
WIRTSCHAFTSUNIVERSITÄT WIEN

Vienna University of Economics and Business

Bachelor's Thesis

I hereby declare that:

1. I have written this Bachelor's thesis myself, independently and without the aid of unfair or
unauthorized resources. Whenever content has been taken directly or indirectly from other
sources, this has been indicated and the source referenced.

2.

3.

4. (2nly applicable if the thesis was written by more than one author): this Bachelor's
thesis was written together with

SLJQDWXUH

TitOH of Bachelor's Thesis (English)

TitOH of Bachelor's Thesis (German)

Author
(last name, first name):

Student ID number:

Degree program:

Examiner
(degree, first name, last name):

The individual contributions of each writer as well as the co-written passages have been
indicated.

Date

This Bachelor's Thesis has not been previously presented as an examination paper in this or

any other form in Austria or abroad.

This Bachelor's Thesis is identical with the thesis assessed by the examiner.

JBusinessChart
Providing Charts to ooRexx

JBusinessChart
Bereitstellung von Diagrammen für ooRexx

Voglmüller, Jan

12209774

Bachelor of Science (WU), BSc (WU)

ao.Univ.Prof. Dr. Rony G. Flatscher

25.08.2024

Mobile User

JBusinessChart
Providing Charts to ooRexx

Jan Voglmüller
h12209774

Department of Information Systems & Society

Reviewer: ao.Univ.Prof. Dr. Rony G. Flatscher

25 August 2024

 ii

Table of Contents

List of Figures ... iv

List of Tables .. v

List of Listings ... vi

Abstract .. 7

1. Introduction ... 8

2. Requirements ... 9

2.1. Java ... 9

2.2. Open Object Rexx 5.1.0 ... 10

2.3. BSF4ooRexx850 .. 13

2.4. Portable ooRexx (Alternative) .. 16

3. Architecture ... 19

3.1. Data... 20

3.2. DataSet ... 21

3.3. JChart ... 22

3.4. BaseChart ... 23

3.5. Canvas .. 24

3.6. CoorSys .. 25

3.7. ColumnChart ... 25

3.8. BarChart ... 26

3.9. LineChart .. 26

3.10. PointChart ... 27

3.11. PieChart .. 27

3.12. RingChart ... 28

3.13. MultiChart ... 28

3.14. MixedChart... 29

3.15. StackChart .. 29

3.16. JBCconstants ... 30

 iii

4. Nutshell Examples ... 31

4.1. Create a Dataset .. 31

4.2. Column Chart .. 32

4.3. Bar Chart .. 33

4.4. Line Chart ... 34

4.5. Point Chart ... 36

4.6. Pie Chart ... 37

4.7. Ring Chart .. 38

4.8. Combine Column Charts ... 39

4.9. Combine Line Charts .. 41

4.10. Mixing Column and Line Charts .. 42

4.11. Mixing Combined Charts ... 44

4.12. Stack Bar Charts ... 45

4.13. Stack Line Charts ... 47

4.14. Stack Charts in Percent ... 48

5. Brief Discussion .. 50

6. Conclusion ... 51

 iv

List of Figures

Figure 1: Download Java ... 9

Figure 2: Java Installation .. 10

Figure 3: De-quarantine ooRexx ... 12

Figure 4: ooRexx Installation ... 13

Figure 5: De-quarantine BSF4ooRexx .. 14

Figure 6: BSF4ooRexx Installation .. 15

Figure 7: Output ooRexxTry.rxj ... 15

Figure 8: De-quarantine ooRexx-Portable ... 17

Figure 9: UML Class Diagram ... 20

Figure 10: Output 01_column_chart.rxj ... 33

Figure 11: Output 02_bar_chart.rxj .. 34

Figure 12: Output 03_line_chart.rxj ... 35

Figure 13: Output 04_point_chart.rxj ... 37

Figure 14: Output 05_pie_chart.rxj .. 38

Figure 15: Output 06_ring_chart.rxj ... 39

Figure 16: Output 11_combine_column_charts.rxj .. 41

Figure 17: Output 12_combine_line_charts.rxj .. 42

Figure 18: Output 13_mix_column-line_charts.rxj ... 43

Figure 19: Output 14_mix_combined_charts.rxj .. 45

Figure 20: Output 21_stack_bar_charts.rxj ... 46

Figure 21: Output 22_stack_line_charts.rxj ... 48

Figure 22: Output 23_stack_charts_in_percent.rxj ... 49

 v

List of Tables

Table 1: Methods DataSet ... 21

Table 2: Methods JChart ... 23

Table 3: Attributes BaseChart ... 24

Table 4: Methods BaseChart ... 24

Table 5: Attributes ColumnChart .. 25

Table 6: Methods ColumnChart ... 25

Table 7: Attributes BarChart .. 26

Table 8: Methods BarChart ... 26

Table 9: Attributes LineChart .. 26

Table 10: Methods LineChart .. 27

Table 11: Attributes PointChart ... 27

Table 12: Methods PointChart .. 27

Table 13: Attributes PieChart .. 28

Table 14: Methods PieChart .. 28

Table 15: Attributes RingChart .. 28

Table 16: Methods RingChart ... 28

Table 17: Attributes MultiChart ... 29

Table 18: Methods MultiChart .. 29

Table 19: Methods MixedChart .. 29

Table 20: Attributes StackChart .. 29

Table 21: Methods StackChart .. 29

 vi

List of Listings

Listing 1: Terminal Command "java -version" ... 10

Listing 2: Terminal Command "rexx -version" ... 13

Listing 3: 00_create_dataset.rxj .. 32

Listing 4: Output 00_create_dataset.rxj ... 32

Listing 5: 01_column_chart.rxj .. 33

Listing 6: 02_bar_chart.rxj ... 34

Listing 7: 03_line_chart.rxj ... 35

Listing 8: 04_point_chart.xrxj .. 36

Listing 9: 05_pie_chart.rxj .. 38

Listing 10: 06_ring_chart.rxj .. 39

Listing 11: 11_combine_column_charts.rxj ... 40

Listing 12: 12_combine_line_charts.rxj .. 42

Listing 13: 13_mix_column-line_charts.rxj ... 43

Listing 14: 14_mix_combined_charts.rxj ... 45

Listing 15: 21_stack_bar_charts.rxj ... 46

Listing 16: 22_stack_line_charts.rxj .. 47

Listing 17: 23_stack_charts_in_percent.rxj .. 49

 7

Abstract

This thesis leverages the programming language ooRexx (Open Object Rexx) and its

powerful framework BSF4ooRexx to develop and refine the creation of business charts. By

integrating BSF4ooRexx, Java is made available, enabling, among other things, the use of

Java2D for graphic rendering. To facilitate the generation of images in Java2D, the

command handler JDOR (Java2D Drawing for ooRexx) eliminates the need to directly

interact with Java classes.

To further enhance the usability of Java2D and to provide a more user-friendly approach to

creating business charts specifically, this thesis introduces and demonstrates

“JBusinessChart”, a framework for ooRexx built on top of BSF4ooRexx and JDOR. It offers

classes for creating various types of business charts, such as column, bar and line charts,

with the option to combine and stack them. All the functionalities are illustrated through

“nutshell examples”.

 8

1. Introduction

Open Object Rexx (ooRexx) is an open-source programming language managed by the

Rexx Language Association (RexxLA) [1]. Initially, the Rexx language was developed by IBM

as a scripting language [2]. Later, IBM introduced Object Rexx, which added object-oriented

capabilities. Eventually, RexxLA took over the project, making it open source and

maintaining it as the ooRexx we know today [2].

BSF4ooRexx850 (Bean Scripting Framework for Open Object Rexx) is a package that creates

a bridge between ooRexx and Java, allowing users to easily implement Java methods in

ooRexx without the need for adaptation, thanks to its seamless integration [2]. This hidden

implementation effectively camouflages Java, making the framework user-friendly [3].

JDOR (Java2D Drawing for ooRexx), included in the BSF4ooRexx850 package, is a

command handler that enables ooRexx programmers to create graphics using the powerful

Java2D by using a new command language that is simple and understandable [4]. This

allows them to leverage the full functionality of these Java classes in their ooRexx

applications [2].

The aim of this bachelor thesis is 1) to develop JBusinessChart, a framework that builds upon

JDOR to facilitates the creation of business charts by shielding ooRexx programmers from

JDOR and 2) to explain and demonstrate the new capabilities that JBusinessChart adds. This

framework aims to enhance the visual representation of data within ooRexx applications,

making it easier for users to create professional and effective business charts.

 9

2. Requirements

This chapter is about the requirements for this project. To write the code and run the nutshell

examples, several programs are necessary. This section will explain the required programs

and their installation process.

The following guide is tailored for Windows, but similar steps apply for other operating

systems, with detailed instructions available through the provided links. While the

installation order is not strictly mandatory, following the recommended sequence is advised

to avoid potential issues that may arise from installing the programs in a different order. If

errors occur, reinstalling the programs might resolve them.

Chapter 2.4. is an alternative to chapters 2.2. and 2.3. and offers a less complicated way to

run the nutshell examples. However, for the development process the permanent

programming environment is recommended.

2.1. Java

Java 8 or higher is required for BSF4ooRexx850 to function properly. To utilize the full

functionality of the framework, a Java version with JavaFX support is needed. The following

link offers such a Java version from BellSoft:

https://bell-sw.com/pages/downloads/#jdk-22 [5]

After accessing this link, the “Windows” section can be found by scrolling down. Here, the

Java version with JavaFX support can be selected by changing the package option to “Full

JDK”, as shown in Figure 1. Clicking on “MSI” will download the installer.

Figure 1: Download Java

https://bell-sw.com/pages/downloads/#jdk-22

 10

After downloading the MSI file, it must be executed to start the setup process. Various

options, such as changing the storage location, are available, but all settings should remain

at their default values. To complete the installation, navigate through the menus as illustrated

in Figure 2.

Figure 2: Java Installation

To verify the correct installation of Java, a command window can be used to query the

installed version using the command “java -version”. The displayed version should match

the version that was just downloaded and installed. An example can be seen in Listing 1.

openjdk version "22.0.2" 2024-07-16

OpenJDK Runtime Environment (build 22.0.2+11)

OpenJDK 64-Bit Server VM (build 22.0.2+11, mixed mode, sharing)

Listing 1: Terminal Command "java -version"

2.2. Open Object Rexx 5.1.0

Now, the programming language itself needs to be installed. Version 5.0.0 or later of

ooRexx, with a 64-bit architecture, is required. The most recent version, 5.1.0, is

recommended. This version can be accessed via the following link for Windows:

 11

https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/oorexx-5.1.0-

12859.windows.x86_64.exe/download [6]

The file for other operating systems can be found on the following website by selecting and

clicking the corresponding link:

https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/ [7]

The provided link [6] for Windows will automatically start the download after 5 seconds, or

the download can be initiated manually by clicking "Download." Before executing the

downloaded file, it must be unblocked or de-quarantined to ensure a smooth installation

process. Otherwise, the installation might be blocked by the operating system because the

source is not verified by Windows. To unblock the file, right-click on the .exe file and select

"Properties" (German: "Eigenschaften"). In the new window, go to the "General" tab

(German: "Allgemein") and locate the "Unblock" checkbox (German: "Zulassen") at the

bottom right, refer to Figure 3. Check this box and confirm by clicking "OK".

https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/oorexx-5.1.0-12859.windows.x86_64.exe/download
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/oorexx-5.1.0-12859.windows.x86_64.exe/download
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/

 12

Figure 3: De-quarantine ooRexx

Another option is to open a command line window and run “powershell Unblock-File

<filename>”, replacing <filename> with the actual name of the downloaded file, in the

folder where the file is located.

For macOS operating systems, the de-quarantining must be done in a terminal window. Use

the command “xattr -d com.apple.quarantine <filename>”, replacing <filename> with the

actual name of the downloaded file, to accomplish this.

The next step is to start the setup by executing the downloaded file. As with the previous

installation, all preferences should remain unchanged, allowing the user to proceed with the

default settings. If an earlier version of ooRexx is already installed, the installer will offer an

option to uninstall the older version; this option should be selected and all subsequent

preferences should also remain at their default values. After clicking through the menus, the

installation will be completed.

 13

Figure 4: ooRexx Installation

Once the installation is complete, the correctness of the installation and the version can be

verified again in the command window, this time using the command “rexx -version”. The

result should look like Listing 2.

Open Object Rexx Version 5.1.0 r12859

Build date: Jul 21 2024

Addressing mode: 64

Copyright (c) 1995, 2004 IBM Corporation. All rights reserved.

Copyright (c) 2005-2024 Rexx Language Association. All rights reserved.

This program and the accompanying materials are made available under the terms

of the Common Public License v1.0 which accompanies this distribution or at

https://www.oorexx.org/license.html

Listing 2: Terminal Command "rexx -version"

2.3. BSF4ooRexx850

The final step is to install the bridge between ooRexx and Java. A download link is provided,

which will automatically start the download after 5 seconds.

https://sourceforge.net/projects/bsf4oorexx/files/latest/download [8]

As with the programming language installation, the file must be unblocked before execution

to ensure a smooth installation process. Follow the same unblocking procedure as

previously described and confirm by clicking "OK." For reference, see Figure 5.

https://sourceforge.net/projects/bsf4oorexx/files/latest/download

 14

Figure 5: De-quarantine BSF4ooRexx

For Windows, the command line option is available once again. The command “powershell

Unblock-File <filename>” remains unchanged.

After unblocking the file, the ZIP must be unzipped into a new folder. Inside this new folder,

there is a subfolder named "install," which contains separate folders for each operating

system. For this project, execute the “install.cmd” file located within the "windows" folder to

start the installation process. A command window will appear.

After completing all steps and ensuring no errors occurred, as shown in Figure 6, the

installation is finished.

 15

Figure 6: BSF4ooRexx Installation

Once again there is the possibility to verify that everything is working correctly. If executing

“ooRexxTry.rxj” in the folder “C:\Program Files\BSF4ooRexx850\utilities” opens the

graphical user interface as shown in Figure 7, then all requirements have been met.

Figure 7: Output ooRexxTry.rxj

 16

2.4. Portable ooRexx (Alternative)

Instead of installing the runtime environment for the programming language and its

framework “BSF4ooRexx” permanently, a temporary setup for ooRexx commands can be

created through a portable version. This allows skipping the instructions described in

chapters 2.2. and 2.3. and provides a simple way to execute the ooRexx nutshell examples.

The following link provides the latest version for Windows in form of a ZIP file:

https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/portable/oorexx-5.1.0-

12860.windows.x86_64-portable-release.zip/download [9]

Files for other operating systems can be found under:

https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/portable/ [10]

After the download is completed, the file needs to be unblocked. Right-click on the ZIP

archive and select "Properties" (German: "Eigenschaften"). In the new window, under

"General" (German: "Allgemein"), the "Unblock" checkbox (German: "Zulassen") can be

found at the bottom right. By checking and confirming this option with "OK", the file gets

de-quarantined. Refer to Figure 8.

https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/portable/oorexx-5.1.0-12860.windows.x86_64-portable-release.zip/download
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/portable/oorexx-5.1.0-12860.windows.x86_64-portable-release.zip/download
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/portable/

 17

Figure 8: De-quarantine ooRexx-Portable

Another option is to open a command line window and run “powershell Unblock-File

<filename>”, replacing <filename> with the actual name of the downloaded file, in the

folder where the file is located.

For macOS operating systems, the de-quarantining must be done in a terminal window. Use

the command “xattr -d com.apple.quarantine <filename>”, replacing <filename> with the

actual name of the downloaded file, to accomplish this.

After unblocking the ZIP file and extracting its contents, the installation process can be

started by executing “setupoorexx.cmd” for Windows. Two new CMD files should appear:

“rxenv.cmd” and “setenv2rxenv.cmd”.

The first file provides the user the possibility to execute ooRexx programs. To do so, a new

command line window needs to be opened in the folder with the mentioned “rxenv.cmd”

file. Simply right-click and select “Open in Terminal” in the folder or use the command “cd”

followed by the folder path to change the directory. In the command line window, programs

 18

can be executed by sending “.\rxenv rexx” followed by the program's name, for testing

purpose “testoorexx.rex”. The executed program needs to be in the mentioned folder.

 19

3. Architecture

JBusinessChart is designed to provide a straightforward business chart creation process

with minimal steps. The goal during the development was to create a simple logic for the

framework, that is as intuitive as possible: The programmer can create simple charts and

later modify or expand them. This method enables fast results while also avoiding

restrictions on the user. It facilitates the creation of more complex business charts by

combining, mixing or stacking these simple charts.

The UML (Unified Modeling Language) Class diagram in Figure 9 provides an overview of

JBusinessChart, including its classes, interconnections, attributes and methods. In the

following subsections, the classes will be explained in more detail and tables with the most

important attributes and methods for the user will be provided.

 20

Figure 9: UML Class Diagram

3.1. Data

The “Data” class represents a two-dimensional data point. Each data point contains an “x”

value and a “y” value, which can be accessed by the corresponding attributes. While “y”

values must be positive numbers, “x” values can also be strings for specific chart types. For

example, in a column chart, the x-axis is used for naming the displayed values, so only the y

value needs to be numeric. In a point chart, however, the points are placed in a two-

dimensional coordinate system based on x and y, requiring both values to be numeric.

JBusinessChart, in its first version and designed primarily for business charts, does not

support negative inputs. For most business-related applications, positive numbers are

 21

sufficient, which is why the input is currently limited to positive numeric values. The instances

and methods of the class are utilized by the “DataSet” class and will therefore never be used

directly by the user. To avoid overwhelming the user, this class is hidden.

3.2. DataSet

The “DataSet” class, once instantiated, is an array of instances of the “Data” class. The

“DataSet” class is one of two public classes. It manages the use of the “Data” class by

allowing the programmer to add instances of the “Data” class with the method “addValue”

and saves them in its own array under the attribute “values”. If a negative value is entered, it

will be transformed to a positive number, to comply with the “Data” class. The “DataSet” class

provides additional methods for managing the dataset. The method “allValues” displays all

current data points in the dataset. With the “remove” method, a specific two-dimensional

data point, specified by its position, can be removed. All other values will move up. With

“clear”, all values can be removed. All further methods are for internal use and will not

generate any say instruction output.

This structure allows any chart type to use the same dataset, enabling the user to display the

same data in different formats. The “addValue” method can be used in combination with a

loop to automatically add data from various sources, such as a JSON file.

Method Arguments Description

addValue Double xValue yValue Adds a two-dimensional data point,
specified by its x and y values, to the
“DataSet”.

allValues Displays all current values of the
dataset.

maxValue String XorY Returns the maximum x or y value of
the dataset, according to the provided
argument.

sum Returns the sum of all y values in the
dataset.

size Returns the size of the dataset.

remove Integer positionNumber Removes the value at the specified
position and all subsequent values
adjust accordingly.

clear Wipes all data from the dataset.
Table 1: Methods DataSet

 22

3.3. JChart

The “JChart” class serves as the primary interface for the programmer. It accepts nearly all

commands for creating charts and distributes them to the appropriate classes. The “JChart”

itself primarily functions as a dispatcher, handling the routing of commands and simplifying

the process for the user by selecting the correct methods and classes, therefore, it is made

public. The actual work of creating business charts is done by other classes mentioned later

in this paper.

Although the “JChart” is so important, only three methods are available, which further

simplifies the handling of JBusinessChart. The “createChart” method is used by the

programmer to create any type of simple chart. The first argument is the chart type entered

as a string in Pascal Case [11]. Possible values are: “ColumnChart”, “BarChart”, “LineChart”,

“PointChart”, “PieChart” and “RingChart”. This is followed by the nickname for a previously

created dataset. All subsequent arguments are optional and can be modified later. The third

argument, if provided, is a String with the title of the chart, followed by Strings for the names

of the x and y axes. The last two arguments are numbers that define the width and height of

the chart when displayed.

The “combineCharts” method provides two functionalities. At least two arguments in form

of previously created charts need to be provided, but up to five are possible. If two or more

charts of the same chart type are entered, “JChart” will merge them into a single chart and

create a “MultiChart” (refer to 3.13.). If the user provides a column chart and a line chart, the

order is irrelevant, the second functionality will be executed automatically, creating a

“MixedChart” (refer to 3.14.) by overlaying the column and line charts and adding an

additional y-axis to accurately represent both datasets. This dual functionality reduces

complexity and enhances usability once again.

The last method, called “stackCharts”, will accept two to five charts of the same type. This

method will stack the different charts on top on each other to create a “StackChart” (refer to

3.15.).

 23

Method Arguments Description

createChart String chartType

“ColumnChart”, “BarChart”,
“LineChart”, “PointChart”,
“PieChart”, “RingChart”

DataSet nickname

[optional]

String title xLabel yLabel

Integer width height

Creates a chart object of the specified
chart type with the provided dataset. If
the optional arguments are not
provided, they are set to default
values.

combineCharts Chart nickname1 name2

[optional]

Chart name3 name4 name5

Creates a new “MultiChart” object by
overlaying the provided charts.

 ColumnChart nickname

LineChart nickname

Creates a new “MixedChart” object
from the provided column and line
charts.

stackCharts Chart nickname1 name2

[optional]

Chart name3 name4 name5

Creates a new “StackedChart” object
by stacking the provided charts on top
of each other.

Table 2: Methods JChart

3.4. BaseChart

For the user, the “JChart” class is the primary interface, however, the real center of this

framework is the “BaseChart” class. It is not accidentally located in the middle of Figure 9,

even though the user will never directly use an instance of this class. It is required for the

internal architecture and is hidden from the user. It possesses all the fundamental attributes

and methods required for a business chart.

The attributes “dataset”, “title”, “width” and “height” were already mentioned. The attribute

“background” is used to store and modify the background color of the chart. JDOR offers

predefined colors like “white”, “black” and “pink” (refer to the command section in [4]).

However, as JBusinessChart is built on JDOR, all JDOR commands can also be used,

including creating custom colors. The “handler” attribute stores the object of the JDOR

handler used for the chart. This allows different internal functionalities and provides users

with knowledge of JDOR additional possibilities beyond the functional area of

JBusinessChart.

Attributes with a question mark at the end, such as “title?” and “legend?”, store Boolean

values and are used for the option to hide or display the corresponding element of a chart.

The attribute “unitNames” holds the default name for large numbers as a String in an array

and can be changed to suit a different language. The method “save” allows a user to save a

 24

chart in the local home directory as a PNG and the “print” method will open the default

printer window with the business chart ready to print. The other methods are again for

internal use.

Attribute Arguments Description

dataset DataSet nickname Determines the data used for the
chart.

title String title Determines the title of the chart.

width Integer width Determines the width of the window.

height Integer height Determines the height of the window.

background String color Determines the background color.

handler Provides access to the chart's handler.

title? Boolean truthValue If set to true, the title will be displayed.

legend? Boolean truthValue If set to true, the legend will be
displayed.

unitNames Array unitName Determines the names for large
numbers based on their position in the
array:

[1] < 1,000;

[2] < 1,000,000;

[3] < 1,000,000,000;

[4] < 1,000,000,000,000;

[5] < 1,000,000,000,000,000.
Table 3: Attributes BaseChart

Method Arguments Description

save [optional]

String saveLocation

Saves the chart as a PNG file in the
local home directory or at the
specified location. The chart must be
constructed beforehand using the
draw method.

print Opens the default printer window with
the chart prepared for printing.

Table 4: Methods BaseChart

3.5. Canvas

The “Canvas” class has the purpose to create a window, including a drawing canvas, to later

draw and display all required elements of a business chart. Because every chart needs a

canvas, the process is always exactly the same and therefore this class can be used to reduce

redundancy. The entire work is done during the instantiation, which is why there are no

methods. The only attribute is used to store and forward the handler to later make it

accessible through the chart object. This allows the “Canvas” class to be hidden from the

user.

 25

3.6. CoorSys

The “CoorSys” class is also used to reduce redundancy. It combines similar tasks related to

preparing the canvas for the business chart. The class creates the coordinate system and

other important elements. The methods divide the functionalities to increase modularity.

The “addTitle” method adds a title to the chart, the “drawAxles“ method will draw the

corresponding axis and so on. The “checkValue” and “formatValue” methods are used to

display large numbers correctly by reducing the zeros and adding a notation, such as

indicating that the numbers are in millions.

All these functions are used by different chart classes allowing them to select which

elements they need. Again, this class is only for internal usage and is not public. The

attributes “Dataset” and “unitName” correspond to the attributes of the “BaseChart” class

and serve for memory purposes.

3.7. ColumnChart

The “ColumnChart” class is used to represent and draw a column chart. It is instantiated and

fed with all important data by “JChart”. The “ColumnChart” class inherits all the attributes

and methods from its superclass “BaseChart” and has additional attributes: “xLabel” and

“yLabel” for describing the x and y axes, “color” to define and modify the column color and

“axisLabels?” to determine if the labels on the axes should be visible.

The class is not public, but as mentioned, an instance can be created through “JChart” and

saved under a nickname. With this nickname, the chart object can be accessed, constructed

and displayed on the screen using the “draw” method.

Attribute Arguments Description

xLabel String xLabel Determines the description of the x-
axis.

yLabel String yLabel Determines the description for the y-
axis.

color String color Determines the color of the columns.

axisLabels? Boolean truthValue If set to true, the labels are displayed on
the axes.

Table 5: Attributes ColumnChart

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 6: Methods ColumnChart

 26

3.8. BarChart

The “BarChart” class works exactly the same as the “ColumnChart” class. The only slight

difference is that it represents a bar chart instead of a column chart. Therefore, the color

refers to the bars rather than the columns.

Attribute Arguments Description

xLabel String xLabel Determines the description of the x-
axis.

yLabel String yLabel Determines the description for the y-
axis.

color String color Determines the color of the bars.

axisLabels? Boolean truthValue If set to true, the labels are displayed on
the axes.

Table 7: Attributes BarChart

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 8: Methods BarChart

3.9. LineChart

The “LineChart” class is similar to the “ColumnChart” and “BarChart” classes. It represents a

line chart and builds on top of its superclass “BaseChart”. It inherits the additional attributes

from “ColumnChart” and “BarChart” and includes “lineFormat” to change the visual

appearance of the line and “area?” to fill with the line color the area below the line. As with

the other chart classes, the “draw” method is used to visualize the chart on the screen.

Attribute Arguments Description

xLabel String xLabel Determines the description of the x-
axis.

yLabel String yLabel Determines the description for the y-
axis.

color String color Determines the color of the lines and
points.

axisLabels? Boolean truthValue If set to true, the labels are displayed on
the axes.

lineFormat Integer formatNumber

0: solid line, 1: dashed, 2:
dotted, 3: mixed

Determines the appearance of the line.

area? Boolean truthValue If set to true, the area below the line will
be filled.

Table 9: Attributes LineChart

 27

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 10: Methods LineChart

3.10. PointChart

The “PointChart” class represents and draws a point chart. It draws points and, optionally,

lines connecting them. It differs from other chart types because it uses the x and y value of

data points to calculate their position in a two-dimensional coordinate system. In addition

to the attributes and methods of its superclass, it possesses the attributes “lines?” to toggle

the visibility of lines, “points?” to toggle the visibility of the points and the previously

mentioned “xLabel”, “yLabel”, “color”, “axisLabels?” and “lineFormat”.

Attribute Arguments Description

xLabel String xLabel Determines the description of the x-
axis.

yLabel String yLabel Determines the description for the y-
axis.

color String color Determines the color of the lines and
points.

lines? Boolean truthValue If set to true, the points will be
connected by lines.

points? Boolean truthValue If set to true, the points will be
displayed.

axisLabels? Boolean truthValue If set to true, the labels are displayed on
the axes.

lineFormat Integer formatNumber

0: solid line, 1: dashed, 2:
dotted, 3: mixed

Determines the appearance of the line.

Table 11: Attributes PointChart

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 12: Methods PointChart

3.11. PieChart

The “PieChart” class represents and draws a pie chart. This class is a subclass of the

“BaseChart” class and extends it with the attribute “colorPallet”. This attribute is used to

define the colors of the segments of the chart. The colors are stored in an array and are used

in the corresponding order until the end is reached, at which point the cycle will repeat. By

default, the colors are chosen randomly. The “draw” method once again serves to display

the chart on the screen.

 28

Attribute Arguments Description

colorPallet Array nickname Determines the colors of the segments
in the pie chart in the specified order. If
the array is too small, the colors will be
reused.

Table 13: Attributes PieChart

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 14: Methods PieChart

3.12. RingChart

The “RingChart” class builds on top of its superclass “PieChart” and represents a ring chart.

It adds additional elements to the pie chart, making it very similar. One important feature is

that the total amount, visualized as a percentage in the chart, is displayed in the middle. The

user can change the unit of this number by using the “unit” attribute and setting the desired

String.

Attribute Arguments Description

unit String unitName Determines the unit of the total amount
displayed in the centre of the ring chart.

Table 15: Attributes RingChart

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 16: Methods RingChart

3.13. MultiChart

As previously mentioned, the “MultiChart” class represents a single chart made of multiple

charts of the same type laid over each other. It follows that the “MultiChart” class is

responsible for drawing this multi chart. It remains hidden from the user as it is made

available through “JChart”. The “MultiChart” class utilizes the chart class it is built from to

draw itself. It manages the sequence of the different charts and determines the elements

needed by using the “draw” method along with an additional argument called “combiNum”.

The instance of the “MultiChart” class will adopt the visual representation of the first

provided chart. For example, if the primary chart hides the legend, the “MultiChart” object

also hides it. The attributes “title” and “charts” are used to provide access to relevant

information that might be subject to modification. The “charts” attribute holds all the charts

that constitute the multi chart.

 29

Attribute Arguments Description

title String title Determines the title of the chart.

charts Array nickname Contains all the charts the multi chart is
made of.

Table 17: Attributes MultiChart

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 18: Methods MultiChart

3.14. MixedChart

The “MixedChart” class represents a chart made of both a column chart and a line chart.

Similar to the “MultiChart” class, is utilizes the methods of the provided charts to display

itself through the “draw” method. The “MixedChart” class manages the generation of both

charts and adds additional information, such as a second y-axis, to correctly display all

values.

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 19: Methods MixedChart

3.15. StackChart

The “StackChart” class represents and draws a single chart by stacking charts of the same

type on top of each other. The programmer uses the “draw” method to display the chart on

the screen. Internally, the “StackChart” instance selects the appropriate “draw” method, as

there are several variations. Similar to the “MultiChart” class, it includes the “title” attribute

to modifying the chart's title and the “toPercent” Boolean value to toggle the representation

to percent.

Attribute Arguments Description

title String title Determines the title of the chart.

toPercent Boolean truthValue If set to true, the presented values will
be displayed as percentages.

Table 20: Attributes StackChart

Method Arguments Description

draw Constructs the chart and visualizes it on
the screen.

Table 21: Methods StackChart

 30

3.16. JBCconstants

The “JBCconstants” class provides the framework with three constants, ensuring consistency

across all other classes. The first static attribute is “spacerEdge,” which is used for aesthetic

purposes and determines the distance between the chart and the window's border. The

second constant, “charLength,” represents the approximate width of a character displayed

in the chart, essential for accurately positioning text. The final constant is a string that holds

the current version of the framework.

 31

4. Nutshell Examples

The nutshell examples serve to demonstrate the functionalities of JBusinessChart and help

new users to understand the framework's logic. The examples are designed to ensure quick

progress and produce initial results efficiently.

The examples are divided into multiple sections, each increasing in complexity to gradually

introduce the user to JBusinessChart. Throughout all sections, nearly all possibilities and

functionalities of the framework are showcased. To avoid overwhelming the user, visual

changes are spread across the examples, keeping each example as concise as possible.

4.1. Create a Dataset

The first nutshell example demonstrates the use of the “DataSet” class, which forms the

foundation for all other examples. In line 2 of Listing 3, a new dataset is created by sending

the class the “new” message and assigning a nickname to the new object, in this case

“myData”. In lines 3 to 7, values are added using the “addValue” method, with the first

argument representing the x value and the second representing the y value. With these

steps, the dataset is now complete.

To display all current values, the “allValues” method can be used, as shown in line 11 of

Listing 3. Listing 4 shows the output of the say instruction in the command line window.

Additionally, the “size” and “maxValue” methods are demonstrated, however, these

methods are typically used internally and are of less interest to the user.

Not only is adding values possible. To manage the dataset two options are offered. 1) Based

on its position number a value can be removed from the dataset by using the “remove”

method, demonstrated in line 21 of Listing 3. 2) All data can be wiped from the dataset by

sending “clear” to the corresponding dataset.

For demonstration purposes, the current values are displayed after each operation and the

system will always pause for a few seconds, as shown in lines 17 and 26. Line 39 of Listing 3

is particularly important because it includes the “requires” directive, which enables the code

to access JBusinessCharts and all its classes.

1 /* creating datasets */
2 myData = .dataSet~new
3 myData~addValue("2012", 10)
4 myData~addValue("2013", 15)
5 myData~addValue("2014", 25)
6 myData~addValue("2015", 40)
7 myData~addValue(">2015", 45)

 32

8

9 /* diplay all values of a dataset */
10 say "Displaying current values of myData..."
11 myData~allValues
12 myData~size
13 myData~maxValue
14

15 /* waiting 4 seconds */
16 say "waiting 4 seconds"
17 call syssleep 4
18

19 /* editing data */
20 say "Removing the third data of myData..."
21 myData~remove(3)
22 myData~allValues
23

24 /* waiting 4 seconds */
25 say "waiting 4 seconds"
26 call syssleep 4
27

28 /* deleting all data */
29 say "Deleting all data of myData and adding one..."
30 myData~clear
31 myData~addValue("2022", 1004)
32 myData~allValues
33

34 /* close windows after 20 seconds */
35 say "waiting 20 seconds"
36 call syssleep 20
37
38 /* get access to JBusinessChart classes */
39 ::requires 'JBusinessChart.cls'

Listing 3: 00_create_dataset.rxj

Displaying current values of myData...
#1 Values: 2012 10
#2 Values: 2013 15
#3 Values: 2014 25
#4 Values: 2015 40
#5 Values: >2015 45
waiting 4 seconds
Removing the third data of myData...
#1 Values: 2012 10
#2 Values: 2013 15
#3 Values: 2015 40
#4 Values: >2015 45
waiting 4 seconds
Deleting all data of myData and adding one...
#1 Values: 2022 1004
waiting 20 seconds

Listing 4: Output 00_create_dataset.rxj

4.2. Column Chart

This nutshell examples demonstrates the creation of a column chart. In the first seven lines

of Listing 5, a dataset is created, as described in section 4.1. Line 10 shows the use of the

“createChart” method of the “JChart” class to create a column chart object. The two required

arguments “chartType” and “dataset” are provided, along with the first three optional

arguments: “title”, “xLabel” and “yLabel”. Line 11 illustrates how to use this method. Line 12

demonstrates a customisation option by changing the “color” attribute from the default

 33

value “lightblue” to “lightgreen”. By sending “draw” to the chart object, the business chart is

visualised on the screen, as shown in Figure 10.

1 /* creating datasets */
2 myData = .dataSet~new
3 myData~addValue("2012", 10)
4 myData~addValue("2013", 15)
5 myData~addValue("2014", 25)
6 myData~addValue("2015", 40)
7 myData~addValue(">2015", 45)
8

9 /* creating classic column chart & display it */
10 myColumnChart = .JChart~createChart("ColumnChart", myData, "VBS Floridsdorf", "year", "students")
11 --chartType, dataSet [, title, xLabel, yLabel, width, height]
12 myColumnChart~color = lightgreen --change bar color to "lightgreen" (default: "lightblue")
13 myColumnChart~draw
14

15 /* close windows after 20 seconds */
16 say "waiting 20 seconds"
17 call syssleep 20
18

19 /* get access to JBusinessChart classes */
20 ::requires 'JBusinessChart.cls'

Listing 5: 01_column_chart.rxj

Figure 10: Output 01_column_chart.rxj

4.3. Bar Chart

The program “02_bar_chart.rxj” demonstrates the creation of a bar chart. The only

differences to the previous example are the chart type argument in line 10 and some

cosmetic changes. In line 12 the background color is changed and in line 13 the attribute

 34

“legend?” is set to false, resulting in the legend being hidden once the chart is drawn. The

“draw” method is used to display the bar chart, as shown in Figure 11.

1 /* creating datasets */
2 myData = .dataSet~new
3 myData~addValue("2012", 10)
4 myData~addValue("2013", 15)
5 myData~addValue("2014", 25)
6 myData~addValue("2015", 40)
7 myData~addValue(">2015", 45)
8

9 /* creating classic bar chart & display it */
10 myBarChart = .JChart~createChart("BarChart", myData, "VBS Meidling", "students", "year")
11 --chartType, dataSet [, title, xLabel, yLabel, width, height]
12 myBarChart~background = silver --change background color to "silver" (default: "white")
13 myBarChart~legend? = .false --disable the legend
14 myBarChart~draw
15

16 /* close windows after 20 seconds */
17 say "waiting 20 seconds"
18 call syssleep 20
19

20 /* get access to JBusinessChart classes */
21 ::requires 'JBusinessChart.cls'

Listing 6: 02_bar_chart.rxj

Figure 11: Output 02_bar_chart.rxj

4.4. Line Chart

The fourth example focuses on the “LineChart” class. As with the previous nutshell examples,

an instance of the “DataSet” class is created. In line 10 of Listing 7, the line chart is assigned

 35

the nickname “myLineChart”. Lines 12 and 13 demonstrate different options for visual

appearance. First, the default visible area below the line is disabled and in the next line, the

line format is changed. As described in line 13 of Listing 7, by default the line is solid. Setting

the value to 1 makes it dashed, 2 changes it to dotted and 3 results is a mix of dashed and

dotted. The generated line chart is displayed in Figure 12.

1 /* creating datasets */
2 myData = .dataSet~new
3 myData~addValue("2012", 10)
4 myData~addValue("2013", 15)
5 myData~addValue("2014", 25)
6 myData~addValue("2015", 40)
7 myData~addValue(">2015", 45)
8

9 /* creating classic line chart & display it */
10 myLineChart = .JChart~createChart("LineChart", myData, "VBS Akademiestraße", "year", "students")
11 --chartType, dataSet [, title, xLabel, yLabel, width, height]
12 myLineChart~area? = .false --disable showing area under the line (default: .true)
13 myLineChart~lineFormat = 1 --change line format (default: 0) [0: line, 1: dashed, 2: dotted, 3: mixed]
14 myLineChart~draw
15

16 /* close windows after 20 seconds */
17 say "waiting 20 seconds"
18 call syssleep 20
19

20 /* get access to JBusinessChart classes */
21 ::requires 'JBusinessChart.cls'

Listing 7: 03_line_chart.rxj

Figure 12: Output 03_line_chart.rxj

 36

4.5. Point Chart

This nutshell example will generate a point chart. Once again, a dataset is created, however,

this time both the x and y values are numeric. This small but significant change is crucial, as

otherwise an error would occur. In line 12 of Listing 8, the attribute “point?” is set to false,

which results in hiding the points in the generated chart, as seen in Figure 13.

As a brief recap, other cosmetic options are possible, such as changing the color. For

simplicity, only a handful of options are demonstrated in each example.

1 /* creating datasets */
2 myData = .dataSet~new
3 myData~addValue(0, 10)
4 myData~addValue(10, 15)
5 myData~addValue(25, 20)
6 myData~addValue(30, 30)
7 myData~addValue(50, 12)
8

9 /* creating classic point chart & display it */
10 myPointChart = .JChart~createChart("PointChart", myData, "Students & Teachers", "students", "teachers")
11 --chartType, dataSet [, title, xLabel, yLabel, width, height]
12 myPointChart~points? = .false --disable showing points (default: .true)
13 myPointChart~draw
14

15 /* close windows after 20 seconds */
16 say "waiting 20 seconds"
17 call syssleep 20
18

19 /* get access to JBusinessChart classes */
20 ::requires 'JBusinessChart.cls'

Listing 8: 04_point_chart.xrxj

 37

Figure 13: Output 04_point_chart.rxj

4.6. Pie Chart

The example “05_pie_chart.rxj” demonstrates the use of the “PieChart” class. Up until line 9

of Listing 9, the process is identical to that of the nutshell examples “01_column_chart.rxj”

and “02_bar_chart.rxj”. To create a pie chart, the String used for the chart type argument

must be “PieChart”. This chart type has fewer optional arguments, as shown in line 11. The

possibility to change the colors of the segments using an array is demonstrated in line 12.

The final result is displayed in Figure 14.

1 /* creating datasets */
2 myData = .dataSet~new
3 myData~addValue("2012", 10)
4 myData~addValue("2013", 15)
5 myData~addValue("2014", 25)
6 myData~addValue("2015", 40)
7 myData~addValue(">2015", 45)
8

9 /* creating classic pie chart & display it */
10 myPieChart = .JChart~createChart("PieChart", myData, "VBS Floridsdorf")
11 --chartType, dataSet [, title, width, height]
12 myPieChart~colorPallet = ("lightblue", "cyan", "yellow", "orange", "red", "blue")
13 --change color of elements (default: random)
14 myPieChart~draw
15

16 /* close windows after 20 seconds */
17 say "waiting 20 seconds"
18 call syssleep 20
19

 38

20 /* get access to JBusinessChart classes */
21 ::requires 'JBusinessChart.cls'

Listing 9: 05_pie_chart.rxj

Figure 14: Output 05_pie_chart.rxj

4.7. Ring Chart

The final nutshell example of this difficulty level is “06_ring_chart.rxj“. This program

generates a ring chart, using a structure very similar to the previous example. This time, no

custom color pallet is provided. Instead, the colors are randomly generated. Additionally,

the optional “width” and “height” arguments of the “createChart” method in line 10 of Listing

10 are modified. This results in the chart’s dimensions being changed, as shown in Figure

15. To complete the chart, the “unit” attribute for the total amount is defined. Otherwise,

“units” would be displayed.

1 /* creating datasets */
2 myData = .dataSet~new
3 myData~addValue("2012", 10)
4 myData~addValue("2013", 15)
5 myData~addValue("2014", 25)
6 myData~addValue("2015", 40)
7 myData~addValue(">2015", 45)
8

9 /* creating classic ring chart & display it */
10 myRingChart = .JChart~createChart("RingChart", myData, "VBS Meidling", , , 1000, 800)
11 --chartType, dataSet [, title, , ,width, height]
12 myRingChart~unit = "Students" --changing unit of the data displayed in the middle
13 myRingChart~draw

 39

14

15 /* close windows after 20 seconds */
16 say "waiting 20 seconds"
17 call syssleep 20
18

19 /* get access to JBusinessChart classes */
20 ::requires 'JBusinessChart.cls'

Listing 10: 06_ring_chart.rxj

Figure 15: Output 06_ring_chart.rxj

4.8. Combine Column Charts

The combine method of the “JChart” class has two functions. The first function, which

combines multiple charts of the same type into a single “MultiChart” object, is demonstrated

by the following program. First, three different datasets representing the number of students

in a school are created, numbered from one to three. These datasets are then used to

instantiate three separate column charts. To enhance visibility differences, in lines 37 and 28

of Listing 11, each chart is assigned its own color. In line 31, the charts are combined and

the result is assigned the name “myCombinedColumns”. The “draw” method then displays

the business chart, as Figure 16 shows.

 40

1 /* creating datasets */
2 hak1 = .dataSet~new
3 hak1~addValue("2012", 10)
4 hak1~addValue("2013", 15)
5 hak1~addValue("2014", 25)
6 hak1~addValue("2015", 40)
7 hak1~addValue(">2015", 45)
8

9 hak2 = .dataSet~new
10 hak2~addValue("2012", 10)
11 hak2~addValue("2013", 30)
12 hak2~addValue("2014", 20)
13 hak2~addValue("2015", 25)
14 hak2~addValue(">2015", 30)
15

16 hak3 = .dataSet~new
17 hak3~addValue("2012", 30)
18 hak3~addValue("2013", 40)
19 hak3~addValue("2014", 35)
20 hak3~addValue("2015", 25)
21 hak3~addValue(">2015", 20)
22

23 /* creating column charts */
24 c1 = .JChart~createChart("ColumnChart", hak1, "VBS Floridsdorf", "year", "students")
25 c2 = .JChart~createChart("ColumnChart", hak2, "VBS Meidling", "year", "students")
26 c3 = .JChart~createChart("ColumnChart", hak3, "VBS Akademiestraße", "year", "students")
27 c2~color = red
28 c3~color = lightgreen
29
30 /* combining column charts */
31 myCombinedColumns = .JChart~combineCharts(c1, c2, c3)
32 myCombinedColumns~title = "Student Number Development"
33 myCombinedColumns~draw
34
35 /* close windows after 20 seconds */
36 say "waiting 20 seconds"
37 call syssleep 20
38
39 /* get access to JBusinessChart classes */
40 ::requires 'JBusinessChart.cls'

Listing 11: 11_combine_column_charts.rxj

 41

Figure 16: Output 11_combine_column_charts.rxj

4.9. Combine Line Charts

The same process works also with other chart types, as demonstrated in this nutshell

example with line charts. Again, the visual appearance is adjusted to enhance visibility

differences. This is especially important for the legend, because, as Figure 17 shows, it allows

the viewer to easily connect the legend with the corresponding lines in the chart.

1 /* creating datasets */
2 hak1 = .dataSet~new
3 hak1~addValue("2012", 10)
4 hak1~addValue("2013", 15)
5 hak1~addValue("2014", 25)
6 hak1~addValue("2015", 40)
7 hak1~addValue(">2015", 45)
8

9 hak2 = .dataSet~new
10 hak2~addValue("2012", 10)
11 hak2~addValue("2013", 30)
12 hak2~addValue("2014", 20)
13 hak2~addValue("2015", 25)
14 hak2~addValue(">2015", 30)
15

16 /* creating line charts */
17 l1 = .JChart~createChart("LineChart", hak1, "VBS Floridsdorf", "year", "students")
18 l2 = .JChart~createChart("LineChart", hak2, "VBS Meidling", "year", "students")
19 l1~color = red
20 l1~area? = .false
21 l2~area? = .false
22 l2~lineFormat = 3
23

 42

24 /* combining line charts */
25 myCombinedLines = .JChart~combineCharts(l1, l2)
26 myCombinedLines~title = "Student Number Development"
27 myCombinedLines~draw
28

29 /* close windows after 20 seconds */
30 say "waiting 20 seconds"
31 call syssleep 20
32
33 /* get access to JBusinessChart classes */
34 ::requires 'JBusinessChart.cls'

Listing 12: 12_combine_line_charts.rxj

Figure 17: Output 12_combine_line_charts.rxj

4.10. Mixing Column and Line Charts

As mentioned in section 4.8., the combine method of the “JChart” class has two functions.

This nutshell example demonstrates the second functionality: combining or rather mixing a

column and line chart together. This process begins by creating imaginary datasets of

schools and generating corresponding charts from them. By using the “combineCharts”

method, as shown in line 26 of Listing 13, and providing the chart objects as arguments, the

“JChart” class knows that it needs to create a mixed chart. As always, by sending the “draw”

message, the chart is generated with the result in Figure 18.

1 /* creating datasets */
2 hak1 = .dataSet~new
3 hak1~addValue("2012", 10)
4 hak1~addValue("2013", 15)

 43

5 hak1~addValue("2014", 25)
6 hak1~addValue("2015", 40)
7 hak1~addValue(">2015", 45)
8

9 hak3 = .dataSet~new
10 hak3~addValue("2012", 30)
11 hak3~addValue("2013", 40)
12 hak3~addValue("2014", 35)
13 hak3~addValue("2015", 25)
14 hak3~addValue(">2015", 20)
15

16 /* creating column chart */
17 c3 = .JChart~createChart("ColumnChart", hak3, "VBS Akademiestraße", "year", "students")
18 c3~color = lightgreen
19

20 /* creating line chart */
21 l1 = .JChart~createChart("LineChart", hak1, "VBS Floridsdorf", "year", "students")
22 l1~color = red
23 l1~area? = .false
24

25 /* combining different chart types */
26 myMix1 = .JChart~combineCharts(c3, l1) --line chart and column chart order does not matter
27 myMix1~title = "Student Number Development"
28 myMix1~draw
29

30 /* close windows after 20 seconds */
31 say "waiting 20 seconds"
32 call syssleep 20
33
34 /* get access to JBusinessChart classes */
35 ::requires 'JBusinessChart.cls'

Listing 13: 13_mix_column-line_charts.rxj

Figure 18: Output 13_mix_column-line_charts.rxj

 44

4.11. Mixing Combined Charts

The mixing feature of the “combineCharts” methods works also with instances of the

“MultiChart” class. This means that the resulting chart objects from sections 4.8. and 4.9. can

also be mixed, similar to the process in the nutshell example above. This is achieved by first

creating the individual charts, combining them and then combining/mixing the result again,

as shown in line 41 of Listing 14. The final is illustrated in Figure 19.

1 /* creating datasets */
2 hak1 = .dataSet~new
3 hak1~addValue("2012", 10)
4 hak1~addValue("2013", 15)
5 hak1~addValue("2014", 25)
6 hak1~addValue("2015", 40)
7 hak1~addValue(">2015", 45)
8

9 hak2 = .dataSet~new
10 hak2~addValue("2012", 10)
11 hak2~addValue("2013", 30)
12 hak2~addValue("2014", 20)
13 hak2~addValue("2015", 25)
14 hak2~addValue(">2015", 30)
15

16 hak3 = .dataSet~new
17 hak3~addValue("2012", 30)
18 hak3~addValue("2013", 40)
19 hak3~addValue("2014", 35)
20 hak3~addValue("2015", 25)
21 hak3~addValue(">2015", 20)
22

23 /* creating column charts */
24 c1 = .JChart~createChart("ColumnChart", hak1, "VBS Floridsdorf", "year", "students")
25 c2 = .JChart~createChart("ColumnChart", hak2, "VBS Meidling", "year", "students")
26 c3 = .JChart~createChart("ColumnChart", hak3, "VBS Akademiestraße", "year", "students")
27 c2~color = red

28 c3~color = lightgreen
29

30 /* combining column charts */
31 myCombinedColumns = .JChart~combineCharts(c1, c2, c3)
32
33 /* creating line charts */
34 l1 = .JChart~createChart("LineChart", hak1, "VBS Floridsdorf", "year", "students")
35 l2 = .JChart~createChart("LineChart", hak2, "VBS Meidling", "year", "students")
36 l1~color = red
37 l1~area? = .false
38 l2~area? = .false
39 l2~lineFormat = 3
40
41 /* combining line charts */
42 myCombinedLines = .JChart~combineCharts(l1, l2)
43
44 /* combining different combined chart types */
45 myMix2 = .JChart~combineCharts(myCombinedColumns, myCombinedLines)
46 myMix2~title = "Student Number Development"
47 myMix2~draw
48
49 /* close windows after 20 seconds */
50 say "waiting 20 seconds"
51 call syssleep 20
52

 45

53 /* get access to JBusinessChart classes */
54 ::requires 'JBusinessChart.cls'

Listing 14: 14_mix_combined_charts.rxj

Figure 19: Output 14_mix_combined_charts.rxj

4.12. Stack Bar Charts

The nutshell example “21_stack_bar_charts.rxj” demonstrates the use of the “stackCharts”

method of the “JChart” class. Similar to the “combineCharts” method, the “stackCharts”

method can work with different chart types. In this example, bar charts are stacked on top of

each other to create a “StackChart” object, as illustrated in line 31 of Listing 15. Prior to this,

datasets are created (lines 1 to 21) and bar charts are instantiated and customized (lines 23

to 28). The resulting chart is displayed in Figure 20.

1 /* creating datasets */
2 hak1 = .dataSet~new
3 hak1~addValue("2012", 10)
4 hak1~addValue("2013", 15)
5 hak1~addValue("2014", 25)
6 hak1~addValue("2015", 40)
7 hak1~addValue(">2015", 45)
8

9 hak2 = .dataSet~new
10 hak2~addValue("2012", 10)
11 hak2~addValue("2013", 30)
12 hak2~addValue("2014", 20)
13 hak2~addValue("2015", 25)
14 hak2~addValue(">2015", 30)
15

 46

16 hak3 = .dataSet~new
17 hak3~addValue("2012", 30)
18 hak3~addValue("2013", 40)
19 hak3~addValue("2014", 35)
20 hak3~addValue("2015", 25)
21 hak3~addValue(">2015", 20)
22

23 /* create bar charts */
24 b1 = .JChart~createChart("BarChart", hak1, "VBS Floridsdorf", "students", "year")
25 b2 = .JChart~createChart("BarChart", hak2, "VBS Meidling", "students", "year")
26 b3 = .JChart ~createChart("BarChart", hak3, "VBS Akademiestraße", "students", "year")
27 b2~color = turquoise
28 b3~color = pink
29
30 /* stacking bar charts */
31 myStackedBars = .JChart~stackCharts(b1, b2, b3)
32 myStackedBars~title = "Student Number Development"
33 myStackedBars~draw
34
35 /* close windows after 20 seconds */
36 say "waiting 20 seconds"
37 call syssleep 20
38
39 /* get access to JBusinessChart classes */
40 ::requires 'JBusinessChart.cls'

Listing 15: 21_stack_bar_charts.rxj

Figure 20: Output 21_stack_bar_charts.rxj

 47

4.13. Stack Line Charts

The same creation process applies for a stacked line chart. To enhance visibility, the areas

below the lines are filled with the line color in this example, allowing for clearer

representation of the stacked lines.

1 /* creating datasets */
2 hak1 = .dataSet~new
3 hak1~addValue("2012", 10)
4 hak1~addValue("2013", 15)
5 hak1~addValue("2014", 25)
6 hak1~addValue("2015", 40)
7 hak1~addValue(">2015", 45)
8

9 hak2 = .dataSet~new
10 hak2~addValue("2012", 10)
11 hak2~addValue("2013", 30)
12 hak2~addValue("2014", 20)
13 hak2~addValue("2015", 25)
14 hak2~addValue(">2015", 30)
15

16 hak3 = .dataSet~new
17 hak3~addValue("2012", 30)
18 hak3~addValue("2013", 40)
19 hak3~addValue("2014", 35)
20 hak3~addValue("2015", 25)
21 hak3~addValue(">2015", 20)
22

23 /* creating line charts */
24 l1 = .JChart~createChart("LineChart", hak1, "VBS Floridsdorf", "year", "students")
25 l2 = .JChart~createChart("LineChart", hak2, "VBS Meidling", "year", "students")
26 l3 = .JChart~createChart("LineChart", hak3, "VBS Akademiestraße", "year", "students")
27 l1~color = blue
28 l2~color = red
29 l3~color = green
30
31 /* stacking line charts */
32 myStackedLines = .JChart~stackCharts(l1, l2, l3)
33
34 myStackedLines~draw
35 myStackedLines~title = "Student Number Development"
36 /* close windows after 20 seconds */
37 say "waiting 20 seconds"
38 call syssleep 20
39
40 /* get access to JBusinessChart classes */
41 ::requires 'JBusinessChart.cls'

Listing 16: 22_stack_line_charts.rxj

 48

Figure 21: Output 22_stack_line_charts.rxj

4.14. Stack Charts in Percent

The very last nutshell example mirrors the process described in section 4.13. The key

difference is in line 35 of Listing 17. The attribute “toPercent” is changed from the default

value “false” to “true”. This modification alters the representation of the data to percentages,

resulting in the y-axis displaying percentages, as shown in Figure 22.

1 /* creating datasets */
2 hak1 = .dataSet~new
3 hak1~addValue("2012", 10)
4 hak1~addValue("2013", 15)
5 hak1~addValue("2014", 25)
6 hak1~addValue("2015", 40)
7 hak1~addValue(">2015", 45)
8

9 hak2 = .dataSet~new
10 hak2~addValue("2012", 10)
11 hak2~addValue("2013", 30)
12 hak2~addValue("2014", 20)
13 hak2~addValue("2015", 25)
14 hak2~addValue(">2015", 30)
15

16 hak3 = .dataSet~new
17 hak3~addValue("2012", 30)
18 hak3~addValue("2013", 40)
19 hak3~addValue("2014", 35)
20 hak3~addValue("2015", 25)
21 hak3~addValue(">2015", 20)
22

23 /* creating line charts */

 49

24 l1 = .JChart~createChart("LineChart", hak1, "VBS Floridsdorf", "year", "students")
25 l2 = .JChart~createChart("LineChart", hak2, "VBS Meidling", "year", "students")
26 l3 = .JChart~createChart("LineChart", hak3, "VBS Akademiestraße", "year", "students")
27 l1~color = blue
28 l2~color = red
29 l3~color = green
30
31 /* stacking line charts */
32 myStackedLines = .JChart~stackCharts(l1, l2, l3)
33 myStackedLines~title = "Student Number Development"
34
35 /* change data representation to 100 percent*/
36 myStackedLines~toPercent = .true
37 myStackedLines~draw
38
39 /* close windows after 20 seconds */
40 say "waiting 20 seconds"
41 call syssleep 20
42
43 /* get access to JBusinessChart classes */
44 ::requires 'JBusinessChart.cls'

Listing 17: 23_stack_charts_in_percent.rxj

Figure 22: Output 23_stack_charts_in_percent.rxj

 50

5. Brief Discussion

JBusinessChart offers extensive capabilities for business chart creation, but it is important to

recognize its limitations as an initial version. A key limitation is that it does not support the

representation of negative values.

Also, a debatable point is that many methods do not enforce restrictions on the user input.

JBusinessChart relies on the user's common knowledge and familiarity with the framework,

which could lead to errors. Although input validation could be implemented, such checks

were intentionally omitted. During development and expansion, this unrestricted approach

led to the discovery of new functionalities. For example, it became possible to mix

“MultiChart” objects made from column and line charts, a feature initially unintended but

later incorporated. This framework aims to foster creativity and curiosity, allowing users to

explore additional options that may be introduced in future versions. Additional work, such

as implementing error codes, could help balance these considerations by supporting users

in programming while still providing flexibility.

Currently, JBusinessChart offers a diverse range of business chart types comparable to

those available in Microsoft Excel. However, the range of chart types provided by

JBusinessChart is not exhaustive and there is potential to implement new types in the future.

Furthermore, JBusinessChart's architecture could be improved. The continuous expansion

and addition of new chart types and features have led to a complex and tightly intertwined

codebase, making further expansion challenging or, at times, nearly impossible. The

distribution of tasks for canvas creation across the "Canvas" and "CoorSys" classes is, in

retrospect, questionable. Additionally, the approach used for generating the “StackChart”

creates redundancy, which was necessary due to the lack of initial planning. Small changes

are difficult to implement because the code is tightly interwoven, a problem that became

already apparent during development. Rewriting the code may be necessary in the future

to address these issues and improve modularity.

 51

6. Conclusion

In this thesis, JBusinessChart is developed and introduced. JBusinessChart is a framework,

built on top of JDOR, a command handler for Java2D integrated within the BSF4ooRexx

package, which simplifies the creation of business charts. This significantly facilitates and

improves the visual representation of data for ooRexx programmers.

One of the key contributions of JBusinessCharts to ooRexx is making business charts

available to all programmers, even those with little to no prior knowledge of JDOR or

Java2D. However, additional knowledge of JDOR can expand the capabilities of

JBusinessChart. With the user-friendly approach of JBusinessChart and the nutshell

examples, users can create professional charts in a short amount of time. An important

characteristic of this framework is that despite the simplicity of its handling, JBusinessChart

offers considerable customization options for the appearance of business charts, imposing

minimal restrictions on the user.

Looking ahead, JBusinessChart has the potential to become even more powerful by

expanding the range of available chart types and incorporating support for negative

numbers. Additionally, rewriting the existing codebase would be beneficial to facilitate

future development.

 52

References

[1] “Open Object Rexx,” Rexx Language Association, [Online]. Available:
https://www.oorexx.org/about.html. [Accessed 24 July 2024].

[2] R. G. Flatscher, “JDOR - Java2D for ooRexx (and Other Programming Languages),” in
2024 International Rexx Language Symposium Proceedings, R. V. Jansen, Ed.,
Amsterdam, Rexx Language Association, 2024, pp. 88-98.

[3] “BSF4ooRexx download | SourceForge.net,” SourceForge, 7 July 2024. [Online].
Available: https://sourceforge.net/projects/bsf4oorexx/. [Accessed 24 July 2024].

[4] “JDOR Synopsis,” [Online]. Available:
https://wi.wu.ac.at/rgf/rexx/misc/jdor_doc.tmp/jdor_doc.html. [Accessed 30 July
2024].

[5] “Java Download | Java 8, Java 11, Java 17, Java 21, Java 22 - OpenJDK Builds for
Linux, Windows & macOS,” bellsoft, [Online]. Available: https://bell-
sw.com/pages/downloads/#jdk-22. [Accessed 24 July 2024].

[6] “Download oorexx-5.1.0-12859.windows.x86_64.exe (ooRexx (Open Object Rexx)),”
SourceForge, [Online]. Available:
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/oorexx-5.1.0-
12859.windows.x86_64.exe/download. [Accessed 24 July 2024].

[7] “ooRexx (Open Object Rexx) - Browse / oorexx/5.1.0beta at SourceForge.net,”
SourceForge, [Online]. Available:
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/. [Accessed 12
August 2024].

[8] “Download BSF4ooRexx,” SourceForge, [Online]. Available:
https://sourceforge.net/projects/bsf4oorexx/files/latest/download. [Accessed 24
July 2024].

[9] “Download oorexx-5.1.0.12860.windows.x86_64-portable-release.zip (ooRexx
(Open Object Rexx)),” SourceForge, [Online]. Available:
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/portable/oorexx-
5.1.0-12860.windows.x86_64-portable-release.zip/download. [Accessed 12 August
2024].

[10] “ooRexx (Open Object Rexx) - Brows /oorexx/5.1.0beta/portable at
SourceForge.net,” SourceForge, [Online]. Available:
https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/portable/. [Accessed
12 August 2024].

[11] “What is Pascal Case? Definition, Types, and Examples.,” Techopedia, [Online].
Available: https://www.techopedia.com/definition/pascal-
case#:~:text=Pascal%20case%2C%20or%20PascalCase%2C%20is,or%20other%20s
eparators%20between%20words.. [Accessed 29 July 2024].

