

ooRexx and JavaFX: A Perfect

Match for GUI Development

Bachelor Thesis

eingereicht bei

ao.Univ.Prof. Dr. Rony G. Flatscher
Institut für Wirtschaftinformatik und Gesellschaft
Wirtschaftsuniversität Wien

Von

Isabella Dall‘Oglio

Fachrichtung: Wirtschaftsinformatik

Matrikelnummer: 1607760

Abstract

This thesis explores the combination of the object-oriented scripting

language ooRexx and the JavaFX framework to develop graphical user

interfaces (GUIs). The thesis provides a comprehensive overview of the

history and concepts of JavaFX, including its architecture, application

structure and lifecycle, as well as key features such as Scene Builder, FXML

and CSS. Additionally, the thesis covers the fundamental language concepts

of ooRexx, such as syntax, variables, expressions and instructions and

demonstrates how to interact with objects, create classes and utilize built-

in classes. The thesis also discusses two JavaFX libraries, JFoenix and

ControlsFX, which offer additional styling and widget options for developers.

Practical examples and use cases are provided to illustrate GUI application

development with JavaFX and ooRexx, including integrating external

libraries, using FXML and CSS for GUI design and utilizing JDBC for database

connectivity.

 I

List of Figures .. III

List of Tables ... IV

List of Snippets ... V

List of Listings .. VI

Abbreviations ... VII

Introduction ... 1

1. History of JavaFX ... 2

1.1. Abstract Window Toolkit ... 2
1.2. Swing .. 3
1.3. JavaFX ... 4

2. JavaFX Concepts .. 4

2.1. Architecture ... 4
2.2. JavaFX Application Structure ... 7
2.3. Lifecycle of JavaFX Application .. 8
2.4. Scene Builder ... 9
2.5. FXML .. 9
2.6. Cascading Style Sheet (CSS) ... 10

3. The Language Rexx and Open Object Rexx (ooRexx) ... 10

3.1. History .. 11
3.2. Fundamental Language Concepts .. 12
3.3. Language Basics ... 14

3.3.1. Structure and General Syntax .. 14
3.3.2. Characters ... 15
3.3.3. Comments ... 15
3.3.4. Variables .. 16
3.3.5. Tokens ... 16
3.3.6. Expressions .. 19
3.3.7. Instructions .. 22
3.3.8. Directives ... 27

3.4. Introduction to ooRexx .. 29
3.4.1. Interacting with Objects .. 29
3.4.2. Classes ... 29
3.4.3. ooRexx – Built-in Classes ... 32

3.5. BSF4ooRexx .. 33

4. JavaFX Libraries ... 33

4.1. Styling Library – JFoenix ... 34
4.2. Widget Library – ControlsFX .. 34

5. Required Software and Installation ... 35

5.1. Java .. 35
5.2. ooRexx .. 36
5.3. BSF4ooRexx .. 36
5.4. SceneBuilder .. 37
5.5. JavaFX Libraries .. 37
5.6. SQLite Browser ... 38
5.7. CLASSPATH ... 38

 II

6. Nutshell Examples ... 40

6.1. JavaFX GUI Application with ooRexx .. 40
6.2. JavaFX GUI Application with FXML in ooRexx .. 44
6.3. JavaFX GUI Application using JFoenix Library .. 49

6.3.1. StageHandler ... 50
6.3.2. JFoenix Library ... 53

6.4. JavaFX GUI Application using ControlsFX Library ... 54
6.4.1. ControlsFX ... 55
6.4.2. DatabaseHandler .. 56

7. Conclusion .. 61

8. References .. 62

Appendix .. 65

Example 1-BMI Calculator .. 65

Example 2 -BMI Calculator with FXML .. 67

Example 3 – Health Calculator with JFoenix ... 70

Example 4 – Formular with ControlsFX and JDBC ... 76

 III

List of Figures

Figure 1 JavaFX Architecture Diagram (JavaFX_Oracle, 2023) ... 5
Figure 2: Application Structure (ApplicationStructure, 2023) ... 7
Figure 3: Adding New Path to CLASSPATH ... 39
Figure 4: BMI -Calculator - GUI ... 42
Figure 5: Scene Builder ... 44
Figure 6: BMI Calculator GUI .. 47
Figure 7: Health Calculator Menu .. 50
Figure 8: BMI- Calculator JFoenix ... 54
Figure 9: ControlsFX Form .. 56

 IV

List of Tables

Table 1: Main packages of the JavaFX API (JavaFX, 2022)). ... 6

 V

List of Snippets

Snippet 1:BMI-Calculator - Application launch .. 41
Snippet 2: BMICalculator Class... 41
Snippet 3: BMI- Calculator -Add Components ... 42
Snippet 4: BMI-Calculator - ButtonHandler ... 43
Snippet 5:BMI-Calculator, Constructor and Handle Method ... 43
Snippet 6: BMI Calculator-FXML .. 45
Snippet 7:BMI Calculator-Stylesheet ... 46
Snippet 8: BMI-Calculator- Class .. 47
Snippet 9:Routine CalculateBMI .. 49
Snippet 10:Launch StageHandler ... 50
Snippet 11:StageHandler Class ... 51
Snippet 12:Method newWindow ... 52
Snippet 13:Routines to open a window ... 52
Snippet 14:JFoenix Import ... 53
Snippet 15:Slider CSS – Stylesheet ... 54
Snippet 16: ControlsFX Import ... 55
Snippet 17:Rating CSS Stylesheet ... 56
Snippet 18:Database Connection ... 57
Snippet 19:DatabaseHandler Class .. 58
Snippet 20:Method initSettings ... 58
Snippet 21:Method Connect .. 59
Snippet 22:Method insertData ... 60

 VI

List of Listings

Listing 1: If-Then-Else ... 23

Listing 2: Select-When ... 24

Listing 3: Do-End .. 24

Listing 4: Do-Until .. 24

Listing 5:Do-While ... 24

Listing 6: Loop ... 25

Listing 7: Routine PUBLIC .. 28

Listing 8: Routine ... 28

Listing 9: Example Class ... 30

Listing 10: Example 1 - ooRexx_Gui.rexx .. 67

Listing 11: Example 2- stylesheet.css ... 67

Listing 12:Example 2 - Gui.fxml ... 68

Listing 13: Example 2 - main.rexx ... 69

Listing 14: Example 2 - controller.rexx .. 69

Listing 15: Example 3 - bmi_calulator.fxml .. 70

Listing 16:Example 3 - calorieRequirement.fxml ... 71

Listing 17:Example 3 - main_window.fxml .. 72

Listing 18: Example 3 - sylesheet.css ... 73

Listing 19:Example 3 - main.rexx .. 74

Listing 20:Example 3 - controller.rexx ... 76

Listing 21:Example 4 - gui.fxml .. 77

Listing 22:Example 4 - stylesheet.css ... 78

Listing 23:Example 4 -main.rexx ... 78

Listing 24:Example 4 - controller.rexx ... 79

Listing 25:Example 4 - DatabaseHandler.CSL .. 80

 VII

Abbreviations

API Application Programming Interface

AWT Abstract Window Toolkit

BSF4ooRexx Bean Scripting Framework for ooRexx

BSF Bean Scripting Frameworks

CSS Cascading Style Sheets

DOM Document Object Model

FXML JavaFX Scene Builder markup language

GUI Graphical User Interface

HTML5 Hypertext Markup Language version 5

JavaFX Java graphical user interface toolkit

JDBC Java Database Connectivity

ooRexx Object-Oriented Rexx language

OpenJFX Open-source JavaFX

RexxLA Rexx Language Association

RIA Rich Internet Application

SVG Scalable Vector Graphics

 1

Introduction

In the recent years, JavaFX has gained popularity as a modern and versatile

platform for developing graphical user interfaces (GUIs) for desktop, web,

and mobile applications. At the same time, ooRexx has emerged as a

powerful object-oriented scripting language that is easy to learn and use.

The combination of JavaFX and ooRexx provides a powerful and flexible

toolset for developing GUI applications that can benefit from the rich library

of JavaFX components, the simplicity and expressiveness of the ooRexx

language, and the object-oriented paradigm that underlies both

technologies.

The thesis explains the history and development of JavaFX, as well as its

main features and architecture. It also introduces the basics of the ooRexx

language, including its syntax, data types, and control structures, as well

as its object-oriented model and built-in classes.

Additionally, practical examples and use cases are presented for developing

GUI applications with JavaFX and ooRexx, including the integration of

external libraries such as JFoenix and ControlsFX, and the use of FXML and

CSS for GUI design and styling, as well as JDBC for database connectivity

with JavaFX and ooRexx.

 2

1. History of JavaFX

Sun Microsystems introduced the platform-independent programming

language, Java, in 1995. Following its release, the Abstract Window Toolkit

(AWT) library was introduced for the development of desktop applications

and their graphical user interfaces (GUIs) (Abstract Window Toolkit, 2022).

In 1996, the Swing package was introduced as a follow-up to the Abstract

Window Toolkit (AWT) for graphical user interface (GUI) development in

Java. AWT and Swing remained the standard for Java graphical applications

until 2014. To overcome the limitations in media and animation, Oracle

developed a new GUI layer and introduced JavaFX in 2008 (JavaFX, 2022).

In the following sections, the features of the two packages AWT and Swing

as well as the new development JavaFX are discussed in more detail.

1.1. Abstract Window Toolkit

The Abstract Window Toolkit (AWT) was the first user-interface widget

toolkit for the development of graphical user interfaces (GUIs) in Java when

the programming language was first introduced (Abstract Window Toolkit,

2022).

The java.awt package, provides classes for developing GUI applications in

Java, such as TextField, Label, TextArea, RadioButton, CheckBox and List,

among others. To access these components, the java.awt package must be

imported into the development environment using the following import

statement: "import java.awt.*;".

The appearance of AWT components is dependent on the underlying

operating system, so they are considered platform dependent. This means

that the components will appear differently on different OS platforms, such

as Windows and macOS. Additionally, because AWT components use the

 3

native appearance of the OS, they are considered "heavyweight", which

means they are closely tied to the system environment (Java-Awt, 2022).

The use of native components in the AWT package has the benefit of

improving performance. Additionally, AWT provides a strong event handling

system and the ability to customize window layouts with its layout manager.

A drawback of using AWT is the difficulty in creating a platform-independent

application with a consistent appearance, as the available components are

limited to those supported by all platforms (AWT vs. Swing, 2022).

The Java Foundation Classes (JFC) include the Abstract Window Toolkit

(AWT) as a standard Application Programming Interface (API) for creating

graphical user interfaces in Java (Abstract Window Toolkit, 2022).

1.2. Swing

In 1996, Java Swing was introduced as a GUI widget toolkit, offering a

departure from the previous AWT framework. Swing is platform-

independent and lightweight, as it is written entirely in Java and draws its

own components. This independence allows developers to choose between

the look and feel of the underlying system and the uniform look and feel of

Java. Although Swing has largely replaced AWT, it still builds on and

complements the latter (AWT, 2022).

Swing builds upon the features of AWT and offers a wider range of

components, including trees, image buttons, tables, tabbed panes, sliders

and more. Unlike AWT, Swing is not dependent on peer components,

making it a versatile option for GUI programming in Java (Java Swing,

2022). To utilize the Swing components, developers must import the

javax.swing package into their development environment. This can be

achieved by adding the following import statement: "import

javax.swing.*;". The Java Swing toolkit is part of the Java Foundation

Classes (JFC) (Java Swing, 2022).

 4

1.3. JavaFX

JavaFX is a cutting-edge development in the GUI layer that replaced the

aging AWT and Swing. The limitations in media and animation capabilities

made it necessary for a new GUI layer to be created. Oracle decided to

create JavaFX to meet the modern requirements for graphical interfaces.

The first version of JavaFX was released by Sun Microsystems in 2008. It

started as F3, a Java scripting language for GUI development, created by

Chris Oliver at SeeBeyond. After being acquired by Sun Microsystems in

2007, F3 was renamed JavaFX. In 2010, Oracle acquired Sun Microsystems

and made JavaFX open source in 2013 (What is JavaFX, 2022).

JavaFX is an open-source framework for developing cross-platform Java

applications. Its goal is to make it easier to create and distribute interactive

multimedia content and GUIs. Desktop applications and Rich Internet

Applications (RIAs) can be developed using the JavaFX library and run-on

multiple platforms, including web, mobile and desktops. JavaFX provides its

own components and is lightweight as it is not dependent on the platform.

It supports various operating systems such as Windows, Linux and Mac OS

(JavaFX, 2022).

2. JavaFX Concepts

This chapter focuses on the theory behind JavaFX development, including

its architecture, application structure, and lifecycle. It also discusses the

tools like Scene Builder, FXML and Cascading Style Sheets (CSS).

2.1. Architecture

The design of JavaFX does not rely on the architecture of AWT and Swing.

The structure and components of the JavaFX platform are shown and

explained in detail in Figure 1.

 5

Figure 1 JavaFX Architecture Diagram (JavaFX_Oracle, 2023)

The foundation of the platform is the Java Virtual Machine (JVM), which is

part of the Java runtime environment and executes Java bytecode in its

own virtual machine. On top of the JVM, the Java Development Kit provides

developer tools and extensions, such as Java 2D for creating 2D shapes.

Prism, the rendering engine, works with both hardware and software. The

hardware render path is preferred for better performance and requires

either DirectX 9 on Windows XP and Vista, DirectX 11 on Windows 7, or

OpenGL on Mac, Linux and Embedded.

If hardware rendering is not possible, the software rendering path on Java

2D is used, which is already included in all Java Runtime Environments.

The Glass windowing toolkit sits at the lowest level of the JavaFX graphics

stack and provides access to low-level operating system routines, such as

managing windows, timers and surfaces. The Glass toolkit also manages

the event queue and uses the native operating system's functionality for

scheduling thread management.

The Media Engine integrates audio and video. The Web Engine, based on

WebKit, supports HTML5, CSS, JavaScript, DOM and SVG. This allows Java

applications to: render HTML content from local or remote URLs, support

history and provide back and forward navigation, reload content, apply

effects to web components, edit HTML content, execute JavaScript

commands and handle events.

 6

The Quantum Toolkit combines Prism, Glass Windowing Toolkit, Media

Engine and Web Engine and exposes them to the JavaFX API

(JavaFX_Oracle, 2022).

The highest level of the architecture provides a complete set of public Java

APIs, with the main packages listed in Table 1:

Package Description

javafx.animation Provides the set of classes for easy use of transition-

based animations.

javafx.application Provides the application life-cycle classes.

javafx.collections Contains the essential JavaFX collections and

collection utilities.

javafx.event Provides basic framework for FX events, their delivery

and handling.

javafx.fxml Defines the FXML APIs for the JavaFX UI toolkit.

javafx.geometry Provides the set of 2D classes for defining and

performing operations on objects related to two-

dimensional geometry.

javafx.scene Provides the core set of base classes for the JavaFX

Scene Graph API.

javafx.stage Provides the top-level container classes for JavaFX

content.

javafx.util Contains various utilities and helper classes.

Table 1: Main packages of the JavaFX API (JavaFX, 2022)).

 7

2.2. JavaFX Application Structure

Figure 2: Application Structure (ApplicationStructure, 2023)

The design of graphical applications in JavaFX is based on the concept of a

theater. The Stage, defined by the javafx.stage.Stage class, is the top-level

container for a GUI and can be thought of as a window. The platform creates

the primary Stage, while additional Stages can be created by the

application. Stage properties are largely read-only, as they can be changed

by the underlying platform and are therefore not bound (JavaFX_Stage,

2022).

The Stage is split into the decoration (title bar and frame) and the content

area and its size is determined by its width and height parameters. There

are five different types of Stages: Decorated, Undecorated, Transparent,

Unified and Utility. To display the Stage, the created Stage object is passed

as an argument to the start() method of the application class

(JavaFX_Application, 2022).

 8

A scene, defined by the javafx.scene.Scene class, is necessary to visualize

the content on the Stage. A Scene contains all the elements of a GUI and

can only be assigned to one Stage at a time, although an application can

have multiple scenes. The Scene object is created by creating an object of

the Scene class and passing it to the constructor of the Stage

(JavaFX_Application, 2022).

At the lowest level of the hierarchy is the Scene Graph, a tree-like data

structure that manages the individual components of a GUI. The elements

of the graph are represented as node objects, defined in the abstract class

javafx.scene.Node and can include geometrical objects, UI controls,

containers and media elements such as audio, video and images.

There are three types of nodes in the Scene Graph: Root Node, Branch Node

and Leaf Node. Each node in the graph has a parent and zero or more child

nodes, except for the root node. The Branch Node, defined by the abstract

class javafx.scene.Parent, contains three subclasses: Group, Region and

WebView. The properties of a parent node are applied to child nodes when

transformations are performed (JavaFX_Application, 2022).

2.3. Lifecycle of JavaFX Application

The javafx.application.Application class is a required import for all JavaFX

applications. This class has three life cycle methods: init(), start() and

stop(), which can be customized by the application if needed. The launch()

method, provided by JavaFX, is used to launch the application and

eliminates the need for a main method.

Following how the lifecycle methods are executed when a JavaFX application

is launched:

 9

• An instance of the Application class is created.

• The init() method of the instance is executed, which is empty by

default.

• The start() method is executed and is passed the stage. This method

is abstract and must be overridden.

• The JavaFX runtime waits until the application is terminated, either

through calling the Platform.exit() method or closing the last window

when the implicitExit attribute of Platform is set to true.

• Finally, the stop() method is executed, which is also empty by default.

Note that the init() method cannot create a Stage or Scene and the stop()

method only needs to be customized if necessary (JavaFX, 2022).

2.4. Scene Builder

The Scene Builder is a visual layout tool for designing JavaFX application

interfaces without programming knowledge. It allows users to drag and

drop UI components into the workspace and customize their properties

using a stylesheet. The scene graph structure is generated automatically in

the background and saved in an FXML file. The FXML file can then be

connected to the Java project by linking the elements to the applications

logic (SceneBuilder, 2022)

Originally distributed by Oracle until Java 8, Scene Builder is now

maintained and updated by Gluon within the OpenJFX project.

2.5. FXML

FXML files make it simpler for developers to maintain and modify code by

separating the presentation layer from the application logic. To use FXML

files in a JavaFX application, developers can load the FXML file through the

FXMLLoader class and then pass it to the Scene object to display the user

interface in the application window. Additionally, the FXMLLoader class can

 10

be used to load a controller object and set it as the controller for the user

interface described in the FXML file. The JavaFX runtime processes the FXML

files to create the user interface (Learn JavaFX 17, 2023).

2.6. Cascading Style Sheet (CSS)

Cascading Style Sheets (CSS) is a language used for formatting and

designing HTML, SVG and XML documents. It is constantly being improved

by the World Wide Web Consortium (W3C) and is a key language in the

World Wide Web. CSS allows the separation of the content and design of an

electronic document by allowing layout, colors and typography to be defined

in separate CSS files through the use of stylesheets.

This gives CSS an unlimited level of flexibility (CSS, 2022). JavaFX also

supports CSS. JavaFX provides the javafx.css package, which contains all

the CSS classes for use in JavaFX applications. CSS can be used to

customize and design JavaFX controls and scene graph objects. Any

compatible CSS parser can easily parse JavaFX CSS stylesheets.

(JavaFX_CSS, 2023)

3. The Language Rexx and Open Object

Rexx (ooRexx)

REXX is a procedural programming language that enables the structured

and organized coding of algorithms and programs. Its main goal was to be

user-friendly for both computer experts and non-technical individuals. REXX

simplifies the manipulation of common symbolic objects such as words,

numbers, names and more. Its features are designed to make symbolic

manipulation easier. REXX is designed to be system-independent, although

it has the capability to send commands to its host environment and call

programs or functions written in other languages. It offers powerful

character and arithmetic capabilities in a straightforward framework,

making it suitable for both simple and complex programs (Cowlishaw,

 11

1990). Rexx is a user-friendly language with a simplified structure, built-in

functions and classes, flexible variable types that can handle any object,

strong string manipulation capabilities, decimal arithmetic instead of binary

arithmetic, easily understandable error messages and robust debugging

tools (ooRexx, 2023).

ooRexx, also known as Open Object Restructured Extended Executor, is a

compatible version of Rexx that has been enhanced with object-oriented

features. The core elements of Rexx remain unchanged, but ooRexx

includes added capabilities that allows typical object-oriented language

capabilities, including classes, objects, methods, inheritance, multiple

inheritance and messaging. In traditional Rexx, all data were stored as

strings, but with ooRexx, variables can now refer to objects other than just

strings. The language has a variety of built-in classes, including those for

arrays, queues, streams and the String class. Additionally, developers can

create their own custom classes that work in conjunction with the built-in

classes. Methods are used to manipulate objects in these classes and are

accessed by sending a message to the object. The use of object technology

has several benefits, including simplified design through object modeling,

greater code reuse, rapid prototyping, higher-quality components, easier

maintenance, cost savings, increased adaptability and scalability (Ashley W.

, et al., 2010)

3.1. History

Mike Cowlishaw developed the Rexx Restructured Extended Executor

language in 1979 to replace exec and exec-2. The language was first

introduced to the public at the 56th SHARE conference in Houston. Over the

years, IBM has integrated Rexx into nearly every operating system.

In 1990, Cathie Dager from SLAC organized the first independent Rexx

symposium, which led to the formation of the REXX Language Association.

Annual symposiums take place (Rexx, 2023).

 12

An object-oriented version of REXX was developed due to the influence of

object-oriented programming. Many concepts from the object-oriented,

message-based programming language Smalltalk were incorporated. An

object-oriented version of REXX was released in the late 1990s. The Rexx

Language Association (RexxLA) acquired Object Rexx from IBM and

released "Object Rexx (ooRexx) 3.0" as open source in 2004.

In 2009, ooRexx 4.0 was released with a new kernel and a new native

interface that allows the C++ programming language to use ooRexx as a

scripting language.

In 2010, BSF4ooRexx ("Bean Scripting Framework for ooRexx") was

released, which acts as a bidirectional bridge between ooRexx and Java

(Flatscher R. G., 2019).

3.2. Fundamental Language Concepts

The main ideas that were consciously used when designing Rexx are listed

in the list below.

• Readability: Rexx semantics is comparable to regular text semantics.

The syntax structure should be simple to read. Upper- and lowercase

letters are explicitly supported throughout the language, both for data

processing and for the program itself. The Rexx language is written in a

free format. This means extra spaces between words and blank lines can

be inserted freely throughout the exec without causing an error.

Punctuation is only used when it is necessary to remove ambiguity.

• Natural data typing: Rexx is not strongly typed, in contrast to many

other languages. Types are handled as naturally as possible by Rexx.

The meaning of data is entirely dependent on how it is used. All values

 13

are specified as strings of characters, or the symbolic notation, that a

user would typically use to represent the data. Because the outcomes of

all operations have a defined symbolic representation, values can always

be inspected. Because numerical computations and all other operations

are precisely defined, they will behave consistently and predictably for

every correct implementation.

• Emphasis on symbolic: Rexx operates with character strings and has

a rich set of operators and functions for manipulating them. One of its

unique features is the "blank" operator, which concatenates two strings

with a blank space in between, along with the conventional

concatenation operator "II" that combines two strings without a space.

• Dynamic scoping: The scoping of Rexx is entirely dynamic. This implies

that it can be interpreted effectively. Rexx scoping follows the

programmer-defined order in which Rexx clauses are executed.

• Nothing to declare: In Rexx, the declaration of variables is not

required. Instead, variables can be created and given a value at the start

of a program.

• System independence: System and hardware are unrelated to the

REXX language. REXX programs need to be able to interact with their

environment.

• Limited span syntactic units: The clause, which is a piece of program

text terminated by a semicolon, is the REXX language's syntactic unit.

As a result, syntactic units have a short span, usually one line or less.

This means that the syntax parser in the language processor can detect

and locate errors quickly, allowing error messages to be precise and

concise.

 14

• Dealing with reality: Consistency was an important design goal; in

practice it leads to unexpected side effects.

• Be adaptable: The language allows for the extension of instructions and

other language constructs whenever it is possible. Since only a small set

of common characters are permitted for variable names (symbols), there

is a useful set of common characters available for future extensions.

Similar to this, the rules for keyword recognition permit the addition of

instructions whenever necessary without jeopardizing the integrity of

already-written programs. There are no words that are reserved globally.

The language is made more adaptable by including space for growth and

modification.

• Keep the language small: Every suggested extension to the language

has only been taken into consideration if it would benefit a sizable portion

of users. Users quickly understand the majority of the language, it has

been intentionally kept as small as possible.

• No defined size or shape limits: There are no restrictions on the size

or shape of any of the language's tokens or data (Cowlishaw, 1990)

3.3. Language Basics

3.3.1. Structure and General Syntax

A Rexx program is made up of clauses that includes the following elements:

• Optional whitespace characters (blanks or horizontal tabs), which are

ignored by the processor

• A sequence of tokens

• Optional additional whitespace characters, which are again ignored

• A semicolon (;) delimiter, which may be implied by line end, certain

keywords, or the colon (:) symbol.

 15

Before execution, each clause is scanned from left to right and the tokens

that make up the clause are identified. During this process, instruction

keywords are recognized, comments are removed and whitespace character

sequences (except within literal strings) are condensed into single blanks.

In addition, any whitespace or special characters adjacent to operator

characters are also removed (Ashley W. D., et al., ooRexx Documentation

5.0.0 Open Object Rexx Reference, 2022).

3.3.2. Characters

When programming in the REXX language, two sets of characters should be

considered. The first set is a relatively small set of characters that are used

to write the REXX program itself. This set is explicitly defined by the REXX

language to ensure code portability and readability, while avoiding

limitations on the character set used for data.

The second set of characters is used as data in a REXX language processor

and can generally be any characters. Some characters may only be used

within comments or literal data.

When the REXX language manipulates or examines data, such as when

performing arithmetic operations, there may be specific requirements for

the data character set. For example, numbers must be represented by digits

in the set (Cowlishaw, 1990).

3.3.3. Comments

In Rexx, comments are sequences of characters that are ignored by the

program but serve as separators. There are two types of comments

recognized by the interpreter: line comments and standard comments.

A line comment starts with two consecutive minus signs (--) and ends at

the end of the line.

 16

A standard comment is a sequence of characters, on one or more lines, that

are surrounded by the delimiters /* and */. Any characters can be used

within the delimiters, including nested standard comments as long as each

begins and ends with the delimiters. Standard comments can appear

anywhere and be any length (Ashley W. D., et al., ooRexx Documentation

5.0.0 Open Object Rexx Reference, 2022).

3.3.4. Variables

Variable names can be up to 250 characters in length and have certain

naming restrictions. The first character must be an uppercase or lowercase

letter, an exclamation mark (!), a question mark (?), or an underscore (_).

The rest of the characters can be letters, numbers, exclamation marks,

question marks, underscores, or periods (.).

Variable names are case-insensitive, meaning they can be typed and

queried in uppercase, lowercase, or mixed-case characters. Rexx

automatically converts all lowercase letters in variables to uppercase before

use, so "abc", "Abc" and "ABC" all refer to the same variable, "ABC". If a

variable is referenced before it has been set, the name in uppercase

characters will be returned. All data is treated as objects of different types.

Variables can contain any type of object, so there is no need to specify the

type of the variable beforehand, such as declaring it as a string or number.

Variables can be assigned new values using the ARG, PARSE, or PULL

instructions (Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object

Rexx Programmer Guide, 2022).

3.3.5. Tokens

Tokens in Rexx are the smallest building blocks of syntax that make up a

program. The maximum length of a token may vary based on the

implementation, but they can be of any length. Tokens are differentiated

from each other by whitespace, comments, or their own nature and are

 17

used to construct clauses. There are different classes of tokens in Rexx

(Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx

Reference, 2022).

3.3.5.1. Literal String

A literal string in Rexx is a sequence of characters enclosed by either single

quotes (') or double quotes ("). To include the same type of quote within

the string, two consecutive quotes need to be used. A null string is a literal

string with no characters. Literal strings are considered constant and their

contents won't change during processing. They must be complete on a

single line and their length is limited only by available memory. Additionally,

a string followed by a left parenthesis is treated as a function name and if

immediately followed by the letter "X" or "x", it's considered a hexadecimal

string, or if followed by "B" or "b", it's considered a binary string (Ashley W.

D., et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference,

2022).

3.3.5.2. Hexadecimal Strings

A hexadecimal string is a type of literal string that represents its encoding

using hexadecimal notation. It consists of zero or more hexadecimal digits

(0-9, a-f, A-F), grouped in pairs, separated by one or more whitespace

characters and enclosed in single or double quotation marks. The symbol x

or X must immediately follow the closing quotation mark. The whitespace

characters are ignored by the language processor for improved readability.

Hexadecimal strings allow the inclusion of characters in a program, even if

they cannot be directly entered. When a hexadecimal string is processed,

the whitespace is removed and each pair of hexadecimal digits is converted

to its equivalent character. The packed length of a hexadecimal string is

unlimited (Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object

Rexx Reference, 2022).

 18

3.3.5.3. Binary Strings

A binary string is a type of literal string that represents its encoding using

binary digits (0 or 1). The binary digits are grouped in bytes (8 digits) or

nibbles (4 digits) and can be separated by whitespace characters for

readability. The string must be delimited by matching single or double

quotation marks and immediately followed by the symbol b or B. The packed

length of the binary string (with whitespace removed) is not limited. The

leading 0 digits are added to make a multiple of 8 or 4 before packing.

Binary strings allow the explicit specification of characters using binary

digits (Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx

Reference, 2022).

3.3.5.4. Symbols

A Symbol in ooRexx is a combination of characters that can consist of

English letters (both uppercase and lowercase), numbers (0-9) and special

characters (".", "!", "?" and "_"). Lowercase letters are automatically

converted to uppercase before they are used.

Symbols that do not start with a digit or a period can be used as variables

and assigned a value. The value of such symbols is the uppercase version

of the symbol's characters. Conversely, symbols that begin with a digit or

a period are constant and cannot have a value assigned to them.

ooRexx also supports exponential number representation, with symbols

starting with a digit or a period, ending with "E" or "e" and having an

optional sign (+ or -) followed by one or more digits. There must be at least

one digit and at most one period in the character sequence before the "E"

or "e". The sign is considered part of the symbol and is not an operator.

The interpretation of a symbol depends on its usage within a particular

context. It can represent a constant value, such as a number, a reserved

word, or the identifier of a variable (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Reference, 2022).

 19

3.3.5.5. Environment Symbol

An Environment Symbol in ooRexx is a symbol that begins with a dot (.)

followed by a symbol name. The Rexx interpreter converts all alphabetical

characters in the symbol name to uppercase. The symbol represents a value

in one of the ooRexx runtime environments, which are searched in the

following order: "package environment", the local environment and the

global environment. If a corresponding value is found, it replaces the

environment symbol. If no value is found, the symbol name is converted to

uppercase and replaces the symbol.

Examples of ooRexx environment symbols include ".TRUE", ".FALSE",

".NIL", ".LOCAL", ".ENVIRONMENT" and ".SOME.VALUE". Each of these

symbols represents a specific value, such as a string or directory, within the

ooRexx runtime environments (Flatscher R. G., Introduction to Rexx and

ooRexx (coloured illustration): from Rexx to open object Rexx (ooRexx) (1.

ed..), 2013).

3.3.6. Expressions

Expressions allows the combination and transformation of data, resulting in

a final result. The output of an expression is always in the form of an object

and can be a modification of the original data used in the expression.

Expressions are a fundamental aspect of the Rexx language and are used

to perform various operations and calculations.

3.3.6.1. String Concatenation Expressions

The concatenation operators join two strings to create a new string by

attaching the second string to the right side of the first string. There are

three concatenation operators: (blank), which concatenates terms with one

blank in between, ||, which concatenates terms without a blank in between

and (abuttal), which is assumed between two terms that are not separated

by another operator.

 20

For example, the expression "Hello" || " World" would result in the string

"Hello World". On the other hand, the expression "Hello" " World" would

result in the same string, with a blank in between the two terms (Ashley W.

D., et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference,

2022).

3.3.6.2. Arithmetic Expressions

In ooRexx, arithmetic operations can be performed on character strings that

are considered valid numbers. The following operators are available:

• + for addition

• - for subtraction

• * for multiplication

• / for division

• % for integer division

• // for remainder

• ** for power

• prefix - and prefix + operators to indicate subtraction and addition

respectively.

When performing arithmetic operations, it is important to note that the

result may be displayed in exponential notation if rounding has occurred

(Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx

Reference, 2022).

3.3.6.3. Comparison

Comparison operators compare two values and return a result of 1 if the

comparison is true, or 0 if it is false. The following operators are available:

• = (equal to) - checks if two values are equal

• \ = or ¬= (not equal to) - checks if two values are not equal

 21

• > (greater than) - checks if the left operand is greater than the right

operand

• < (less than) - checks if the left operand is less than the right operand

• >< (not equal to, also known as xor) - checks if either the left or right

operand is true, but not both

• <> (not equal to) - same as = or ¬=, checks if two values are not

equal

• >= (greater than or equal to) - checks if the left operand is greater

than or equal to the right operand

• \ < or ¬< (not less than) - checks if the left operand is not less than
the right operand

• <= (less than or equal to) - checks if the left operand is less than or

equal to the right operand

• \ > or ¬> (not greater than) - checks if the left operand is not greater

than the right operand

• == (same as) - checks if two values are the same (identical)

• \ == or ¬== (not same as) - checks if two values are not the same
(not identical)

• >> - strictly greater than

• << - strictly less than

• >>= - strictly greater than or equal to

• \ << or ¬<< - strictly not less than

• <<= - strictly not greater than

• \ >> or ¬>> - strictly not greater than

Strict comparison operators (such as == and \ ==) require an exact match

between the two strings being compared, including matching length and

character-by-character comparison. When comparing two numeric values,

a numeric comparison is executed. Otherwise, they are treated as character

strings and any leading or trailing white space is ignored and the shorter

string is padded with spaces on the right. (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Reference, 2022).

 22

3.3.6.4. Logical

A character string is considered false if it is 0 and true if it is 1. The logical

operators work with one or two such values, returning either 0 or 1. Only 0

or 1 are allowed as values (Ashley W. D., et al., ooRexx Documentation

5.0.0 Open Object Rexx Reference, 2022).

& - AND operator returns 1 if both values are true.

| - Inclusive OR operator returns 1 if either value or both values are true.

&& - Exclusive OR operator returns 1 if either value, but not both, is true.

\ , ¬ - Logical NOT operator negates the value, meaning 1 becomes 0 and

0 becomes 1

3.3.7. Instructions

The ooRexx programming language provides a comprehensive set of

instructions that enable the interpreter to perform a wide range of actions.

These instructions serve as the basic elements of an ooRexx program and

include control flow instructions for decision making and repetition, data

manipulation instructions for working with variables, as well as a multitude

of other operations. Effective use of these instructions is essential for

creating robust and efficient programs in ooRexx.

3.3.7.1. Message Instructions

In Open Object Rexx, a message instruction is used to invoke a method on

an object, referred to as the "receiver object." The receiver object can be

represented by various elements, such as a symbol, an environment

symbol, a string, a literal string, a function call, or an expression in

parentheses. The message instruction consists of the receiver object,

followed by either the single tilde message operator or the double tilde

cascading message operator and the name of the method. The method

name can be followed by a colon and a symbol or environment symbol that

refers to a superclass where the object should search for the method.

 23

Additionally, there can be round parentheses after the method name, which

may contain arguments to be supplied to the method (Flatscher R. G.,

Introduction to Rexx and ooRexx (coloured illustration): from Rexx to open

object Rexx (ooRexx) (1. ed..), 2013).

If the invoked method returns a value, the message instruction is replaced

by the return value, which can serve as the receiver object for another

message instruction. Message instructions are processed from left to right.

A message term is used when the main purpose of the message is to obtain

a result. If there is only a message term, it is sent in the same way as a

message instruction. If the message results in a result object, it is assigned

to the sender's special variable, RESULT. If the double tilde cascading

message operator is used, the receiver object is used as the result. If there

is no result object, the RESULT variable becomes uninitialized (Ashley W.

D., et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference,

2022).

3.3.7.2. Control Structures

The following constructs in ooRexx provide the capability to control the flow

of execution in a program (Fosdick, 2005):

1. If-Then-Else - This construct allows a programmer to make decisions

based on a specified condition. The syntax of this construct is as follows:

if condition then

 statements

else

 statements

end

Listing 1: If-Then-Else

 24

2. Select-When - This construct allows a programmer to make multiple

decisions based on a specified value. The syntax of this construct is as

follows:

select

 when value1 = condition1 then statements

 when value2 = condition2 then statements

 otherwise statements

end

Listing 2: Select-When

3. Do-End - This construct allows a programmer to create a loop, repeating

a set of instructions a specified number of times. The syntax of this

construct is as follows:

do count = 1 to limit

 statements

end

Listing 3: Do-End

4. Do-Until - This construct allows a programmer to create a loop that

repeats until a specified condition is met. The syntax of this construct is

as follows:

do until condition

 statements

end

Listing 4: Do-Until

5. Do-While - This construct allows a programmer to create a loop that

repeats while a specified condition is true. The syntax of this construct

is as follows:

do while condition

 statements

end

Listing 5:Do-While

 25

6. Loop - This construct allows a programmer to create a loop that repeats

an indefinite number of times. The syntax of this construct is as follows:

loop

 statements

end

Listing 6: Loop

7. Iterate - This construct allows a programmer to exit a loop and start

the next iteration. The syntax of this construct is as follows: iterate

8. Leave - This construct allows a programmer to exit a loop. The syntax

of this construct is as follows: leave.

3.3.7.3. Data Manipulation Keyword Instructions

The data manipulation keywords in ooRexx are a set of commands used for

processing and manipulating data in a program. These keywords are

essential for organizing and transforming data within a program. The

following are the commonly used in ooRexx (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Reference, 2022):

1. SAY - The Say keyword serves the purpose of outputting a message

to the user for the purpose of displaying information regarding the

state of the program or to prompt the user for input.

2. CALL - The Call keyword is utilized to invoke a Rexx procedure,

thereby enabling the reuse of code within the program.

3. PARSE - The Parse keyword is employed to extract data from a string,

making it useful for parsing and manipulating strings in the program

3.3.7.4. Program Management – Keyword Instructions

ooRexx provides several keywords for program management, which are

used to manage and organize ooRexx programs. The following are the

commonly used program management keywords in ooRexx (Ashley W. D.,

et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference, 2022):

 26

1. RETURN – The Return keyword is used to return a value from a Rexx

procedure. This allows to pass data from one procedure to another,

or to return a result from a function.

2. EXIT – The Exit keyword terminates the execution of a Rexx program.

This is useful for prematurely ending a program if a certain condition

is met or for explicitly ending the program when desired.

3. EXPOSE – The Expose keyword allows access to object variables in

the current object’s variable pool in a method. Changes to these

variables persist and are immediately visible to other methods sharing

the same scope. All other variables are local and dropped upon exit

from the method. EXPOSE must be the first instruction in the method.

4. ADDRESS – The Address keyword is used to interact with external

systems and applications. Using the Address keyword, external

commands can be run, scripts can be executed, or interaction with

other programs can be performed.

5. PROCEDURE – The Procedure keyword is used to define a Rexx

procedure. Procedures enable the encapsulation of code, resulting in

reusability and organization. They can also be passed parameters,

making them more flexible and adaptable.

3.3.7.5. Error Handling – Keyword Instructions

Error handling is a crucial aspect of programming as it enables anticipation

and handling of errors and exceptions that may arise during the execution

of a program. The following are some of the commonly used ooRexx

keywords for error handling (Ashley W. D., et al., ooRexx Documentation

5.0.0 Open Object Rexx Reference, 2022):

 27

1. SIGNAL – Raises an error or exception in the program to signal a

specific condition.

2. ON – Enables error handling in the program and specifies the

conditions that trigger error handling and the actions to be taken

when an error occurs.

3. OFF – Disables error handling in the program, which can be useful

for temporarily disabling error handling for a specific section of the

program.

4. ERROR – Indicates that an error has occurred in the program and

can be used in combination with the On keyword to specify the actions

to be taken when an error occurs.

5. TRAPS – Specifies the conditions that trigger error handling in the

program, such as specific error codes or exceptions.

3.3.8. Directives

Directives are instructions that provide structure and organization to a Rexx

program. They are indicated by two consecutive colons (:: and serve as

separators between different sections of code. When a program is executed,

the directives are processed first to establish any necessary classes,

methods, or routines before the main code block is executed (Ashley W. D.,

et al., ooRexx Documentation 5.0.0 Open Object Rexx Programmer Guide,

2022).

3.3.8.1. The ::ROUTINE

The ::ROUTINE directive in ooRexx is used to create named routines within

a program. The directive starts at the beginning of the routine and ends

with another directive or the end of the program. The ::ROUTINE directive

helps to organize functions that are not related to a specific class type.

Additionally, it has a PUBLIC option, which makes the routine accessible to

other programs outside of the containing Rexx program. To use the routine,

 28

the external program must reference it using a ::REQUIRES directive in the

Program that contains the routine (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Programmer Guide, 2022).

The following code snippet in Listing 7 defines a public routine named hello

that will output the string “Hello, world!” to the console when called. The

double colons before “ROUTINE” indicate that it is a method or function that

can be called from outside the script.

::ROUTINE hello PUBLIC

 say "Hello, world!"

Listing 7: Routine PUBLIC

The following code snippet in Listing 8 shows an routine named "hello",

which outputs the string "Hello, world!" to the console when called. This

routine is not explicitly defined as public, so it will only be accessible from

within the script where it is defined.

::ROUTINE hello

 say "Hello, world!"

Listing 8: Routine

3.3.8.2. The ::REQUIRES

The ::REQUIRES directive in ooRexx allows a program to access the classes

and objects of another program. The directive is written in the following

form: ::REQUIRES program_name. The ::REQUIRES directives are

processed prior to any other directives and the order of these directives

determines the search order for the classes and routines defined in the

referenced programs. It is important to note that local routine or class

definitions within a program take precedence over any imported routines or

classes through ::REQUIRES directives (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Programmer Guide, 2022).

 29

3.4. Introduction to ooRexx

Open Object Rexx, an extension of the traditional Rexx language, includes

key characteristics of object-oriented programming such as encapsulation,

inheritance and polymorphism. This expansion does not eliminate the use

of traditional Rexx functions and programs can still be developed and

executed as before. It offers the flexibility to program with just objects, just

traditional Rexx instructions, or a mix of both (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Programmer Guide, 2022).

3.4.1. Interacting with Objects

In Object-Oriented Rexx (ooRexx), interaction with objects such as values

and instances can only be performed using message instructions. Objects

are considered as entities that receive a message name and search for a

corresponding method. If the method is found, it is executed by passing

any arguments received with the message and returning any value

produced by the method. If the method cannot be found, an error occurs.

3.4.2. Classes

Data types are represented as classes, which define the allowable values

(known as attributes) and the operations that can be performed on those

values (referred to as methods). The internal workings of the class or the

values themselves are kept hidden from the user through the use of the

black-box approach. Each class in ooRexx is represented by a class object

that holds the attributes and methods of the class. At the start of the

program, ooRexx creates class objects for all built-in classes and stores

them in the global environment directory to allow for easy access. The

attributes of a class object are known as class attributes, while the methods

are referred as class methods.

 30

When an object is created from a class, initialization operations can be

performed by using a constructor method known as INIT. The INIT method

is invoked when the NEW class method is called to create the object and

any arguments provided to the NEW method will be passed to the INIT

method in the same order. When an object is no longer being used and

there are no references to it, it becomes garbage and the ooRexx garbage

collector destroys it to release computer resources such as memory. Before

destroying the unused object, the garbage collector will call the destructor

method UNINIT, if it exists (Flatscher R. G., Introduction to Rexx and

ooRexx (coloured illustration): from Rexx to open object Rexx (ooRexx) (1.

ed..), 2013).

The following code snippet in Listing 9 shows an example ooRexx class

named "ExampleClass" with two attributes, variable1 and variable2. This

class has a constructor method named "init" and a destructor method

named "uninit". It also has a method named "output" which outputs the

values of the instance variables.

::CLASS ExampleClass

-- Define attributes for the class

::attribute variable1

::attribute variable2

-- The constructor is called when an instance of the class is created

::METHOD init

 expose variable1 variable2

 use arg

 say "An instance of ExampleClass has been created"

 variable1 = "Hello"

 variable2 = "World"

-- The destructor is called when an instance of the class is destroyed

::METHOD uninit

 expose variable1 variable2

 say "An instance of ExampleClass has been destroyed"

-- A method of the class that outputs the variables

::METHOD output

 expose variable1 variable2

 say "variable1:" variable1

 say "variable2:" variable2

Listing 9: Example Class

 31

The expose keyword is used to make the instance variables visible to the

methods of the class. The use arg statement is used to pass arguments to

the constructor method.

3.4.2.1. Organization of Classes

The organization of classes into a class hierarchy serves to simplify the

process of creating new classes and searching for methods. Classes in this

hierarchy are related to one another based on their position, with one class

being either above or below another class. The highest class, which does

not have a superclass, is referred to as the Root Class and is commonly

named Object. The Class Hierarchy is utilized to search for methods,

allowing objects to inherit methods and attributes from superclasses along

the hierarchy. As a result, the Root Class, Object, is eventually consulted,

making all its methods accessible to all objects in ooRexx (Flatscher R. G.,

Introduction to Rexx and ooRexx (coloured illustration): from Rexx to open

object Rexx (ooRexx) (1. ed..), 2013).

3.4.2.2. Inheritance and Polymorphism

In ooRexx, multiple inheritance is supported. This means that a class can

have more than one direct superclass. This feature allows for inheriting

method implementations from multiple superclasses directly (Flatscher R.

G., Introduction to Rexx and ooRexx (coloured illustration): from Rexx to

open object Rexx (ooRexx) (1. ed..), 2013).

Polymorphism in ooRexx allows objects to respond to the same message in

different ways. This is achieved by having each object have its own

implementation of a method, such as the REVERSE method. This enables a

common interface to be used for different objects, even though the

underlying code for each object is different. Rexx keeps track of the

methods each object owns, which allows for the reuse of the same method

name so that one message can initiate multiple functions. This helps to

simplify naming schemes and makes complex programs easier to

understand and modify. Polymorphism involves a contract between two

 32

objects. One object sends a message to another object expecting a

particular result and different objects can implement different versions of

this message as long as it meets the expectations of the invoking object

(Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx

Programmer Guide, 2022).

3.4.2.3. Unknown Messages

If an object doesn't have a method matching the received message name,

the language processor looks for an UNKNOWN method in the object's

inheritance tree. If located, the UNKNOWN method is triggered with two

arguments: the first being the name of the missing message and the second

being an array containing the arguments sent with the original message. If

no UNKNOWN method is found, ooRexx raises the NOMETHOD error

(Flatscher R. G., Introduction to Rexx and ooRexx (coloured illustration):

from Rexx to open object Rexx (ooRexx) (1. ed..), 2013).

3.4.3. ooRexx – Built-in Classes

The ooRexx Built-in Classes provide a range of capabilities for developing

powerful Rexx programs. The built-in classes can be categorized into

several groups including Fundamental Classes, Classic Rexx Classes,

Collection Classes and Utility Classes.

Fundamental Classes include Object, Class, Method, Message, Routine and

Package, which are used by the ooRexx interpreter to create and run

programs.

Classic Rexx Classes, such as Stem, Stream and String, help ooRexx run

Rexx programs easily and efficiently.

 33

Collection Classes, like Array, Directory, Relation, Table and Directory, allow

for organizing and retrieving objects in different types of containers. The

DO m OVER keyword instruction makes it simple to iterate over collections.

Utility Classes, such as Alarm, DateTime, File, Monitor, MutableBuffer and

TimeSpan, provide useful features and capabilities for programmers

(Flatscher R. G., Introduction to Rexx and ooRexx (coloured illustration):

from Rexx to open object Rexx (ooRexx) (1. ed..), 2013).

3.5. BSF4ooRexx

BSF4ooRexx, which stands for Bean Scripting Framework for ooRexx, is an

external Rexx function package. It consists of an external Rexx function

package and an ooRexx package named BSF.CSL, which loads the function

package and defines an ooRexx class named BSF. This package enables the

use of the Java Runtime Environment functions without prior knowledge of

Java programming. The Java class libraries and Java objects have been

masked to appear as ooRexx class libraries and ooRexx objects, to which

messages can be sent (Flatscher R. G., Automatisierung mit ooRexx und

BSF4ooRexx, 2012).

4. JavaFX Libraries

JavaFX provides a number of built-in styling libraries, but there are also

several third-party libraries available that can be used to enhance the

styling and customization options. There are several third-party styling

libraries available for JavaFX, including JFoenix and ControlsFX. By adding

them as dependencies to the project, they can easily be integrated into a

JavaFX application. Furthermore, they can improve the visual appeal and

functionality of JavaFX applications.

 34

4.1. Styling Library – JFoenix

JFoenix is a Java library that provides a set of JavaFX UI controls and design

elements that are styled to look like the material design guidelines from

Google. This library allows Java developers to create modern and attractive

user interfaces using JavaFX, which is a library for creating rich client

applications in Java. JFoenix provides a wide range of controls and elements

such as buttons, checkboxes, tables, dialogs and more, that can be used to

create a modern and consistent look and feel across different parts of an

application. It also provides a set of pre-built animations and effects that

can be used to enhance the visual appeal of the UI. JFoenix is open-source

and can be easily integrated into any JavaFX application. It is actively

maintained and has a strong community of developers and contributors

(JFoenix, 2023).

4.2. Widget Library – ControlsFX

ControlsFX is a JavaFX library that provides additional UI controls and

features that are not included in the standard JavaFX library. It is designed

to enhance the functionality of JavaFX and make it easier for developers to

create rich and attractive user interfaces.

ControlsFX provides a wide range of controls and features such as:

• Dialogs and Alerts

• Table filtering and sorting

• Text fields with built-in validation and formatting

• Rich text editor

• Master/Detail View

• Notifications and Popup

• Undo/Redo Framework

• and many more.

 35

It also provides a set of pre-built animations and effects that can be used

to enhance the visual appeal of the UI.

ControlsFX is open-source and it is developed mainly for the JavaFX

versions 8.0 and above, it has a principle that new features or controls will

be accepted only if the current code is in a higher version (ControlsFx,

2023).

5. Required Software and Installation

This chapter describes how to install and configure all the essential software

components for the nutshell examples. The following installation

instructions are tailored for the Windows operating system, but they can

also be used on Linux and MacOS provided that the appropriate components

are downloaded and installed. The software versions used in this bachelor’s

thesis are listed below:

• Java Liberica JDK8u362-Full (64 Bit)

• SceneBuilder-8.5.0: BSD License

• ooRexx 5.0.0 (64 Bit): GNU General Public Liicense-version-2.0,

Common Public License Version 1.0

• BSF4ooRexx850: Apache License Version 2.0

• sqlite-jdbc-3.41.0.0: Apache License Version 2.0

• jfoenix-8.0.10: Apache License Version 2.0

• controlsfx-8.40.18: BSD 3-Clause License

• DB Browser for SQLite-3.12.2: GNU General Public License Version

3.0

5.1. Java

It is necessary to install Java version 8 on the operating system. It is

important to note that the installed version of Java has the same bit rate as

 36

ooRexx and includes JavaFX, as JavaFX is necessary for the graphical

display of the user interfaces and is not available in every version of Java.

Furthermore, it is important to note that the corporation Oracle, which

manages Java, since Java version 8 or later, if Java is used in a commercial

context, there may be licensing fees applicable. However, there are free

versions of Java available for download at the following link: https://bell-

sw.com/pages/downloads/ (accessed 15-02-2023).

Once the appropriate Java version has been downloaded, run the setup file

and follow the installation process to complete the installation.

5.2. ooRexx

Once the required version of Java has been installed, the next step is to

install ooRexx version 5.0. The required version can be downloaded at the

following link: https://sourceforge.net/projects/oorexx/files/ (accessed 15-

02-2023).

To avoid any potential program errors, it is important to ensure that the

installation file has the same bit architecture as the operating system and

Java. After running the .exe file for ooRexx, an installation manager will

appear, which should be followed. After completing the installation process,

ooRexx will be successfully installed.

5.3. BSF4ooRexx

After successfully installing Java and ooRexx, the next step is to download

and install BSF4ooRexx. The appropriate version of BSF4ooRexx can be

downloaded from the following link:

https://sourceforge.net/projects/bsf4oorexx/ (accessed 15-02-2023).

To install BSF4ooRexx, the downloaded ZIP archive must be extracted to

any location within the operating system. After extraction, a subdirectory

https://bell-sw.com/pages/downloads/
https://bell-sw.com/pages/downloads/
https://sourceforge.net/projects/oorexx/files/
https://sourceforge.net/projects/bsf4oorexx/

 37

named "install" will appear, which contains installation files for all relevant

operating systems (Windows, Mac, Linux). It is important to ensure that the

correct version corresponding to the operating system is executed during

the installation process.

5.4. SceneBuilder

In order to use the graphical user interface (GUI) builder for JavaFX

applications, called Scene Builder, it must first be installed on the operating

system. The installation files for Scene Builder can be downloaded from the

following link: https://gluonhq.com/products/scene-builder/#download

(accessed 15-02-2023).

After downloading the installation files, run the setup file and follow the

installation process. Once the installation is complete, Scene Builder can be

accessed through its shortcut in the start menu or by running the

"SceneBuilder.exe" file.

It is important to note that Scene Builder requires Java to be installed on

the system and that the installed version of Java must match the bit rate of

the Scene Builder.

5.5. JavaFX Libraries

In order to use JavaFX libraries JFoenix or ControlsFX in a JavaFX project

or in SceneBuilder, the first step is to download the library from the official

website. JFoenix can be downloaded from the following URL:

https://github.com/sshahine/JFoenix (accessed 15-02-2023), while

ControlsFX can be downloaded from the following URL:

https://mvnrepository.com/artifact/org.controlsfx/controlsfx/8.40.18

(accessed 15-02-2023).

https://gluonhq.com/products/scene-builder/#download
https://github.com/sshahine/JFoenix
https://mvnrepository.com/artifact/org.controlsfx/controlsfx/8.40.18

 38

Once the JAR file has been downloaded, it must be added to the CLASSPATH

variable. Detailed instructions are provided in Chapter 5.7.

To use either library in SceneBuilder, open the SceneBuilder and create a

new FXML file or open an existing one. Then, select the "Library" tab on the

right-hand side of the SceneBuilder window and click on the "Add

Library/FXML" button. Navigate to the location where the downloaded JAR

file is saved and select it. The library will now be added to the SceneBuilder

library list and its components can be used by selecting them from the

respective library option in the SceneBuilder controls section.

5.6. SQLite Browser

The SQLite Database Browser is a clear and simple database creation tool.

The program allows to create, read, edit and delete databases and data

sets. The installation files can be downloaded from the following link:

https://sqlitebrowser.org/dl/(accessed 15-02-2023). After downloading the

installation files, run the setup file and follow the installation process. Before

using a SQLite database in a Java project, it's necessary to download the

SQLite JDBC library from this https://github.com/xerial/sqlite-jdbc/releases

(accessed 15-02-2023) and add the JAR file to the CLASSPATH variable.

Detailed instructions are provided in Chapter 5.7.

5.7. CLASSPATH

In order to run Java applications that depend on external libraries, it is

necessary to add the library files to the CLASSPATH. The CLASSPATH is a

list of directories and JAR files that the Java Virtual Machine (JVM) uses to

look for classes that are not included in the application's own source code

(Classpath, 2023).

https://sqlitebrowser.org/dl/
https://github.com/xerial/sqlite-jdbc/releases%20(accessed%2015-02-2023
https://github.com/xerial/sqlite-jdbc/releases%20(accessed%2015-02-2023

 39

In order to include JAR files in the CLASSPATH on a Windows operating

system, follow these steps:

1. Open the "Control Panel" from the Windows Start menu.

2. Select "System and Security", then click on "System".

3. Click on "Advanced system settings" on the right-hand side of the

window.

4. In the "System Properties" window, click on the "Environment

Variables" button.

Figure 3: Adding New Path to CLASSPATH

5. Under "System Variables", scroll down and find the "CLASSPATH"

variable, then click "Edit".

6. In the "Edit Environment Variable" window, click "New" to add a new

path to the CLASSPATH.

7. Enter the file path of the directory containing the JAR files to include

in the CLASSPATH.

8. Click "OK" to close all the windows.

 40

6. Nutshell Examples

The focus of this chapter is on the development of JavaFX graphical user

interface (GUI) applications using various libraries, tools and technologies

in connection with the programming language ooRexx. To illustrate the

flexibility and diversity of ooRexx programming, each application is

developed using a different set of tools and technologies, including FXML,

CSS, JDBC, JFoenix Library and ControlsFX Library. The integration of

BSF4ooRexx provides a powerful mechanism for developing GUI

applications that combine the strengths of both Java and ooRexx.

6.1. JavaFX GUI Application with ooRexx

The Nutshell example is an simple ooRexx script that acts as a BMI

calculator and employs the JavaFX library to produce a graphical user

interface (GUI) without the use of FXML. The application logic is contained

within the script, which generates the GUI components and handles user

inputs using event-driven programming. In the following section, the script

will be discussed, which comprises two Rexx classes - BMICalculator and

RexxButtonHandler. The BMICalculator Rexx class is responsible for

implementing the GUI, while the RexxButtonHandler Rexx class offers

functions for BMI calculation and button event handling.

To use the BMICalculator class for the GUI, an instance of this class is

created with the line "rxApp = .BMICalculator~new" in the Snippet 1. This

creates a new instance of the class and stores it in the variable "rxApp". A

proxy instance for the Rexx class must also be created so that it can be

used in the JavaFX application. This is done using the

"BSFCreateRexxProxy" method from the Java Bean Scripting Framework

(BSF) in line 4 of the Snippet 1. This creates a new proxy object for the

Rexx instance, which is stored in the variable "jrxApp".

 41

The second argument indicates that the Rexx instance is to be used within

a JavaFX application.

Snippet 1:BMI-Calculator - Application launch

To start the application, the "launch" method is called on the proxy object:

"jrxApp~getClass, .nil". This calls the start method of the "BMICalculator"

class, which implements the abstract start method defined in the

javafx.application.Application class, that is required for every JavaFX

application. The "BSF.CLS" package is loaded to provide Java support for

the Rexx code.

The "start" method in Snippet 2 is defined in the "BMICalculator" class and

gets a parameter "primaryStage", which represents the primary window of

the application. The "use arg" statement is used to extract the

"primaryStage" parameter and use it in the method. In the "start" method,

various UI elements such as text fields, labels and buttons are created and

customized using the JavaFX library. These elements are placed in a VBox

container, which is a vertical layout element called "root". The VBox

container is then added to the scene, which is responsible for displaying the

UI elements on the screen.

Snippet 2: BMICalculator Class

 42

The "getChildren" method of the VBox object is used to add the various UI

elements to the VBox. In line 44 of the Snippet 3 the "add" method and the

concatenation operator ("~~") are used to add the various elements in the

correct order. Once the VBox is created and filled with the UI elements, it

is added to the scene by creating a new Scene object.

Snippet 3: BMI- Calculator -Add Components

This Scene object is initialized with the VBox as the root element. Finally,

the scene is assigned to the primary window (primaryStage)and the window

is displayed using the "show" method so that the user can see the

application on the screen.

Figure 4:BMI -Calculator - GUI

 43

To implement the functionality of the "Calculate BMI" button, a button

handler is created that is called when the button is pressed. For this

purpose, a separate Rexx object called "handler" is created. This object is

an instance of the “RexxButtonHandler” class, which implements the

javafx.event.EventHandler interface. The parameters weightField,

heightfield and resultLabel are passed to this object. Then a Rexx proxy is

created that forwards the button events to the Rexx object. This proxy is

then set as the handler for the "setOnAction" call of the "calculateBtn"

button as in Line 57 of the snippet 4.

Snippet 4: BMI-Calculator - ButtonHandler

The constructor of the “RexxButtonHandler” class get three arguments:

weightField, heightfield and resultLabel. The "handle" method is called when

the button is pressed and performs the BMI calculation based on the values

entered in the text fields.

Snippet 5:BMI-Calculator, Constructor and Handle Method

44

6.2. JavaFX GUI Application with FXML in ooRexx

This chapter presents an extension of the nutshell example introduced in

Chapter 6.1, demonstrating how to create a user-friendly graphical user

interface (GUI) using ooRexx, FXML and CSS. The GUI is created using the

Scene Builder, which provides an intuitive visual interface for designing

the user interface.

To design the user interface of the application, Gluon's Scene Builder was

used. In the Scene Builder, GUIs can be quickly and easily created by

dragging and dropping various elements from the tool palette. These

elements can be placed and aligned to the desired location by simply

dragging and adjusting them. Various properties such as size, font,

position and name of the GUI components can be easily modified

through the 'Properties' and 'Layout' columns on the right-hand side.

To access the elements in the application programmatically, unique IDs

must be assigned to these elements in the FXML code. Assigning ids is

important so that the code can access and control the elements of the

user interface. The ids are marked with the prefix "fx:id" and can be

assigned by the developer themselves. The three necessary menu

entries for making these changes are shown in Figure 5.

Figure 5: Scene Builder

The Scene Builder also provides a preview feature that allows to view and

test the user interface during development.

45

Once the graphical user interface is created, it can be saved as an FXML

file. The FXML code generated by the Scene Builder, is shown in Snippet 6.

Before the GUI can be accessed and used by ooRexx, a few modifications

must be made to the FXML file. After making these adjustments, the FXML

file can be loaded into the ooRexx program and the GUI can be fully

functional.

Snippet 6: BMI Calculator-FXML

The first modification that needs to be made is in line 7, which concerns the

definition of the JavaScript engine "rexx" that is used in case of code

triggered by an event. The second modification in line 16 defines such an

event, named "onAction", triggered by a click on the button. The Rexx code

contained in this event is called by JavaFX in Rexx, as shown in line 19. This

Rexx code calls a routine named "CalculateBMI" and passes the argument

"slotDir", which contains all the information required to access the elements

used in the GUI. The routine specified in line 13 can now be called by

JavaFX. (Flatscher R. , 2023).

The Scene Builder allows the user to apply CSS rules directly to the GUI

elements. This can be used, for example, to change the appearance of

buttons, labels, or other controls. The CSS settings can be made in the

right-hand side panel under the "CSS" tab. Various properties such as font,

background color, or text color can be modified.

46

The FXML file can also be manually extended with CSS rules. To add CSS

rules, the "styleClass" property of the respective element must be set in the

FXML file code. This property gives the element one or more class names

that can be used in the CSS file to define the formatting of the element.

Afterwards, the CSS rules can be defined in a separate CSS file, which is

then included in the FXML file.

CSS rules can format various attributes of the element, such as background

color, text color, font size, margins and borders. In addition, CSS rules can

also use pseudo-selectors to format certain states of the element, such as

hover or active state. Embedding CSS rules directly in the code of the FXML

file is possible, but it can lead to cluttered code (Flatscher R. , 2023).

To better illustrate this, the stylesheet of the nutshell example is shown in

Snippet 7 and in Figure 7 the styled application.

Snippet 7:BMI Calculator-Stylesheet

47

Figure 6:BMI Calculator GUI

The code snippet 8 demonstrates the implementation of a basic BMI

calculator application in ooRexx. This is achieved by defining a class named

"BMICalculator" and creating an instance of this class, which includes the

FXMLLoader to integrate the graphical user interface.

Snippet 8: BMI-Calculator- Class

48

First an object of the BMICalculator class is created and passed as a proxy

object to the Java Virtual Machine. The "launch" method is called to start

the application and invoke the "start" method of the BMICalculator class.

In the "start" method, the main window is created and the title "BMI

Calculator" is set. Then, a URL instance is created to load an FXML file

named "Gui.fxml" that defines the user interface of the BMI calculator

application. The URL is created with the "file:" protocol and passed as an

argument to the "java.net.URL" class.

Next, the "FXMLLoader" class is called to load the FXML file and create a

GUI element from it. The "load" method of the "FXMLLoader" class is called

and the URL instance is passed as an argument. The loaded GUI element is

stored in a variable called "rootNode".

After that, a new "Scene" instance is created and the previously loaded GUI

element is passed as an argument to the constructor. The "Scene" instance

is then passed as an argument to the "setScene" method of the

"primaryStage" object to set the created scene as the main display area of

the application.

Finally, the "show" method of the "primaryStage" object is called to display

the main window with the created user interface. The code uses the "BSF"

library to create and use Java objects within the ooRexx program.

The code snippet 9 presents the 'CalculateBMI' method that is a part of the

Rexx controller in the nutshell example and performs the calculation of BMI.

49

Snippet 9:Routine CalculateBMI

In this example, the "CalculateBMI" method is invoked when the user clicks

a button on the user interface. The method then retrieves the values from

the input fields. In the second line, the 'slotDir' parameter, supplied by the

event, is initialized. The 'slotDir' parameter is crucial as it provides access

to the GUI's control elements through their 'fx:id'. The instruction

"/@get(weightField)/" makes the textfield with the fx:id "weightField"

available and initializes it as a variable in Rexx named "weightInput". The

controller class in ooRexx can contain a variety of methods to manage

different functions of the user interface. It can also call other classes and

methods to process data or access external resources.

6.3. JavaFX GUI Application using JFoenix Library

Although JavaFX provides many predefined controls and functions for

creating user interfaces, there may be situations where additional controls

or styles are needed that are not available by default. To meet these

requirements, external libraries like JFoenix can be used. JFoenix is a

JavaFX library that provides additional controls and styles to make it easier

to create modern user interfaces.

The nutshell example of this chapter presents a program for calculating a

person's BMI and calorie requirement, which is styled using the JFoenix

library. A start menu has been added to improve usability, allowing the user

to choose between the two calculators. In this example, a StageHandler is

50

also used to manage the different scenes. The following section explain the

implementation of the StageHandler and show how GUI styling was

achieved with JFoenix.

6.3.1. StageHandler

The StageHandler is an important concept in the development of JavaFX

applications. It is an object that facilitates the management of windows and

scenes in an application. The StageHandler provides a simple way to

manage the different windows and scenes and navigate between them.

Figure 7: Health Calculator Menu

As presented in snippet 10, an instance of the StageHandler class is

instantiated to create the StageHandler. Next, a proxy object called

stageHandlerProxy is created that contains the StageHandler. This proxy

object is used to call the launch() method, which starts the application.

Snippet 10:Launch StageHandler

51

The StageHandler class, as shown in Snippet11, defines various methods

used for window management. The start() method is called to create and

display the main window. First, the title of the window is set and then the

FXML document main_window.fxml is loaded in line 37. The loaded file is

set as the content of the window.

Snippet 11:StageHandler Class

To create a new window, the newWindow() method must be called on the

StageHandler class. It receives the title of the window and the name of the

FXML file as arguments. The FXML document is loaded and set as the

content of the new window. This is shown in the Snippet 12. To use the

StageHandler class in JavaFX, the BSF.CLS library is required to be able to

call Java code from Rexx code.

52

Snippet 12:Method newWindow

The Rexx contoller contains two routines, shown in the Snippet 13, each of

which is called when one of the buttons in the application is pressed. Both

routines use the “slotDir” argument. Both routines work according to the

same scheme when a button in the application is pressed. First, the

“newWindow” method of the StageHandler object is called and the URL of

the FXML layout is passed. Also, the title of the window is set. Overall, these

routines provide a user-friendly application, as the user can directly access

the desired calculator by pressing the corresponding button, without having

to close and restart the application.

Snippet 13:Routines to open a window

53

6.3.2. JFoenix Library

As described in section 5.5, after successful installation, the components

can be inserted into the application through drag and drop in the Scene

Builder. In the present example, slider, button and textfield components

were used from the library.

If the Scene Builder is not used for creating the user interface, the

components must be imported in the FXML file. The implementation is

shown in the following Snippet 14.

<?import com.jfoenix.controls.JFXButton?>

<?import com.jfoenix.controls.JFXSlider?>

<?import com.jfoenix.controls.JFXTextField?>

Snippet 14:JFoenix Import

One of the main features of JFoenix is the support for CSS styling for UI

components.

In the nutshell example, the slider was used for inputting user data such as

size, weight and age. With JFoenix, the slider style can be easily customized

by using various CSS properties. For example, the colors for the slider track

and slider thumb can be changed by using the " -fx-background-color" and

" -fx-background" properties.

Additionally, the size of the slider thumb can be adjusted by using the " -

fx-background-size" property.

Below a snippet from the CSS file showing how the slider was styled in the

application.

/* Styling the slider track */

.jfx-slider > .track {

-fx-background-color: #84B5A7;

}

54

/* Styling the slider thumb */

.jfx-slider > .thumb {

-fx-background-color: #84B5A7;

}

/* Styling the filled track */

.jfx-slider > .colored-track {

-fx-background-color: #84B5A7;

}

/* Styling the animated thumb */

.jfx-slider > .animated-thumb {

-fx-background-color: #84B5A7;

}

/* Styling the slider value text inside animated thumb */

.jfx-slider .slider-value {

-fx-fill: #426357;

-fx-stroke: #426357;

}

Snippet 15:Slider CSS – Stylesheet

Figure 8: BMI- Calculator JFoenix

6.4. JavaFX GUI Application using ControlsFX Library

The upcoming chapter explores how to use ControlsFX to enhance the user

interface of a JavaFX application and implement SQLite and JDBC with a

DatabaseHandler for data management. ControlsFX is a valuable library for

extending the UI components of JavaFX applications, which will be

integrated into a form. Additionally, storing and retrieving data is crucial for

JavaFX applications and this is where SQLite and JDBC come in. The chapter

55

presents a nutshell example of a form that stores user data in a database

and is styled using the ControlsFX library.

6.4.1. ControlsFX

As described in section 5.5, after successful installation, the components

can be inserted into the application through drag and drop in the Scene

Builder. In the present example, the rating and textfield components were

used from the library.

If the Scene Builder is not used for creating the user interface, the

components must be imported in the FXML file. The implementation is

shown in the following Snippet 16.

<?import org.controlsfx.control.Rating?>

<?import org.controlsfx.control.textfield.CustomTextField?>

Snippet 16: ControlsFX Import

Textfields and ratings are essential components for collecting user input and

displaying feedback in modern applications. Textfields in ControlsFX are an

enhanced version of the standard JavaFX textfield control. They provide

additional features such as auto-completion, validation and masking.

Ratings in ControlsFX are an easy-to-use and customizable control that

allow users to rate items on a scale of 1 to 5 stars. They provide a visual

representation of the user's rating and can be styled to fit the applications

design. The styling of the rating system is kept very simple and only a few

elements have been adapted. Snippet 17 displays a section of the CSS file

that illustrates how the Rating component was styled within the application.

.rating > .container .button {

-fx-pref-width: 35 ;

-fx-pref-height: 35 ;

-fx-background-size: cover;

-fx-background-color:#426357;

-fx-padding: 15;

}

56

Snippet 17:Rating CSS Stylesheet

Following styles were added to the elements:

• "-fx-pref-width" and "-fx-pref-height" are set to 35, which sets the

preferred width and height of the button to 35 pixels.

• "-fx-background-size" is set to "cover", which scales the background

image to cover the entire button area.

• "-fx-background-color" is set to #426357, which sets the background

color of the button to a dark shade of green.

• "-fx-padding" is set to 15, which adds 15 pixels of padding around the

content of the button.

Figure 9: ControlsFX Form

6.4.2. DatabaseHandler

In this example, utilize a lightweight relational database, SQLite, which is

widely used in many applications. JDBC (Java Database Connectivity) was

used to establish the connection between the database and the application.

It is a Java API that provides a common interface between Java applications

and various databases. When it comes to using databases in a JavaFX

application, JDBC can be used to create a robust and user-friendly

57

application that can store and retrieve data in a SQLite database (JDBC,

2023). For creating SQLite databases, JDBrowser can be used.

JDBrowser is a powerful tool for managing JDBC databases. It provides a

graphical user interface (GUI) for connecting to different databases and

allows users to execute SQL queries, view, edit and delete tables and data,

as well as manage stored procedures and functions. With JDBrowser, users

can also perform schema and data exports and create complex queries to

retrieve specific information (DB Browser, 2023).

At the beginning, a database is created using the JDBrowser. In this

example, the database consists of a single table named "Person". The table

has a primary key called "id" and attributes such as "First Name", "Last

Name", "Age", "Address" and "Satisfaction".

To access the database, a DatabaseHandler is required. Initially, an instance

of the DatabaseHandler object, as in line 8 of the snippet 18, is created and

its settings are initialized. Then, an attempt is made to establish a

connection to the database. If the connection is successful, a success

message is displayed, otherwise the "connectionError" function is called.

Snippet 18:Database Connection

58

To establish and interact with a SQLite database, a DatabaseHandler is

created in a CSL file. The "DatabaseHandler" Rexx class defines various

methods and attributes to facilitate access to the database.

Initially, three attributes are defined: "conn", "DB_URL" and

"DriverManager". The "conn" attribute stores the connection to the

database, the "DB_URL" attribute stores the URL of the SQLite database

and the "DriverManager" attribute is used to establish the connection to the

database. The "init" method enables the import of the DriverManager object

from the Java sql package class.

Snippet 19:DatabaseHandler Class

Next, the "initSettings" method is defined, which sets the DB_URL attribute

to the path of the SQLite database.

Snippet 20:Method initSettings

To establish a connection to the database, the "connect" method is defined.

The method calls the "getConnection" method of the DriverManager object

to establish a connection to the database. If the connection is successfully

established, the method outputs a success message and returns a value of

"true". Otherwise, an error is handled and an error message is output.

 59

Snippet 21:Method Connect

SQL can perform various operations on databases, including inserting,

deleting, updating and querying data. The "INSERT INTO" command is used

to insert data into a table, allowing records to be inserted into an existing

table. To delete data from a table, the "DELETE FROM" command is used,

which removes records from a table that match specified conditions. The

"UPDATE" command is used to modify data in a table, allowing the updating

of records within a table. To query data from a table, the "SELECT"

command is used, allowing data to be retrieved from one or more tables

that meet certain conditions.

In the nutshell example, the user fills out a form and the data are inserted

into the SQLite database using the "insertData" method. The method

accepts five arguments: "fname", "lname", "age", "address"and "satisf",

which contain the values to be inserted into the database.

To insert the data, an SQL statement must first be defined. The statement

in line 25 of the snippet 22 uses placeholders that will be replaced by the

arguments during processing. The PreparedStatement object is then

created by calling the "prepareStatement" method of the "conn" attribute,

which is used to execute the SQL statement.

The arguments are then bound to the PreparedStatement object by calling

the "setString" or "setInt" method to replace the corresponding

 60

placeholders with the argument values. Finally, the SQL statement is

executed using the "execute" method of the PreparedStatement object to

insert the data into the SQLite database.

The code also includes a line that imports the "BSF.CLS" file, which is

required to use BSF (Bean Scripting Framework) in the code.

Snippet 22:Method insertData

 61

7. Conclusion

This bachelor thesis has investigated the potential of using ooRexx in

combination with the JavaFX framework for developing graphical user

interfaces. The study delved into the history and concepts of JavaFX, as well

as the fundamental language concepts of ooRexx. Additionally, the thesis

provided detailed instructions on how to install the necessary software for

developing ooRexx and JavaFX applications, along with the required

libraries.

The thesis demonstrated the ease and versatility of developing GUI

applications with ooRexx and JavaFX through various examples, such as

integrating the JFoenix styling library and ControlsFX widget library, using

FXML and CSS for GUI design and utilizing JDBC for database connectivity.

Overall, this thesis has shown that ooRexx is a viable option for creating

GUI applications with JavaFX and its use can simplify the development

process and enhance productivity.

 62

8. References

Abstract Window Toolkit. (2022, Dezember 12). Retrieved Dezember 12, 2022, from

Wikipedia.org: https://de.wikipedia.org/wiki/Abstract_Window_Toolkit

ApplicationStructure. (2022, Dezember 12). Retrieved Dezember 12, 2022, from NTU:

https://www3.ntu.edu.sg/home/ehchua/programming/java/Javafx1_intro.html

Ashley , W., Flatscher, R., Hessling, M., McGuire, R., Miesfeld, M., Peedin, L., & Wolfers, J.

(2010). Open Object Rexx TM: Programming Guide.

Ashley, W. D., Flatscher, R. G., Hessling, M., McGuire, R., Peedin, L., Sims, O., . . . Wolfers,

J. (2022). ooRexx Documentation 5.0.0 Open Object Rexx Programmer Guide.

Ashley, W. D., Flatscher, R. G., Hessling, M., McGuire, R., Peedin, L., Sims, O., . . . Wolfers,

J. (2022). ooRexx Documentation 5.0.0 Open Object Rexx Reference.

AWT. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Betriebswirtschaft-lernen:

https://www.betriebswirtschaft-lernen.net/erklaerung/abstract-window-toolkit-awt/

AWT vs Swing. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Education-Wiki:

https://de.education-wiki.com/1224717-awt-vs-swing

bsf4ooRexx. (2023, Februar 15). Retrieved Februar 15, 2023, from Sourceforge:

https://sourceforge.net/projects/bsf4oorexx/

Classpath. (2023, Februar 15). Retrieved Februar 15, 2023, from Javatpoint:

https://www.javatpoint.com/how-to-set-classpath-in-java

ControlsFx. (2023, Februar 13). Retrieved Februar 13, 2023, from GitHub:

https://github.com/controlsfx/controlsfx

ControlsFX. (2023, Februar 15). Retrieved Februar 15, 2023, from MVN Repository:

https://mvnrepository.com/artifact/org.controlsfx/controlsfx/8.40.18

Cowlishaw, M. (1990). The REXX Language A Practical Approach to Programming. Prentice

Hall.

CSS. (2022, Dezember 13). Retrieved Dezember 13, 2022, from Wikipedia:

https://de.wikipedia.org/wiki/Cascading_Style_Sheets

DB Browser. (2023, Februar 12). Retrieved Februar 12, 2023, from Heise:

https://www.heise.de/download/product/db-browser-for-sqlite-41685

Flatscher, R. (2013). Introduction to REXX and ooRexx From REXX to Open Object REXX

(ooREXX). Facultas .

https://de.pons.com/%C3%BCbersetzung/englisch-deutsch/bibliography

 63

Flatscher, R. (2023). JavaFX for ooRexx – Creating Powerful Portable GUIs for ooRexx.

Retrieved from Rexxla: https://www.rexxla.org/presentations/2017/201711-ooRexx-

JavaFX-Article.pdf

Flatscher, R. G. (2012). Automatisierung mit ooRexx und BSF4ooRexx. In Proceedings der

GMDS 2012 / Informatik 2012 (pp. 1-12). Braunschweig: Gesellschaft für Informatik,

Bonn.

Flatscher, R. G. (2013). Introduction to Rexx and ooRexx (coloured illustration): from Rexx to

open object Rexx (ooRexx) (1. ed..). Wien: Facultas Verl.- u. Buchhandels-AG.

Flatscher, R. G. (2019). Flatscher, R. G., & Müller, G. (2019)ooRexx 5 Yielding Swiss Army

Knife Usability.

Fosdick, H. (2005). Rexx Programmer’s Reference. Wiley Publishing, Inc.

Java-AWT. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Javatpoint:

https://www.javatpoint.com/java-awt

JavaFX. (2022, Dezember 14). Retrieved Dezember 14, 2022, from Wikipedia.org:

https://de.wikipedia.org/wiki/JavaFX

JavaFX. (2022, Dezember). Retrieved from Wikipedia:

https://en.wikipedia.org/w/index.php?title=JavaFX&oldid=947700994

JavaFX Architecture. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Oracle:

https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-

architecture.htm#JFXST788

JavaFX_Application. (2022, Dezember 13). Retrieved Dezember 13, 2022, from

Tutorialspoint: https://www.tutorialspoint.com/javafx/javafx_application.htm

JavaFX_CSS. (2023, Jänner 15). Retrieved Jänner 15, 2023, from JavatPoint:

https://www.javatpoint.com/javafx-css

JDBC. (2023, Februar 15). Retrieved Februar 15, 2023, from Developer:

https://www.developer.com/database/working-with-the-javafx-ui-and-jdbc-

applications/

JFoenix. (2023, Februar 16). Retrieved Februar 16, 2023, from GitHub:

https://github.com/sshahine/JFoenix

Learn JavaFX 17. (2023). In K. Sharan, & P. Späth, Learn JavaFX 17 - Building User

Experience and Interfaces with Java (p. 851). Apress.

ooRexx. (2023, Januar 18). Retrieved Januar 18, 2023, from ooRexx:

https://www.oorexx.org/about.html

ooRexx. (2023, Februar 15). Retrieved Februar 15, 2023, from Sourceforge:

https://sourceforge.net/projects/oorexx/files/

 64

OpenJDK. (2023, Februar 15). Retrieved Februar 15, 2023, from Bellsoft: https://bell-

sw.com/pages/downloads/

Rexx. (2023, Januar 18). Retrieved Januar 18, 2023, from Wikipedia:

https://en.wikipedia.org/wiki/Rexx#History

Scene Builder. (2022, Dezember 15). Retrieved Dezember 15, 2022, from RipTutorial:

https://riptutorial.com/javafx/topic/5445/scene-builder

SceneBuilder. (2023, Februar 15). Retrieved Februar 15, 2023, from Gluon:

https://gluonhq.com/products/scene-builder/#download

SQLite Browser. (2023, Februar 15). Retrieved Februar 15, 2023, from SQLite Browser:

https://sqlitebrowser.org/dl/

SQLite-JDBC. (2023, Februar 2023). Retrieved Februar 15, 2023, from Github:

https://github.com/xerial/sqlite-jdbc/releases

Stage. (2022, Dezember 15). Retrieved Dezember 2022, 2022, from Oracle:

https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stage.html

Swing. (2022, Dezember 12). Retrieved Dezember 12, 2022, from techopedia:

https://www.techopedia.com/definition/26102/java-swing

What is JavaFX. (2022, Dezember 13). Retrieved Dezember 13, 2022, from Oracle-Patches:

https://oracle-patches.com/en/coding/what-is-javafx

 65

Appendix

Example Nr. Name Site number

Example 1 BMI Calculator 65

Example 2 BMI Calculator with FXML 67

Example 3 Health Calculator with JFoenix 70

Example 4 Formular with ControlsFX and JDBC 76

Example 1-BMI Calculator

The program is a body mass index (BMI) calculator implemented in the

Rexx programming language, utilizing the JavaFX library to create a

graphical user interface. It allows the user to input their weight and height

to calculate and display their BMI and BMI category. The program's primary

functions involve creating a user-friendly interface using JavaFX's layout

nodes such as VBox, TextField, Label, and Button. It also involves

implementing a JavaFX abstract method called "start" in the Rexx class,

which initiates the primary process of the application and displays the

window and its contents. Furthermore, the program utilizes BSF (Bean

Scripting Framework) and RexxProxy to pass events from the JavaFX side

to the Rexx side and to manage events such as clicking on the "Calculate

BMI" button. Lastly, the program also implements the Rexx class

"RexxButtonHandler," which performs the BMI calculation and displays the

result on the user interface.

rxApp=.BMICalculator~new -- create an instance of the Rexx class

-- rxApp will be used for "javafx.application.Application"

jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")

jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "start"

::requires "BSF.CLS" -- get Java support

-- Rexx class defines "javafx.application.Application" abstract method "start"

::class BMICalculator -- implements the abstract class "javafx.application.Application"

::method start -- Rexx method "start" implements the abstract method

use arg primaryStage -- fetch the primary stage (window)

primaryStage~setTitle("BMI Calculator") -- set the title of the window

root=.bsf~new("javafx.scene.layout.VBox") -- create the root node

root~prefHeight=400 -- set the preferred height of the VBox

 66

root~prefWidth=400 -- set the preferred width of the VBox

root~setSpacing(20) -- set the spacing between nodes in the VBox

-- create two text fields for user input

weightField=.bsf~new("javafx.scene.control.TextField")

weightField~setPromptText("50.0")

heightField=.bsf~new("javafx.scene.control.TextField")

heightField~setPromptText("1.60")

-- create a label for the weight field

weightLabel=.bsf~new("javafx.scene.control.Label")

weightLabel~text("Enter your weight (kg):")

-- create a label for the height field

heightLabel=.bsf~new("javafx.scene.control.Label")

heightLabel~text("Enter your height (m):")

-- create a button for performing the BMI calculation

calculateBtn=.bsf~new("javafx.scene.control.Button")

calculateBtn~text="Calculate BMI"

-- create a label for displaying the result

resultLabel=.bsf~new("javafx.scene.control.Label")

/* add the weight label, weight field, height label,

height field, calculate button, and result label to the VBox*/

root~getChildren~~add(weightLabel)~~add(weightField)~~add(heightLabel)

root~getChildren~~add(heightField)~~add(calculateBtn)~~add(resultLabel)

-- put the VBox on the stage

primaryStage~setScene(.bsf~new("javafx.scene.Scene", root))

primaryStage~show -- show the stage (window) with the scene

-- create a Rexx object to handle button presses

handler=.RexxButtonHandler~new(weightField, heightField, resultLabel)

-- create a Rexx proxy object to forward button events to the Rexx object

jrh=BSFCreateRexxProxy(handler, ,"javafx.event.EventHandler")

-- set the button's action handler to the Rexx proxy object

calculateBtn~setOnAction(jrh)

-- Rexx class which handles the button presses

::class RexxButtonHandler -- implements "javafx.event.EventHandler" interface

::method init -- Rexx constructor method

 expose weightField heightField resultLabel -- allow direct access to ooRexx attribute

 use arg weightField, heightField, resultLabel -- save reference to javafx.scene.control.Label

::method handle -- will be invoked by the Java side when the button is pressed

expose weightField heightField resultLabel-- allow direct access to ooRexx attribute

use arg event, slotDir -- expected arguments

weightInput = weightField~getText -- get the value of the first text field

heightInput = heightField~getText -- get the value of the second text field

if weightInput="" | heightInput="" then do -- check if both fields have been filled out

 resultLabel~text = "Please enter the weight and height."

 return -- exit the method

 end

--Calculate BMI

weight = weightInput

height = heightInput

bmi = weight / (height * height)

--Determine BMI category

if bmi < 18.5 then

 category = "Underweight"

else if bmi < 25 then

 category = "Normalweight"

else

 category = "Overweight"

 67

Listing 10: Example 1 - ooRexx_Gui.rexx

Example 2 -BMI Calculator with FXML

The BMI Calculator is a program created using JavaFX technology and the

FXML format. It provides a simple user interface that allows the user to

enter their weight and height. The program calculates the Body Mass Index

(BMI) and also displays the corresponding BMI category (e.g. underweight,

normal, overweight). The program uses CSS style sheets to customize the

appearance of the user interface.

The stylesheet (Listing 11) contains CSS rules for formatting various

elements in the user interface of the BMI calculator.

Listing 11: Example 2- stylesheet.css

-- Output the result

resultLabel~text = "Your BMI is" bmi~format(, "0.00") "and you have " category "."

.root{

 -fx-background-color: #426357;

 -fx-font-family: "Arial";

 -fx-font-size: 15px;

}

.button {

 -fx-text-fill: #5F6362;

 -fx-font-weight: bold;

 -fx-color: #99E8CB

}

.label {

 -fx-font-weight: bold;

 -fx-text-fill: #DAE2DF;

}

.textfield{

 -fx-prompt-text-fill: #DAE2DF;

 -fx-text-fill: #5F6362;

}

 68

The gui file (Listing 12) is the FXML file of the BMI-Calculator. It defines

how the frontend should look and which components are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.control.TextField?>

<?import javafx.scene.layout.VBox?>

<?language rexx?>

<VBox fx:id="root" alignment="TOP_CENTER" maxHeight="-Infinity" maxWidth="-Infinity"

minHeight="-Infinity" minWidth="-Infinity" prefHeight="346.0" prefWidth="400.0" spacing="20.0"

styleClass="root" stylesheets="@stylesheet.css" xmlns="http://javafx.com/javafx/8.0.171"

xmlns:fx="http://javafx.com/fxml/1">

 <fx:script source="Controller.rexx" />

 <children>

 <Label fx:id="weightLabel" alignment="CENTER" prefHeight="41.0" prefWidth="180.0"

text="Enter your weight (kg):" />

 <TextField fx:id="weightField" alignment="CENTER" promptText="50.0" />

 <Label fx:id="heightLabel" alignment="CENTER" prefHeight="38.0" prefWidth="183.0"

text="Enter your height (m):" />

 <TextField fx:id="heightField" alignment="CENTER" promptText="1.60" />

 <Button fx:id="calculateBtn" mnemonicParsing="false" onAction="slotDir=arg(arg()); call

CalculateBMI slotDir;" text="Calculate BMI" />

 <Label fx:id="resultLabel" prefHeight="44.0" prefWidth="323.0" />

 </children>

</VBox>

Listing 12:Example 2 - Gui.fxml

The main functions of the program (Listing 13) include creating and showing

the GUI, loading the FXML file using the FXMLLoader, and calculating the

BMI using the RexxProxy and BSF framework. The program launches by

invoking the "start" method in the Rexx class that implements the

"javafx.application.Application" abstract class.

--Change directory to program location so that relatively addressed resources can be found

parse source . . pgm

call directory filespec('L', pgm)

rxApp=.BMICalculator~new -- create Rexx object that will control the FXML set up

jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")

jrxApp~launch(jrxApp~getClass, .nil) --Launch the application and invoke the "start" method

--Require the BSF and rxregexp classes for Java support

::requires "BSF.CLS"

--Define the Rexx class that implements the abstract class "javafx.application.Application"

::class BMICalculator

--Implement the "start" method to create and show the BMI Calculator GUI

::method start

 use arg primaryStage -- fetch the primary stage (window)

 primaryStage~setTitle("BMI Calculator") -- Set the title of the primary stage

--Create an URL for the FMXLDocument.fxml file with the "file:" protocol

 fxmlUrl=.bsf~new("java.net.URL", "file:Gui.fxml")

--Use the FXMLLoader to load the FXML and create the GUI graph from its definitions

 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

 69

 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene for the document

 primaryStage~setScene(scene) -- Set the primary stage to the scene

 primaryStage~show -- Show the primary stage and the scene

Listing 13: Example 2 - main.rexx

The code in Listing 14 contains a method named CalculateBMI which

calculates the BMI based on the weight and height values entered by the

user in the weightField and heightField text fields. It also determines the

BMI category based on the calculated BMI and outputs the result in the

resultLabel label.

::routine CalculateBMI public

 slotDir=arg(arg()) -- note: last argument is the slotDir argument from BSF4ooRexx

/* RexxScript annotation fetches "TextField" from ScriptContext

 and makes it available as the Rexx variable "TEXTFIELD": */

 /* @get(weightField) */

 /* @get(heightField) */

 /* @get(resultLabel) */

weightInput = weightField~text -- get the value of the first text field

heightInput = heightField~text -- get the value of the second text field

if weightInput="" | heightInput="" then do -- check if both fields have been filled out

 resultLabel~text = "Please enter the weight and height."

 return -- exit the method

 end

 --Calculate BMI

 weight = weightInput

 height = heightInput

 bmi = weight / (height * height)

 --Determine BMI category

 if bmi < 18.5 then

 category = "Underweight"

 else if bmi < 25 then

 category = "Normalweight"

 else

 category = "Overweight"

-- Output the result

/* RexxScript annotation fetches "label" from ScriptContext

and makes it available as the Rexx variable "LABEL": */

/* @get(resultLabel) */

resultLabel~text = "Your BMI is " || bmi~format(, "0.00") || " and you have " || category || "."

Listing 14: Example 2 - controller.rexx

 70

Example 3 – Health Calculator with JFoenix

The application is a health calculator that features a main menu with two

buttons. The first button leads to the BMI calculator, and the second leads

to the basal metabolic rate calculator. Each calculator opens in its own

window, allowing users to input their data. This functionality enables users

to calculate their BMI and basal metabolic rate.

The bmi_calculator file (Listing 15) is the FXML file of the BMI Calculator

window. It defines how the frontend should look and which components

are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import com.jfoenix.controls.JFXButton?>

<?import com.jfoenix.controls.JFXSlider?>

<?import com.jfoenix.controls.JFXTextField?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.effect.Glow?>

<?import javafx.scene.layout.AnchorPane?>

<?import javafx.scene.text.Font?>

<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-Infinity"

prefHeight="400.0" prefWidth="600.0" stylesheets="@stylesheet.css"

xmlns="http://javafx.com/javafx/8.0.171" xmlns:fx="http://javafx.com/fxml/1">

 <fx:script source="controller.rexx" />

 <children>

 <Label alignment="CENTER" layoutX="119.0" layoutY="42.0" prefHeight="64.0" prefWidth="363.0"

text="BMI - Calculator" textAlignment="CENTER">

 </Label>

 <JFXSlider fx:id="slider_weight" blockIncrement="200.0" indicatorPosition="RIGHT"

layoutX="70.0" layoutY="207.0" max="200.0" styleClass="jfx-slider-style"

stylesheets="@stylesheet.css" value="60.0">

 <effect>

 <Glow />

 </effect></JFXSlider>

 <Label fx:id="label_weight" alignment="CENTER" layoutX="70.0" layoutY="132.0"

prefHeight="21.0" prefWidth="175.0" text="Enter your weight (kg):" />

 <Label fx:id="label_height" alignment="CENTER" layoutX="326.0" layoutY="132.0"

prefHeight="21.0" prefWidth="158.0" text="Enter your height (m):" />

 <Label fx:id="resultLabel" alignment="CENTER" layoutX="225.0" layoutY="304.0"

prefHeight="48.0" prefWidth="322.0" />

 <JFXTextField fx:id="textField_height" layoutX="326.0" layoutY="179.0" prefHeight="42.0"

prefWidth="148.0" promptText="1.60" unFocusColor="#84b5a7">

 <effect>

 <Glow />

 </effect></JFXTextField>

 <JFXButton fx:id="btn_calculate" layoutX="44.0" layoutY="299.0"

onAction="slotDir=arg(arg()); call calculateBMI slotDir;" prefHeight="58.0" prefWidth="175.0"

stylesheets="@stylesheet.css" text="Calculate" />

 </children>

</AnchorPane>

Listing 15: Example 3 - bmi_calulator.fxml

 71

The calorieRequirement file (Listing 16) is the FXML file of the calorie

requirement calculator window. It defines how the frontend should look

and which components are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import com.jfoenix.controls.JFXButton?>

<?import com.jfoenix.controls.JFXSlider?>

<?import com.jfoenix.controls.JFXTextField?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.effect.Glow?>

<?import javafx.scene.layout.AnchorPane?>

<?import javafx.scene.text.Font?>

<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-

Infinity" prefHeight="400.0" prefWidth="600.0" styleClass="root"

stylesheets="@stylesheet.css" xmlns="http://javafx.com/javafx/8.0.171"

xmlns:fx="http://javafx.com/fxml/1">

 <fx:script source="controller.rexx" />

 <children>

 <Label alignment="CENTER" layoutX="70.0" layoutY="41.0" prefHeight="64.0"

prefWidth="461.0" stylesheets="@stylesheet.css" text="Calorie - Requirement"

textAlignment="CENTER">

 </Label>

 <JFXSlider fx:id="slider_weight" layoutX="43.0" layoutY="232.0" max="200.0"

stylesheets="@stylesheet.css" value="60.0">

 <effect>

 <Glow />

 </effect></JFXSlider>

 <Label fx:id="label_weight" alignment="CENTER" layoutX="33.0" layoutY="150.0"

prefHeight="21.0" prefWidth="175.0" text="Enter your weight (kg):" />

 <Label fx:id="label_height" alignment="CENTER" layoutX="235.0" layoutY="150.0"

prefHeight="21.0" prefWidth="158.0" text="Enter your height (m):" />

 <Label fx:id="resultLabel" alignment="CENTER" layoutX="225.0" layoutY="304.0"

prefHeight="48.0" prefWidth="322.0" />

 <JFXTextField fx:id="textField_height" layoutX="235.0" layoutY="199.0"

prefHeight="42.0" prefWidth="148.0" promptText="1.60">

 <effect>

 <Glow />

 </effect></JFXTextField>

 <JFXButton fx:id="btn_calculate" layoutX="45.0" layoutY="313.0"

onAction="slotDir=arg(arg()); call calculateCalorieRequirment slotDir;" prefHeight="56.0"

prefWidth="158.0" stylesheets="@stylesheet.css" text="Calculate" />

 <Label fx:id="label_age" alignment="CENTER" layoutX="407.0" layoutY="150.0"

prefHeight="21.0" prefWidth="140.0" text="Age:" />

 <JFXSlider fx:id="slider_age" layoutX="437.0" layoutY="232.0" value="25.0">

 <effect>

 <Glow />

 </effect>

 </JFXSlider>

 </children>

</AnchorPane>

Listing 16:Example 3 - calorieRequirement.fxml

 72

The main window file (Listing 17) is the FXML file of the main window of

the Health-Calculator. It defines how the frontend should look and which

components are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import com.jfoenix.controls.JFXButton?>

<?import javafx.geometry.Insets?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.effect.Glow?>

<?import javafx.scene.layout.AnchorPane?>

<?import javafx.scene.text.Font?>

<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-

Infinity" prefHeight="284.0" prefWidth="507.0" stylesheets="@stylesheet.css"

xmlns="http://javafx.com/javafx/8.0.171" xmlns:fx="http://javafx.com/fxml/1">

 <fx:script source="controller.rexx" />

 <children>

 <Label alignment="CENTER" layoutX="30.0" layoutY="29.0" prefHeight="64.0"

prefWidth="447.0" styleClass="root" stylesheets="@stylesheet.css" text="Health Calculator">

 </Label>

 <JFXButton fx:id="btn_bmi" alignment="CENTER" layoutX="30.0" layoutY="128.0"

onAction="slotDir=arg(arg()); call openBMICalculator slotDir;" prefHeight="80.0"

prefWidth="210.0" text="BMI Calculator" textAlignment="CENTER">

 <padding>

 <Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />

 </padding>

 <effect>

 <Glow />

 </effect>

 </JFXButton>

 <JFXButton fx:id="btn_calorie" alignment="CENTER" layoutX="267.0" layoutY="128.0"

onAction="slotDir=arg(arg()); call openCalorieRequirement slotDir;" prefHeight="80.0"

prefWidth="210.0" text="Calorie Requirement" textAlignment="CENTER">

 <padding>

 <Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />

 </padding>

 <effect>

 <Glow />

 </effect>

 </JFXButton>

 </children>

 <padding>

 <Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />

 </padding>

</AnchorPane>

Listing 17:Example 3 - main_window.fxml

 73

The stylesheet (Listing 18) contains CSS rules for formatting various

elements in the user interface, like the JFoenix slider.

.root{

 -fx-background-color: #426357;

 -fx-font-family: "Arial";

}

.button {

 -fx-text-fill: #49635C;

 -fx-font-weight: bold;

 -fx-background-color: #84B5A7;

}

.button:active {

 -fx-color: #A9B0AD;

}

.label {

 -fx-font-weight: bold;

 -fx-text-fill: #84B5A7;

}

.jfx-text-field{

 -fx-prompt-text-fill: #84B5A7;

 -fx-text-fill: #49635C;

 -jfx-focus-color: #64E8C2;

 -jfx-unfocus-color: #84B5A7;

}

/* Styling the slider track */

.jfx-slider > .track {

 -fx-background-color: #84B5A7;

}

/* Styling the slider thumb */

.jfx-slider > .thumb {

 -fx-background-color: #84B5A7;

}

/* Styling the filled track */

.jfx-slider > .colored-track {

 -fx-background-color: #84B5A7;

}

/* Styling the animated thumb */

.jfx-slider > .animated-thumb {

 -fx-background-color: #84B5A7;

}

/* Styling the slider value text inside animated thumb */

.jfx-slider .slider-value {

 -fx-fill: #426357;

 -fx-stroke: #426357;

}

Listing 18: Example 3 - sylesheet.css

 74

The code in Listing 19 involve setting up the application environment,

defining the StageHandler class and its methods, and loading FXML files to

create the UI components of the application.

/* Parse the source and get the full path */

PARSE SOURCE . . fullPath

CALL directory filespec('L', fullPath)

.environment~setEntry("my.app", .directory~new) --Set the environment variable 'my.app'

.my.app~homeDir = filespec('Location',fullPath) --Set the home directory of the application

stageHandler = .StageHandler~new --Create a new StageHandler object

.my.app~stageHandler = stageHandler --Set the stageHandler of the application

--Create a StageHandlerProxy object

stageHandlerProxy = BsfCreateRexxProxy(stageHandler,,"javafx.application.Application")

--Launch the application

stageHandlerProxy~launch(stageHandlerProxy~getClass, .nil)

/* Exit the program */

EXIT 0

/* Define the StageHandler class */

::CLASS StageHandler

/* Define the methods of the StageHandler class */

::METHOD stage ATTRIBUTE

::METHOD scene ATTRIBUTE

::METHOD windowStage ATTRIBUTE

::METHOD FXMLLoader

::METHOD init

 EXPOSE FXMLLoader

 FXMLLoader = bsf.import("javafx.fxml.FXMLLoader") --Import the FXMLLoader class

::METHOD start

 EXPOSE stage scene FXMLLoader

 USE ARG stage --Get the stage object

 stage~setTitle("Health Calculator") --Set the title of the stage

 /* Load the FXML file */

 url=.bsf~new("java.net.URL", "file:main_window.fxml")

 fxml = FXMLLoader~load(url)

 scene = .bsf~new("javafx.scene.Scene", fxml) --Create a new Scene

 stage~setScene(scene) --Set the Scene of the stage

 stage~show --Show the stage

::METHOD newWindow

 EXPOSE stage windowStage FXMLLoader

 USE ARG title, fileName --Get the title and file name

 windowStage = .bsf~new("javafx.stage.Stage") --Create a new window stage

 windowStage~setTitle(title) --Set the title of the window stage

 /* Load the FXML file */

 url =.bsf~new("java.net.URL", fileName)

 fxml = FXMLLoader~load(url)

 scene = .bsf~new("javafx.scene.Scene", fxml) --Create a new Scene

 windowStage~setScene(scene) --Set the Scene of the window stage

 windowStage~show --Show the window stage

::REQUIRES "BSF.CLS" -- get Java support

Listing 19:Example 3 - main.rexx

 75

The code in Listing 20 includes several routines that perform different

functions. These functions include opening windows for the BMI calculator

and calorie requirement calculator, as well as calculating the user's BMI and

daily calorie requirements based on their weight, height, and age inputs.

-- This routine opens the BMI calculator window

::routine openBMICalculator public

 use arg slotDir

 scriptContext=slotDir~scriptContext

 URL = "file:bmi_calculator.fxml"

 .my.app~stageHandler~newWindow("BMI-Calculator", URL)

-- This routine opens the calorie requirement window

::routine openCalorieRequirement public

 use arg slotDir

 scriptContext=slotDir~scriptContext

 URL = "file:calorieRequirement.fxml"

 .my.app~stageHandler~newWindow("Calorie Requirement", URL)

/*The routine calculates the BMI based on the weight and height values entered by the

user.*/

::routine calculateBMI public

 use arg slotDir

/* RexxScript annotation fetches "TextField" from ScriptContext

 and makes it available as the Rexx variable "TEXTFIELD": */

 /* @get(slider_weight) */

 /* @get(textField_height) */

weightInput = slider_weight~getValue -- get the value of the first text field

heightInput = textField_height~text -- get the value of the second text field

if heightInput="" then do -- check if the height field have been filled out

 -- Output the result

 /* RexxScript annotation fetches "label" from ScriptContext

 and makes it available as the Rexx variable "LABEL": */

 /* @get(resultLabel) */

 resultLabel~text = "Please enter a height."

 return -- exit the method

 end

 --Calculate BMI

 weight = weightInput

 height = heightInput

 bmi = weight / (height * height)

 --Determine BMI category

 if bmi < 18.5 then

 category = "underweight"

 else if bmi < 25 then

 category = "normalweight"

 else

 category = "overweight"

 -- Output the result

 /* RexxScript annotation fetches "label" from ScriptContext

 and makes it available as the Rexx variable "LABEL": */

 /* @get(resultLabel) */

 resultLabel~text = "Your BMI is " || bmi~format(, "0.00") || " and you have " ||

category || "."

/*The routine calculates the daily calorie requirement based on the weight, height, and age

values entered by the user.*/

::routine calculateCalorieRequirment public

 use arg slotDir

/* RexxScript annotation fetches "TextField" from ScriptContext

 and makes it available as the Rexx variable "TEXTFIELD": */

 /* @get(slider_weight) */

 76

 /* @get(textField_height) */

 /* @get(slider_age) */

weightInput = slider_weight~getValue -- get the value of the first text field

heightInput = textField_height~text -- get the value of the second text field

ageInput = slider_age~getValue

if heightInput="" then do -- check if both fields have been filled out

 -- Output the result

 /* RexxScript annotation fetches "label" from ScriptContext

 and makes it available as the Rexx variable "LABEL": */

 /* @get(resultLabel) */

 resultLabel~text = "Please enter a height."

 return -- exit the method

 end

 --Calculate Calorie Requirement

 weight = weightInput

 height = heightInput*100

 age = ageInput

 calorieRequirment = 655.1 + (9.6 * weight) + (1.8 * height) - (4.7 * age)

 -- Output the result

 /* RexxScript annotation fetches "label" from ScriptContext

 and makes it available as the Rexx variable "LABEL": */

 /* @get(resultLabel) */

 resultLabel~text = "Your Calorie Requirment is " calorieRequirment~format(, "0") " kcal.

"

::REQUIRES "BSF.CLS"

Listing 20:Example 3 - controller.rexx

Example 4 – Formular with ControlsFX and

JDBC

The program creates a GUI that contains a form, and the entered data are

stored in an SQLite database.

The gui file (Listing 21) is the FXML file of the Formular. It defines how the

frontend should look and which components are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import com.jfoenix.controls.JFXButton?>

<?import javafx.scene.control.Label?>

<?import javafx.scene.effect.Glow?>

<?import javafx.scene.layout.AnchorPane?>

<?import javafx.scene.text.Font?>

<?import org.controlsfx.control.Rating?>

<?import org.controlsfx.control.textfield.CustomTextField?>

<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-

Infinity" prefHeight="546.0" prefWidth="429.0" styleClass="root"

stylesheets="@stylesheet.css" xmlns="http://javafx.com/javafx/8.0.171"

xmlns:fx="http://javafx.com/fxml/1">

<fx:script source="controller.rexx" />

<children>

 77

 <Label alignment="CENTER" layoutX="50.0" layoutY="24.0" prefHeight="54.0"

prefWidth="330.0" text="Formular" textAlignment="CENTER">

 </Label>

 <CustomTextField fx:id="textfieldFName" layoutX="167.0" layoutY="135.0"

promptText="Firstname" styleClass="jfx-text-field" />

 <CustomTextField fx:id="textfieldLName" layoutX="167.0" layoutY="178.0"

promptText="Lastname" styleClass="jfx-text-field" />

 <CustomTextField fx:id="textfieldAddress" layoutX="167.0" layoutY="261.0"

promptText="Address" styleClass="jfx-text-field" />

 <JFXButton fx:id="btn_submit" buttonType="RAISED" layoutX="271.0" layoutY="460.0"

onAction="slotDir=arg(arg()); call InsertData slotDir;" prefHeight="54.0" prefWidth="129.0"

ripplerFill="#a9b0ad" text="Submit">

 <effect>

 <Glow />

 </effect></JFXButton>

 <Rating fx:id="rating" layoutX="167.0" layoutY="345.0" rating="3.0"

styleClass="rating" stylesheets="@stylesheet.css" />

 <Label fx:id="label_fname" layoutX="85.0" layoutY="140.0" text="Firstname:" />

 <Label fx:id="label_lname" layoutX="87.0" layoutY="183.0" text="Lastname:" />

 <Label fx:id="label_age" layoutX="106.0" layoutY="223.0" text="Age:" />

 <Label fx:id="label_address" layoutX="92.0" layoutY="266.0" text="Address:" />

 <Label fx:id="label_satisf" layoutX="74.0" layoutY="346.0" prefHeight="31.0"

prefWidth="91.0" text="Satisfaction:" />

 <CustomTextField fx:id="textfield_age" layoutX="167.0" layoutY="218.0" promptText="26"

styleClass="jfx-text-field" />

 <Label fx:id="resultLabel" layoutX="29.0" layoutY="466.0" prefHeight="42.0"

prefWidth="208.0" />

 </children>

</AnchorPane>

Listing 21:Example 4 - gui.fxml

The stylesheet (Listing 22) contains CSS rules for formatting various

elements in the user interface.

.root {

 -fx-background-color: #426357;

 -fx-font-family: "Arial";

}

.button {

 -fx-text-fill: #49635C;

 -fx-font-weight: bold;

 -fx-background-color: #84B5A7;

}

.label {

 -fx-font-weight: bold;

 -fx-text-fill: #84B5A7;

}

.jfx-text-field {

 -fx-prompt-text-fill: #84B5A7;

 -fx-text-fill: #49635C;

 -jfx-focus-color: #64E8C2;

 -jfx-unfocus-color: #84B5A7;

}

 .rating > .container .button {

 78

 -fx-pref-width: 35 ;

 -fx-pref-height: 35 ;

 -fx-background-size: cover;

 -fx-background-color:#426357;

 -fx-padding: 15;

 }

Listing 22:Example 4 - stylesheet.css

The code in Listing 23 is responsible for connecting to the database and

creating the user interface.

/*change directory to program location such that relatively addressed resources can be

found*/

parse source . . pgm

call directory filespec('L', pgm) -- change to the directory where the program resides

-- set up application environment

.environment~setEntry("my.app", .directory~new)

.my.app~homeDir = filespec('Location',fullPath)

.my.app~dbh = .DatabaseHandler~new

.my.app~dbh~initSettings

-- connect to the database and handle connection errors

success = .my.app~dbh~connect

IF \success THEN CALL connectionError

else say "The Connection to the DB was successful!"

-- create Rexx object that will control the FXML set up

rxApp=.Formular~new

jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")

jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "start"

EXIT 0

connectionError:

say "No Connection to the DB"

::REQUIRES "DatabaseHandler.CLS"

::REQUIRES "BSF.CLS"

-- Rexx class defines "javafx.application.Application" abstract method "start"

::class Formular -- implements the abstract class "javafx.application.Application"

-- Rexx method "start" implements the abstract method

::method start

 use arg primaryStage -- fetch the primary stage (window)

 primaryStage~setTitle("Formular")

 -- create an URL for the FMXLDocument.fxml file (hence the protocol "file:")

 fxmlUrl=.bsf~new("java.net.URL", "file:gui.fxml")

 -- use FXMLLoader to load the FXML and create the GUI graph from its definitions:

 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene for the document

 primaryStage~setScene(scene) -- set the stage to the scene

 primaryStage~show -- show the stage (and thereby the scene)

Listing 23:Example 4 -main.rexx

 79

The code in Listing 24 is responsible for inserting data into the database

using the insertData method. It also ensures that all required fields are filled

out before inserting the data into the database.

::routine insertData public

 use arg slotDir

 scriptContext=slotDir~scriptContext -- Get the slotDir entry

 /* Get the values of the textfields and rating component */

 /* @get(textfieldFName) */

 /* @get(textfieldLName) */

 /* @get(textfield_age) */

 /* @get(textfieldAddress) */

 /* @get(rating) */

 /* @get(resultLabel) */

 /* Assign the values to variables */

 fname = textfieldFName~text

 lname = textfieldLName~text

 age = textfield_age~text

 address = textfieldAddress~text

 ratingValue = rating~getRating

-- check if the fields have been filled out

 if fname="" | lname="" | age="" | address="" then do

 resultLabel~text = "Please fill out all fields."

 return -- exit the method

 end

 /* Call the insertData method of the DatabaseHandler instance */

 .my.app~dbh~insertData(fname,lname,age,address,ratingValue)

 /* Require the DatabaseHandler and BSF classes */

 ::REQUIRES "DatabaseHandler.CLS"

 ::REQUIRES "BSF.CLS"

Listing 24:Example 4 - controller.rexx

The code in Listing 23 defines and implements the DatabaseHandler class

for connecting and interacting with the SQLite database. The class includes

methods for initializing the database URL, establishing a connection to the

database, and inserting data into the database using SQL statements.

::CLASS DatabaseHandler PUBLIC

-- Define the "conn" attribute for the DatabaseHandler class

::METHOD conn ATTRIBUTE

-- Define the "DB_URL" attribute for the DatabaseHandler class

::METHOD DB_URL ATTRIBUTE

-- Define the "DriverManager" attribute for the DatabaseHandler class

::METHOD DriverManager ATTRIBUTE

-- Define the "init" method for the DatabaseHandler class

::METHOD init

 EXPOSE DriverManager -- Allow access to the DriverManager object

 -- Import the DriverManager object from the Java sql package using BSF

 DriverManager = bsf.import("java.sql.DriverManager")

/*Define the "initSettings" method for the DatabaseHandler class, which sets the DB_URL

attribute*/

::METHOD initSettings PUBLIC

 EXPOSE DB_URL -- Allow access to the DB_URL attribute

 -- Set the DB_URL attribute to the path of the SQLite database

 80

 DB_URL = "jdbc:sqlite:C:\Users\isada\IdeaProjects\JDK8\src\Application_ControlsFX_JDBC\DB.db"

/*Define the "connect" method for the DatabaseHandler class, which establishes a connection to the

SQLite database*/

::METHOD connect PUBLIC

 EXPOSE DriverManager DB_URL conn /* Allow access to the DriverManager, DB_URL, and conn

attributes */

 SIGNAL ON SYNTAX NAME connectionError -- Set up error handling for the connection

 conn = DriverManager~getConnection(DB_URL) /* Establish a connection to the SQLite database

using the DB_URL attribute */

 SIGNAL OFF SYNTAX -- Turn off error handling

 say "Connection successful" -- Print a message indicating that the connection was successful

 say DB_URL -- Print the DB_URL attribute

 RETURN .true -- Return a true value to indicate that the connection was successful

/* Define the "insertData" method for the DatabaseHandler class, which inserts data into the

SQLite database */

::METHOD insertData PUBLIC

 EXPOSE conn -- Allow access to the conn attribute

 -- Retrieve the values to be inserted as arguments

 USE ARG fname, lname, age, address, satisf

 -- Define the SQL query to insert the data

 query = "INSERT INTO Person (fname, lname, age, address, satisf) VALUES (?, ?, ?, ?, ?)"

 -- Prepare the SQL statement using the conn attribute

 prepStatement = conn~prepareStatement(query)

 -- Bind the fname argument to the first "?" placeholder in the query

 prepStatement~setString(1, fname)

 -- Bind the lname argument to the second "?" placeholder in the query

 prepStatement~setString(2, lname)

 -- Bind the age argument to the third "?" placeholder in the query

 prepStatement~setInt(3, age)

 -- Bind the address argument to the fourth "?" placeholder in the query

 prepStatement~setString(4, address)

 -- Bind the satisf argument to the fifth "?" placeholder in the query

 prepStatement~setString(5, satisf)

 -- Execute the SQL statement to insert the data into the SQLite database

 prepStatement~execute

::REQUIRES "BSF.CLS" -- Import the BSF.CLS file for use in the code

Listing 25:Example 4 - DatabaseHandler.CSL

