to extend the

page’s functionality. The uri attribute points to the Tag Library Descriptors exact

location in the directory WEBAPP\WEB-INF. The declared prefix attribute s is used to

indicate the usage of one of the library’s custom actions throughout the document [4,

Sec. 1.10.2.].

The include directive is used to insert text, data, or code of a specified resource at JSP

translation time [4, Sec. 1.10.3.]. In this example the directive has been omitted.

4.2.2. JSP Main Content

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>hello, world</title>
</head>
<header>
Listing 3: helloworld.jsp HTML Start Tags

The main contents of the JSP follow the directives. The <!DOCTYPE html> declaration

informs the browser about the nature of the document and that its author is following

HTML 5. Having the doctype declaration at the beginning of a web page is good practice

and a sign of quality [85]. Similarly, it is a good idea to declare the charset as UTF-8 once

again. The previously declared charset attribute, found in the directives, is sent in the

HTTP response header. Should the server configuration change or the page gets saved

locally, the HTTP response header would be missing [86]. For this situation, the charset

gets declared again. Even though, UTF-8 is the standard charset that will be applied to

any HTML5 page in case none is given, the web browser’s behavior is not guaranteed,

especially for older web browsers [87].

20

<s:script type="rexx">
USE ARG request, response, out

greeting = "Hello, world! (Sent from Open Object Rexx)"
out~println(greeting)
</s:script>
Listing 4: helloworld.jsp Script Tag

Afterwards, scripting code is used to display a message in the document’s header. The

dynamic content starts with the previously declared taglib prefix s. The attribute type

defines the scripting language used, in this case Open Object Rexx. If the JSR-223 taglib

is used, this attribute also allows to supply a mime-type or a file-extension [35, p. 11].

Alternatively, many other scripting languages could be used. For example, the addition

of the file jython.jar would allow the insertion of code written in the Python

programming language in place of ooRexx [88, p. 19]. In case needed, this

implementation even allows to mix many different scripting languages and Java, all on

the same JSP [35, pp. 22-23].

At the beginning of the script, the objects request, response and out are fetched. These

objects are part of the implicit objects, nine of which are created by the JSP engine

during translation phase [89]. Invoking scripts by means of the tag libraries developed

by Rony G. Flatscher, supplies the three mentioned implicit objects automatically as

arguments, merely requiring them to be fetched. With ooRexx, this is done with the

instruction USE ARG [35, p. 23].

The requests object provides data the client has transmitted when initially requesting

the page, usually it originates from forms. The response object modifies or delays the

response that is sent in return. The third fetched object out, is responsible for writing

content to the HTML page the user receives. Furthermore, it enables the formatting of

messages [37].

After fetching the implicit objects, the script defines a greeting string and stores it in

the variable greeting. The out object refers to an instance of the Java class JspWriter.

Next, its println method is used to print the characters and terminating the line

afterwards [90]. As a result, the greeting previously defined will be displayed in the

HTML page header. The closing tags conclude this first script. Since no HTML tags have

been given, the println method prints the sentence in verbatim without any formatting

applied.

The following figure showcases the HTML document the user receives when requesting

helloworld.jsp from: http://localhost:8080/helloworld/helloworld.jsp

http://localhost:8080/helloworld/helloworld.jsp

21

Figure 5: hellworld.jsp in Web Browser

As can be seen, the resulting page looks like a standard web page, the parts generated

by the script are indistinguishable from the static HTML parts.

Listing 5: helloworld.jsp Generated HTML Code

Lesson Learned: For URLs, upper- and lower-casing matters, they need to reflect the

JSP’s exact name.

From this point onwards, the contents of WEBAPP\WEB-INF, as well as the page directives

and HTML code up to the header can be copied and reused as standard building blocks.

The next example page, helloworld_ext.jsp, builds on the first.

4.3. BSF Taglib, Expressions, Styling /helloworld/helloworld_ext.jsp

<%@ page session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>
<%@ taglib uri="/WEB-INF/script-bsf.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<link rel="stylesheet" href="css/treeshop.css">
<title>hello, world</title>
</head>
<header>

<s:script type="rexx">
greeting = "Hello, world! (Sent from Open Object Rexx)"

22

SAY '<h1>'greeting'</h1>'
</s:script>

</header>
<body>

<p>The time right now: <s:expr type="rexx">TIME()</s:expr></p>

<s:script type="rexx">
SAY '<p style="color:blue" !important>'pp("This paragraph is made possible by the
BSF taglib")'</p>'

/* Note: when using the BSF framework we need to require BSF.CLS in each script
and expression, if we need to access its public routines or public classes */
::REQUIRES "BSF.CLS" -- make sure the Java bridge is there
</s:script>

</body>
</html>
Listing 6: helloworld_ext.jsp

Compared to the first page, this document’s head includes the link tag. It is used to

extend the document with additional resources. The rel attribute, standing for relation,

is communicating the nature of the linked resource [91]. A stylesheet of the type .css,

which is located by the URL: css/shop.css has been added. This path is relative, referring

to the location of the document requesting the resource. Therefore, the file is found in:

helloworld/css/treeshop.css. It is also possible to utilize an absolute path, by giving a

full URL. However, relative paths are best practice, should the domain or computer

change, all absolute paths would need to be changed otherwise [92].

Moving on, the first block has been both simplified and extended at the same time. The

simplification is achieved using the Rexx SAY instruction which, thanks to the used tag

library, results in the same result as the println method. The script’s standard output

file is redirected to the out implicit object. Conveniently, the ScriptTagLib removes the

prompt REXXout> which gets prepended by the RexxScriptEngine, allowing to write

proper HTML content to the JSP [35, p. 22].

greeting = "Hello, world! (Sent from Open Object Rexx)"
SAY '<h1>'greeting'</h1>'
Listing 7: helloworld_ext.jsp Printing HTML Tags

Listing 8: helloworld_ext.jsp Generated HTML Code

Additionally, this demonstrates how HTML tags can be used to format outputs of

scripting languages. First the tag <h1> gets printed in single quotation marks.

Afterwards the variable greeting is inserted, followed by a closing tag, once again in

single quotation marks. This approach allows weaving together outputs and HTML tags,

generating dynamic content that is formatted according to HTML conventions. The

23

result, that gets sent to the end user, looks like simple, static HTML code, leaving no

trace of ever containing scripting content.

Lesson Learned: This approach requires extra care when using quotation marks. Since

double quotation marks are needed to specify attributes within tags, single quotation

marks are used for SAY instructions.

While for other scripting languages the out object in combination with the println

method is a universal way to write HTML content to a JSP, all examples will use the SAY

instruction from this point onwards.

<p>The time right now: <s:expr type="rexx">TIME()</s:expr></p>
Listing 9: helloworld_ext.jsp Expression Tag

In addition to script, the expr tag can be used to fetch the result of an expression defined

in a scripting language [93]. In the example, the body of the generated HTML document

includes a paragraph outside of the script. It is used to demonstrate how the expression

tag is used to intertwine the output of the ooRexx time() function with standard HTML

code. The function returns a timestamp, which is consecutively displayed on the web

page. The output reflects the point in time, at which the page was originally generated.

Since HTML is static by nature, expressions allow quick enhancements with dynamic

content.

Next, the script tag is used once again, demonstrating how multiple scripting elements

can be added to a single JSP.

SAY '<p style="color:blue" !important>'pp("This paragraph is made possible by the
BSF taglib")'</p>'
Listing 10: helloworld_ext.jsp Inline Styling

The first thing to note is the use of a style attribute, indicating a CSS rule by means of

inline styling. Overall, the CSS 2.1 version has over 90 properties, allowing in-depth

customization of a web page, including fonts, tables, and backgrounds [94, Sec. 2.1.].

The rule consists of the declaration color:blue. When looking at the external stylesheet

shop.css, the selector for a paragraph, p, already exists. The web page helloworld_ext.jsp

therefore has two different style sources which might conflict with each other. A

cascading order is used to determine the applicable value, which also gives the

stylesheet its name. Since the declaration in the HTML document is declared !important

it always takes precedence. Then, the BSF4ooRexx public function pp is used to place

the text inside square brackets.

Lesson Learned: When creating and changing style elements in an external .css file, the

changes might not be immediately reflected on the actual web page. The reason being,

that the web browser usually caches front end resources. The hard refresh feature might

prove useful by clearing the cache and reloading all resources. For example, a hard fresh

can be performed by the button combination CTRL-Shift-R when using Firefox on

Windows [95].

24

::REQUIRES "BSF.CLS" -- make sure the Java bridge is there
Listing 11: helloworld_ext.jsp BSF Class

In contrast to the first example, the BSF tag library is used. Most importantly, when

using this taglib, ::REQUIRES “BSF.CLS” needs to be included at the end of a script.

Without its addition, public routines, and classes of the BSF4ooRexx framework will not

be functional. When using the JSR-223 taglib the directive can be omitted. The BSF.CLS

which is part of BSF4ooRexx is used to define public routines and classes. For example,

public routines offer functions such as the creation of Java arrays, while public classes

such as BSF_PROXY enable sending ooRexx Messages to Java proxy objects [96]. Therefore,

to avoid inexplicable errors or missing content, it is good practice to always include this

directive when using the BSF taglib.

The choice of taglib hardly matters when ooRexx is used. Nonetheless, both the BSF and

the JSR-223 tag library exist to ensure maximum compatibility and the ability to run

programs without making changes. Afterall, some applications still use Apache BSF and

some scripting language implementations only support the BSF framework [35, pp. 10,

23]. For example, programming languages like Groovy internally prefer the BSF

framework, while older languages might not offer JSR-223 support at all.

Figure 6: helloworld_ext.jsp in Web Browser

All the differences in the page’s look and feel stem from the applied stylesheet.

4.4. Welcome Files /helloworld/index.html

This is a good point to mention welcome files. If no specific page is requested, Tomcat

redirects the user to a welcome file. For example, the URL:

http://localhost:8080/helloworld opens the welcome page for the helloworld web

application. A welcome file can be placed in WEBAPP\, as well as in any subfolders. Tomcat

will first look for a welcome file declared in the web application’s web.xml file. It will

then check for the existence of the following files: index.html → index.htm → index.jsp

[97].

http://localhost:8080/helloworld

25

4.5. Introducing Cookies /helloworld/lastvisit.jsp

In previous parts of this thesis, the HTTP protocol and its stateless nature have been

discussed. Cookies are a solution to the problem that different HTTP requests cannot

be related to each other. Most website features that are taken for granted, like shopping

carts, are enabled by cookies.

To maintain state, the server sends information in the Set-Cookie HTTP response

header, to be stored by the client’s browser. When the user contacts the same server at

a later point in time, the previously received cookie data gets sent back in the Cookie

HTTP request header. By changing the path and domain attributes, the scope of a cookie

can be altered. By default, the cookie only gets sent to exact path from where the web

page has been requested from. Each cookie is represented by a cookie-pair consisting of

cookie-name and cookie-value. Should a web browser receive a cookie with the same

cookie-name, domain-value and path-value as an existing cookie, the stored data gets

replaced with the newly received values [98, Sec. 8.6.].

Furthermore, cookies include a Max-Age attribute; after the stated number of seconds

has passed, the cookie gets deleted. Similarly, cookies can include an Expires attribute,

which indicates the time and date at which the cookie expires. Should the cookie have

both the Max-Age and the Expires attribute, the Max-Age attribute takes precedence. The

cookie’s Domain attribute indicates the hosts it gets transmitted to [98, Sec. 8.6.].

While the first parts of the page lastvisit.jsp are identical to the previous example, the

document’s body contains code utilizing cookies.

<s:script type="rexx">
USE ARG request, response, out

lastVisit = .nil
allCookies = request~getCookies

IF allCookies \= .nil THEN DO singleCookie OVER allCookies -- iterate over cookies
 IF singleCookie~name = "lastVisit" THEN lastVisit = singleCookie~value
END

IF lastVisit == .nil THEN SAY '<p>This is your first visit!</p>'
 ELSE SAY '<p>Your last visit was at: 'lastVisit'</p>'

/* Create/Overwrite cookie with the current time */
cookie = .bsf~new("jakarta.servlet.http.Cookie","lastVisit",time())
cookie~setMaxAge(60*60*24) -- the cookie will expire after 1 day
response~addCookie(cookie)
</s:script>
Listing 12: lastvisit.jsp

The method getCookies is used to gather all cookies that are included in the request. It

results in an array of all transmitted cookies or .nil in case no cookies exist [99]. This

array is assigned the variable allCookies.

26

If cookies are present, a DO OVER loop iterates over all the cookies contained in the newly

created array. It is necessary to first check for the existence of cookies, since a .nil value

for allCookies would otherwise result in an error. If a cookie with the name lastVisit is

present, its value will be assigned to a variable of the same name. In this case, a short

message about the users last visit will be displayed, otherwise she will be informed that

this is her first visit.

Afterwards, a cookie is created by utilizing the class jakarta.servlet.http.Cookie. A

name and value are given with the constructor [100]. In the final step the method

setMaxAge is used to define the cookie’s expiration date. Since this value is given in

seconds, a small mathematical operation is used to define a maximum age of one day.

After the cookie is created, the addCookie method is used to add the cookie named

lastVisit to the response that gets sent to the client. As value, the built in Open Object

Rexx function time() is used to store a timestamp, corresponding to the exact moment

in time when the code is executed [101]. For all future visits, this timestamp will be

displayed and afterwards updated. Unless the visits are further apart than one day, after

which the cookie will automatically be deleted.

Figure 7: lastvisit.jsp in Web Browser on First Visit

Figure 8: lastvisit.jsp in Web Browser on Consecutive Visit

27

Although simple, this third nutshell example might prove useful; it shows how cookies

are created, transmitted, and afterwards accessed.

4.6. Combining User Input and Cookies /helloworld/greeting.jsp

The next example page, greeting.jsp, shows how information provided by the user can

be stored and reused with a cookie. A visitor is asked for her name, allowing the web

page to personally greet her on future visits. Again, the relevant code can be found in a

script located in the document’s body.

<s:script type="rexx">
USE ARG request, response, out

allCookies = request~getCookies

username = .nil -- set as non-existent to begin
IF allCookies \= .nil THEN DO singleCookie OVER allCookies -- iterate over cookies
 IF singleCookie~name = "username" THEN username = singleCookie~value
END

IF username == .nil THEN DO
 SAY '<p>Hello, what is your name?</p>'
 SAY '<form>'
 SAY '<label for="username">Username:</label>'
 SAY '<input type="text" name="username" required>'
 SAY '<input type="submit" value="Ok">'
 SAY '</form>'
END
ELSE DO
 SAY '<p>Welcome back, 'username'!</p>'
END

IF request~getParameter("username") \= .nil THEN DO
 cookie = .bsf~new("jakarta.servlet.http.Cookie","username",-
 request~getParameter("username"))
 cookie~setMaxAge(60*60*24) --The cookie will expire after 1 day
 response~addCookie(cookie)
 response~sendRedirect(request~getRequestURI()) -- refresh page
END
</s:script>
Listing 13: greeting.jsp

After fetching the implicit objects and any cookies attached to the request, the script

first checks whether a cookie called username is existent or not. Should none exist, a form

is generated, asking the user to input her name. Since no submission method is

declared, the default method get is used, appending the data to the URL. The action

attribute is used to define a form’s processing agent [102, Sec. 17.13.]. To clarify, here the

web page is given, to which the submitted data is sent. Since this is a single page

application, the form data is sent to the same page. For HTML5 it is sufficient to simply

omit the action attribute to achieve this. HTML4 on the other hand, requires a value for

the action attribute to function [103].

28

Lesson Learned: In HTML, elements like <input type=”text”> should always be

accompanied by a label. This will help users who use screen readers or have trouble

clicking on small fields [104].

To avoid unexpected behavior and potential malfunctions, it is important to design a

web page in a way to make common mistakes impossible. One such scenario would be

a user not entering a name, for example by prematurely submitting the form. This

scenario would result in an awkward greeting message. Avoiding this can be done

without any additionally code, in a simple but elegant way. The required attribute can

be given for input types such as text, url, email or password, only allowing forms to be

submitted if the field has been filled [105]. Therefore, when the page is visited for the

first time, the following form is displayed.

Figure 9: greeting.jsp in Web Browser on First Visit

On form submission, the page is reloaded, and the request will contain the parameter

username. For this situation, the IF loop at the end of the program is activated and a

cookie is created. The method getParameter is used to fetch the username previously

provided. The corresponding name for the parameter is declared by the form’s text input

field, using the name attribute.

Finally, the sendRedirect method of the response object is used to refresh the page. This

is accomplished by fetching the current page address with the getRequestURI method.

Figure 10: greeting.jsp in Web Browser Consecutive Visit

29

Since the request now contains a cookie called username, the form and cookie creation

are skipped, and the personalized greeting is displayed instead.

Like any other program, code is executed top to bottom. Therefore, on each visit, the

script uses three IF blocks to change the web page accordingly. If a username exists in

form of a cookie, a personalized greeting is displayed. If not, a form is generated asking

for a name. If the page is reloaded as the result of a form submission, the third IF block

creates a cookie.

By directing form submissions to the same page, they originate from and adding IF

loops, simple, self-contained web applications can be created on a single JSP.

4.7. Deleting Cookies, External Scripts /helloworld/greeting_ext.jsp

The next example page greeting_ext.jsp builds on the previous one, adding a logout

button to demonstrate how the previously stored name can be removed. At first glance,

the page looks almost identical, yet the structure has been improved. Depending on the

existence of a cookie containing a username, either a login form or a logout button is

displayed. The HTML code to generate those components is stored in a ::RESOURCE

directive, which can be found at the bottom of the script.

::RESOURCE logoutButton
<form>
 <input type="hidden" name="logoutButton" value="1">
 <input type="submit" value="Logout">
</form>
::END
Listing 14: greeting_ex.jsp Resource Logout Button

A ::RESOURCE contains an unlimited number of strings up until the ::END directive, which

are stored in a Stringtable. The name given to the resource serves as an index, in this

case, logoutButton, for which all the lines given are stored in an array. Afterwards the

entries are fetched with the environment symbol .RESOURCES and the given name

~logoutButton [106, p. 3]. This feature, which has been introduced in ooRexx 5.0 can

prove particularly useful for reusing static HTML building blocks [35, p. 23]. Another

benefit of this feature is the ability to effortlessly write HTML code without quotation

marks.

Additionally, this example highlights how an input of the type hidden is used to attach

data to a request. After the button is clicked, the request will include the parameter

logoutButton with the value 1 attached. Essentially, information about the user’s

previous actions is transmitted, enabling state without utilizing cookies.

With this newest addition, the web page has four possible behaviors, depending on the

information attached to the request. In case a cookie containing a username is present,

a personalized greeting is displayed, otherwise the user will be asked to input a name.

Should the request indicate that the user has just filled in the form or wishes to logout,

30

a cookie needs to be either created or deleted. While the first two behaviors are

programmed directly in the JSP, the latter two are implemented by an external script.

The following line of code adds the external script to the body of the document:

<s:script type="rexx" src="code/logout.rex" cacheSrc="false" />
Listing 15: greeting_ext.jsp Attribute src

The linked script logout.rex is stored in the directory helloworld\code. Like the addition

of a .css file, the path is relative. The script tag’s src attribute allows the inclusion of an

external file, containing code in the specified language. Additionally, the cacheSrc

attribute is set to false. If a web page is still under development, it is highly

recommended to set this attribute to false, preventing the file from being cached and

instead rereading it each time it is used. If the attribute is omitted, it is set to true by

default, necessitating a full server restart for changes to be reflected on the JSP [35, p.

11].

Additionally, multiple optional attributes for the script and expr tags are available,

mainly for the purpose of debugging. For example, throwException will halt the JSP

processing in case an error is encountered, while debug can be used to inject debug

information. By default, these attributes come set to false. Furthermore, the name

attribute allows the script to be given a name, while setting arguments to false disables

the implicit objects request, response and out to be submitted as arguments to the

script. Moreover, slot allows a developer to include a string, to be later fetched from

inside the invoked script, facilitating information flow between components [35, p. 11].

Finally, reflect creates a HashMap object, holding information about the taglib,

namespace and current attribute values [93].

Unique to the JSR-223 taglib is the compile attribute [35, p. 11]. By using a script in its

compiled form, performance can be dramatically improved, especially if the code

includes mathematic calculations. Compiling a script only makes sense if it is going to

be reused multiple times, otherwise the conversion and compilation process needs to

be considered [107].

The sample web application that comes with the tag libraries, demoRexx contains

examples showcasing these features. For a download link, please refer to: A.1. Software
Required to Begin

USE ARG request, response, out

IF request~getParameter("username") \= .nil THEN DO
 cookie = .bsf~new("jakarta.servlet.http.Cookie","username",-
 request~getParameter("username"))
 cookie~setMaxAge(60*60*24) -- the cookie will expire after 1 day
 response~addCookie(cookie)
 response~sendRedirect(request~getRequestURI()) -- refresh page
END

IF request~getParameter("logoutButton") \= .nil THEN DO
 removerCookie = .bsf~new("jakarta.servlet.http.Cookie","username","") --

31

overwrite existing cookie
 removerCookie~setMaxAge(0) --The cookie will expire immediately
 response~addCookie(removerCookie)
 response~sendRedirect(request~getRequestURI()) -- refresh page
END

::REQUIRES "BSF.CLS" -- make sure the Java bridge is there
Listing 16: logout.rex

The implicit objects request, response and out that are made available to a script, found

inside a JSP can be accessed by an external script in the same fashion. The first IF loop

of the script logout.rex contains the previously used code to store a username in a

cookie. Should the request contain any value for the parameter logoutButton, the second

IF loop is activated.

Since there is no specific method to delete cookies, instead a new cookie with the same

name and an empty value is created, with its maxAge set to zero [108]. By adding this

cookie to the response, the existing cookie is being replaced and the page gets refreshed

afterwards. The maxAge attribute then causes this cookie to be deleted after zero seconds

have passed. Since no cookie exists, the user is presented with the form to fill in a

username once again.

While the page would still function, should the tag referring to an external script be at

a different position, it has been placed at the beginning of the body on purpose. First,

placing it inside the document’s head might seem intuitive, but could easily result in it

being overlooked. Afterall, the first lines of a web application might consist of copy and

pasted building blocks, making modifications inconvenient. Since the page is executed

like any other program, from top to bottom, placing it at the end of the body might

result in unnecessary loading times. If any of the two IF loops found in the external file

are activated, the page is refreshed, rendering the creation of other parts useless.

5. Database Connection

More sophisticated web applications require access to a persistent data source and the

ability to freely add, delete and modify information. The separation of data and logic

offers high flexibility and the chance to improve and update components separately.

The ability to easily backup critical data is also a requirement for most operations. The

following chapter describes the components necessary to connect a web application to

a database.

5.1. Java Database Connectivity

In general, any database management system can be used, the only requirement being

the availability of the Java Database Connectivity (JDBC) API.

JDBC is used to connect to a database, issue queries and commands, and to handle result

sets. It can be implemented for both client-side and server-side connections. In a first

layer, the Java application communicates with the JDBC manager through the JDBC API.

32

Afterwards, in a second layer, the JDBC manager communicates with the database

driver [109].

The architecture for the system can be visualized as being three tiered. The user

remotely accesses the web application from a web browser. The web application

processes the user input and queries a database storing persistent data. The database

sends back the result of the query to the application, which in turn uses it to create a

web page for the user [110].

Each time a user connects to the database, resources are committed to creating,

maintaining, and closing the connection. To allow a high number of users simultaneous

and responsive access, the connections can be pooled and reused by means of

connection pooling. Instead of closing and reopening connections for every request, the

connections are cached and consecutively reused. For example, each PostgreSQL

connection can take up to 1.3 megabytes in memory, multiplied by the number of

connections, this number can easily skyrocket [111].

“It lets your database scale effectively as the data stored there and the number of clients

accessing it grow. Traffic is never constant, so pooling can better manage traffic peaks

without causing outages” [111].

Nonetheless, connection pooling can result in problems, if handled incorrectly. A so-

called database connection pool leak can occur if a web application does not explicitly

close objects related to the database connection, resulting in those resources being

unavailable and a failure of the data connection [112].

5.2. Java Naming and Directory Interface

In many cases, applications utilize different services, provided by different components.

For the given use case, a web application needs to find and cooperate with a database.

The Java Naming and Directory Interface (JNDI) allows for different components to find

each other.

Especially for distributed system, naming services are of great importance. Innovations

like powerful microprocessors, high-speed computer networks and the miniaturization

of computer systems have made distributed systems a possibility. Multiple autonomous

computing elements are working together, while appearing as a single coherent system

to the user [113, pp. 967-968]. For example, it might be plausible for the web application

and the database to be running on different machines.

Names are used to refer to an entity, which can be practically anything, for example a

host or a file. Those entities can then be used to perform operations on them. Each

entity has one or multiple access points, which are another, special kind of entity. Their

name is called an address. For example, a host, running a webserver is an entity whose

access point is a combination of IP address and port. Since addresses are usually not

readable in a human friendly way and might change over time, names are preferred [114].

33

Not only offers JNDI a single location for programs to find resources by name, but it also

provides a common interface to existing naming services. In addition to naming, JNDI

also offers directory services, which manage the storage and distribution of shared

information [115].

6. E-Commerce Example /treeshop

From this point onward, all examples will be based on a fictional company, selling trees

to be planted in the name of a buyer. A new web application has been created to

showcase their products, including the ability for users to login and access a shopping

cart. Furthermore, administrators can add new products and send promotional e-mails

to customers. All content will be dynamically created, according to entries in a database.

The complementary database’s data structure is kept minimalistic on purpose, only

containing three tables with basic data. One to hold the products, another for the

customers and a cart to connect them, realizing a many-to-many relationship. The

following entity-relationship model is representative for the necessary database entries:

Figure 11: Entity-Relationship Model Database shop

6.1. Required Setup Steps

Highly Recommended: All setup steps are summarized to be viewed and copied from

the URL: http://localhost:8080/helloworld/support

For the examples to function, the user is required to perform three configuration steps.

First, Tomcat’s configuration needs to be changed to enable the server to serve static

files, like pictures. Then, a database management system needs to be installed and set

up. Finally, two .jar files need to be copied to TOMCAT_HOME\lib.

6.1.1. Serving Static Content

Displaying pictures of available products to customers is an essential feature of any

online shop. In general, static files can be served directly by a web application using the

DefaultServlet. But, since web applications are often deployed from .war files, any

http://localhost:8080/helloworld/support

34

additions or changes would require redeployment [116]. Additionally, between

redeployments, files might get lost.

Since the shopping website is intended to keep functioning, even if new products are

added during deployment, this approach would not work. Later examples will introduce

a way to add new products, including pictures. These pictures are to be stored in a

directory outside of the web application, with the database only holding the path to

access them.

To enable Tomcat to serve them and any other static content like stylesheets or HTML

pages, from an external directory, some extra configuration steps are necessary.

The file server.xml can be found in TOMCAT_HOME/conf. The <host> element is found at

the bottom of the document and needs to be extended with the following line: <Context
docBase="C:\Program Files\Apache Software Foundation\Tomcat 10.0\files\"

path="/files" />

This change allows Tomcat to independently serve files from a specified path, to be

accessed directly, or to be used by web applications. The listing below shows the very

bottom of the file server.xml and can be used as reference.

 <Context docBase="C:\Program Files\Apache Software Foundation\Tomcat
10.0\files\" path="/files" />
 </Host>
 </Engine>
 </Service>
</Server>
Listing 17: server.xml Context Tag

Docbase is used to indicate the directory where the static files are to be stored. Generally,

the direct path to any folder on the machine running Tomcat can be given. TOMCAT_HOME

has been chosen, since it is assumed that all readers have a directory with the exact or

at least a similar path. For this purpose, the folder files needs to be created in

TOMCAT_HOME.

Furthermore, the path attribute is used to define the URL, that files will be made

accessible from; in this case: http://localhost:8080/files. For example, after the image

Maple.jpg has been placed in TOMCAT_HOME\files, it can be accessed from the URL:

http://localhost:8080/files/Maple.jpg [116].

The directory of the complementary archive: ZIP_ARCHIVE\supportfiles contains a

folder named files that has already been set up with six sample product pictures. For

the website to be properly displayed, it is necessary to copy the folder files to

TOMCAT_HOME and to restart Tomcat after the configuration has been concluded.

6.1.2. Database Configuration

For the web application to function, the database needs to hold three tables and allow

a specific user to access them. The appendix contains detailed instruction starting from

http://localhost:8080/files/Maple.jpg

35

downloading the database management system to adding six example products: D.
PostgreSQL

6.1.3. Tomcat’s Handling of .jar Files

To ensure smooth development of new web applications, copying bsf4ooRexx-v641-

20210205-bin.jar (or newer) and postgresql-42.2.18.jar (or newer) to TOMCAT_HOME\lib

is essential. Both files can be found in: ZIP_ARCHIVE\supportfiles. Additionally,

bsf4ooRexx-v641-20210205-bin.jar needs to be deleted from helloworld\WEB-INF\lib.

The rest of this section discusses why these steps are necessary.

By default, Tomcat creates four classloaders, while ignoring the CLASSPATH environment

that is used by standard Java environments. The loading of classes also slightly differs

from what is standard practice for Java, where classes are in a parent-child relationship

to each other [117].

In Tomcat’s default configuration, the classloader on top of the hierarchy is called

Bootstrap and loads classes provided by the Java Virtual Machine and the extensions

directory of the Java Runtime Environment. Next, the WebappX classloader makes classes

available to a specific web application. To accomplish this, it looks for classes located in

the directories WEBAPP\WEB-INF\lib and WEBAPP\WEB-INF\classes. Next the System

classloader loads classes required to initialize Tomcat as well as classes for logging and

the Apache Commons Daemon project. Only then, the Common classloader loads classes

from TOMCAT_HOME\lib [117]. To summarize, Tomcat first loads classes from WEBAPP\WEB-

INF and only then from TOMCAT_HOME\lib. Should the same class be present in both

locations it gets loaded from WEBAPP\WEB-INF.

Tomcat uses a separate classloader for each web application deployed. BSF4ooRexx

caches Java classes to increase performance. If those cached classes are used by a

classloader that did not originally load them, runtime errors might occur [35, p. 22].

Therefore, should multiple webapps be using BSF4ooRexx, the bsf4ooRexx-v641-

20210205-bin.jar (or newer) needs to be placed in the TOMCAT_HOME\lib directory instead

of WEBAPP\WEB-INF\lib. This approach allows a single instance of the BSF4ooRexx library

to be used for all web applications deployed on the web server. Otherwise, only the first

application using the library will function normally.

Since the focus of this thesis now switches from the helloworld web application to

treeshop, this step is made necessary. To prevent errors, it is also required to delete

bsf4ooRexx-v641-20210205-bin.jar from helloworld\WEB-INF\lib. It has originally been

included to provide an easier introduction.

Additionally, it is recommended to place all JDBC drivers in the TOMCAT_HOME\lib

directory. In case PostgreSQL is used, the driver is packaged in the file postgresql-

42.2.18.jar (or newer). This file can be found in ZIP_ARCHIVE/supportfiles;

alternatively, a download link can be found in: A.2. Software Required for Advanced

36

Examples. In contrast to other required .jar files, this file comes not included with the

treeshop web application. Therefore, it is essential for the reader to manually copy it.

This is due to a broken service provider mechanism, which enables drivers to announce

themselves without specific registration. Tomcat’s JRE Memory Leak Prevention

Listener fixes this issue by loading all drivers on server startup. If the .jar file is placed

inside the web application though, the listener will not be able to find the driver.

Instead, it will be loaded by the first web application requiring it. This approach can

lead to various errors and unexpected behavior [112].

6.2. Reading Data /treeshop/productlist.jsp

For database access to function, a web application’s WEBAPP\META-INF directory needs to

contain a file called context.xml. This context is used to specify additional configuration

information. While entering the data source solely in this file is sufficient, it is

recommended to also define the resource in the previously mentioned web.xml file,

mainly to document a web application’s resource requirements [118]. Since these files

are specific to the web application, they already come shipped with the .war file,

requiring no further action from the reader.

<Context>
<Resource name="jdbc/postgres" auth="Container"
 type="javax.sql.DataSource" driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://127.0.0.1:5432/shop"
 username="cattus" password="tomtom12" maxTotal="100" maxIdle="10"
 maxWaitMillis="-1" removeAbandonedOnBorrow="true"
removeAbandonedTimeout="60" />
</Context>
Listing 18: context.xml

First, the name to be used by JNDI and attributes relating to the driver are specified. The

url attribute is used to point to the database server’s IP address and a database name.

The database shop should be fully set up at this point. For complete instructions, please

refer to: D. PostgreSQL. Should the reader prefer a different database management

system the entries need to be adjusted accordingly.

It is also necessary to specify the username and password of a previously created user.

The web application will use the given credentials to login and perform operations on

the database. It is beneficial to create a unique user, since only the minimum rights

needed can be assigned and actions taken by the application therefore quickly be

identified. For this purpose, the user cattus has been previously created and assigned

the password tomtom12.

Lesson Learned: When working with databases, a proper configuration is important.

Should the given user not have the necessary permissions, nothing will work.

Additionally, often a problem’s source cannot be easily identified using Tomcat’s logs.

Should inexplicable problems occur, it is therefore recommended to apply the debug

method shown in the appendix: F. Debug Code Snippet

37

To mitigate any possible database connection pool leaks the two attributes

removeAbandonedOnBorrow and removeAbandonedTimeout are added. After a database

connection has been left idle for the specified amount of time, it is terminated

automatically [112].

To begin with, productlist.jsp gives a quick overview of the products currently listed

in the database.

<s:script type="rexx">
cntxt = .bsf~new("javax.naming.InitialContext")
ds = cntxt~lookup("java:/comp/env/jdbc/postgres")
con = ds~getConnection -- connect to database

stmt = con~createStatement
qry = "SELECT * FROM tree;"
rs = stmt~executeQuery(qry) -- retrieve all data from the table

SAY ''
DO WHILE rs~next -- iterate through all the rows stored in the table
 SAY ''rs~getstring("name")':' rs~getstring("price")'€' -- for each
row, fetch data
END
SAY ''

rs~close
stmt~close
con~close
</s:script>
Listing 19: productlist.jsp

First, the InitialContext class gets instantiated. Since this class is already included in

the Java Standard Edition, no additional class files are needed. A context represents a

set of bindings that all share the same naming convention. The created object gives

access to the most basic methods, like naming or looking up objects [119]. The use of

Tomcat further simplifies the configuration since it provides a JNDI InitialContext

implementation instance, that gets configured for each web application during its initial

deployment. Resources are placed in the JNDI namespace under java:comp/env [118].

Therefore, no further JNDI configuration is necessary and the database can be accessed

effortlessly, using the lookup method.

After the context has been configured, the getConnection method is used to establish a

connection. Once again, it is recommended to use the script’s first three lines as

standard building blocks for future web pages.

The executeQuery method of the Statement interface uses a SQL (Structured Query

Language) statement as input parameter and returns a ResultSet object, containing the

data returned from the query [120]. The ResultSet interface represent the data of the

query in form of a table. The data is navigated by a cursor, which is initially at a position

before the first row. The next method is used to advance the cursor along the table’s

rows. By default, the type is set as TYPE_FORWARD_ONLY, meaning that it is not possible to

38

go backwards and that the object is not sensitive to changes of the underlying data. The

ResultSet offers a multitude of methods to access any desired data, for example the

getString Method can be used to retrieve data from a column by name [121]. A DO loop

iterates through entries of the result set, each representing a row in the output of the

database query.

This example’s query resulted in a row for each tree that is sold. Its name and price are

fetched and displayed as part of a list. Afterwards, the cursor of the ResultSet is

advanced to the next row, until none are left. Since the list’s entries are dynamically

created, should any new entries be added in the future, the page will automatically

adapt.

For good practice and to avoid errors, the ResultSet, Connection, Statement and the later

discussed preparedStatement should always be explicitly closed. Especially with

connection pools, it is uncertain at what time statements and preparedStatements are

otherwise closed [122].

Lesson Learned: If connections are not properly closed, the web page will break.

Figure 12: productlist.jsp in Web Browser

6.3. Writing Data, Security Aspects /treeshop/signup.jsp

Most dynamic web applications not only make data available, but also allow the user to

interact and provide new data. As a minimum, almost all modern websites allow users

to create a personal account.

While the writing of new data is relatively straightforward and quite like the previously

shown solution, the storage of user provided data requires the consideration of

additional security aspects. Not only does the user’s data need to be stored safely, but

the web application itself needs to be protected from unwanted manipulation by ill-

intentioned actors.

39

The page signup.jsp starts like the previously shown pages and continues to display a

form for a user to enter an e-mail address as username and a password, which needs to

be repeated. Once again, all three fields have been set as required, not allowing the user

to proceed without filling them first. This is particularly important since blank form

fields might result in erroneous database entries.

Additionally, a checkbox can be ticket, for users who wish to receive promotional e-

mails. The automatic generation of said e-mails will be implemented in a later example.

At this point, the user’s consent is requested to flag the newly created account

accordingly. Even though, according to the European Union’s General Data Protection

Regulation, direct marketing e-mails about products or services can be sent to existing

customers, any other promotional e-mails require prior consent [123]. Generally, it is

good practice to only send e-mails to users who explicitly wish to receive them, not only

to avoid complaints, but also to build a positive brand image. Consent should be given

in the form of a clear, affirmative action; therefore, the checkbox needs to be explicitly

clicked on and the corresponding label is not formulated ambiguously [124].

After the form data has been transmitted to the web server, the external script

createuser.rex is activated and only progresses if both passwords entered match and

the e-mail address has not previously been registered.

6.3.1. The Methods GET and POST

The first important difference can be observed in the form using the post method,

instead of the default, get.

post signals the webserver that data is being sent and attaches it to the body of the

message. In contrast, the data transmitted by a get request is appended to the URL and

therefore easily visible. Not only might it be concerning for the user to see potentially

sensitive data such as passwords in plain text, get requests are usually cached by web

browsers and might additionally appear in their history. In conclusion, it is good

practice to default to post, especially when dealing with forms of this nature [125].

6.3.2. Securely Storing Passwords

It is imperative not to store users’ passwords as plain text. Vulnerabilities previously

unknown or other security risks might result in a compromised database. Passwords are

especially sensitive since users might use the same password for multiple websites [126].

The suggested solution to safe password storage is the application of a cryptographic

hash function. It takes an input, the preimage, and generates a unique cryptographic

fingerprint, called digest, for it. Each fingerprint is unique to an input and irreversible,

making it impossible to backtrack to the original input [127].

“A hash function is a function that deterministically maps an arbitrarily large input space

into a fixed output space” [127].

40

A good hash function needs to be deterministic and therefore always create the same

digest for a given preimage. It should also create a fixed output size for any input.

Thirdly, it should be uniform and therefore generate outputs that are evenly spread

across all possible values. In case of a cryptographic hash function, it additionally should

be one-way and therefore invertible. To conclude, the only way possible to get access to

the preimage is by trying out all possible combinations in a so-called brute force attack

[127].

Since some users might use similar or identical passwords, that might otherwise result

in the same fingerprint, the concept of salting is introduced. Before the cryptographic

hash function is performed, a unique, randomly created string is attached to the user’s

password. Otherwise, an attacker in possession of all the stored hash values, who

managed to guess one of them correctly, might have access to all the other user’s

accounts that use the same password [128].

The Open Web Application Security Project (OWASP) suggests to strictly use third

party libraries to implement the necessary algorithms. While Java itself offers

cryptographic functionality and the creation of a message digest, there is too much

room for error when creating a custom solution. For example, the widely used SHA-256

algorithm is simply too fast. OWASP recommends the Bcrypt hashing algorithm as the

default choice [128]. A fast algorithm greatly reduces the time it takes to brute force a

password.

The Blowfish encryption algorithm, developed by Provos and Mazières, allows users to

increase the verification time, by modifying the cost value. This allows adjustment to

increasing processor speeds and heightened security. It is based on their Eksblowfish

Algorithm and offers a possible salt space so large, that it makes the precomputation of

hash values based on common passwords incredibly difficult, since the required storage

would be enormous [129, pp. 6-11]. The goal should be to find a balance between

performance impact and security, tailored to the CPU speeds of the current day and age.

It is also worthy to note, that should the algorithm be too taxing, an attacker might be

able to perform a denial-of-service attack on the webserver [128].

Conveniently, the implementation of Bcrypt not only makes the process of password

storage much more secure, but also extremely simple. Damien Miller offers the

functionality of Bcrypt in form of a Java library called jBcrypt, which comes included

with the treeshop web application.

bcrypt = .bsf~new("org.mindrot.jbcrypt.BCrypt")
fingerprint = bcrypt~hashpw(pw1,bcrypt~gensalt(12)) -- create a hash value that is
safe to store
Listing 20: createuser.rex jBcrypt hashpw

The method hashpw takes the user’s input and a salt value to output the hash value in

string format. Since the library also offers a secure method to create the salt value, the

method gensalt is used. Most curiously, this method takes the previously discussed

41

work factor as input. Even though jBcrypt-0.4 uses a work factor of 10 as default,

OWASP recommends raising it to 12 [128].

6.3.3. SQL Injection

Before showcasing how the username and hashed password are stored, injection flaws

need to be discussed. OWASP identifies injection as the number one web application

security risk. A hostile individual might send untrusted data as part of a command or a

query, to trick the interpreter to execute unintended commands or accessing data

without authorization [130].

Su and Wasserman find web applications being susceptible to a large class of malicious

attacks know as command injection attacks: “This is because queries are constructed

dynamically in an ad hoc manner through low-level string manipulations. This is ad hoc

because databases interpret query strings as structured, meaningful commands, while

web applications often view query strings simply as unstructured sequences of characters”

[110, p. 1].

To give an easy example, on an unprotected database anybody could enter user; DROP

TABLE customer; in a field requesting a username. This could result in the following, or

similar SQL query, should the web application forward the user input directly to the

database: SELECT * FROM customer WHERE username = user; DROP TABLE customer; This

could lead to destroyed databases and data exposure [131].

There is a quite simple solution to this problem, instead of the previously used statement

interface, the extended version PreparedStatement can be used. When a SQL query is

executed, it first gets parsed and compiled. Afterwards, the data acquisition path is

planned and optimized. In the final step the query is executed, and the result gets

returned. In comparison to the normal Statement, which goes through the four steps

when the query is executed, PreparedStatement performs the first three steps when the

statement is created and only performs the last step during execution. Not only does

this increase the speed of database access and allows other features like batch

processing, but all special characters are automatically escaped [132]. Escaping special

characters results in them being treated as regular parts of a string, removing any ability

to influence the essence of a query [133]. The above-mentioned exploit is therefore not

possible since the user input is strictly treated as a normal string with no power to

change the database query. In conclusion, when dealing with database queries based on

user inputs, the minimum-security measure suggested is using the PreparedStatement

interface.

prepstmt = con~prepareStatement("INSERT INTO customer (username, password) VALUES
(?,?)")
prepstmt~setString(1,username)
prepstmt~setString(2,fingerprint)
prepstmt~executeUpdate -- add new user to database
prepstmt~close
Listing 21: createuser.rex prepareStatement

42

The parts of the query where user inputs are used are omitted and instead filled with

question marks. In the next lines the setString method is used to replace the question

marks with the values the user has provided.

6.3.4. Hypertext Transfer Protocol Secure

Above all, the most important security measure necessary to facilitate a secure web

application is the use of the Hypertext Transfer Protocol Secure (HTTPS) in place of

regular HTTP. The Transport Layer Security (TLS) protocol, which was formerly known

as Secure Sockets Layer (SSL) protocol, is used to encrypt data traffic by means of an

asymmetric public key infrastructure. Otherwise, both protocols work the same. In

contrast, all information sent by the regular HTTP protocol is sent as plaintext and

therefore extremely vulnerable [134].

Tomcat supports the use of SSL/TLS but requires additional configuration steps [135].

To prove one’s identity, it is necessary to obtain a certificate for a domain from a

certificate authority. Since this work focusses on the development of web applications

on a Tomcat server, running on a local network, the HTTPS protocol is not further

discussed. Should the reader decide to make a web application accessible over the

internet, the use of HTTPS as an absolute necessity.

All the described security measures are suggested as a bare minimum, with

encouragement to invest additional time in research.

6.4. Creating an Online Shop, Sessions /treeshop/index.jsp

After establishing how database access works, now the focus shifts to the main page of

the treeshop web application.

The main difference compared to previous examples is the usage of sessions. While

sessions utilize cookie technology, they are more advanced and require the server to

store data for each user. In contrast to cookies, the user only stores and transmits a

session id, which the server uses to access data corresponding to it. For web

development, using sessions is quite like using cookies, the only difference being slightly

different methods used.

Since the data is stored by the server and not transmitted, the usage of sessions is more

secure. Compared to cookies, which have a maximum size of 4 kilobytes, sessions can

hold up to 128 megabytes each. To summarize, sessions and cookies both store user

related data, the first on the web server, the latter on the user’s web browser [136].

Tomcat makes the implementation of sessions very easy; they are automatically created

by setting the session attribute of the page directive to true. The HttpSession interface

is used to create a session id for each user and to store it in a cookie called JSESSIONID,

which gets sent with each request. If cookies are disabled, the URL is rewritten instead

[137]. Consecutively, objects related to a session id can be stored and accessed.

43

Additionally, general information about the session is retrievable. For example, the time

of session creation can be requested with the method getCreationTime [138]. The figure

below shows the JSESSIONID cookie, which is created upon first visiting a web page of

the treeshop web application.

Figure 13: JSESSIONID Cookie in Web Browser

Since the default timeout value for Tomcat sessions is only thirty minutes, the web.xml

file needs to be adjusted to extend this duration. By changing the session-timeout

attribute of the session-config keyword, the lifetime can be easily extended [139]. Once

again, the web.xml specific to the treeshop web application comes already edited,

therefore the reader is not required to change it. The value has been set to 24 times 60

minutes, as a result a guest’s data will be deleted after one day has passed.

Throughout this example, a user’s login status is verified by means of a session. For this

purpose, the use of a session instead of a cookie is highly beneficial for security. Were

the user information directly transmitted with a cookie, a third party could easily

replicate a cookie with a particular user’s id to gain access. If a session token is

transmitted instead, a unique value is generated each time the user logs in.

Furthermore, sessions expire after a shorter time span has passed [140].

The main page of treeshop is created by the file index.jsp, two ooRexx scripts are used

to build its components:

Figure 14: treeshop Main Page in Web Browser

44

6.4.1. mainpage.rex

The body of the shopping website’s main page is created by the external script

mainpage.rex. After the implicit objects, request, response and out are fetched, the

method request~getSession is used to get access to data related to the session.

To begin with, the contents of the main page are built by querying all entries for the

table tree, which contains all available products and information related to them. The

routine createProduct uses this data to create a box for each product, displaying related

information and enabling the user to put a specified quantity into the shopping cart. To

enable the web page to adapt to any given number of products, these boxes are

organized in a grid layout. The necessary styling parameters have been defined in the

linked stylesheet.

::ROUTINE createProduct
PARSE ARG name, picture, price, height, tree_id

SAY '<div class="grid-item">'
 SAY '<h2>'name'</h2>'
 SAY ''
 SAY '<p>Price:'price'€</p>'
 SAY '<p>Height:'height'm</p>'

 SAY '<form name="choice" method="post">'
 SAY '<input type="hidden" name="choice" value="'tree_id'">'
 SAY '<select name="quantity">'
 SAY '<option value="1">1</option>'
 SAY '<option value="2">2</option>'
 SAY '<option value="3">3</option>'
 SAY '<option value="4">4</option>'
 SAY '<option value="5">5</option>'
 SAY '</select>'
 SAY '<input type="submit" value="Buy">'
 SAY '</form>'
SAY '</div>'
Listing 22: mainpage.rex Routine createProduct

The attribute src of the tag specifies the URL of an image. The database entries

for the images all look the same way: /files/IMAGENAME.jpg. The slash at the beginning

of the path indicates a relative URL, referring to the current page. For example, the web

page loads /files/Maple.jpg from: http://localhost:8080/files/Maple.jpg. The main

advantage of this approach is, should the domain change, the web application will still

work as intended [141]. Another benefit is the opportunity to easily modify the page. In

case the pictures need to be loaded from another source, the only thing that needs to

change is the URL stored in the database.

The script contains the necessary code for two approaches to handling the page’s

shopping cart. Depending on the session containing the attributed logged, the quantity

chosen for a given product is processed differently.

http://localhost:8080/files/Maple.jpg

45

A guest user’s shopping cart is stored in a simple Java array, consisting of integers for

both the index and the corresponding element. The index refers to a product id,

referring to an item in the database, while the element specifies the quantity chosen.

The array is stored in the session, allowing it to potentially scale in size. Special attention

is given to products already present in the cart, instead of overwriting the quantity, it

needs to be updated instead.

IF session~getAttribute("cart") == .nil THEN DO
 cartArray = .bsf~bsf.createJavaArray("java.lang.String",100) -- create a new
cart if it doesn't exist
 session~setAttribute("cart",cartArray)
END

cart = session~getAttribute("cart")
IF cart[choice] == .nil THEN
 cart[choice] = quantity -- add a new product to the cart
ELSE
 cart[choice] = cart[choice] + quantity -- update the quantity of an existing
product
Listing 23: mainpage.rex cartArray

Should the user be logged in, her shopping cart is stored in the database instead, using

a preparedStatement to add entries.

qry = "INSERT INTO cart (customer_id, tree_id, quantity) VALUES (?,?,?) ON
CONFLICT (tree_id,customer_id) DO UPDATE SET quantity = ?;"
prepstmt = con~prepareStatement(qry)
prepstmt~setInt(1,session~getAttribute("logged"))
prepstmt~setInt(2,choice)
prepstmt~setInt(3,quantity)
prepstmt~setInt(4,quantity + cartquantity)
prepstmt~executeUpdate -- update shopping cart
prepstmt~close
Listing 24: mainpage.rex Edit Table cart

When looking at the query, the user’s choice of products gets inserted in the table cart

as a combination of customer_id and tree_id, realizing the many-to-many relationship,

in addition to the quantity chosen. Since each combination of values is defined as

unique in the database, should a query attempt to duplicate it, an exception will occur.

By using ON CONFLICT, this situation is resolved by updating the values, combining the

new quantity chosen with the one previously stored.

6.4.2. userheader.rex

This script, creating the header for multiple web pages, demonstrates how external

scripts can be conveniently reused. It enhances the header with the current number of

products in the shopping cart, as well as multiple buttons and a personalized greeting.

These elements adapt dynamically, according to the user’s login status.

46

6.5. Creating a Shopping Cart /treeshop/shoppingcart.jsp

A shopping cart button, found in the header, redirects to the page shoppingcart.jsp. It

allows to review all items stored in the cart, as well as adding, removing, or fully deleting

products. The main functionality is held in the script shoppingcart.rex.

Figure 15: shoppingcart.jsp in Web Browser

Just like the main page, the script is split into two parts, which get executed based on

the user’s logins status.

cart = session~getAttribute("cart")
totalprice = 0
cartsupp = cart~supplier
SAY '<div id="cartcontainer">'
DO WHILE cartsupp~available -- iterate over cart array
 qry = "SELECT * FROM tree WHERE tree_id="cartsupp~index";"
 stmt = con~createStatement
 rs = stmt~executeQuery(qry) -- get data for product in cart

 DO WHILE rs~next
 totalprice += rs~getString("price") * cartsupp~item
 CALL createProduct rs~getString("name"), rs~getString("picture"),
rs~getString("height"), rs~getString("price"), cartsupp~item,
rs~getString("price"), cartsupp~index
 END
 rs~close
 stmt~close
 cartsupp~next
END
SAY '</div>'
con~close

CALL printtotal totalprice
Listing 25: shoppingcart.rex Create Guest Cart

47

A supplier is created if an array, representing a guest’s shopping cart, is stored in the

session. Each iteration yields cartsupp~index, an index referring to a product id and

cartsupp~item, its corresponding quantity. The index is used to retrieve product

information from the database. Additionally, the total price of all items gets updated

during each iteration, to be printed together with a checkout button at the bottom of

the page. This is accomplished by the routine printtotal.

SAY '<form method="post">'
 SAY '<input type="hidden" name="tree_id" value="'treeid'">'
 SAY '<input type="hidden" name="qty" value="'quantity'">'
 SAY '<input type="submit" name="actn" value="+">'
 SAY '<input type="submit" name="actn" value="-">'
 SAY '<input type="submit" name="actn" value="del">'
SAY '</form>'
Listing 26: shoppingcart.rex Routine createProduct Buttons

The routine createProduct uses this information to create a box for each product in the

shopping cart, similar to the approach chosen for the main page. Additionally, the

routine creates three buttons, +, -, and delete, to manipulate the cart’s contents. The

listing above shows the code used to create them. When one of the buttons is clicked,

the request not only contains the desired action, but also the corresponding product id

and its current quantity. This information is added by a hidden attribute, which needs

to be dynamically adjusted for each product.

IF request~getParameter("actn") == "-" THEN DO
 id = request~getParameter("tree_id")
 qty = request~getParameter("qty") - 1
 cart[id] = qty -- reduce quantity by 1
 IF qty <= 0 THEN cart[id] = .nil -- delete product from cart if quantity
goes below 1
 response~sendRedirect(request~getRequestURI) -- refresh page
END
Listing 27: shoppingcart.rex Minus Button

Three IF blocks correspond to the generated buttons and get activated once they are

clicked. The minus button is shown, since it necessitates to consider a situation, where

the quantity reaches zero. In this case, the index value is set to .nil, indicating the

product to be nonexistent. The same logic applies to the delete button where the value

is set to .nil straight away. The plus button works in the same fashion, replacing

subtraction with addition when it comes to modifying the quantity.

Should the user be logged in, the operations are similar in concept, except for the Java

array being displaced by the database.

6.6. Logging In /treeshop/login.jsp

Previously shown pages adapt according to a user’s login status. To make this possible,

the page login.jsp takes a user’s credentials and checks their validity. On success, the

login status is stored in the session. Once again, the form input is processed by an

external script called login.rex.

48

The script first uses a database query to determine the existence of the given username.

If this is not the case, a label is used to jump to the same block of code that is used to

display a message for a wrongly entered password. Thus, it is not made obvious whether

the entered password is incorrect, or the e-mail address is nonexistent in the database.

Otherwise, a third party would easily be able to determine if the owner of an e-mail

address is a customer or not.

If the user exists, jBcrypt’s checkpw method uses the entered password and the hash

value stored in the user’s database entry for authentication. On success, TRUE is returned

and the attribute logged is added to the session, using the method setAttribute. By

setting the attribute value to the corresponding user id, a link to the database entry can

be established from this point onwards.

bcrypt = .bsf~new("org.mindrot.jbcrypt.BCrypt")
IF bcrypt~checkpw(pw, ha) THEN DO -- only proceeds if password is correct
 session~setAttribute("logged",id) -- store login status in session
Listing 28: login.rex jBcrypt checkpw

It is a common scenario for a user to browse and add products to the cart as a guest.

Only on checkout, the user logs in, making it important that the shopping cart is not

lost during the process. Therefore, on login, all the products stored in the guest cart

need to be moved over to the database. Additionally, should any product be already

present in the database cart, instead of overwriting the quantity, it needs to be updated.

Like the way the shopping cart is displayed, a supplier is used to accomplish this. It is

used to iterate over the Java array, storing each item in the database. After copying all

its contents, the cart is deleted.

6.7. Logging Out, Invalidating a Session /treeshop/logout.jsp

Giving users the ability to log out is essential. To achieve this, the page logout.jsp is

being made accessible by logout buttons throughout the website. Once the page is

accessed, the method invalidate is used to clear the session and all its associated

parameters. Given its brief nature, this functionality is directly implemented on the JSP.

session~invalidate -- clear session
Listing 29: logout.jsp Invalidate Session

6.8. Concluding the Purchase Process /treeshop/checkout.jsp

The final page checkout.jsp simply removes all currently stored entries for a specified

user from the cart table. The aim is to simulate a concluded purchase process. Should

a guest attempt to checkout, a prompt to login will be displayed. In a real-world use

case, the user would be asked for payment and shipping details instead.

7. Advanced Examples /treeshop/admin

This is a good moment to think about design decisions. For most examples until now,

all the code is stored either directly in the JSP or an external ooRexx script. While this

49

approach has advantages, like all the code being in a single place and the ability to

conveniently update it, the countless IF blocks complicate programs unnecessarily and

result in redundantly executed lines of code. It might be beneficial to separate request

specific actions from the generation of content. This would also result in increased

efficiency, since less unnecessary elements need to be processed and loaded.

Nonetheless, for a beginner, the shown approach is a fantastic way to quickly develop

functional web pages. The conclusory web examples found in the subfolder admin of the

treeshop web application will be used to show a different approach.

While the contents of WEBAPP\WEB-INF are shared across all directories, each subdirectory

can be assigned its own resources and a unique welcome page:

http://localhost:8080/treeshop/admin. The folder structure directly influences the path

to access a web page. Also, special attention needs to be given to shared resources like

stylesheets.

<link rel="stylesheet" href="../css/treeshop.css">
Listing 30: Link Resource in Subdirectory

The two leading dots indicate for the resource to be accessed from its parent directory.

Therefore, the linked folder css is not found in the subdirectory treeshop\admin, but one

level up. This enables pages found in subfolders to use the same stylesheet as pages

directly placed in WEBAPP\.

7.1. Uploading Files /treeshop/admin/addproducts.html

Since entering data directly into the database can be time consuming and complicated,

the page addproducts.html offers the functionality to add new products to be sold on the

main shop page. Meanwhile, images are an essential part of modern web pages. This

example facilitates their upload, to be seamlessly named, stored, and integrated. Since

all of treeshop’s pages are dynamically created, newly added products will appear

momentarily.

The page addproducts.html displays a set of fields corresponding to the database’s

columns. To enable uploading files, a form needs to be given the attribute enctype with

the value multipart/form-data.

Lesson Learned: Should a program perform mathematical operations on user inputs, it

is essential to only allow numbers to be filled in the corresponding form field. This can

be achieved with input type="number".

<form action="uploader" method="post" enctype="multipart/form-data" id="mailform">
Listing 31: addproducts.html Upload Form

An enctype defines the document’s encoding type, with multipart/form-data allowing

file uploads. Usually, it is not necessary to specify a form’s encoding, with file uploads

being the exception [142].

http://localhost:8080/treeshop/admin/

50

In contrast to previous examples, no external .rex script is used to process the data,

instead the form points to the servlet uploader. For a JSP to be used this way, the web.xml

file specific to the web application needs to be edited, as can be seen in the listing below.

Should the reader have copied the nutshell examples, no further modifications are

necessary.

<servlet>
 <servlet-name>uploader</servlet-name>
 <jsp-file>/admin/code/uploader.jsp</jsp-file>
 <multipart-config>
 <location>C:\Program Files\Apache Software Foundation\Tomcat
10.0\files\</location>
 <max-file-size>10000000</max-file-size>
 <max-request-size>10000000</max-request-size>
 </multipart-config>
</servlet>

<servlet-mapping>
 <servlet-name>uploader</servlet-name>
 <url-pattern>/admin/uploader</url-pattern>
</servlet-mapping>
Listing 32: web.xml Uploader Servlet Configuration

The file uploader.jsp is configured as a servlet named uploader. This enables further

configuration, otherwise only available to Java Servlets. For example, the load order,

initialization attributes and security roles can be configured [143]. Since the JSPs content

is written in the ooRexx language, a fully functional Rexx Servlet has been created.

Additionally, the servlet’s MultipartConfig, which controls file uploads, can be easily

modified.

To begin with the location for temporary files is specified. The proper location and

filename for the file will be chosen by the script at processing time. A temporary location

is necessary since the file is first written as a temporary file and only afterwards

processed to be stored permanently [144]. The maxRequestSize and maxFileSize Elements

are used to set a limit for the size of both the file and the request, in bytes [145]. Here

the maximum size has been set to the equal of 10 megabytes.

Additionally, the servlet is registered in the servlet-mapping. This map is used by the

container to resolve requests [143]. Henceforth, the servlet is accessible from the path:

http://localhost:8080/treeshop/admin/uploader. This configuration allows the JSP to

directly process the request generated by the form found on the page addproducts.html.

Since the request only gets sent to the servlet if needed, no more IF loops monitoring

request parameters are required.

7.1.1. Upload Servlet /treeshop/admin/upload

The servlet functions like any other JSP, the only difference being the omission of any

HTML start tags; after the JSP declarations, the script content immediately starts. Since

all form fields have been set as required, the requests will always contain all necessary

http://localhost:8080/treeshop/admin/uploader

51

form fields, as well as an uploaded file. The field values can be easily accessed like in any

other form, using the getParameter method. The script first checks the database for any

entries with an identical name. Should an entry with the same name exist, a warning is

displayed to the user. Whenever content needs to be displayed, the resources leadin

and leadout are used to create a proper HTML page.

Before a new product can be added to the database, the uploaded file needs to be

processed.

filename = name || ".jpg"
location = "/files/" || filename
request~getPart("file")~write(filename) -- permanently write file to temporary
location
Listing 33: uploader.jsp File Processing

The product’s name has been given in the form and will be used together with the .jpg

file extension to name the file. The file is placed in the files folder, which has been

defined as a source for static content in: 6.1.1. Serving Static Content. The string

location gets stored in the database and is later used by the img tag to access the picture

from its relative path.

Lesson Learned: Before new files are uploaded, the designated folder to hold them

should already have been created. Otherwise, exceptions might occur.

The getPart method is used to access a specific part from the request. The file has been

given the name file in the form, which is used to fetch it. At this point, the file is stored

in the temporary location, defined in the MultiPartConfig found in the web.xml file. The

method write is used to write the file to the disk, using the previously given filename.

Since no specific path is given, it gets permanently stored in the temporary location

[146].

After writing the file to the disc, a confirmation page is generated for the user. The

resources leadin and leadout are used again, to create a proper HTML page. The HTML

conventions should always be followed, by using resources, this can easily be

accomplished.

Should multiple files be contained in the request, the method getParts can be used to

get a collection of all Parts, to be iterated over [147].

After all fields are entered and an image is uploaded, the newly created product will

immediately be visible on all the application’s web pages.

7.2. Sending E-Mails /treeshop/admin/sendnewsletter.jsp

The final example page demonstrates how a web application can be used to send e-

mails. Since the database already includes product details and the customers’ e-mail

addresses, all information necessary to create a newsletter, promoting currently

available products, exists.

52

To begin with, the script found in the body of sendnewsletter.jsp creates a list of all

products in the database and allows them to be selected by a checkbox. The JSP

mailer.jsp is then used to create and send e-mail messages. Therefore, just like in the

previous example, a servlet called mailer needs to be registered in the web.xml file.

For this web application to function the .jar files containing Jakarta Mail and Jakarta

Activation are required. The demo web application already includes both. Jakarta Mail

was previously known as JavaMail and empowers Java applications to implement e-mail

functionality, such as sending and reading e-mail messages [150]. Jakarta Mail depends

on Jakarta Activation to function. According to the Eclipse Foundation, it is used to:

“determine the type of an arbitrary piece of data; encapsulate access to it; discover the

operations available on it; and instantiate the appropriate bean to perform the

operation(s)” [151].

Lesson Learned: The correct file jakarta.activation-2.0.0.jar should not be mixed up
with jakarta.activation-api-2.0.0.jar. Furthermore, version 2.0.0 of Jakarta Mail
requires Jakarta Activation to be using the Jakarta namespace, therefore Version 2.0.0
(or newer) should be used for both.

SAY '<form action="mailer" method="post" id="emailchoice">'
 DO WHILE rs~next
 SAY '
'
 SAY '<label for="choice">'rs~getstring("name")'</label>'
 SAY '<input type="checkbox" name="choice"
value="'rs~getstring("name")'">'
 END
 rs~close
 stmt~close
 con~close
 SAY '<input type="submit" value="Send Newsletter to 'count' Receivers">'
SAY '</form>'
Listing 34: sendnewsletter.jsp Create Checkbox

The page sendnewsletter.jsp generates a form with a checkbox for each product in the

database. The listing above demonstrates how this checkbox is created. All the form’s

checkboxes have the name choice and the corresponding product id as value. The page

also uses a database query to count the total number of recipients, to dynamically

display them inside the submit button.

53

Figure 16: sendnewsletter.jsp in Web Browser

7.2.1. E-Mail Servlet /treeshop/admin/mailer

After the form has been submitted, the servlet mailer.jsp first makes sure, that at least

one product has been selected, preventing an empty e-mail from being sent. Since

choice most likely has multiple values, instead of getParameter the method

getParameterValues is needed. It will fetch values related to all checkboxes ticked and

stores them in an iterable string array [152].

choices = request~getParameterValues("choice")
choice = ""
DO productname OVER choices -- append all product names to a string
 choice = choice || "'" || productname || "'" || ","
END
choice = choice~delStr(choice~length) -- remove the string's last comma
Listing 35: mailer.jsp Choicearray

To determine the products to be mentioned in the e-mail, first an empty string is

defined as the variable choice. The previously fetched string array is iterated over, to

create a list of product names, which is usable in a database query. For each iteration, a

new product is added until none are left. The string choice, which comes empty for the

first iteration, is gradually extended with product names, enclosed in single quotation

marks and a comma. On conclusion, the last comma is removed to ensure a functioning

database query. This is achieved by the delStr Method.

Delete String removes the character at the given position. By giving the length of the

whole string, the last character is deleted [101].

Concerning the receivers, when a user signs up for the web page, an e-mail address is

given, and newsletter preferences are stated. Therefore, a list of receivers can be easily

generated. It might be a mistake to simply set all the shop’s customers as receivers for a

single e-mail. Afterall, each of them would see a whole list of other customers in the

54

recipient field and personalization would be rendered impossible. Therefore, the script

sends a separate e-mail to each customer.

stmt1 = con~createStatement
qry1 = "SELECT * FROM customer WHERE receives_mail = 't';"
rs1 = stmt1~executeQuery(qry1) -- select all customers who wish to receive the
newsletter

emailcount = 0
DO WHILE rs1~next -- create an e-mail for each customer and send it
Listing 36: mailer.jsp Select Receivers

In consequence, the database is queried for all customer entries that are signed up for

the mailing list. These entries have the Boolean column receives_mail set to TRUE. The

variable mailcount meanwhile keeps track of the number of e-mails sent. The created

resultSet then yields an e-mail address during each iteration, which is used to create

and send a personal e-mail. Since this first query will contain another, the variables stmt,

qry and rs have been numbered accordingly. Should the same variables be used for both,

they might overwrite each other and cause problems.

props = .bsf~new("java.util.Properties")
session = bsf.loadclass("jakarta.mail.Session")~getInstance(props)
msg = .bsf~new("jakarta.mail.internet.MimeMessage",session)

sender = .bsf~new("jakarta.mail.internet.InternetAddress",
"newsletter@treeshop.com")
msg~setFrom(sender)

receiveraddress = rs1~getString("username")
receiver = .bsf~new("jakarta.mail.internet.InternetAddress",receiveraddress)
type = bsf.loadclass("jakarta.mail.Message$RecipientType")
msg~addRecipient(type~to,receiver)

msg~setSubject("Here Are the Latest Products from treeshop!")
Listing 37: mailer.jsp Create Message

To begin with, a Jakarta Mail session needs to be created. To instantiate the

corresponding class, a set of Java properties is necessary. The class java.util.Properties

creates a persistent set of properties where a key corresponds to a property, both of

which are strings [153]. For the approach taken, no special properties are necessary, they

need to be defined either way, since a set of properties is needed to create a mail session

instance.

Afterwards, a jakarta.mail.Session instance is created. It is used as a bridge to the

Jakarta Mail API, handling configuration and authentication. Using this session, the

message to be sent is created; more specifically, the subclass

jakarta.mail.internet.MimeMessage, which allows the use of different mime-types and

headers [154].

Now, sender and receiver are added to the newly created message; these addresses need

to be defined using the jakarta.mail.internet.InternetAddress class. While defining

the sender is straightforward, the receiver additionally requires the recipient type to be

55

set by the class jakarta.mail.Message$RecipientType. Afterall, the receiver can take the

form of TO, CC or BCC [155]. For this example, a simple TO receiver is used, the address

being made available by the database. In case the exact same message needs to be sent

to multiple receivers, BCC can be used to declare them without disclosing a full list of

recipients. Besides, the subject is added.

The last piece missing is the message’s body. To create it, a second database query is

nested into the first.

stmt2 = con~createStatement
qry2 = "SELECT * FROM tree WHERE name in ("choice");"
rs2 = stmt2~executeQuery(qry2) -- get data for all products that have been
selected

i = 0
DO WHILE rs2~next -- create html code for each product
 line1 = '<div style="float: left; margin-right: 10px;">'
 line2 = '<h2>'rs2~getstring("name")'</h2>'
 line3 = '<img src="http://localhost:8080' || rs2~getString("picture")'"
height="120" width="150" />'
 line4 = '<p>Price: 'rs2~getstring("price")' Euro</p>'
 line5 = '<p>Height:' rs2~getstring("height")' Meters</p>'
 line6 = '</div>'

 i += 1
 product.i = line1 || line2 || line3 || line4 || line5 || line6 -- append all
lines of html code
END
rs2~close
stmt2~close

text = '<html><head><meta charset="UTF-8" /></head><header>' -- create proper
html leadin
text = text || '<h1>Vist
treeshop</h1>'
text = text || '<h4><a
href="http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=' ||
receiveraddress'">Click Here to Unsubscribe</h4>'

DO count = 1 TO i -- append all products
 text = text || product.count
END

text = text || '</body></html>' -- append proper html leadout

msg~setContent(text,"text/html")
Listing 38: mailer.jsp Create Message Content

The main problem of this approach is that the whole message body needs to be

contained in a single string. For this reason, and to easy formatting and the insertion of

pictures, the message is created by HTML text.

The database queries data for all the products that are contained in the string choice,

representing the checkboxes ticked on the previous page. A HTML segment for each

product is created, for their sum to be amalgamated to form the main message. For each

56

product, six lines of HTML code create a <div> section. Additionally, each iteration

increases the index value i by one. The six lines are then appended together to form a

single line and stored under the variable product.i, where i is used to index them

accordingly. This gives the script the flexibility needed to adapt to a varying number of

products.

The e-mail’s body commences with the necessary tags to properly define a HTML

document. Afterwards, a headline, linking to the shop’s main page is added, followed

by a receiver-specific link to unsubscribe. The feature to unsubscribe from newsletters

will be discussed at a later stage. Next, all the previously generated products are added

to the string, followed by HTML closing tags. The setContent method is then used to set

this string as the message’s body, finalizing it.

7.2.2. Sending and Receiving E-Mails with MailHog

The Jakarta Mail API is platform and protocol independent and can therefore be used

on any operation system and with most e-mail service providers allowing IMAP, POP3

or Simple Mail Transfer Protocol (SMTP) access [150]. Therefore, once this application

has been properly tested, it can be linked to an e-mail server, to send messages into the

real world.

During the first phases of testing, usually many e-mails need to be sent. To simplify this

process, the author suggests the use of an open-source tool called MailHog. The

appendix includes instructions on how to use it to set up a local SMTP test server: E.

MailHog Installation Guide. The process is incredibly easy and can be done within

minutes.

All incoming and outgoing e-mails will then be processed by MailHog, allowing to view

e-mails from the receiver’s perspective. The program creates an inbox, which can be

accessed from a web browser using the URL: http://localhost:8025. This approach

creates an environment that allows to refine the e-mails to be sent, as well as identifying

any possible flaws in the program.

transport = session~getTransport("smtp")
transport~connect("localhost",1025,"username","pw")
transport~sendMessage(msg,msg~getRecipients(type~to)) -- send message using a
test server

emailcount += 1
Listing 39: mailer.jsp Send Message

The session’s transport object is used to send e-mails. Its connect method establishes a

connection to the server, using the attributes host, port, username, and password.

Finally, the sendMessage method takes the previously created message and its recipients

as inputs to send the e-mail.

By default, MailHog uses the port 1025 on the local host to process e-mails. Since the

testing tool accepts any combination of username and password, placeholder values for

http://localhost:8025/

57

them will be used. Therefore, these configuration parameters will be used to

demonstrate the capabilities of the nutshell example.

Instead of using Java properties, this easy approach to sending e-mails with Jakarta Mail

sets the properties necessary at the final stage. Most noteworthy, the method

sendMessage is used instead of the more commonly used send [156, p. 52].

Figure 17: Newsletter in Web Browser

Lesson Learned: The pictures in the e-mail are only visible if the Tomcat server is up

and running.

After the message has been refined to prove satisfactory, the next step would be to

change the credentials to those of a real-world e-mail service, fully enabling the

program’s functionality. Although, the regular SMTP protocol is used for testing

purposes, it is not secure and thus not recommended for everyday use. Therefore, like

HTTPS, the Simple Mail Transfer Protocol Secure (SMTPS), which uses the SSL/TLS

protocol needs to be used instead.

In addition to encrypting messages between the sender’s e-mail client and e-mail server,

SSL/TLS enables the use of digital certificates for identification purposes [157]. The

appendix includes the code necessary to facilitate secure transmission of e-mails when

using a real e-mail service provider: G. SSL/TLS E-Mail Utility

7.3. Unsubscribing from E-Mails /treeshop/admin/unsubscribe.jsp

The European Union’s General Data Protection Regulation requires that users can
object to receiving direct marketing e-mails at any time and that companies then must
stop using their data immediately [123]. To implement this regulation, each e-mail
includes a link to unsubscribe, containing a get request that gets dynamically created
for each receiver.

58

Figure 18: unsubscribe.jsp in Web Browser

By rewriting the URL, the script in the body of unsubscribe.jsp can fetch the e-mail

address included in the request. It is appended to the URL, using the parameter unsub:
http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=bigspender@quickmail.co

m. Instead of immediately unsubscribing, the user is asked if she is certain and presented

with a button to confirm. Upon clicking it, the user’s e-mail address is forwarded to the

servlet unsubscriber.jsp. Please note, that to function, the servlet needs to be registered

in the web.xml file, just like in the previous examples. The servlet simply changes the

column receives_mail, found in the table customer, for the given user to FALSE. Upon

success, a confirmation message is displayed.

7.4. Common Gateway Interface

Not to forget, the Common Gateway Interface (CGI) offers the possibility to directly

execute a script on the web server, generating a response for each request. Just like with

JSPs, output methods can be used to create HTML pages. Tomcat allows the usage of

CGI scripts by registering them like any other servlet. Since every request leads to the

creation of a new process on the server, this approach can lead to significant

performance problems in high traffic situations. Compared to Jakarta Servlets, which

use Java, CGI scripts are dependent of the server’s operating system, interpreters, and

compilers. The request of a CGI script leads to its direct execution from the command

line [148, pp. 13-17]. This results in the programs being run outside of the Java Virtual

machine, bypassing the Java Security Manager.

Given all these limitations, CGI scripts are most commonly used during development

[149]. While this work focuses on the use of JSPs, this method is still briefly mentioned,

since it offers an alternative way to directly execute scripts.

8. Conclusion

After working with web applications extensively, one will never look at web pages the

same way. It is astonishing how technologies, that now exist for over twenty years, are

still used to create the modern world wide web we take for granted today. Furthermore,

the author hopes to inspire readers to create their own web applications. By using the

http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=bigspender@quickmail.com
http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=bigspender@quickmail.com

59

building blocks introduced in this thesis, in combination with countless available

external Java libraries, a beginner will be able to turn ideas into reality.

Three different approaches have been introduced: Adding scripting content directly to

a JSP, linking external scripts containing the logic, and configuring a JSP containing

script code as a servlet. While each of the approaches has its advantages and

disadvantages, they offer great insights into web development and enable adaptation to

a given situation.

For more sophisticated web applications, involving a team of developers, the

intermingling of programming logic and design components will prove problematic.

Such projects will use the model-view-controller design pattern, implemented by a

framework like Apache Struts. Nonetheless, the approaches shown allow the creation

of dynamic web applications in record time.

A. Prerequisites

This section not only contains a collection of hyperlinks to all the required software but

can also be used as a checklist. This work was finished in the beginning of the year 2021

and reflects the current development stage. For future use, the download locations

might change, and the software will be most likely be updated. The author recommends

downloading the latest versions currently available.

A.1. Software Required to Begin

❖ Nutshell examples: http://wi.wu.ac.at/rgf/diplomarbeiten/

▪ An archive containing the demo applications should come included with this

work. In case it is missing, please search for this thesis in the collection

provided

❖ OpenJDK: https://bell-sw.com/pages/downloads/

▪ Liberica Full JDK should be chosen for maximum compatibility

▪ Any other Java implementation will also work, this distribution is merely a

suggestion

▪ Needs to match the ooRexx version used, a 64-bit ooRexx installation requires

a 64-bit version of Java, whereas a 32-bit version requires a matching 32-bit

installation

❖ ooRexx: https://sourceforge.net/projects/oorexx/

▪ As a minimum, Version 5.0.0 needs to be installed

❖ BSF4ooRexx: https://sourceforge.net/projects/bsf4oorexx/

http://wi.wu.ac.at/rgf/diplomarbeiten/
https://bell-sw.com/pages/downloads/
https://sourceforge.net/projects/oorexx/
https://sourceforge.net/projects/bsf4oorexx/

60

▪ The file bsf4ooRexx-v641-20210205-bin.jar (or newer) can be found in the

downloaded archive, or once installed, in the installation directory of

BSF4ooRexx

▪ Also contains an IntelliJ IDEA plugin, enabling text highlighting for ooRexx

▪ Additionally, the latest version of the Tag Libraries (they already come

included with the web applications) can be downloaded from:
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/

• Also contains the demoRexx web application with additional examples

• Also contains a language injections file for IntelliJ IDEA, enabling

ooRexx to be highlighted in HTML, XML and JSP documents

❖ Apache Tomcat 10 (Beta status in January 2021):
https://tomcat.apache.org/download-10.cgi

▪ As an Alternative, Apache Tomcat 9 (Stable status in January 2021):
https://tomcat.apache.org/download-90.cgi

▪ Before beginning the installation, it is recommended to inquire about the

current development status: https://tomcat.apache.org/whichversion.html

A.2. Software Required for Advanced Examples

❖ PostgreSQL: https://www.postgresql.org/download/

❖ PostgreSQL JDBC Driver: https://jdbc.postgresql.org/

▪ Already comes included

❖ jBcrypt: https://www.mindrot.org/projects/jBCrypt/

▪ Already comes included

❖ Jakarta Mail: https://eclipse-ee4j.github.io/mail/

▪ Already comes included

❖ Jakarta Activation: https://eclipse-ee4j.github.io/jaf/

▪ Already comes included

❖ MailHog: https://github.com/mailhog/MailHog

B. Tomcat Installation Guide

The following section will give a step-by-step installation guide for the Apache Tomcat

Software version 10.0.0 on the Microsoft Windows 10 Operating system. Before

beginning, as a minimum Java needs to be installed.

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/
https://tomcat.apache.org/download-10.cgi
https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/whichversion.html
https://www.postgresql.org/download/
https://jdbc.postgresql.org/
https://www.mindrot.org/projects/jBCrypt/
https://eclipse-ee4j.github.io/mail/
https://eclipse-ee4j.github.io/jaf/
https://github.com/mailhog/MailHog

61

In case the reader prefers the stable Tomcat Version 9, the installation process is

identical.

Before beginning the installation, it is recommended to inquire about the current

development status from: https://tomcat.apache.org/whichversion.html

The apache-tomcat-10.0.0.exe can be downloaded from the webpage:

https://tomcat.apache.org/download-10.cgi, by clicking on 32-bit/64-bit Windows

Service Installer.

Figure 19: Tomcat 10 Download Page

After downloading and executing the file apache-tomcat-10.0.0.exe, one is greeted with

the following window. It is worth to note, that under most Windows 10 configurations,

upon running the exe file, one is greeted with a popup from Windows User Account

Control, where it is necessary to grant the program permission to make changes on the

device. The installer being still labeled as Apache Tomcat 9 is most likely a result of the

software still being in Beta status.

https://tomcat.apache.org/whichversion.html
https://tomcat.apache.org/download-10.cgi

62

Figure 20: Tomcat 10 Setup Welcome

After clicking the Next button, the License Agreement can be reviewed and needs to be

accepted by clicking on “I Agree”.

Figure 21: Tomcat 10 Setup License Agreement

63

The following window allows the customization of components to be installed. It is

recommended to select a Full installation.

Figure 22: Tomcat 10 Setup Choose Components

The entries Start Menu Items, Documentation and Examples are self-explanatory and might

prove useful. The Manager entry is used to create a web application, accessible from:

http://localhost:8080/manager, with various functions like listing all users and currently

installed web applications, as well as the option to deploy and undeploy them [80].

Meanwhile, the Host manager is used for creating multiple websites on a single server

[158].

After choosing the desired components, the next window allows further configuration.

http://localhost:8080/manager

64

Figure 23: Tomcat 10 Setup Configuration

Most importantly, by default, the Server Shutdown Port is set to -1, or disabled. Here, it

is highly recommended to choose another available port like 8005, the default shutdown

port. This port is used for the server to wait for a shutdown command. It is not

recommended to disable the port while running and stopping the server with the

standard shell scripts. When using the Apache Commons Daemon from the taskbar,

disabling it is an option [159]. Setting the Server Shutdown port allows the user to use

both the Apache Commons Daemon, as well as the standard shell scripts to start and

stop the server. The main part of this work describes in detail how Tomcat is used.

Additionally, it is recommended to pick a username and password, since this is the most

convenient way to set them. These credentials are used to access the Manager web

application.

The next part of the installation asks for the path of the Installed Java Runtime

Environment, which should be automatically detected.

65

Figure 24: Tomcat 10 Setup Java Virtual Machine

Afterwards, the installation path is chosen. In the figure below, the default path is left

unchanged.

Figure 25: Tomcat 10 Setup Choose Install Location

66

After confirming the installation path, the software gets installed and the user is greeted

with the following window. If desired, the server can be immediately started.

Additionally, the Readme file can be viewed.

Figure 26: Tomcat 10 Setup Finish

C. Using Tomcat 9

At the time of writing, in January 2021, the Apache Tomcat 10 software was still in a Beta

status. Should the reader prefer the stable Version 9, small changes are necessary. The

reason being, that Tomcat 10 uses the Jakarta namespace, while Tomcat 9 uses the JavaX

namespace.

Instead of using the web applications helloworld.war and treeshop.war, modified

versions for Tomcat 9 can be found in the zip archive included with this work, more

precisely in the directory ZIP_ARCHIVE\javax_for_tomcat9.

The main difference is the tag library used, since it is already part of the web

applications, no further actions are required for the reader to perform. Therefore,

should the reader wish to create web applications and prefer using Tomcat 9, it is

instrumental to use the file javax.ScriptTagLibs.jar instead of

jakarta.ScriptTagLibs.jar.

Other than the taglib used, the main difference can be observed in the naming of certain

classes. For the examples shown in this thesis, the only difference is related to the

creation of cookies.

67

For example, while in the Jakarta version a cookie is created using the class

jakarta.servlet.http.Cookie, Tomcat 9 uses javax.servlet.http.Cookie instead. This

name change is not universal; for example, both versions still use

javax.naming.InitialContext to refer to the InitialContext class. Furthermore, since the

latest version of Jakarta Mail is added as an external library, both Tomcat 9 and Tomcat

10 use the Jakarta namespace to send e-mails.

As a result, it is a good idea to keep this name change in mind, especially when

encountering inexplicable errors messages referring to classes not being found.

D. PostgreSQL

This section will be used to show all necessary steps to install and setup a PostgreSQL

database management system, enabling the full functionality of the treeshop web

application.

D.1. Installation

To begin with, the latest version of the PostgreSQL installer can be downloaded from:

https://www.postgresql.org/download/. At the time of writing the current version was

13.1. After downloading and executing the file postgresql-13.1-1-windows-x64.exe, one

is greeted with the following screen on the Microsoft Windows 10 operating system.

Usually, it is necessary to allow the application to make changes in a User Account

Control popup warning.

Figure 27: PostgreSQL Setup Welcome

https://www.postgresql.org/download/

68

After clicking on the Next button, the installation directory is selected. For most

machines, the default directory should work just fine.

Figure 28: PostgreSQL Setup Installation Directory

Afterwards, the components to be installed are chosen. For the use case described, the

only mandatory option is PostgreSQL Server. Users preferring a graphical interface

might wish to install pgAdmin 4. This tool allows to administer the database server from

within a web browser. This thesis uses the command line to perform the configuration

necessary though.

69

Figure 29: PostgreSQL Setup Select Components

The next window asks for a directory to store the actual data that gets managed in the

database management system. Per default, a directory within the default installation

directory is chosen. Again, for use on a private machine the default option is

recommended.

Figure 30: PostgreSQL Setup Data Directory

70

The next step requires choosing a password for the database superuser account

postgres. Should the database include sensitive data, it is necessary to choose a strong

password, since this account has all possible permissions. For Apache Tomcat, a

separate account will be added later, therefore this superuser password is usually not

repeated frequently after the configuration has been concluded.

Figure 31: PostgreSQL Setup Password

In the next step, the port, under which the database server is made accessible is chosen.

Once again, for the use on a private machine, the default port 5432 does not need to be

changed and is also used for the demo web applications.

71

Figure 32: PostgreSQL Setup Port

In the next step, the locale to be used is chosen. This setting affects the language,

alphabets, and number formatting used in the database cluster. By choosing the default

locale, the locale of the operating system is used [160].

Figure 33: PostgreSQL Setup Advanced Options

72

The next window summarizes all previously chosen options. The image below shows an

installation where all possible components are chosen, and the default parameters have

been left unchanged.

Figure 34: PostgreSQL Setup Pre Installation Summary

The next window informs the user that the setup is ready to start the installation.

Figure 35: PostgreSQL Setup Ready to Install

73

After the installation is concluded, one is greeted by the window shown below. The

optional Stack Builder feature is not required for the use case described.

Figure 36: PostgreSQL Setup Finish

D.2. Setting Up a PostgreSQL Environment Variable

Even though, the database comes with a graphic administration interface called pgAdmin

4, this tutorial uses the command line to work with the database. To use PostgreSQL

from within the Windows PowerShell or the Command Prompt, it is necessary to add

the database management system to the system’s environment variables.

To accomplish this on Windows 10, first the About your PC window must be opened.

This window can be easily found by typing about in the Windows Search. After clicking

on Advanced system settings on the right, a smaller window with system properties is

opened.

After clicking on Environment Variables, a new window is opened. By selecting the

Variable Path on the lower half under System Variables and clicking on the Edit button,

the environment variables can be accessed.

By clicking on New and then Browse, the bin folder from the PostgreSQL installation

directory needs to be chosen: C:\Program Files\PostgreSQL\13\bin. Afterwards, the

choice is confirmed by clicking on OK. After restarting all currently open Windows

Powershell and Command Prompt windows, the PostgreSQL database management

system can be accessed with the command psql.

74

D.3. Starting the Database Server

Like the Apache Tomcat software, the PostgreSQL server which allows access to the

databases is started and stopped by a corresponding Windows Service. By typing

services.msc in the Command Prompt or the Windows Powershell, all Windows

Services are listed. By right-clicking on the entry postresql-x64-13 the server can be

started or stopped.

D.4. Setting Up a Database for treeshop

This section will list all commands necessary, to prepare a database for the treeshop web

application. As an alternative to this guide, a support web page included with both web

applications offers a convenient way to quickly copy and paste all shown commands. It

can be accessed from: http://localhost:8080/helloworld/support and is highly

recommended.

To begin with, the command: psql postgres postgres allows access to the database

management system. psql is the environmental variable used to communicate to the

command line, that PostgreSQL is to be addressed. The repetition of the variable

postgres signals the database management system to access the default database

postgres as the superuser postgres. Afterwards, the password for the superuser account,

which has been defined during the installation process, needs to be entered. In this

context, the command line will give no feedback for letters entered if they are related

to passwords. At this point, one should be greeted by the following prompt:

Listing 40: PostgreSQL Setup Start Database Management System

Now, a new database called shop is created. It is used exclusively by the treeshop web

application.

Listing 41: PostgreSQL Setup Create Database shop

Afterwards, a connection to the newly created database is established.

Listing 42: PostgreSQL Setup Connect to Database shop

http://localhost:8080/helloworld/support

75

Next, the three tables required for treeshop to function are created. While tree holds all

products, customer contains all registered customers. The table cart is used to connect

them.

Listing 43: PostgreSQL Setup Create Table tree

Listing 44: PostgreSQL Setup Create Table customer

Listing 45: PostgreSQL Setup Create Table cart

All users and products have a unique id assigned to them using serial. This is done

automatically by the sequence object, made available by PostgreSQL. It creates a unique

identifier for each new row [161].

In the next step, the user cattus is created and given the password tomtom12. These

credentials are going to be used by Tomcat to access the database.

Listing 46: PostgreSQL Setup Create User cattus

76

Since no schema has been defined, all previously created tables are assigned to the

schema public. The following commands grants the newly created user the necessary

rights to operate on the related tables.

Listing 47: PostgreSQL Setup Grant All Rights to cattus

Finally, special permissions need to be given, so that the new user may work on tables

using sequences. Even though sequences look like fields, they are single-row tables that

require explicit permission to perform functions on them. Each time a new row is added,

a function is performed by the database management system, to auto increment the

sequence number, which is stored in form of a bigint [162]. First, the rights are granted

for the sequence of the tree table.

Listing 48: PostgreSQL Setup Grant Sequence Rights tree_id to cattus

Afterwards, the operation is repeated for the table customer.

Listing 49: PostgreSQL Setup Grant Sequence Rights customer_id to cattus

In the next step, six example products are added to the table tree.

Listing 50: PostgreSQL Setup Insert Products in tree

Afterwards, three example customer accounts are created. All entries follow the same

password convention: the password for bigspender@quickmail.com is bigspender.

77

Listing 51: PostgreSQL Setup Insert Users in customer

This concludes the setup process for the database. The treeshop should be fully

functional now.

E. MailHog Installation Guide

The MailHog software can be downloaded from the following web page:

https://github.com/mailhog/MailHog. By clicking on Releases on the right, both a 64-bit

and a 32-bit version can be found.

On the Microsoft Windows operation system, once downloaded, the file

MailHog_windows_amd64.exe / MailHog_windows_amd32.exe will open a Command Prompt

window on execution. As long as this window remains open, the software is running.

After configuring Jakarta Mail to send e-mails with the SMTP server on the localhost

and port 1025, all e-mails sent can be viewed from a web browser, using the URL:

http://localhost:8025. The username and password choice does not matter, any values

are accepted.

F. Debug Code Snippet

The following lines of code, written by Rony G. Flatscher, can be placed at the top and

bottom of a script, creating a detailed output of any exceptions that occur when the

program is run. This is particularly useful to determine problems related to database

operations.

SIGNAL ON SYNTAX

/* CODE */

RETURN

SYNTAX: -- label to jump to, if syntax condition gets raised
above
 co=condition("object") -- get condition object
 -- get Java exception chain as a Rexx string, insert "
" after LF
("0a"x)
 strChain=ppJavaExceptionChain(co)~changeStr("0a"x, "0a"x "
")
 .error~say(strChain) -- write to error stream
 say strChain -- write to output stream (generates as HTML text)
 raise propagate -- propagate exception (recreate exception in caller)
::REQUIRES "BSF.CLS" --enable Java support
Listing 52: Debug Code Snippet

https://github.com/mailhog/MailHog
http://localhost:8025/

78

G. SSL/TLS E-Mail Utility

The following utility, written by Rony G. Flatscher, can be added to an ooRexx program

to make the routine sendMailSSL available. It offers functionality to send e-mails using

the SSL/TLS protocol. Afterwards, e-mails can be effortlessly sent by calling this routine

and giving it a set of input parameters in the following order: CALL sendMailSSL

fromAddress, password, toAdress, subject, text

#!/usr/bin/env rexx
/** Utility to send messages via SSL/TLS using either Java EE 8 or lower, or
Jakarta EE 9 or higher.
 (c) 2021 Rony G. Flatscher, Apache License 2.0
*/

 /* load/import and save the classes we use in this package (Rexx program)
 each entry in an environment directory can be fetched via its
 environment symbol (just prepend a dot to the name) */
namespace=determineNameSpace() -- test which mail package we have, javax. or
jakarta.
if namespace~isNil then
 raise syntax 40.900 additional("Cannot find the mail package for Java EE 8 or
lower, nor for Jakarta EE 9 or higher")

pkgLocal=.context~package~local -- get this package local object
pkgLocal~namespace=namespace -- save namespace
 -- Java-Klassen laden und speichern
pkgLocal~Session =bsf.loadClass(namespace".mail.Session")
pkgLocal~Message.RecipientType=bsf.loadClass(namespace".mail.Message$RecipientType
")
pkgLocal~Transport =bsf.loadClass(namespace".mail.Transport")
pkgLocal~Authenticator =bsf.loadClass(namespace".mail.Authenticator")

 -- imported classes can be used as if they were ooRexx classes, they understand
the "new" message
pkgLocal~PasswordAuthentication=bsf.importClass(namespace".mail.PasswordAuthentica
tion")
 -- the following classes are from the JRE (Java runtime environment)
pkgLocal~MimeMessage
=bsf.importClass(namespace".mail.internet.MimeMessage")
pkgLocal~InternetAddress
=bsf.importClass(namespace".mail.internet.InternetAddress") -- from EE

 -- create a proxy class which will reroute Java invocations of
"getPasswordAuthentication" to the RexxProxy
pkgLocal~proxiedAuthenticator=bsf.createProxyClass(.Authenticator, ,
"getPasswordAuthentication")

::requires BSF.CLS -- get Java bridge

/* == */
::routine determineNameSpace public
 signal on syntax name no_javax
 clz=bsf.loadClass("javax.mail.Session")
 return "javax" -- we were able to load that class!

no_javax:

79

 signal on syntax name no_jakarta
 clz=bsf.loadClass("jakarta.mail.Session")
 return "jakarta" -- we were able to load that class!

no_jakarta:
 return .nil -- indicate whe have no access to the mail package

/* == */

::routine sendMailSSL public
 use strict arg fromAddress, password, toAddress, subject, text

 props=.bsf~new("java.util.Properties")
 props~put("mail.smtp.host", "smtp.gmail.com")
 props~put("mail.smtp.socketFactory.port", "465")
 props~put("mail.smtp.socketFactory.class", "javax.net.ssl.SSLSocketFactory")
 props~put("mail.smtp.auth", "true")
 props~put("mail.smtp.port", "465")

 -- create the RexxProxy that handles the "getPasswordAuthentication" message
 jRxAuth=BsfCreateRexxProxy(.RexxAuthenticator~new(fromAddress, password))
 jAuth=.proxiedAuthenticator~new(jRxAuth) -- create Java object and supply
RexxProxy

 session=.Session~getDefaultInstance(props, jAuth)
 msg=.MimeMessage~new(session)
 msg~addRecipient(.Message.RecipientType~to, .InternetAddress~new(toAddress))
 msg~setSubject(subject) -- alternative: msg~subject=subject
 msg~setText(text) -- alternative: msg~text =text
 .Transport~bsf.invoke("send",msg)

/* == */
-- {jakarta|javax}.mail.Authenticator maintains "from" address and "password"
::class RexxAuthenticator -- implements "getPasswordAuthentication" from
abstract "javax.mail.Authenticator" class

::method init -- ooRexx constructor
 expose passwordAuthentication
 use strict arg from, password
 -- create the password authentication object
 passwordAuthentication=.bsf~new("javax.mail.PasswordAuthentication", from,
password)

::method getPasswordAuthentication -- returns the password authentication object
 expose passwordAuthentication
 return passwordAuthentication

/* == */
::routine sendMailSSL.getPackageLocal public -- for debugging purposes, return
this package local object
 return .context~package~local

Listing 53: SSL/TLS E-Mail Utility

80

References

[1] World Wide Web Consortium, "Tim Berners-Lee," World Wide Web Consortium, 16 July 2020.

[Online]. Available: https://www.w3.org/People/Berners-Lee/. [Accessed 10 September

2020].

[2] R. Fielding, J. Gettys, M. J., F. H., L. Masinter, P. Leach and T. Berners-Lee, "Hypertext Transfer

Protocol -- HTTP/1.1," Internet Engineering Task Force, June 19999. [Online]. Available:

https://tools.ietf.org/html/rfc2616. [Accessed 10 September 2020].

[3] Rexx Language Association, " About Open Object Rexx," Rexx Language Association, [Online].

Available: https://www.oorexx.org/about.html. [Accessed 26 December 2020].

[4] Jakarta Server Pages Team, "Jakarta Server Pages Specification, Version 3.0," Eclipse

Foundation, 21 October 2020. [Online]. Available:

https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0.html. [Accessed 10

January 2021].

[5] J. Ousterhout, "Scripting: Higher-Level Programming for the 21st Century," IEEE Compute, vol.

31, no. 03, pp. 23-30, 1998. [Online]. Available: https://web.stanford.edu/~ouster/cgi-

bin/papers/scripting.pdf. [Accessed 29 January 2021].

[6] R. Sedgewick and K. Wayne, "8.2 Compilers, Interpreters, and Emulators," Princeton

University, 24 October 2006. [Online]. Available:

https://introcs.cs.princeton.edu/java/82compiler/. [Accessed 22 September 2020].

[7] D. Hemmendinger, " Machine language," Encyclopædia Britannica , 13 October 2016.

[Online]. Available: https://www.britannica.com/technology/machine-language. [Accessed 22

September 2020].

[8] R. Toal, "Scripting Languages," Loyola Marymount University, [Online]. Available:

https://cs.lmu.edu/~ray/notes/scriptinglangs/. [Accessed 22 September 2020].

[9] J. Gosling and M. Henry, "The Java Language Environment," Oracle, May 1996. [Online].

Available: https://www.oracle.com/java/technologies/language-environment.html.

[Accessed 23 September 2020].

[10] Oracle, "About the Java Technology," Oracle, [Online]. Available:

https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html. [Accessed 23

September 2020].

[11] C. Hermansen, "Using external libraries in Java," Opensource.com, 11 February 2020.

[Online]. Available: https://opensource.com/article/20/2/external-libraries-java. [Accessed

26 December 2020].

[12] GeeksforGeeks, "Jar files in Java," GeeksforGeeks, 26 May 2017. [Online]. Available:

https://www.geeksforgeeks.org/jar-files-java/. [Accessed 26 December 2020].

81

[13] Oracle, "JSR 223: Scripting for the JavaTM Platform," Oracle, [Online]. Available:

https://jcp.org/en/jsr/detail?id=223. [Accessed 26 December 2020].

[14] Oracle, "Java Platform, Standard Edition Java Scripting Programmer's Guide," Oracle,

[Online]. Available: https://docs.oracle.com/javase/10/scripting/toc.htm. [Accessed 24

September 2020].

[15] A. Fleck, "Prologue on Program Specification," University of Iowa, [Online]. Available:

http://homepage.divms.uiowa.edu/~fleck/spec.html. [Accessed 06 September 2020].

[16] J. O'Conner, "Scripting for the Java Platform," Oracle, July 2006. [Online]. Available:

https://www.oracle.com/technical-resources/articles/javase/scripting.html. [Accessed 04

January 2021].

[17] Oracle, "Interface ScriptEngine," Oracle, [Online]. Available:

https://docs.oracle.com/javase/10/docs/api/javax/script/ScriptEngine.html. [Accessed 24

September 2020].

[18] GeeksforGeeks, "JavaBean class in Java," GeeksforGeeks, 14 September 2017. [Online].

Available: https://www.geeksforgeeks.org/javabean-class-java/. [Accessed 25 September

2020].

[19] Apache Software Foundation, "BSF FAQ," Apache Software Foundation, 17 October 2011.

[Online]. Available: https://commons.apache.org/proper/commons-bsf/faq.html. [Accessed

25 September 2020].

[20] Apache Software Foundation, "BSF Manual," Apache Software Foundation, 17 October 2011.

[Online]. Available: https://commons.apache.org/proper/commons-bsf/manual.html.

[Accessed 25 September 2020].

[21] S. Weerawarana, M. J. Duftler, S. Ruby, O. Gruber, D. Schwarz and R. G. Flatscher, "Class

BSFManager," 13 September 2008. [Online]. Available:

http://wi.wu.ac.at:8002/rgf/rexx/bsf4rexx/current/docs/docs.apache.bsf/org/apache/bsf/BS

FManager.html. [Accessed 25 September 2020].

[22] Apache Software Foundation, "BSF About," Apache Software Foundation, 2011 October 2011.

[Online]. Available: https://commons.apache.org/proper/commons-bsf/index.html.

[Accessed 25 September 2020].

[23] R. G. Flatscher, Introduction to REXX and ooRexx, Vienna, Austria: Facultas, 2013.

[24] R. G. Flatscher, "Java Bean Scripting With Rexx," in Proceedings of the "12th International

Rexx Symposium", Raleigh, North Carolina, USA, April 30th - May 2nd, 2001. [Online].

Available: http://wi.wu-

wien.ac.at:8002/rgf/rexx/orx12/JavaBeanScriptingWithRexx_orx12.pdf. [Accessed 29 January

2021].

[25] R. G. Flatscher, "The Augsburg Version of BSF4Rexx," in Proceedings of the "The 14th

International Rexx Symposium", Raleigh, NorthCarolina, USA, May 2003. [Online]. Available:

82

http://wi.wu.ac.at:8002/rgf/rexx/orx14/2003_orx14_A_BSF_by2.pdf. [Accessed 29 January

2021].

[26] R. G. Flatscher, "The 2019 Edition of BSF4ooRexx," in Proceedings of the "The 2019

International Rexx Symposium", Hursley, Great Britain, September 2019. [Online]. Available:

https://www.rexxla.org/events/2019/presentations/201909-04_BSF4ooRexx.pdf. [Accessed

29 January 2021].

[27] R. G. Flatscher, "Camouflaging Java as Object REXX," in Proceedings of the "2004 International

Rexx Symposium", Sindelfingen/Böblingen, Germany, May 2004. [Online]. Available:

https://www.rexxla.org/events/2004/ronyf2.pdf. [Accessed 29 January 2021].

[28] The Editors of Encyclopaedia Britannica, " Protocol," Encyclopaedia Britannica, 31 August

2018. [Online]. Available: https://www.britannica.com/technology/protocol-computer-

science. [Accessed 08 September 2020].

[29] F5, "What Is a Web Server?," F5, [Online]. Available:

https://www.nginx.com/resources/glossary/web-server/. [Accessed 21 January 2021].

[30] H.-C. Chua, "HTTP (HyperText Transfer Protocol)," Nanyang Technological University, 20

October 2009. [Online]. Available:

https://personal.ntu.edu.sg/ehchua/programming/webprogramming/HTTP_Basics.html.

[Accessed 07 January 2021].

[31] World Wide Web Consortium, "HTML 5.2," World Wide Web Consortium, 14 December 2017.

[Online]. Available: https://www.w3.org/TR/html52/. [Accessed 27 December 2020].

[32] w3schools, "HTML Introduction," w3schools, [Online]. Available:

https://www.w3schools.com/html/html_intro.asp. [Accessed 27 December 2020].

[33] H. W. Lie and B. Bos, "Cascading Style Sheets, level 1," World Wide Web Consortium, 17

December 1996. [Online]. Available: https://www.w3.org/TR/REC-CSS1-961217. [Accessed 15

December 2020].

[34] H.-C. Chua, "Java Server-Side Programming," Nanyang Technological University, October

2012. [Online]. Available:

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html. [Accessed 01

September 2020].

[35] R. G. Flatscher, "(BSF4)ooRexx and Java Web Server," in Proceedings of the "The 2020

International Rexx Symposium", Online, September 29th - October 1st 2020. [Online].

Available: https://www.rexxla.org/events/2020/presentations/202011-

ooRexxAndJavaWebServers-article.pdf. [Accessed 29 January 2021].

[36] Oracle, "Java Servlet Technology Overview," Oracle, [Online]. Available:

https://www.oracle.com/java/technologies/servlet-technology.html. [Accessed 02

September 2020].

83

[37] A. Singh, "Introduction to Java Servlets," GeeksforGeeks, 23 October 2019. [Online].

Available: https://www.geeksforgeeks.org/introduction-java-servlets/. [Accessed 02

September 2020].

[38] Jakarta Servlet Team, "Jakarta Servlet Specification, Version 5.0," Eclipse Foundation, 07

September 2020. [Online]. Available: https://jakarta.ee/specifications/servlet/5.0/jakarta-

servlet-spec-5.0.html. [Accessed 10 January 2021].

[39] N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies," Internet Engineering Task Force, November 1996. [Online].

Available: https://tools.ietf.org/html/rfc2045. [Accessed 06 September 2020].

[40] Eclipse Foundation, "Class HttpServlet," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/http/HttpServlet.html.

[Accessed 02 September 2020].

[41] Eclipse Foundation, "Interface Servlet," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/servlet. [Accessed 02

September 2020].

[42] M. Tyson, "What is JSP? Introduction to JavaServer Pages," InfoWorld, 29 January 2019.

[Online]. Available: https://www.infoworld.com/article/3336161/what-is-jsp-introduction-to-

javaserver-pages.html. [Accessed 02 September 2020].

[43] Oracle, "JSP Tag Libraries," Oracle, [Online]. Available:

https://docs.oracle.com/cd/B14099_19/web.1012/b14014/taglibs.htm#i1012403. [Accessed

28 December 2020].

[44] Oracle, "JSP Scriptlets," Oracle, [Online]. Available:

https://docs.oracle.com/javaee/5/tutorial/doc/bnaou.html. [Accessed 28 December 2020].

[45] S. Ryabenkiy, Java Web Scripting and Apache Tomcat, Vienna, Austria: Vienna University of

Economics and Business, 2010. [Online]. Available:

http://wi.wu.ac.at:8002/rgf/diplomarbeiten/BakkStuff/2010/201007_Ryabenkiy/201007_Rya

benkiy_WebScripting_ApacheTomCat_TagLib.pdf. [Accessed 29 January 2021].

[46] M. Tyson, "What is Tomcat? The original Java servlet container," InfoWorld, 19 December

2019. [Online]. Available: https://www.infoworld.com/article/3510460/what-is-apache-

tomcat-the-original-java-servlet-container.html. [Accessed 28 December 2020].

[47] TEDBlog, "James Duncan Davidson," TEDBlog, [Online]. Available:

https://blog.ted.com/author/duncandavidson/. [Accessed 01 September 2020].

[48] Apache Software Foundation, "The Tomcat Story," Apache Software Foundation, [Online].

Available: https://tomcat.apache.org/heritage.html. [Accessed 01 September 2020].

[49] MuleSoft, "Meet Tomcat Catalina," MuleSoft, [Online]. Available:

https://www.mulesoft.com/tcat/tomcat-catalina. [Accessed 28 December 2020].

84

[50] Apache Software Foundation, "Introduction," Apache Software Foundation, 03 December

2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/introduction.html.

[Accessed 28 December 2020].

[51] Wikipedians, "Apache Tomcat," Wikipedia, 13 December 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Apache_Tomcat. [Accessed 28 December 2020].

[52] Apache Software Foundation, "The Coyote HTTP/1.1 Connector," Apache Software

Foundation, [Online]. Available: https://tomcat.apache.org/tomcat-4.1-

doc/config/coyote.html. [Accessed 28 December 2020].

[53] The Apache Software Foundation, "The HTTP2 Upgrade Protocol," The Apache Software

Foundation, 03 December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-

doc/config/http2.html. [Accessed 28 December 2020].

[54] Apache Software Foundation, "Apache HTTP Server HowTo," Apache Software Foundation,

09 March 2020. [Online]. Available: https://tomcat.apache.org/connectors-

doc/webserver_howto/apache.html. [Accessed 28 December 2020].

[55] P. Manh, "The different between Web server, Web container and Application server,"

GitHub, 01 April 2020. [Online]. Available: https://ducmanhphan.github.io/2020-04-01-The-

difference-between-web-server-web-container-application-server/. [Accessed 02 September

2020].

[56] Opensource.com, "What is open source?," Opensource.com, [Online]. Available:

https://opensource.com/resources/what-open-source. [Accessed 28 December 2020].

[57] Opensource.org, "Frequently Answered Questions," Opensource.org, [Online]. Available:

https://opensource.org/faq. [Accessed 28 December 2020].

[58] Apache Software Foundation, "What is the ASF?," Apache Software Foundation, [Online].

Available: https://www.apache.org/foundation/. [Accessed 01 September 2020].

[59] Apache Software Foundation, "Apache Tomcat," Apache Software Foundation, [Online].

Available: https://tomcat.apache.org/. [Accessed 01 September 2020].

[60] Apache Software Foundation, "Apache License, Version 2.0," Apache Software Foundation,

[Online]. Available: https://www.apache.org/licenses/LICENSE-2.0. [Accessed 01 September

2020].

[61] Eclipse Foundation, "About the Eclipse Foundation," Eclipse Foundation, [Online]. Available:

https://www.eclipse.org/org/. [Accessed 06 September 2020].

[62] Eclipse Foundation, "Explore Our Members," Eclipse Foundation, [Online]. Available:

https://www.eclipse.org/membership/exploreMembership.php. [Accessed 06 September

2020].

[63] A. Tijms, "Transition from Java EE to Jakarta EE," Oracle, 27 February 2020. [Online].

Available: https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee.

[Accessed 02 September 2020].

85

[64] Oracle, "Java Documentation," Oracle, [Online]. Available:

https://docs.oracle.com/en/java/index.html. [Accessed 06 September 2020].

[65] R. Monson-Haefel, "TomEE vs. Tomcat," Tomitribe, 05 December 2019. [Online]. Available:

https://www.tomitribe.com/blog/tomee-vs-tomcat/. [Accessed 28 December 2020].

[66] Apache Software Foundation, "Tomcat 10 Software Downloads," Apache Software

Foundation, [Online]. Available: https://tomcat.apache.org/download-10.cgi. [Accessed 28

December 2020].

[67] R. G. Flatscher, "'RexxScript' – Rexx Scripts Hosted and Evaluated by Java (Package

javax.script)," in Proceedings of the “The 2017 International Rexx Symposium", Amsterdam,

The Netherlands, April 9th - 12th 2017. [Online]. Available:

http://www.rexxla.org/events/2017/presentations/201704-RexxScript-Article.pdf. [Accessed

29 January 2021].

[68] Cloudflare, "What do client side and server side mean? | Client side vs. server side,"

Cloudflare, [Online]. Available:

https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-side/.

[Accessed 06 January 2021].

[69] MuleSoft, "Tomcat Configuration - A Step By Step Guide," MuleSoft, [Online]. Available:

https://www.mulesoft.com/tcat/tomcat-configuration. [Accessed 28 December 2020].

[70] Apache Software Foundation, "Application Developer's Guide," Apache Software Foundation,

03 December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-

doc/appdev/deployment.html. [Accessed 10 December 2020].

[71] G. Shachor, "Tomcat 3.3 User's Guide," Apache Software Foundation, [Online]. Available:

https://tomcat.apache.org/tomcat-3.3-doc/tomcat-ug.html#directory_structure. [Accessed

28 December 2020].

[72] Microfocus, "Deploying and Running Your Application," Microfocus, [Online]. Available:

https://supportline.microfocus.com/documentation/books/sx22sp1/pidepl.htm. [Accessed

29 December 2020].

[73] JavaTpoint, "War File," JavaTpoint, [Online]. Available: https://www.javatpoint.com/war-file.

[Accessed 29 December 2020].

[74] Baeldung, "How to Deploy a WAR File to Tomcat," Baeldung, 12 February 2020. [Online].

Available: https://www.baeldung.com/tomcat-deploy-war. [Accessed 29 December 2020].

[75] Uniface, "Creating and Deploying a Web Application WAR File," Uniface, [Online]. Available:

https://u.uniface.info/docs/1000/uniface/webApps/webDeployment/Prepare_your_Web_en

vironment.htm. [Accessed 29 December 2020].

[76] FileInfo, ".EAR File Extension," FileInfo, 22 March 2019. [Online]. Available:

https://fileinfo.com/extension/ear. [Accessed 29 December 2020].

86

[77] Microsoft, "Introduction to Windows Service Applications," Microsoft, 30 March 2017.

[Online]. Available: https://docs.microsoft.com/en-us/dotnet/framework/windows-

services/introduction-to-windows-service-applications. [Accessed 18 September 2020].

[78] A. Sharma, "What is Local Host?," GeeksforGeeks, 09 August 2019. [Online]. Available:

https://www.geeksforgeeks.org/what-is-local-host/. [Accessed 13 September 2020].

[79] K. Vijay Kulkarni, "14 common network ports you should know," Red Hat, 04 October 2018.

[Online]. Available: https://opensource.com/article/18/10/common-network-ports.

[Accessed 17 September 2020].

[80] Apache Software Foundation, "Manager App How-To," Apache Software Foundation, 03

December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/manager-

howto.html. [Accessed 29 December 2020].

[81] MuleSoft, "The Tomcat Web app Quick Reference Guide," MuleSoft, [Online]. Available:

https://www.mulesoft.com/tcat/tomcat-webapp. [Accessed 29 December 2020].

[82] R. Nazarov, "Tomcat web.xml Configuration Example," Java Code Geeks, 18 March 2015.

[Online]. Available: https://examples.javacodegeeks.com/enterprise-java/tomcat/tomcat-

web-xml-configuration-example/. [Accessed 10 December 2020].

[83] Eclipse Foundation, "Interface HttpSession," Eclipse Foundation, 2019. [Online]. Available:

https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/HttpSession.html.

[Accessed 21 October 2020].

[84] R. Ishida, "Character encodings for beginners," W3C, 16 April 2015. [Online]. Available:

https://www.w3.org/International/questions/qa-what-is-encoding. [Accessed 21 October

2020].

[85] O. Thereaux, "Don't forget to add a doctype," World Wide Web Consortium, 20 August 2002.

[Online]. Available: https://www.w3.org/QA/Tips/Doctype. [Accessed 22 October 2020].

[86] webhint, "Use charset `utf-8`," webhint, [Online]. Available: https://webhint.io/docs/user-

guide/hints/hint-meta-charset-utf-8/. [Accessed 14 December 2020].

[87] Maggie, "Why is <meta charset="utf-8"> important?," DEV, 19 October 2020. [Online].

Available: https://dev.to/maggiecodes_/why-is-lt-meta-charset-utf-8-gt-important-59hl.

[Accessed 14 December 2020].

[88] N. Lengyel, BSF4ooRexx: JSP with javax.script Languages, Vienna, Austria: Vienna University

of Economics and Business, 2020. [Online]. Available:

wi.wu.ac.at:8002/rgf/diplomarbeiten/Seminararbeiten/2020/202001_Lengyel_BSF4ooRexx-

JSP.pdf. [Accessed 29 January 2021].

[89] C. Singh, "Jsp Implicit Objects," BeginnersBook, [Online]. Available:

https://beginnersbook.com/2013/11/jsp-implicit-objects/. [Accessed 22 October 2020].

87

[90] Apache Software Foundation, "Class JspWriter," Apache Software Foundation, [Online].

Available: https://tomcat.apache.org/tomcat-7.0-

doc/jspapi/javax/servlet/jsp/JspWriter.html. [Accessed 22 October 2020].

[91] W3Schools, "HTML <link> Tag," W3Schools, [Online]. Available:

https://www.w3schools.com/tags/tag_link.asp. [Accessed 14 December 2020].

[92] W3Schools, "HTML File Paths," W3Schools, [Online]. Available:

https://www.w3schools.com/html/html_filepaths.asp. [Accessed 14 December 2020].

[93] R. G. Flatscher, "SourceForge BSF4ooRexx Taglibs Readme.md," 03 February 2021. [Online].

Available: https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/beta/.

[Accessed 05 February 2021].

[94] B. Bos, T. Çelik, I. Hickson and H. W. Lie, "Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)

Specification," World Wide Web Consortium, 12 April 2016. [Online]. Available:

https://www.w3.org/TR/CSS2/. [Accessed 15 December 2020].

[95] FileCloud, "Tech tip: How to do hard refresh in Chrome, Firefox and IE?," FileCloud, 06 March

2015. [Online]. Available: https://www.getfilecloud.com/blog/2015/03/tech-tip-how-to-do-

hard-refresh-in-browsers/. [Accessed 04 January 2021].

[96] R. G. Flatscher, "External BSF4ooRexx Functions - Overview," 08 December 2010. [Online].

Available: http://wi.wu-

wien.ac.at:8002/rgf/rexx/bsf4oorexx/current/additionalResources/refcardBSF4ooRexx.pdf.

[Accessed 14 December 2020].

[97] Javatpoint, "welcome-file-list in web.xml," Javatpoint, [Online]. Available:

https://www.javatpoint.com/welcome-file-list. [Accessed 17 December 2020].

[98] A. Barth, "HTTP State Management Mechanism," Internet Engineering Task Force, April 2011.

[Online]. Available: https://tools.ietf.org/html/rfc6265. [Accessed 27 September 2020].

[99] Eclipse Foundation, "Interface HttpServletRequest," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/httpservletrequest.

[Accessed 22 October 2020].

[100] Eclipse Foundation, "Class Cookie," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/Cookie.html.

[Accessed 22 October 2020].

[101] W. D. Ashley, R. G. Flatscher, M. Hessling, R. McGuire, M. Miesfeld, L. Peedin, R. Tammer and

J. Wolfers, "Built-in Functions," Rexx Language Association, 14 August 2009. [Online].

Available: https://www.oorexx.org/docs/rexxref/x23579.htm. [Accessed 22 October 2020].

[102] D. Ragget, A. Le Hors and I. Jacobs, "HTML 4.01 Specification," World Wide Web Consortium,

24 December 1999. [Online]. Available: https://www.w3.org/TR/html401/. [Accessed 14

December 2020].

88

[103] F. Bohórquez, "HTML Forms: The Action Attribute," Career Karma, 12 August 2020. [Online].

Available: https://careerkarma.com/blog/html-form-action/. [Accessed 16 December 2020].

[104] W3Schools, "HTML <label> Tag," W3Schools, [Online]. Available:

https://www.w3schools.com/tags/tag_label.asp. [Accessed 04 January 2021].

[105] w3schools, "HTML <input> required Attribute," w3schools, [Online]. Available:

https://www.w3schools.com/tags/att_input_required.asp. [Accessed 20 December 2020].

[106] R. G. Flatscher and G. Müller, "ooRexx 5 Yielding Swiss Army Knife Usability," in The

Proceedings of the Rexx Symposium for Developers and Users, Hursley, Great Britain, 2019.

[Online]. Available: https://epub.wu.ac.at/7412/1/201909-03_SwissArmyKnife_article.pdf.

[Accessed 29 January 2021].

[107] V. Kaplan, "Compiling Scripts to Get Compiled Language Performance," EPS Software

Corp/CODE Magazine, [Online]. Available:

https://www.codemag.com/Article/2001071/Compiling-Scripts-to-Get-Compiled-Language-

Performance. [Accessed 06 January 2021].

[108] baeldung, "Handling Cookies and a Session in a Java Servle," baeldung, 28 February 2020.

[Online]. Available: https://www.baeldung.com/java-servlet-cookies-session. [Accessed 23

October 2020].

[109] M. Tyson, "What is JDBC? Introduction to Java Database Connectivity," InfoWorld, 11 April

2011. [Online]. Available: https://www.infoworld.com/article/3388036/what-is-jdbc-

introduction-to-java-database-connectivity.html. [Accessed 12 November 2020].

[110] Z. Su and G. Wassermann, "The Essence of Command Injection Attacks in Web Applications,"

in Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, Charleston, South Carolina, USA, January 11-13, 2006. [Online]. Available:

https://web.cs.ucdavis.edu/~su/publications/popl06.pdf. [Accessed 29 January 2021].

[111] M. Aboagye, "Improve database performance with connection pooling," Stack Overflow, 14

October 2020. [Online]. Available: https://stackoverflow.blog/2020/10/14/improve-

database-performance-with-connection-pooling/. [Accessed 15 November 2020].

[112] Apache Software Foundation, "JNDI Datasource How-To," Apache Software Foundation, 06

October 2020. [Online]. Available: https://tomcat.apache.org/tomcat-9.0-doc/jndi-

datasource-examples-howto.html. [Accessed 12 November 2020].

[113] M. van Steen and A. S. Tanenbaum, "A brief introduction to distributed systems," Computing,

vol. 98, no. 10, pp. 967-1009, 2016. [Online]. Available:

https://link.springer.com/article/10.1007/s00607-016-0508-7. [Accessed 29 January 2021].

[114] F. T. Marchese, "Naming," Pace University Seidenberg School of CSIS, [Online]. Available:

http://csis.pace.edu/~marchese/CS865/Lectures/Chap5/Chapter5.htm. [Accessed 11

November 2020].

89

[115] T. Sundsted, "JNDI overview, Part 2: An introduction to directory services," InfoWorld, 21

February 2000. [Online]. Available: https://www.infoworld.com/article/2076901/jndi-

overview--part-2--an-introduction-to-directory-services.html. [Accessed 11 November 2020].

[116] S. Claridge, "Serving static content (including web pages) from outside of the WAR using

Apache Tomcat," More Of Less, 04 April 2014. [Online]. Available:

https://www.moreofless.co.uk/static-content-web-pages-images-tomcat-outside-war/.

[Accessed 21 December 2020].

[117] Apache Software Foundation, "Class Loader How-To," Apache Software Foundation, 03

December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/class-

loader-howto.html. [Accessed 10 December 2020].

[118] Apache Software Foundation, "JNDI Resources How-To," Apache Software Foundation, 06

October 2020. [Online]. Available: https://tomcat.apache.org/tomcat-9.0-doc/jndi-resources-

howto.html. [Accessed 12 November 2020].

[119] T. Sundsted, "JNDI overview, Part 1: An introduction to naming services," InfoWorld, 01

January 2000. [Online]. Available: https://www.infoworld.com/article/2076888/jndi-

overview--part-1--an-introduction-to-naming-services.html. [Accessed 11 November 2020].

[120] Oracle, "Interface Statement," Oracle, [Online]. Available:

https://cr.openjdk.java.net/~iris/se/15/latestSpec/api/java.sql/java/sql/Statement.html.

[Accessed 18 November 2020].

[121] Oracle, "Interface ResultSet," Oracle, [Online]. Available:

https://cr.openjdk.java.net/~iris/se/15/latestSpec/api/java.sql/java/sql/ResultSet.html.

[Accessed 18 November 2020].

[122] J. Holý and M. Mære, "JDBC: What resources you have to close and when?," DZone, 13

February 2013. [Online]. Available: https://dzone.com/articles/jdbc-what-resources-you-

have. [Accessed 20 December 2020].

[123] European Union, "Data protection and online privacy," European Union, 09 March 2020.

[Online]. Available: https://europa.eu/youreurope/citizens/consumers/internet-

telecoms/data-protection-online-privacy/index_en.htm. [Accessed 25 December 2020].

[124] A. Beylkin, "Opt in checkboxes & consent for email marketing," Words on Marketing,

[Online]. Available: https://www.amandabeylkin.com/marketing-blog/opt-in-checkboxes-

consent-email-marketing/. [Accessed 25 December 2020].

[125] R. Degges, "Everything You Ever Wanted to Know About Secure HTML Forms," Twilio, 30

September 2017. [Online]. Available: https://www.twilio.com/blog/2017/09/everything-you-

ever-wanted-to-know-about-secure.html-forms.html. [Accessed 18 November 2020].

[126] G. Barré, "How to store a password in a web application?," Meziantou's Blog, 17 June 2019.

[Online]. Available: https://www.meziantou.net/how-to-store-a-password-in-a-web-

application.htm. [Accessed 19 November 2020].

90

[127] H. Qureshi, "Hash Functions," Nakamoto, 29 December 2019. [Online]. Available:

https://nakamoto.com/hash-functions/. [Accessed 19 November 2020].

[128] OWASP, "Password Storage Cheat Sheet," OWASP, [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pass

word-hashing-algorithms. [Accessed 20 November 2020].

[129] N. Provos and D. Mazière, "A Future-Adaptable Password Scheme," in Proceedings of the

FREENIX Track: 1999 USENIX Annual Technical Conference, Monterey, California, USA, June 6–

11, 1999. [Online]. Available:

https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf. [Accessed 29 January

2021].

[130] OWASP, "OWASP Top Ten," OWASP, [Online]. Available: https://owasp.org/www-project-

top-ten/. [Accessed 18 November 2020].

[131] W3Schools, "SQL Injection," W3Schools, [Online]. Available:

https://www.w3schools.com/sql/sql_injection.asp. [Accessed 22 January 2021].

[132] P. Kumar, "JDBC Statement vs PreparedStatement – SQL Injection Example," JournalDev,

[Online]. Available: https://www.journaldev.com/2489/jdbc-statement-vs-

preparedstatement-sql-injection-example. [Accessed 18 November 2020].

[133] B. Brumm, "How to Escape Single Quotes in SQL," Database Star, 01 May 2017. [Online].

Available: https://www.databasestar.com/sql-escape-single-quote/. [Accessed 18 November

2020].

[134] Cloudflare, "What Is HTTPS?," Cloudflare, [Online]. Available:

https://www.cloudflare.com/learning/ssl/what-is-https/. [Accessed 19 November 2020].

[135] Apache Software Foundation, "SSL/TLS Configuration How-To," Apache Software Foundation,

03 December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/ssl-

howto.html. [Accessed 25 January 2021].

[136] Guru99, "Difference between Cookie and Session," Guru99, [Online]. Available:

https://www.guru99.com/difference-between-cookie-session.html. [Accessed 02 January

2021].

[137] Pankaj, "Session Management in Java – HttpServlet, Cookies, URL Rewriting," JournalDev,

[Online]. Available: https://www.journaldev.com/1907/java-session-management-servlet-

httpsession-url-rewriting. [Accessed 20 December 2020].

[138] JavaTPoint, "https://www.javatpoint.com/http-session-in-session-tracking," JavaTPoint,

[Online]. Available: https://www.javatpoint.com/http-session-in-session-tracking. [Accessed

20 December 2020].

[139] N. H. Minh, "How to configure session timeout in Tomcat," CodeJava, 06 August 2019.

[Online]. Available: https://www.codejava.net/servers/tomcat/how-to-configure-session-

timeout-in-tomcat. [Accessed 20 December 2020].

91

[140] S. Kamani, "Web security essentials - Sessions and cookies," { Soham Kamani }, 08 January

2017. [Online]. Available: https://www.sohamkamani.com/blog/2017/01/08/web-security-

session-cookies/. [Accessed 03 January 2021].

[141] W3Schools, "HTML src Attribute," W3Schools, [Online]. Available:

https://www.w3schools.com/tags/att_img_src.asp. [Accessed 21 December 2020].

[142] C. Broadley, "Form Enctype HTML Code: Here’s How It Specifies Form Encoding Type,"

HTML.com, [Online]. Available: https://html.com/attributes/form-enctype/. [Accessed 23

December 2020].

[143] Oracle, " Creating and Configuring JSPs," Oracle, [Online]. Available:

https://docs.oracle.com/cd/E13222_01/wls/docs92/webapp/configurejsp.html. [Accessed 24

December 2020].

[144] Guru99, "JSP File Upload & File Download Program Examples," Guru99, [Online]. Available:

https://www.guru99.com/jsp-file-upload-download.html. [Accessed 24 December 2020].

[145] Apache Software Foundation, "Annotation Type MultipartConfig," Apache Software

Foundation, [Online]. Available: https://tomcat.apache.org/tomcat-10.0-

doc/servletapi/jakarta/servlet/annotation/MultipartConfig.html. [Accessed 24 December

2020].

[146] Eclipse Foundation, "Uploading Files with Jakarta Servlet Technology," Eclipse Foundation,

[Online]. Available: https://eclipse-ee4j.github.io/jakartaee-tutorial/servlets011.html.

[Accessed 24 December 2020].

[147] N. H. Minh, "Java File Upload Example with Servlet 3.0 API," CodeJava, 27 June 2019.

[Online]. Available: https://www.codejava.net/java-ee/servlet/java-file-upload-example-

with-servlet-30-api. [Accessed 24 December 2020].

[148] L. Hubmaier, Tomcat Web Server: CGI vs. Servlet, Vienna, Austria: Vienna University of

Economics and Business, 2017. [Online]. Available:

http://wi.wu.ac.at:8002/rgf/diplomarbeiten/Seminararbeiten/2017/20171221_Hubmaier_To

mcatWithRexx.pdf. [Accessed 29 January 2021].

[149] Apache Software Foundation, "CGI How To," Apache Software Foundation, 03 December

2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/cgi-howto.html.

[Accessed 06 January 2021].

[150] Eclipse Foundation, "Jakarta Mail FAQ," Eclipse Foundation, [Online]. Available:

https://eclipse-ee4j.github.io/mail/FAQ#1. [Accessed 24 December 2020].

[151] The Eclipse Foundation, "Jakarta Activation," The Eclipse Foundation, [Online]. Available:

https://eclipse-ee4j.github.io/jaf/. [Accessed 24 December 2020].

[152] S. Kandula, "Example on getParameterValues() method of Servlet Request," Java4s, 28

January 2013. [Online]. Available: https://www.java4s.com/java-servlet-tutorials/example-

on-getparametervalues-method-of-servlet-request/. [Accessed 24 December 2020].

92

[153] GeeksforGeeks, "Properties Class in Java," GeeksforGeeks, 24 November 2020. [Online].

Available: https://www.geeksforgeeks.org/java-util-properties-class-java/. [Accessed 24

December 2020].

[154] Tutorials Point, "JavaMail API - Core Classes," Tutorials Point, [Online]. Available:

https://www.tutorialspoint.com/javamail_api/javamail_api_core_classes.htm. [Accessed 24

December 2020].

[155] Eclipse Foundation, "Uses of Class jakarta.mail.Message.RecipientType," Eclipse Foundation,

[Online]. Available: https://jakarta.ee/specifications/mail/2.0/apidocs/jakarta/mail/class-

use/message.recipienttype. [Accessed 24 December 2020].

[156] G. Mayer, Scripting the ODF Toolkit (Proof of Concept), Vienna, Austria: Vienna University of

Economics and Business, 2012. [Online]. Available:

http://wi.wu.ac.at:8002/rgf/diplomarbeiten/2012_Mayer/201211_Mayer_Scripting_ODF.pdf

. [Accessed 29 January 2021].

[157] P. Malek, "Everything You Need to Know About SMTP Security," Railsware Products, 14

August 2019. [Online]. Available: https://blog.mailtrap.io/smtp-

security/#Whats_SMTP_Is_it_secure. [Accessed 27 January 2021].

[158] R. Kumar, "How to Create VirtualHost in Tomcat 9/8/7," TecAdmin, [Online]. Available:

https://tecadmin.net/create-virtualhost-in-tomcat/. [Accessed 12 September 2020].

[159] Apache Software Foundation, "The Server Component," Apache Software Foundation,

[Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/config/server.html.

[Accessed 10 December 2020].

[160] PostgreSQL Global Development Group, "23.1. Locale Support," PostgreSQL Global

Development Group, [Online]. Available:

https://www.postgresql.org/docs/current/locale.html. [Accessed 09 December 2020].

[161] PostgreSQL Global Development Group, "9.17. Sequence Manipulation Functions,"

PostgreSQL Global Development Group, [Online]. Available:

https://www.postgresql.org/docs/current/functions-sequence.html. [Accessed 18 December

2020].

[162] S. Weiss, "error handling: permission denied for sequence _id_seq…," /* Code Comments */,

20 November 2018. [Online]. Available: https://stephencharlesweiss.com/20181120-error-

handling-permission-denied-for-sequence-_id_seq/. [Accessed 18 December 2020].

Images Used

All images used, to create the web applications of this paper, originate from Pixabay.

They are licensed under the Pixabay License, which allows them to be used for free for

commercial and noncommercial use: https://pixabay.com/service/license/

https://pixabay.com/service/license/

93

Background: R. Balog, "Landscape Nature Forest Fog Misty Pine,” Pixabay, 26

September 2015. [Online]. Available: https://pixabay.com/photos/landscape-nature-

forest-fog-misty-975091/. [Accessed 20 January 2021].

Oak: K. Craft, "Tree Oak Landscape View Field Scenic Countryside,” Pixabay, 14 July

2012. [Online]. Available: https://pixabay.com/photos/tree-oak-landscape-view-field-

402953/. [Accessed 20 January 2021].

Birch: А. Стафичук, "Summer Landscape Background Dawn Fog Beautiful,” Pixabay, 09

July 2017. [Online]. Available: https://pixabay.com/photos/summer-landscape-

background-dawn-2913409/. [Accessed 20 January 2021].

Willow: M. Amber, "Weeping Willow Pond Water Swan Reflection Summer,” Pixabay, 11

July 2019. [Online]. Available: https://pixabay.com/photos/weeping-willow-pond-

water-swan-4334489/. [Accessed 20 January 2021].

Beech: Couleur, "Tree Beech Deciduous Tree Old Tree Gnarled Leaves,” Pixabay, 19

October 2017. [Online]. Available: https://pixabay.com/photos/tree-beech-deciduous-

tree-old-tree-3601155/. [Accessed 20 January 2021].

Pine: M. Szabolcs, "Pine Forest Pine Trees Forest Pine Trees Nature,” Pixabay, 20 August

2020. [Online]. Available: https://pixabay.com/photos/pine-forest-pine-trees-forest-

pine-5572944/. [Accessed 20 January 2021].

Maple: Free-Photos, "Maple Autumn Season Fall Foliage Sunset Scene,” Pixabay, 09

November 2015. [Online]. Available: https://pixabay.com/photos/maple-autumn-

season-fall-foliage-984420/. [Accessed 20 January 2021].

	Contents
	Figures
	Listings
	Glossary
	1. Introduction
	2. Technologies
	2.1. System Programming Languages and Scripting Programming Languages
	2.2. Java
	2.3. Java and Scripting Languages
	2.3.1. JSR-223
	2.3.2. Bean Scripting Framework

	2.4. Open Object Rexx
	2.5. Bean Scripting Framework for Open Object Rexx
	2.6. Hypertext Transfer Protocol
	2.7. Hypertext Markup Language
	2.8. Jakarta Servlets
	2.9. Jakarta Server Pages
	2.10. Apache Tomcat
	2.11. Open-Source Software
	2.11.1. Apache Software Foundation
	2.11.2. Eclipse Foundation, Jakarta Namespace

	2.12. Bringing It All Together

	3. Apache Tomcat Fundamentals
	3.1. TOMCAT_HOME
	3.2. Deploying Web Applications
	3.3. Running and Stopping Tomcat
	3.4. Tomcat Manager

	4. Introducing Web Applications /helloworld
	4.1. Web Application Architecture
	4.2. Introducing Jakarta Server Pages /helloworld/helloworld.jsp
	4.2.1. JSP Directives
	4.2.2. JSP Main Content

	4.3. BSF Taglib, Expressions, Styling /helloworld/helloworld_ext.jsp
	4.4. Welcome Files /helloworld/index.html
	4.5. Introducing Cookies /helloworld/lastvisit.jsp
	4.6. Combining User Input and Cookies /helloworld/greeting.jsp
	4.7. Deleting Cookies, External Scripts /helloworld/greeting_ext.jsp

	5. Database Connection
	5.1. Java Database Connectivity
	5.2. Java Naming and Directory Interface

	6. E-Commerce Example /treeshop
	6.1. Required Setup Steps
	6.1.1. Serving Static Content
	6.1.2. Database Configuration
	6.1.3. Tomcat’s Handling of .jar Files

	6.2. Reading Data /treeshop/productlist.jsp
	6.3. Writing Data, Security Aspects /treeshop/signup.jsp
	6.3.1. The Methods GET and POST
	6.3.2. Securely Storing Passwords
	6.3.3. SQL Injection
	6.3.4. Hypertext Transfer Protocol Secure

	6.4. Creating an Online Shop, Sessions /treeshop/index.jsp
	6.4.1. mainpage.rex
	6.4.2. userheader.rex

	6.5. Creating a Shopping Cart /treeshop/shoppingcart.jsp
	6.6. Logging In /treeshop/login.jsp
	6.7. Logging Out, Invalidating a Session /treeshop/logout.jsp
	6.8. Concluding the Purchase Process /treeshop/checkout.jsp

	7. Advanced Examples /treeshop/admin
	7.1. Uploading Files /treeshop/admin/addproducts.html
	7.1.1. Upload Servlet /treeshop/admin/upload

	7.2. Sending E-Mails /treeshop/admin/sendnewsletter.jsp
	7.2.1. E-Mail Servlet /treeshop/admin/mailer
	7.2.2. Sending and Receiving E-Mails with MailHog

	7.3. Unsubscribing from E-Mails /treeshop/admin/unsubscribe.jsp
	7.4. Common Gateway Interface

	8. Conclusion
	A. Prerequisites
	A.1. Software Required to Begin
	A.2. Software Required for Advanced Examples

	B. Tomcat Installation Guide
	C. Using Tomcat 9
	D. PostgreSQL
	D.1. Installation
	D.2. Setting Up a PostgreSQL Environment Variable
	D.3. Starting the Database Server
	D.4. Setting Up a Database for treeshop

	E. MailHog Installation Guide
	F. Debug Code Snippet
	G. SSL/TLS E-Mail Utility
	References
	Images Used

