
 

 

 

 

 

 

BACHELOR’S THESIS 

Managing an SQLite database with ooRexx 

and JDBC using BSF4ooRexx 

 

submitted by 

Cornelia Hofstetter 

 

intended degree 

Bachelor of Science (WU), BSc (WU) 

 

Student ID number: 01550814 

Degree programme: Wirtschafts- und Sozialwissenschaften 

Supervisor: ao.Univ.Prof. Dr. Rony G. Flatscher 

 

Vienna, July 2025 



 

 

Declaration of Originality 
I hereby declare that: 

1. I have written this Bachelor's thesis myself, independently and without the aid of 
unfair or unauthorized resources. Whenever content has been taken directly or 
indirectly from other sources, this has been indicated and the source referenced. 

2. This Bachelor's Thesis has not been previously presented as an examination paper 
in this or any other form in Austria or abroad. 

3. This Bachelor's Thesis is identical with the thesis assessed by the examiner. 

 

 

_________________   _____________________ 

Date     Signature 

 

  

22.07.2025 



 

 

Abstract 
BSF4ooRexx, which is a bridge between ooRexx and Java, enables the usage of all Java 
capabilities such as the JDBC driver to connect to databases. The objective of this 
bachelor thesis is to demonstrate the abilities of ooRexx and BSF4ooRexx specifically to 
manage a SQLite database by invoking SQL statements using the JDBC driver. This will be 
done in the form of short nutshell examples to showcase the simplicity accompanied by 
an explanation of the SQL and ooRexx commands. Additionally, this thesis aims to serve 
as a complete installation guide for the software components necessary to run the 
nutshell programs on a windows operating system. 

  



i 

 

Table of Contents 
List of Figures ............................................................................................................. iv 

List of Codes .............................................................................................................. vi 

1 Introduction ......................................................................................................... 1 

1.1 ooRexx .......................................................................................................... 1 

1.1.1 History ................................................................................................... 1 

1.1.2 Language ............................................................................................... 1 

1.2 BSF4ooRexx .................................................................................................. 2 

1.3 SQLite .......................................................................................................... 2 

1.3.1 JDBC Driver ............................................................................................ 2 

1.3.2 DB Browser ............................................................................................ 2 

2 Required Software ............................................................................................... 3 

2.1 ooRexx .......................................................................................................... 3 

2.2 Java .............................................................................................................. 5 

2.3 BSF4ooRexx .................................................................................................. 6 

2.4 IntelliJ ........................................................................................................... 8 

2.5 ooRexx Plugin for IntelliJ ................................................................................ 9 

2.6 JDBC Driver ................................................................................................... 9 

2.7 SQLite ........................................................................................................ 10 

2.8 DB Browser ................................................................................................. 10 

3 Database Theory ................................................................................................ 12 

3.1 Definition .................................................................................................... 12 

3.2 Relational Database .................................................................................... 12 

3.2.1 OLTP .................................................................................................... 12 

3.2.2 ACID .................................................................................................... 12 

3.2.3 Normalization ...................................................................................... 13 

3.3 Non-Relational Database ............................................................................ 13 

3.3.1 Key Value Store .................................................................................... 13 

3.3.2 Document Store ................................................................................... 14 

3.3.3 Graph Database ................................................................................... 14 

3.3.4 Column Oriented Database .................................................................. 14 

3.3.5 Object Oriented Database .................................................................... 14 



ii 

 

3.3.6 Grid and Cloud Database ..................................................................... 14 

3.3.7 XML Database ...................................................................................... 14 

3.3.8 Multidimensional Database .................................................................. 14 

3.3.9 Multivalue Database ............................................................................ 14 

3.3.10 Multimodel Database ........................................................................... 14 

3.3.11 OLAP ................................................................................................... 15 

3.4 Database Management Systems.................................................................. 15 

3.5 SQL ............................................................................................................ 15 

3.5.1 DDL Operations ................................................................................... 15 

3.5.2 DML Operations ................................................................................... 15 

3.5.3 Transactions ........................................................................................ 16 

4 Nutshell Examples ............................................................................................. 17 

4.1 Concept ..................................................................................................... 17 

4.2 Connection to Database.............................................................................. 19 

4.3 Routines ..................................................................................................... 21 

4.3.1 showTable ........................................................................................... 21 

4.3.2 getCols ................................................................................................ 23 

4.3.3 tableInfo .............................................................................................. 24 

4.4 SQL Statements .......................................................................................... 25 

4.4.1 CREATE TABLE ..................................................................................... 25 

4.4.2 INSERT ................................................................................................ 28 

4.4.3 ALTER TABLE ........................................................................................ 32 

4.4.4 UPDATE TABLE ..................................................................................... 33 

4.4.5 SELECT with JOIN ................................................................................. 36 

4.4.6 SELECT ................................................................................................ 39 

4.4.7 DELETE FROM with ROLLBACK ............................................................. 42 

4.4.8 DROP TABLE ........................................................................................ 45 

4.5 CURL .......................................................................................................... 48 

5 Round-up and Outlook ....................................................................................... 52 

Appendix .................................................................................................................. 53 

A1. CREATE TABLE ................................................................................................. 53 

A2. INSERT ............................................................................................................ 54 

A3. ALTER TABLE .................................................................................................... 56 



iii 

 

A4. UPDATE TABLE ................................................................................................. 57 

A5. SELECT with JOIN ............................................................................................. 58 

A6. SELECT ............................................................................................................ 60 

A7. DELETE FROM with ROLLBACK ......................................................................... 62 

A8. DROP TABLE .................................................................................................... 63 

A9. CURL ............................................................................................................... 64 

A10. Routine – db_conn.......................................................................................... 66 

A11. Routine – showTable ....................................................................................... 67 

A12. Routine – getCols ........................................................................................... 68 

A13. Routine – tableInfo ......................................................................................... 68 

References ............................................................................................................... 69 

Download Links......................................................................................................... 71 

List of aids for seminar paper/thesis........................................................................... 72 

 

 
  



iv 

 

List of Figures 
Figure 1: Download link ooRexx .................................................................................... 3 
Figure 2: Unblocking file .............................................................................................. 3 
Figure 3: Installation process ooRexx ........................................................................... 3 
Figure 4: Download link Java ........................................................................................ 5 
Figure 5: Installation process Java ................................................................................ 6 
Figure 6: Download link BSF4ooRexx ............................................................................ 6 
Figure 7: Unblocking file .............................................................................................. 7 
Figure 8: Installation file BSF4ooRexx ........................................................................... 7 
Figure 9: Installation process BSF4ooRexx.................................................................... 7 
Figure 10: Download link IntelliJ ................................................................................... 8 
Figure 11: Installation process IntelliJ ........................................................................... 8 
Figure 12: Download link ooRexx Plugin ........................................................................ 9 
Figure 13: Configuration in IntelliJ ................................................................................. 9 
Figure 14: Download link JDBC Driver ........................................................................... 9 
Figure 15: Path for .jar-file .......................................................................................... 10 
Figure 16: Download link SQLite ................................................................................. 10 
Figure 17: Unblock file ............................................................................................... 10 
Figure 18: SQLite command line tools ........................................................................ 10 
Figure 19: Download link DB Browser ......................................................................... 10 
Figure 20: Installation process DB Browser ................................................................. 11 
Figure 21: Entity Relationship Diagram of zoo.db ......................................................... 17 
Figure 22: Table “animals” format ............................................................................... 18 
Figure 23: Table "inhabitants" format .......................................................................... 18 
Figure 24: SQLite command line tool - Create Table .................................................... 25 
Figure 25: DB Browser - Create Table, Select “animals” ............................................... 25 
Figure 26: DB Browser - Create Table, Select "inhabitants" .......................................... 25 
Figure 27: Result of Create Table statement ................................................................ 27 
Figure 28: SQLite command line tool - Insert Into ........................................................ 28 
Figure 29: DB Browser - Insert Into, Select animals ..................................................... 28 
Figure 30: DB Browser - Insert Into, Select inhabitants ................................................ 28 
Figure 31: Result before Insert statement ................................................................... 31 
Figure 32: Result after Insert statement ...................................................................... 31 
Figure 33: SQLite command line tool - Alter Table ....................................................... 32 
Figure 34: DB Browser - Alter Table ............................................................................. 32 
Figure 35: Result after Alter Table ............................................................................... 33 
Figure 36: SQLite command line tool – Insert Into and Update Table ............................ 34 
Figure 37: DB Browser – Table “inhabitants” before Update ......................................... 34 
Figure 38: DB Browser - Table "inhabitants" after Update ............................................. 34 



v 

 

Figure 39: Result after Insert Into and Update ............................................................. 36 
Figure 40: SQLite command line tool - Select with Join ................................................ 36 
Figure 41: DB Browser - Select with Join ..................................................................... 36 
Figure 42: Tables used for Join operation .................................................................... 39 
Figure 43: Result of Select statement with Join ........................................................... 39 
Figure 44: SQLite command line tool - Select ............................................................. 40 
Figure 45: DB Browser - Select ................................................................................... 40 
Figure 46: Result of Select statement ......................................................................... 42 
Figure 47: SQLite command line tool – Select tables, Delete and Rollback ................... 42 
Figure 48: SQLite command line tool - Select tables after Rollback ............................. 43 
Figure 49: DB Browser – Delete, Select “animals” ....................................................... 43 
Figure 50: DB Browser – Delete, Select “inhabitants” .................................................. 43 
Figure 51: DB Browser – Select “animals” again after Rollback .................................... 43 
Figure 52: DB Browser – Select “inhabitants” again after Rollback ............................... 43 
Figure 53: Result of Delete From statement before rollback......................................... 44 
Figure 54: Result of Delete From statement after rollback ........................................... 45 
Figure 55: SQLite command line tool - Drop Table ....................................................... 45 
Figure 56: DB Browser - Drop Table, Select “animals” ................................................. 46 
Figure 57: DB Browser – Drop Table, Select “inhabitants” ............................................ 46 
Figure 58: Result of Drop Table statement .................................................................. 47 
Figure 59: SQLite command line tool - Create Table, Insert Into, Rollback, Drop Table .. 48 
Figure 60: DB Browser - Create Table “animals” .......................................................... 48 
Figure 61: Insert Into, Select table "animals" ............................................................... 48 
Figure 62: Rollback, Select "animals" ......................................................................... 49 
Figure 63: Drop Table, Select "animals" ...................................................................... 49 
Figure 64: Result of Insert Into, rollback and Drop Table .............................................. 51 
 

  



 

vi 

 

List of Codes 
Code 1: Creation of database url................................................................................ 19 
Code 2: Establish database connection ..................................................................... 20 
Code 3: Select statement and format output .............................................................. 21 
Code 4: Get number of columns ................................................................................ 23 
Code 5: Get column names ....................................................................................... 24 
Code 6: Create Table statement ................................................................................. 26 
Code 7: Insert Into with prepared statement ............................................................... 29 
Code 8: Alter Table statement .................................................................................... 32 
Code 9: Insert Into with prepared statement ............................................................... 35 
Code 10: Update with prepared statement ................................................................. 35 
Code 11: Select statement with Join .......................................................................... 37 
Code 12: Format output for Select statement with Join ............................................... 37 
Code 13: Select statement ........................................................................................ 40 
Code 14: Get metadata and format output ................................................................. 41 
Code 15: Close database connection ........................................................................ 41 
Code 16: Delete From statement with Rollback .......................................................... 44 
Code 17: Drop Table statement .................................................................................. 46 
Code 18: Create Table and Insert Into with loop .......................................................... 49 
Code 19: Parse animal weight from website ............................................................... 50 
Code 20: Rollback and Drop Table ............................................................................. 51 
Code 21: zoo1createtable.rexx ................................................................................... 53 
Code 22: zoo2insert.rexx ........................................................................................... 54 
Code 23: zoo3altertable.rexx ..................................................................................... 56 
Code 24: zoo4update.rexx ......................................................................................... 57 
Code 25: zoo5selectjoin.rexx ..................................................................................... 58 
Code 26: zoo6selectcolumns.rexx ............................................................................. 60 
Code 27: zoo7deletefrom.rexx ................................................................................... 62 
Code 28: zoo8droptable.rexx ..................................................................................... 63 
Code 29: curlzoo.rexx ................................................................................................ 64 
Code 30: db_conn routine ......................................................................................... 66 
Code 31: showTable routine ....................................................................................... 67 
Code 32: getCols routine ........................................................................................... 68 
Code 33: tableInfo routine ......................................................................................... 68 
 

 

  



 

1 
 

1 Introduction 
This chapter introduces the programming languages used in this bachelor thesis which 
are ooRexx and SQL as well as Java through BSF4ooRexx. First, we will take a closer look 
at ooRexx, its history and syntax. Then the focus will be on BSF4ooRexx, the bridge to the 
widely used programming language Java. Lastly the relational database engine SQLite as 
well as the JDBC Driver and the DB Browser will be presented in more detail. 

1.1 ooRexx 
ooRexx which is short for Open Object Rexx is a high-level, object-oriented programming 
language that works on all operating systems and is maintained to this day. Because of its 
cross-platform interoperability ensured by its compliancy with the "Information 
Technology – Programming Language REXX” ANSI X3.274-1996 standard programs from 
its predecessor “classic” Rexx work under ooRexx as well. (Wikipedia, 2025-a) 

1.1.1 History 
As Smalltalk became the main programming language at IBM in 1988 the project Oryx led 
by Simon C. Nash was tasked with merging the “classic” Rexx language with the object 
model of Smalltalk. As a result, Object Rexx was developed and presented in 1992. 
(EDM2, 2019) 

The discontinuation of Object Rexx at IBM led to the transfer of the source code and 
licensing rights to the non-profit Rexx Language Association (RexxLA) in 2004. ooRexx was 
released in 2005 as free and open-source software and has been continuously improved 
ever since, ooRexx 5.2.0 being the newest version released in 2025. (Wikipedia, 2025-a) 

1.1.2 Language 
Rexx is an easy to learn programming language, that was designed with the general user 
in mind in contrast to languages that require more advanced programming knowledge 
such as C or Fortran. (Cowlishaw, 1984) 

A focus lies on readability which is implemented in a way that Rexx code reads almost like 
normal text. There are several design choices for the purpose of improving readability 
such as the support for mixed upper- and lower-case letters, usage of blanks in the most 
readable way and the omission of punctuation. (Cowlishaw, 1984) 

In an attempt to make the programming language as user-friendly as possible particular 
value was placed on high predictability of features as well as consistency without making 
it too restrictive. (Cowlishaw, 1984) 

 

https://en.wikipedia.org/wiki/American_National_Standards_Institute


 

2 
 

As opposed to the popular strong typing languages, Rexx supports natural data typing 
which means all data are defined in the same form and only checked depending on their 
usage. (Cowlishaw, 1984) Also variables do not need to be declared. 

In accordance with the emphasis on Rexx being “human centric” it was a design choice 
to keep the language small with few key words to make it easier to learn and remember. 
(Flatscher, 2013) 

1.2 BSF4ooRexx 
BSF4ooRexx was developed based on the Bean Scripting Framework which was created 
by IBM to allow the use of scripting in Java code. It acts as a bridge between ooRexx and 
Java that allows for communication in both directions. For Java objects to be created in 
ooRexx the BSF.CLS package is required. (Wikipedia, 2024) 

1.3 SQLite 
SQLite was started in 2000 and is an in-process library that implements a self-contained, 
serverless, zero-configuration, transactional SQL database engine. (SQLite, 2025) The 
entire database including definitions, tables, indices and data is stored as a single file that 
can be accessed by more than one process at the same time. To make this possible the 
file is locked during writing. (Wikipedia, 2025-b) 

SQLite can be operated without the use of a database management system or a database 
administrator. (Wikipedia, 2025-b) In the process of developing the nutshell examples for 
this thesis the command-line tool as well as the DB Browser for SQLite were used to 
navigate and manipulate an SQLite database. 

1.3.1 JDBC Driver 
Via the Java Database Connectivity API any kind of tabular data as in this case a SQLite-
database can be accessed by Java applications. The JDBC driver is necessary to connect 
to the database, send queries and update statements to the database and retrieve and 
process the results received as a response from the database. (Oracle, 2024) 

1.3.2 DB Browser 
The DB Browser for SQLite (DB4S) is a high quality, visual, open source tool designed to 
create, search and edit SQLite or SQLCipher database files. (SQLitebrowser, 2025) It 
works on all operating systems and provides a graphical interface that allows for the 
management of tables and data. Additionally, the execution of SQL queries is supported 
in order to define and manipulate SQLite databases. (SQLitebrowser, 2025) 

  



 

3 
 

2 Required Software 
The following programs are needed to run the nutshell programs from chapter 4. For each 
software component a quick installation guide is provided including screenshots for every 
step. The installation steps mentioned are only valid for the Windows operating system, 
but there are versions of all the programs available for Linux and Apple. The full download 
links are given at the end of the thesis. 

2.1 ooRexx 
ooRexx is available for all operating systems at sourceforge.net where older versions can 
be downloaded as well. For this paper the following version was used: ooRexx 5.0.0-
12583.windows.x86_64.exe.  

 

 

 

After downloading it is important to right click on the file in the download folder and 
accept the security warning to avoid an error message when trying to execute the file. 

 
Figure 2: Unblocking file 

Then simply follow the steps of the installation wizard as shown in the following 
screenshots. 

 

 

 

 

 

 

 

 

 

Figure 3 (continued): Installation process ooRexx 

Figure 1: Download link ooRexx 

Figure 3: Installation process ooRexx 



 

4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 (continued): Installation process ooRexx Figure 3 (continued): Installation process ooRexx 

Figure 3 (continued): Installation process ooRexx Figure 3 (continued): Installation process ooRexx 

Figure 3 (continued): Installation process ooRexx Figure 3 (continued): Installation process ooRexx 



 

5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Java 
Java can be retrieved from different websites such as azul.com and java.com. In this case 
Liberica Full JDK 24.0.1+11 x86 64 for Windows from bell-sw.com was installed, but older 
versions are sufficient as well to run the nutshell programs in chapter 4. 

 

 

 

 

 

 

 

 

Figure 3 (continued): Installation process ooRexx Figure 3 (continued): Installation process ooRexx 

Figure 3 (continued): Installation process ooRexx 

Figure 4: Download link Java 



 

6 
 

Just follow the installation client. Nothing needs to be changed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 BSF4ooRexx 
After the successful installation of ooRexx and Java the “bridge” BSF4ooRexx can be 
installed. The download link of BSF4ooRexx_install_v850-20240707-refresh is available 
on sourceforge.net as well as older versions. 

 

 

 

  

Figure 5 (continued): Installation process Java 

Figure 5 (continued): Installation process Java Figure 5 (continued): Installation process Java 

Figure 5: Installation process Java 

Figure 6: Download link BSF4ooRexx 



 

7 
 

As with the ooRexx file the downloaded .zip-file needs to be “unblocked” before 
unpacking. 

 

 

 

 

 

In the unpacked BSF4ooRexx_install_v850-20240707-refresh folder go to “install”, then 
select the right operating system and click on install.cmd. 

 

 

 

 

 

 

 

 

Then a command window opens to install the program. If neither Libre Office nor Open 
Office is installed there will be a warning message. In that case press Enter to continue 
the installation process. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Unblocking file 

Figure 8: Installation file 
BSF4ooRexx 

Figure 9: Installation process BSF4ooRexx 



 

8 
 

After the installation process you should be able to run Rexx programs using the Bean 
Scripting Framework via the shortcut GUI RexxTry Program or in the command line. 

2.4 IntelliJ 
 

 

 

 

 

As there is a ooRexx plugin available for the integrated development environment IntelliJ 
it was used for developing and running the nutshell programs. Apart from the fee-based 
version for professional development there is a community edition that is completely free 
and sufficient in this case. Both can be downloaded from the jetbrains.com download 
section. Then just execute the .exe file and follow the installation wizard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 (continued): Installation process IntelliJ 

Figure 11 (continued): Installation process IntelliJ Figure 11 (continued): Installation process IntelliJ 

Figure 10: Download link IntelliJ 

Figure 11: Installation process IntelliJ 



 

9 
 

 

 

 

 

 

 

 

 

 

2.5 ooRexx Plugin for IntelliJ 
In order to program in ooRexx the ooRexx plugin for IntelliJ is required. It can be retrieved 
from sourceforge.net. For this paper the version ooRexxPlugin-2.5.0-GA was used. 

 

 

 

It is important to notice that the downloaded .zip file does not need to be unpacked, but 
only installed in IntelliJ as follows: On the startpage of IntelliJ go to “Settings”, then 
“Plugins” and in the drop-down menu select “Install Plugin from Disk”. Choose the 
downloaded .zip file and you should be able to use ooRexx as programming language in 
IntelliJ. 

 

 

 

 

 

 

 

2.6 JDBC Driver 
The JDBC driver necessary for the SQLite database connection can be downloaded from 
github.com.  

 

Figure 11 (continued): Installation process IntelliJ 

Figure 13 (continued): Configuration 
in IntelliJ 

Figure 12: Download link ooRexx 
Plugin 

Figure 13: Configuration in IntelliJ 

Figure 14: Download link JDBC 
Driver 



 

10 
 

In order to be found by Java the downloaded .jar-file needs to be put in the class path. This 
can be done by putting the file in the lib directory of the program folder BSF4ooRexx850 
as it is part of the class path.  

 

 

 

 

 

 

 

 

The .jar-file could also be placed in the following newly created directory: 
"%USERPROFILE%\BSF4ooRexx\lib" (Windows) or "$HOME/BSF4ooRexx/lib". Another 
option is to check and adapt the current environment variables. To do this type 
“sysdm.cpl” in the search bar, go to “Advanced” and then select “Environment variables”. 
There select the line “CLASSPATH” and click on the “Edit” icon. Then either add a path via 
“New” or search for an existing folder. 

2.7 SQLite 
SQLite can be retrieved from the download page of sqlite.org, 
https://www.sqlite.org/download.html. As it is the case with the ooRexx programs the .zip 
file needs to be “unblocked” before unpacking. 

 

 

 

 

 

18 

2.8 DB Browser 
The DB Browser for SQLite, which allows for a more graphical interface for managing 
SQLite databases can be downloaded from https://sqlitebrowser.org/dl/. There are two 
options the standard installer and a .zip version without installer. Here the “Standard 
installer for 64-bit Windows” was selected. 

  

Figure 15: Path for .jar-file 

Figure 18: SQLite 
command line tools 

Figure 17: Unblock file 

Figure 16: Download link 
SQLite 

Figure 19: Download link DB Browser 



 

11 
 

Then execute the downloaded file and just follow the installation wizard according to the 
screenshots below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 20 (continued): Installation process DB Browser 

Figure 20 (continued): Installation process DB Browser Figure 20 (continued): Installation process DB Browser 

Figure 20 (continued): Installation process DB Browser Figure 20 (continued): Installation process DB Browser 

Figure 20: Installation process DB Browser 



 

12 
 

3 Database Theory 
In this chapter some theoretical concepts concerning databases in general and the 
different types of database systems will be discussed. First a general definition will be 
given. Then the difference between relational and non-relational databases will be 
identified followed by information on database management systems and the query 
language SQL. 

3.1 Definition 
“A database is an organized collection of structured information, or data, typically stored 
electronically in a computer system.” (Oracle, 2020) 

A database management system such as MySQL can be used to operate the database 
which results in a database system. A database usually consists of tables that store 
interconnected data in rows and columns. (Oracle, 2020) 

3.2 Relational Database 
Depending on the kind of usage different types of databases can be identified. 

Relational databases are based on the relational model which provides a standard to 
unify the way how data is stored, namely in formally described tables. Before it took a lot 
of knowledge about the specific data base to retrieve data as there was no common way 
to structure databases. (Oracle, 2021) 

Logical and physical data are stored separately. Changing the physical structure of the 
database does not affect the logical side such as tables, views and indexes. (Oracle, 
2021) 

A relational database consists of tables with columns and rows that each contain a 
unique instance of data. The tables are also in a relationship with each other. Typically, 
SQL is used to access and modify the data in relational databases. (Jatana et al., 2012) 

3.2.1 OLTP 
OLTP stands for Online Transaction Processing and is mostly used by relational databases 
as the data must always be consistent for fast-paced requirements such as the day-to-
day operations in organizations like sales, accounting, manufacturing and so forth. 
(Harrington, 2016) 

3.2.2 ACID 
In contrast to non-relational databases relational databases are compliant with the ACID 
model that is used to check the reliability of databases. The properties of the ACID models 
are as follows: 



 

13 
 

• Atomicity means that a transaction is considered failed, if not every single part of 
the transaction was completed successfully. 

• Consistency stands for a valid state of the database before and after a transaction. 

• Isolation requires a serialised processing of transactions, so that they cannot 
affect each other when they are executed at the same time. 

• Durability ensures that data stays in the same state and does not change after a 
finished transaction. (Jatana et al., 2012) 

3.2.3 Normalization 
The concept of normalization of databases aims to avoid data redundancy and thus 
problems with updates of the tables. Redundancy means that there is at least one item 
that occurs more than once in a database. Duplicates add potentially a lot of work to 
changes like “insert”, “update” or “delete” as they need to be executed on all the tables 
that include the same data. (Eessaar, 2016) 

There are up to six normal forms, but usually only the criteria of the first three are met. The 
first normal form requires that a single cell does not hold more than one value, there must 
be at least a composite primary key, rows and columns are unique and for each column 
and row there can only be one value in the table. 

For the second normal form the first normal form needs to be already established as a 
prerequisite and there cannot be any repeating groups. That means some values are 
dependent on a part of the composite primary key, which is not allowed in the second 
normal form. In order to solve this, the dependencies are shown in separate tables. 

In third normal form it is not allowed that an attribute which is not part of the primary key 
is dependent on another non-prime attribute and the tables must be in second normal 
form as well. This connection needs to be placed in a separate table in order to comply 
with the third normal form. (FreeCodeCamp, 2022) 

3.3 Non-Relational Database 
Non-relational databases do not rely on related tables as related databases do, but have 
different ways to structure, store and retrieve data. While they do not necessarily provide 
the ACID properties as discussed before they eventually are consistent. They also do not 
possess a fixed schema, nor do they support the query language SQL. (Jatana et al., 2012) 

So called NOSQL databases are primarily classified on how they store the data. (Jatana 
et al., 2012) 

3.3.1 Key Value Store 
The data is stored in pairs of a string key and the value, which can be of any type such as 
string, integer, array or an object. For this schema-less kind of data storage the 
requirement of a fixed data model goes away. 



 

14 
 

3.3.2 Document Store 
Here a computer program with a storage structure that is called a document is 
responsible for managing data stored in a database. The data is encoded in a standard 
format such as XML, BSON, PDF or Microsoft office. Via queries or APIs documents 
corresponding to certain parameters can be retrieved quickly. 

3.3.3 Graph Database 
The data is represented via nodes, properties and edges. The nodes stand for entities like 
people or objects and possess further information represented by properties. Together 
with the edges, that show the relationship of the nodes the full picture of the database 
can be observed. 

3.3.4 Column Oriented Database 
In contrast to row-oriented databases column store databases provide data storage in 
columns which leads to the serialization of all data of one column. Adding new values for 
all rows of a column is more efficient as the other columns remain unchanged. 

3.3.5 Object Oriented Database 
Data is stored as objects in a database system. As it is the case in object-oriented 
programming inheritance and thus reusability is supported. 

3.3.6 Grid and Cloud Database 
This is a combination of grid and cloud computing in order to manage different databases 
with geographically distributed locations. Cloud computing helps with accessing remote 
hardware and storage resources. 

3.3.7 XML Database 
In this database system XML data is stored while XML is the main storage format. 

3.3.8 Multidimensional Database 
Here data is stored in a n-dimensional matrix. The precompilation and storage of relevant 
aggregates allows for interactive roll-ups and drill-downs. 

3.3.9 Multivalue Database 
A multivalue database possesses three dimension which are “field”, “value” which is a 
breakdown of “field” and “subvalue” which has in turn more detail on “value”. Advantages 
are the high flexibility of the database as well as the option of having calculated columns 
via small calculation programs. 

3.3.10 Multimodel Database 
Multimodel databases are a mixture of some of the database types that were already 
mentioned in order to maximize the advantages through combination. (Jatana et al., 2012) 



 

15 
 

3.3.11 OLAP 
OLAP which is short for online analytical processing is mostly used by non-relational 
databases even though there are OLAP relational databases as well. OLAP provides for 
example the data on organizational performance in the right format and serves as the 
basis for high-level decisions. (Harrington, 2016) 

3.4 Database Management Systems 
A comprehensive software program that serves as an interface between databases and 
users is called a database management system (DBMS). On one hand it enables the users 
to retrieve, update and manage the information stored in the database, on the other hand 
administration including performance monitoring, backup and recovery is enabled. There 
are many popular database management systems such as My SQL, Microsoft Access and 
Oracle Database. (Oracle, 2020) 

3.5 SQL 
SQL which is short for Structured Query Language was developed at IBM in the 1970s and 
is the most used programming language to work with relational databases. It consists of 
a variety of statements to define, manipulate and query data. (Oracle, 2020) 

The most common SQL commands can be divided into data definition language 
commands and data manipulation language commands where DDL commands deal with 
the creation or changes of the entire table and DML commands keep the data up to date. 
(Oracle, n.d.-a) 

3.5.1 DDL Operations 
The SQL statement “Create Table” creates an empty table that has a name and column 
names with a specified format for example “Text” for strings or “Integer” for numeric data. 
This command is mainly used at the beginning of building a database and not so much 
needed later when the management of the data inside the table is more relevant than the 
table itself. 

“Alter Table” is used to change the structure of a table. That means a column is either 
added or removed, but it can also be used for changes of table constraints and column 
attributes. (Oracle, n.d.-a) 

The command “Drop Table” removes the table entirely from the database. (Oracle, n.d.-a) 
If foreign key constraints are enabled in SQLite the data inside the table is deleted first to 
invoke any violations of foreign key restrictions. If that is the case the table is not dropped. 
(SQLite, 2024) 

3.5.2 DML Operations 
The “Insert” statement enables the addition of new rows to an existing table. The table 
can be empty or already filled with data before the “Insert”. 



 

16 
 

With the “Update” command the value of one or more existing fields in the table can be 
changed or added. 

The “Delete” statement is used to remove one or more rows from a table. 

The select statement does not change any data in the tables but only shows the content 
of one or more tables in a specified way. The rows that match the selection statement are 
called the “result set”. The selection can also be further specified by adding a “where” 
clause for only selecting rows that satisfy certain criteria. Via the “Join” operator data from 
two or more tables can be viewed combined. (Oracle, n.d.-a) 

3.5.3 Transactions 
In order to ensure data consistency as well as data concurrency, transactions, which are 
sets of one or more SQL statements are used. Transactions either leave the database in a 
consistent state with a “commit” or all changes are completely undone in a so-called 
“rollback”. Data concurrency means that more than one user should be able to access a 
database at the same time. There are different levels on which the data can be “locked” 
for other users while they are being manipulated. While a table lock locks the whole table 
if there are uncommitted transactions, a row lock locks all of the rows in a table and 
ensures that only one user can access the same row. (Oracle, n.d.-a) 

 

  



 

17 
 

4 Nutshell Examples 
The explanation of the nutshell examples is split in five parts. First the concept of the 
database used in the programs is presented. Afterwards the establishment of the 
connection to the SQLite database using the JDBC driver is explained more thoroughly. 
Then the routines responsible for retrieving and formatting the resulting data output into 
readable tables, that are called in all the programs are described more precisely. 
Furthermore, the SQL commands as well as functions like prepared statements and 
rollback of a transaction are dealt with. Finally, a standalone program is introduced that 
explores the curl function in Rexx in combination with SQL statements. 

4.1 Concept 
The following chapters aim to describe the definition and manipulation of a simple 
database consisting of two tables with merely a few entries using only Rexx or 
BSF4ooRexx and SQL syntax. It is recommended to run the nutshell programs in the same 
order as the chapters to avoid error messages. At least the first one 
“zoo1createtable.rexx” is a prerequisite for the other nutshell examples. 

After executing the nutshell programs but the last one, which would delete everything, the 
SQLite database “zoo.db” should look like this: 

 

 

 

 

 

 

The table “inhabitants” includes the following data on animals that live in the zoo: “name” 
shows the first name of the animal, column “animal” holds the type of animal such as 
“lion” and age, which is added later via an “Alter Table” command. Then there is the 
second table “animals” which has information on animals in general. It possesses the 
columns “animal_id”, which is the way the animal is named on the website of the zoo 
Vienna, “name” which is the animal type like “lion” and “weight”. The relationship 
according to the entity-relationship model would be 1:n meaning one type of animal can 
be represented more than once in the zoo, but every zoo “inhabitant” can only be one type 
of animal. However, SQLite foreign key support was not activated so this relationship is 
not enforced by primary and foreign keys. 

 

Figure 21: Entity Relationship Diagram of zoo.db 



 

18 
 

The visual representation of the tables will be structured as shown in figure 22 and 23: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 22: Table “animals” format 

Figure 23: Table "inhabitants" format 



 

19 
 

4.2 Connection to Database 
As a first step the connection to an SQLite database needs to be established. For this the 
folder for the database and the SQLite database file itself should be created if not already 
available. Afterwards the connection to the SQLite database must be configured resulting 
in the connection object “conn” that is used further for creating the statement objects in 
the nutshell programs. This happens in the routine “db_conn” that is part of the 
“zoodbtools.rexx” program that includes routines that apply to all the nutshell programs. 

First the “getProperty” method from the System class in Java package java.lang is used to 
determine the home directory of the current user. Thanks to BSF4ooRexx it is possible to 
use Java classes like that. This should work for Windows as well as for Linux operating 
systems. Then a folder “Database” is created in the home directory via the Rexx utility 
function “sysMkDir” with the return code 0 for successful creation and 183 for the case, 
that the folder already exists. Subsequently the database file used for the nutshell 
programs “zoo.db” is added to the whole path which in combination with “jdbc:sqlite:” 
results in the url variable. Lastly the database connection object “conn “is retrieved from 
the “db_conn” routine. 

 

 

 

 

 

 

 

 

 

 

  

Code 1: Creation of database url 



 

20 
 

The routine “db_conn” enables the access to the SQLite database. First the JDBC driver 
class and the driver manager class are loaded. In the next step the JDBC driver is handed 
to the driver manager. Via the “getConnection” method the object “conn” for the database 
connection is created. This connection can be verified with a simple “if” statement that 
says “Connection successful” if the return code is not 0. If the connection object should 
be 0, the specific syntax error “No result object” is raised accompanied by the message 
“Connection to database failed”. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 2: Establish database connection 



 

21 
 

4.3 Routines 
The routines which are described in the following chapters are called in all of the nutshell 
programs and therefore only once explained in more detail. They can be found in the 
“zoodbtools.rexx” program which is accessed by the nutshell programs. The purpose of 
the routine “showTable” is to select the table and display the current state in a readable 
way to verify the success of the SQL commands in the main program. For formatting the 
output, a method is needed to get the number of columns which is provided by the routine 
“getCols”. Also, the names of the columns are coming from the routine “tableInfo”. Both 
routines “getCols” and “tableInfo” showcase Rexx syntax, but could be replaced using 
metadata of the result set, which will be explained later. 

4.3.1 showTable 
Within the routine “showTable” data from the table which is passed as an argument from 
the main program is selected and made visually readable by adding borders and 
separators. The object “conn” is required as well to create the statement object just like it 
is the case in the main programs. Then the names of the columns which are saved in the 
variable “Attribute.List” are retrieved from the subroutine “tableInfo” passing table and 
the statement object as arguments.  

Afterwards the “select” query is executed using the “executeQuery” method of the 
statement object and thus creating the result set “rSet”. As the length of the outer and 
inner borders made of “=” and “-“ respectively depend on the number of columns, this 
information is retrieved from the subroutine “getCols” using the result set object “rSet”. 
The “getCols” routine will be explained in more detail in the next chapter. Then the header 
variable is constructed out of a “|” at the beginning and between the names of the 
columns which are retrieved from the “Attribute.List” variable. This is done as many times 
as there are columns in the table that was passed as an argument to the routine. In this 
program the width of each column is 15.  

 

 

 

 

 

 

 

 

  Code 3: Select statement and format output 



 

22 
 

 

 

 

 

To print the table name as well as the header including outer, inner borders and column 
names the Rexx “say” command is used. In the second step the data output is formatted 
in a readable way. This is done for every row in the result set as long as there is data for 
the “next” method of the “rset” object. As it was the case for the header, the data variable 
also starts with a “|” and then includes the field from the “getString” method of the “rSet” 
object. The width of each column is again 15 and every field ends with a “|” to create a 
vertical separating line in the output. At the end of every “do” loop the entire row is printed 
via the Rexx “say” command and at the end the outer border is printed to mark the end of 
the table. At the end of the routine no value is returned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 3 (continued): Select statement and format output 

Code 3 (continued): Select statement and format output 



 

23 
 

4.3.2 getCols 
In the routine “getCols” the number of columns is determined with Rexx functionalities 
using the result set as an argument. The Rexx command “signal on” is evoked when the 
program runs into an error. This is the case when the “do” block reaches an error because 
the “getString” method of the result set with a certain number does not exist. That means 
one column must be subtracted to receive the number of columns of the table in the 
result set which is what happens when the trapname “done” is reached. Finally, the 
routine returns the number of columns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 4: Get number of columns 



 

24 
 

4.3.3 tableInfo 
The routine “tableInfo” stores the column names in an array using the table and the 
statement object as arguments. First the result set is created by executing the “PRAGMA 
table_xinfo” query. This is specific to SQLite and stores every column name in a new row. 
Then a new array is created namely “Attribute.List” which is then filled with the data in the 
result set “rSet” via the “getString” method as long as the “next” method of the result set 
is valid. At the end of the routine the array “Attribute.List” with the column names is 
returned. 

 

 

 

 

 

 

 

 

 

 

 

  

Code 5: Get column names 



 

25 
 

4.4 SQL Statements 
In this chapter only the “SQL” parts of the nutshell programs are described in more detail. 

4.4.1 CREATE TABLE 
For the purposes of this thesis two tables, “animals” and “inhabitants”, should be created 
in the until now empty SQLite database “zoo.db”. They serve as the base to showcase 
different SQL commands in simple nutshell programs. After creating these tables, the 
success should be verified by selecting them followed by formatting and printing the 
result. To achieve this ooRexx and Java via the BSF4ooRexx bridge as well as the JDBC 
driver for database connection should be used. Creating the tables and performing a 
“select” command could be done alternatively by using the DB Browser or the SQLite3 
command line. As the tables are necessary for the other nutshell programs to function, 
“zoo1createtable.rexx” needs to be run before any of the following programs. 

As shown in figure 24, 25 and 26 the tables hold no data. 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 24: SQLite command line tool - Create Table 

Figure 25: DB Browser - Create Table, Select “animals” 

Figure 26: DB Browser - Create Table, Select "inhabitants" 



 

26 
 

First the statement object needs to be created with the “createStatement” method of the 
JDBC connection object “conn”. (Oracle, n.d.-b) To perform data defining language 
operations as in this case the “Create table” SQL command, the “executeUpdate” 
method of the before created “statement” object is used. The SQL command is provided 
as a string with the “-“ to go over more than one line according to Rexx syntax. Finally, the 
result set object “rSet” is checked if the update was successful. Because of the “if not 
exists” in the SQL command the result set is also 0, meaning successful, if the tables have 
already existed before the update. The code lines for the table creation are executed twice 
with different data as two tables are needed for the presentation of the “join” command. 

Afterwards the routine “showTable” is called for both tables which includes a “select” 
command and the “design” of the output which has already been discussed in more 
detail. The connection object “conn” is passed, as it is necessary to create “statements” 
within the routine. Finally, the connection to the database is closed via the “close” method 
of the “conn” object. To have access to the routines “db_conn” and “showTable” the 
“zoodbtools.rexx” program is required as well as the “BSF.CLS” file to gain access to the 
Java functionalities. This is accomplished by using the “::REQUIRES” statement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 6: Create Table statement 



 

27 
 

As shown in the following figure the output of the program “zoo1createtable.rexx” the 
folder “Database” did not exist in the home directory before, so it was newly created. Then 
the connection to the SQLite database was successfully established and two tables were 
created that show no data yet. 

 

 

 

  

 

 

 

 

 

 

  

Figure 27: Result of Create Table statement 



 

28 
 

4.4.2 INSERT 
After successfully creating two empty tables in the SQLite database “zoo.db” they need 
to be filled with data. In this case the table “animals” should hold different types of 
animals while the table “inhabitants” should include specific animals that live in the zoo. 
The lines in this chapter should show how to insert data into the until now empty tables 
with SQL statements by using ooRexx and Java with the help of BSF4ooRexx and the JDBC 
driver. Before and after the “Insert” the tables should be displayed graphically to prove 
that it has worked. Again, this could be done by using the DB Browser or via the SQLite3 
command line tool.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: DB Browser - Insert Into, Select animals 

Figure 28: SQLite command line tool - Insert Into 

Figure 30: DB Browser - Insert Into, Select inhabitants 



 

29 
 

As an attempt to prevent SQL injection attacks prepared statements should be used 
instead of the regular statement object. The program “zoo1createtable.rexx” is a 
prerequisite for this code to work. 

To emphasize the difference that the update makes, the tables are displayed via the 
routine “showTable” to show their state before the update. The “insert” command is a data 
manipulation language operation. Therefore, prepared statements with variable bind 
parameters were used. (Oracle, n.d.-b) Instead of the classic “statement” object the 
“preparedStatement” object was created via the “prepareStatement” method of the 
“conn” object. The values in the SQL command are replaced with “?” and passed later 
with the “setString” method. Then the prepared statement gets executed via the 
“executeUpdate” method, just like the normal statement, but with empty brackets. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

Code 7: Insert Into with prepared statement 



 

30 
 

The passing of variables with the “setString” method and the “executeUpdate” method 
afterwards is then repeated with different values. Then a new prepared statement is 
defined for the second table and with only two variables which are filled again with the 
“setString” method and “executeUpdate”. Afterwards the tables are displayed again via 
the “showTable” routine and the database connection is closed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 7 (continued): Insert Into with prepared statement 



 

31 
 

Figure 31 shows the empty tables before the “insert” statement. 

 

 

 

 

 

 

 

 

To show the progress, the content of both tables is selected again via the “showTable” 
routine. 

  

 

 

 

 

 

 

 

 

 

 

  

Figure 32: Result after Insert statement 

Figure 31: Result before Insert statement 



 

32 
 

4.4.3 ALTER TABLE 
The goal of this program is to demonstrate the DDL operation “Alter Table” which in this 
case adds a column “age” to the existing table “inhabitants” in the SQLite database 
“zoo.db”. Here ooRexx and Java via BSF4ooRexx should be used together with the JDBC 
driver to enable database connection. Before and after the “Alter Table” command the 
table should be selected and the result printed in a readable way. As before DB Browser 
and the SQLite3 command line tool are other ways to achieve this. To be able to change 
the structure of the table, it must already be there, so it is crucial that the table 
“inhabitants” has been already created by the program “zoo1createtable.rexx”. 

 

 

 

 

 

 

 

 

 

 

 

As this command does not have several variables a classic “statement” object is created 
via the “createStatement” method of the JDBC connection object “conn”. Again, the table 
is shown before any changes are implemented for comparison purposes. As before, the 
SQL command is provided as a string. Afterwards the contents of the table are selected 
again via the “showTable” routine to verify the result and finally the database connection 
is closed via the “close” method of the “conn” object. 

 

 

 

 

 

 

 
Code 8: Alter Table statement 

Figure 34: DB Browser - Alter Table 

Figure 33: SQLite command line tool - Alter Table 



 

33 
 

 

 

 

 

 

 

 

 

Figure 35 shows that the table “inhabitants” has a new column “age” after the update. 

 

 

 

 

 

 

 

 

 

 

 

4.4.4 UPDATE TABLE 
Now data inside the table “inhabitants” in the SQLite database “zoo.db” is supposed to 
be changed. A lion with the name Emma should be inserted into the table “inhabitants” 
followed by a change of the value in the column “animal” from “lion” to “zebra”. This 
program should insert data into a table and then change it with the SQL “update” 
command. Prepared Statements should be used as there are variables to avoid injection 
attacks. Before and after the update the table “inhabitants” should be shown to present 
the success of the update. DB Browser or the SQLite3 command line tool are valid options 
to process the insert and update commands. However, they should be implemented with 
ooRexx and Java via BSF4ooRexx and the JDBC driver for connecting to the database as 
already explained. As it is the case for the other programs, the nutshell example 
“zoo1createtable.rexx” needs to be run before running this program in order to create the 
required table “inhabitants”. 

Figure 35: Result after Alter Table 

Code 8 (continued): Alter Table statement 



 

34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 37: DB Browser – Table “inhabitants” before Update 

Figure 36: SQLite command line tool – Insert Into and Update Table 

Figure 38: DB Browser - Table "inhabitants" after Update 



 

35 
 

First one set of data is inserted into the table “inhabitants” in the form of a prepared 
statement. For this the “preparedStatement” object is created with the 
“prepareStatement” method of the “conn” object. Then the values for the variables are 
given via the “setString” method and finally the “preparedStatement” object is executed 
via the “executeUpdate” method with empty brackets. Afterwards the contents of the 
table is selected in the “showTable” routine to show the data before the update. 

 

 

 

 

 

 

 

 

 

The prepared statement for the SQL “update” follows the same logic as with the SQL 
“insert” command. A prepared statement object is created via the “prepareStatement” 
method, and the SQL “update” command is provided as a string except for the values for 
animal and the “where”-clause. These binding variables are given in the next step via the 
“setString” method of the “preparedStatement” object. Subsequently the prepared 
statement is executed. The routine “showTable” is called again, to verify the changes that 
have been made to the data. At the end of the program, the database connection is closed 
with the “close” method of the “conn” object. 

 

 

 

 

 

 

 

 

 

  
Code 10: Update with prepared statement 

Code 9: Insert Into with prepared statement 



 

36 
 

Figure 39 shows the table “inhabitants” after the insert, which is before the update and 
after the update. The field in the column “animal” was changed from “lion” to “zebra” 
where the animals name equals “Emma”. 

  

 

 

 

 

 

 

 

 

 

4.4.5 SELECT with JOIN 
In contrast to the programs above, there should be no changes to the data or the tables in 
the SQLite database “zoo.db”. A table structure should be selected that contains the 
following information: name, animal and weight. The columns “name” and “animal” come 
from the table “inhabitants” while the column “weight should be retrieved from the table 
“animals”. The tables should be joined via the columns “animal” and “name” respectively. 
The following implementation is supposed to use ooRexx and Java via BSF4ooRexx and 
the JDBC driver to show the result of an SQL “join” command. The resulting table should 
be formatted and printed. As before, doing this with the DB Browser or the SQLite3 
command line tool would be an option as well. To function, the programs 
“zoo1createtable.rexx” and “zoo2insert.rexx” must be run in this order to create the tables 
and fill them with the necessary data. 

 

 

 

 

 

 

 

 

Figure 39: Result after Insert Into and Update 

Figure 40: SQLite command line tool - Select with Join 

Figure 41: DB Browser - Select with Join 



 

37 
 

Initially, the statement object “statement” is created via the “createStatement” method 
of the database connection object “conn”. Now for the SQL “select” command the 
“executeQuery” method of the “statement” object is used. As a “join” operation is used 
data is selected from two tables to form a new table. In this case it is a left join which 
means that from the first table all data and from the second table only corresponding data 
is selected. The whole SQL command is entered as a string over three lines with the “-“ 
symbol following Rexx syntax. 

Afterwards the routine “showJoin” is called with the result set as variable to format and 
show the result. 

 

 

 

 

 

In the routine “showJoin” the selected data is formatted for a readable output. As a first 
step it is checked whether the select was successful. If yes, a message is printed, if no it 
should say “Error”. 

Then the outer border which should consist of “=” forming a double line and the inner 
border with a single line out of “-“ are defined as “border.top” and “border.in”. Also the 
titles of the columns should be separated by “|” which is declared as header. Then the 
headers “Field1” to “Field3” are created for the three columns of the newly joined table. 
Finally, the outer border, the header and the inner boarder are printed via “say” as stated 
in the Rexx syntax. 

 

 

 

 

 

 

 

 

 

 

Code 11: Select statement with Join 

Code 12: Format output for Select statement with Join 



 

38 
 

 

 

 

 

 

 

The “next” method is used to iterate through the result set until it is empty. (Oracle, n. d.) 
Then the data separator is defined as “|”. With the “getString” method of the “rset” object 
the data from each of the three columns is retrieved. At the end of the “do” block the 
variable “data” contains one row of the table. To close the table with the before defined 
outer border the variable “border.top” is printed again. 

 

 

 

 

 

 

 

 

 

 

Finally the database connection is closed at the end of the program. 

 

 

 

 

 

 

 

 

 

Code 12 (continued): Format output for Select statement with Join 

Code 12 (continued): Format output for Select statement with Join 

Code 12 (continued): Format output for Select statement with Join 



 

39 
 

These are the tables used for the “join” operation. 

 

 

 

 

 

 

 

 

 

 

 

This is the result of the left join with a “where” clause. 

 

 

 

 

4.4.6 SELECT 
While in the other nutshell programs the routines “getCols” and “tableInfo” were used to 
gain information on the number of columns and the column names, this example 
showcases another method to get this type of information. Therefore, only the columns 
“name” and “weight” from the SQLlite “zoo.db” database table “animals” should be 
selected, formatted and printed. The select command would work with DB Browser or 
SQLite3 command line tools with no problem, but the point of this nutshell program is to 
show the use of meta data from the result set. So, this example should be implemented 
with ooRexx and Java via BSF4ooRexx and the JDBC driver for database connectivity. As 
in the previous example the programs zoo1createtable.rexx and zoo2insert.rexx need to 
be run first, before running this program to have data, that can be selected. 

 

 

 

 

Figure 42: Tables used for Join operation 

Figure 43: Result of Select statement with Join 



 

40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, the statement object is created via the “createStatement” method of the connection 
object. Then the “Select” command that selects the columns “name” and “weight” from 
the table “animals” is executed with the “executeQuery” method. The table name is 
printed as well as information on the output and the “showSelect” routine is called. 

 

 

 

 

 

 

The routine “showSelect” uses the result set “rSet” as an argument to derive the meta 
data via the “getMetaData()” method from it. The newly created object “rSetMeta” 
includes information on the number of columns via the method “getColumnCount()”. The 
creation of the outer and inner border is the same as in the “showTable” routine except 
the variable columncount is used instead of the “getCols” routine. The header starts with 
an “|” followed by the column name via “getColumnName” and a “|”. That is repeated as 
long as there are columns. Finally the outer border, the header and the inner border are 
printed via the Rexx command “say”. 

Code 13: Select statement 

Figure 44: SQLite command line tool - Select 

Figure 45: DB Browser - Select 



 

41 
 

 

 

 

 

 

 

 

 

 

 

 

 

The “do” block is again the same as in the “showTable” routine with the exception that the 
variable “columncount” is used instead of the routine “getCols”. As the header the data 
output starts with an “|” as well, followed by the value from the result set via the 
“getString” method and ends with a “|”. This gets repeated for every column. Afterwards 
the created “data” string is printed as well as the outer border string. At the end of the 
program the database connection is closed via the “close” method of the “conn” object. 

 

 

 

 

 

 

 

 

 

 

 

 

Code 14: Get metadata and format output 

Code 14 (continued): Get metadata and format output 

Code 15: Close database connection 



 

42 
 

Figure 46 shows the result of the “Select” command. Only the values of the columns 
“name” and “weight” are displayed. 

 

 

 

 

 

 

 

4.4.7 DELETE FROM with ROLLBACK 
After having created and manipulated the tables “animals” and “inhabitants” in the 
SQLite “zoo.db” database, the data of both tables are now supposed to be deleted, but 
the deletion should be reversed with eventually no changes occurring. This should be 
implemented with the “rollback” command whose effect should be visualized by 
selecting, formatting and printing the tables before and after the rollback. This is also 
doable in the DB Browser or the SQLite3 command line tool. However, in this thesis 
ooRexx and Java with the help of BSF4ooRexx and the JDBC Driver for connecting to the 
database should be used. The programs “zoo1createtable.rexx” and “zoo2insert.rexx” are 
prerequisites for this code to function properly. 

  

 

 

 

 

 

 

 

 

 

 

  

Figure 46: Result of Select statement 

Figure 47: SQLite command line tool – Select tables, Delete and Rollback 



 

43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

     52 

Firstly, the statement object “statement” is created as before using the 
“createStatement” method of the database connection object “conn”. Then a transaction 
is started with the “begin transaction” command in SQL followed by the “delete” SQL 
statements for both tables. Subsequently the “showTable” routine is called to show the 
content of the tables, which should be empty as all data has been deleted. Then the SQL 
operation “rollback” is executed which reverses the effects of the “delete” SQL 
commands. Alternatively, the SQL statement “Commit” would cause all changes to be 
saved. To prove that the rollback worked, the “showTable” routine is called a second time 

Figure 50: DB Browser – Delete, Select “inhabitants” 

Figure 48: SQLite command line tool - Select tables after Rollback 

Figure 49: DB Browser – Delete, Select 
“animals” 

Figure 52: DB Browser – Select “inhabitants” 
again after Rollback 

Figure 51: DB Browser – Select “animals” 
again after Rollback 



 

44 
 

and should show entries in both tables. At the end of the program the database 
connection is closed again with the “close” method of the “conn” object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure 53 the tables are empty after the execution of the “delete” command, 
but contain data after the rollback as illustrated in figure 54. 

 

 

 

 

 

 

 

  

Figure 53: Result of Delete From statement before rollback 

Code 16: Delete From statement with Rollback 



 

45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.8 DROP TABLE 
Finally, the tables “inhabitants” as well as “animals” of the SQLite database “zoo.db” 
should be deleted entirely. This ooRexx program with the help of Java via BSF4ooRexx and 
the JDBC driver for the database connection should delete the entire tables “animals” and 
“inhabitants”. The tables should be shown in a formatted way before being dropped. If 
that was successful information should be given. Dropping a table via the SQL “Drop” 
command in the SQLite3 command line or just pressing “Delete table” in the DB Browser 
are alternative options. In order to work, the program “zoo1createtable.rexx” needs to be 
run before running this nutshell example. 

 

 

 

 

 

 

 

 

 

 

Figure 54: Result of Delete From statement after rollback 

Figure 55: SQLite command line tool - Drop Table 



 

46 
 

 

 

 

 

 

 

 

 

It starts with the creation of the statement object “statement” using the 
“createStatement” method of the database connection object “conn”. Then the data of 
the tables are selected via the “showTable” routine to show the tables before making any 
changes. Then the result set object “rSet” is created via the “executeUpdate” method of 
the “statement” object and the SQL “drop table” command is given as a string in brackets. 
For this SQL command the result set should be 0 if the execution was successful. This is 
checked with an “if” clause. Finally, the database connection is closed again via the 
“close” method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 17: Drop Table statement 

Figure 57: DB Browser - Drop Table, Select “inhabitants” Figure 56: DB Browser – Drop Table, Select “animals” 



 

47 
 

As the figure below shows the tables “animals” and “inhabitants” exist and contain data 
before they are dropped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 58: Result of Drop Table statement 



 

48 
 

4.5 CURL 
This program works on its own and explores the “curl” command in combination with SQL 
commands as well as the transaction/rollback function. First the table “animals” should 
be created in the SQLite database “zoo.db”. Then a list of animals should be created, that 
is inserted into the table as well as the animals weight that should be retrieved from the 
website of the zoo Vienna. This should be implemented by using the “curl” command to 
get the HTML-code of the website of the zoo Vienna. Curl is a shell command in Windows 
and Linux that is given to the shell via the “ADDRESS SYSTEM” statement. Then the output 
should be narrowed further down to the information on the animals weight by using the 
“parse” command. After the insert as well as after the rollback the table should be 
selected, formatted in a readable way and printed to view the progress. All of this should 
be implemented using ooRexx and Java via BSF4ooRexx with JDBC driver for connecting 
to the SQLite database. Just the SQL commands could be executed with the SQLite 
command line tool or the DB Browser as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59: SQLite command line tool - Create Table, Insert Into, Rollback, Drop Table 

Figure 60: DB Browser - Create Table “animals” 

Figure 61: Insert Into, Select table "animals" 



 

49 
 

 

 

 

 

 

 

 

 

 

 

 

It starts with the creation of the statement object via the “createStatement” method of 
the connection object. Afterwards the table animals is created if it does not exist already 
with the column names “animal_id”, “name” and “weight”. They are all type “text”. 

Then a new array called “animalslist” is created and filled with values, namely animals 
that are presented on the zoo Vienna website, with the “makeArray” method. 
Subsequently a transaction is started via the SQL command “Begin transaction”. The 
“insert into” SQL statement is placed inside a loop over all the entries in the array 
“animalslist” to fill the table with the value in the “animal” variable. The weight of the 
respective animal is determined with the help of the “animalWeight” routine that uses the 
argument “animal”. Then the loop ends. 

 

 

 

 

 

 

 

 

 

 
Code 18: Create Table and Insert Into with loop 

Figure 62: Rollback, Select "animals" 

Figure 63: Drop Table, Select "animals" 



 

50 
 

In the routine “animalWeight” the weight of the respective animal in the argument 
“animal” is retrieved from the “zoovienna” website in real time. First the variable 
“command” is constructed out of “curl”, the url of the zoo and the “animal” variable in 
lowercase. Then an array to store the output is created as well as one to store error 
messages. Then the “ADDRESS” keyword statement is executed with before defined 
variables. To extract only the small information needed which is the weight of the animal 
in this case the Rexx “parse” command is used with a pattern before and after the 
information of interest. As the weight is not always given in the same format, it is checked 
with an “if” clause that changes the variables if the first value is numeric. To verify the 
result, it is printed via the “say” command. The double “|” serves to eliminate any spaces.  

 

Finally, the routine returns the variables weight and unit of the respective animal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After inserting data into the table the routine “showTable” is called to show the state of 
the table after defining and manipulating the data. Then the SQL command “Rollback” is 
executed and the “showTable” routine is called again to check if the table is empty again. 
Afterwards the table is dropped via the “drop table” SQL statement that gets executed 
with the “executeUpdate” method of the “statement” object. If the result set is 0 then the 
table was successfully dropped. At the end of the program the connection is closed via 
the “close” method of the connection object and the “exit” instruction finally ends it. 

 

 

Code 19: Parse animal weight from website 



 

51 
 

 

 

 

 

 

 

 

 

 

 

As visible in the figure below the information was curled and then parsed correctly from 
the website of the zoo Vienna. The table was filled with data until the rollback set the 
contents back to zero. Finally, the table was dropped with a result set of 0 and therefore 
“Table dropped” was printed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 20: Rollback and Drop Table 

Figure 64: Result of Insert Into, rollback and Drop Table 



 

52 
 

5 Round-up and Outlook 
First an overview of the programming languages that were used for several nutshell 
programs was given. Afterwards the information on how to install the necessary software 
components was provided. Subsequently the difference between relational and non-
relational databases was shown along with a more detailed explanation of the two types 
of databases. Finally, the combination of the programming languages ooRexx, Java via the 
bridge BSF4ooRexx and SQL was demonstrated in some nutshell examples. 

While the aim of this thesis was only to show the basic functionalities of SQLite, further 
work could be about designing a more complex database taking integrity constraints into 
account. For this, SQLite foreign key support would need to be activated. With a bigger 
database looking into indexing could be interesting to speed up database queries. 
Another field to explore would be triggers, a tool to automate the response of the database 
to certain events such as “Insert” or “Update”.  

 

 

 

 

  



 

53 
 

Appendix 
A1. CREATE TABLE 
Listing 21 shows the complete code for the program zoo1createtable.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 21: zoo1createtable.rexx 

Code 21 (continued): zoo1createtable.rexx 



 

54 
 

A2. INSERT 
Listing 22 shows the complete code for the program zoo2insert.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 22 (continued): zoo2insert.rexx 

Code 22: zoo2insert.rexx 



 

55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 22 (continued): zoo2insert.rexx 

Code 22 (continued): zoo2insert.rexx 



 

56 
 

A3. ALTER TABLE 
Listing 23 shows the complete code for the program zoo3altertable.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Code 23 (continued): zoo3altertable.rexx 

Code 23: zoo3altertable.rexx 



 

57 
 

A4. UPDATE TABLE 
Listing 24 shows the complete code for the program zoo4update.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Code 24 (continued): zoo4update.rexx 

Code 24: zoo4update.rexx 



 

58 
 

A5. SELECT with JOIN 
Listing 25 shows the complete code for the program zoo5selectjoin.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 25 (continued): zoo5selectjoin.rexx 

Code 25 (continued): zoo5selectjoin.rexx 

Code 25: zoo5selectjoin.rexx 



 

59 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 25 (continued): zoo5selectjoin.rexx 



 

60 
 

A6. SELECT 
Listing 26 shows the complete code for the program zoo6selectcolumns.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code 26 (continued): zoo6selectcolumns.rexx 

Code 26: zoo6selectcolumns.rexx 



 

61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 26 (continued): zoo6selectcolumns.rexx 

Code 26 (continued): zoo6selectcolumns.rexx 



 

62 
 

A7. DELETE FROM with ROLLBACK 
Listing 27 shows the complete code for the program zoo7deletefrom.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Code 27 (continued): zoo7deletefrom.rexx 

Code 27: zoo7deletefrom.rexx 



 

63 
 

A8. DROP TABLE 
Listing 28 shows the complete code for the program zoo8droptable.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 28 (continued): zoo8droptable 

Code 28: zoo8droptable.rexx 



 

64 
 

A9. CURL 
Listing 29 shows the complete code for the program curlzoo.rexx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 29 (continued): curlzoo.rexx 

Code 29: curlzoo.rexx 



 

65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 29 (continued): curlzoo.rexx 

Code 29 (continued): curlzoo.rexx 



 

66 
 

A10. Routine – db_conn 
Listing 30 shows the complete code for the routine db_conn. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 30: db_conn routine 



 

67 
 

A11. Routine – showTable 
Listing 31 shows the complete code for the routine showTable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Code 31 (continued): showTable routine 

Code 31: showTable routine 



 

68 
 

A12. Routine – getCols 
Listing 32 shows the complete code for the routine getCols. 

 

 

 

 

 

 

 

 

 

 

A13. Routine – tableInfo 
Listing 33 shows the complete code for the routine tableInfo. 

 

 

 

 

 

 

 

 

 

 

  

Code 32: getCols routine 

Code 33: tableInfo routine 



 

69 
 

References 
Cowlishaw, M. F. (1984). The design of the REXX language. IBM Systems Journal, Vol 23, 

No 4, 1984. Retrieved May 7, 2025, from 
https://dl.acm.org/doi/pdf/10.1145/24686.24687 

EDM2. (2019). IBM Object REXX. Retrieved May 7, 2025, from 
https://www.edm2.com/index.php/IBM_Object_REXX 

Eessaar, E. (2016). Database Normalization Theory and The Theory of Normalized 
 Systems: Finding a Common Ground. Baltic J. Modern Computing, Vol. 4, 

No. 1, 5-33. Retrieved June 8, 2025, from 
https://www.researchgate.net/profile/Erki-
Eessaar/publication/297731569_The_Database_Normalization_Theory_and_the_
Theory_of_Normalized_Systems_Finding_a_Common_Ground/links/56e18d9508
ae40dc0abf50a1/The-Database-Normalization-Theory-and-the-Theory-of-
Normalized-Systems-Finding-a-Common-Ground.pdf 

Flatscher, R. G. (2013). Introduction to Rexx and ooRexx: From Rexx to Open Object Rexx 
(ooRexx) (1. ed.). Facultas Verlags- und Buchhandels AG. 

FreeCodeCamp. (2022). Database Normalization – Normal Forms 1nf 2nf 3nf Table 
Examples. Retrieved June 8, 2025, from 
https://www.freecodecamp.org/news/database-normalization-1nf-2nf-3nf-table-
examples/ 

Harrington, J. L. (2016). Relational Database Design and Implementation. Elsevier Inc. 
Retrieved May 14, 2025, from 
https://books.google.at/books?hl=de&lr=&id=yQgfCgAAQBAJ&oi=fnd&pg=PP1&d
q=database+design&ots=qQFxlYVA2v&sig=iGewcrNn5SkuZqpywZ76_eDai80&re
dir_esc=y#v=onepage&q=database%20design&f=false 

Jatana, N., Puri, S., Ahuja, M., Kathuria, I., Gosain, D. (2012). A Survey and Comparison of 
Relational and Non-Relational Database. International Journal of Engineering 
Research & Technology (IJERT), 2278-0181, Vol. 1 Issue 6. Retrieved May 14, 2025, 
from 
https://d1wqtxts1xzle7.cloudfront.net/76957411/a-survey-and-comparison-of-
relational-and-non-relational-database-libre.pdf?1640094061=&response-
content-
disposition=inline%3B+filename%3DA_Survey_and_Comparison_of_Relational_
an.pdf&Expires=1747240350&Signature=YuYTP2lM6JKHOUIHrqnUhRdkY~byEfyr
MOYQWhPxLtdHa12WmFmlfmAVTlaghV6J0iG6~aeQPTL5RQr3nRLEpVzjwI0zMuP
XrZaJgWaJ5lpGAaydeVkXR9fsnGbEtNJChW9KhXOQ3RfiQqH0nk-



 

70 
 

g6L393ukAzdwhKa967M-
QNZJi1SlX3t7nOiIYm5WWIMwyxgY~kXjapRveNlftNEIGT8f19eQ6Bu4025vHbZvd4
SSjsqwqdTrzfmqjgl7DjZy32sRfLmzBimMZeGQUtHMNvPCRGO8KRoS-
CwFe7zLsBrndIBXLp11SGBtvR37lUTXSUT-AJ2Vw9WUqVbuxnhpSDg__&Key-Pair-
Id=APKAJLOHF5GGSLRBV4ZA 

Oracle. (n.d.-a). A Relational Database Overview. Retrieved June 1, 2025, from 
 https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html 

Oracle. (n.d.-b). JDBC-getting started. Retrieved May 22, 2025, from 
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/JDBC-
getting-started.html#GUID-44000A82-7B5E-49A9-BB87-8A3A794E8F3A 

Oracle. (2020). What Is a Database?. Retrieved May 14, 2025, from 
https://www.oracle.com/uk/database/what-is-database/ 

Oracle. (2021). What Is a Relational Database? (RDBMS)?. Retrieved May 14, 2025, from 
https://www.oracle.com/uk/database/what-is-a-relational-database/ 

Oracle. (2024). JDBC Introduction. Retrieved May 7, 2025, from 
https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html 

SQLite. (2024). SQLite Foreign Key Support. Retrieved June 2, 2025, from 
 https://www.sqlite.org/foreignkeys.html 

SQLite. (2025). About SQLite. Retrieved May 7, 2025, from 
https://www.sqlite.org/about.html 

SQLitebrowser. (2025). DB Browser for SQLite. Retrieved May 7, 2025, from 
https://sqlitebrowser.org/ 

Wikipedia. (2024). Bean Scripting Framework. Retrieved May 7, 2025, from 
https://en.wikipedia.org/wiki/Bean_Scripting_Framework 

Wikipedia. (2025-a). Object Rexx. Retrieved May 7, 2025, from 
https://en.wikipedia.org/wiki/Object_REXX 

Wikipedia. (2025-b). SQLite. Retrieved May 7, 2025, from 
https://en.wikipedia.org/wiki/SQLite 

 

 

  



 

71 
 

Download Links 
Java  https://bell-sw.com/pages/downloads/#jdk-24 (retrieved 27.04.2025) 

ooRexx https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/ 

(retrieved 27.04.2025) 

BSF4ooRexx https://sourceforge.net/projects/bsf4oorexx/files/GA/BSF4ooRexx-
850.20240304-GA/ (retrieved 27.04.2025) 

IntelliJ https://www.jetbrains.com/idea/download/?section=windows 

(retrieved 27.04.2025) 

Plugin IntelliJ https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ 

ooRexxIDEA/GA/2.5.0/ (retrieved 27.04.2025) 

JDBC Driver https://github.com/xerial/sqlite-jdbc/releases (retrieved 27.04.2025) 

SQLite  https://www.sqlite.org/download.html (retrieved 27.04.2025) 

DB Browser https://sqlitebrowser.org/dl/ (retrieved 27.04.2025) 

 

  



Wirtschaftsuniversität Wien 
Vienna University of Economics and Business 

 
 
 
 

72 
 

List of aids for seminar paper/thesis 

Title of paper/thesis: Managing an SQLite Database with ooRexx and 
JDBC using BSF4ooRexx 

Author(s): 

Last name(s), first name(s), student ID number(s):  
Hofstetter, Cornelia, 01550814 

 

Aids/tools 
used 

Type(s) of use Affected 
areas/chapters 

Documentation 

ChatGPT ChatGPT 
was used 
to describe 
ooRexx 
code 
 

4.2 
Connection 
to Database 
p. 20 
 
4.5 Curl p. 50 

https://chatgpt.com/share/685172d2-
81cc-8000-9d0c-b95f714d26d0 

ChatGPT 
 

ChatGPT 
was used 
to gain 
general 
information 
on a topic 

Abstract https://chatgpt.com/share/685172d2-
81cc-8000-9d0c-b95f714d26d0 

 

I hereby declare that I have listed all the aids I have used in the list above. If no aids have 
been used, it is also indicated in the list (to be listed under “Aids/tools used: none”). 

 

 

______________ ________________________________ 

Date Signature(s) 

 

22.07.2025 


	1.1 ooRexx
	1.1.1 History
	1.1.2 Language

	1.2 BSF4ooRexx
	1.3 SQLite
	1.3.1 JDBC Driver
	1.3.2 DB Browser

	2.1 ooRexx
	2.2 Java
	2.3 BSF4ooRexx
	2.4 IntelliJ
	2.5 ooRexx Plugin for IntelliJ
	2.6 JDBC Driver
	2.7 SQLite
	2.8 DB Browser
	3.1 Definition
	3.2 Relational Database
	3.2.1 OLTP
	3.2.2 ACID
	3.2.3 Normalization

	3.3 Non-Relational Database
	3.3.1 Key Value Store
	3.3.2 Document Store
	3.3.3 Graph Database
	3.3.4 Column Oriented Database
	3.3.5 Object Oriented Database
	3.3.6 Grid and Cloud Database
	3.3.7 XML Database
	3.3.8 Multidimensional Database
	3.3.9 Multivalue Database
	3.3.10 Multimodel Database
	3.3.11 OLAP

	3.4 Database Management Systems
	3.5 SQL
	3.5.1 DDL Operations
	3.5.2 DML Operations
	3.5.3 Transactions

	4.1 Concept
	4.2 Connection to Database
	4.3 Routines
	4.3.1 showTable
	4.3.2 getCols
	4.3.3 tableInfo

	4.4 SQL Statements
	4.4.1 CREATE TABLE
	4.4.2 INSERT
	4.4.3 ALTER TABLE
	4.4.4 UPDATE TABLE
	4.4.5 SELECT with JOIN
	4.4.6 SELECT
	4.4.7 DELETE FROM with ROLLBACK
	4.4.8 DROP TABLE

	4.5 CURL
	A1. CREATE TABLE
	A2. INSERT
	A3. ALTER TABLE
	A4. UPDATE TABLE
	A5. SELECT with JOIN
	A6. SELECT
	A7. DELETE FROM with ROLLBACK
	A8. DROP TABLE
	A9. CURL
	A10. Routine – db_conn
	A11. Routine – showTable
	A12. Routine – getCols
	A13. Routine – tableInfo

