WIRTSCHAFTSUNIVERSITAT WIEN
Vienna University of Economics and Business

Eguns 8 aeces St AMBA

Bachelor’'s Thesis

Titel of Bachelor's Thesis {english)
ocoRexx and JavaFX: A Perfect Match for GUI Develogment

Titel of Bachelor's Thesis {german)
ooRexx und JavaFX: Ene perfekte Kombination for die GUI

Entwickiung
Author
(last name, first namea): Dall'Oglio Isabella
Student ID number:
1607760
Degrese program:
Bachelor of Seience (WU), BSc [WU) - I
Examiner
(degree, first name, last name): a0 Univ.Prof. Dr. Rony G. Flatscher

I hereby declare that:

1. I hawe written this Bachelor’s thesis myself, independently and without the aid of unfair or
unauthorized resources. Whenever content has been taken directly or indirectly from other
sources, this has been indicated and the source referenced.

2, This Bachelor's Thesis has not been previously presented as an examination paper in this or
any other form in Austria or abroad.

3. This Bachelor's Thesis is identical with the thesis assessed by the examiner.

{only applicable if the thesis was written by more than one author): this Bachelor's
thesis was written together with

The individual contributions of each writer as well as the co-written passages have been
indicated.
I -

| 03/03/2023
Date Untersc

ooRexx and JavaFX: A Perfect
Match for GUI Development

Bachelor Thesis

eingereicht bei

ao.Univ.Prof. Dr. Rony G. Flatscher
Institut fiir Wirtschaftinformatik und Gesellschaft
Wirtschaftsuniversitat Wien

Von

Isabella Dall'Oglio

Fachrichtung: Wirtschaftsinformatik
Matrikelnummer: 1607760

Abstract

This thesis explores the combination of the object-oriented scripting
language ooRexx and the JavaFX framework to develop graphical user
interfaces (GUIs). The thesis provides a comprehensive overview of the
history and concepts of JavaFX, including its architecture, application
structure and lifecycle, as well as key features such as Scene Builder, FXML
and CSS. Additionally, the thesis covers the fundamental language concepts
of ooRexx, such as syntax, variables, expressions and instructions and
demonstrates how to interact with objects, create classes and utilize built-
in classes. The thesis also discusses two JavaFX libraries, JFoenix and
ControlsFX, which offer additional styling and widget options for developers.
Practical examples and use cases are provided to illustrate GUI application
development with JavaFX and ooRexx, including integrating external
libraries, using FXML and CSS for GUI design and utilizing JDBC for database

connectivity.

LISt OFf FIGUIES ..ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessessessessnssnssnnssnnnnnnnnnnnnnnnnne]l

[o} 1= < [N v
LiSt Of SNIPPOUS .ceveirieerireririrerieteereeeeeeeeneeesess \'
LT o T £ VI
F:Y o] =3V =) 4 o] 1 Vil
10 o Yo [Tt 1o TN 1
1. HISTOrY OFf JAVAFX .. .cciiiiiiiiiiiccieiccccnenrrrrreneeer s s e e e e e s e e e e e s e s s s e e s e s e s s s s e s s s s s e e sesessesesaessssensananennnnnnnnns 2
1.1. Yo X = Yot AV AT Lo Lo XV A e Yo | (] At 2
1.2. V1T PSPPSR OPRRRRIRE 3
1.3. NV | o PSPPSR 4

2. JAVAFX CONCEPES .. ciiiiiiiiueiiiiiiiiiiiiiiiiisiiiieinsssssssitrsssssssssssirsssssssssssssnssnnssssss 4
2.1. F N o] (L =T £ [< I SOURRT 4
2.2. NN Y o o] [Tor= Yo g B { (U Tt £] o USRS 7
2.3. Lifecycle of JaVaFX APPICAtIONuviiiiiee ettt et e e et e e e e ate e e s tbe e e e eataeeeennaneeesnraeaeas 8
2.4. Yot TN 2101 o L= 9
2.5. LAY | O PUTSPR 9
2.6. CaSCAAING STYIE SNEET (CSS) ..euvieiuieiieiieie ettt ettt ettt st e st e st e bt esbeete et e esteeatesbe e beebeenbesntesaeeses 10

3. The Language Rexx and Open Object REXX (OOREXX) ..ceeerrreeeerrsnnreeerreessssnnneeenssssssssnnsesssssssssssnnsessssssssnns 10
3.1. [TR (0] VPPNt 11
3.2. Fundamental Language CONCEPLS ..ociiiiiuiiiiieee ittt e e e e sttt e e e e e setat e e e e e e s eeabtreeeeeesensntaeeeeessennnnnns 12
3.3. LANGUAEE BaASICS ciiiiiiiiiiiiiiiiiiicicce aeaaaaes 14
3.3.1. Structure and GENEIAI SYNTAX........cuueeeeeureeeeieeeeiiieeeesite e ettt e sstee e e sttt e e s ssteesssseasssssesessssteasssssees 14

2 2 6 1o [o [(=1 PR UR U TP 15
G700 G T 0o T 1] ¢ 11 1 1 3RS 15
3.3, VQFIADIES. ...ttt ettt ettt e et e e e e e e e ———a e e e e e ri—————aaaeea i ——————aan 16
3.3, 5. TOKENS oo 16
33,6, EXPIrESSIONS oottt a e e e e e e 19

I B A |4 K 1 ¢ 1 o 1 o £ LRSS 22

G D) -t V= SN 27

3.4. INTFOAUCTION TO OOREXX 1eeviiiiiiiiirieieeeeeeiiitteeeeeeeeeeittareeeeeeeseibaareeeeeeeeasssaeeeeeeseassssreseeessansnraeeeeeesenssnrees 29
R B [1 (=T o Tora [o IV 11 T 0 o] [-or X3S 29
34,2, ClOSSES oottt ettt ettt e e ettt e et ———aeaea e e —————taetaaa——————aaraani—————————n 29
3.4.3. OOREXX — BUIIE-IN ClASSES .ceeveveeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeveeeseeesesesesssnns 32

3.5. LY R NoTo] Y=o GRS 33

4, JAVAFX LIDraries. .. civeeiiiieeieiieeieieeeiereeeeeetennsierennseereessesrenssessenssssensssssensssssensssssanssssssnsssssanssessanssessnnnsnes 33
4.1. Ny ALY oY - T R | o =Y oV TSR 34
4.2. Widget Library — CONTIOISFXuuiiiiiieeceier sttt e e e e s stee e e eaae e e st e e e esntaeessnnaeeesnneeeeans 34

5. Required Software and Installation........cccceiiiiiiiiiiiiiiiii e 35
5.1. - Y7 TS 35
5.2. [0 Y0 2 (=)o U 36
5.3. LY R NoTo] 1<) ¢ GO URRUURPPIIIRN 36
5.4. Y ot= =12 10 11 e 1= T 37
5.5. JAVAFX LIDFATIES e 37
5.6. L@ LI I = 01T £y SRR RTRR 38
5.7. CLASSPATH ...ttt ettt ettt e e e e et r e e e e e e s abaa e e e e e eesasbbsaeaeeeesaasbssaeseeeesaasstseseeeeseansstraneeeeeeans 38

6. NULShell EXamPIES....cccciiiiiiiiccccccccccrrrrrrrrrrrrrrrr e e e s e e e e e s e e s s e s s e s s s e e s e s s s s s s s s s seeseansasanannnnns 40

6.1. JavaFX GUI Application With OOREXX......cciviiiiiiiiiiiiiiiieeesiie ettt st e e s sbae e s sata e e saneeas 40
6.2. JavaFX GUI Application With FXML N OOREXX ..cccuveritiiiiiieiiiieiiieeiiienie ettt ettt et s 44
6.3. JavaFX GUI Application using JFOENIX LIDrarycoocveeieiiiie ettt et e e e 49
Lo 20 SY ' [o (=1 o [T | [=3 SR 50
6.3.2. JFOCIUX LIDIQIY ...t ettt e ettt e e ettt e e st e e e et e e e e naaaeatseaaeaastaaesssaaaesssesananssesananses 53

6.4. JavaFX GUI Application using ControlSFX LIDrary......cceeeciieeieciee e e 54
L B 00 Y111 o] K o (TP PPN 55
(OR300 o1 0] 0o KY-1 g o o Lo | [-7 TP UP 56

728 0o Y4 T ¥ 1o Yo N 61
8. L3 =T 1= =T 1= 62
APPENAIX . ceiieeeiiiiiiiiiiriiiieiiiirennneieerrtresnnsssesssssssnnsssssessssssnnssssssssssssnnssssssssssssnnssssssssssssnnnsssssssssssnnnnssssssssssnnnnns 65
EXample 1-BMI CalCUIATONceeeseeeeeeeeeesesssssssssssssssssssssssssssssssssssnsnnsnsnsnnnsnnnnnnnnnnnnnnn 65
Example 2 -BMI Calculator With FXIVIL..........ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeemeeeseemsemssssesssssssssssssssssssssssssssssssnssnsssnnnns 67
Example 3 — Health Calculator With JFOENIXeeeneesesnssssssssssssnssnssnnsnnnnns 70
Example 4 — Formular with ControlsSFX and JDBCcceeeeeeeeeeeenmmensess 76

List of Figures

Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Figure 1 JavaFX Architecture Diagram (JavaFX_Oracle, 2023)......cccceeevieeeiieesiieeeieeeciee e 5
Application Structure (ApplicationStructure, 2023)ccccceevviieeiieeeiiee e 7
Adding New Path t0 CLASSPATH ...ttt eeerrree e e e e e eanes 39
BMI -Calculator = GULL.....oo ettt e e e e e e e rree e e e e e 42
Yol (= = T 1 (o L= PR 44
311y TN [olU] =1 o] G C1 U RPN 47
Health Calculator MENUuuuiiiieiee ettt e e e e e e e e e e e e 50
BMI- CalcUlator JFOBNMIX....cocciiieieeee ettt e et e e e e e e e arnreeeeee e 54

Figure 8:
Figure 9:

ControlsFX Form

List of Tables

Table 1: Main packages of the JavaFX API (JavaFX, 2022)). ...cccceeeviieeiieeeiieesieeeereeesveeesvee e 6

List of Snippets

Snippet 1:BMI-Calculator - Application lauNChccuuiiiiiiiiie e 41
Snippet 2: BMICAICUIGTOr Class.....ccuuiiiiiiiiieieiiiee e eriitee e srree e st ee s s ste e e e s sareeesssaneeeessssneeesnnns 41
Snippet 3: BMI- Calculator -Add COMPONENTScccovviiieiiiiiieeerciiee e eeiree e ssree e e ssiee e e s saeeeeenaes 42
Snippet 4: BMI-Calculator - BUttonHaNdIErcooviiiiiiiiiieeeciieee e 43
Snippet 5:BMI-Calculator, Constructor and Handle Method............ccooecoiiviieiiiiicccciiieeee, 43
Snippet 6: BMI Calculator-FXIMILcoiiiiiiiieiiiiie sttt st e e e e e e s saae e e e saaaeeeenaes 45
Snippet 7:BMI Calculator-StyleSheetcoooviiiiiieiiie e 46
Snippet 8: BMI-Calculator- Classeeiiiuiieeeiiiieee e ssiree e st ee e sstee e s e saree e e s saae e e e sasaeeeennns 47
Snippet 9:Routine CalCUIatEBIMIccoiiiiieeeiee et e s e e s aaaeeeenaes 49
Snippet 10:Launch STageHANAIETcooi e 50
Snippet 11:StageHaANIEr Class......cuuiiiiiiiiiee ettt e e e e e e e e aae e e e e aaaeeeenaes 51
Snippet 12:Method NEWWINAOWcciiiiiiiieiiiie et e e e s saae e e e s aaaeeeenans 52
Snippet 13:Routines t0 OPEN @ WINAOWccieiuiiiiiiiiiiie et ee et ee e e e s e e s aaaeeeenaes 52
SNIPPET 14:JFOENIX IMPOIT coeeieiiiiiiiiitieieieeeeereeeee et ettt 53
Snippet 15:Slider CSS — StYlESNEET e e e 54
Snippet 16: CoNtrolSFX IMPOIt.....coo e e e e e e e e e e e e aereeeeeeeeas 55
Snippet 17:Rating CSS StYIESh@EL.........eeiiieeee e e e e e 56
Snippet 18:Database CoNNECLION..........uiiiiiiie e e e e e ee e e e e 57
Snippet 19:DatabaseHandIer Classueieeiiiiieiciiiiieie e e e e e e e e e e e e 58
Snippet 20:Method iNItSELEINGS ..eccee i e e e e e 58
Snippet 21:Method CONNECE . ..eiiii it e e e et e e e e e e e e nraereeeeaeeeas 59
Snippet 22:Method iINSErtDAta.......cccccciiiiieee e e e e e e e enrarr e e e e e e e 60

List of Listings

LISTING 11 If-TREN-EISE ...ttt bbbt 23
LISTING 2: SEIECT-WHREN ...ttt 24
LISTING 31 DO-ENG ..ottt bbbttt 24
LISTING 41 DO-UNTiL....oooiiiiiiice ettt 24
LISTING 5:1D0-WHIIIE ..ottt s st 24
ISy T ¥ = S 1o T J TR TSTT TN 25
Listing 7: ROUTING PUBLIC ...ttt esennes 28
LISTING 82 ROUTINE ...ttt ettt b et s et et et ene e e e sesesenas 28
LiSting 9: EXAMIPIE ClaSSvvuiueiiiiieiiicsiete ettt bbbt 30
Listing 10: EXamMPle 1 - O0REXX_GUILFEXX......ciuireiieeieieieiiiieiseeie ettt sessssesnas 67
Listing 11: EXample 2- Styl@Sh@ET.CSS......cuiiiiiiieccec et 67
Listing 12:EXample 2 = GUILEXMI ..ot 68
Listing 13: EXaMPIE 2 - MAIN.TEXX c..cucviiieiiiiieieie sttt 69
Listing 14: EXample 2 - CONrOEI.FEXX ..ottt e 69
Listing 15: Example 3 - bmi_calulator.fXml ..o 70
Listing 16:Example 3 - calorieRequirement.fXmlc.cooovrioiiiiceeeee e 71
Listing 17:Example 3 - main_wWindoW.fXmlccoiiccc e 72
Listing 18: EXample 3 - SYIESN@EL.CSS ...ttt e 73
Listing 19:EXamPIE 3 = MAIN.TEXX w.vcveviiieieieiecieieeieeeeee ettt sttt bbbttt b s s aetesene 74
Listing 20:EXample 3 - CONTIOIEI.IEXXc.oiviiiiiieectcee ettt 76
Listing 21:Example 4 - UILEXML.......oooee ettt e 77
Listing 22:EXample 4 - StYlESNEET.CSS....uiuiiiiiicctce ettt 78
Listing 23:EXamMPIE 4 “MAIN.TEXX c.voveiiiieieiecteieeeieeeeee ettt ettt bbbttt be b s s s e et bens 78
Listing 24:EXample 4 - CONTIOIEI.IEXXc.oiviiiiieeeteee ettt e 79
Listing 25:Example 4 - DatabaseHaNdIer.CSL............oiccceeceee e 80

Vi

Abbreviations

API
AWT

BSF400RexXx

BSF
CSS
DOM
FXML
GUI
HTML5
JavaFX
JDBC
ooRexx
OpenJFX
RexxLA
RIA
SVG

Application Programming Interface
Abstract Window Toolkit

Bean Scripting Framework for ooRexx
Bean Scripting Frameworks
Cascading Style Sheets

Document Object Model

JavaFX Scene Builder markup language
Graphical User Interface

Hypertext Markup Language version 5
Java graphical user interface toolkit
Java Database Connectivity
Object-Oriented Rexx language
Open-source JavaFX

Rexx Language Association

Rich Internet Application

Scalable Vector Graphics

VIl

Introduction

In the recent years, JavaFX has gained popularity as a modern and versatile
platform for developing graphical user interfaces (GUIs) for desktop, web,
and mobile applications. At the same time, ooRexx has emerged as a

powerful object-oriented scripting language that is easy to learn and use.

The combination of JavaFX and ooRexx provides a powerful and flexible
toolset for developing GUI applications that can benefit from the rich library
of JavaFX components, the simplicity and expressiveness of the ooRexx
language, and the object-oriented paradigm that underlies both

technologies.

The thesis explains the history and development of JavaFX, as well as its
main features and architecture. It also introduces the basics of the ooRexx
language, including its syntax, data types, and control structures, as well

as its object-oriented model and built-in classes.

Additionally, practical examples and use cases are presented for developing
GUI applications with JavaFX and ooRexx, including the integration of
external libraries such as JFoenix and ControlsFX, and the use of FXML and
CSS for GUI design and styling, as well as JDBC for database connectivity

with JavaFX and ooRexx.

1. History of JavaFX

Sun Microsystems introduced the platform-independent programming
language, Java, in 1995. Following its release, the Abstract Window Toolkit
(AWT) library was introduced for the development of desktop applications
and their graphical user interfaces (GUIs) (Abstract Window Toolkit, 2022).
In 1996, the Swing package was introduced as a follow-up to the Abstract
Window Toolkit (AWT) for graphical user interface (GUI) development in
Java. AWT and Swing remained the standard for Java graphical applications
until 2014. To overcome the limitations in media and animation, Oracle
developed a new GUI layer and introduced JavaFX in 2008 (JavaFX, 2022).

In the following sections, the features of the two packages AWT and Swing

as well as the new development JavaFX are discussed in more detail.

1.1. Abstract Window Toolkit

The Abstract Window Toolkit (AWT) was the first user-interface widget
toolkit for the development of graphical user interfaces (GUIs) in Java when
the programming language was first introduced (Abstract Window Toolkit,
2022).

The java.awt package, provides classes for developing GUI applications in
Java, such as TextField, Label, TextArea, RadioButton, CheckBox and List,
among others. To access these components, the java.awt package must be
imported into the development environment using the following import

statement: "import java.awt.*;".

The appearance of AWT components is dependent on the underlying
operating system, so they are considered platform dependent. This means
that the components will appear differently on different OS platforms, such

as Windows and macOS. Additionally, because AWT components use the

native appearance of the OS, they are considered "heavyweight", which

means they are closely tied to the system environment (Java-Awt, 2022).

The use of native components in the AWT package has the benefit of
improving performance. Additionally, AWT provides a strong event handling
system and the ability to customize window layouts with its layout manager.
A drawback of using AWT is the difficulty in creating a platform-independent
application with a consistent appearance, as the available components are

limited to those supported by all platforms (AWT vs. Swing, 2022).

The Java Foundation Classes (JFC) include the Abstract Window Toolkit
(AWT) as a standard Application Programming Interface (API) for creating

graphical user interfaces in Java (Abstract Window Toolkit, 2022).
1.2. Swing

In 1996, Java Swing was introduced as a GUI widget toolkit, offering a
departure from the previous AWT framework. Swing is platform-
independent and lightweight, as it is written entirely in Java and draws its
own components. This independence allows developers to choose between
the look and feel of the underlying system and the uniform look and feel of
Java. Although Swing has largely replaced AWT, it still builds on and
complements the latter (AWT, 2022).

Swing builds upon the features of AWT and offers a wider range of
components, including trees, image buttons, tables, tabbed panes, sliders
and more. Unlike AWT, Swing is not dependent on peer components,
making it a versatile option for GUI programming in Java (Java Swing,
2022). To utilize the Swing components, developers must import the
javax.swing package into their development environment. This can be
achieved by adding the following import statement: ‘"import
javax.swing.*;". The Java Swing toolkit is part of the Java Foundation
Classes (JFC) (Java Swing, 2022).

1.3. JavaFX

JavaFX is a cutting-edge development in the GUI layer that replaced the
aging AWT and Swing. The limitations in media and animation capabilities
made it necessary for a new GUI layer to be created. Oracle decided to
create JavaFX to meet the modern requirements for graphical interfaces.
The first version of JavaFX was released by Sun Microsystems in 2008. It
started as F3, a Java scripting language for GUI development, created by
Chris Oliver at SeeBeyond. After being acquired by Sun Microsystems in
2007, F3 was renamed JavaFX. In 2010, Oracle acquired Sun Microsystems
and made JavaFX open source in 2013 (What is JavaFX, 2022).

JavaFX is an open-source framework for developing cross-platform Java
applications. Its goal is to make it easier to create and distribute interactive
multimedia content and GUIs. Desktop applications and Rich Internet
Applications (RIAs) can be developed using the JavaFX library and run-on
multiple platforms, including web, mobile and desktops. JavaFX provides its
own components and is lightweight as it is not dependent on the platform.
It supports various operating systems such as Windows, Linux and Mac OS
(JavaFX, 2022).

2. JavaFX Concepts

This chapter focuses on the theory behind JavaFX development, including
its architecture, application structure, and lifecycle. It also discusses the
tools like Scene Builder, FXML and Cascading Style Sheets (CSS).

2.1. Architecture

The design of JavaFX does not rely on the architecture of AWT and Swing.
The structure and components of the JavaFX platform are shown and

explained in detail in Figure 1.

L JavaFX Public APls and Scene Graph

...

()
I Jeva Virtual Machine

Figure 1 JavaFX Architecture Diagram (JavaFX_Oracle, 2023)

The foundation of the platform is the Java Virtual Machine (JVM), which is
part of the Java runtime environment and executes Java bytecode in its
own virtual machine. On top of the JVM, the Java Development Kit provides

developer tools and extensions, such as Java 2D for creating 2D shapes.

Prism, the rendering engine, works with both hardware and software. The
hardware render path is preferred for better performance and requires
either DirectX 9 on Windows XP and Vista, DirectX 11 on Windows 7, or
OpenGL on Mac, Linux and Embedded.

If hardware rendering is not possible, the software rendering path on Java

2D is used, which is already included in all Java Runtime Environments.

The Glass windowing toolkit sits at the lowest level of the JavaFX graphics
stack and provides access to low-level operating system routines, such as
managing windows, timers and surfaces. The Glass toolkit also manages
the event queue and uses the native operating system's functionality for
scheduling thread management.

The Media Engine integrates audio and video. The Web Engine, based on
WebKit, supports HTML5, CSS, JavaScript, DOM and SVG. This allows Java
applications to: render HTML content from local or remote URLs, support
history and provide back and forward navigation, reload content, apply
effects to web components, edit HTML content, execute JavaScript

commands and handle events.

The Quantum Toolkit combines Prism, Glass Windowing Toolkit, Media
Engine and Web Engine and exposes them to the JavaFX API
(JavaFX_Oracle, 2022).

The highest level of the architecture provides a complete set of public Java

APIs, with the main packages listed in Table 1:

Package Description

javafx.animation | Provides the set of classes for easy use of transition-

based animations.

javafx.application | Provides the application life-cycle classes.

javafx.collections | Contains the essential JavaFX collections and

collection utilities.

javafx.event Provides basic framework for FX events, their delivery
and handling.
javafx.fxml Defines the FXML APIs for the JavaFX UI toolkit.

javafx.geometry | Provides the set of 2D classes for defining and
performing operations on objects related to two-

dimensional geometry.

javafx.scene Provides the core set of base classes for the JavaFX
Scene Graph API.

javafx.stage Provides the top-level container classes for JavaFX
content.
javafx.util Contains various utilities and helper classes.

Table 1: Main packages of the JavaFX API (JavaFX, 2022)).

2.2. JavaFX Application Structure

Stage -0
Scene Scene Graph
Root Node
Branch Node Leaf Node

T

Leaf Node Leaf Node

Figure 2: Application Structure (ApplicationStructure, 2023)

The design of graphical applications in JavaFX is based on the concept of a
theater. The Stage, defined by the javafx.stage.Stage class, is the top-level
container for a GUI and can be thought of as a window. The platform creates
the primary Stage, while additional Stages can be created by the
application. Stage properties are largely read-only, as they can be changed
by the underlying platform and are therefore not bound (JavaFX_Stage,
2022).

The Stage is split into the decoration (title bar and frame) and the content
area and its size is determined by its width and height parameters. There
are five different types of Stages: Decorated, Undecorated, Transparent,
Unified and Utility. To display the Stage, the created Stage object is passed
as an argument to the start() method of the application class
(JavaFX_Application, 2022).

A scene, defined by the javafx.scene.Scene class, is necessary to visualize
the content on the Stage. A Scene contains all the elements of a GUI and
can only be assigned to one Stage at a time, although an application can
have multiple scenes. The Scene object is created by creating an object of
the Scene class and passing it to the constructor of the Stage
(JavaFX_Application, 2022).

At the lowest level of the hierarchy is the Scene Graph, a tree-like data
structure that manages the individual components of a GUI. The elements
of the graph are represented as node objects, defined in the abstract class
javafx.scene.Node and can include geometrical objects, UI controls,

containers and media elements such as audio, video and images.

There are three types of nodes in the Scene Graph: Root Node, Branch Node
and Leaf Node. Each node in the graph has a parent and zero or more child
nodes, except for the root node. The Branch Node, defined by the abstract
class javafx.scene.Parent, contains three subclasses: Group, Region and
WebView. The properties of a parent node are applied to child nodes when

transformations are performed (JavaFX_Application, 2022).
2.3. Lifecycle of JavaFX Application

The javafx.application.Application class is a required import for all JavaFX
applications. This class has three life cycle methods: init(), start() and
stop(), which can be customized by the application if heeded. The launch()
method, provided by JavaFX, is used to launch the application and
eliminates the need for a main method.

Following how the lifecycle methods are executed when a JavaFX application

is launched:

« An instance of the Application class is created.

« The init() method of the instance is executed, which is empty by
default.

« The start() method is executed and is passed the stage. This method
is abstract and must be overridden.

« The JavaFX runtime waits until the application is terminated, either
through calling the Platform.exit() method or closing the last window
when the implicitExit attribute of Platform is set to true.

- Finally, the stop() method is executed, which is also empty by default.

Note that the init() method cannot create a Stage or Scene and the stop()

method only needs to be customized if necessary (JavaFX, 2022).

2.4. Scene Builder

The Scene Builder is a visual layout tool for designing JavaFX application
interfaces without programming knowledge. It allows users to drag and
drop UI components into the workspace and customize their properties
using a stylesheet. The scene graph structure is generated automatically in
the background and saved in an FXML file. The FXML file can then be
connected to the Java project by linking the elements to the applications
logic (SceneBuilder, 2022)

Originally distributed by Oracle until Java 8, Scene Builder is now

maintained and updated by Gluon within the Open]FX project.

2.5. FXML

FXML files make it simpler for developers to maintain and modify code by
separating the presentation layer from the application logic. To use FXML
files in a JavaFX application, developers can load the FXML file through the
FXMLLoader class and then pass it to the Scene object to display the user

interface in the application window. Additionally, the FXMLLoader class can

be used to load a controller object and set it as the controller for the user
interface described in the FXML file. The JavaFX runtime processes the FXML

files to create the user interface (Learn JavaFX 17, 2023).
2.6. Cascading Style Sheet (CSS)

Cascading Style Sheets (CSS) is a language used for formatting and
designing HTML, SVG and XML documents. It is constantly being improved
by the World Wide Web Consortium (W3C) and is a key language in the
World Wide Web. CSS allows the separation of the content and design of an
electronic document by allowing layout, colors and typography to be defined
in separate CSS files through the use of stylesheets.

This gives CSS an unlimited level of flexibility (CSS, 2022). JavaFX also
supports CSS. JavaFX provides the javafx.css package, which contains all
the CSS classes for use in JavaFX applications. CSS can be used to
customize and design JavaFX controls and scene graph objects. Any
compatible CSS parser can easily parse JavaFX CSS stylesheets.
(JavaFX_CSS, 2023)

3. The Language Rexx and Open Object

Rexx (ooRexx)

REXX is a procedural programming language that enables the structured
and organized coding of algorithms and programs. Its main goal was to be
user-friendly for both computer experts and non-technical individuals. REXX
simplifies the manipulation of common symbolic objects such as words,
numbers, names and more. Its features are designed to make symbolic
manipulation easier. REXX is designed to be system-independent, although
it has the capability to send commands to its host environment and call
programs or functions written in other languages. It offers powerful
character and arithmetic capabilities in a straightforward framework,
making it suitable for both simple and complex programs (Cowlishaw,

10

1990). Rexx is a user-friendly language with a simplified structure, built-in
functions and classes, flexible variable types that can handle any object,
strong string manipulation capabilities, decimal arithmetic instead of binary
arithmetic, easily understandable error messages and robust debugging
tools (ooRexx, 2023).

ooRexx, also known as Open Object Restructured Extended Executor, is a
compatible version of Rexx that has been enhanced with object-oriented
features. The core elements of Rexx remain unchanged, but ooRexx
includes added capabilities that allows typical object-oriented language
capabilities, including classes, objects, methods, inheritance, multiple
inheritance and messaging. In traditional Rexx, all data were stored as
strings, but with ooRexx, variables can now refer to objects other than just
strings. The language has a variety of built-in classes, including those for
arrays, queues, streams and the String class. Additionally, developers can
create their own custom classes that work in conjunction with the built-in
classes. Methods are used to manipulate objects in these classes and are
accessed by sending a message to the object. The use of object technology
has several benefits, including simplified design through object modeling,
greater code reuse, rapid prototyping, higher-quality components, easier
maintenance, cost savings, increased adaptability and scalability (Ashley W.
, etal.,, 2010)

3.1. History

Mike Cowlishaw developed the Rexx Restructured Extended Executor
language in 1979 to replace exec and exec-2. The language was first
introduced to the public at the 56th SHARE conference in Houston. Over the
years, IBM has integrated Rexx into nearly every operating system.

In 1990, Cathie Dager from SLAC organized the first independent Rexx
symposium, which led to the formation of the REXX Language Association.

Annual symposiums take place (Rexx, 2023).

11

An object-oriented version of REXX was developed due to the influence of
object-oriented programming. Many concepts from the object-oriented,
message-based programming language Smalltalk were incorporated. An
object-oriented version of REXX was released in the late 1990s. The Rexx
Language Association (RexxLA) acquired Object Rexx from IBM and

released "Object Rexx (0ooRexx) 3.0" as open source in 2004.

In 2009, ooRexx 4.0 was released with a new kernel and a new native
interface that allows the C++ programming language to use ooRexx as a

scripting language.

In 2010, BSF4o00Rexx ("Bean Scripting Framework for ooRexx") was
released, which acts as a bidirectional bridge between ooRexx and Java
(Flatscher R. G., 2019).

3.2. Fundamental Language Concepts

The main ideas that were consciously used when designing Rexx are listed

in the list below.

e Readability: Rexx semantics is comparable to regular text semantics.
The syntax structure should be simple to read. Upper- and lowercase
letters are explicitly supported throughout the language, both for data
processing and for the program itself. The Rexx language is written in a
free format. This means extra spaces between words and blank lines can
be inserted freely throughout the exec without causing an error.

Punctuation is only used when it is necessary to remove ambiguity.

¢ Natural data typing: Rexx is not strongly typed, in contrast to many
other languages. Types are handled as naturally as possible by Rexx.

The meaning of data is entirely dependent on how it is used. All values

12

are specified as strings of characters, or the symbolic notation, that a
user would typically use to represent the data. Because the outcomes of
all operations have a defined symbolic representation, values can always
be inspected. Because numerical computations and all other operations
are precisely defined, they will behave consistently and predictably for

every correct implementation.

Emphasis on symbolic: Rexx operates with character strings and has
a rich set of operators and functions for manipulating them. One of its
unique features is the "blank" operator, which concatenates two strings
with a blank space in between, along with the conventional

concatenation operator "II" that combines two strings without a space.

Dynamic scoping: The scoping of Rexx is entirely dynamic. This implies
that it can be interpreted effectively. Rexx scoping follows the
programmer-defined order in which Rexx clauses are executed.

Nothing to declare: In Rexx, the declaration of variables is not
required. Instead, variables can be created and given a value at the start

of a program.

System independence: System and hardware are unrelated to the
REXX language. REXX programs need to be able to interact with their

environment.

Limited span syntactic units: The clause, which is a piece of program
text terminated by a semicolon, is the REXX language's syntactic unit.
As a result, syntactic units have a short span, usually one line or less.
This means that the syntax parser in the language processor can detect
and locate errors quickly, allowing error messages to be precise and

concise.

13

Dealing with reality: Consistency was an important design goal; in

practice it leads to unexpected side effects.

Be adaptable: The language allows for the extension of instructions and
other language constructs whenever it is possible. Since only a small set
of common characters are permitted for variable names (symbols), there
is a useful set of common characters available for future extensions.
Similar to this, the rules for keyword recognition permit the addition of
instructions whenever necessary without jeopardizing the integrity of
already-written programs. There are no words that are reserved globally.
The language is made more adaptable by including space for growth and

modification.

Keep the language small: Every suggested extension to the language
has only been taken into consideration if it would benefit a sizable portion
of users. Users quickly understand the majority of the language, it has

been intentionally kept as small as possible.

No defined size or shape limits: There are no restrictions on the size

or shape of any of the language's tokens or data (Cowlishaw, 1990)

3.3. Language Basics

3.3.1. Structure and General Syntax

A Rexx program is made up of clauses that includes the following elements:

e Optional whitespace characters (blanks or horizontal tabs), which are
ignored by the processor

e A sequence of tokens

e Optional additional whitespace characters, which are again ignored

e A semicolon (;) delimiter, which may be implied by line end, certain

keywords, or the colon (:) symbol.

14

Before execution, each clause is scanned from left to right and the tokens
that make up the clause are identified. During this process, instruction
keywords are recognized, comments are removed and whitespace character
sequences (except within literal strings) are condensed into single blanks.
In addition, any whitespace or special characters adjacent to operator
characters are also removed (Ashley W. D., et al., ooRexx Documentation
5.0.0 Open Object Rexx Reference, 2022).

3.3.2. Characters

When programming in the REXX language, two sets of characters should be
considered. The first set is a relatively small set of characters that are used
to write the REXX program itself. This set is explicitly defined by the REXX
language to ensure code portability and readability, while avoiding

l[imitations on the character set used for data.

The second set of characters is used as data in a REXX language processor
and can generally be any characters. Some characters may only be used

within comments or literal data.

When the REXX language manipulates or examines data, such as when
performing arithmetic operations, there may be specific requirements for
the data character set. For example, numbers must be represented by digits
in the set (Cowlishaw, 1990).

3.3.3. Comments

In Rexx, comments are sequences of characters that are ignored by the
program but serve as separators. There are two types of comments

recognized by the interpreter: line comments and standard comments.

A line comment starts with two consecutive minus signs (--) and ends at

the end of the line.

15

A standard comment is a sequence of characters, on one or more lines, that
are surrounded by the delimiters /* and */. Any characters can be used
within the delimiters, including nested standard comments as long as each
begins and ends with the delimiters. Standard comments can appear
anywhere and be any length (Ashley W. D., et al., ooRexx Documentation
5.0.0 Open Object Rexx Reference, 2022).

3.3.4. Variables

Variable names can be up to 250 characters in length and have certain
naming restrictions. The first character must be an uppercase or lowercase
letter, an exclamation mark (!), a question mark (?), or an underscore (_).
The rest of the characters can be letters, numbers, exclamation marks,

question marks, underscores, or periods (.).

Variable names are case-insensitive, meaning they can be typed and
queried in uppercase, lowercase, or mixed-case characters. Rexx
automatically converts all lowercase letters in variables to uppercase before
use, so "abc", "Abc" and "ABC" all refer to the same variable, "ABC". If a
variable is referenced before it has been set, the name in uppercase
characters will be returned. All data is treated as objects of different types.
Variables can contain any type of object, so there is no need to specify the
type of the variable beforehand, such as declaring it as a string or number.
Variables can be assigned new values using the ARG, PARSE, or PULL
instructions (Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object

Rexx Programmer Guide, 2022).
3.3.5. Tokens

Tokens in Rexx are the smallest building blocks of syntax that make up a
program. The maximum length of a token may vary based on the
implementation, but they can be of any length. Tokens are differentiated

from each other by whitespace, comments, or their own nature and are

16

used to construct clauses. There are different classes of tokens in Rexx
(Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx
Reference, 2022).

3.3.5.1. Literal String

A literal string in Rexx is a sequence of characters enclosed by either single
quotes (') or double quotes ("). To include the same type of quote within
the string, two consecutive quotes need to be used. A null string is a literal
string with no characters. Literal strings are considered constant and their
contents won't change during processing. They must be complete on a
single line and their length is limited only by available memory. Additionally,
a string followed by a left parenthesis is treated as a function name and if
immediately followed by the letter "X" or "x", it's considered a hexadecimal
string, or if followed by "B" or "b", it's considered a binary string (Ashley W.
D., et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference,

2022).

3.3.5.2. Hexadecimal Strings

A hexadecimal string is a type of literal string that represents its encoding
using hexadecimal notation. It consists of zero or more hexadecimal digits
(0-9, a-f, A-F), grouped in pairs, separated by one or more whitespace
characters and enclosed in single or double quotation marks. The symbol x
or X must immediately follow the closing quotation mark. The whitespace
characters are ignored by the language processor for improved readability.
Hexadecimal strings allow the inclusion of characters in a program, even if
they cannot be directly entered. When a hexadecimal string is processed,
the whitespace is removed and each pair of hexadecimal digits is converted
to its equivalent character. The packed length of a hexadecimal string is
unlimited (Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object
Rexx Reference, 2022).

17

3.3.5.3. Binary Strings

A binary string is a type of literal string that represents its encoding using
binary digits (0 or 1). The binary digits are grouped in bytes (8 digits) or
nibbles (4 digits) and can be separated by whitespace characters for
readability. The string must be delimited by matching single or double
quotation marks and immediately followed by the symbol b or B. The packed
length of the binary string (with whitespace removed) is not limited. The
leading O digits are added to make a multiple of 8 or 4 before packing.
Binary strings allow the explicit specification of characters using binary
digits (Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx
Reference, 2022).

3.3.5.4. Symbols

A Symbol in ooRexx is a combination of characters that can consist of
English letters (both uppercase and lowercase), numbers (0-9) and special
characters (".", "!", "?" and "_"). Lowercase letters are automatically
converted to uppercase before they are used.

Symbols that do not start with a digit or a period can be used as variables
and assigned a value. The value of such symbols is the uppercase version
of the symbol's characters. Conversely, symbols that begin with a digit or

a period are constant and cannot have a value assigned to them.

ooRexx also supports exponential number representation, with symbols
starting with a digit or a period, ending with "E" or "e" and having an
optional sign (+ or -) followed by one or more digits. There must be at least
one digit and at most one period in the character sequence before the "E"

or "e". The sign is considered part of the symbol and is not an operator.

The interpretation of a symbol depends on its usage within a particular
context. It can represent a constant value, such as a nhumber, a reserved
word, or the identifier of a variable (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Reference, 2022).
18

3.3.5.5. Environment Symbol

An Environment Symbol in ooRexx is a symbol that begins with a dot (.)
followed by a symbol name. The Rexx interpreter converts all alphabetical
characters in the symbol nhame to uppercase. The symbol represents a value
in one of the ooRexx runtime environments, which are searched in the
following order: "package environment", the local environment and the
global environment. If a corresponding value is found, it replaces the
environment symbol. If no value is found, the symbol name is converted to

uppercase and replaces the symbol.

Examples of ooRexx environment symbols include ".TRUE", ".FALSE",
".NIL", ".LOCAL", ".ENVIRONMENT" and ".SOME.VALUE". Each of these
symbols represents a specific value, such as a string or directory, within the
ooRexx runtime environments (Flatscher R. G., Introduction to Rexx and
ooRexx (coloured illustration): from Rexx to open object Rexx (ooRexx) (1.
ed..), 2013).

3.3.6. Expressions

Expressions allows the combination and transformation of data, resulting in
a final result. The output of an expression is always in the form of an object
and can be a modification of the original data used in the expression.
Expressions are a fundamental aspect of the Rexx language and are used

to perform various operations and calculations.

3.3.6.1. String Concatenation Expressions

The concatenation operators join two strings to create a new string by
attaching the second string to the right side of the first string. There are
three concatenation operators: (blank), which concatenates terms with one
blank in between, ||, which concatenates terms without a blank in between
and (abuttal), which is assumed between two terms that are not separated

by another operator.

19

For example, the expression "Hello" || " World" would result in the string
"Hello World". On the other hand, the expression "Hello" " World" would
result in the same string, with a blank in between the two terms (Ashley W.
D., et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference,
2022).

3.3.6.2. Arithmetic Expressions
In ooRexx, arithmetic operations can be performed on character strings that

are considered valid numbers. The following operators are available:

+ for addition

e - for subtraction

e * for multiplication

e / for division

e % for integer division

e // for remainder

e ** for power

o prefix - and prefix + operators to indicate subtraction and addition

respectively.

When performing arithmetic operations, it is important to note that the
result may be displayed in exponential notation if rounding has occurred
(Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx
Reference, 2022).

3.3.6.3. Comparison

Comparison operators compare two values and return a result of 1 if the

comparison is true, or 0 if it is false. The following operators are available:

e = (equal to) - checks if two values are equal

e \ = or == (not equal to) - checks if two values are not equal

20

> (greater than) - checks if the left operand is greater than the right
operand

< (less than) - checks if the left operand is less than the right operand
>< (not equal to, also known as xor) - checks if either the left or right
operand is true, but not both

<> (not equal to) - same as = or ==, checks if two values are not
equal

>= (greater than or equal to) - checks if the left operand is greater
than or equal to the right operand

\ < or =< (not less than) - checks if the left operand is not less than
the right operand

<= (less than or equal to) - checks if the left operand is less than or
equal to the right operand

\ > or => (not greater than) - checks if the left operand is not greater
than the right operand

== (same as) - checks if two values are the same (identical)

\ == or === (not same as) - checks if two values are not the same
(not identical)

>> - strictly greater than

<< - strictly less than

>>= - strictly greater than or equal to

\ << or =<< - strictly not less than

<<= - strictly not greater than

\ >> or =>> - strictly not greater than

Strict comparison operators (such as == and \ ==) require an exact match
between the two strings being compared, including matching length and
character-by-character comparison. When comparing two numeric values,
a numeric comparison is executed. Otherwise, they are treated as character
strings and any leading or trailing white space is ignored and the shorter
string is padded with spaces on the right. (Ashley W. D., et al., ooRexx
Documentation 5.0.0 Open Object Rexx Reference, 2022).

21

3.3.6.4. Logical

A character string is considered false if it is 0 and true if it is 1. The logical
operators work with one or two such values, returning either 0 or 1. Only 0
or 1 are allowed as values (Ashley W. D., et al., ooRexx Documentation
5.0.0 Open Object Rexx Reference, 2022).

& - AND operator returns 1 if both values are true.
| - Inclusive OR operator returns 1 if either value or both values are true.
&& - Exclusive OR operator returns 1 if either value, but not both, is true.

\, = - Logical NOT operator negates the value, meaning 1 becomes 0 and
0 becomes 1

3.3.7. Instructions

The ooRexx programming language provides a comprehensive set of
instructions that enable the interpreter to perform a wide range of actions.
These instructions serve as the basic elements of an ooRexx program and
include control flow instructions for decision making and repetition, data
manipulation instructions for working with variables, as well as a multitude
of other operations. Effective use of these instructions is essential for

creating robust and efficient programs in ooRexx.

3.3.7.1. Message Instructions

In Open Object Rexx, a message instruction is used to invoke a method on
an object, referred to as the "receiver object." The receiver object can be
represented by various elements, such as a symbol, an environment
symbol, a string, a literal string, a function call, or an expression in
parentheses. The message instruction consists of the receiver object,
followed by either the single tilde message operator or the double tilde
cascading message operator and the name of the method. The method
name can be followed by a colon and a symbol or environment symbol that

refers to a superclass where the object should search for the method.

22

Additionally, there can be round parentheses after the method name, which
may contain arguments to be supplied to the method (Flatscher R. G,,
Introduction to Rexx and ooRexx (coloured illustration): from Rexx to open
object Rexx (ooRexx) (1. ed..), 2013).

If the invoked method returns a value, the message instruction is replaced
by the return value, which can serve as the receiver object for another
message instruction. Message instructions are processed from left to right.
A message term is used when the main purpose of the message is to obtain
a result. If there is only a message term, it is sent in the same way as a
message instruction. If the message results in a result object, it is assigned
to the sender's special variable, RESULT. If the double tilde cascading
message operator is used, the receiver object is used as the result. If there
is no result object, the RESULT variable becomes uninitialized (Ashley W.
D., et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference,
2022).

3.3.7.2. Control Structures
The following constructs in ooRexx provide the capability to control the flow

of execution in a program (Fosdick, 2005):

1. If-Then-Else - This construct allows a programmer to make decisions

based on a specified condition. The syntax of this construct is as follows:

if condition then
statements

else
statements

end

Listing 1: If-Then-Else

23

2. Select-When - This construct allows a programmer to make multiple

decisions based on a specified value. The syntax of this construct is as

follows:

select
when valuel = conditionl then statements
when value?2 = condition2 then statements
otherwise statements

end

Listing 2: Select-When
3. Do-End - This construct allows a programmer to create a loop, repeating
a set of instructions a specified number of times. The syntax of this

construct is as follows:

do count = 1 to limit
statements
end

Listing 3: Do-End

4. Do-Until - This construct allows a programmer to create a loop that
repeats until a specified condition is met. The syntax of this construct is

as follows:

do until condition
statements
end

Listing 4: Do-Until
5. Do-While - This construct allows a programmer to create a loop that

repeats while a specified condition is true. The syntax of this construct

is as follows:

do while condition
statements
end

Listing 5:Do-While

24

6. Loop - This construct allows a programmer to create a loop that repeats

an indefinite number of times. The syntax of this construct is as follows:

loop
statements
end

Listing 6: Loop

7. Iterate - This construct allows a programmer to exit a loop and start
the next iteration. The syntax of this construct is as follows: iterate

8. Leave - This construct allows a programmer to exit a loop. The syntax

of this construct is as follows: leave.

3.3.7.3. Data Manipulation Keyword Instructions

The data manipulation keywords in ooRexx are a set of commands used for
processing and manipulating data in a program. These keywords are
essential for organizing and transforming data within a program. The
following are the commonly used in ooRexx (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Reference, 2022):

1. SAY - The Say keyword serves the purpose of outputting a message
to the user for the purpose of displaying information regarding the
state of the program or to prompt the user for input.

2. CALL - The Call keyword is utilized to invoke a Rexx procedure,
thereby enabling the reuse of code within the program.

3. PARSE - The Parse keyword is employed to extract data from a string,

making it useful for parsing and manipulating strings in the program

3.3.7.4. Program Management — Keyword Instructions

ooRexx provides several keywords for program management, which are
used to manage and organize ooRexx programs. The following are the
commonly used program management keywords in ooRexx (Ashley W. D.,

et al., ooRexx Documentation 5.0.0 Open Object Rexx Reference, 2022):

25

1. RETURN - The Return keyword is used to return a value from a Rexx
procedure. This allows to pass data from one procedure to another,
or to return a result from a function.

2. EXIT - The Exit keyword terminates the execution of a Rexx program.
This is useful for prematurely ending a program if a certain condition
is met or for explicitly ending the program when desired.

3. EXPOSE - The Expose keyword allows access to object variables in
the current object’s variable pool in a method. Changes to these
variables persist and are immediately visible to other methods sharing
the same scope. All other variables are local and dropped upon exit
from the method. EXPOSE must be the first instruction in the method.

4. ADDRESS - The Address keyword is used to interact with external
systems and applications. Using the Address keyword, external
commands can be run, scripts can be executed, or interaction with
other programs can be performed.

5. PROCEDURE - The Procedure keyword is used to define a Rexx
procedure. Procedures enable the encapsulation of code, resulting in
reusability and organization. They can also be passed parameters,

making them more flexible and adaptable.

3.3.7.5. Error Handling — Keyword Instructions

Error handling is a crucial aspect of programming as it enables anticipation
and handling of errors and exceptions that may arise during the execution
of a program. The following are some of the commonly used ooRexx
keywords for error handling (Ashley W. D., et al., ooRexx Documentation
5.0.0 Open Object Rexx Reference, 2022):

26

1. SIGNAL - Raises an error or exception in the program to signal a
specific condition.

2. ON - Enables error handling in the program and specifies the
conditions that trigger error handling and the actions to be taken
when an error occurs.

3. OFF - Disables error handling in the program, which can be useful
for temporarily disabling error handling for a specific section of the
program.

4. ERROR - Indicates that an error has occurred in the program and
can be used in combination with the On keyword to specify the actions
to be taken when an error occurs.

5. TRAPS - Specifies the conditions that trigger error handling in the

program, such as specific error codes or exceptions.
3.3.8. Directives

Directives are instructions that provide structure and organization to a Rexx
program. They are indicated by two consecutive colons (:: and serve as
separators between different sections of code. When a program is executed,
the directives are processed first to establish any necessary classes,
methods, or routines before the main code block is executed (Ashley W. D.,
et al., ooRexx Documentation 5.0.0 Open Object Rexx Programmer Guide,
2022).

3.3.8.1. The ::ROUTINE

The ::ROUTINE directive in ooRexx is used to create named routines within
a program. The directive starts at the beginning of the routine and ends
with another directive or the end of the program. The ::ROUTINE directive
helps to organize functions that are not related to a specific class type.
Additionally, it has a PUBLIC option, which makes the routine accessible to

other programs outside of the containing Rexx program. To use the routine,

27

the external program must reference it using a ::REQUIRES directive in the
Program that contains the routine (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Programmer Guide, 2022).

The following code snippet in Listing 7 defines a public routine named hello
that will output the string “Hello, world!” to the console when called. The
double colons before "ROUTINE” indicate that it is a method or function that

can be called from outside the script.

::ROUTINE hello PUBLIC
say "Hello, world!"

Listing 7: Routine PUBLIC

The following code snippet in Listing 8 shows an routine named "hello",
which outputs the string "Hello, world!" to the console when called. This
routine is not explicitly defined as public, so it will only be accessible from

within the script where it is defined.

: :ROUTINE hello
say "Hello, world!"

Listing 8: Routine

3.3.8.2. The ::REQUIRES

The ::REQUIRES directive in ooRexx allows a program to access the classes
and objects of another program. The directive is written in the following
form: ::REQUIRES program_name. The ::REQUIRES directives are
processed prior to any other directives and the order of these directives
determines the search order for the classes and routines defined in the
referenced programs. It is important to note that local routine or class
definitions within a program take precedence over any imported routines or
classes through ::REQUIRES directives (Ashley W. D., et al., ooRexx
Documentation 5.0.0 Open Object Rexx Programmer Guide, 2022).

28

3.4. Introduction to ooRexx

Open Object Rexx, an extension of the traditional Rexx language, includes
key characteristics of object-oriented programming such as encapsulation,
inheritance and polymorphism. This expansion does not eliminate the use
of traditional Rexx functions and programs can still be developed and
executed as before. It offers the flexibility to program with just objects, just
traditional Rexx instructions, or a mix of both (Ashley W. D., et al., ooRexx

Documentation 5.0.0 Open Object Rexx Programmer Guide, 2022).

3.4.1. Interacting with Objects

In Object-Oriented Rexx (ooRexx), interaction with objects such as values
and instances can only be performed using message instructions. Objects
are considered as entities that receive a message name and search for a
corresponding method. If the method is found, it is executed by passing
any arguments received with the message and returning any value

produced by the method. If the method cannot be found, an error occurs.

3.4.2. Classes

Data types are represented as classes, which define the allowable values
(known as attributes) and the operations that can be performed on those
values (referred to as methods). The internal workings of the class or the
values themselves are kept hidden from the user through the use of the
black-box approach. Each class in ooRexx is represented by a class object
that holds the attributes and methods of the class. At the start of the
program, ooRexx creates class objects for all built-in classes and stores
them in the global environment directory to allow for easy access. The
attributes of a class object are known as class attributes, while the methods

are referred as class methods.

29

When an object is created from a class, initialization operations can be
performed by using a constructor method known as INIT. The INIT method
is invoked when the NEW class method is called to create the object and
any arguments provided to the NEW method will be passed to the INIT
method in the same order. When an object is no longer being used and
there are no references to it, it becomes garbage and the ooRexx garbage
collector destroys it to release computer resources such as memory. Before
destroying the unused object, the garbage collector will call the destructor
method UNINIT, if it exists (Flatscher R. G., Introduction to Rexx and
ooRexx (coloured illustration): from Rexx to open object Rexx (ooRexx) (1.
ed..), 2013).

The following code snippet in Listing 9 shows an example ooRexx class
named "ExampleClass" with two attributes, variablel and variable2. This
class has a constructor method named "init" and a destructor method
named "uninit". It also has a method named "output" which outputs the

values of the instance variables.

::CLASS ExampleClass

::attribute variablel
::attribute variable2

::METHOD init
expose variablel variable2

use arg

say "An instance of ExampleClass has been created"
variablel = "Hello"

variable2 = "World"

::METHOD uninit
expose variablel variable2
say "An instance of ExampleClass has been destroyed"

: :METHOD output
expose variablel wvariable2
say "variablel:" variablel
say "variable2:" variable2

Listing 9: Example Class

30

The expose keyword is used to make the instance variables visible to the
methods of the class. The use arg statement is used to pass arguments to

the constructor method.

3.4.2.1. Organization of Classes

The organization of classes into a class hierarchy serves to simplify the
process of creating new classes and searching for methods. Classes in this
hierarchy are related to one another based on their position, with one class
being either above or below another class. The highest class, which does
not have a superclass, is referred to as the Root Class and is commonly
named Object. The Class Hierarchy is utilized to search for methods,
allowing objects to inherit methods and attributes from superclasses along
the hierarchy. As a result, the Root Class, Object, is eventually consulted,
making all its methods accessible to all objects in ooRexx (Flatscher R. G.,
Introduction to Rexx and ooRexx (coloured illustration): from Rexx to open
object Rexx (ooRexx) (1. ed..), 2013).

3.4.2.2. Inheritance and Polymorphism

In ooRexx, multiple inheritance is supported. This means that a class can
have more than one direct superclass. This feature allows for inheriting
method implementations from multiple superclasses directly (Flatscher R.
G., Introduction to Rexx and ooRexx (coloured illustration): from Rexx to
open object Rexx (ooRexx) (1. ed..), 2013).

Polymorphism in ooRexx allows objects to respond to the same message in
different ways. This is achieved by having each object have its own
implementation of a method, such as the REVERSE method. This enables a
common interface to be used for different objects, even though the
underlying code for each object is different. Rexx keeps track of the
methods each object owns, which allows for the reuse of the same method
name so that one message can initiate multiple functions. This helps to
simplify naming schemes and makes complex programs easier to

understand and modify. Polymorphism involves a contract between two

31

objects. One object sends a message to another object expecting a
particular result and different objects can implement different versions of
this message as long as it meets the expectations of the invoking object
(Ashley W. D., et al., ooRexx Documentation 5.0.0 Open Object Rexx
Programmer Guide, 2022).

3.4.2.3. Unknown Messages

If an object doesn't have a method matching the received message name,
the language processor looks for an UNKNOWN method in the object's
inheritance tree. If located, the UNKNOWN method is triggered with two
arguments: the first being the name of the missing message and the second
being an array containing the arguments sent with the original message. If
no UNKNOWN method is found, ooRexx raises the NOMETHOD error
(Flatscher R. G., Introduction to Rexx and ooRexx (coloured illustration):

from Rexx to open object Rexx (ooRexx) (1. ed..), 2013).
3.4.3. ooRexx - Built-in Classes

The ooRexx Built-in Classes provide a range of capabilities for developing
powerful Rexx programs. The built-in classes can be categorized into
several groups including Fundamental Classes, Classic Rexx Classes,

Collection Classes and Utility Classes.
Fundamental Classes include Object, Class, Method, Message, Routine and
Package, which are used by the ooRexx interpreter to create and run

programs.

Classic Rexx Classes, such as Stem, Stream and String, help ooRexx run

Rexx programs easily and efficiently.

32

Collection Classes, like Array, Directory, Relation, Table and Directory, allow
for organizing and retrieving objects in different types of containers. The
DO m OVER keyword instruction makes it simple to iterate over collections.
Utility Classes, such as Alarm, DateTime, File, Monitor, MutableBuffer and
TimeSpan, provide useful features and capabilities for programmers
(Flatscher R. G., Introduction to Rexx and ooRexx (coloured illustration):

from Rexx to open object Rexx (ooRexx) (1. ed..), 2013).
3.5. BSF400Rexx

BSF4o00Rexx, which stands for Bean Scripting Framework for ooRexx, is an
external Rexx function package. It consists of an external Rexx function
package and an ooRexx package named BSF.CSL, which loads the function
package and defines an ooRexx class named BSF. This package enables the
use of the Java Runtime Environment functions without prior knowledge of
Java programming. The Java class libraries and Java objects have been
masked to appear as ooRexx class libraries and ooRexx objects, to which
messages can be sent (Flatscher R. G., Automatisierung mit ooRexx und
BSF4o0Rexx, 2012).

4. JavaFX Libraries

JavaFX provides a number of built-in styling libraries, but there are also
several third-party libraries available that can be used to enhance the
styling and customization options. There are several third-party styling
libraries available for JavaFX, including JFoenix and ControlsFX. By adding
them as dependencies to the project, they can easily be integrated into a
JavaFX application. Furthermore, they can improve the visual appeal and

functionality of JavaFX applications.

33

4.1. Styling Library — JFoenix

JFoenix is a Java library that provides a set of JavaFX UI controls and design
elements that are styled to look like the material design guidelines from
Google. This library allows Java developers to create modern and attractive
user interfaces using JavaFX, which is a library for creating rich client
applications in Java. JFoenix provides a wide range of controls and elements
such as buttons, checkboxes, tables, dialogs and more, that can be used to
create a modern and consistent look and feel across different parts of an
application. It also provides a set of pre-built animations and effects that
can be used to enhance the visual appeal of the UI. JFoenix is open-source
and can be easily integrated into any JavaFX application. It is actively
maintained and has a strong community of developers and contributors
(JFoenix, 2023).

4.2. Widget Library — ControlsFX

ControlsFX is a JavaFX library that provides additional UI controls and
features that are not included in the standard JavaFX library. It is designed
to enhance the functionality of JavaFX and make it easier for developers to

create rich and attractive user interfaces.
ControlsFX provides a wide range of controls and features such as:

e Dialogs and Alerts

e Table filtering and sorting

e Text fields with built-in validation and formatting
e Rich text editor

e Master/Detail View

¢ Notifications and Popup

e Undo/Redo Framework

e and many more.

34

It also provides a set of pre-built animations and effects that can be used

to enhance the visual appeal of the UI.

ControlsFX is open-source and it is developed mainly for the JavaFX
versions 8.0 and above, it has a principle that new features or controls will
be accepted only if the current code is in a higher version (ControlsFx,
2023).

5. Required Software and Installation

This chapter describes how to install and configure all the essential software
components for the nutshell examples. The following installation
instructions are tailored for the Windows operating system, but they can
also be used on Linux and MacOS provided that the appropriate components
are downloaded and installed. The software versions used in this bachelor’s

thesis are listed below:

o Java Liberica JDK8u362-Full (64 Bit)

o SceneBuilder-8.5.0: BSD License

e OORexx 5.0.0 (64 Bit): GNU General Public Liicense-version-2.0,
Common Public License Version 1.0

o« BSF400Rexx850: Apache License Version 2.0

o sqlite-jdbc-3.41.0.0: Apache License Version 2.0

» jfoenix-8.0.10: Apache License Version 2.0

o controlsfx-8.40.18: BSD 3-Clause License

« DB Browser for SQLite-3.12.2: GNU General Public License Version
3.0

5.1. Java

It is necessary to install Java version 8 on the operating system. It is

important to note that the installed version of Java has the same bit rate as

35

ooRexx and includes JavaFX, as JavaFX is necessary for the graphical

display of the user interfaces and is not available in every version of Java.

Furthermore, it is important to note that the corporation Oracle, which
manages Java, since Java version 8 or later, if Java is used in a commercial
context, there may be licensing fees applicable. However, there are free
versions of Java available for download at the following link: https://bell-

sw.com/pages/downloads/ (accessed 15-02-2023).

Once the appropriate Java version has been downloaded, run the setup file

and follow the installation process to complete the installation.

5.2. ooRexx

Once the required version of Java has been installed, the next step is to
install ooRexx version 5.0. The required version can be downloaded at the
following link: https://sourceforge.net/projects/oorexx/files/ (accessed 15-
02-2023).

To avoid any potential program errors, it is important to ensure that the
installation file has the same bit architecture as the operating system and
Java. After running the .exe file for ooRexx, an installation manager will
appear, which should be followed. After completing the installation process,

ooRexx will be successfully installed.

5.3. BSF400Rexx

After successfully installing Java and ooRexx, the next step is to download
and install BSF4ooRexx. The appropriate version of BSF400Rexx can be
downloaded from the following link:

https://sourceforge.net/projects/bsf4oorexx/ (accessed 15-02-2023).

To install BSF4o00Rexx, the downloaded ZIP archive must be extracted to

any location within the operating system. After extraction, a subdirectory

36

https://bell-sw.com/pages/downloads/
https://bell-sw.com/pages/downloads/
https://sourceforge.net/projects/oorexx/files/
https://sourceforge.net/projects/bsf4oorexx/

named "install" will appear, which contains installation files for all relevant
operating systems (Windows, Mac, Linux). It is important to ensure that the
correct version corresponding to the operating system is executed during

the installation process.

5.4. SceneBuilder

In order to use the graphical user interface (GUI) builder for JavaFX
applications, called Scene Builder, it must first be installed on the operating
system. The installation files for Scene Builder can be downloaded from the
following link: https://gluonhg.com/products/scene-builder/#download
(accessed 15-02-2023).

After downloading the installation files, run the setup file and follow the
installation process. Once the installation is complete, Scene Builder can be
accessed through its shortcut in the start menu or by running the

"SceneBuilder.exe" file.

It is important to note that Scene Builder requires Java to be installed on
the system and that the installed version of Java must match the bit rate of

the Scene Builder.

5.5. JavaFX Libraries

In order to use JavaFX libraries JFoenix or ControlsFX in a JavaFX project
or in SceneBuilder, the first step is to download the library from the official
website. JFoenix can be downloaded from the following URL:
https://github.com/sshahine/JFoenix (accessed 15-02-2023), while
ControlsFX can be downloaded from the following URL:
https://mvnrepository.com/artifact/org.controlsfx/controlsfx/8.40.18
(accessed 15-02-2023).

37

https://gluonhq.com/products/scene-builder/#download
https://github.com/sshahine/JFoenix
https://mvnrepository.com/artifact/org.controlsfx/controlsfx/8.40.18

Once the JAR file has been downloaded, it must be added to the CLASSPATH

variable. Detailed instructions are provided in Chapter 5.7.

To use either library in SceneBuilder, open the SceneBuilder and create a
new FXML file or open an existing one. Then, select the "Library" tab on the
right-hand side of the SceneBuilder window and click on the "Add
Library/FXML" button. Navigate to the location where the downloaded JAR
file is saved and select it. The library will now be added to the SceneBuilder
library list and its components can be used by selecting them from the

respective library option in the SceneBuilder controls section.
5.6. SQLite Browser

The SQLite Database Browser is a clear and simple database creation tool.
The program allows to create, read, edit and delete databases and data
sets. The installation files can be downloaded from the following link:
https://sqlitebrowser.org/dl/(accessed 15-02-2023). After downloading the
installation files, run the setup file and follow the installation process. Before
using a SQLite database in a Java project, it's necessary to download the
SQLite JDBC library from this https://github.com/xerial/sqlite-jdbc/releases
(accessed 15-02-2023) and add the JAR file to the CLASSPATH variable.

Detailed instructions are provided in Chapter 5.7.

5.7. CLASSPATH

In order to run Java applications that depend on external libraries, it is
necessary to add the library files to the CLASSPATH. The CLASSPATH is a
list of directories and JAR files that the Java Virtual Machine (JVM) uses to
look for classes that are not included in the application's own source code
(Classpath, 2023).

38

https://sqlitebrowser.org/dl/
https://github.com/xerial/sqlite-jdbc/releases%20(accessed%2015-02-2023
https://github.com/xerial/sqlite-jdbc/releases%20(accessed%2015-02-2023

In order to include JAR files in the CLASSPATH on a Windows operating

system, follow these steps:

1.
2.
3.

Open the "Control Panel" from the Windows Start menu.
Select "System and Security", then click on "System".
Click on "Advanced system settings" on the right-hand side of the

window.

. In the "System Properties" window, click on the "Environment

Variables" button.

C\Program Files\BSF4ooRexx850\lib* Neu

C\Users\isada\B5F4ooRexx\lib* Bearbeiten
C\Users\isada\jfoenix-8.0.10jar
C\Users\isada\controlsfx-8.40.18 jar
C\Users\isada'\sqglite-jdbc-3.41.0.0jar

Durchsuchen...

Léschen

Nach oben

MNach unten

lext bearbeiten..

OK Abbrechen

Figure 3: Adding New Path to CLASSPATH

. Under "System Variables", scroll down and find the "CLASSPATH"

variable, then click "Edit".

. In the "Edit Environment Variable" window, click "New" to add a new

path to the CLASSPATH.

. Enter the file path of the directory containing the JAR files to include

in the CLASSPATH.

. Click "OK" to close all the windows.

39

6. Nutshell Examples

The focus of this chapter is on the development of JavaFX graphical user
interface (GUI) applications using various libraries, tools and technologies
in connection with the programming language ooRexx. To illustrate the
flexibility and diversity of ooRexx programming, each application is
developed using a different set of tools and technologies, including FXML,
CSS, IDBC, JFoenix Library and ControlsFX Library. The integration of
BSF400Rexx provides a powerful mechanism for developing GUI

applications that combine the strengths of both Java and ooRexx.
6.1. JavaFX GUI Application with ooRexx

The Nutshell example is an simple ooRexx script that acts as a BMI
calculator and employs the JavaFX library to produce a graphical user
interface (GUI) without the use of FXML. The application logic is contained
within the script, which generates the GUI components and handles user
inputs using event-driven programming. In the following section, the script
will be discussed, which comprises two Rexx classes - BMICalculator and
RexxButtonHandler. The BMICalculator Rexx class is responsible for
implementing the GUI, while the RexxButtonHandler Rexx class offers

functions for BMI calculation and button event handling.

To use the BMICalculator class for the GUI, an instance of this class is
created with the line "rxApp = .BMICalculator~new" in the Snippet 1. This
creates a new instance of the class and stores it in the variable "rxApp". A
proxy instance for the Rexx class must also be created so that it can be
used in the JavaFX application. This is done using the
"BSFCreateRexxProxy" method from the Java Bean Scripting Framework
(BSF) in line 4 of the Snippet 1. This creates a new proxy object for the

Rexx instance, which is stored in the variable "jrxApp".

40

The second argument indicates that the Rexx instance is to be used within

a JavaFX application.

rxApp=.BMIColculator~new -- create an instance of the Rexx closs

jrxApp=BSFCreateRexxProxy(rxApp, ,"Jjavafx.application.Application")
jrxApp~launch(jrxApp~getClass, .nil) -- Lounch the opplicotion, invokes "st

r:requires "BSF.CLS" -- get Jova support

Snippet 1:BMI-Calculator - Application launch

To start the application, the "launch" method is called on the proxy object:
“jrxApp~getClass, .nil". This calls the start method of the "BMICalculator”
class, which implements the abstract start method defined in the
javafx.application.Application class, that is required for every JavaFX
application. The "BSF.CLS" package is loaded to provide Java support for

the Rexx code.

The "start" method in Snippet 2 is defined in the "BMICalculator" class and
gets a parameter "primaryStage", which represents the primary window of
the application. The "use arg" statement is used to extract the
"primaryStage" parameter and use it in the method. In the "start" method,
various UI elements such as text fields, labels and buttons are created and
customized using the JavaFX library. These elements are placed in a VBox
container, which is a vertical layout element called "root". The VBox
container is then added to the scene, which is responsible for displaying the

UI elements on the screen.

::class BMICalculator -- implements the obstroct closs
;:method start -- Rexx method "start" implements the obstroct method
use arg primaryStage -- fetch the primary stoge (window)

Snippet 2: BMICalculator Class

41

The "getChildren" method of the VBox object is used to add the various UI
elements to the VBox. In line 44 of the Snippet 3 the "add" method and the
concatenation operator ("~~") are used to add the various elements in the
correct order. Once the VBox is created and filled with the UI elements, it

is added to the scene by creating a new Scene object.

root~getChildren~~add(weightlLabel)~~add(weightField)~~add(heightLabel)
root~getChildren~~add(heightField)~~add(calculateBtn)~~add(resultLabel)

primaryStage~setScene(.bsf~new("javafx.scene.Scene", root))

Snippet 3: BMI- Calculator -Add Components

This Scene object is initialized with the VBox as the root element. Finally,
the scene is assigned to the primary window (primaryStage)and the window
is displayed using the "show" method so that the user can see the
application on the screen.

B | BMI Calculator

Enter your weight (kg):

[Enter your height (m):

Calculate BEMI

Figure 4:BMI -Calculator - GUI

42

To implement the functionality of the "Calculate BMI" button, a button
handler is created that is called when the button is pressed. For this
purpose, a separate Rexx object called "handler" is created. This object is
an instance of the "“RexxButtonHandler” class, which implements the
javafx.event.EventHandler interface. The parameters weightField,
heightfield and resultLabel are passed to this object. Then a Rexx proxy is
created that forwards the button events to the Rexx object. This proxy is
then set as the handler for the "setOnAction" call of the "calculateBtn"

button as in Line 57 of the snippet 4.

== Create a |? BXX O |I.- ject to |I. ant Ile |I-l ITTON presses

handler=.RexxButtonHondler~new(weightField, heightField, resuvltlabel)

-- ¢create o Rexx prox y o b _.: ect to forward button events to the Rexx ob _.: ect

jrh=BSFCreateRexxProxy(handler, ,"javafx.event.EventHandler")

} 1 e Dawvsy meavie ok e
LT the Rexx proxy object

calculateBtn~setOnAction(jrh)

T

rtian handlar 0

Snippet 4: BMI-Calculator - ButtonHandler

The constructor of the “RexxButtonHandler” class get three arguments:
weightField, heightfield and resultLabel. The "handle" method is called when
the button is pressed and performs the BMI calculation based on the values

entered in the text fields.

Davy nlmee whicskh handl ae o
== Rexx class which hondles the

::class RexxButtonHandler -- 1
::method init -- Rexx constructor method
expose weightField heightField resuvltlabel -- ollow direct occess to ooRexx ottribute
use arg weightField, heightField, resultlLabel

-- save reference to javofx.scene.control.Laobel

::method handle -- will be invoked by the Javao side when
expose welghtField heightField resultlLabel-- ollow direc
use arg event, slotDir -- expected arguments

Snippet 5:BMI-Calculator, Constructor and Handle Method

43

6.2. JavaFX GUI Application with FXML in ooRexx

This chapter presents an extension of the nutshell example introduced in
Chapter 6.1, demonstrating how to create a user-friendly graphical user
interface (GUI) using ooRexx, FXML and CSS. The GUI is created using the
Scene Builder, which provides an intuitive visual interface for designing

the user interface.

To design the user interface of the application, Gluon's Scene Builder was
used. In the Scene Builder, GUIs can be quickly and easily created by
dragging and dropping various elements from the tool palette. These
elements can be placed and aligned to the desired location by simply
dragging and adjusting them. Various properties such as size, font,
position and name of the GUI components can be easily modified
through the 'Properties’ and 'Layout' columns on the right-hand side.
To access the elements in the application programmatically, unique IDs
must be assigned to these elements in the FXML code. Assigning ids is
important so that the code can access and control the elements of the
user interface. The ids are marked with the prefix "fx:id" and can be
assigned by the developer themselves. The three necessary menu

entries for making these changes are shown in Figure 5.

k Properties : AnchorPane
3 Layout : AnchorPane
L Code : AnchorPane
[dentity
fx:id

Figure 5: Scene Builder

The Scene Builder also provides a preview feature that allows to view and

test the user interface during development.

44

Once the graphical user interface is created, it can be saved as an FXML
file. The FXML code generated by the Scene Builder, is shown in Snippet 6.
Before the GUI can be accessed and used by ooRexx, a few modifications
must be made to the FXML file. After making these adjustments, the FXML
file can be loaded into the ooRexx program and the GUI can be fully

functional.

<?import javafx.scene.control.label?>
<?import javafx.scene.control.TextField?»>
<?import javafx.scene.layout.VBox?>
<?language rexx?>

<VBox fx:id="root" alignment="TOP_CENTER" maxHeight="-Infinity" maxWidth="-Infinity"
minHeight="-Infinity" minWidth="-Infinity" prefHeight="346.0" prefWidth="400.0"
spacing="20.8" styleClass="root" stylesheets="@stylesheet.css"
= xmlns="nhttp://javafx.com/javafx/8.0.171" xmlns:fx="nttp://javaftx.com/fxml/1">
<fx:script source="Controller.rexx" />
<children>
<lLabel fx:id="weightlabel" alignment="CENTER" prefHeight="41.8" prefliidth="180.08" text="Enter your weight (kg):" />
<TextField fx:id="weightField" alignment="CENTER" promptText="50.0" />
<Label fx:id="heightlLabel" alignment="CEN " prefHeight="38.8" prefWiidth="183.8" text="Enter your height (m):" />
<TextField fx:id="heightField" alignment= TER" promptText="1.60" />
<Button fx:id="calculateBtn" mnemonicParsing="false" onAction="slotDir=arg(arg()); call CalculateBMI slotDir;" text="Calculate BMI" />
<lLabel fx:id="resultLabel" prefHeight="44.8" prefWidth="323.0" />
</children>
</VBox>

Snippet 6: BMI Calculator-FXML

The first modification that needs to be made is in line 7, which concerns the
definition of the JavaScript engine "rexx" that is used in case of code
triggered by an event. The second modification in line 16 defines such an
event, named "onAction", triggered by a click on the button. The Rexx code
contained in this event is called by JavaFX in Rexx, as shown in line 19. This
Rexx code calls a routine named "CalculateBMI" and passes the argument
"slotDir", which contains all the information required to access the elements
used in the GUI. The routine specified in line 13 can now be called by
JavaFX. (Flatscher R. , 2023).

The Scene Builder allows the user to apply CSS rules directly to the GUI
elements. This can be used, for example, to change the appearance of
buttons, labels, or other controls. The CSS settings can be made in the
right-hand side panel under the "CSS" tab. Various properties such as font,

background color, or text color can be modified.

45

The FXML file can also be manually extended with CSS rules. To add CSS
rules, the "styleClass" property of the respective element must be set in the
FXML file code. This property gives the element one or more class names
that can be used in the CSS file to define the formatting of the element.
Afterwards, the CSS rules can be defined in a separate CSS file, which is
then included in the FXML file.

CSS rules can format various attributes of the element, such as background
color, text color, font size, margins and borders. In addition, CSS rules can
also use pseudo-selectors to format certain states of the element, such as
hover or active state. Embedding CSS rules directly in the code of the FXML
file is possible, but it can lead to cluttered code (Flatscher R. , 2023).

To better illustrate this, the stylesheet of the nutshell example is shown in

Snippet 7 and in Figure 7 the styled application.

.rootq{
-fx-background-color: #426357;
-fx-font-family: "Arial";
-fx-font-size: 15px;

+

.button {
-fx-text-fill: #5F6362;
-fx-font-weight: bold;
-fx-color: #99EECB

T

label {
-fx-font-weight: bold;
-fx-text-fill: #DAE2DF;

1

Jtextfield{
-fx-prompt-text-fill: #DAEZDF;
-fx-text-fill: #5F6362;

+

Snippet 7:BMI Calculator-Stylesheet

46

Enter your weight (kg):

Enter your height (m):

Calculate BMI

Figure 6:BMI Calculator GUI

The code snippet 8 demonstrates the implementation of a basic BMI
calculator application in ooRexx. This is achieved by defining a class named
"BMICalculator" and creating an instance of this class, which includes the

FXMLLoader to integrate the graphical user interface.

--Chonge directory te program location so thot relotively oddressed resources con be found
parse source . . pgm
call directory filespec('L', pgm)

rxApp=.BMICalculotor~new -- create Rexx object that will control the FXML set up
jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")
jrxApp~lavunch(jrxApp~getClass, .nil) --Lounch the opplication ond invoke the "stort" method

--Reguire the BSF and rxregexp classes for Jova support
c:requires "BSF.CLS"

--Define the Rexx closs that implements the obstroct claoss "jovafx.application.Applicotion”
::class BMICalculator

--Implement the "start” method to create and show the BMI Colculator GUI
1imethod start
use arg primaryStage -- fetch the primory stoge (window)
primaryStage~setTitle("BMI Calculator") -- Set the title of the primory stoge

--Create on URL for the FMXLDocument.fxml file with the "file:" protocol
fxmlUrl=.bsf~new("java.net.URL", "file:Gui.fxmL")

--Use the FXMLLooder to load the FXML and create the GUI graoph from its definitions
rootNode=bsf.loadClass("javafx. fxmL.FXMLLoader")~Load(fxmlUrl)

scene=.bsf-new("javafx.scene.Scene", rootNode) -- create o scene for the document
primaryStage~setScene(scene) -- Set the primary stoge to the scene
primaryStage~show -- Show the primory stage and the scene

Snippet 8: BMI-Calculator- Class

47

First an object of the BMICalculator class is created and passed as a proxy
object to the Java Virtual Machine. The "/launch" method is called to start

the application and invoke the "start" method of the BMICalculator class.

In the "start" method, the main window is created and the title "BMI
Calculator" is set. Then, a URL instance is created to load an FXML file
named "Gui.fxml" that defines the user interface of the BMI calculator
application. The URL is created with the "file:" protocol and passed as an

argument to the "java.net.URL" class.

Next, the "FXMLLoader" class is called to load the FXML file and create a
GUI element from it. The "load" method of the "FXMLLoader" class is called
and the URL instance is passed as an argument. The loaded GUI element is

stored in a variable called "rootNode".

After that, a new "Scene" instance is created and the previously loaded GUI
element is passed as an argument to the constructor. The "Scene" instance
is then passed as an argument to the "setScene" method of the
"primaryStage" object to set the created scene as the main display area of

the application.

Finally, the "show" method of the "primaryStage" object is called to display
the main window with the created user interface. The code uses the "BSF"

library to create and use Java objects within the ooRexx program.

The code snippet 9 presents the 'CalculateBMI' method that is a part of the

Rexx controller in the nutshell example and performs the calculation of BMI.

48

(:routine CalculateBMI public
slotDir=arg(arg())

weightInput = weightField~text
heightInput = heightField~text

Snippet 9:Routine CalculateBMI

In this example, the "CalculateBMI" method is invoked when the user clicks
a button on the user interface. The method then retrieves the values from
the input fields. In the second line, the 'slotDir' parameter, supplied by the
event, is initialized. The 'slotDir' parameter is crucial as it provides access
to the GUI's control elements through their 'fx:id'. The instruction
"/@get(weightField)/" makes the textfield with the fx:id "weightField"
available and initializes it as a variable in Rexx named "weightInput". The
controller class in ooRexx can contain a variety of methods to manage
different functions of the user interface. It can also call other classes and

methods to process data or access external resources.
6.3. JavaFX GUI Application using JFoenix Library

Although JavaFX provides many predefined controls and functions for
creating user interfaces, there may be situations where additional controls
or styles are needed that are not available by default. To meet these
requirements, external libraries like JFoenix can be used. JFoenix is a
JavaFX library that provides additional controls and styles to make it easier

to create modern user interfaces.

The nutshell example of this chapter presents a program for calculating a
person's BMI and calorie requirement, which is styled using the JFoenix
library. A start menu has been added to improve usability, allowing the user

to choose between the two calculators. In this example, a StageHandler is

49

also used to manage the different scenes. The following section explain the
implementation of the StageHandler and show how GUI styling was

achieved with JFoenix.

6.3.1. StageHandler

The StageHandler is an important concept in the development of JavaFX
applications. It is an object that facilitates the management of windows and
scenes in an application. The StageHandler provides a simple way to

manage the different windows and scenes and navigate between them.

B | Health Calculator — O X

Figure 7: Health Calculator Menu

As presented in snippet 10, an instance of the StageHandler class is
instantiated to create the StageHandler. Next, a proxy object called
stageHandlerProxy is created that contains the StageHandler. This proxy

object is used to call the launch() method, which starts the application.

stageHandler = .StogeHandler~new --Creote o new StogeHandler object
.my.app~stageHandler = stageHandler --5et the stogeHandler of the aopplicotion

stageHandlerProxy = BsfCreateRexxProxy(stageHandler,,"javafx.application.Application™)
stageHandlerProxy~launch(stageHandlerProxy~getClass, .nil) --Lounch the applicotion

Snippet 10:Launch StageHandler

50

The StageHandler class, as shown in Snippetl1, defines various methods
used for window management. The start() method is called to create and
display the main window. First, the title of the window is set and then the
FXML document main_window.fxml is loaded in line 37. The loaded file is

set as the content of the window.

::METHOD stage ATTRIBUTE
1 :METHOD scene ATTRIBUTE
:METHOD windowStage ATTRIBUTE
1 :METHOD FXMLLoader
1 IMETHOD init

EXPOSE FXMLLoader

FXMLLoader = bsf.import("javafx.fxml.FXMLLoader") --Import the FXMLLoaoder claoss

::METHOD start
EXPOSE stage scene FXMLLoader
USE ARG stage --Get the stoge object

stage~setTitle("Health Calculator") --Set the title of the stoge

EXMl f

url=.bsf~new("java.net.URL", "file:main_window.fxm1")
fxml = FXMLLoader~load(url)

Snippet 11:StageHandler Class

To create a new window, the newWindow() method must be called on the
StageHandler class. It receives the title of the window and the name of the
FXML file as arguments. The FXML document is loaded and set as the
content of the new window. This is shown in the Snippet 12. To use the
StageHandler class in JavaFX, the BSF.CLS library is required to be able to

call Java code from Rexx code.

51

:tMETHOD newWindow
EXPOSE stage windowStage FXMLLoader

USE ARG title, fileName --Get the title and file nome

windowStage = .bsf~new("javafx.stage.Stage") --Create o new window stage
WiﬂdﬂWStﬂgE"SEtTitle{titl&] "Eﬂ[[Lﬂ [i[lﬂ ﬂf [Lﬂ Hihdﬂﬂ ﬂtﬂﬁﬂ

/# Lood the FXML file =/

url =.bsf~new("java.net.URL", fileName)
fxml = FXMLLoader~load(url)

scene = .bsf~new("javafx.scene.Scene", fxml) --Creaote o new
wiHUGWStagE"SEtSCEHE{SCEHE] --5et the Scene ﬂf the window
windowStage~show --Show the window stoge

Snippet 12:Method newWindow

The Rexx contoller contains two routines, shown in the Snippet 13, each of
which is called when one of the buttons in the application is pressed. Both
routines use the “slotDir” argument. Both routines work according to the
same scheme when a button in the application is pressed. First, the
“newWindow” method of the StageHandler object is called and the URL of
the FXML layout is passed. Also, the title of the window is set. Overall, these
routines provide a user-friendly application, as the user can directly access
the desired calculator by pressing the corresponding button, without having

to close and restart the application.

-- This routine opens the BMI calculator window
riroutine openBMICalculater public

use arg slotDir

seriptContext=slotDir~scriptContext

URL = "file:bmi_calculator.fxml"

.my.opp~stageHandler~newWindow("BMI-Calculator", URL)
- This routine opens the colorie reguirement window
ciroutine openCalorieRequirement public

use arg slotDir

seriptContext=slotDir~scriptContext

URL = "file:calorieRequirement.fxml"

.my.app~stageHandler~newWindow("Calorie Reguirement", URL)

Snippet 13:Routines to open a window

52

6.3.2. JFoenix Library

As described in section 5.5, after successful installation, the components
can be inserted into the application through drag and drop in the Scene
Builder. In the present example, slider, button and textfield components

were used from the library.

If the Scene Builder is not used for creating the user interface, the
components must be imported in the FXML file. The implementation is

shown in the following Snippet 14.

<?import com.jfoenix.controls.JFXButton?>
<?import com.jfoenix.controls.JFXSlider?>
<?import com.jfoenix.controls.JFXTextField?>

Snippet 14:JFoenix Import

One of the main features of JFoenix is the support for CSS styling for UI

components.

In the nutshell example, the slider was used for inputting user data such as
size, weight and age. With JFoenix, the slider style can be easily customized
by using various CSS properties. For example, the colors for the slider track
and slider thumb can be changed by using the " -fx-background-color" and

" -fx-background" properties.

"

Additionally, the size of the slider thumb can be adjusted by using the

fx-background-size" property.

Below a snippet from the CSS file showing how the slider was styled in the

application.

/* Styling the slider track */
.Jjfx-slider > .track {

-fx-background-color: #84B5A7;
}

53

/* Styling the slider thumb */
.Jfx-slider > .thumb ({

-fx-background-color: #84B5A7;
}

/* Styling the filled track */
.Jfx-slider > .colored-track {

-fx-background-color: #84B5A7;
}

/* Styling the animated thumb */
.Jfx-slider > .animated-thumb {

-fx-background-color: #84B5A7;
}

/* Styling the slider value text inside animated thumb */
.Jjfx-slider .slider-value {

-fx-fill: #426357;

-fx-stroke: #426357;

Snippet 15:Slider CSS — Stylesheet

W BMI-Calculator = m] X

Figure 8: BMI- Calculator JFoenix

6.4. JavaFX GUI Application using ControlsFX Library

The upcoming chapter explores how to use ControlsFX to enhance the user
interface of a JavaFX application and implement SQLite and JDBC with a
DatabaseHandler for data management. ControlsFX is a valuable library for
extending the UI components of JavaFX applications, which will be
integrated into a form. Additionally, storing and retrieving data is crucial for

JavaFX applications and this is where SQLite and JDBC come in. The chapter

54

presents a nutshell example of a form that stores user data in a database

and is styled using the ControlsFX library.

6.4.1. ControlsFX

As described in section 5.5, after successful installation, the components
can be inserted into the application through drag and drop in the Scene
Builder. In the present example, the rating and textfield components were

used from the library.

If the Scene Builder is not used for creating the user interface, the
components must be imported in the FXML file. The implementation is

shown in the following Snippet 16.

<?import org.controlsfx.control.Rating?>
<?import org.controlsfx.control.textfield.CustomTextField?>

Snippet 16: ControlsFX Import

Textfields and ratings are essential components for collecting user input and
displaying feedback in modern applications. Textfields in ControlsFX are an
enhanced version of the standard JavaFX textfield control. They provide
additional features such as auto-completion, validation and masking.
Ratings in ControlsFX are an easy-to-use and customizable control that
allow users to rate items on a scale of 1 to 5 stars. They provide a visual
representation of the user's rating and can be styled to fit the applications
design. The styling of the rating system is kept very simple and only a few
elements have been adapted. Snippet 17 displays a section of the CSS file

that illustrates how the Rating component was styled within the application.

.rating > .container .button {
-fx-pref-width: 35 ;
-fx-pref-height: 35 ;
-fx-background-size: cover;
-fx-background-color:#426357;
-fx-padding: 15;

55

Snippet 17:Rating CSS Stylesheet

Following styles were added to the elements:

o "-fx-pref-width" and "-fx-pref-height" are set to 35, which sets the
preferred width and height of the button to 35 pixels.

e "-fx-background-size" is set to "cover", which scales the background
image to cover the entire button area.

e "-fx-background-color" is set to #426357, which sets the background
color of the button to a dark shade of green.

e "-fx-padding" is set to 15, which adds 15 pixels of padding around the

content of the button.

W Formular - O X

Formular

Firstname:
Lastname:

Age:

Satisfaction: * * * * v‘:

Figure 9: ControlsFX Form

6.4.2. DatabaseHandler

In this example, utilize a lightweight relational database, SQLite, which is
widely used in many applications. JDBC (Java Database Connectivity) was
used to establish the connection between the database and the application.
It is a Java API that provides a common interface between Java applications
and various databases. When it comes to using databases in a JavaFX

application, JDBC can be used to create a robust and user-friendly

56

application that can store and retrieve data in a SQLite database (JDBC,

2023). For creating SQLite databases, JDBrowser can be used.

JDBrowser is a powerful tool for managing JDBC databases. It provides a
graphical user interface (GUI) for connecting to different databases and
allows users to execute SQL queries, view, edit and delete tables and data,
as well as manage stored procedures and functions. With JDBrowser, users
can also perform schema and data exports and create complex queries to

retrieve specific information (DB Browser, 2023).

At the beginning, a database is created using the JDBrowser. In this
example, the database consists of a single table named "Person". The table
has a primary key called "id" and attributes such as "First Name", "Last

Name", "Age", "Address" and "Satisfaction".

To access the database, a DatabaseHandler is required. Initially, an instance
of the DatabaseHandler object, as in line 8 of the snippet 18, is created and
its settings are initialized. Then, an attempt is made to establish a
connection to the database. If the connection is successful, a success

message is displayed, otherwise the "connectionError" function is called.

.my.app~dbh = .DotabaseHandler~new
.my.aopp~dbh~initSettings

success = .my.app~dbh~connect
IF ‘\success THEN CALL connectionError
else say "The Connection to the DB was successful!"

rxApp=.Formular~new

jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")
jrxApp~launch{irxApp~getClass, .nil)

EXIT @

connectionError:
say "No Connection to the DB"

Snippet 18:Database Connection

57

To establish and interact with a SQLite database, a DatabaseHandler is
created in a CSL file. The "DatabaseHandler" Rexx class defines various

methods and attributes to facilitate access to the database.

Initially, three attributes are defined: "conn", "DB URL" and
"DriverManager". The "conn" attribute stores the connection to the
database, the "DB_URL" attribute stores the URL of the SQLite database
and the "DriverManager" attribute is used to establish the connection to the
database. The "init" method enables the import of the DriverManager object

from the Java sql package class.

::CLASS DatabaseHandler PUBLIC

1 METHOD conn ATTRIBUTE -- Define the "conn" at
:IMETHOD DE_URL ATTRIBUTE -- Define the "DB_URL" o
::METHOD DriverManager ATTRIBUTE -- Define the "Drivel
:IMETHOD 1init -- Define the "init" me

EXPOSE DriverManager -- Allow access to the D

DriverManager = bsf.import("java.sql.DriverManager")

Snippet 19:DatabaseHandler Class

Next, the "initSettings" method is defined, which sets the DB_URL attribute
to the path of the SQLite database.

::METHOD initSettings PUBLIC -- Define the "initSettings" method for the DotaboseHondler closs,
EXPOSE DB_URL -- Allow aoccess to the DB_URL ott
DB_URL = "jdbc:sglite:C:\Users\isada\IdeaProjects\JDK8\src\Application_ControlsFX_JDBC\DB.db"

Snippet 20:Method initSettings

To establish a connection to the database, the "connect" method is defined.
The method calls the "getConnection" method of the DriverManager object
to establish a connection to the database. If the connection is successfully
established, the method outputs a success message and returns a value of

"true". Otherwise, an error is handled and an error message is output.

58

:*METHOD connect PUBLIC
EXPOSE DriverManager DB_URL conn
SIGNAL ON SYNTAX NAME connectionError
conn = DriverManager~getConnection(DB_URL)
SIGNAL OFF SYNTAX
say "Connection successful”
say DB_URL
RETURN .true

Snippet 21:Method Connect

SQL can perform various operations on databases, including inserting,
deleting, updating and querying data. The "INSERT INTO" command is used
to insert data into a table, allowing records to be inserted into an existing
table. To delete data from a table, the "DELETE FROM" command is used,
which removes records from a table that match specified conditions. The
"UPDATE" command is used to modify data in a table, allowing the updating
of records within a table. To query data from a table, the "SELECT"
command is used, allowing data to be retrieved from one or more tables

that meet certain conditions.

In the nutshell example, the user fills out a form and the data are inserted
into the SQLite database using the "insertData" method. The method
accepts five arguments: "fname", "Iname", "age", "address"and "satisf",

which contain the values to be inserted into the database.

To insert the data, an SQL statement must first be defined. The statement
in line 25 of the snippet 22 uses placeholders that will be replaced by the
arguments during processing. The PreparedStatement object is then
created by calling the "prepareStatement" method of the "conn" attribute,

which is used to execute the SQL statement.

The arguments are then bound to the PreparedStatement object by calling

the "setString" or "setIint" method to replace the corresponding

59

placeholders with the argument values. Finally, the SQL statement is
executed using the "execute" method of the PreparedStatement object to
insert the data into the SQLite database.

The code also includes a line that imports the "BSF.CLS" file, which is

required to use BSF (Bean Scripting Framework) in the code.

::METHOD insertData PUBLIC -- Define the "insertDato"™ method for the DaotobaseHondler c
EXPOSE conn -- Allow occess to the conn attribute
USE ARG fname, 1lname, age, address, satisf -- Retrieve the volues to be inserted as argum
query = "INSERT INTO Person (fname, lname, age, address, satisf) VALUES (?, 7, ?, 7, ?)"
prepStatement = conn~prepareStatement(guery) -- Prepaore the SQL statement using the conn
prepStatement~setString(l, fname) -- Bind the fnome argument to the first "?" placeholder
prepStatement~setString(Z, Llname) -- Bind the lnome argument to the second "?" ploceholde
prepStatement~setInt(3, age) -- Bind the oge argument to the third "?" ploceholder i
prepStatement~setString(4, address) -- Bind the oddress argument to the fourth "?" plocehol
prepStatement~setString(5, satisf) -- Bind the sotisf orgument to the fifth "?" ploceholde
prepStatement~execute -- Execute the SQL stotement to insert the dato into the

:REQUIRES "BSF.CLS" -- Import the BSF.CLS file for use in the code

Snippet 22:Method insertData

60

7. Conclusion

This bachelor thesis has investigated the potential of using ooRexx in
combination with the JavaFX framework for developing graphical user
interfaces. The study delved into the history and concepts of JavaFX, as well
as the fundamental language concepts of ooRexx. Additionally, the thesis
provided detailed instructions on how to install the necessary software for
developing ooRexx and JavaFX applications, along with the required

libraries.

The thesis demonstrated the ease and versatility of developing GUI
applications with ooRexx and JavaFX through various examples, such as
integrating the JFoenix styling library and ControlsFX widget library, using
FXML and CSS for GUI design and utilizing JDBC for database connectivity.
Overall, this thesis has shown that ooRexx is a viable option for creating
GUI applications with JavaFX and its use can simplify the development

process and enhance productivity.

61

8. References

Abstract Window Toolkit. (2022, Dezember 12). Retrieved Dezember 12, 2022, from
Wikipedia.org: https://de.wikipedia.org/wiki/Abstract_ Window_Toolkit

ApplicationStructure. (2022, Dezember 12). Retrieved Dezember 12, 2022, from NTU:
https://www3.ntu.edu.sg/home/ehchua/programming/java/Javafx1_intro.html

Ashley , W., Flatscher, R., Hessling, M., McGuire, R., Miesfeld, M., Peedin, L., & Wolfers, J.
(2010). Open Object Rexx TM: Programming Guide.

Ashley, W. D., Flatscher, R. G., Hessling, M., McGuire, R., Peedin, L., Sims, O., . . . Wolfers,
J. (2022). ooRexx Documentation 5.0.0 Open Object Rexx Programmer Guide.

Ashley, W. D., Flatscher, R. G., Hessling, M., McGuire, R., Peedin, L., Sims, O., . . . Wolfers,
J. (2022). ooRexx Documentation 5.0.0 Open Object Rexx Reference.

AWT. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Betriebswirtschaft-lernen:
https://www.betriebswirtschaft-lernen.net/erklaerung/abstract-window-toolkit-awt/

AWT vs Swing. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Education-Wiki:
https://de.education-wiki.com/1224717-awt-vs-swing

bsf4ooRexx. (2023, Februar 15). Retrieved Februar 15, 2023, from Sourceforge:
https://sourceforge.net/projects/bsf4oorexx/

Classpath. (2023, Februar 15). Retrieved Februar 15, 2023, from Javatpoint:
https://www.javatpoint.com/how-to-set-classpath-in-java

ControlsFx. (2023, Februar 13). Retrieved Februar 13, 2023, from GitHub:
https://github.com/controlsfx/controlsfx

ControlsFX. (2023, Februar 15). Retrieved Februar 15, 2023, from MVN Repository:
https://mvnrepository.com/artifact/org.controlsfx/controlsfx/8.40.18

Cowlishaw, M. (1990). The REXX Language A Practical Approach to Programming. Prentice
Hall.

CSS. (2022, Dezember 13). Retrieved Dezember 13, 2022, from Wikipedia:
https://de.wikipedia.org/wiki/Cascading_Style Sheets

DB Browser. (2023, Februar 12). Retrieved Februar 12, 2023, from Heise:
https://www.heise.de/download/product/db-browser-for-sqlite-41685

Flatscher, R. (2013). Introduction to REXX and ooRexx From REXX to Open Object REXX
(00REXX). Facultas .

62

https://de.pons.com/%C3%BCbersetzung/englisch-deutsch/bibliography

Flatscher, R. (2023). JavaFX for ooRexx — Creating Powerful Portable GUIs for ooRexx.
Retrieved from Rexxla: https://www.rexxla.org/presentations/2017/201711-00Rexx-
JavaFX-Article.pdf

Flatscher, R. G. (2012). Automatisierung mit ooRexx und BSF4o0oRexx. In Proceedings der
GMDS 2012 / Informatik 2012 (pp. 1-12). Braunschweig: Gesellschaft fir Informatik,
Bonn.

Flatscher, R. G. (2013). Introduction to Rexx and ooRexx (coloured illustration): from Rexx to
open object Rexx (ooRexx) (1. ed..). Wien: Facultas Verl.- u. Buchhandels-AG.

Flatscher, R. G. (2019). Flatscher, R. G., & Muller, G. (2019)ooRexx 5 Yielding Swiss Army
Knife Usability.

Fosdick, H. (2005). Rexx Programmer’s Reference. Wiley Publishing, Inc.
Java-AWT. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Javatpoint:
https://www.javatpoint.com/java-awt

JavaFX. (2022, Dezember 14). Retrieved Dezember 14, 2022, from Wikipedia.org:
https://de.wikipedia.org/wiki/JavaFX

JavaFX. (2022, Dezember). Retrieved from Wikipedia:
https://en.wikipedia.org/w/index.php?title=JavaF X &oldid=947700994

JavaFX Architecture. (2022, Dezember 12). Retrieved Dezember 12, 2022, from Oracle:
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-
architecture.htm#JFXST788

JavaFX_Application. (2022, Dezember 13). Retrieved Dezember 13, 2022, from
Tutorialspoint: https://www.tutorialspoint.com/javafx/javafx_application.htm

JavaFX_CSS. (2023, Janner 15). Retrieved Janner 15, 2023, from JavatPoint:
https://www.javatpoint.com/javafx-css

JDBC. (2023, Februar 15). Retrieved Februar 15, 2023, from Developer:
https://www.developer.com/database/working-with-the-javafx-ui-and-jdbc-
applications/

JFoenix. (2023, Februar 16). Retrieved Februar 16, 2023, from GitHub:
https://github.com/sshahine/JFoenix

Learn JavaFX 17. (2023). In K. Sharan, & P. Spath, Learn JavaFX 17 - Building User
Experience and Interfaces with Java (p. 851). Apress.

00Rexx. (2023, Januar 18). Retrieved Januar 18, 2023, from ooRexx:
https://www.oorexx.org/about.html

00Rexx. (2023, Februar 15). Retrieved Februar 15, 2023, from Sourceforge:
https://sourceforge.net/projects/oorexx/files/

63

OpenJDK. (2023, Februar 15). Retrieved Februar 15, 2023, from Bellsoft: https://bell-
sw.com/pages/downloads/

Rexx. (2023, Januar 18). Retrieved Januar 18, 2023, from Wikipedia:
https://en.wikipedia.org/wiki/Rexx#History

Scene Builder. (2022, Dezember 15). Retrieved Dezember 15, 2022, from RipTutorial:
https://riptutorial.com/javafx/topic/5445/scene-builder

SceneBuilder. (2023, Februar 15). Retrieved Februar 15, 2023, from Gluon:
https://gluonhg.com/products/scene-builder/#download

SQLite Browser. (2023, Februar 15). Retrieved Februar 15, 2023, from SQL.ite Browser:

https://sqlitebrowser.org/dl/
SQLite-JDBC. (2023, Februar 2023). Retrieved Februar 15, 2023, from Github:
https://github.com/xerial/sqlite-jdbc/releases

Stage. (2022, Dezember 15). Retrieved Dezember 2022, 2022, from Oracle:
https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stage.html

Swing. (2022, Dezember 12). Retrieved Dezember 12, 2022, from techopedia:
https://www.techopedia.com/definition/26102/java-swing

What is JavaFX. (2022, Dezember 13). Retrieved Dezember 13, 2022, from Oracle-Patches:

https://oracle-patches.com/en/coding/what-is-javafx

64

Appendix

Example Nr. Name Site number
Example 1 BMI Calculator 65
Example 2 BMI Calculator with FXML 67
Example 3 Health Calculator with JFoenix 70
Example 4 Formular with ControlsFX and JDBC 76

Example 1-BMI Calculator

The program is a body mass index (BMI) calculator implemented in the
Rexx programming language, utilizing the JavaFX library to create a
graphical user interface. It allows the user to input their weight and height
to calculate and display their BMI and BMI category. The program's primary
functions involve creating a user-friendly interface using JavaFX's layout
nodes such as VBox, TextField, Label, and Button. It also involves
implementing a JavaFX abstract method called "start" in the Rexx class,
which initiates the primary process of the application and displays the
window and its contents. Furthermore, the program utilizes BSF (Bean
Scripting Framework) and RexxProxy to pass events from the JavaFX side
to the Rexx side and to manage events such as clicking on the "Calculate
BMI" button. Lastly, the program also implements the Rexx class
"RexxButtonHandler," which performs the BMI calculation and displays the

result on the user interface.

rxApp=.BMICalculator~new

jrxApp=BSFCreateRexxProxy (rxApp, ,"Jjavafx.application.Application")
jrxApp~launch (jrxApp~getClass, .nil)

::requires "BSF.CLS"

::class BMICalculator

::method start

use arg primaryStage

primaryStage~setTitle ("BMI Calculator")

root=.bsf~new ("javafx.scene.layout.VBox")
root~prefHeight=400

65

root~prefWidth=400 -- set the preferred width of the VBox
root~setSpacing (20) -- set the spacing between nodes in the VBox

-- create two text fields for user input
weightField=.bsf~new("javafx.scene.control.TextField")
weightField~setPromptText ("50.0")
heightField=.bsf~new("javafx.scene.control.TextField")
heightField~setPromptText ("1.60")

-- create a label for the weight field
weightLabel=.bsf~new ("javafx.scene.control.Label")
weightLabel~text ("Enter your weight (kg):")

-- create a label for the height field
heightLabel=.bsf~new ("javafx.scene.control.Label")
heightLabel~text ("Enter your height (m):")

-- create a button for performing the BMI calculation
calculateBtn=.bsf~new("javafx.scene.control.Button")
calculateBtn~text="Calculate BMI"

-- create a label for displaying the result
resultLabel=.bsf~new ("javafx.scene.control.Label™)

/* add the weight label, weight field, height label,

height field, calculate button, and result label to the VBox*/
root~getChildren~~add (weightLabel) ~~add (weightField) ~~add (heightLabel)
root~getChildren~~add (heightField) ~~add (calculateBtn)~~add (resultLabel)
-- put the VBox on the stage

primaryStage~setScene (.bsf~new("javafx.scene.Scene", root))

primaryStage~show -- show the stage (window) with the scene

-- create a Rexx object to handle button presses
handler=.RexxButtonHandler~new (weightField, heightField, resultLabel)

-- create a Rexx proxy object to forward button events to the Rexx object
jrh=BSFCreateRexxProxy (handler, ,"javafx.event.EventHandler")

-- set the button's action handler to the Rexx proxy object
calculateBtn~setOnAction (jrh)

-- Rexx class which handles the button presses

::class RexxButtonHandler -- implements "javafx.event.EventHandler" interface
::method init -- Rexx constructor method
expose weightField heightField resultlLabel -- allow direct access to ooRexx attribute
use arg weightField, heightField, resultlabel -- save reference to javafx.scene.control.Label
::method handle -- will be invoked by the Java side when the button is pressed
expose weightField heightField resultLabel-- allow direct access to ooRexx attribute
use arg event, slotDir -- expected arguments
weightInput = weightField~getText -- get the value of the first text field
heightInput = heightField~getText -- get the value of the second text field
if weightInput="" | heightInput="" then do -- check if both fields have been filled out
resultLabel~text = "Please enter the weight and height."
return -- exit the method
end

--Calculate BMI

weight = weightInput

height = heightInput

bmi = weight / (height * height)

--Determine BMI category
if bmi < 18.5 then

category = "Underweight"
else if bmi < 25 then

category = "Normalweight"
else

category = "Overweight"

66

resultLabel~text = "Your BMI is" bmi~format (

, "0.00™) "and you have

"

category

Listing 10: Example 1 - ooRexx_Gui.rexx

Example 2 -BMI Calculator with FXML

The BMI Calculator is a program created using JavaFX technology and the

FXML format. It provides a simple user interface that allows the user to

enter their weight and height. The program calculates the Body Mass Index

(BMI) and also displays the corresponding BMI category (e.g. underweight,

normal, overweight). The program uses CSS style sheets to customize the

appearance of the user interface.

The stylesheet (Listing 11) contains CSS rules for formatting various

elements in the user interface of the BMI calculator.

.root{
-fx-background-color: #426357;
—-fx-font-family: "Arial";
-fx-font-size: 15px;

}

.button {
-fx-text-fill: #5F6362;
-fx-font-weight: bold;
-fx-color: #99E8CB

}

.label {
-fx-font-weight: bold;
-fx-text-fill: #DAE2DF;

}

.textfield{
-fx-prompt-text-fill: #DAE2DF;
-fx-text-fill: #5F6362;

Listing 11

: Example 2- stylesheet.css

67

The gui file (Listing 12) is the FXML file of the BMI-Calculator. It defines

how the frontend should look and which components are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.control.Button?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.TextField?>
<?import javafx.scene.layout.VBox?>
<?language rexx?>

<VBox fx:id="root" alignment="TOP CENTER" maxHeight="-Infinity" maxWidth="-Infinity"
minHeight="-Infinity" minWidth="-Infinity" prefHeight="346.0" prefWidth="400.0" spacing="20.0"
styleClass="root" stylesheets="@stylesheet.css" xmlns="http://javafx.com/javafx/8.0.171"
xmlns: fx="http://javafx.com/fxml/1">
<fx:script source="Controller.rexx" />
<children>
<Label fx:id="weightLabel" alignment="CENTER" prefHeight="41.0" prefWidth="180.0"
text="Enter your weight (kg):" />
<TextField fx:id="weightField" alignment="CENTER" promptText="50.0" />
<Label fx:id="heightLabel" alignment="CENTER" prefHeight="38.0" prefWidth="183.0"
text="Enter your height (m):" />
<TextField fx:id="heightField" alignment="CENTER" promptText="1.60" />
<Button fx:id="calculateBtn" mnemonicParsing="false" onAction="slotDir=arg(arg()); call
CalculateBMI slotDir;" text="Calculate BMI" />
<Label fx:id="resultLabel" prefHeight="44.0" prefWidth="323.0" />
</children>
</VBox>

Listing 12:Example 2 - Gui.fxml
The main functions of the program (Listing 13) include creating and showing
the GUI, loading the FXML file using the FXMLLoader, and calculating the
BMI using the RexxProxy and BSF framework. The program launches by
invoking the "start" method in the Rexx class that implements the

"javafx.application.Application" abstract class.

parse source . . pgm
call directory filespec('L', pgm)

rxApp=.BMICalculator~new -- creat 1 th
jrxApp=BSFCreateRexxProxy (rxApp, javafx appllcatlon Appllcatlon)
jrxApp~launch (jrxApp~getClass, nll) [h th !

Ra

BSF and rxregexp classes for Java support

re the

ulre

:requires "BSF CLS"

+ ~laca "Sa1vaFse. A e
class javarx.applicatl

icat
licat

method start

use arg primaryStage - tch >
primaryStage~setTitle ("BMI Calculator")

file with the "file:"
"flle Gui.fxml")
XML and create th graph f

rootNode bsf loadClass("javafx fxml FXMLLoader") ~ load(fimlUrl)

68

scene=.bsf~new ("javafx.scene. Scene", rootNode)
primaryStage~setScene (scene) -- Se :
primaryStage~show -- S

Listing 13: Example 2 - main.rexx

The code in Listing 14 contains a method named CalculateBMI which
calculates the BMI based on the weight and height values entered by the
user in the weightField and heightField text fields. It also determines the
BMI category based on the calculated BMI and outputs the result in the

resultLabel label.

::routine CalculateBMI public
slotDir=arg(arg()) -— note: last ar

weightInput = welghtFleld text -- get

heightInput = heightField~text -- get

if weightInput="" | heightInput="" then do -- check if both fields have been filled ou
resultLabel~text = "Please enter the weight and helght "
return -- exit the method
end

——Calculate BMI

weight = welghtInput
height = heightInput
bmi = weight / (height * height)

——-Determine BMI category

lf bmi < 18.5 then

category = "Underweight"
else if bmi < 25 then

category = "Normalweight"
else

category = "Overweight"

resultLabel text = "Your BMI is " || bmi~format(, "0.00") || " and you have " || category || "."

Listing 14: Example 2 - controller.rexx

69

Example 3 - Health Calculator with JFoenix

The application is a health calculator that features a main menu with two
buttons. The first button leads to the BMI calculator, and the second leads
to the basal metabolic rate calculator. Each calculator opens in its own
window, allowing users to input their data. This functionality enables users

to calculate their BMI and basal metabolic rate.

The bmi_calculator file (Listing 15) is the FXML file of the BMI Calculator
window. It defines how the frontend should look and which components

are used in the GUI.

<?xml version="1.0" encoding="UTEF-8"?>

<?import com.jfoenix.controls.JFXButton?>
<?import com.jfoenix.controls.JFXSlider?>
<?import com.jfoenix.controls.JFXTextField?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.effect.Glow?>

<?import javafx.scene.layout.AnchorPane?>
<?import javafx.scene.text.Font?>

<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-Infinity"
prefHeight="400.0" prefWidth="600.0" stylesheets="@stylesheet.css"
xmlns="http://javafx.com/javafx/8.0.171" xmlns:fx="http://javafx.com/fxml/1">
<fx:script source="controller.rexx" />
<children>
<Label alignment="CENTER" layoutX="119.0" layout¥Y="42.0" prefHeight="64.0" prefWidth="363.0"
text="BMI - Calculator" textAlignment="CENTER">

</Label>
<JFXSlider fx:id="slider weight" blockIncrement="200.0" indicatorPosition="RIGHT"
layoutX="70.0" layout¥="207.0" max="200.0" styleClass="jfx-slider-style"
stylesheets="@stylesheet.css" value="60.0">
<effect>
<Glow />
</effect></JFXSlider>
<Label fx:id="label weight" alignment="CENTER" layoutX="70.0" layoutY="132.0"

prefHeight="21.0" prefwidgh:"l75.0" text="Enter your weight (kg):" />
<Label fx:id="label height" alignment="CENTER" layoutX="326.0" layout¥Y="132.0"
prefHeight="21.0" prefWidth="158.0" text="Enter your height (m):" />

<Label fx:id="resultLabel" alignment="CENTER" layoutX="225.0" layoutY="304.0"
prefHeight="48.0" prefWidth="322.0" />
<JFXTextField fx:id="textField height" layoutX="326.0" layoutY="179.0" prefHeight="42.0"
prefWidth="148.0" promptText="1.60" unFocusColor="#84b5a7">
<effect>
<Glow />
</effect></JFXTextField>
<JFXButton fx:id="btn calculate" layoutX="44.0" layoutY="299.0"

onAction="slotDir=arg(arg()); call calculateBMI slotDir;" prefHeight="58.0" prefWidth="175.0"
stylesheets="(@stylesheet.css" text="Calculate" />

</children>
</AnchorPane>

Listing 15: Example 3 - bmi_calulator.fxml

70

The calorieRequirement file (Listing 16) is the FXML file of the calorie
requirement calculator window. It defines how the frontend should look

and which components are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import com.jfoenix.controls.JFXButton?>
<?import com.jfoenix.controls.JFXSlider?>
<?import com.jfoenix.controls.JFXTextField?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.effect.Glow?>

<?import javafx.scene.layout.AnchorPane?>
<?import javafx.scene.text.Font?>

<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-
Infinity" prefHeight="400.0" prefwidth="600.0" styleClass="root"
stylesheets="@stylesheet.css" xmlns="http://javafx.com/javafx/8.0.171"
xmlns:fx="http://javatx.com/fxml/1">
<fx:script source="controller.rexx" />
<children>
<Label alignment="CENTER" layoutX="70.0" layout¥="41.0" prefHeight="64.0"
prefWidth="461.0" stylesheets="@stylesheet.css" text="Calorie - Requirement"
textAlignment="CENTER">

</Label>
<JFXSlider fx:id="slider weight" layoutX="43.0" layoutY="232.0" max="200.0"
stylesheets="@stylesheet.css" value="60.0">
<effect>
<Glow />
</effect></JFXSlider>
<Label fx:id="label weight" alignment="CENTER" layoutX="33.0" layout¥Y="150.0"

prefHeight="21.0" prefWidth="175.0" text="Enter your weight (kg):" />
<Label fx:id="label height" alignment="CENTER" layoutX="235.0" layoutY="150.0"
prefHeight="21.0" prefWidth="158.0" text="Enter your height (m):" />

<Label fx:id="resultLabel" alignment="CENTER" layoutX="225.0" layout¥Y="304.0"
prefHeight="48.0" prefWidth="322.0" />
<JFXTextField fx:id="textField height" layoutX="235.0" layoutY="199.0"
prefHeight="42.0" prefWidth="148.0" promptText="1.60">
<effect>
<Glow />
</effect></JFXTextField>
<JFXButton fx:id="btn calculate" layoutX="45.0" layoutY="313.0"
onAction="slotDir=arg(arg()); call calculateCalorieRequirment slotDir;" prefHeight="56.0"
prefWidth="158.0" stylesheets="@stylesheet.css" text="Calculate" />
<Label fx:id="label age" alignment="CENTER" layoutX="407.0" layoutY="150.0"
prefHeight="21.0" prefWidth="140.0" text="Age:" />
<JFXSlider fx:id="slider age" layoutX="437.0" layout¥="232.0" value="25.0">
<effect>
<Glow />
</effect>
</JFXSlider>
</children>

</AnchorPane>

Listing 16:Example 3 - calorieRequirement.fxml

71

The main window file (Listing 17) is the FXML file of the main window of
the Health-Calculator. It defines how the frontend should look and which

components are used in the GUI.

<?xml version="1.0" encoding="UTF-8"?>

<?import com.jfoenix.controls.JFXButton?>
<?import javafx.geometry.Insets?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.effect.Glow?>
<?import javafx.scene.layout.AnchorPane?>
<?import javafx.scene.text.Font?>
<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-
Infinity" prefHeight="284.0" prefWidth="507.0" stylesheets="@stylesheet.css"
xmlns="http://javafx.com/javafx/8.0.171" xmlns:fx="http://javafx.com/fxml/1">
<fx:script source="controller.rexx" />
<children>
<Label alignment="CENTER" layoutX="30.0" layout¥="29.0" prefHeight="64.0"
prefWidth="447.0" styleClass="root" stylesheets="@stylesheet.css" text="Health Calculator">

</Label>
<JFXButton fx:id="btn bmi" alignment="CENTER" layoutX="30.0" layouty="128.0"
onAction="slotDir=arg(arg()); call openBMICalculator slotDir;" prefHeight="80.0"
prefWidth="210.0" text="BMI Calculator" textAlignment="CENTER">
<padding>
<Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />
</padding>
<effect>
<Glow />
</effect>
</JFXButton>
<JFXButton fx:id="btn calorie" alignment="CENTER" layoutX="267.0" layouty="128.0"
onAction="slotDir=arg(arg()); call openCalorieRequirement slotDir;" prefHeight="80.0"
prefWidth="210.0" text="Calorie Requirement" textAlignment="CENTER">
<padding>
<Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />
</padding>
<effect>
<Glow />
</effect>
</JFXButton>
</children>
<padding>
<Insets bottom="10.0" left="10.0" right="10.0" top="10.0" />
</padding>
</AnchorPane>

Listing 17:Example 3 - main_window.fxml

72

The stylesheet (Listing 18) contains CSS rules for formatting various

elements in the user interface, like the JFoenix slider.

.root{
-fx-background-color: #426357;
-fx-font-family: "Arial'";

}

.button {
-fx-text-fill: #49635C;
-fx-font-weight: bold;
-fx-background-color: #84B5A7;
}

.button:active {
-fx-color: #A9BOAD;
}

.label {

-fx-font-weight: bold;
-fx-text-fill: #84B5A7;

}

Jfx-text-field{
-fx-prompt-text-fill: #84B5A7;
-fx-text-fill: #49635C;
-jfx-focus-color: #64E8C2;
-jfx-unfocus-color: #84B5A7;

/*) the slider t k */
.Jfx-slider > .track {

-fx-background-color: #84B5A7;

}

/* } the slider t
.jfx-slider > .thumb ({

-fx-background-color: #84B5A7;
}

/*) the led track */
.jfx-slider > .colored-track {
-fx-background-color: #84B5A7;

}

/* Styl the ted
.Jfx-slider > .animated-thumb {

-fx-background-color: #84B5A7;
}

the slider value

/* Styl
.Jjfx-slider .slider-value {
-fx-fill: #426357;

-fx-stroke: #426357;

Listing 18: Example 3 - sylesheet.css

73

The code in Listing 19 involve setting up the application environment,
defining the StageHandler class and its methods, and loading FXML files to

create the UI components of the application.

/* Pe > the source and get t
PARSE SOURCE . . fullPath
CALL directory filespec('L', fullPath)

.environment~setEntry ("my.app", .directory~new)
.my.app~homeDir = filespec('Location',fullPath)

stageHandler = .StageHandler~new --Cre
.my.app~stageHandler = stageHandler
-—-Create a ger

stageHandlerProxy

dlerProxy object
BsfCreateRexxProxy (stageHandler,, "javafx.application.Application™)

L¢ ~h the appl

stageHandlerProxy~launch (stageHandlerProxy~getClass, .nil)

/* Exit the prog
EXIT O

/* Define the Stage
::CLASS StageHandler

/* De

1€ or
: :METHOD stage ATTRIBUTE
: :METHOD scene ATTRIBUTE
: :METHOD windowStage ATTRIBUTE
: :METHOD FXMLLoader
::METHOD init

EXPOSE FXMLLoader

the m

the StageHandler class */

FXMLLoader = bsf.import ("javafx.fxml.FXMLLoader")

Loader class

:METHOD start
EXPOSE stage scene FXMLLoader

USE ARG stage --Get the stage object
stage~setTitle ("Health Calculator") --Set the title of the stage
/* ! the FXML le */

url=.bsf~new("java.net.URL", "file:main window.fxml")
fxml = FXMLLoader~load (url)

scene = .bsf~new("Jjavafx.scene.Scene", fxml) a new Scene
stage~setScene (scene) t
stage~show --5F

the Scene of the

ow the

:METHOD newWindow
EXPOSE stage windowStage FXMLLoader
USE ARG title, fileName --Get the t

windowStage = .bsf~new("javafx.stage.Stage")
windowStage~setTitle (title) --Set e

] the F. il
url =.bsf~new("java.net.URL", fileName)
fxml = FXMLLoader~load(url)

scene = .bsf~new("javafx.scene.Scene", fxml) --

windowStage~setScene (scene) - Scene of
windowStage~show -

Scene

g

e

: :REQUIRES "BSF.CLS" --

Listing 19:Example 3 - main.rexx

74

The code in Listing 20 includes several routines that perform different
functions. These functions include opening windows for the BMI calculator
and calorie requirement calculator, as well as calculating the user's BMI and

daily calorie requirements based on their weight, height, and age inputs.

e opens e L
routlne openBMICalculator public

use arg slotDir

scriptContext=slotDir~scriptContext

URL = "file:bmi calculator.fxml"
.my.app~stageHandler~newWindow ("BMI-Calculator", URL)

orie requirement window

1 routine opens the c
:routine openCalorieRequirement public

use arg slotDir

scriptContext=slotDir~scriptContext

URL = "file:calorieRequirement.fxml"
.my.app~stageHandler~newWindow ("Calorie Requirement", URL)

entered by

/*The routine c:
r.*/
:routine calculateBMI public
use arg slotDir

/*

/* @get (text 1
weightInput = slider welqht getValue
heightInput = textField height~text

resultLabel ~text = "Please enter a height.'
return -- exit the method
end

ite

weight = welqhtlnput
height = heightInput
bmi = weight / (height * height)

—Dete o BMI cCc¢

“egory

if bmi < 18 5 then

category = "underweight"
else if bmi < 25 then

category = "normalweight"
else

category = "overweight"

resultLabel ~text = "Your BMI is " || bmi~format(, "0.00") || " and you have " |
category || "."

orie requirement bas

routlne calculateCalorleRequlrment public
use arg slotDir

75

/* @get (s ler age) */
weightInput = slider weight~getValue --
heightInput = textField height~text -- get
ageInput = slider age~getValue

if heightInput="" then do -- ¢

C

resultLabel~text a height."

return -- exit the m

end

weight weightInput

height = heightInput*100

age = agelnput

calorieRequirment = 655.1 + (9.6 * weight) + (1.8 * height) - (4.7 * age)

/ dget (re /

resultLabel~text = "Your Calorie Requirment is " calorieRequirment~format(, "0") " kcal.

:REQUIRES "BSF.CLS"

Listing 20:Example 3 - controller.rexx
Example 4 - Formular with ControlsFX and
JDBC

The program creates a GUI that contains a form, and the entered data are

stored in an SQLite database.
The gui file (Listing 21) is the FXML file of the Formular. It defines how the

frontend should look and which components are used in the GUI.

<?xml version="1.0" encoding="UTEF-8"?>

<?import
<?import
<?import
<?import
<?import
<?import
<?import

com.jfoenix.controls.JFXButton?>
javafx.scene.control.Label?>
javafx.scene.effect.Glow?>
javafx.scene.layout.AnchorPane?>
javafx.scene.text.Font?>
org.controlsfx.control.Rating?>
org.controlsfx.control.textfield.CustomTextField?>

<?language rexx?>

<AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-
Infinity" prefHeight="546.0" prefWidth="429.0" styleClass="root"
stylesheets="@stylesheet.css" xmlns="http://javafx.com/javafx/8.0.171"
xmlns:fx="http://javafx.com/fxml/1">

<fx:script source="controller.rexx" />

<children>

76

<Label alignment="CENTER" layoutX="50.0" layout¥Y="24.0" prefHeight="54.0"
prefWidth="330.0" text="Formular" textAlignment="CENTER">

</Label>
<CustomTextField fx:id="textfieldFName" layoutX="167.0" layoutY="135.0"
promptText="Firstname" styleClass="jfx-text-field" />
<CustomTextField fx:id="textfieldLName" layoutX="167.0" layout¥Y="178.0"
promptText="Lastname" styleClass="jfx-text-field" />
<CustomTextField fx:id="textfieldAddress" layoutX="167.0" layoutY="261.0"
promptText="Address" styleClass="jfx-text-field" />
<JFXButton fx:id="btn submit" buttonType="RAISED" layoutX="271.0" layout¥Y="460.0"
onAction="slotDir=arg(arg()); call InsertData slotDir;" prefHeight="54.0" prefWidth="129.0"
ripplerFill="#a9%b0ad" text="Submit">
<effect>
<Glow />
</effect></JFXButton>
<Rating fx:id="rating" layoutX="167.0" layoutY="345.0" rating="3.0"
styleClass="rating" stylesheets="@stylesheet.css" />
<Label fx:id="label fname" layoutX="85.0" layoutY="140.0" text="Firstname:" />
<Label fx:id="label lname" layoutX="87.0" layoutY="183.0" text="Lastname:" />
<Label fx:id="label age" layoutX="106.0" layoutY="223.0" text="Age:" />
<Label fx:id="label address" layoutX="92.0" layoutY="266.0" text="Address:" />
<Label fx:id="label satisf" layoutX="74.0" layout¥="346.0" prefHeight="31.0"
prefWidth="91.0" text="Satisfaction:" />
<CustomTextField fx:id="textfield age" layoutX="167.0" layoutY="218.0" promptText="26"
styleClass="jfx-text-field" />
<Label fx:id="resultLabel" layoutX="29.0" layoutY="466.0" prefHeight="42.0"
prefWidth="208.0" />
</children>
</AnchorPane>

Listing 21:Example 4 - gui.fxml

The stylesheet (Listing 22) contains CSS rules for formatting various

elements in the user interface.

.root {
-fx-background-color: #426357;
-fx-font-family: "Arial";

}

.button {
-fx-text-fill: #49635C;
-fx-font-weight: bold;
-fx-background-color: #84B5A7;

}

.label {
-fx-font-weight: bold;
-fx-text-fill: #84B5A7;

}

Jfx-text-field {
-fx-prompt-text-£fill: #84B5A7;
-fx-text-fill: #49635C;
-jfx-focus-color: #64E8C2;
-jfx-unfocus-color: #84B5A7;

.rating > .container .button ({

77

-fx-pref-width: 35 ;
-fx-pref-height: 35 ;
-fx-background-size: cover;
-fx-background-color:#426357;
-fx-padding: 15;

Listing 22:Example 4 - stylesheet.css

The code in Listing 23 is responsible for connecting to the database and

creating the user interface.

/*change directory to program location such that relatively addressed resources can be
found*/
parse source . . pgm

-- set up application environment
.environment~setEntry ("my.app", .directory~new)
.my.app~homeDir = filespec('Location',fullPath)
.my.app~dbh = .DatabaseHandler~new
.my.app~dbh~initSettings

—-- connect to the database and handle connection errors
success = .my.app~dbh~connect

IF \success THEN CALL connectionError

else say "The Connection to the DB was successful!"

-- create Rexx object that will control the FXML set up
rxApp=.Formular~new

jrxApp=BSFCreateRexxProxy (rxApp, ,"javafx.application.Application")
jrxApp~launch (jrxApp~getClass, .nil) -— launch the application, invokes

" "

start

EXIT O

connectionError:
say "No Connection to the DB"

: :REQUIRES "DatabaseHandler.CLS"
: :REQUIRES "BSF.CLS"

-- Rexx class defines '"javafx.app

::class Formular -- implements

-- Rexx method "start'" implement

::method start
use arg primaryStage -- fetch the primary stage (window)
primaryStage~setTitle ("Formular")

-— create an URL for the FMXLDocument.fxml file (hence the protocol "file:")
fxmlUrl=.bsf~new("java.net.URL", "file:gui.fxml")

-- use FXMLLoader to load the FXML and create the GUI graph f.
rootNode=bsf.loadClass ("javafx.fxml.FXMLLoader")~load (fxmlUrl

rom its definitions:

scene=.bsf~new ("javafx.scene.Scene", rootNode) -— create a scene for the document
primaryStage~setScene (scene) —- set the stage to the scene
primaryStage~show -— show the stage (and thereby the scene)

call directory filespec('L', pgm) -- change to the directory where the program resides

Listing 23:Example 4 -main.rexx

78

The code in Listing 24 is responsible for inserting data into the database
using the insertData method. It also ensures that all required fields are filled

out before inserting the data into the database.

::routine insertData public
use arg slotDir
scriptContext=slotDir~scriptContext -- Get the slotDir entry

/* Assign the values to variables *

fname = textfieldFName~text

lname = textfieldLName~text

age = textfield age~text

address = textfieldAddress~text

ratingValue = rating~getRating

-—- check if the fields have been filled out

if fname="" | lname="" | age="" | address="" then do
resultLabel~text = "Please fill out all fields."
return -- exit the method
end

.my.app~dbh~insertData (fname, lname, age, address, ratingValue)

: :REQUIRES "DatabaseHandler.CLS"
: :REQUIRES "BSF.CLS"

Listing 24:Example 4 - controller.rexx

The code in Listing 23 defines and implements the DatabaseHandler class
for connecting and interacting with the SQLite database. The class includes
methods for initializing the database URL, establishing a connection to the

database, and inserting data into the database using SQL statements.

: :CLASS DatabaseHandler PUBLIC

77ME;HODﬁconrﬁ1 Z—\T‘TRIBUTE puEe ror the mEtabaserandie
??MﬁgéostéiaRLVAE%%IBUEE‘(pute ror the Databasehandier o
{METHOD DriverMamager ATIRIBUTE
CIMETHOD dmir oo ReE Handler class

e e -

EXPOSE DriverManager -- Allow ac

DriverManager = bsf. .sgql.DriverManager")

fi th initSettings'" meth for the DatabaseHandler class, whi« ts t DB URL
::METHOD initSettings PUBLIC
EXPOSE DB _URL -- Allow access to t DB URL

79

DB_URL = "jdbc:sglite:C:\Users\isada\IdeaProjects\JDK8\src\Application ControlsFX JDBC\DB.db"

/*Define the "connect" method for the DatabaseHandler class, which establishes a connection to the
SQLite database*/
: :METHOD connect PUBLIC

EXPOSE DriverManager DB_URL conn /* Allow access to the DriverManager, DB URL, and conn
attributes */

SIGNAL ON SYNTAX NAME connectionError -- Set up error handling for the connection

conn = DriverManager~getConnection (DB URL) /* Establish a connection to the SQLite database
using the DB URL attribute */

SIGNAL OFF SYNTAX -- Turn off error handling

say "Connection successful" -- Print a message indicating that the connection was successful

say DB_URL -- Print the DB URL attribute

RETURN .true -- Return a true value to indicate that the connection was successful

/* Define the "insertData" method for the DatabaseHandler class, which inserts data into the
SQLite database */
: :METHOD insertData PUBLIC
EXPOSE conn -- Allow access to the conn attribute
-- Retrieve the values to be inserted as arguments
USE ARG fname, lname, age, address, satisf
-- Define the SQL query to insert the data
query = "INSERT INTO Person (fname, lname, age, address, satisf) VALUES (2, 2, 2, 2?2, ?2)"
-- Prepare the SQL statement using the conn attribute
prepStatement = conn~prepareStatement (query)
-- Bind the fname argument to the first "?" placeholder in the query
prepStatement~setString (1, fname)
-- Bind the lname argument to the second "?" placeholder in the query
prepStatement~setString (2, lname)
-- Bind the age argument to the third "?" placeholder in the query
prepStatement~setInt (3, age)
-- Bind the address argument to the fourth "?" placeholder in the query
prepStatement~setString (4, address)
-- Bind the satisf argument to the fifth "?" placeholder in the query
prepStatement~setString (5, satisf)
-- Execute the SQL statement to insert the data into the SQLite database
prepStatement~execute

:REQUIRES "BSF.CLS" -- Import the BSF.CLS file for use in the code

Listing 25:Example 4 - DatabaseHandler.CSL

80

