
WIRTSCHAFTSUNIVERSITÄT WIEN
Vienna University of Economics and Business

Bachelor's Thesis

I hereby declare that:

1. I have written this Bachelor's thesis myself, independently and without the aid of unfair or
unauthorized resources. Whenever content has been taken directly or indirectly from other
sources, this has been indicated and the source referenced.

2.

3.

4.
(only applicable if the thesis was written by more than one author): this Bachelor's
thesis was written together with

Unterschrift

Titel of Bachelor's Thesis (english)

Titel of Bachelor's Thesis (german)

Author
(last name, first name):

Student ID number:

Degree program:

Examiner
(degree, first name, last name):

The individual contributions of each writer as well as the co-written passages have been
indicated.

Date

This Bachelor's Thesis has not been previously presented as an examination paper in this or

any other form in Austria or abroad.

This Bachelor's Thesis is identical with the thesis assessed by the examiner.

Abstract
Usually server-side web development requires front-end developers to learn at least

one additional programming language like Python, PHP, or Java. However, the pro-

cess of learning the syntax of a new language is normally very time consuming and

especially for novice coders extremely exhausting. Though, due to the invention of tag

libraries it is possible to use scripting languages like JavaScript for developing JSP’s.

Therefore, this bachelor thesis elaborates the theoretical background of developing

web-server-client-applications with tag libraries hosted on an Apache Tomcat server.

Furthermore, several web applications running on an Apache Tomcat Server get de-

veloped, demonstrated, and explained. The web server of choice for those applications

is Apache Tomcat as it is a very popular open-source web server and able to run

servlets and Jakarta Server Pages (earlier Java Server Pages) (Vukotic & Goodwill,

2011). The tag library JSR-223 enables that the scripting language JavaScript is ap-

pliable in the web server. The developed web applications can be downloaded under

https://github.com/simon-1337/thesis-projects.

Content
Abstract .. 1

Listings ... 6

Figures.. 8

1 Introduction .. 1

2 Theoretical Background ... 3

2.1 What is Web Development? .. 3

2.2 Front-end vs. Back-end Development ... 3

2.2.1 Front-end Development .. 3

2.2.2 Back-end Development ... 3

2.3 What are Jakarta Server Pages .. 4

2.4 Tag Libraries ... 4

2.5 Why Develop JSPs with Nashorn? .. 4

2.6 script-jsr223.tld .. 5

2.7 Installation and Setup of Software Components .. 5

2.7.1 OpenJDK .. 5

2.7.2 Apache Tomcat & Eclipse IDE .. 8

2.7.3 Configuring Manager Application Access ... 11

2.7.4 script-jsr223.tld and jakarta.ScriptTagsLibs.jar 12

2.7.5 nashorn-core-15.4.jar .. 12

2.7.6 ASM .. 13

3 Basic Nutshell Example ... 14

3.1 Create a Dynamic Web Application Project ... 14

3.2 Introduction to JSP .. 16

3.2.1 Structure of JSP Files ... 16

3.2.2 Printing Dynamically Generated Content .. 19

3.3 Cookies ... 21

3.3.1 Setting Cookies ... 21

3.3.2 Requesting User Input .. 25

3.3.3 Deleting Cookies ... 28

4 E-Commerce Example ... 32

4.1 Required Software Components and Libraries .. 32

4.1.1 SQLite ... 32

4.1.2 Bcrypt .. 35

4.2 Security Aspects .. 36

4.2.1 Storing Passwords Securely ... 36

4.2.2 Hypertext Transfer Protocol Secure (HTTPS) 37

4.2.3 Sending User Data (GET vs POST) .. 38

4.3 SQLite Database Structure .. 38

4.4 Reading Data from the Server ... 39

4.5 Creating an Online Shop Main Page ... 41

4.5.1 Prerequisites ... 42

4.5.2 Main Page ... 44

4.6 Establishing Secure Registration and Login .. 47

4.6.1 Sign-Up ... 47

4.6.2 Login ... 51

4.6.3 Logout ... 53

4.7 Creation of a Shopping Cart .. 53

4.7.1 shopping_cart.js .. 53

4.7.2 checkout.jsp .. 56

5 Advanced Examples .. 58

5.1 Developing a File Upload .. 58

5.2 Sending Emails ... 61

5.2.1 Prerequisites ... 61

5.2.2 Sending a Newsletter .. 62

5.2.3 Unsubscribing the Newsletter ... 65

6 Conclusion and Future Work .. 66

Bibliography .. 67

7 Appendix .. 76

7.1 Table Creation and Value Insertion ... 76

7.2 “Hello, world” Project ... 78

7.2.1 index.html ... 78

7.2.2 helloworld.jsp .. 79

7.2.3 helloworld_ext.jsp ... 80

7.2.4 lastvisit.jsp... 80

7.2.5 greeting.jsp ... 82

7.2.6 greeting_ext.jsp ... 83

7.2.7 code/logout.js .. 85

7.3 E-Commerce Example .. 85

7.3.1 index.jsp .. 86

7.3.2 style.css .. 87

7.3.3 mainpage.js... 90

7.3.4 userheader.js .. 92

7.3.5 productlist.jsp .. 95

7.3.6 signup.jsp .. 96

7.3.7 create_user.js ... 97

7.3.8 login.jsp ... 99

7.3.9 login.js ... 100

7.3.10 logout.jsp ... 102

7.3.11 shopping_cart.jsp .. 103

7.3.12 shopping_cart.js .. 104

7.4 Advanced Examples .. 109

7.4.1 index.html ... 109

7.4.2 addproducts.html .. 110

7.4.3 uploader.jsp .. 111

7.4.4 newsletter.jsp .. 113

7.4.5 mailer.jsp .. 114

7.4.6 unsubscribe.jsp ... 117

7.4.7 unsubscriber.jsp .. 118

Listings
Listing 1: tomcat-users.xml .. 11
Listing 2: JSP directives ... 16
Listing 3: HTML backbone .. 17
Listing 4: helloworld script tag ... 18
Listing 5: helloworld_ext.jsp .. 20
Listing 6: lastvisit.jsp - request and response (cookies) ... 22
Listing 7: lastvisit.jsp - printing time of last visit .. 24
Listing 8: greeting.jsp - cookie request .. 25
Listing 9: greeting.jsp - printing customized HTML code ... 26
Listing 10: greeting.jsp - username cookie ... 28
Listing 11: greeting_ext.jsp - else statement ... 30
Listing 12: greeting_ext.jsp - accessing external script .. 30
Listing 13: logout.jsp - remove cookie ... 31
Listing 14: context.xml ... 35
Listing 15: Connecting to a database in JSP ... 35
Listing 16: "import" jbcrypt .. 36
Listing 17: productlist.jsp - adding external CSS file .. 39
Listing 18: productlist.jsp - reading data from database ... 41
Listing 19: web.xml - session-timeout configuration ... 43
Listing 20: userheader.js - checking login status .. 45
Listing 21: mainpage.js - HTML template of product container .. 46
Listing 22: Generating a password hash .. 49
Listing 23: create_user.js compliance checks .. 50
Listing 24: create_user.js - adding new customer to database ... 51
Listing 25: login.js - verification process .. 52
Listing 26: login.js - iteration through shopping cart stored in the session 52
Listing 27: shopping_cart.js - check if quantity is equal or smaller zero 55
Listing 28: shopping_cart.js - getBackgroundColor() ... 56
Listing 29: shopping_cart.js - while loop to generate the product containers 56
Listing 30: checkout.jsp - clearing shopping cart ... 57
Listing 31: Accessing style.css inside the admin folder .. 58
Listing 32: addproducts.html - <form> tag .. 59
Listing 33: web.xml - multipart configuration .. 60
Listing 34: uploader.jsp - writing a file to the server ... 60
Listing 35: newsletter.jsp - while loop to print all products inside the form 63
Listing 36: newsletter.jsp - figure out the number of email receivers 63
Listing 37: mailer.jsp - getParamaterValues() .. 63
Listing 38: mailer.jsp – for loop to save product names in a string ... 64
Listing 39: /helloworld/index.jsp .. 79
Listing 40: /helloworld/helloworld.jsp ... 79
Listing 41: /helloworld/helloworld_ext.jsp .. 80
Listing 42: /helloworld/lastvisit.jsp .. 82

Listing 43: /helloworld/greeting.jsp ... 83
Listing 44: /helloworld/greeting_ext.jsp .. 84
Listing 45: /helloworld/code/logout.js ... 85
Listing 46: /fruitshop/index.jsp .. 87
Listing 47: /fruitshop/css/style.css ... 90
Listing 48: /fruitshop/code/mainpage.js .. 92
Listing 49: /fruitshop/code/userheader.js ... 95
Listing 50: /fruitshop/productlist.jsp ... 96
Listing 51: /fruitshop/signup.jsp .. 97
Listing 52: /fruitshop/code/create_user.js .. 99
Listing 53: /fruitshop/login.jsp ... 100
Listing 54: /fruitshop/code/login.js .. 102
Listing 55: /fruitshop/logout.jsp .. 103
Listing 56: /fruitshop/shopping_cart.jsp .. 104
Listing 57: /fruitshop/code/shopping_cart.js .. 108
Listing 58: /fruitshop/admin/index.html ... 110
Listing 59: /fruitshop/admin/addproducts.html .. 111
Listing 60: /fruitshop/admin/code/uploader.jsp ... 113
Listing 61: /fruitshop/admin/newsletter.jsp .. 114
Listing 62: /fruitshop/admin/code/mailer.jsp ... 117
Listing 63: /fruitshop/admin/unsubscribe.jsp.. 118
Listing 64: /fruitshop/admin/code/unsubscriber.jsp ... 120

Figures
Figure 1: Screenshot of the system variables .. 7
Figure 2: Screenshot of the path environment variable .. 8
Figure 3: Apache Tomcat Server .. 10
Figure 4: Server Overview - "Server Location" ... 10
Figure 5: Example of a new created dynamic web project .. 14
Figure 6: helloworld project in project explorer .. 15
Figure 7: helloworld.jsp in the web browser ... 19
Figure 8: helloworld.jsp - generated html file .. 19
Figure 9: helloworld_ext.jsp in the web browser .. 20
Figure 10: Cookies in web browser .. 23
Figure 11: greeting.jsp - form in web browser ... 26
Figure 12: greeting.jsp - greeting in web browser ... 27
Figure 13: greeting_ext.jsp - greeting and logout button in web browser 29
Figure 14: Sqlite program files ... 34
Figure 15: starting sqlite ... 34
Figure 16: Entity Realtionship Model of the database tables .. 39
Figure 17: productlist.jsp - opened in web browser .. 41
Figure 18: Apache Tomcat folder ... 43
Figure 19: server.xml - added context tag ... 44
Figure 20: index.jsp - opened in web browser ... 47
Figure 21: shop.db - hashed passwords ... 48
Figure 22: shopping_cart.jsp - opened in the browser .. 54
Figure 23: Newsletter email received in MailHog .. 65
Figure 24: Creation SQLite table fruit... 76
Figure 25: Creation SQLite table customer .. 76
Figure 26: Creation SQLite table shopping_cart .. 77
Figure 27: Value insertion table fruit ... 77
Figure 28: Customer table after insertion of example users ... 77
Figure 29: shopping_cart table .. 78

1

1 Introduction
In 2022 JavaScript has been the most used programming language again (GitHub Inc.,

n.d.). Furthermore, 72% of all companies are looking for JavaScript developers

(GeeksforGeeks, 2022). Thus, many developers are competent in this language and a

lot of people will start to learn it as there are many job opportunities. However, vanilla

JavaScript (without frameworks, etc.) is usable for front-end development only. There-

fore, developers who are only capable of the language JavaScript cannot develop a

fully functional web application without learning a second language like Python, Java

or PHP, which requires a lot of effort and time.

Having said this, the framework Node.js is getting more and more popular over the last

years (Fireart Studio, 2019). Node.js is a cross-platform runtime environment with the

purpose to execute JavaScript code. This allows developers to run JavaScript code on

the server-side and thus build web applications using JavaScript on the client-side as

well as in the back end. Following that, Node.js adds additional functionality to JavaS-

cript, which is needed for back-end development (Sheldon & Denman, n.d.).

However, there is a second but less popular approach by which JavaScript can be

used to develop a complete web application from the front end to the back end. The

intended approach is developing Jakarta Server Pages (JSP) using a scripting engine

like Rhino or Nashorn. For these thesis projects the scripting engine Nashorn was cho-

sen. Unfortunately, some required server-side language functionalities are not imple-

mented in JavaScript and Nashorn. Though, the tag library jsr-223.tld developed by

Rony G. Flatscher can be used to circumvent this issue (Flatscher, 2021). The server

used for providing the built web applications was Apache Tomcat.

The goals of this paper are to use those technologies to develop example web appli-

cations, to demonstrate how such development can be performed and to ease the first

steps for developers interested in using those technologies. The example applications

are of increasing complexity and are inspired by the programs developed by Lux

(2021). The applications developed can be downloaded under https://github.com/si-

mon-1337/thesis-projects.

The rest of the paper is structured as follows. The first part of the paper will discuss

the needed theoretical backgrounds to understand the paper independent of the level

2

of expertise in this field. To ensure that the developed programs are reproducible by

any reader the next part describes the necessary installation and setup steps in detail.

After that the basic nutshell examples developed will be explained. This section will

provide some fundamental knowledge regarding the development of JSP. The fourth

section of the paper discusses the development of an example online shop application.

Next, two more advanced examples are presented. In this section a program able to

send emails as well as one including a file upload are explained. The last part of the

paper presents a conclusion of the key aspects. Moreover, remaining open questions

which open a further field for future research are discussed in this section.

3

2 Theoretical Background
The purpose of this section is to present a short overview of some essential back-

ground knowledge necessary to understand the topic.

2.1 What is Web Development?

Web development is the practice of creating and maintaining websites. This involves

the design, layout, content, and functionality of the website. Web development is a

broad field that can be divided into several subcategories. These include front-end,

back-end and full-stack development. Each of these subcategories deals with different

aspects of a website. (BrainStation, n.d.).

2.2 Front-end vs. Back-end Development

This part emphasizes the differences between front-end and back-end development.

2.2.1 Front-end Development

Front-end development is a part of web development that focuses on the user-facing

side of a website. It is the process of ensuring that visitors can easily interact with and

navigate the site. Front-end developers use tools such as programming languages,

design skills, and other tools to create the drop-down menus, layouts, and designs of

a website. The most used technologies in front-end development are HTML, CSS and

JavaScript. HTML is a markup language used to create the structure and layout of the

website, CSS is used for the design of the website, and JavaScript is used for creating

features which enable users to interact with the website. However, it is not very com-

mon for front-end developers to know other languages like Python, Ruby or Java (Sim-

mons, 2022).

2.2.2 Back-end Development

Back-end development is about working on the server-side software of a website,

which is everything that is not seen when visiting it. Back-end developers make sure

that the website works correctly by working on back-end logic, databases and servers.

By writing code, they enable browsers to interact with databases and perform actions

such as storing, understanding, and deleting data. Back-end developers create the

foundation of a website or mobile app by using languages such as Python, Java, and

4

Ruby. Ensuring the back-end works smoothly, quickly and effectively in response to

requests from the front-end is also a main part of their working field. (Coursera, 2022).

2.3 What are Jakarta Server Pages

Jakarta Server Pages (JSP) is a technology that developers use to create dynamic

web pages for Java web applications. It is based on Java servlet specification, and it

is a part of Jakarta EE. In JSP, developers write a client-side script or markup and then

use JSP tags to connect the page to the back-end Java code. Therefore, JSP can be

compared to giving HTML superpowers to interact with the back end.

Usually, HTML is sent to the client and dynamically changed on the client side with

JavaScript. However, with JSP, HTML content is dynamic by pre-processing it with

special commands to access the server capabilities and then the individually adapted

and compiled page is sent to the client (Tyson, 2022).

2.4 Tag Libraries

A custom tag library is a useful tool for web designers who want to enhance their web-

site without having to know Java. These libraries consist of a set of custom tags that

can invoke custom actions in a JSP file. The use of tag libraries can help to separate

the presentation of a website from its implementation, which makes maintaining and

reusing it easy. Another significant benefit is that complex actions are simplified as

Java coded functions are provided without the need for coding in Java. Additionally,

custom tag libraries can be used to dynamically generate page content and control the

flow of a website. Overall, custom tag libraries offer a number of benefits for web de-

velopers looking to add functionality to their website (International Business Machines

Corporation (IBM), 2021).

2.5 Why Develop JSPs with Nashorn?

The question is: “Why would anyone develop a web application by using JSP and

Nashorn?”. To answer this question it is important to understand what Nashorn is first.

Nashorn is a JavaScript engine introduced in Java 8 and was part of the JDK until Java

14. However, Nashorn development continues as a standalone OpenJDK project on

GitHub (Wikimedia Foundation, 2022b). It allows developers to run JavaScript code

within the Java Virtual Machine (JVM). This enables Java and JavaScript to interact

5

with each other and allows developers to invoke JavaScript from Java applications as

well as to use JavaScript for the development of JSPs (Bandara, 2018).

As explained in section 2.3 JSP allows easy interaction with the server. Furthermore,

it is possible to write JavaScript code instead of Java, by using the Nashorn JavaScript

engine. Therefore, it is easy for front-end developers who know JavaScript to get into

back-end development by using JSP and Nashorn. That way developers can use Ja-

vaScript to develop both the front end and back end of an application.

Additionally, JSP and Nashorn can be integrated with other Java technologies such as

JDBC which allows for easy interaction with databases and other data sources. This

gives developers even more power and flexibility when building server-side applica-

tions.

2.6 script-jsr223.tld

Unfortunately, Nashorn and JavaScript do not support XMLHttpRequests. XMLHttpRe-

quests are used to handle data sent from a client to the server. Thankfully, the tag

library script-jsr223.tld (section 2.7.4 explains where it can be downloaded) developed

by Rony G Flatscher offers the functionality needed for a web server so that any script-

ing language can be used for back-end development. Therefore, this tag library pro-

vides the attributes request and response necessary for interacting with a client

(Flatscher, 2021).

In conclusion Nashorn together with the tag library fulfills the requirements to develop

full stack web applications. This enables developing complete web applications as a

front-end developer, who is solely capable of the programming language JavaScript.

2.7 Installation and Setup of Software Components

This section provides a detailed installation guide for all necessary software compo-

nents to ensure that readers of all different backgrounds are able to reproduce the

developed web applications.

2.7.1 OpenJDK

To start the installation process a Java Development Kit needs to be installed. How-

ever, Java does not support Nashorn in Java 15 and later. Though, fortunately there is

6

an OpenJDK project which is developing an open source JDK which still has support

for Nashorn. The process of installing OpenJDK is as follows. The first step is to go to

the website https://jdk.java.net/. On this page the button OpenJDK Early Access Builds

needs to be clicked to open the required page.

The next step is to select the latest JDK version found in the section “Ready for use”.

The latest version by the time this thesis was written was JDK 19. Selecting the version

forwards the visitor to a page showing a lot of information about the selected version.

Among others the builds which can be downloaded are shown approximately in the

middle of the screen. The correct version according to the operating system needs to

be donwloaded. In the case of this thesis, the used operating system was Windows,

so the next steps are relevant only for Windows users.

To install OpenJDK on Windows it is required to download the ZIP archive file with the

description Windows/x64 next to it. After the file is downloaded it needs to be extracted

to C drive. To do so, the user needs to right-click on the file and then click on the

Extract all… menu item. Now it is required to select an extract destination for the JDK

files. Within this thesis the destination of extraction chosen was C:\jdk-19 (How to

Download and Install OpenJDK 11 on Windows 10 PC for Aleph, 2020).

After the installation process is completed, a slightly more complex step follows. In

order to use the JDK installation it is required to set up an environment variable which

points to the OpenJDK installation.

 An environment variable is a dynamic "object" on a computer, containing an

editable value, which may be used by one or more software programs in

Windows. Environment variables help programs know what directory to in-

stall files in, where to store temporary files, and where to find user pro-

file settings (What Is an Environment Variable?, 2018, para. 1).

This process is described in a very detailed manner. However, if anything is unclear

and a user does not know what exactly is to do, it is recommended to get help by a

person with some knowledge in this area or to do some more research, as the behavior

of some applications or the whole system might change when environment variables

get altered.

7

To correctly set up the environment variable it is necessary to open the system prop-

erties. The fastest and easiest way to do so is to click on the search button in the

Windows taskbar and enter env. The next step is to click on the shortcut Edit system

environment variables. Now after the system properties have opened, the user sees

the enhanced register of the system properties. Searching for the button called envi-

ronment variables needs to be done next. This button can be found on the bottom right

of the system properties window. After clicking this button, the environment variables

window opens. Once opened a table containing the user variables and another one

containing the system variables are visible. The later one is the one that matters for

this case. To proceed, the next thing to do is to click on the new button belonging to

the system variables. Now the user is required to enter a variable name and a variable

value. For the variable name one needs to enter JAVA_HOME and for the variable

value it is important to enter the exact path of the Java installation directory that was

chosen before. In case of this thesis the correct installation directory is C:\jdk-19. After

clicking on Ok, the new system variable is visible in the list of system variables (How

to Download and Install OpenJDK 11 on Windows 10 PC for Aleph, 2020). This step

was fulfilled correctly, if the system variables have an entry looking like the marked one

in Figure 1.

Figure 1: Screenshot of the system variables

After the successful creation of a new system variable one last step is needed to en-

sure that Java is fully functional. For this, it is needed to stay in the opened window

and search for the system variable Path. As the next step it is required to select the

Path variable and click on edit. In the window which has been opened a button named

new can be found. The next step is to click on this button, enter %JAVA_HOME%\bin

and click move up until the new path is on top. Figure 2 shows the path variable after

the previous steps have been done. Finally, the only thing left to do is closing the open

windows by clicking on ok.

8

For the case that there cannot be found an environment variable called Path, the user

is required to create one. The same procedure as creating the JAVA_HOME variable

can be applied. However, the user needs to enter Path as variable name and

%JAVA_HOME%\bin as variable value. For the case that the operating system is Win-

dows 7 there is no additional window which can be opened by selecting Edit. Instead

the user is required to append ;%JAVA_HOME%\bin at the end of the variable value

(How to Download and Install OpenJDK 11 on Windows 10 PC for Aleph, 2020).

Figure 2: Screenshot of the path environment variable

Important Note: The path variable as well as the system variables will look a bit different

on every system. Figure 1 and Figure 2 solely present an example how the basic struc-

ture of the variables roughly looks like. The user should not perform any other changes

then the one described in the previous section.

Once all above steps have been completed, Java is ready to use. To test if everything

works as expected the CMD (integrated command-line interpreter by Windows) needs

to be opened. To do so the easiest way is to click on the search icon in the Windows

task bar and enter cmd and click on the Command Prompt shortcut. Once the com-

mand line or also called console is opened the command java -version can be entered.

After pressing enter the console prints the installed OpenJDK version. If the console

correctly prints out the version of the installed OpenJDK the process of installing and

setting up OpenJDK is successfully accomplished (How to Download and Install Open-

JDK 11 on Windows 10 PC for Aleph, 2020).

2.7.2 Apache Tomcat & Eclipse IDE

In this thesis an Apache Tomcat server was used to develop web applications in the

Eclipse IDE. This section describes the necessary installation and configuration steps

for this setup. If a developer is using a different combination of server and IDE, some

steps described below might differ.

9

To start with, the Tomcat server as well as the Eclipse software need to be downloaded

from their homepages. The latest Eclipse software version can be found on their

homepage eclipse.org. On the webpage the user will immediately notice the download

button for the latest Eclipse IDE. To download the latest available stable version of

Apache Tomcat, the user needs to visit the webpage tomcat.apache.org. Once the

website is visible in the browser, a download area within a navigation section on the

left of the homepage is displayed. Identifying the latest stable version is quite simple.

The user only needs to look for the version with the highest version number. Versions

without alpha or beta in brackets are stable versions (Apache Software Foundation,

n.d.-a). When the latest version was clicked on a new website will open. On this

webpage the user needs to look for the section Binary Distributions. This Binary Dis-

tribution part contains a subitem core. To download Apache Tomcat the link named

zip, placed below the subitem, has to be clicked. As soon as the download is completed

it is required to extract the files inside the zip archive to the directory where the server

should be stored. In the case of this thesis the documents folder was chosen.

After that the Eclipse IDE which is already downloaded needs to be installed and

opened. In the bottom middle of the Eclipse IDE the tab servers can be found. The

servers tab will display that there are no servers available as well as the link “click this

link to create a new server…”. Clicking this link opens a new window, where the user

needs to select the server type. After the correct server is selected the user can click

on finish to close the window. Next a new window will open which requires the user to

select the directory of the Apache Tomcat installation and select the JRE. For JRE, the

button installed JREs needs to be clicked on and the OpenJDK installation needs to

be selected. If the instructions were followed exactly this should be C:\jdk-19 (or newer

than 19). If everything was done correctly the Tomcat server will be visible as [Stopped,

Republish] under the Servers tab in the bottom of your Eclipse window. In order to

know the port, on which the webpages on this server can be accessed, the user needs

to double click on the Tomcat server. After a few seconds a new window will open

which displays an overview of the server settings. Within this window a section called

ports can be found. Under this section in the row with the port name HTTP/1.1 the port

number can be seen. The default value for the HTTP port is 8080.

10

Now the user can try if the server is already working as desired. Yet it is not uncommon

that there are still some changes needed to be made. To determine if the server is

already fully functional, the user needs to right click on the server and select Start. As

soon as the server in the servers tab is displayed as Started, Synchronized. The server

can be accessed via the URL: http://localhost:8080/ in any Browser (Shah, 2019a).

Figure 3 displays how the website will look like if everything is already working.

However, the user needs to configure a few more things if the error 404 – Page not

found occurs. The first step is to go back to the Eclipse IDE and double click on the

Tomcat server again. Once the overview page is opened the user needs to go to the

section called Server Locations. There it is necessary to select the checkbox Use

Tomcat installation (takes control of Tomcat installation). After this step is done the

user needs to save the change before closing the tab. To test if it is working now, the

server needs to be restarted by right clicking on it and selecting Restart (Shah, 2019b).

Now entering the URL: http://localhost:8080/ in the Browser will open the website

shown in Figure 4.

Figure 4: Server Overview - "Server Location"

Figure 3: Apache Tomcat Server

11

2.7.3 Configuring Manager Application Access

For a programmer to be able to access the developed JSPs, it is required to configure

a username and password by which the manager application of a Tomcat web server

can be accessed. By default, the access to this manager application is strictly forbidden

for the user. This is a necessary safety measure to ensure that instead of anyone on

the internet, only authenticated users can access the manager application of a web-

server. To grant access to the Manager web application, a developer can either create

a new username and password, then assign one of the manager-xxx roles to it. Or it is

also possible to add one of the manager-xxx roles to an existing username and pass-

word combination. Creating new usernames and passwords as well as new roles is

done in the tomcat-users.xml file of the Apache Tomcat server. (Apache Software

Foundation, n.d.-c). This file can be found inside the conf directory of your Tomcat

installation. Again, in the example of this thesis the Apache Tomcat folder can be found

inside the documents directory.

Listing 1: tomcat-users.xml

Listing 1 displays the configuration necessary to access the manager application with

the username test and the password test. However, when configuring this file a devel-

oper needs to make sure that the configured lines are not within a comment. A com-

ment in an XML-File is everything between “<!--" and “-->”.

However, if Eclipse is used as IDE as soon as the server is closed and later restarted

the configuration done before will be lost and therefore the manager application is not

accessible anymore. To prevent this from happening the configuration needs to be

done in the tomcat-users.xml in the eclipse-workspace (Flynn, 2013). This is because

Eclipse makes a copy of the server configuration files in the workspace (Mihn, 2019).

For the development of this project this means the configuration needs to be done in

the tomcat-users.xml file found under this path: C:\eclipse-workspace\Servers\Tomcat

v10.0 Server at localhost-config.

To check if everything is working as intended the manager application button on the

starting page of the Tomcat server needs to be clicked. Following that the user is

<role rolename="manager-gui"/>
<role rolename="admin-gui"/>
<user username="test" password="test" roles="manager-gui,admin-gui"/>

12

requested to enter the username and password chosen in the tomcat-users.xml file. If

the credentials are entered correctly and the configuration above was done in a correct

manner the user will be forwarded to an overview of the different web projects currently

available on the server. By clicking on a link of a project the user can now open the

web application and will be directed to the index.html or index.jsp page of the applica-

tion.

2.7.4 script-jsr223.tld and jakarta.ScriptTagsLibs.jar

To allow the usage of Nashorn code for developing JSPs it is necessary to download

two specific files, namely the jakarta.ScriptTagLibs.jar as well as the script-jsr223.tld

from the URL https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/ga/.

The jakarta.ScriptTagsLibs.jar needs to be added to the lib directory inside the Apache

Tomcat folder. Afterwards the path to this folder should look somewhat like this: C:\Us-

ers\Simon\Documents\apache-tomcat-10.0.23\lib. The script-jsr223.tld file needs to be

added to the WEB-INF folder inside a Dynamic Web Project later (Flatscher, 2021).

However, this will be explained in more detail when the creation of a new Project gets

described in section 3.1.

2.7.5 nashorn-core-15.4.jar

In order to enable the usage of the Nashorn scripting engine, downloading the Nashorn

jar file is required. As Nashorn is not included in JDK since Java 15, the jar file needs

to be downloaded from the URL: https://search.maven.org/artifact/org.open-

jdk.nashorn/nashorn-core/15.4/jar (Nashorn Engine, 2020/2022). The dropdown on

the upper left can be clicked to check if a newer version is available. Once the latest

version of the Nashorn scripting engine is selected, the jar file can be downloaded. To

do so the user is required to select the downloads button on the upper right of the page.

After clicking the button, a dropdown opens where jar needs to be selected.

When the file is downloaded it can either be added to the lib directory of the server or

to the WEB-INF folder inside a project. By adding it to the project, other developers

can use the project without having to add the jar files to their server first. However,

adding the jar file to the lib directory of the Tomcat server enables the usage of Nashorn

in each new Project without any further actions (Lux, 2021). Therefore, the latter option

was chosen.

13

2.7.6 ASM

ASM is a framework that allows for the manipulation and analysis of Java bytecode.

With it, you can modify existing classes and create new classes directly in binary form

(ASM, n.d.).

According to Szegedi (2022), the Nashorn scripting engine depends on the ASM 7.3.1

files. To enable the usage of Nashorn in Apache Tomcat for developing JSPs it is

necessary to download all 4 jar files and add them to the lib directory in the Apache

Tomcat server. The required jar files are asm-7.3.1.jar, asm-commons-7.3.1.jar, asm-

tree-7.3.1.jar and asm-util-7.3.1.jar.

A user can download those ASM jar files from the OW2 Maven repository under

https://repository.ow2.org/nexus/#welcome. On this page one simply needs to search

for the 4 jar files by entering their names in the search bar (ASM, n.d.).

14

3 Basic Nutshell Example
The applications demonstrated in this section provide an introduction into developing

JSPs with Nashorn. And are of lower complexity than the programs developed later in

this paper. Like all the applications developed in this thesis, the projects discussed in

this section are based on the projects developed by Lux (2021) too.

3.1 Create a Dynamic Web Application Project

First the user needs to open the Eclipse application. Once the Eclipse IDE has opened

the easiest way to create a new dynamic web project is to click the right button of the

mouse somewhere in the project explorer of Eclipse (on the left side). Then the next

step is to click on New and select Dynamic Web Project. Now a Project name needs

to be chosen and afterwards the check for Use default location needs to be removed.

If this check is not removed, the application will be stored into the eclipse-workspace.

After that it’s necessary to click on Browse and search for the Apache Tomcat server.

Which is a folder normally named apache-tomcat followed by the version number (e.g.,

apache-tomcat-10.0.23). The project needs to be saved inside the webapps folder of

the Apache Tomcat server. Thus, the user needs to click on webapps and afterwards

right click inside the window and create a new folder. It is reasonable to choose the

same name for the project and the folder. The newly created folder needs to be se-

lected as the project location. Next finish needs to be clicked and the web project will

be created. If the newly created project is now visible in the project explorer of Eclipse

the process was successful.

Following the successful creation of a new project the next step is to add the down-

loaded script-jsr223.tld file to the WEB-INF folder of the created project. As the folder

is already existing inside every project, it is not necessary to create a new one. How-

ever, the path to this folder is long (e.g., new_project/src/main/webapp/WEB-INF).

Figure 5: Example of a new created dynamic web project

15

Therefore, it makes sense to create a new folder with the name directly inside the new

created project (e.g., new_project/WEB-INF). Now the file script-jsr223.tld must be

placed within this folder. If the newly created dynamic web project looks like the one

displayed in Figure 5 the steps have been executed correctly. To create new files like

JSP, HTML, CSS, and so on, the user now can click the right mouse when on the

newly created project and select the type of file. After that the created files can be

accessed via localhost:8080/new_project.

Important Note: It is crucial to add the new files directly inside the new created project.

By default, the files are often saved inside src/main/webapp.

However, if the projects provided on the GitHub account with the name simon-1337

are used the only thing to do is to add the .war file to the webapps folder of the Apache

Tomcat server and start the server. Afterwards the project will be automatically un-

packed, and a new folder will be created with the name of the .war file. To look at the

code or even adapt it, the user can now click File on the upper left in Eclipse and then

select Open Project from File System. Here it is required to navigate to the webapps

folder inside the Apache Tomcat server again and select the folder which was auto-

matically created by the .war file. Figure 6 displays how the helloworld project will look

like after it is unpacked and opened in Eclipse. The following sections are discussing

the files in this project.

Figure 6: helloworld project in project explorer

16

3.2 Introduction to JSP

The technology of Jakarta Server Pages or short JSP, is already introduced in section

2.2. The goal of the following paragraphs is to present the most important characteris-

tics and features one needs to know when developing JSPs.

3.2.1 Structure of JSP Files

The following part discusses the required structure of JSPs in more detail.

helloworld.jsp

The first extremely crucial parts of a JSP are the directives or more precisely in this

case the page and the taglib directives. Those directives are shown in listing 2. The

page directives define several properties dependent on the current page. These prop-

erties are then communicated to the JSP container. The first property of the page di-

rectives specifies that the used language is a scripting language based on Java. The

contentType property defines the MIME type as well as the character encoding, which

is in our case a standard html file and UTF-8 encoded (Jakarta Server Pages, n.d.,

Sec 1.10). MIME Type is short for Multipurpose Internet Mail Extensions and describes

which type of data gets sent (MIME-Type/Übersicht – SELFHTML-Wiki, 2022).

However, as those page directives are set by default when a new JSP is created, there

is no effort needed by the programmer because the page directives in listing 2 fulfill

the requirements for the applications of this work. Though this is different in the case

of the taglib directive which is needed to declare where the tag library used in this page

can be found. By using the uri attribute the tag library chosen is uniquely identified.

The prefix defines the symbol that specifies the library that should be used in a partic-

ular section (Jakarta Server Pages, n.d., Sec 1.10). In our case the uri needs to point

to the script-jsr223.tld file. If the instructions of this work were followed the required

path will be ./WEB-INF/script-jsr223.tld.

The next part of the helloworld.jsp file is HTML structure. Here again the HTML code

visible in listing 3 is inside every newly created .jsp file by default. The first line

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-
8"%>
<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>

Listing 2: JSP directives

17

describes the type of the current document, which is html in this case. This is a crucial

part as every HTML document must start with this declaration (W3Schools, n.d.-b).

The markup language consists of many tags. Almost every tag has a start and an end

tag. Opening tags always consist of a less-than sign followed by the name of the tag

and end with a greater-than sign (e.g., <tag>). Closing tags look nearly the same, ex-

cept for the small difference that between the less-than sign and the tag a dash is

required (e.g., </tag>). After the declaration of the document type the first tag needed

is the <html> tag. This one is the root of the HTML document. The space between the

start tag (<html>) and the end tag (</html>) is the container for all other HTML elements

(W3Schools, n.d.-g). The next tag which should be present in any HTML page is the

head. This element is placed between <html> and <body> and is the container which

is responsible for metadata. This means inside the head is any data that describes the

HTML document and is important for the document to correctly be displayed. However,

the metadata itself is not displayed in the document (W3Schools, n.d.-e). There are

several tags that can be used inside the head. For example, the title is strictly required

in any HTML document. The text inside this tag is shown in the title bar of the browser

or in the page’s tab. Thus a user is only allowed to write text inside this tag (W3Schools,

n.d.-h).

After the head is closed the next tag in the example is the <body> tag. The body is the

container that is filled with all contents of an HTML document that are visible for a

visitor of the webpage. Those contents include headings, paragraphs, hyperlinks, but-

tons, images and many more (W3Schools, n.d.-a)

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello, World</title>
</head>
<body>

</body>
</html>

Listing 3: HTML backbone

18

Listing 4: helloworld script tag

The file helloworld.jsp also consists of a short scripting code inside the body. This code

is inside of the <script> tag, which determines that everything within these tags is writ-

ten in a scripting language. The ‘s:’ before script needs to be equivalent to the prefix

chosen above in the directives for the tag library. Adding this prefix before script ena-

bles that the customized tags of the tag library can be used inside the area between

the opening and closing script tags. As listing 4 shows, a developer needs to declare

which scripting language is used inside these tags. In the case of this project the lan-

guage that needs to be assigned to the type attribute is javascript. From now on it is

possible to write JavaScript/Nashorn code inside the script tag. Furthermore, due to

the prefix a developer can also use all customized tags of the tag library. A full list of

all attributes that can be used by this tag library can be found under this link:

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/ga/ (Flatscher,

2021).

In the first line inside the script, the string on the right side of the equal sign is saved in

the variable greeting. In the second line the print statement prints the content inside

the brackets to the HTML file at the current position. This means everything inside the

brackets is added to the HTML document at the position of the script. Thus, what hap-

pens is that once the user requests this HTML document the script will be executed on

the server side and the content is added in the body of the file. After that the dynami-

cally generated document is sent to the client.

Writing HTML code inside this print requires to put either single or double quotation

marks around the code. However, inside those quotation marks a developer cannot

access variables declared before. Therefore, the code needs to be split into the html

code and JavaScript code to access variables. In the case of this thesis. this is done

by using the ‘+’ sign, which can be seen in listing 4. The code in this example uses the

HTML tag <div> (a container that can be filled with any content). Inside this container

is the variable greetings, which is a normal string when the HTML page gets generated.

Once a client requests the document, the file received by the client is looking like a

<s:script type="javascript">
 var greeting = "Hello, world! (Sent from Nashorn)";
 print("<div>" + greeting + "</div>")
</s:script>

19

normal HTML document containing a short text and it is not noticeable that this page

was preprocessed on the server. Figure 7 displays a Screenshot of the processed

HTML page that the client receives. As one can see, the client is not able to tell that

the document has been dynamically processed. It looks exactly as if this was a normal

HTML file with static code which got sent to the Client. Furthermore, the code that was

sent to the client is shown in figure 8. However, even there is no difference to a normal

HTML document noticeable.

Important Note: Using JavaScript on the client side, a developer can create a variable

by using the keyword let before the name of the variable. However, for the development

of JSPs with Nashorn let is not working.

3.2.2 Printing Dynamically Generated Content

Using JSP it is not possible to dynamically manipulate content on the client side of a

web application. Instead, the HTML files need to be rendered on the server side and

afterwards a static but dynamically and uniquely rendered HTML document gets sent

to the client.

helloworld_ext.jsp

The file helloworld_ext.jsp showcases a small example of a web application which dy-

namically generates HTML code by printing the current date and time into the HTML

document when a client requests the document. This is done by using the command

Date() which by default creates an object date that uses the current time zone. This

object is then saved as a string into a variable (Olawanle, 2022). However, as the goal

only is to print the current time and date into the HTML document, it is not necessary

to save the new object in a variable. Instead, it is possible to use the expr tag instead

Figure 7: helloworld.jsp in the web browser

Figure 8: helloworld.jsp - generated html file

20

of script as shown in listing 5. Due to that the current date and time is returned and

fetched as a string by the expression (Flatscher, 2021). This string is then printed in-

side the <p> tag.

Looking at listing 5 one will notice another change in comparison to the helloworld.jsp

file. The script which greets a client is not anymore in the body tag. Instead, it is placed

inside the <header> tag. Very important to mention is that this tag is totally different

from the head (which must be present in every HTML document and contains meta

data of a document). The header element can be seen as a container for introductory

content. For example, a header typically contains elements like headings, icons or

logos (W3Schools, n.d.-f). The result of the code in listing 5 is presented in figure 9.

In the following example applications, not every HTML element will be explained in

such detail like in the two previous examples. The reason for that is that most of those

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-
8"%>
<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello, world</title>
</head>
<body>
<header>
<s:script type="javascript">
var greeting = "Hello, world! (Sent from Nashorn)";
print('<h1>' + greeting + '</h1>');
</s:script>
</header>
<body>
<p>The time right now: <s:expr type="javascript">Date()</s:expr></p>
</body>
</html>

Listing 5: helloworld_ext.jsp

Figure 9: helloworld_ext.jsp in the web browser

21

tags are self-explanatory by their tag name. However, if there is something unclear the

website w3schools offers a list of available tags with a brief description available to

every element. The link to the list of HTML elements is:

https://www.w3schools.com/tags/default.asp.

3.3 Cookies

When a server sends data to a user’s web browser, a small piece of information called

an HTTP cookie gets sent too. The browser can store this cookie and send it back to

the server with any subsequent requests. Essentially, an HTTP cookie is used to iden-

tify whether two requests are coming from the same browser. This is useful for keeping

a user logged in, for example. Cookies are used to remember stateful information for

the stateless HTTP protocol. Typically, cookies are used for three purposes, namely

session management, personalization, and tracking. Session management is used for

remembering logins, shopping carts, game scores and so on. Personalization is used

for user preferences, themes, and other settings. Lastly, tracking is used for recording

and analyzing user behavior (Mozilla Foundation, 2023b).

As one will notice cookies provide a lot of extremely useful opportunities to develop

user-friendly web applications. By the examples in the following sections, it will be

demonstrated how one can set cookies. Furthermore, it gets examined how they can

be used to save data provided by a client and how cookies can be deleted. In the

applications within this thesis cookies are used to store names of clients in order to

individually greet them on the webpage. Moreover, they are used to store information

about the time when the webpage was visited previously by them. However, an even

more advanced usage of cookies is presented in the e-commerce example described

in section 4.

3.3.1 Setting Cookies

Here the creation of cookies is explained in further detail.

lastvisit.jsp

To be able to set a new cookie the first step necessary is to request all Cookies from

the client’s browser. Those cookies are then saved into the variable allCookies. As

22

already explained in section 2.65.1 those XMLHttpRequest methods are possible due

to adding the script-jsr223.tld tag library.

After requesting the cookies saved in the browser, the next step is to get the current

time as a string. For this a new object of the type of date was created and saved in a

variable called today. By default, the value of this date will be set to the current date

and time (Olawanle, 2022). However, the format of this date is not what is required for

this application. The current value of today is formatted like the date and time in figure

9. As only the hours, minutes and seconds are needed, some more coding is required.

Fortunately, JavaScript provides an easy method to retrieve single values from a date

object (Mozilla Foundation, 2022b). For example, to get value hour, the method

getHours() is used. Furthermore, an equal method exists for minutes and seconds

(Mozilla Foundation, 2022c). It is necessary to save these values as string in one var-

iable. This is important to be able to add those values to the response in form of a

cookie. Listing 6 displays a possible solution how this can be accomplished. First all

values are saved into the variable called time and afterwards this variable is converted

to a string. Now it is time to create the cookie and send it back to the user. Therefore,

the first step is to access the Java class cookie. In Nashorn importing Java classes

works a bit different then in Java. To access a class the method Java.type() can be

used. Therefore, a developer needs to add the name of the class inside the brackets

and then assign this to a new variable. In the lastvisit.jsp application the name chosen

<s:script type="javascript" throwException="true">
//reqeuest and response procedures
//first do the request and response because response won't work if something was
//already printed

//request
var lastVisit;
var allCookies = request.getCookies();

//response to add the current time
var today = new Date();
var time = today.getHours() + ":" + today.getMinutes() + ":" + today.getSeconds();
timeString = String(time);
var Cookie = Java.type("jakarta.servlet.http.Cookie");
var newCookie = new Cookie("lastVisit", timeString);
newCookie.setMaxAge(60 * 60 * 24);
newCookie.setPath("/");
response.addCookie(newCookie);
</s:script>

Listing 6: lastvisit.jsp - request and response (cookies)

23

for this variable is Cookie. Now it is possible to create new instances of this class. In

the example, an object named newCookie was created. The variable that should hold

the object needs to be written on the left side of the equal sign. On the right side the

new operator is followed by the name of the class. The attributes that should be for-

warded are needed in the brackets (Oracle, n.d.-d).

Now that the object newCookie is created, next the method setMaxAge() is used. This

determines how long the cookie should be saved by the browser. In the case of this

thesis, it was chosen that this cookie should be save for one day. The second method

that is used on the new cookie is setPath(). The reason why the path is set to “/” is

because this enables cookies being available application wide (BalusC, 2016). As eve-

rything necessary has been accomplished, the last thing this script does is to add the

cookie to the response that gets sent back to the client. By looking at figure 10 one can

see the cookie that has been sent to the web browser. It is now saved in the browser’s

storage.

What is still missing for this application is to communicate to the client when the last

visit was. For the case that no cookie named lastVisit is stored in the browser, the text

‘This is your first visit’ is displayed in the client’s browser. To do so a second script is

executed after the one presented in listing 6. This second script, which is shown in

listing 7, first checks with an if statement, whether the variable allCookies is not equal

to null. If this is not the case and consequently allCookies is empty the code inside this

if statement is not executed and the execution directly jumps to the next if statement.

Figure 10: Cookies in web browser

24

Yet, when the if statement is true a for loop gets executed which iterates over allCook-

ies. For each iteration the cookie with the index of the current iteration gets saved into

the variable c and another if statement gets executed. By this process it gets checked

whether the name of the cookie currently saved in c equals lastVisit. If this condition

becomes true, the value of the cookie which is currently saved in c gets written to the

variable lastVisit and the for loop is stopped by the break statement. The break state-

ment is not indispensable, though as the searched cookie has already been found it

would be waste of computing power to execute the whole for loop.

The last task of the second script is to either print the time of the last visit or to print

‘This is your first visit’. To accomplish this, another if statement which checks whether

the variable lastVisit is empty is needed. If this is the case, it means that there is no

cookie with the name lastVisit saved in the browsers storage and thus it is the first visit

of this user within the last 24 hours. Due to a print() statement this gets displayed in

the clients web browser. However, when the if statement is false the code inside the

else statement will be executed and the time of the last visit will be printed.

Important Note: For whatever reason the execution of print() anywhere before a re-

sponse in the script will prevent the response from being executed. To avert this issue

from happening, all executions of the print() statement were placed in the later script.

Therefore, when the first print() is executed, the response has already been sent to the

client and no problems occurs. However, it is very unpractical and for the next

<s:script type="javascript">
//Print the last visit or if it is the first visit

if (allCookies != null) {
 for (var i = 0; i < allCookies.length; i++) {
 var c = allCookies[i];
 if (c.getName() == 'lastVisit') {
 lastVisit = c.getValue();
 break;
 }
 }
}

if (lastVisit == null) {
 print("This is your first visit!");
} else {
 print("Your last visit was at " + lastVisit);
}
</s:script>

Listing 7: lastvisit.jsp - printing time of last visit

25

applications even impossible to always execute the response before a print() state-

ment. Thankfully, within this thesis it has been discovered that using out.print() or

out.println() instead of print() does not cause these problems.

3.3.2 Requesting User Input

An easy yet powerful method to develop interactive web applications is to combine

user input with cookies. By doing so, it enables creating websites customized to a spe-

cific user. Within this section an example web application, which greets every user with

their username, gets demonstrated.

greeting.jsp

The file greeting.jsp is normal JSP consisting of HTML and three JavaScript scripts

inside the body. The whole visible content of this page is generated with JavaScript,

which enables creating customized webpages for each client.

The first script that is displayed in listing 8 is used to request the cookies stored in the

client’s browser. Furthermore, it is responsible for accessing the value stored in the

cookie named username. A similar approach can be seen in the example from before

where the last visit of the user is displayed.

<!-- Request the Cookies and get the Value of the Cookie username -->
<s:script type="javascript">
var username;
var allCookies = request.getCookies();
if (allCookies != null) {
 for (var i = 0; i < allCookies.length; i++) {
 var c = allCookies[i];
 if (c.getName() == 'username') {
 username = c.getValue();
 }
 }
}
</s:script>

Listing 8: greeting.jsp - cookie request

26

Listing 9: greeting.jsp - printing customized HTML code

The next script in this JSP is responsible for printing either the input field in which the

user can enter a username or the greeting. As shown in listing 9 an if statement is used

to accomplish this. First the if statement checks whether a username is equal to null.

When this condition is true the client’s browser has not stored a cookie named

username. In this case a HTML form with two input fields inside is used. The <form>

tag is required when a web application should facilitate users to enter data that is then

sent to the web server for further processing and storage in a database (W3Schools,

n.d.-d). In the case of this application two input fields are used. The first input field is

of the type text. This means that empty text area is displayed in the user’s browser

where a username can be entered. Important here is to add the attribute required and

a name to the input field. The attribute required prevents the form from being sent with

an empty input field and the name is necessary to request the sent data on the server

side. The second input has the type submit. Input fields of type submit are displayed

as buttons. Figure 11 displays how the website looks in the browser of the user.

Once the user clicks the button the data is sent to the URL specified in the form with

the attribute action. However, if no such attribute is defined the data is sent to current

URL. This means the website reloads but stays at the same page. Furthermore, if not

specified differently the GET method is used for sending the data (Mozilla Foundation,

<!-- Printing either the input field or the 'greeting' -->
<s:script type="javascript">
if (username == null) {
 out.println('<p>Hello what is your name?</p>');
 out.println('<form>' +
 '<label for="username">Username:</label>' +
 '<input type="text" name="username" required>' +
 '<input type="submit" value="Ok">' +
 '</form>');
} else {
out.println('<p>Welcome back, ' + username + '!</p>')
}
</s:script>

Figure 11: greeting.jsp - form in web browser

27

2022a). Later in section 4.2.3 it is described what the GET method is and what other

option exists. However, for the moment it is enough to understand that in this applica-

tion the page sends the entered data to the current URL (http://localhost:8080/hel-

loworld/greeting.jsp) and the page reloads itself.

When the condition in the if statement is false, it means that the variable username

holds the value that has been priorly stored in the cookie username. This leads to the

execution of the else statement and the personalized greeting is displayed in the cli-

ent’s browser. The way the website looks once the cookie username is saved in the

browser is presented in figure 12.

The third script is of interest after the user entered a value in the input field and sub-

mitted the form. The task of this script is to create and set the cookie. In order to access

user input sent to an URL the request.getParameter() method is required. The name

of the input field that should be requested needs to be written inside the brackets. Due

to that method the value of this particular input field is returned. Every time the page is

reloaded, the if statement checks whether the function request.getParame-

ter(‘username’) returns a value that is not equal to null. When this is the case the con-

dition of this if statement is true and thus the code inside the brackets gets executed.

However, this only happens when the user entered a value in the input field and sub-

mitted the form.

Now that the user filled in the form, the value entered on the client’s side is saved into

the variable called uname. Afterwards, an instance of the class Cookie is created, the

value of the variable uname is saved in the cookie and the cookie gets sent to the client

within the response. Though this last line the function response.sendRedirect() gets

called. This function is able to redirect the user to another URL either inside or outside

the server (yaminitalisetty, 2021). However, in the case of this example the attribute

given to this function is another function, namely request.getRequestURI(). This func-

tion will return the URI of the current website and therefore the user is redirected to the

Figure 12: greeting.jsp - greeting in web browser

28

current page. The reason why this second reload is necessary will be explained in the

next paragraph.

“Login” process explained

To better understand the logic behind the code explained in this section, the process

executed once the user enters a name in the input field and clicks the submit button

will be briefly explained. The first thing that happens once the user selects Ok is that

the page reloads. Now the data entered by the user is available by using the function

request.getParameter(). What happens is that the condition of the third if statement

(displayed in listing 10) gets true and thus the code inside this statement gets executed.

This means the cookie gets created and sent to the client. However, when the first two

scripts were executed, there was still no cookie saved in user’s web browser. There-

fore, the first two scripts will be executed as if nothing had changed and the form to

enter a username would be visible again. Now, to solve this problem another reload

needs to be done and after that the page will look as intended.

3.3.3 Deleting Cookies

The following section expands the previous greeting.jsp to demonstrate two further

features. It gets determined how an external script can be accessed within a JSP. This

presents a way to build the web applications in a more structured and clearer way, as

the JavaScript code is then written in a separate file. However, the main topic of this

section will be to demonstrate how cookies can be deleted. In this example the user

input which is called username is used to greet a client in a customized manner. The

process of deleting this cookie is thus called logout, as the username required is much

<!-- creating cookie and adding it to the response -->
<s:script type="javascript">
if (request.getParameter('username') != null) {
 var uname = request.getParameter('username');
 var Cookie = Java.type("jakarta.servlet.http.Cookie");
 var newCookie = new Cookie("username", uname);
 newCookie.setMaxAge(60 * 60 * 24);
 newCookie.setPath("/");
 response.addCookie(newCookie);
 response.sendRedirect(request.getRequestURI())
}
</s:script>

Listing 10: greeting.jsp - username cookie

29

likely the usernames used in login. However, it is important to emphasize that this is

just a demonstration of the usage of cookies and is far from a “normal” login.

greeting_ext.jsp

The JSP file greeting_ext.jsp is very similar to the file greeting.jsp that has been de-

scribed in the previous section. However, an important difference can be found inside

the else statement and is presented in listing 11. Similarly to the code in greeting.jsp

this code is executed when the condition of the previous if statements is false. If this is

the case, there must be a cookie named username stored in the browser of the client.

Therefore, the username is used to print a customized ‘Welcome back’ message. This

is still the same as in greeting.jsp. However, what is new is that now a button is printed

which deletes the cookie username when it gets clicked. To accomplish this the button

together with a second input field of type hidden is located inside a form. Figure 13

demonstrates how the website will look like when a cookie named username is stored

on the client’s web browser.

Figure 13: greeting_ext.jsp - greeting and logout button in web browser

Especially crucial here is to assign the hidden input a name and a value. This will be

important when checking whether the user clicked the button whenever the page is

reloaded. Like in the form where the cookie is created in listing 9, no attributes are

assigned to the form in listing 11. This means that by default the data is again sent to

the URL the form is present at by using the GET method. Now the web application

always displays one of the two forms in the JSP depending on whether the username

cookie is stored in a client’s browser or not.

30

The second difference compared to greeting.jsp can be found when the user clicks one

of the form buttons. Once the page reloads it is necessary to check if the user wants

the name to be saved or if the user is willing to logout and therefore the cookie needs

to be deleted. The logic necessary to check whether one of this two cases is true could

have been implemented directly inside a script in the JSP. Though instead it was cho-

sen to implement it in an external JavaScript file and access it from the JSP. Listing 12

displays the code necessary to access the external script. In this case the script is

stored inside a folder named code which is in the same web project as the JSP file.

For the application to correctly operate it is crucial to provide the correct path for ac-

cessing the script. This path needs to be assigned to the src attribute.

logout.js

The file logout.js is only responsible for two thigs, either to create and set a cookie or

to remove a cookie. The first part checks whether a username has been sent to the

URL and if so, creates a cookie and sends it back to the user. This is the exact same

code as in the previous greeting.jsp example and can be seen in listing 10. The only

difference is that here it is not written into the JSP but included from an external script.

However, what is new is the second part of this external script which is shown in listing

13. The first thing that happens is the checking of whether the condition of the if state-

ment is true or false. In this case it is checked if an input field named logoutButton was

sent to the current URL and is unequal to null. As already shown before the invisible

input field inside the form has the name logoutButton and a value of 1 assigned to it.

Therefore, if the user submits this form by selecting logout, the condition will be true

and the code inside this if statement will be executed.

else {
 out.println('<p>Welcome back, ' + username + '!</p>')
 out.println('<form>' +
 '<input type="hidden" name="logoutButton" value="1">' +
 '<input type="submit" value="Logout">' +
 '</form>');
}

Listing 11: greeting_ext.jsp - else statement

<s:script type="javascript" src="code/logout.js" cacheSrc="false" />

Listing 12: greeting_ext.jsp - accessing external script

31

The code necessary to create a new cookie and set its path is the same as in previous

examples. However, what changes here is that that the maxAge of the cookie is set to

zero. Equally important is that the name of the cookie needs to be username. Once

this cookie is sent to the browser it overwrites the one that is already stored in the

client’s browser. Furthermore, as the value of maxAge is set to zero the users web

browser will delete the cookie immediately after overwriting the old one. The last step

necessary is to reload the website by using the function sendRedirect() like in the ex-

amples above in order to display the HTML page correctly.

if (request.getParameter('logoutButton') != null) {
 var Cookie = Java.type('jakarta.servlet.http.Cookie');
 var removerCookie = new Cookie('username', '');
 removerCookie.setPath('/');
 removerCookie.setMaxAge(0);
 response.addCookie(removerCookie);
 response.sendRedirect(request.getRequestURI());
}

Listing 13: logout.jsp - remove cookie

32

4 E-Commerce Example
The following examples work together to build a simple web shop. Developers can use

this as a starting point for their own online shop or as orientation of how the develop-

ment of such a web shop could look like. Again the examples below are all inspired by

and based on the applications developed by Lux (2021).

The first part will discuss the software that is required to build this web shop. Therefore,

the installation and setup of the software components will be illustrated. After this the

second section will discuss some of the most important security aspects which need

to be kept in mind when developing a full functional web shop. Then in the section 4.3

all aspects regarding the database will be examined. Each section following 4.3 will

discuss a feature of the web shop and explain the code to develop it in detail.

4.1 Required Software Components and Libraries

The purpose of this part is to introduce the additionally required software as well as

explain the necessary installation and set-up steps. The first section is about the data-

base system used for the online shop. The second part describes the hashing algo-

rithm Bcrypt and the required steps to enable using the algorithm.

4.1.1 SQLite

SQLite is a free, open-source library that contains a relational database system. It is

used in many different types of applications such as mobile phones, browsers and

Skype. It is the most widely used and deployed database system in the world. SQLite

supports most of the SQL language commands as defined in the SQL-92 standard.

SQLite library can be directly integrated into applications, so there is no need for addi-

tional server software. This is the main difference from other database systems. By

integrating the library the application is extended with database functions without rely-

ing on external software packages. SQLite has a simpler setup process compared to

other databases that rely on a client-server architecture. It requires less configuration

to be used in an application.

Furthermore, it has some unique features compared to other databases: the library is

only a few hundred kilobytes in size. An SQLite database consists of a single file that

contains all tables, indexes, views, triggers, etc. This simplifies the exchange between

33

different systems, even between systems with different byte orders. Each column can

contain data of any type, and conversion is performed at runtime if necessary. How-

ever, there is no management of user and access rights at the database level. Instead

the file access rights of the file system apply to the database files (Wikimedia Founda-

tion, 2022c).

To sum up, the main reasons why SQLite was chosen is its simplicity and ease of use.

It is lightweight and can be directly integrated into applications without the need for

additional server software and it is open source and therefore free to use.

Installation and setup

The process of installing SQLite is very simple and straightforward. First, a new folder

needs to be created. As it will be opened often via the path it is recommended to create

the folder directly inside the C:\ directory. Thus, the path of the SQLite folder would be

C:\sqlite. Once this is done, one needs to go to the download page of SQLite. The

website can be found under the URL https://www.sqlite.org/. On this website a visitor

needs to open the download page. As in the previous installation guides, this explana-

tion is referred to using Windows as operating system.

On the download page the user needs to scroll down until the section with the headline

Precompiled Binaries for Windows is reached. Here the user must download the com-

mand-line shell program to be able to work with SQLite directly on Windows. The pro-

gram needed can be found by looking in the description next to the zip files (“How To

Download & Install SQLite Tools,” n.d.). The description of the required zip file looks

like the following: “A bundle of command-line tools for managing SQLite database files,

including the command-line shell program, the sqldiff.exe program, and

the sqlite3_analyzer.exe program” (SQLite Download Page, n.d., Precompiled Bina-

ries for Windows Section).

Now that the zip file has been downloaded successfully the content of the file needs to

be extracted to the folder sqlite that has been created before. If everything is done

correctly the three programs shown in figure 14 should be visible inside the sqlite

folder.

34

Figure 14: Sqlite program files

Finally, to test if SQLite is ready to use, the user can open the program in the console.

To open the console the user needs to search for cmd. The first suggestion will be

command prompt which needs to be selected. After that the command line window will

be opened. Here the user can navigate to the sqlite program. To open a file or a folder

the user needs to enter cd followed by the name. Via the command cd .. the console

switches to the directory located immediately above the current. The command dir is

used to display all folders and files inside the current directory.

In the case of this project, it is necessary to move to the directory above until the current

directory is C\:. Then the next step is to use the command cd sqlite. In the sqlite folder

the user can use the command sqlite3 to start the SQLite. Now in the first line the

version of SQLite is visible, which means that sqlite is started and it is ready to use. To

see all available commands in sqlite the user can type .help. To quit the program the

command .quit is used (“How To Download & Install SQLite Tools,” n.d.). Figure 15

displays the commands required to start SQLite and the output in the console once

SQLite is started. To create a new database the user needs to type .open followed by

the name the database should have. If there is no such database inside the folder

SQLite will automatically create a new one. For this project the chosen name for the

database is shop.db.

Connection with JSP

To connect the SQLite database with the JSPs some configurations need to be done.

First it is necessary to download the SQLite JDBC Driver. JDBC stands for Java

Figure 15: starting sqlite

35

Database Connectivity and is an API to connect a database and execute queries

(JDBC Tutorial | What Is Java Database Connectivity(JDBC) - Javatpoint, n.d.). The

.jar file of the SQLite JDBC Driver can be downloaded from https://mvnreposi-

tory.com/artifact/org.xerial/sqlite-jdbc. After the download, the file needs to be added

to the lib directory of the Tomcat server.

Furthermore a context.xml file needs to be added to the WEB-INF folder of the project.

Inside this context.xml file the configuration seen in listing 14 needs to be done. The

URL must point to the correct location of the database (Apache Software Foundation,

n.d.-b, Sec. JDBC Data Sources). In most context.xml examples a username and a

password will be set too. However, by default SQLite does not require authentication

and thus username and password is not necessary (SQLite: Documentation, n.d.).

When the provided fruitshop project is used creating and adding the context.xml file is

not required as this is already done.

As soon as the steps above are accomplished, a JSP can connect to a database by

using the code displayed in listing 15. The first line of the code snippet imports the

connection class from the java.sql.package. The second one is there to create the

connection to the SQLite database. Using this code enables the JSP to read from and

write to the database (How to Connect to SQLite via JDBC, n.d.).

Listing 15: Connecting to a database in JSP

4.1.2 Bcrypt

BCrypt is a way to secure user passwords by encrypting them using a technique called

hashing. It was created by two computer scientists, Niels Provos and David Mazières

<Context>
 <Resource name="jdbc/sqlite" auth="Container"
 type="javax.sql.DataSource" driverClassName="org.sqlite.JDBC"
 url="jdbc:sqlite:C://sqlite/shop.db" maxTotal="100" maxIdle="10"
 maxWaitMillis="-1" removeAbandonedOnBorrow="true" removeAbandonedTimeout="60" />
</Context>

Listing 14: context.xml

// Import the Connection class from the java.sql package
var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

36

in 1999 and it is based on Blowfish cipher. It is designed to be resistant to attacks

where someone tries to guess the password by trying many different options. Further-

more, it uses a random value called a salt to protect against a type of attack called

rainbow table and it can adapt over time by making the encryption process slower, so

it continues to be secure even as technology improves (Wikimedia Foundation, 2022d).

The reason why such a hashing algorithm is crucial will be explained in section 4.2.

Installation and setup

The implementation of Bcrypt is very easy and newcomer friendly. To use Bcrypt there

are several libraries out there ready to use. The one used in this example is the jBcrypt

Java library provided by Damien Miller. To use this library the user simply needs to

download the jar file from https://mvnrepository.com/artifact/org.mindrot/jbcrypt/0.4

and copy it into the lib directory of the Apache Tomcat server or into the lib folder inside

the WEB-INF folder of the web application. In our example the jar file was copied into

the lib directory of the Apache Tomcat server. Once those steps are accomplished,

bcrypt can be used by the code shown in listing 15.

4.2 Security Aspects

As web applications like online shops store sensitive user data, security is one of the

most important aspects to think of. Yet the goal of this thesis is to demonstrate how a

basic web application could look like and not to present ways to build highly secure

web applications. However, this section will provide a small insight into web security

and discuss some basic security measures. For a real-world web application which

stores user data, a lot more needs to be thought of and an expert in this field is abso-

lutely needed.

4.2.1 Storing Passwords Securely

To provide a login mechanism a web application needs to store user credentials in a

table. The security strength of this depends on how the password is stored. Cleartext

is the least secure way to store passwords. It is easy for an attacker to break into the

database and steal the password table. This could give them access to each user

var bcrypt = Java.type("org.mindrot.jbcrypt.BCrypt");

Listing 16: "import" jbcrypt

37

account. The problem is further compounded by the fact that many users re-use or use

variations of a single password, which potentially allows the attacker to access other

services too. A more secure way to store a password is to use hashing which changes

the password into data that cannot be converted back to the original password (Arias,

2019, Sec. Storing Passwords is Risky and Complex)).

Hashing

A hash function is a mathematical process that takes any amount of data and changes

it into a fixed-size string of bits (Arias, 2019, Sec. What's hashing about?). It is a great

way to ensure that passwords are safe. One of the key properties of hashing is that it

is irreversible, which means that the original password cannot be recovered from the

hashed version. Additionally, hashing is deterministic, which means that the same in-

put will always produce the same output. This is important for authentication because

it allows to consistently verify user credentials. When an account is created, the pass-

word is transformed using a hashing algorithm and the username as well as the hashed

password is saved in the database. When the user logs in, the provided password gets

hashed and compared to the stored hash. If they match, the login is valid. The original

password is never stored, only the hashed version. Further on a salt is a good measure

to strengthen the hash. (Arias, 2019 Sec. Using Cryptographic Hashing for More Se-

cure Password Storage).

Salting

A salt is a unique and randomly generated string that is added to each password as

part of the hashing process. This makes it difficult for an attacker to crack large num-

bers of hashes at once, because they would have to use the respective salt for each

hash, which would make the process a lot more time-consuming. Salting also protects

against the use of pre-computed hashes as well as rainbow tables and makes it im-

possible to determine whether two users have the same password. In summary, salting

makes cracking hashes more difficult and provides an extra layer of security for pass-

word storage (The Owasp Foundation, n.d., Sec. Password Storage Concepts).

4.2.2 Hypertext Transfer Protocol Secure (HTTPS)

HTTPS, also known as Hypertext Transfer Protocol Secure is an encrypted version of

the standard HTTP protocol. It uses SSL or TLS to encrypt all communication between

38

a client and a server to provide protection against eavesdropping and tampering. It is

highly recommended for all web applications that handle sensitive user data, as it al-

lows clients to safely exchange sensitive data with a server. (Mozilla Foundation,

2023a). Transport Layer Security (TLS) is simply an updated version of Secure Socket

Layer (SSL) that provides higher security. However, while nowadays most offered cer-

tificates are TLS, they are often referred to as SSL, as this term is more widely recog-

nized. SSL and TLS are digital certificates that are used to establish a secure connec-

tion between a web server and a web browser. Such a certificate contains the public

key and the identity of the website and it is issued by a trusted certificate authority

(CA). To get a certificate, the website owner needs to apply for one from a trusted

certificate authority (CA) and prove the ownership of the website (DigiCert, Inc, n.d.).

In actual web applications, the implementation of HTTPS through an SSL/TLS certifi-

cate is essential for maintaining security. However, as this is just an example project

and not intended for public access, HTTPS has not been implemented.

4.2.3 Sending User Data (GET vs POST)

The GET and POST methods are both used for transferring data from a client to a

server in the HTTP protocol. The POST method is used for sending additional data

from the client to the server, which is placed in the message body. On the other hand,

using the GET method all the data required by the server is included in the URL. How-

ever, while with GET the amount of data that can be sent is limited to 2048 characters,

there are no such limitations with the POST method. Regarding security the GET

method is less secure as the sent data is part of the URL (Educative, Inc, n.d.). The

POST method sends data stored in the body of a HTTP request. Thus it is more secure

as the parameters are not stored in browser history or web server logs (W3Schools,

n.d.-i). For the following applications form data will be transmitted to the server using

the POST method instead of the GET method.

4.3 SQLite Database Structure

In the example provided within this thesis a web shop selling fruits was developed.

First the basic structure of the database had to be considered. A minimalistic entity-

relationship model (ER model) was created to provide a clearer understanding of the

database structure and the connections between tables in our web shop. This made

39

creating the tables simpler and less prone to errors. An ER model is a way to describe

the relationships between different entities within a particular subject area. In the case

of software engineering, ER models are often used to show the information required

by a business in order to be able to perform its operations. Therefore, the ER model

acts as an abstract data model, which outlines the structure of data that can be imple-

mented in a database (Wikimedia Foundation, 2023). The erm presented in figure 18

was developed with the software draw.io. However, as this model was designed to

identify the structure of the back end immediately, only the most essential information

for the development is contained in it. For the creation and management of the tables

in this database the Windows command line was used. The necessary SQLite com-

mands to create the tables can be found in the Appendix of this work.

Figure 16: Entity Realtionship Model of the database tables

4.4 Reading Data from the Server

The first application developed in this e-commerce example is a simple list to display

the products offered on the website. The goal of this is mainly to showcase reading

data stored on a server and displaying it on a webpage.

productlist.jsp

The first new element in this JSP file is the <link> tag inside the head. This one is used

to access an external CSS file. CSS files are used to style the elements inside an

HTML file. The file is located inside a folder named css. Listing 17 displays how exter-

nal CSS files can be added to a JSP file.

<link rel="stylesheet" href="css/style.css">

Listing 17: productlist.jsp - adding external CSS file

40

The other new features of this file can be found inside the <script> tag of the file. Here

the first line of code imports the DriverManager class needed connect with the data-

base. This class enables the use of useful methods like getConnection(). The getCon-

nection() method is used to establish a connection with specified URL (Java Driver-

Manager - Javatpoint, n.d.). As it is shown in listing 18 this connection is saved in the

variable conn. Now that the connection is established, the data needs to be read from

the database. This is usually done with an SQL SELECT statement. The statement

shown in listing 18 causes that all fields of the table fruit are returned. This is caused

by the attribute *. To restrict the output the statement can look somewhat like this:

SELECT price FROM fruit (W3Schools, n.d.-j).

To execute the SQL statement, the variable call needs to call the method createState-

ment(). This method creates a statement object, which enables sending SQL state-

ments to the connected database (Oracle, n.d.-a, Sec. Method Detail). In this example

the object is saved in the variable stmt. From now on this variable can be used to

execute a query. For the execution of the query, the method executeQuery() is used.

When the script is executed, the executeQuery() method returns a single ResultSet

object (Oracle, n.d.-c, Sec. Executing Queries). This object contains the data retrieved

through the query. In the case of this example, the retrieved data is saved in the vari-

able rs.

As the data is now accessible via the variable rs the next step is to iterate through the

data and print it to the HTML page. The data of a ResultSet can be accessed through

a cursor. The cursor, which is a pointer, is used to navigate through the rows of data.

Initially, the cursor is positioned before the first row. You can move the cursor to differ-

ent rows by calling various methods, such as next(). In the example of the product-

list.jsp file, the data in the row where the cursor is currently positioned is outputted,

each time next() is called (Oracle, n.d.-c, Sec. Processing ResultSet Objects). The

intended look of the product list when it is opened in a web browser can be seen in

figure 17.

41

Listing 18: productlist.jsp - reading data from database

4.5 Creating an Online Shop Main Page

A fully functional online shop requires a main page which acts as a harbor of the web

application. By default, a user who visits the website will be directly headed to the index

file of the application. From this stage the user needs to be able to see all important

features and capabilities at one glance. Therefore, the website needs to offer a section

where the important links are placed. In this case there are links directing to the sign-

up page, to the login page and to the shopping cart of the online shop. For logged in

users the possibility to log out needs to be available too. Moreover, it is important to

present all available products to the user and offer the functionality to add them to the

shopping cart. However, before the following sections will explain the development of

this JSP in more detail, some preconditions need to be declared.

// Import the DriverManager class from the java.sql package
var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

// Execute a SELECT query to retrieve all data from table fruit
var stmt = conn.createStatement();
var rs = stmt.executeQuery('SELECT * FROM fruit;');

out.println('');
while (rs.next()) { //iterate through all rows in the table
 out.println('' + rs.getString('name') + ': ' + rs.getString('price') +
'€');
};
out.println('')

Figure 17: productlist.jsp - opened in web browser

42

4.5.1 Prerequisites

This section declares which conditions need to be set in order to make the main page

work properly.

Cookies vs Sessions

The functionality to add products to the shopping cart is offered to all users independ-

ent of their signed in status. Therefore, even users who are not logged in can add

products to the shopping cart. However, it is a bad user experience if the page does

not remember the products in the shopping cart. For example, the worst case scenario

would be that a user wants to log in and after loading login.jsp file all progress of adding

the required products is lost.

To prevent such experiences from happening, a method to store information without

having user credentials is required. An example of such a method could be cookies,

which were already introduced in section 3.3 on page 21. However, there is a more

advanced method named sessions, which deliver some useful advantages compared

to cookies. In principle, sessions also make use of cookie technology. However, the

difference is that instead of storing the data in the browser on the client side, the data

is stored on the server which brings some benefits along. First sessions in comparison

to cookies can store a lot more data. cookies only possess the capability to store 4 KB

of data, while sessions have a capacity of 128 MB. Furthermore, as cookies are stored

on the server, sessions also provide a higher level of security (gittysatyam, 2021).

According to Lux (2021) Tomcat provides an easy way for the implementation of ses-

sions. To create one the session attribute in the page directive (on top of every JSP

file) needs to be set true. The HttpSession interface creates a unique session ID for

each user and stores it in a cookie called JSESSIONID. This cookie is sent every time

the page is requested. It allows to store and retrieve objects related to the user's ses-

sion. If cookies are disabled, the URL is modified to include the session ID instead

(Lux, 2021). However, a JSP in an Apache Tomcat server sets the session attribute to

true by default. Therefore, using sessions does not require any configuration

(no.good.at.coding, 2011).

Yet the default configuration of the session causes that the session will be deleted after

30 minutes. To prevent this, it is necessary to change this and increase the time to 1

43

day. To do so, <session-config> inside the web.xml file needs to be changed. Once a

user found this tag, the value inside <session-timeout> needs to be changed to 24*60.

Listing 19 displays how the <session-config> needs to look like (Mihn, 2019).

Important Note: If Eclipse is used as an IDE, it is crucial to perform the change in the

web.xml file located in the eclipse-workspace. Otherwise, the change will be lost once

the server is started (Mihn, 2019).

Product Images

The last thing to think of before developing the JSP files are the pictures used in the

online shop. All images presented on the shop were distributed under the CC0 license,

are free to use and do not require any attribution.

In the advanced examples (section 5) an application by which new products can be

added will be presented. Thus, this will require the upload of new images. If all images

would be stored in different locations it would be problematic to easily access all im-

ages without configuring a path for each picture by hand. Therefore, a new folder is

needed in which all images are saved. In this example, the folder is named files and

located in the Apache Tomcat folder. Figure 18 shows how the folder needs to look

like.

Figure 18: Apache Tomcat folder

To enable web applications to easily access the files folder additional configuration

steps are required. For this a user needs to open the server.xml file. Once again if

Eclipse is used the file needs to be changed inside the eclipse-workspace. In the bot-

tom of this document the <host> element is located. This element needs to be

 <sesison-config>
 <session-timeout>24*60</session-timeout>
 </sesison-config>

Listing 19: web.xml - session-timeout configuration

44

extended by the following line: <Context docBase="C:\location-of-tomcat-

server\apache-tomcat-10.0.23\files" path="/files" /> (Lux, 2021). The path inside must

be changed to point to the correct location of the files folder. Figure 19 displays how

the server.xml file looks like after this configuration step.

After this configuration all web applications on the server can access the images inside

this folder via the path /files. This is equivalent to folders which are present inside a

project (e.g., the css or code folder).

4.5.2 Main Page

The files required to build the main page are explained in the following paragraphs.

index.jsp

A user opening the web application will be directed to this page by default. The JSP

file itself is nothing special. In principle it is a normal web document. However, there is

no visible content present in the file. Instead, two external scripts which are responsible

for the dynamic creation of the content are accessed. The first script, namely us-

erheader.js is accessed inside the header of the document The second one, main-

page.js is accessed inside the body.

userheader.js

The task of this script is to correctly display the links to other pages like the login page

or the shopping cart. It can be seen as the navigation area of the web application but

it needs to present differing links depending on the circumstance. The first context that

needs to be considered is which page is currently displayed. For example, if the user

is currently in the login page, a link directing to the login page would be redundant.

Though this is not necessary to be considered in here because userheader.js is only

accessed on the main page (index.jsp). However, what needs to be managed by the

script it to check if a user is logged in or not. Logged in users should see a button to

log out, while others should see the login and sign-up button.

Figure 19: server.xml - added context tag

45

To accomplish this task, first it needs to be checked if a user is logged in. To do so,

the developed web application utilizes sessions. Therefor, the customer_id of a user

who has been logged in successfully is stored in the session of a web browser. This

information is stored until a user selects to log out or 24 hours pass. However, the

functionality of the login and sign-up process will be explained in section 4.6.

Now, the first step of the userheader.js file is to request the session. This is done via

the method request.getSession(). The output of this method needs to be stored in a

variable. After that calling the function .getAttribute() by this variable will either return

the id of the logged in customer or null. This can be exploited to check if a user is

logged in or not and depending on that display different links in the navigation area.

Listing 20 displays the two if statements to check whether the user is logged in or not.

Listing 20: userheader.js - checking login status

For users who are not logged in, the session is used to retrieve information about the

number of products in the shopping cart. In case that the user is logged in, the data-

base is used instead.

mainpage.js

The code inside this JavaScript file is responsible for the presentation of the offered

products. Furthermore, it enables the customer to select a quantity and add the item

to the shopping cart. First the script displays the products in a grid. The function to do

so is like the one used to display a product list in section 4.2. Though the difference is

that here not only the product names and prices are requested. The function that gen-

erates the HTML code to display a product is called in a loop to display all products

available. Listing 21 shows this function. All the attributes forwarded to this function

are retrieved from the database by using an SQL SELECT statement. Crucial is that

the parameter picture needs to follow this pattern: /files/pictureName.jpg. However, it

//// HEADER FOR A USER NOT LOGGED IN ////
if (session.getAttribute('logged') == null) {

...
}
//// HEADER FOR A LOGGED IN USER ///
if (session.getAttribute('logged') != null) {
 ...
}

46

is not the task of the file mainpage.js to provide the path in the correct way. This needs

to be considered in section 5.1 and when the products are inserted in SQLite by hand.

The second task of this JavaScript file is to adjust the shopping cart every time a user

adds a new item. For that purpose, like in userheader.js the login status needs to be

checked. If a user is logged in the update of the shopping cart needs to take place in

the database. Else the session attribute shopping_cart needs to be created or updated

if it is already existing. Figure 20 presents a screenshot of how the index.jsp of the

online shop looks like.

Important Note: It is recommended to explicitly close the Connection, the Statement or

PreparedStatement and the ResultSet when they are no longer needed (Oracle, n.d.-

b).

//// HTML TEMPLATE ////
function templateProductItem(name, price, weight, picture, fruit_id) {
 out.println('<div class="product-container">' +
 '<h2>' + name + '</h2>' +
 '' +
 '<p>Price: ' + price + ' Euro</p>' +
 '<p>Weight: ' + weight + 'Kg</p>' +
 '<form name="selection" method="post">' +
 '<input type="hidden" name="selection" value="' +
 fruit_id + '">' +
 '<select name="quantity">' +
 '<option value="1">1</option>' +
 '<option value="2">2</option>' +
 '<option value="3">3</option>' +
 '<option value="4">4</option>' +
 '<option value="5">5</option>' +
 '</select>' +
 '<input type="submit" style="cursor: pointer;" ' +
 'value="Buy">' +
 '</form>' +
 '</div>');
}

Listing 21: mainpage.js - HTML template of product container

47

4.6 Establishing Secure Registration and Login

For providing a realistic online shop experience it is essential to provide users the pos-

sibility to log in to our webpage with a registered account or to create a new account if

the user does not possess one. In this regard storing the password in a secure and

responsible manner is a key aspect in providing such services. Therefore, it is neces-

sary to encrypt the passwords of registered users. In this example, the hashing algo-

rithm of choice is the Bcypt algorithm. All requirements to use this algorithm are already

discussed in section 4.1.2 on page 35.

4.6.1 Sign-Up

The following paragraphs declare how the registration of new customers works.

Particularity database value insertion

For this thesis the creation of the user accounts was done via the developed sign-up

application. It is also possible to insert the rows in the table customer by hand in

SQLite. However, if a salt is used the salt needs to be stored next to the password

hash in the password file. Thankfully, using the Bcrypt algorithm this happens auto-

matically. (Selzer, 2020, Sec. Salting a password). Furthermore, Bcrypt stores the

number of rounds used to produce the hash too. The number of rounds is often referred

to as the work factor.

Figure 20: index.jsp - opened in web browser

48

Though even if the rounds as well as the salt need to be stored to check an entered

password against a password in the database, it is possible to externally produce a

hash with Bcrypt and insert it. The reason for that is that Bcrypt stores the salt and the

work factor as well as the hashed passwords in the stored hash (erickson, 2011). Fig-

ure 21 displays how those hashes look like. Each row in this figure represents a differ-

ent password but also holds the information about the used salt and the number of

rounds used to produce it. After the first $ the value 2a defines the version of the used

Bcrypt algorithm. Following the next $ the value 12 determines the work factor used to

generate the hash. The value after the third $ represents the salt and the hashed pass-

word. The first 22 characters of this string represent the salt and the remaining char-

acters represent the hashed password. This cipher text is the one that needs to be

compared during the verification process (erickson, 2011).

Therefore, it is not a problem if a different work factor was used to generate the pass-

word. The function to check if the passwords are identical automatically knows what

work factor and what salt were used when the stored hash was generated. Thus, it is

possible to either use an online hash generator or to write a script which does that

locally. From a security perspective it will be better to not use an online hash generator.

Therefore, listing 22 presents a script that can be used to generate a hash. This hash

can then be inserted into the shop.db. Bcrypt uses a salt that is fixed in length and

cannot be changed. The length of the salt used is 128 bits (Zhang, 2022). However,

what is changeable is the work factor. By default, the work factor used is 10 but I in the

script it has been increased to 12 as this will generate an even stronger hash (Miller,

n.d.). The passwords chosen for the example customers were created with the follow-

ing pattern: username: user@mail.com password: user.

Figure 21: shop.db - hashed passwords

49

signup.jsp

The page signup.jsp provides a form which is needed to get the necessary data from

unregistered visitors of the web application, who are willing to create an account. The

user needs to enter a username, a password and an identical repetition of the pass-

word. The username must be an email address. Entering this password twice has the

purpose to reduce the risk of a typo by the customer. The filling of those three input

fields is necessary to submit the form. To assure that the fields are entered correctly

the attribute required is added to all three input fields and the username input is as-

signed to the type of email. Thus, none of these three input fields can be left out and

the username input requires the scheme of a valid email address to proceed. However,

the form also provides an additional input field which is displayed as a checkbox. This

one is not required, and its purpose is to determine if a customer is willing to receive

advertisement emails. Once the form gets submitted the data provided by the customer

gets sent to the server via the POST method and is handled by the file create_user.js.

create_user.js

The first step to initiate the insertion of the provided user data into the database is to

request the parameters username, pwd1 and pwd2. Once this is done it is necessary

to check if the entered passwords match each other. The code developed to do that

can be seen in listing 23. In case the entered passwords are not identical, a warning is

printed to the user that it did not work and retrying is necessary. If the passwords are

the same nothing happens and the execution of the code is continued in the normal

manner.

var bcrypt = Java.type("org.mindrot.jbcrypt.BCrypt");
var plaintextPassword = 'example';
// Generate a new salt, cost of the later hashpw will be 12
var salt = bcrypt.gensalt(12);

// Hash the password with the salt
var hashedPassword = bcrypt.hashpw(plaintextPassword, salt);

out.println('The password hash is:' + hashedPassword)

Listing 22: Generating a password hash

50

if (pwd1 != pwd2) {
 out.println('<p class="warning">Your entered Passwords do not match, please
try again!</p>');
}

if (username !== null && pwd1 !== null && pwd1 === pwd2) {
 insertIntoDB();
}

Listing 23: create_user.js compliance checks

The next step is to check if all input values are unequal to an empty string and if the

two entered passwords match. As it is checked if the two entered passwords are iden-

tical it is not necessary to check both passwords against an empty string. As seen in

listing 23 if the statement is true the function insertIntoDB() gets executed.

Everything from now on is inside the function insertIntoDB() and thus only executed if

the input values are valid. The reason why the whole code is inside a function is that it

offers the possibility to exit the code in a clean and easy way by using the return state-

ment. The first task of the function is to establish a connection with the database shop.

After that a PreparedStatement is needed to check if the user already exists. If this is

the case and the username is already stored in the database, the return statement is

used to stop the processing of the function after a warning is printed to the visitor of

the website.

If the username is not in the database, the execution of the script can go on and the

password hash is generated. After that the username and the hashed password are

added to the database using the SQL statement INSERT. Moreover, it is checked if

the customer is willing to receive emails. If this is the case the value in the column

receives_mail is updated to 1. By default, the value of this is 0 which means that the

customer does not want to get additional emails. In this case 0 and 1 are used as

boolean values instead of true and false because SQLite does not have a dedicated

boolean type (Tandetnik, n.d.).

The reason why PreparerdStatements instead of Statements are used in this script is

that it is more readable and especially more secure against SQL injections. SQL injec-

tions are especially dangerous when DML (Data Manipulation Language) queries are

used (baeldung, 2022). SQL commands that are used to manipulate the data in a da-

tabase are part of the DML. This includes the SQL statement INSERT, which will be

51

used to insert new data into the table customer later in the script (GeeksforGeeks,

2017).

Listing 24 demonstrates the code which is responsible for the insertion of the new cus-

tomer. Furthermore, it displays the code that updates the boolean value in the column

receives_mail for users who are willing to receive further emails.

Listing 24: create_user.js - adding new customer to database

4.6.2 Login

While the login.jsp file only is responsible for providing the form, where a user can

enter the credentials to log in, the file login.js contains the logic behind the login pro-

cess.

login.js

The first part of the script is responsible for the basic prerequisites. Therefore, the ses-

sion is requested, the parameters sent by the form are written into variables and the

connection is established. After this part which is nearly the same in almost all appli-

cations developed for this e-commerce example, the next step is to check if the entered

credentials match with one from the database. The code that accomplishes this task is

shown in listing 25. If the entered username exists and the cipher texts of the entered

and the stored password are matching, a session attribute with the name logged is set.

The customer_id of the user gets set as the value of this attribute. After that all pages

in this project can identify the current user.

 prepstmt = conn.prepareStatement("INSERT INTO customer (username, password) " +
 "VALUES (?,?)");
 prepstmt.setString(1, username);
 prepstmt.setString(2, hashedPassword);
 prepstmt.executeUpdate(); // add new user to database
 prepstmt.close();

 if (request.getParameter("newsletter") == 1) {
 prepstmt = conn.prepareStatement("UPDATE customer SET receives_mail=1 " +
 "WHERE username=?");
 prepstmt.setString(1, username);
 prepstmt.executeUpdate(); // sign the user up for e-mails
 prepstmt.close();
 }
 conn.close();

52

 //check if password is correct
 if (bcrypt.checkpw(pwd, hashedPassword)) {
 //store the login status is the session
 session.setAttribute('logged', id)

Listing 25: login.js - verification process

Once the session attribute is set, the last main task of this script is to transfer the

shopping cart stored in the session to the shopping cart stored on the database. To do

so, a for loop is used to iterate through the key-value pairs saved in the object shop-

ping_cart. Each key in there is a different fruit_id and thus refers to a different item. By

each iteration the variable selection will possess the value of the current key (fruit_id).

By using this key, the value of the fruit can be accessed. This accessed value is the

quantity, or precisely how often this item is in the cart. This logic is showed in listing

26.

Listing 26: login.js - iteration through shopping cart stored in the session

Next step is to check if the fruit is already stored in a customer’s database shop-

ping_cart. If so, the quantity that is already stored in the database and the quantity of

the session’s shopping cart need to be aggregated. After this is done. The values are

inserted into the database table shopping_cart. This whole process is repeated until

all items in the sessions shopping cart are transferred to the database. Once all items

are added to the database the session attribute shopping_cart needs to be removed.

However, the code regarding the transfer of the shopping cart only gets executed if the

session shopping cart is not empty.

Implementing this transfer of the items is extremely important for providing a satisfying

user experience. For example, it might be that a user first adds products to the shop-

ping cart and afterwards wants to log in to be able to check out. However, if the transfer

//iterate through the shopping_cart that was stored in the session
for (var selection in shopping_cart) {

quantity = shopping_cart[selection];
 quantity = parseInt(quantity);
 item = selection;

53

would not be implemented, the user would need to add the items again after logging

in. Such a situation would be extremely annoying for any customer (Lux, 2021).

Important Note: The values stored inside a session attribute are stored as strings. Thus

it is necessary to call the method parseInt() to transform the string into a number. After

that it is possible to do mathematical operations with the values

4.6.3 Logout

Important to consider when developing a login mechanism is also to provide the option

to log out. This is especially important for customers who are using a computer which

is accessed by other people too.

logout.jsp

When a customer clicks the logout button, for example on the main page, the user is

forwarded to the file logout.jsp. The purpose of this file solely is to invalidate the current

session. Therefore, the session first is requested and afterwards deleted by calling the

method invalidate(). Executing this method removes all objects that are bound to the

session (Oracle, n.d.-c).

4.7 Creation of a Shopping Cart

The last application visible for a customer that is still not discussed is the implementa-

tion of the shopping cart. By clicking the link to the cart on the main page the user gets

forwarded to the page shopping_cart.js. However, this file does not include any visible

content apart from the header. This is indeed obvious, as the whole body needs to be

dynamically generated, depending on the products that got added to the shopping cart.

Therefore, the only element in the body is a <script> tag linking to an external JavaS-

cript file. This file has the name shopping_cart.js and more lines of code than any other

file in this online shop.

4.7.1 shopping_cart.js

The code in this script has the purpose to display the products that are already in the

shopping cart in the correct way. This is independent from the login status of the cus-

tomer. However, what depends on the login status is the ability to check out. Only

logged in users can click on check out to order the products. Furthermore, the website

54

also provides the users with the facility to adapt the number of items in the shopping

cart. Therefore, they can increase and decrease the quantity of an item or even com-

pletely remove it from the shopping cart with a single click. In figure 22 the look of the

cart once some products are entered can be seen.

The information which products are in the shopping cart is stored in a different location

depending on the login status of the customer. For logged in users the information is

in the database table shopping_cart. For users who are currently not logged in this

information is stored in the session. Therefore, the process of retrieving this information

and displaying the products is different. The same is true for updating the quantity of a

product. For that reason, the main functionality of the script is present twice but in

different versions. One version is for users who are logged in and one for users who

are not.

Displaying the products

For users who are not logged in the condition of the first if statement returns true and

the code inside the brackets will be executed. Here the databases only purpose is to

get the information and pictures of the products to display them. Though, the process

to get the information which products are in the cart and with which quantity, is retrieved

from the session. The mechanism to retrieve this information is the same as when

transferring the session’s shopping cart to the database’s cart which is displayed in

listing 26.

Figure 22: shopping_cart.jsp - opened in the browser

55

In case the user is logged in the code inside the second if statement (in line 63) gets

executed. In contrast to the description above here the database plays a more im-

portant role. However, sessions are not used in this case. First the products that are

added in the shopping cart get read from the table shopping_cart.

After the fruit_ids as well as the quantity of the added products are known the process

is the same for both logged in and not logged in users. Now it is possible to select the

products that are in the shopping_cart by filtering the SELECT statement with the

fruit_ids. Those products are then displayed in the client’s browser.

Adjusting the shopping cart

The logic behind the process in the if statement for logged in users and not logged in

users here is almost the same. The main difference is where the change will be stored.

For users that are logged in the change will be stored in the database using SQL state-

ments. However, for the other visitors of the shop the update will be stored in the cur-

rent session.

What is important here is that a special case needs to be prevented. A user might

select the decrease by one button even if the quantity of this item is one. If this case is

not considered in the development process the quantity would be zero afterwards.

Even more problematic the quantity could go into negative numbers too. To prevent

this from happening, an if statement needs to be implemented to check if the value is

equal or smaller zero. When this is true, the same code as for deleting a product needs

to be executed. Listing 27 displays this if statement for users who are not logged in.

Alternating background colors

The background color of the product containers is alternating between grey and white.

The first one is white, the second one grey, the third one white, and so forth. To imple-

ment this the first step is to assign the number 0 to a variable (in his case named i)

before the while loop that is generating the HTML code to display the products. Inside

this while loop i is forwarded to the function getBackgroundColor().

if (quantity <= 0) {
 delete shopping_cart[id]; // delete product from cart if quantity goes below 1
}

Listing 27: shopping_cart.js - check if quantity is equal or smaller zero

56

In this function the modulo operator is used to divide i by 2. If the result of this is 0 it

means that i is an even number and a white color is returned. However, if the result is

not 0 i must be an uneven number and a grey color is returned. The function getBack-

groundColor() is shown in listing 28.

function getBackgroundColor(i) {
 if ((i % 2) == 0) {
 var backgroundColor = '#F9F9F9';
 } else {
 var backgroundColor ='#F1F1F1';
 }
 return backgroundColor;
}

Listing 28: shopping_cart.js - getBackgroundColor()

Inside the while loop the returned color is then saved into the variable bgColor. This

variable is afterwards forwarded to the function templateProductContainer which is re-

sponsible for generating the HTML code to display the product. Now the color saved

in bgColor is used as the background color of the created product container.

The last thing that needs to be done is to increase the variable i before the end of the

while loop. Therefore, i will alternate between even and uneven numbers for each iter-

ation and the background colors will also alternate. Listing 29 displays the while loop

and the declaration of the variable i.

4.7.2 checkout.jsp

Users who are logged in and have at least one item in the shopping cart can order by

clicking the checkout button in the bottom. However, as this is an example online shop,

the checkout only deletes the products that are currently in the cart.

var i = 0;
out.println('<div class="shopping-cart-ctn">');
while (rs.next()) {
 totalprice = totalprice + (rs.getInt("price") * rs.getInt("quantity"));
 var bgColor = getBackgroundColor(i);
 templateProductContainer(rs.getString("name"), rs.getString("picture"), +

rs.getString("weight"), rs.getInt("price"), rs.getInt("quantity"), +
rs.getString("fruit_id"), bgColor);

 i++;
}

Listing 29: shopping_cart.js - while loop to generate the product containers

57

The first step of the JSP is to check whether the user is logged in or not. Therefor, the

session is requested. Then it is checked inside the condition of an if statement if the

logged attribute of the session is null. When this is the case, a warning is printed saying

that the customer needs to log in first. Else the SQL statement DELETE is used to

delete all rows in the table shopping cart where the customer_id equals the id from the

session attribute. The else statement which has the purpose to clear the shopping cart

of this customer is presented in listing 30.

Listing 30: checkout.jsp - clearing shopping cart

} else {
var qry = "DELETE FROM shopping_cart WHERE customer_id = ?;"

 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1,session.getAttribute("logged"));
 prepstmt.executeUpdate();
 prepstmt.close();
 conn.close();

58

5 Advanced Examples
For clarification it is necessary to once again emphasize that the applications devel-

oped by Lux (2021) were used as a model for the development of this program.

The examples discussed in this section offer a new approach to develop web applica-

tions. Until now it was either the case that the whole code was present in a single JSP

file or that the JavaScript part of it was accessed from an external file. While this offers

a good way to get into the development of such web applications, it also inherits some

disadvantages. For example, the use of numerous if statements can make the program

extremely complex and duplicated code execution might be the result. A more efficient

approach would be to separate the handling of specific requests from the creation of

content, which would reduce the amount of unnecessary processing and loading (Lux,

2021).

The applications located in the /admin offer an alternative approach to develop web

applications. However, because of this new folder the files inside it need to access

external files in an adapted way. Listing 31 displays how the style.css file needs to be

accessed by the programs inside the admin folder (Lux, 2021).

5.1 Developing a File Upload

To simplify the process of adding a new product to the online shop, a JSP that has the

purpose to create new products was developed. To offer an ability for the user to create

the product a form is needed. In this form the name, price and weight of the product

need to be entered. While this is almost the same process as creating a new user, the

hurdles to achieve this are low. The only difference from creating a user is that an

image of the product is needed. Therefore, it was necessary to develop a program

which uploads the chosen file from the local computer to the /files folder located on the

Apache Tomcat server.

The technology used for this program is called Jakarta Servlet (formerly known as Java

Servlet). A Jakarta Servlet is a Java class. The instances of it receive and respond to

requests from clients within a web server. The content of the responses can be

<link rel="stylesheet" href="../css/style.css">

Listing 31: Accessing style.css inside the admin folder

59

dynamically created at the time of the request and does not need to be available stat-

ically (such as in the form of an HTML page) for the web server (Wikimedia Foundation,

2022a). In this example the servlet is named uploader and maps to the JSP file up-

loader.js. The next sections will explain the development process step by step.

addproducts.html

This HTML file is responsible for providing a form for the user in which the product

specifications can be entered as well as the image file selected. The main difference

of the form in this file is the action attribute and enctype attribute. Listing 32 displays

the opening form tag and its attributes. Instead of forwarding to a JSP file the action

attribute forwards the data to the servlet uploader. The enctype is used to determine

how the form data is encoded. To be able to upload files it is necessary to set this

attribute to multipart/form-data (W3Schools, n.d.-c).

web.xml configuration

To be able to send the data to the servlet some additional configuration is required.

This configuration can either be hard coded in the servlet itself or the attributes can be

added as a child element to the web.xml file. For the examples of this thesis, the sec-

ond option was chosen (Fadatare, n.d.). The configuration that needs to be added to

the web.xml file is shown in listing 33. In this file it gets declared that the servlet named

uploader uses the code inside the JSP file uploader.jsp. Furthermore, the <multipart-

config> attribute is used to enable file uploads (Oracle, n.d.-f Sec. The @MultipartCon-

fig Annoation). Important too is the configuration of the <servlet-mapping>. This maps

the servlet to the URL pattern /admin/uploader. Therefore, it can be accessed by the

URL localhost:8080/fruitshop/admin/uploader. This allows the servlet to handle re-

quests that match that specific URL pattern (Joe, 2014).

<form action="uploader" style="margin: 10px" enctype="multipart/form-data"
method="post">

Listing 32: addproducts.html - <form> tag

60

Listing 33: web.xml - multipart configuration

uploader.jsp

Once the form is submitted, the form data gets handled by the uploader servlet. This

servlet is using the written code in the uploader.jsp file. In principle, most of the parts

are equal to the other programs where user input was added to the database. How-

ever, two main things are different in this file. First as this is a servlet it is not necessary

to have any HTML start tags. Instead after the declaration of the JSP directives the

script immediately starts (Lux, 2021).

The second difference is that a file gets uploaded. Therefore, the file needs to be writ-

ten to the server and the path to find this newly stored file needs to be written to the

database. Listing 34 shows the implementation of the code that is responsible for re-

questing the file and uploading it to the server in the desired location. To do so the

method getPart() is used. By this method the file from the form data is returned (Oracle,

n.d.-g). The file object is then directly written to the database by the method write().

The object that calls the method gets stored in the server. The location where it is

stored is determined by the <multipart-config> attribute in the web.xml file. Therefore,

the location is the /files folder. The string inside the brackets is the name of the stored

file object (baeldung, 2018). The location variable is later also used to access the

stored image. For that the path gets saved on the database in the column pictures.

<servlet>
 <servlet-name>uploader</servlet-name>
 <jsp-file>/admin/code/uploader.jsp</jsp-file>
 <multipart-config>
 <location>C:\Users\Simon\Documents\apache-tomcat-10.0.23\files\</location>
 <max-file-size>10000000</max-file-size>
 <max-request-size>10000000</max-request-size>
 </multipart-config>
 </servlet>

 <servlet-mapping>
 <servlet-name>uploader</servlet-name>
 <url-pattern>/admin/uploader</url-pattern>
 </servlet-mapping>

if (checkIfProductExists()) {
 var filename = name + ".jpg";
 var location = "/files/" + filename;
 request.getPart("file").write(filename);

Listing 34: uploader.jsp - writing a file to the server

61

5.2 Sending Emails

This section presents an approach to build an application by which advertisement

emails can be sent to customers automatically. Therefore, a form is developed in which

the products that should be advertised are chosen. Those products are then shown in

the email together with a link to the online shop. Furthermore, a link to unsubscribe

from those emails needs to be implemented in the email too.

5.2.1 Prerequisites

This part is about the needed set ups to be able to develop the program.

Required .jar files

To enable sending emails, two jar files need to be downloaded and added to the lib

directory of the web server. The first file that is required is called Jakarta Mail. However,

this file depends on the second .jar file that is required, namely Jakarta Activation (Lux,

2021). Both files can be downloaded together in a zip formatted folder under the fol-

lowing link: https://jar-download.com/artifacts/com.sun.mail/jakarta.mail/2.0.1/source-

code. After the download is complete the jar files need to be extracted and added to

the lib folder.

MailHog

MailHog is an open-source tool that helps developers to test how their program sends

emails. Instead of sending emails to a real email server, the application can send them

to MailHog. The emails received by MailHog can be viewed and analyzed by accessing

the URL where MailHog is running (Broda, n.d., Sec. What is MailHog?).

The installation and setup of MailHog can be done extremely fast. The first step is to

go to the GitHub page of MailHog by following this link: https://github.com/mail-

hog/MailHog. The section Releases can be found in the middle right side of this page.

Now the latest version of MailHog should be selected. This will open a page with sev-

eral Assets. According to the operating system of a visitor, the correct asset needs to

be downloaded (Lux, 2021). After the download is complete the program is ready to

be used and can be executed. By default, the SMTP server runs on port 1025. There-

fore, the emails need to be sent to this port. The HTTP server starts on port 8025,

62

which means that it can be accessed in the browser via the URL: localhost/8025

(Broda, n.d. Sec. Installation).

web.xml

To be able to use this application it is again required to declare a servlet in the web.xml

file of the project. A developer can just copy and paste the configuration from the up-

loader discussed before and add it directly below it. Then only two things need to be

changed. First every word uploader needs to be exchanged with mailer. The second

thing to do is to delete the <multipart-config> part as it is not needed to handle file

uploads in this servlet. After that the servlet mailer uses the code inside the mailer.jsp

file and can be accessed by the URL pattern /admin/mailer. It makes sense to straight-

away do the same configuration for the unsubscriber servlet. The mailer servlet con-

figuration can be copied and pasted directly below. Now the only thing to do is change

each word mailer to unsubscriber.

5.2.2 Sending a Newsletter

Two files are required to be able to automatically send newsletters to customers who

are willing to receive them. The first one is a JSP file responsible for choosing the

products displayed in the mail and selecting the customers addresses. The second

one is a servlet which creates the email that is sent to the customers based on the form

data that is forwarded to it.

newsletter.jsp

This file dynamically prints a form to choose the products for the email. Therefore, the

form consists of a checkbox for each product stored in the database. Each checkbox

field has the value of a different product name. To communicate the value of the check-

boxes to the user, the names are displayed besides the checkbox. If a checkbox field

is selected when the form is submitted its value is forwarded to the servlet. In the

servlet the sent values can then be requested by the parameter choice. The code in

listing 35 is responsible for printing a list item in the form for each product that is stored

in the database.

63

Nonetheless, the script also selects all customers who are willing to receive an email.

By calling the method next() on the returned ResultSet in combination with a while loop

the variable count is increased by one for each iteration. Thus, the variable count can

be used to know how many customers are willing to receive an email. However, this

information is solely used to inform the user of the number of receivers. The method

by which the number of receivers is determined is shown in listing 36.

mailer.jsp

Once the form in newsletter.jsp got submitted, the form data is transmitted to the servlet

mailer. This servlet then uses the code inside the mailer.jsp to process the data and

send the emails. First to get the names of the products that should be present in the

email, the method getParamaterValues() is used to retrieve all values that have been

forwarded under the name choice. Listing 37 displays the line of code that is responsi-

ble for this request.

Listing 37: mailer.jsp - getParamaterValues()

The next new part in this is the definition of a variable choice as an empty string. After

that a for loop is used to iterate through the array choices. For each iteration the ele-

ment of the array (in this case the product names) gets added to the choice variable.

The resulting choice is then a sting that contains the list of product names that need to

be sent to the customers by email. The products in choice are surrounded by single

while (rs.next()) {
 out.println('
');
 out.println('<label for="choice">' + rs.getString("name") + '</label>');
 out.println('<input type="checkbox" name="choice" value="' +
rs.getString("name") + '">');
}

Listing 35: newsletter.jsp - while loop to print all products inside the form

var qry = "SELECT * FROM customer WHERE receives_mail = '1';";
var rs = stmt.executeQuery(qry); // check how many people are subscribed

var count = 0;
while (rs.next()) {
 count++;
}

Listing 36: newsletter.jsp - figure out the number of email receivers

var choices = request.getParameterValues("choice");

64

quotes and separated by commas. The code responsible for this process is shown in

listing 38.

Listing 38: mailer.jsp – for loop to save product names in a string

Next the customers willing to receive emails are retrieved from the database by an

SQL SELECT statement. An email is created for each customer by iterating over the

returned ResultSet with a while. The emails are sent to the email addresses entered

in the username field of the database table customer. Inside this while loop important

attributes like the receiver address, the sender address and the subject are set. Fur-

thermore, the content of the email gets generated by using HTML. A link to the online

shop and a link to unsubscribe from those emails are added to the variable text. Also

the products that should be visible in the email are added to this variable in form of

HTML. Later this variable is set as the content of the email. To accomplish this, the

method setContent() is called on an instance of the Java class MimeMessage. This

instance, like several other necessary objects, gets created at the beginning of each

iteration of the while loop. The MimeMessage class enables to use other formats than

ASCII for the text. Therefore, HTML can be used to generate the content of the email

(Oracle, n.d.-e).

Figure 23 presents a screenshot of the email received by the MailHog application un-

der port 8025. To be able to analyze the emails that way, they need to be sent to port

1025.

var choice = '';
 for (var i = 0; i < choices.length; i++) {
 // append all product names to a string
 choice += "'" + choices[i] + "',";
 }

65

5.2.3 Unsubscribing the Newsletter

It is necessary to offer a way how recipients of the email can communicate that they

do not want to receive any further emails. Therefore, a link to unsubscribe is placed

inside every newsletter email.

unsubscribe.jsp

When a user clicks the unsubscribe link in the email the file unsubscribe.jsp opens.

Once opened, it displays a form which request the user to confirm that the newsletter

subscription should be terminated. On submit the form data forwarded to the servlet

uploader contains the email address of the customer. This is necessary for the servlet

to know which customer should be updated in the database.

unsubscriber.jsp

The servlet unsubscriber uses the code inside the file unsubscriber.jsp. The servlet is

responsible for updating the receives_mail column in the table customer. This can be

done because the username is sent to the servlet via a parameter named unsub.

Figure 23: Newsletter email received in MailHog

66

6 Conclusion and Future Work
Using Nashorn for the development of JSP is a beginner friendly way to start with web

application development. It is a powerful yet easy way to build web applications from

the client- to the server-side. During the process of developing such a web application

one will learn a lot of tremendously important skills for a future career in this field.

Developing an online shop from the bottom up will deliver entirely new insights into

what is required for providing a fully functional web shop.

However, the process of developing such applications can be very time consuming

and exhausting. During this process developers will sooner or later look at hurdles

which will seem nearly impossible to overcome. Though, many of the problems had to

be dealt within this thesis and are documented in this paper. Therefore, this work pre-

sents a good starting point for anyone who would like to develop JSPs with the Nashorn

script engine. Unfortunately, in contrast to Node.js, many required back-end develop-

ment capabilities are not implemented. It would be great if a deeply committed software

engineer or group of engineers develop a new JavaScript scripting engine. However,

the usage of the tag library jsr-223.tld compensates for this drawback. Furthermore,

this paper presents an alternative approach for server-side development with JavaS-

cript. Though, it is not the aim of the paper to do a comparison between this approach

and the more popular framework Node.js. This comparison is left for future research.

67

Bibliography
Apache Software Foundation. (n.d.-a). Apache Tomcat®—Which Version Do I Want?

Retrieved December 30, 2022, from https://tomcat.apache.org/whichver-

sion.html

Apache Software Foundation. (n.d.-b). Apache Tomcat 9 (9.0.71)—JNDI Resources

How-To. Retrieved January 19, 2023, from https://tomcat.apache.org/tomcat-

9.0-doc/jndi-resources-howto.html

Apache Software Foundation. (n.d.-c). Apache Tomcat 10 (10.0.27)—Manager App

How-To. Retrieved January 10, 2023, from https://tomcat.apache.org/tomcat-

10.0-doc/manager-howto.html#Configuring_Manager_Application_Access

Arias, D. (2019, September 30). How to Hash Passwords: One-Way Road to En-

hanced Security. Auth0 - Blog. https://auth0.com/blog/hashing-passwords-one-

way-road-to-security/

ASM. (n.d.). Retrieved January 10, 2023, from https://asm.ow2.io/

baeldung. (2018, May 19). Uploading Files with Servlets and JSP | Baeldung.

https://www.baeldung.com/upload-file-servlet

baeldung. (2022, May 21). Difference Between Statement and PreparedStatement |

Baeldung. https://www.baeldung.com/java-statement-preparedstatement

BalusC. (2016, August 2). Answer to “Cookies created in JSP page are not available

in Servlet, only the JSESSIONID cookie is available.” Stack Overflow.

https://stackoverflow.com/a/38714985/19175093

Bandara, S. (2018, February 11). Nashron in a Nutshell. Medium. https://technos-

pace.medium.com/nashron-in-a-nutshell-b804352cf3e0

68

BrainStation. (n.d.). What Is Web Development? (2023 Guide). BrainStation®. Re-

trieved January 11, 2023, from https://brainstation.io/career-guides/what-is-

web-development

Broda, S. (n.d.). Using MailHog for local email testing. Kirby CMS. Retrieved January

27, 2023, from https://getkirby.com/docs/cookbook/forms/using-mailhog-for-

email-testing

Computer Hope. (2018, May 21). What is an Environment Variable? Computer Hope.

https://www.computerhope.com/jargon/e/envivari.htm

Concatenated Primary Key(Database Table Definition). (n.d.). Retrieved January 27,

2023, from https://www.relationaldbdesign.com/database-analysis/mod-

ule2/concatenated-primary-keys.php

Coursera. (2022, November 1). What Does a Back-End Developer Do? Coursera.

https://www.coursera.org/articles/back-end-developer

DigiCert, Inc. (n.d.). What is an SSL Certificate? | DigiCert. Retrieved January 20,

2023, from https://www.digicert.com/what-is-an-ssl-certificate

Educative, Inc. (n.d.). GET vs. POST. Educative: Interactive Courses for Software De-

velopers. Retrieved January 21, 2023, from https://www.educative.io/an-

swers/get-vs-post

erickson. (2011, July 26). Answer to “How can bcrypt have built-in salts?” Stack Over-

flow. https://stackoverflow.com/a/6833165/19175093

Fadatare, R. (n.d.). @MultipartConfig Annotation Example. Retrieved January 27,

2023, from https://www.javaguides.net/2019/02/multipartconfig-annotation-ex-

ample.html

69

Fireart Studio. (2019, December 6). Is Node.js Still Relevant For Your Startup in 2023?

Fireart Studio. https://fireart.studio/blog/why-node-js-is-still-a-good-choice-for-

your-startup-in-2020/

Flatscher, R. G. (2021, September 21). BSF4ooRexx—Browse /Sandbox/rgf/ta-

glibs/ga at SourceForge.net. BSF4ooRexx. https://sourceforge.net/pro-

jects/bsf4oorexx/files/Sandbox/rgf/taglibs/ga/

Flynn, M. (2013, March 6). Answer to “Tomcat keeps resetting my tomcat-users.xml

file.” Stack Overflow. https://stackoverflow.com/a/15255286/19175093

GeeksforGeeks. (2017, November 6). SQL | DDL, DQL, DML, DCL and TCL Com-

mands. GeeksforGeeks. https://www.geeksforgeeks.org/sql-ddl-dql-dml-dcl-tcl-

commands/

GeeksforGeeks. (2022, January 7). Top 10 Programming Languages to Learn in 2022.

GeeksforGeeks. https://www.geeksforgeeks.org/top-10-programming-lan-

guages-to-learn-in-2022/

GitHub Inc. (n.d.). The top programming languages. The State of the Octoverse. Re-

trieved January 29, 2023, from https://octoverse.github.com/2022/top-program-

ming-languages

gittysatyam. (2021, October 20). Difference between Session and Cookies. Geeksfor-

Geeks. https://www.geeksforgeeks.org/difference-between-session-and-cook-

ies/

How to Connect to SQLite via JDBC. (n.d.). Retrieved January 20, 2023, from

https://razorsql.com/articles/sqlite_jdbc_connect.html

How To Download & Install SQLite Tools. (n.d.). SQLite Tutorial. Retrieved January

19, 2023, from https://www.sqlitetutorial.net/download-install-sqlite/

70

How to Download and Install OpenJDK 11 on Windows 10 PC for Aleph. (2020, Janu-

ary 3). Ex Libris Knowledge Center. https://knowledge.exlibris-

group.com/Aleph/Knowledge_Articles/How_to_Download_and_Install_Open-

JDK_11_on_Windows_10_PC_for_Aleph

International Business Machines Corporation (IBM). (2021, March 16). IBM Documen-

tation. https://prod.ibmdocs-production-dal-

6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdo-

main.cloud/docs/en/rad-

fws/9.6.1?topic=SSRTLW_9.6.1/com.ibm.etools.pagedesigner.doc/top-

ics/ccusttaglib.htm

Jakarta Server Pages Team. (n.d.). Jakarta Server Pages. Retrieved January 12,

2023, from https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-

spec-3.0.html#what-is-a-jsp-page-2

Java DriverManager—Javatpoint. (n.d.). Www.Javatpoint.Com. Retrieved January 24,

2023, from https://www.javatpoint.com/DriverManager-class

JDBC Tutorial | What is Java Database Connectivity(JDBC)—Javatpoint. (n.d.).

Www.Javatpoint.Com. Retrieved January 19, 2023, from https://www.ja-

vatpoint.com/java-jdbc

Joe. (2014, September 11). What is servlet mapping? Javapapers. https://javapa-

pers.com/servlet/what-is-servlet-mapping/

Lux, D.-J. (2021). An Introduction to Web Application Development – Combining Ja-

karta Server Pages with Programs Written in Scripting Languages. Vienna Uni-

versity of Economics and Business Administration. Retrieved January 10, 2023,

from https://wi.wu.ac.at/rgf/diplomarbeiten/BakkStuff/2021/202102_Lux_Intro-

ductionToWebApplicationDevelopment.pdf

71

Mihn, N. H. (2019, August 6). How to configure session timeout in Tomcat.

https://www.codejava.net/servers/tomcat/how-to-configure-session-timeout-in-

tomcat

Miller, D. (n.d.). BCrypt (jBCrypt 0.4 API). Retrieved January 26, 2023, from

https://www.java-

doc.io/doc/org.mindrot/jbcrypt/0.4/org/mindrot/jbcrypt/BCrypt.html

MIME-Type/Übersicht – SELFHTML-Wiki. (2022, April 12). https://wiki.self-

html.org/wiki/MIME-Type/%C3%9Cbersicht

Mozilla Foundation. (2022a, December 5). Sending form data—Learn web develop-

ment | MDN. https://developer.mozilla.org/en-US/docs/Learn/Forms/Send-

ing_and_retrieving_form_data

Mozilla Foundation. (2022b, December 13). Date—JavaScript | MDN. https://devel-

oper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

Mozilla Foundation. (2022c, December 13). Date.prototype.getHours()—JavaScript |

MDN. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Refer-

ence/Global_Objects/Date/getHours

Mozilla Foundation. (2023a, January 13). HTTPS - MDN Web Docs Glossary: Defini-

tions of Web-related terms | MDN. https://developer.mozilla.org/en-

US/docs/Glossary/HTTPS

Mozilla Foundation. (2023b, January 23). Using HTTP cookies—HTTP | MDN.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Nashorn Engine. (2022, April 23). https://github.com/openjdk/nashorn (Original work

published 2020)

no.good.at.coding. (2011, April 1). Answer to “Why set a JSP page session = ‘false’

directive?” Stack Overflow. https://stackoverflow.com/a/5516893/19175093

72

Olawanle, J. (2022, June 17). JavaScript Get Current Date – Today’s Date in JS.

FreeCodeCamp.Org. https://www.freecodecamp.org/news/javascript-get-cur-

rent-date-todays-date-in-js/

Oracle. (n.d.-a). Connection (Java Platform SE 7). Retrieved January 24, 2023, from

https://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html

Oracle. (n.d.-b). Explicitly closing Statements, ResultSets, and Connections [Concept].

Retrieved January 26, 2023, from https://docs.oracle.com/ja-

vadb/10.8.3.0/devguide/cdevconcepts839085.html

Oracle. (n.d.-c). Invalidating a Session (Sun Java System Web Server 7.0 Developer’s

Guide to Java Web Applications). Retrieved January 26, 2023, from

https://docs.oracle.com/cd/E19146-01/819-2634/abxdj/index.html

Oracle. (n.d.-d). Java Platform, Standard Edition Nashorn User’s Guide. Retrieved

January 13, 2023, from https://docs.oracle.com/javase/9/nashorn/nashorn-

java-api.htm#JSNUG115

Oracle. (n.d.-e). MimeMessage (Java EE 6). Retrieved January 28, 2023, from

https://docs.oracle.com/javaee/6/api/javax/mail/internet/MimeMessage.html

Oracle. (n.d.-f). Processing SQL Statements with JDBC. Retrieved January 24, 2023,

from https://docs.oracle.com/javase/tutorial/jdbc/basics/processingsqlstate-

ments.html#establishing_connections

Oracle. (n.d.-g). The getParts and getPart Methods—The Java EE 6 Tutorial. Re-

trieved January 27, 2023, from https://docs.oracle.com/javaee/6/tuto-

rial/doc/gmhba.html

Oracle. (n.d.-h). The @MultipartConfig Annotation—The Java EE 6 Tutorial. Retrieved

January 27, 2023, from https://docs.oracle.com/javaee/6/tuto-

rial/doc/gmhal.html

73

Selzer, M. (2020, April 28). Salt and Hash Passwords with bcrypt.

https://heynode.com/blog/2020-04/salt-and-hash-passwords-bcrypt/

Shah, A. (2019a, January 6). Step by Step Guide to Setup and Install Apache Tomcat

Server in Eclipse Development Environment (IDE) • Crunchify. Crunchify.

https://crunchify.com/step-by-step-guide-to-setup-and-install-apache-tomcat-

server-in-eclipse-development-environment-ide/

Shah, A. (2019b, August 4). Tomcat starts but Home Page does NOT open on browser

with URL http://localhost:8080 • Crunchify. Crunchify.

https://crunchify.com/tomcat-starts-but-home-page-does-not-open-on-

browser-with-url-http-localhost8080/

Sheldon, R., & Denman, J. (n.d.). What is the Node.js (Node) runtime environment?—

TechTarget Definition. WhatIs.Com. Retrieved January 29, 2023, from

https://www.techtarget.com/whatis/definition/Nodejs

Simmons, L. (2022, January 7). The Difference Between Front-End vs. Back-End |

ComputerScience.org. https://www.computerscience.org/bootcamps/re-

sources/frontend-vs-backend/

SQLite: Documentation. (n.d.). Retrieved January 19, 2023, from

https://www.sqlite.org/src/doc/trunk/ext/userauth/user-auth.txt

SQLite Download Page. (n.d.). Retrieved January 19, 2023, from

https://www.sqlite.org/download.html

Szegedi, A. (2022, October 14). Answer to “How to add the Nashorn module to Tomcat

10.” Stack Overflow. https://stackoverflow.com/a/74069391/19175093

Tandetnik, I. (n.d.). Answer to “BOOLEAN DEFAULT VALUE.” Sqlite-Users. Retrieved

December 29, 2022, from https://sqlite-users.sqlite.nark-

ive.com/zpH7xG5x/boolean-default-value

74

The Owasp Foundation. (n.d.). Password Storage—OWASP Cheat Sheet Series. Re-

trieved January 21, 2023, from https://cheatsheetseries.owasp.org/cheat-

sheets/Password_Storage_Cheat_Sheet.html

Tyson, M. (2022, September 9). What is JSP? Introduction to Jakarta Server Pages.

InfoWorld. https://www.infoworld.com/article/3336161/what-is-jsp-introduction-

to-javaserver-pages.html

Vukotic, A., & Goodwill, J. (2011). Introduction to Apache Tomcat 7. In A. Vukotic & J.

Goodwill, Apache Tomcat 7 (pp. 1–15). Apress. https://doi.org/10.1007/978-1-

4302-3724-2_1

W3Schools. (n.d.-a). HTML body tag. Retrieved January 12, 2023, from

https://www.w3schools.com/tags/tag_body.asp

W3Schools. (n.d.-b). HTML doctype declaration. Retrieved January 12, 2023, from

https://www.w3schools.com/tags/tag_doctype.asp

W3Schools. (n.d.-c). HTML form enctype Attribute. Retrieved January 27, 2023, from

https://www.w3schools.com/tags/att_form_enctype.asp

W3Schools. (n.d.-d). HTML Form—Javatpoint. Www.Javatpoint.Com. Retrieved Jan-

uary 18, 2023, from https://www.javatpoint.com/html-form

W3Schools. (n.d.-e). HTML head tag. Retrieved January 12, 2023, from

https://www.w3schools.com/tags/tag_head.asp

W3Schools. (n.d.-f). HTML header Tag. Retrieved January 12, 2023, from

https://www.w3schools.com/tags/tag_header.asp

W3Schools. (n.d.-g). HTML html tag. Retrieved January 12, 2023, from

https://www.w3schools.com/tags/tag_html.asp

W3Schools. (n.d.-h). HTML title tag. Retrieved January 12, 2023, from

https://www.w3schools.com/tags/tag_title.asp

75

W3Schools. (n.d.-i). HTTP Methods GET vs POST. Retrieved December 30, 2022,

from https://www.w3schools.com/tags/ref_httpmethods.asp

W3Schools. (n.d.-j). SQL SELECT Statement. Retrieved January 24, 2023, from

https://www.w3schools.com/sql/sql_select.asp

Wikimedia Foundation. (2022a). Jakarta Servlet. In Wikipedia. https://de.wikipe-

dia.org/w/index.php?title=Jakarta_Servlet&oldid=222892008

Wikimedia Foundation. (2022b). Nashorn (JavaScript engine). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Nashorn_(JavaScript_en-

gine)&oldid=1094201862

Wikimedia Foundation. (2022c). SQLite. In Wikipedia. https://de.wikipedia.org/w/in-

dex.php?title=SQLite&oldid=227994308

Wikimedia Foundation. (2022d). Bcrypt. In Wikipedia. https://en.wikipedia.org/w/in-

dex.php?title=Bcrypt&oldid=1130147534

Wikimedia Foundation. (2023). Entity–relationship model. In Wikipedia. https://en.wik-

ipedia.org/w/index.php?title=Entity%E2%80%93relation-

ship_model&oldid=1134142899

yaminitalisetty. (2021, December 24). Servlet—SendRedirect() Method with Example.

GeeksforGeeks. https://www.geeksforgeeks.org/servlet-sendredirect-method-

with-example/

Zhang, L. (2022, September 14). What’s the Salt Length Used by Auth0. Auth0 Com-

munity. https://community.auth0.com/t/whats-the-salt-length-used-by-

auth0/90617

Zhukov, A. (2013, November 1). Answer to “SQLite3 serial type wasn’t incremented.”

Stack Overflow. https://stackoverflow.com/a/19726143/19175093

76

7 Appendix
This section contains the codes of all applications developed and in addition to that

showcases the necessary commands to create the database.

7.1 Table Creation and Value Insertion

The following paragraphs discuss the creation of the database tables as well as the

insertion of the needed values.

Creation of the tables

This section provides pictures of the necessary SQLite instructions used to create the

tables.

In order to have incrementing integers regarding the fruit_ids SQLite provides the

method autoincrement (Zhukov, 2013).

Unfortunately, SQLite does not have a dedicated boolean type, thus the number 0 for

FALSE and 1 for TRUE needs to be used instead (Tandetnik, n.d.).

Figure 24: Creation SQLite table fruit

Figure 25: Creation SQLite table customer

77

In the table shopping_cart the primary key used is composited of fruit_id and cus-

tomer_id. Those keys are both foreign keys as they are primary keys of other tables

(Concatenated Primary Key(Database Table Definition), n.d.).

Inserting values

This section provides the necessary commands to insert data into the previously cre-

ated tables.

The values of the table customer were inserted using the built application to sign up.

However, figure 28 displays how the table looks like after some customers have been

created.

Equally to customer, no values were inserted by hand into the table shopping_cart.

Though an example of how the table looks like after some values have been inserted

is visible in figure 29.

Figure 26: Creation SQLite table shopping_cart

Figure 27: Value insertion table fruit

Figure 28: Customer table after insertion of example users

78

The first column here is the fruit_id. By that it can be determined which product has

been added. The second one is the id of the customer and therefore the row can be

allocated to the correct user. The last column is indicating the quantity.

7.2 “Hello, world” Project

This dynamic web project showcases the development of some basic nutshell exam-

ples. The examples reach from basic “hello, world” applications, to more advanced

projects. For example the use of cookies to generate personalized content gets exam-

ined.

7.2.1 index.html

This file acts as a port for the applications developed. From here the different programs

can be accessed via links.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>helloworld</title>
<link rel="stylesheet" href="style.css">
</head>
<body>
 <h1>Helloworld Web Applications</h1>
 <h3>Welcome!
 This is thought to be the harbor for the helloworld projects
listed below.</h3>
 <h3>The projects which you can visited on their links start very simple and
increase in complexity</h3>
 Go to helloworld.jsp

 Go to helloworld_ext.jsp

 Go to lastvisit.jsp

 Go to greeting.jsp

 Go to greeting_ext.jsp

</body>
</html>

<!--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

Figure 29: shopping_cart table

79

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

-->

7.2.2 helloworld.jsp

The following file shows how to save a string in a variable as well as how to print it to

the HTML document.

Listing 39: /helloworld/index.jsp

<%@ page session="false" pageEncoding="UTF-8" contentType="text/html;
charset=UTF_8" %>
<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello, World</title>
</head>
<body>

<s:script type="javascript">
 var greeting = "Hello, world! (Sent from Nashorn)";
 print("<div>" + greeting + "</div>")
</s:script>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

--%>

Listing 40: /helloworld/helloworld.jsp

80

7.2.3 helloworld_ext.jsp

This file extends the previous helloworld.jsp by using a script which dynamically gen-

erates HTML code that displays the current time. To do so the method Date() is used

inside an expression tag.

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-
8"%>
<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello, world</title>

</head>
<body>
<header>
<s:script type="javascript">
var greeting = "Hello, world! (Sent from Nashorn)";
print('<h1>' + greeting + '</h1>');
</s:script>
</header>
<body>

<p>The time right now: <s:expr type="javascript">Date()</s:expr></p>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

--%>

7.2.4 lastvisit.jsp

This program shows how cookies can be used to create a dynamic HTML page which

is sent to the client.

Listing 41: /helloworld/helloworld_ext.jsp

81

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-
8"%>
<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>last visit</title>
</head>
<body>

<s:script type="javascript" throwException="true">
//reqeuest and response procedures
//first do the request and response because response won't work if something was
already printed

//request
var lastVisit;
var allCookies = request.getCookies();

//response to add the current time
var today = new Date();
var time = today.getHours() + ":" + today.getMinutes() + ":" + today.getSeconds();
timeString = String(time);
var Cookie = Java.type("jakarta.servlet.http.Cookie");
var newCookie = new Cookie("lastVisit", timeString);
newCookie.setMaxAge(60 * 60 * 24);
newCookie.setPath("/");
response.addCookie(newCookie);
</s:script>

<s:script type="javascript">
//Print the last visit or if it is the first visit

if (allCookies != null) {
 for (var i = 0; i < allCookies.length; i++) {
 var c = allCookies[i];
 if (c.getName() == 'lastVisit') {
 lastVisit = c.getValue();
 break;
 }
 }
}

if (lastVisit == null) {
 print("This is your first Visit!");
} else {
 print("Your last visit was at " + lastVisit);
}
</s:script>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

82

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

--%>

Listing 42: /helloworld/lastvisit.jsp

7.2.5 greeting.jsp

This example web application uses the cookie technology to individually greet a visitor

once a form with a username was entered and sent to the server.

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-
8"%>
<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Insert title here</title>
</head>
<body>

<!-- Request the Cookies and get the Value of the Cookie username -->
<s:script type="javascript">
var username;
var allCookies = request.getCookies();

if (allCookies != null) {
 for (var i = 0; i < allCookies.length; i++) {
 var c = allCookies[i];
 if (c.getName() == 'username') {
 username = c.getValue();
 }
 }
}
</s:script>

<!-- Printing either the input field or the 'greeting' -->
<s:script type="javascript">
if (username == null) {
 out.println('<p>Hello what is your name?</p>');
 out.println('<form>' +
 '<label for="username">Username:</label>' +
 '<input type="text" name="username" required>' +
 '<input type="submit" value="Ok">' +
 '</form>');
} else {

83

 out.println('<p>Welcome back, ' + username + '!</p>')
}
</s:script>

<!-- creating cookie and adding it to the response -->
<s:script type="javascript">
if (request.getParameter('username') != null) {
 var uname = request.getParameter('username');
 var Cookie = Java.type("jakarta.servlet.http.Cookie");
 var newCookie = new Cookie("username", uname);
 newCookie.setMaxAge(60 * 60 * 24);
 newCookie.setPath("/");
 response.addCookie(newCookie);
 response.sendRedirect(request.getRequestURI())
}
</s:script>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

--%>

Listing 43: /helloworld/greeting.jsp

7.2.6 greeting_ext.jsp

This program extends the former greeting.jsp file by the functionality to be able to log

out. Furthermore, it gets demonstrated how scripts can be outsourced to other files

and then accessed by the JSP. Therefore, the functionality to add and remove the

cookie is not inside this file.

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-
8"%>
<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>helloworld</title>
</head>

84

<body>

<s:script type="javascript">
var username;
var allCookies = request.getCookies();

if (allCookies != null) {
 for (var i = 0; i < allCookies.length; i++) {
 var c = allCookies[i];
 if (c.getName() == 'username') {
 username = c.getValue();
 }
 }
}

if (username == null) {
 out.println('<p>Hello what is your name?</p>');
 out.println('<form>' +
 '<label for="username">Username:</label>' +
 '<input type="text" name="username" required>' +
 '<input type="submit" value="Ok">' +
 '</form>');
} else {
 out.println('<p>Welcome back, ' + username + '!</p>')
 out.println('<form>' +
 '<input type="hidden" name="logoutButton" value="1">' +
 '<input type="submit" value="Logout">' +
 '</form>');
}
</s:script>

<s:script type="javascript" src="code/logout.js" cacheSrc="false" />

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

--%>

Listing 44: /helloworld/greeting_ext.jsp

85

7.2.7 code/logout.js

This JavaScript file is accessed by the prior shown greeting_ext.jsp and is responsible

for setting and deleting the cookies.

if (request.getParameter('username') != null) {
 var uname = request.getParameter('username');
 var Cookie = Java.type('jakarta.servlet.http.Cookie');
 var newCookie = new Cookie('username', uname);
 newCookie.setMaxAge(60 * 60 * 24);
 newCookie.setPath('/');
 response.addCookie(newCookie);
 response.sendRedirect(request.getRequestURI());
}

if (request.getParameter('logoutButton') != null) {
 var Cookie = Java.type('jakarta.servlet.http.Cookie');
 var removerCookie = new Cookie('username', '');
 removerCookie.setPath('/');
 removerCookie.setMaxAge(0);
 response.addCookie(removerCookie);
 response.sendRedirect(request.getRequestURI());
}

/*
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

*/

Listing 45: /helloworld/code/logout.js

7.3 E-Commerce Example

This dynamic web project presents one of many possible ways to develop an online

shop. Therefore, the project contains of several applications like sign-up, login and a

shopping cart.

86

7.3.1 index.jsp

This page is the main JSP file of the online shop. However, the visible content is dy-

namically created in external script files.

<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-
8"%>

<%@ taglib uri="./WEB-INF/script-jsr223.tld" prefix="s" %>

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>fruitshop</title>

<link rel="stylesheet" href="css/style.css">

</head>

<header>

<h1>Welcome to our fruitshop!</h1>

<div class="userheader">

<s:script type="javascript" src="code/userheader.js" cacheSrc="false"
throwException="true" />

 </div>

</header>

<body>

 <s:script type="javascript" src="code/mainpage.js" cacheSrc="false" />

</body>

</html>

<%--

 ------------------------ Apache Version 2.0 license -------------------------

 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

87

 See the License for the specific language governing permissions and

 limitations under the License.

 --%>

Listing 46: /fruitshop/index.jsp

7.3.2 style.css

This file is responsible for the style of the online shop.

@charset "UTF-8";

header {
 background-color: #F1F1F1;
 padding: 12px;
 box-shadow: -2px 0px 6px 0px rgb(0, 0, 0, 0.2);
 z-index: 1;
}

body {
 margin: 0;
 padding: 0;
 display: flex;
 flex-direction: column;
 background-color: #F9F9F9;
}

h2 {
 margin-block-start: 0;
}

.userheader {
 display: flex;
 justify-content: space-between;
}

.userheader-child {
 display: flex;
 flex-direction: row-reverse;
 gap: 20px;
}

.user_container {
 display: flex;
 flex-direction: column;
}

.submit-btn {
 cursor: pointer;
 padding: 10px;
 text-align: center;
 border-radius: 5px;
 background-color: lightgrey;
 font-weight: bold;
 text-decoration: none;
 color: black;

88

 margin-bottom: 14px;
 width: fit-content;
 border: none
}

.submit-btn:hover {
 background-color: rgb(199, 199, 199);
}

.warning {
 color: red;
}

.success {
 color: green;
}

.link-btn {
 padding: 10px;
 text-align: center;
 border-radius: 5px;
 background-color: lightgrey;
 font-weight: bold;
 text-decoration: none;
 color: black;
 margin-bottom: 14px;
 width: fit-content;
 margin-right: 10px;
 height: fit-content;
}

.link-btn:hover {
 background-color: grey;
}

.products-grid {
 display: flex;
 flex-wrap: wrap;
 gap: 40px;
 justify-content: center;
 margin-top: 40px;
 margin-bottom: 40px
}

.product-container {
 background-color: #F1F1F1;
 padding: 42px;
 border-radius: 8px;
}

.product-container img {
 object-fit: cover;
}

.login-form-headline {
 font-weight: bold;
 font-size: 18px;
}

89

.shopping-cart-ctn {
 display: flex;
 flex-direction: column;
}

.cart-product-ctn img {
 height: 200px;
 width: 300px;
 object-fit: cover;
}

.cart-product-ctn {
 padding: 20px 0 20px 80px;
 display: flex;
 flex-direction: column;
}

.credentials-div {
 padding: 20px;
}

.sum-container {
 display: flex;
 flex-direction: column;
 align-items: center;
 padding: 20px 0;
 border-top: solid 3px grey;
}

.sum-container h4 {
 margin-block-start: 0;
}

.margin-left {
 margin-left: 10px;
}

.newsletter-ctn {
 padding: 20px;
}

@media (max-width: 700px) {
 .cart-product-ctn {
 padding: 20px;
 display: flex;
 flex-direction: column;
 }
}

/*
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

90

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

*/

Listing 47: /fruitshop/css/style.css

7.3.3 mainpage.js

This JavaScript file dynamically generates the content that is visible in the body of the

online shops index file. This means the products are displayed as well as the function-

ality to add the products to the shopping cart.

var session = request.getSession();

//session.invalidate();

// Import the Connection class from the java.sql package
var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

// Execute a SELECT query to retrieve all data from table fruit
var stmt = conn.createStatement();
var rs = stmt.executeQuery('SELECT * FROM fruit;');

out.println('<div class="products-grid">');
while (rs.next()) {
 templateProductItem(rs.getString("name"), rs.getString("price"),
 rs.getString("weight"), rs.getString("picture"), rs.getString("fruit_id"));
}
out.println('</div>');

rs.close;
stmt.close;

var selection = request.getParameter('selection');
var quantity = request.getParameter('quantity');
quantity = parseInt(quantity);

////NOT LOGGED IN USER////

// Adjust cart for a user that is not logged in
if (session.getAttribute("logged") == null) {

 // Check if choice and quantity are not null
 if (selection != null && quantity != null) {
 // Create a new cart if it doesn't exist
 if (session.getAttribute("shopping_cart") == null) {
 var cartArray = new Array(100); //creates JavaScript array object
 session.setAttribute("shopping_cart", cartArray);

91

 }
 var shopping_cart = session.getAttribute("shopping_cart");
 // Add a new product to the cart or update the quantity of an existing
 //product
 if (shopping_cart[selection] == null) {
 shopping_cart[selection] = quantity;
 } else {
 shopping_cart[selection] = shopping_cart[selection] + quantity;
 }
 // as session is stored on the server it is not required
 //to use setAttribute again, cahnges are persistent
 // Close the connection and refresh the page
 conn.close();
 response.sendRedirect(request.getRequestURI());
 }
}

////LOGGED IN USER////

// Adjust cart for a logged in user (SAVED IN THE DATABASE)
if (session.getAttribute("logged") != null) {

 // Check if selection and quantity are not null
 if (selection != null && quantity != null) {
 // Check if the product already exists in the shopping cart
 var qry = "SELECT quantity from shopping_cart where customer_id = ? " +
 " and fruit_id = ?";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, session.getAttribute("logged"));
 prepstmt.setInt(2, selection);
 var rs = prepstmt.executeQuery();
 var cartQuantity = 0;
 while (rs.next()) {
 cartQuantity = rs.getString("quantity");
 }

 cartQuantity = parseInt(cartQuantity);

 rs.close();
 prepstmt.close();

 // Update the shopping cart
 qry = "INSERT INTO shopping_cart (fruit_id, customer_id, quantity) " +
 " VALUES (?,?,?) ON CONFLICT (fruit_id, customer_id) " +
 "DO UPDATE SET quantity = ?";
 prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, selection);
 prepstmt.setInt(2, session.getAttribute('logged'));
 prepstmt.setInt(3, quantity);
 prepstmt.setInt(4, cartQuantity + quantity);
 prepstmt.executeUpdate();
 prepstmt.close();
 conn.close();

92

 // Refresh the page
 response.sendRedirect(request.getRequestURI());
 }
}
conn.close();

//// HTML TEMPLATE ////
function templateProductItem(name, price, weight, picture, fruit_id) {
 out.println('<div class="product-container">' +
 '<h2>' + name + '</h2>' +
 '' +
 '<p>Price: ' + price + ' Euro</p>' +
 '<p>Weight: ' + weight + 'Kg</p>' +
 '<form name="selection" method="post">' +
 '<input type="hidden" name="selection" value="' +
 fruit_id + '">' +
 '<select name="quantity">' +
 '<option value="1">1</option>' +
 '<option value="2">2</option>' +
 '<option value="3">3</option>' +
 '<option value="4">4</option>' +
 '<option value="5">5</option>' +
 '</select>' +
 '<input type="submit" style="cursor: pointer;" value="Buy">' +
 '</form>' +
 '</div>');
}

/*
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

*/

Listing 48: /fruitshop/code/mainpage.js

7.3.4 userheader.js

This JavaScript code is generating the content displayed in the header of the main

page. It creates links to several applications like login and sign-up. Furthermore, the

number of products in the cart is shown next the shopping cart link.

var session = request.getSession();

93

var shopping_cart;
var shopping_cart_quantity;

//// HEADER FOR A USER NOT LOGGED IN ////
if (session.getAttribute('logged') == null) {
 out.println('<div class="userheader-child">');
 out.println('Productlist');
 out.println(templateLoginButton());
 out.println(templateSignUpButton());
 out.println('</div>');

 shopping_cart_quantity = 0;
 if (session.getAttribute('shopping_cart') != null) {
 shopping_cart = session.getAttribute('shopping_cart');
 //get the number of products hel in the shopping cart

 // Iterate through the shopping cart array
 for (var i = 0; i < shopping_cart.length; i++) {
 // Check if the element at the current index is not null
 if (shopping_cart[i] != null) {
 // Add the element's value to the shopping cart quantity
 shopping_cart_quantity += shopping_cart[i];
 }
 }
 }

}

//// HEADER FOR A LOGGED IN USER ///
if (session.getAttribute('logged') != null) {
 // Import the DriverManager class from the java.sql package
 var DriverManager = Java.type('java.sql.DriverManager');

 // Create a connection to the SQLite database
 var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

 var qry ="SELECT username FROM customer WHERE customer_id = ?;";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1,session.getAttribute("logged"));
 var rs = prepstmt.executeQuery();

 out.println('<div class="userheader-child">');
 out.println('Productlist');
 out.println('<div class="user_container">');
 while (rs.next()) {
 out.println('Hello, ' + rs.getString("username"));
 }
 out.println(templateLogoutButton());
 out.println('</div>');
 out.println('</div>');
 rs.close();
 prepstmt.close();

 var qry = "SELECT SUM(quantity) as sum FROM shopping_cart " +
 "WHERE customer_id = ?";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, session.getAttribute("logged"));
 var rs = prepstmt.executeQuery();

94

 while (rs.next()) {
 shopping_cart_quantity = rs.getInt("sum");
 }
 rs.close();
 prepstmt.close();
 conn.close();

 if (shopping_cart_quantity == null) {
 shopping_cart_quantity = 0;
 }
}

//// CHECKOUT BUTTON, DISPLAY NUMBER OF ITEMS ////

if (shopping_cart_quantity == 0) {
 shopping_cart_quantity == 'None';
}

out.println(templateShoppingCart());

////HTML TEMPLATES////

//login button
function templateLoginButton() {
 return 'Login'
}

//signup button
function templateSignUpButton() {
 return 'Sign Up'
}

//logout button
function templateLogoutButton() {
 return '<form action="logout.jsp" method="post" style="float:left;">' +
 '<input type="submit" class="submit-btn" value="Logout"' +
 'class="button">' +
 '</form>';
}

//goto shoppingCart
function templateShoppingCart() { //maybe change to link
 return '<div class="shopping-cart-userheader" style="float:right;">' +
 'Items in Cart: ' + shopping_cart_quantity + '' +
 '<form action="shopping_cart.jsp" method="post">' +
 '<input type="submit" class="submit-btn"' +
 'value="View Cart" class="button">' +
 '</form>' +
 '</div>';
}

/*
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.

95

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

*/

Listing 49: /fruitshop/code/userheader.js

7.3.5 productlist.jsp

This JavaScript code displays a list of all products which are stored in the database.

The price is displayed next to the name of the product.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib uri="WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Fruitshop</title>
<link rel="stylesheet" href="css/style.css">
</head>
<header>

<h1>Productlist</h1>

Back to Main Page

</header>
<body>
<s:script type="javascript">
// Import the DriverManager class from the java.sql package
var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

// Execute a SELECT query to retrieve all data from table fruit
var stmt = conn.createStatement();
var rs = stmt.executeQuery('SELECT * FROM fruit;');

out.println('');
while (rs.next()) { //iterate through all rows in the table
 out.println('' + rs.getString('name') + ': ' + rs.getString('price') +
 '€');
};
out.println('')
</s:script>

</body>

96

</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 50: /fruitshop/productlist.jsp

7.3.6 signup.jsp

The code inside this JSP is responsible to link to the external JavaScript file which

handles the registration. Furthermore, the form in which a visitor needs to enter the

credentials to sign up is displayed.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib uri="WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link rel="stylesheet" href="css/style.css">
<title>Fruitshop</title>
</head>
<header>

<h1>Please create a new Account if you do not have one</h1>

Back to Main Page

</header>
<body>

<div class="credentials-div">
 <s:script type="javascript" src="code/create_user.js"
 cacheSrc="false" throwException="true"/>

 <!-- Stays on the same Page (no action) -->
 <form method="post" style="margin-top:20px">
 <label for="username">Please enter your E-Mail:</label>

 <input type="email" name="username" required>

97

 <label for="pwd1">Please enter a safe Password:</label>

 <input type="password" name="pwd1" required>

 <label for="pwd2">Please repeat your chosen password:</label>

 <input type="password" name="pwd2" required>

 <label for="newsletter">Please check if you want to receive
 our newsletter and promotional emails:</label>

 <input type="checkbox" name="newsletter" value="1">

 <input type="submit" style="cursor: pointer;" value="Create Account">
 </form>
</div>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 51: /fruitshop/signup.jsp

7.3.7 create_user.js

This JavaScript code has the purpose to create a new user. Therefor, it is checked if a

user with the same username is already existing. If not, the credentials entered in the

form are inserted into the database table customer. However, one of the most im-

portant parts of this script is to use a hashing algorithm to safely store the password.

The algorithm used in this case is Bcrypt.

username = request.getParameter("username");
pwd1 = request.getParameter("pwd1");
pwd2 = request.getParameter("pwd2");

if (pwd1 != pwd2) {
 out.println('<p class="warning">Your entered Passwords do not match, ' +
 'please try again!</p>');
}

if (username !== null && pwd1 !== null && pwd1 === pwd2) {
 insertIntoDB();
}

98

// code written in a function to be able to exit with return
function insertIntoDB() {
 // Import the Connection class from the java.sql package
 var Connection = Java.type("java.sql.Connection");
 var DriverManager = Java.type('java.sql.DriverManager');
 var Statement = Java.type('java.sql.Statement');

 // Create a connection to the SQLite database
 var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

 var prepstmt = conn.prepareStatement("SELECT EXISTS (SELECT 1 FROM " +
 "customer WHERE username = ?)"); //returns 1 if row exists 0 if not
 prepstmt.setString(1, username);
 var rs = prepstmt.executeQuery(); // check if user already exists
 while (rs.next()) {
 if (rs.getBoolean(1)) {
 out.print('<p class="warning">User already exists!</p>');
 out.println(templateLoginButton());
 rs.close();
 prepstmt.close();
 conn.close();
 return; // stop the program
 }
 }
 rs.close();
 prepstmt.close();

 var bcrypt = Java.type("org.mindrot.jbcrypt.BCrypt");

 // Generate a new salt, cost of the later hashpw will be 12
 var salt = bcrypt.gensalt(12);

 // Hash the password with the salt
 var hashedPassword = bcrypt.hashpw(pwd1, salt);

 prepstmt = conn.prepareStatement("INSERT INTO customer " +
 "(username, password) VALUES (?,?)");
 prepstmt.setString(1, username);
 prepstmt.setString(2, hashedPassword);
 prepstmt.executeUpdate(); // add new user to database
 prepstmt.close();

 if (request.getParameter("newsletter") == 1) {
 prepstmt = conn.prepareStatement("UPDATE customer SET " +
 "receives_mail=1 WHERE username=?");
 prepstmt.setString(1, username);
 prepstmt.executeUpdate(); // sign the user up for e-mails
 prepstmt.close();
 }
 conn.close();

 out.println('<p class="success">Account successfully created!</p>');
 out.println(templateLoginButton());
}

//signup button
function templateLoginButton() {
 return 'Login'
}

99

/*
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

*/

Listing 52: /fruitshop/code/create_user.js

7.3.8 login.jsp

This JSP file displays a form to log in for customers of the shop. However, to handle

the login process it accesses the external script login.js.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib uri="WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link rel="stylesheet" href="css/style.css">
<title>Fruitshop</title>
</head>
<header>

<h1>Login to your account!</h1>

Back to Main Page

Sign Up

</header>
<body>

<div class="credentials-div">
 <s:script type="javascript" src="code/login.js" cacheSrc="false"
 throwException="true" />

 Enter your credentials:
 <form method="post" style="margin-top: 12px">
 <label for="username">E-mail:</label>

 <input type="email" name="username" required>

 <label for="pwd">Password:</label>

 <input type="password" name="pwd" required>

 <input type="submit" style="cursor: pointer;" value="Submit">

100

 </form>
</div>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 53: /fruitshop/login.jsp

7.3.9 login.js

The code in this file is responsible for the process of checking if the credentials entered

are matching with those stored in the database. If this is the case the user is logged in

and the customer_id is stored in the session. Therefore, other applications in the online

shop can determine who is currently logged in. Furthermore, the script transfers the

products in the shopping cart of the session to the shopping cart in the database.

var session = request.getSession();

var username = request.getParameter("username");
var pwd = request.getParameter("pwd");

// Import the Connection class from the java.sql package
var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

if (username != null && pwd != null) {
//else the code is executed each time you load the page
 //search for customer in database (by username)
 var prepstmt = conn.prepareStatement("SELECT password, customer_id " +
 "FROM customer WHERE username=?;");
 prepstmt.setString(1, username);
 var rs = prepstmt.executeQuery();

 if (rs.next()) {
 var id = rs.getString("customer_id");

101

 var hashedPassword = rs.getString("password");
 } else {
 templateWrongCredentials(); //if username is not in database
 }
 rs.close();
 prepstmt.close();

 var bcrypt = Java.type("org.mindrot.jbcrypt.BCrypt");
 //check if password is correct
 if (bcrypt.checkpw(pwd, hashedPassword)) {
 //store the login status is the session
 session.setAttribute('logged', id)

 // Transfer session shopping cart,
 //only if shopping cart exists in session
 if (session.getAttribute('shopping_cart') != null) {
 var shopping_cart = session.getAttribute('shopping_cart');
 var user_id = session.getAttribute('logged');
 var quantity;
 var item;

 //iterate through the shopping_cart that was stored in the session
 for (var selection in shopping_cart) {
 quantity = shopping_cart[selection];
 quantity = parseInt(quantity);
 item = selection;

 // Create the prepared statement and
 //set the parameters to check if prdouct is already in cart
 var qry = "SELECT quantity FROM shopping_cart " +
 "WHERE customer_id = ? AND fruit_id = ?";
 prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, id);
 prepstmt.setInt(2, item);

 // Execute the query and get the result set
 rs = prepstmt.executeQuery();

 var shopping_cart_quantity = 0;
 while (rs.next()) { //can only be one time
 shopping_cart_quantity = rs.getString('quantity');
 shopping_cart_quantity = parseInt(shopping_cart_quantity);
 }
 rs.close();
 prepstmt.close();

 // Create the prepared statement and set the parameters
 var qry = "INSERT INTO shopping_cart " +
 "(customer_id, fruit_id, quantity) VALUES (?,?,?) " +
 "ON CONFLICT (customer_id,fruit_id) DO UPDATE SET quantity = ?";
 prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, user_id);
 prepstmt.setInt(2, item);
 prepstmt.setInt(3, quantity);
 prepstmt.setInt(4, quantity + shopping_cart_quantity);

 // Execute the update
 prepstmt.executeUpdate();
 }

102

 conn.close();
 session.removeAttribute('shopping_cart')
 //shopping_cart is now in database therefore not needed in session
 }
 response.sendRedirect('index.jsp')
 } else {
 templateWrongCredentials(); //if passwords do not match
 rs.close();
 prepstmt.close();
 conn.close();
 }
}

function templateWrongCredentials() {
 out.println('<p class="warning">Wrong credentials, please try again!</p>')
}

/*
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

*/

Listing 54: /fruitshop/code/login.js

7.3.10 logout.jsp

This JSP file gets executed when a logged in customer, clicks on the logout button in

the main page. Once a user gets redirected to this page the current session is cleared

by calling the method invalidate().

<%@ page session="true" pageEncoding="UTF-8"
contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<link rel="stylesheet" href="css/style.css">
<title>treeshop | signup</title>
</head>
<header>

<h1>You have been successfully logged out</h1>

103

Back to Main Page

Sign Up

Login

</header>
<body>

<s:script type="javascript">
var session = request.getSession();

//clear session
session.invalidate()
</s:script>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 55: /fruitshop/logout.jsp

7.3.11 shopping_cart.jsp

This JSP file is responsible for displaying the products inside the shopping cart. How-

ever, the content on this page needs to be dynamically generated. That is why the only

code inside the body tag accesses an external script to produce this content.

<%@ page language="java" contentType="text/html;
charset=UTF-8" pageEncoding="UTF-8"%>
<%@ taglib uri="WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link rel="stylesheet" href="css/style.css">
<title>Fruitshop</title>
</head>
<header>

104

<h1>Your Shopping Cart!</h1>

Back to Main Page

</header>
<body>

<s:script type="javascript" src="code/shopping_cart.js"
cacheSrc="false" throwException="true" />

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 56: /fruitshop/shopping_cart.jsp

7.3.12 shopping_cart.js

The code inside this JavaScript file is accessed in shopping_cart.jsp to display the

products that are currently in the shopping cart. The products are either retrieved from

the database or from the session depending on the login status of the customer. Fur-

thermore, the file is responsible for the functionality to increase or decrease the quan-

tity of a product and to be able to completely remove a product from the shopping cart.

var session = request.getSession();
var conn;

// Shopping cart page if user is not loggged in
//but has values in the shopping cart
if (session.getAttribute('logged') == null &&
 session.getAttribute('shopping_cart') != null) {
 createConnectionToDatabase();

 var shopping_cart = session.getAttribute('shopping_cart');
 var totalPrice = 0;

 var i = 0;

105

 out.println('<div class="shopping-cart-ctn">')
 for (var selection in shopping_cart) {
 var quantity = shopping_cart[selection];
 var quantity = parseInt(quantity);
 itemID = selection;

 var qry = "SELECT * FROM fruit WHERE fruit_id=" + itemID + ";";
 var stmt = conn.createStatement();
 var rs = stmt.executeQuery(qry);

 var bgColor = getBackgroundColor(i);

 while (rs.next()) {
 totalPrice = totalPrice + (rs.getInt('price') * quantity);
 templateProductContainer(rs.getString('name'),
 rs.getString('picture'), rs.getString('weight'),
 rs.getString('price'), quantity, itemID, bgColor);
 }
 i++;
 rs.close();
 stmt.close();
 }

 templateSumContainer(totalPrice);

 //Functionality of the buttons add, reduce and delete
 if (request.getParameter("actn") == "+") {
 var fruit_id = request.getParameter("fruit_id");
 // increase quantity by 1
 var quantity = parseInt(request.getParameter("quantity")) + 1;
 shopping_cart[fruit_id] = quantity;
 response.sendRedirect(request.getRequestURI());
 }

 if (request.getParameter("actn") == "-") {
 var fruit_id = request.getParameter("fruit_id");
 // reduce quantity by 1
 var quantity = parseInt(request.getParameter("quantity")) - 1;
 shopping_cart[fruit_id] = quantity;
 if (quantity <= 0) {
 // delete product from cart if quantity goes below 1
 delete shopping_cart[id];
 }
 response.sendRedirect(request.getRequestURI());
 }

 if (request.getParameter("actn") == "del") {
 var fruit_id = request.getParameter("fruit_id");
 delete shopping_cart[fruit_id]; // delete product from cart
 response.sendRedirect(request.getRequestURI());
 }
}

//Shopping_cart page if user is logged in
if (session.getAttribute('logged') != null) {
 createConnectionToDatabase();

 var totalprice = 0;

106

 var qry = "SELECT * FROM shopping_cart INNER JOIN fruit USING(fruit_id) " +
 "WHERE customer_id = ?;";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, session.getAttribute("logged"));
 var rs = prepstmt.executeQuery(); // get data for all products in cart

 var i = 0;
 out.println('<div class="shopping-cart-ctn">');
 while (rs.next()) {
 totalprice = totalprice + (rs.getInt("price") * rs.getInt("quantity"));
 var bgColor = getBackgroundColor(i);
 templateProductContainer(rs.getString("name"),
 rs.getString("picture"), rs.getString("weight"),
 rs.getInt("price"), rs.getInt("quantity"), rs.getString("fruit_id"),
 bgColor);
 i++;
 }
 rs.close();
 prepstmt.close();
 out.println('</div>');

 templateSumContainer(totalprice);

 ////Functionality of the buttons add, reduce and delete

 // increase quantity in database cart
 if (request.getParameter("actn") == "+") {
 var fruit_id = request.getParameter("fruit_id");
 var quantity = request.getParameter("quantity");
 quantity = parseInt(quantity);
 quantity = quantity + 1;

 var qry = "UPDATE shopping_cart SET quantity = ? " +
 "WHERE customer_id = ? AND fruit_id = ?;";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, quantity);
 prepstmt.setInt(2, session.getAttribute("logged"));
 prepstmt.setInt(3, fruit_id);
 prepstmt.executeUpdate();
 prepstmt.close();
 conn.close();

 response.sendRedirect(request.getRequestURI()); // refresh page
 }

 if (request.getParameter("actn") == "-") {
 var fruit_id = request.getParameter("fruit_id");
 var quantity = request.getParameter("quantity") - 1;
 // delete product from cart if quantity goes below 1
 if (quantity <= 0) {
 var qry = "DELETE FROM shopping_cart WHERE customer_id = ? " +
 "AND AND fruit_id = ?;";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, session.getAttribute("logged"));
 prepstmt.setInt(2, fruit_id);
 prepstmt.executeUpdate();

107

 prepstmt.close();
 } else { // reduce quantity in database cart
 var qry = "UPDATE shopping_cart SET quantity = ? " +
 "WHERE customer_id = ? AND fruit_id = ?;";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, quantity);
 prepstmt.setInt(2, session.getAttribute("logged"));
 prepstmt.setInt(3, fruit_id);
 prepstmt.executeUpdate();
 prepstmt.close();
 }
 conn.close();
 response.sendRedirect(request.getRequestURI()); // refresh page
 }

 // delete product from cart
 if (request.getParameter("actn") == "del") {
 var fruit_id = request.getParameter("fruit_id");

 var qry = "DELETE FROM shopping_cart WHERE customer_id = ? " +
 "AND fruit_id = ?;";
 var prepstmt = conn.prepareStatement(qry);
 prepstmt.setInt(1, session.getAttribute("logged"));
 prepstmt.setInt(2, fruit_id);
 prepstmt.executeUpdate();
 prepstmt.close();
 conn.close();

 response.sendRedirect(request.getRequestURI()); // refresh page
 }
 conn.close();
}

function getBackgroundColor(i) {
 if ((i % 2) == 0) {
 var backgroundColor = '#F9F9F9';
 } else {
 var backgroundColor ='#F1F1F1';
 }
 return backgroundColor;
}

//// CONNECT TO DATABASE ////

function createConnectionToDatabase() {
 // Import the Connection class from the java.sql package
 var DriverManager = Java.type('java.sql.DriverManager');

 // Create a connection to the SQLite database
 conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");
}

//// HTML TEMPLATES ////

108

function templateProductContainer(name, img, weight, price,
quantity, itemID, bgColor) {
 out.println('<div class="cart-product-ctn" style="background-color:' +
 bgColor + '">' +
 '<h2>' + name + '</h2>' +
 '<div style="display:flex; gap:40px;">' +
 '' +
 '<div>' +
 '<div>' +
 '<p>Weight: ' + weight + ' Kg</p>' +
 '<p>Price per item: ' + price + ' Euro</p>' +
 '<p>Quantity ordered: ' + quantity + '</p>' +
 '<p>Subtotal: ' + price * quantity + ' Euro</p>' +
 '</div>' +
 '<form method="post">' +
 '<input type="hidden" name="fruit_id" value="' +
 itemID + '">' +
 '<input type="hidden" name="quantity" value="' +
 quantity + '">' +
 '<input type="submit" style="cursor: pointer;" ' +
 'name="actn" value="+">' +
 '<input type="submit" style="cursor: pointer;" ' +
 'name="actn" value="-">' +
 '<input type="submit" style="cursor: pointer;" ' +
 'name="actn" value="del">' +
 '</form>' +
 '</div>' +
 '</div>' +
 '</div>');
}

function templateSumContainer(totalPrice) {
 out.println('<div class="sum-container">' +
 '<h4>Your total is: ' + totalPrice + ' Euro</h4>' +
 '<form action="checkout.jsp" method="POST">' +
 '<input type="submit" style="cursor: pointer;" ' +
 'value="Checkout" class="button">' +
 '</form>' +
 '</div>');
}

/*
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

*/

Listing 57: /fruitshop/code/shopping_cart.js

109

7.4 Advanced Examples

The applications in this part are more advanced than the examples discussed until

now. The programs are developed to ease the work of admins of the shop. Therefore,

the first program that has been developed can be used to create new products. How-

ever, the products require an image, thus a file upload needs to be implemented. The

second example is an application where admins can easily send advertisement emails

to customers. Though what both programs have in common is that the rely on the

servlet technology.

7.4.1 index.html

The index.html files task is to link to the advanced applications. The file is automatically

opened by default once the admin folder is opened in the browser. Important here is

that all files regarding the advanced examples are located inside the admin folder.

Thus, requesting files outside this folder requires two dots in front of the path (e.g.

../css/style.css)

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link rel="stylesheet" href="../css/style.css">
<title>fruitshop_admin</title>
</head>
<header>

<h1>Fruitshop Administration Page</h1>

Main Page

</header>
<body>

Add new products

Send promotional E-Mails

</body>
</html>

<!--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

110

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 -->

Listing 58: /fruitshop/admin/index.html

7.4.2 addproducts.html

Admins can enter the specifications of a new product in the form displayed by this

program. The data entered will be sent to the servlet uploader and inserted in the da-

tabase. However, as the servlet mailer has been configured to use the code inside

mailer.jsp, the action attribute can redirect to the servlet uploader (no .jsp needed).

Furthermore, to enable uploading images the attribute enctype=”multipart/form-data”

is necessary.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<link rel="stylesheet" href="../css/style.css">
<title>fruitshop_admin</title>
</head>
<header>

<h1>Create a New Product</h1>

Admin Starting Page

</header>
<body>

<form action="uploader" style="margin: 10px"
enctype="multipart/form-data" method="post">
 <label for="name">Name:</label>

 <input type="text" name="name" required>

 <label for="weight">Weight:</label>

 <input type="text" name="weight" required>

 <label for="price">Price:</label>

 <input type="number" name="price" required>

 <input type="file" name="file" required>
 <input type="submit" value="Create Product">
</form>

</body>
</html>

<!--
 ------------------------ Apache Version 2.0 license -------------------------

111

 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 -->

Listing 59: /fruitshop/admin/addproducts.html

7.4.3 uploader.jsp

The servlet uploader uses the code written in uploader.jsp. The servlets task is to up-

load the image to the database. This is done by the instruction request.get-

Part("file").write(filename). Furthermore, the specifications of the newly created prod-

uct are inserted in the database.

<%@ page session="false" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>

<s:script type="javascript">
var session = request.getSession();

var name = request.getParameter('name');
var weight = request.getParameter('weight');
var price = request.getParameter('price');

// Import the Connection class from the java.sql package
var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

if (checkIfProductExists()) {
 var filename = name + ".jpg";
 var location = "/files/" + filename;
 request.getPart("file").write(filename);

 var prepstmt = conn.prepareStatement("INSERT INTO fruit " +
 "(name, price, weight, picture) VALUES (?,?,?,?)");
 prepstmt.setString(1, name);
 prepstmt.setString(2, price);
 prepstmt.setString(3, weight);
 prepstmt.setString(4, location);
 prepstmt.executeUpdate();
 out.println(openHTML());

112

 out.println('<p class="success margin-left">Product has been ' +
 'created successfully!</p>');
 out.println(closeHTML());
 prepstmt.close();
 conn.close();
}

function checkIfProductExists() {
 var prepstmt = conn.prepareStatement("SELECT * FROM fruit WHERE name = ?");

 prepstmt.setString(1, name);
 var rs = prepstmt.executeQuery();

 while (rs.next()) {
 out.println(openHTML());
 out.println('<p class="warning margin-left">Entry already exists! ' +
 'Please try again</p>');
 out.println(closeHTML());
 rs.close();
 prepstmt.close();
 conn.close();
 return false; // Product exists
 }
 rs.close();
 prepstmt.close();
 return true; //Product does not exist
}

//// HTML TEMPLATES ////

function openHTML() {
 return '<!DOCTYPE html>' +
 '<html>' +
 '<head>' +
 '<meta charset="UTF-8" />' +
 '<link rel="stylesheet" href="../css/style.css">' +
 '<title>fruitshop_admin</title>' +
 '<header>' +
 '<h1>Status of Product Creation</h1>' +

 '' +
 'Admin Starting Page' +
 'Main Page' +

 '</header>' +
 '<body>'
}

function closeHTML() {
 return '</body>' +
 '</html>'
}
</s:script>

<%--

113

 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 60: /fruitshop/admin/code/uploader.jsp

7.4.4 newsletter.jsp

To send newsletter emails to a customer the user can visit the newsletter.jsp page.

Here a form will be displayed where one or more products can be selected and then

are sent in the email. By submitting the form the data and the user are sent to the

mailer servlet.

<%@ page session="false" pageEncoding="UTF-8"
contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<link rel="stylesheet" href="../css/style.css">
<title>fruitshop_admin</title>
</head>
<header>

<h1>Create a Newsletter</h1>

Admin Starting Page

</header>
<body>

<s:script type="javascript">
var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

var stmt = conn.createStatement();
var qry = "SELECT * FROM customer WHERE receives_mail = '1';";
var rs = stmt.executeQuery(qry); // check how many people are subscribed

var count = 0;

114

while (rs.next()) {
 count++;
}
rs.close();
stmt.close();

stmt = conn.createStatement();
qry = "SELECT name FROM fruit;";
rs = stmt.executeQuery(qry); // get the names of all available products

out.println('<div class="newsletter-ctn">')
out.println('<form action="mailer" method="post">');
while (rs.next()) {
 out.println('
');
 out.println('<label for="choice">' + rs.getString("name") + '</label>');
 out.println('<input type="checkbox" name="choice" value="' +
 rs.getString("name") + '">');
}
rs.close();
stmt.close();
conn.close();
out.println('<input type="submit" style="margin-top: 20px;" ' +
'value="Send Newsletter to ' + count + ' Receivers">');
out.println('</form>');
out.println('</div>');
</s:script>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 61: /fruitshop/admin/newsletter.jsp

7.4.5 mailer.jsp

The code inside this JSP gets executed when the user submits the form present in

newsletter.jsp. This is because the servlet mailer uses the code inside this mailer.jsp

file. The program is responsible for creating one email for each customer who is willing

to receive an email. The content of the email is written in HTML. Therefore, the product

115

can be displayed in the email. The MailHog application was used to be able to analyze

the sent emails. The emails are sent to port 1025. This is because MailHog’s SMTP

server runs under this port. If MailHog is up and running a developer can look at the

sent emails under the URL localhost:8025.

<%@ page session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>

<s:script type="javascript">
var choices = request.getParameterValues("choice");

// make sure at least one product is selected
if (choices !== null) {
 var DriverManager = Java.type('java.sql.DriverManager');

 // Create a connection to the SQLite database
 var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

 var choice = '';
 for (var i = 0; i < choices.length; i++) {
 // append all product names to a string
 choice += "'" + choices[i] + "',";
 }
 // remove the string's last comma
 choice = choice.substring(0, choice.length - 1);

 var stmt1 = conn.createStatement();
 var qry1 = "SELECT * FROM customer WHERE receives_mail = 1;";
 // select all customers who wish to receive the newsletter
 var customers = stmt1.executeQuery(qry1);
 var emailCount = 0;

 while (customers.next()) {
 var props = new (Java.type("java.util.Properties"))();
 var session = Java.type("jakarta.mail.Session").getInstance(props);
 var msg = new (Java.type("jakarta.mail.internet.MimeMessage"))(session);

 var sender = new (Java.type("jakarta.mail.internet.InternetAddress")
)("newsletter@treeshop.com");
 msg.setFrom(sender);

 var receiverAddress = customers.getString("username");
 var receiver = new (Java.type("jakarta.mail.internet.InternetAddress")
)(receiverAddress);
 var type = Java.type("jakarta.mail.Message$RecipientType").TO;
 msg.addRecipient(type, receiver);

 msg.setSubject("Here Are the Latest Products from treeshop!");

 var stmt2 = conn.createStatement();
 var qry2 = "SELECT * FROM fruit WHERE name IN (" + choice + ")";
 var products = stmt2.executeQuery(qry2);

 var i = 0;

116

 var productHTML = [];

 while (products.next()) {
 var line1 = '<div style="float: left; margin-right: 10px;">';
 var line2 = '<h2>' + products.getString("name") + '</h2>';
 var line3 = '<img src="http://localhost:8080' +
 products.getString("picture") + '" height="120" width="150" />';
 var line4 = '<p>Price: ' + products.getString("price") +
 ' Euro</p>';
 var line5 = '<p>Weight: ' + products.getString("weight") +
 ' KG</p>';
 var line6 = '</div>';

 productHTML.push(line1 + line2 + line3 + line4 + line5 + line6);
 i++;
 }
 products.close();
 stmt2.close();

 var text = '<html><head><meta charset="UTF-8" /></head><header>';
 text += '<h1>' +
 'Vist fruitshop</h1>';
 text += '<h4><a href="http://localhost:8080/fruitshop/admin/' +
 'unsubscribe.jsp?unsub=' + receiverAddress +
 '">Click Here to Unsubscribe</h4>';

 for (var count = 0; count < i; count++) {
 //i is one more then the index in the array
 text += productHTML[count];
 }

 text += '</body></html>';
 msg.setContent(text, "text/html");

 var transport = session.getTransport("smtp");
 transport.connect("localhost", 1025, "username", "pw");
 transport.sendMessage(msg, msg.getRecipients(type));

 emailCount++;
 }
 customers.close();
 stmt1.close();

 out.println(openHTML());
 out.println('<p class="success">Sending emails has been successfull!</p>');
 out.println(closeHTML());
} else {
 out.println(openHTML());
 out.println('<p class="warning">At least one product ' +
 'needs to be chosen!</p>');
 out.println(closeHTML());
}

//// HTML TEMPLATES ////

function openHTML() {

117

 return '<!DOCTYPE html>' +
 '<html>' +
 '<head>' +
 '<meta charset="UTF-8" />' +
 '<link rel="stylesheet" href="../css/style.css">' +
 '<title>fruitshop_admin</title>' +
 '<header>' +
 '<h1>Sending a Newsletter</h1>' +

 '' +
 'Admin Starting Page' +
 'Main Page' +

 '</header>' +
 '<body>'
}

function closeHTML() {
 return '</body>' +
 '</html>'
}

</s:script>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 62: /fruitshop/admin/code/mailer.jsp

7.4.6 unsubscribe.jsp

The unsubscribe link to get to this page is placed inside the newsletter emails. The

purpose of this file is to ask the customer for confirmation. The confirmation is done

via a form that redirects the user to the unsubscriber servlet and is responsible for

forwarding the username of the customer.

<%@ page session="false" pageEncoding="UTF-8"
contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>

118

<head>
<meta charset="UTF-8" />
<link rel="stylesheet" href="../css/style.css">
<title>Fruitshop</title>
</head>
<header>

<h1>Unsubscribe from our Newsletter:</h1>

Admin Starting Page

</header>
<body>

<s:script type="javascript" throwException="true">

var email = request.getParameter("unsub");

out.println('<p class="margin-left warning">' +
'Are you sure you want to stop receiving e-mails at: ' + email + '</p>');

out.println('<form class="margin-left" action="unsubscriber" method="post">' +
 '<input type="hidden" name ="unsub" value="' + email +
 '">
' +
 '<input type="submit" value="Unsubscribe">' +
 '</form>');
</s:script>

</body>
</html>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 63: /fruitshop/admin/unsubscribe.jsp

7.4.7 unsubscriber.jsp

The code in this JSP file is accessed by the servlet named unsubscriber. The purpose

of this servlet is to update the column receives_mail in the table customer. The updated

value needs to be 0 as this is equivalent to false.

119

<%@ page session="false" pageEncoding="UTF-8"
contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>

<s:script type="javascript">
 var DriverManager = Java.type('java.sql.DriverManager');

// Create a connection to the SQLite database
var conn = DriverManager.getConnection("jdbc:sqlite:C://sqlite/shop.db");

email = request.getParameter("unsub");
prepstmt = conn.prepareStatement("UPDATE customer SET receives_mail=0 " +
"WHERE username=?");
prepstmt.setString(1,email);
prepstmt.executeUpdate();
prepstmt.close();
conn.close();

out.println(openHTML());
out.println('<p class="margin-left">' + email +
' has been successfully unsubscribed!</p>');
out.println(closeHTML());

//// HTML TEMPLATES ////

function openHTML() {
 return '<!DOCTYPE html>' +
 '<html>' +
 '<head>' +
 '<meta charset="UTF-8" />' +
 '<link rel="stylesheet" href="../css/style.css">' +
 '<title>fruitshop_admin</title>' +
 '<header>' +
 '<h1>Subscription Status:</h1>' +

 '' +
 'Admin Starting Page' +
 'Main Page' +

 '</header>' +
 '<body>'
}

function closeHTML() {
 return '</body>' +
 '</html>'
}
</s:script>

<%--
 ------------------------ Apache Version 2.0 license -------------------------
 Copyright 2023 Simon Besenbäck

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

120

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 --%>

Listing 64: /fruitshop/admin/code/unsubscriber.jsp

	Deutscher Titel der Masterarbeit: Developing Jakarta Server Pages as a Front-End Developer - An Alternative Approach to Developing Server-Side with Node.js
	Englischer Titel der Masterarbeit: Entwicklung von Jakarta-Serverseiten als Frontend-Entwickler - Ein alternativer Ansatz zur serverseitigen Entwicklung mit Node.js
	Verfasserin Familienname Vornamen: Besenbäck, Simon
	Matrikelnummer: 11801501
	Bachelorstudium: [Bachelor of Science (WU), BSc (WU)]
	Beurteilerin Titel Vornamen Familienname: ao. Univ.-Prof. Dr Rony G. Flatscher
	Name des Zweitautoren:
	Datum: 08/02/2023

