WIRTSCHAFTS
UNIVERSITAT

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

gouis BN aaces <7 AMBA

BACHELOR’S THESIS

Managing an SQLite database with ooRexx
and JDBC using BSF400Rexx

submitted by
Cornelia Hofstetter

intended degree

Bachelor of Science (WU), BSc (WU)

Student ID number: 01550814
Degree programme: Wirtschafts- und Sozialwissenschaften
Supervisor: ao.Univ.Prof. Dr. Rony G. Flatscher

Vienna, July 2025

Declaration of Originality

| hereby declare that:

1. I have written this Bachelor's thesis myself, independently and without the aid of
unfair or unauthorized resources. Whenever content has been taken directly or
indirectly from other sources, this has been indicated and the source referenced.

2. ThisBachelor's Thesis has not been previously presented as an examination paper
in this or any other form in Austria or abroad.

3. This Bachelor's Thesis is identical with the thesis assessed by the examiner.

22.07.2025 Lonolo, | ; »5,5[

Date Signature

Abstract

BSF4o0Rexx, which is a bridge between ooRexx and Java, enables the usage of all Java
capabilities such as the JDBC driver to connect to databases. The objective of this
bachelor thesis is to demonstrate the abilities of ooRexx and BSF4ooRexx specifically to
manage a SQLite database by invoking SQL statements using the JDBC driver. This will be
done in the form of short nutshell examples to showcase the simplicity accompanied by
an explanation of the SQL and ooRexx commands. Additionally, this thesis aims to serve
as a complete installation guide for the software components necessary to run the
nutshell programs on a windows operating system.

Table of Contents

LIS Of FI U S ettt et et st e st e s e et s e ensaeensasansnssnsnssnsessnseesnsenens iv
(I ES] Ao 0 To [PP Vi
1 INTFOAUCTION ettt et e e et et et ea e easaaeaneenes 1
1.1 OOREXX .ttt e e e 1
1.1.1 [T (0] Y 2 PP PRSPPIt 1
1.1.2 (B2] o T = (U= T (PR PP TP PP PPNt 1

1.2 BSFAOOREXX . ccuuuiiiiiiiiiiiiiiiiiii et aae 2
LR T (O | I | (- O PRSP RPPPPPRPPPPRRPPPRt 2
1.3.1 B0 T O B 1= PPN 2
1.3.2 DB BrOWSE ..iuiiiiiiiiiiiiii ettt et s e e a e 2

B £ (Yo (U] (=T ST o) iYL= | (=T 3
2.1 OOREXX cuiiiiiiiiii i 3
2.2 JAVA ittt et et e e e e e e aa e 5
2.3 BSF4OOREXX .uiiiuiiiiiiiiiiiiiiiiiiiiii e 6
24 INTELLT .ottt et et e eaas 8
2.5 OO0REXX PLUZIN fOr INtELLJ ceuenieeiniii i e e e e e e e e 9
2.6 JDBEC DIV ittt ettt ettt e e e e e e e e eeeas 9
2.7 SQLITE ettt ettt e e e e e raa e ena 10
2.8 DB BrOWSE . ettt ettt ettt et e et e e e e e 10

R BT-1 =] o 1= =T I 4 [=Yo | V2 PP 12
3.1 DefiNItiON .cuuieiiiii e 12
3.2 Relational Database.......c.cveuvvieiiiniiiiiiiiiiiiiii 12
3.2.1 O] I PP PR P PPPPR PPN 12
3.2.2 ACID .ttt e e et e et eetaa e e taa e et eaaa s 12
3.2.3 NOIMALZATION ..eeiiiiiiiiiie et ea e 13

3.3 Non-Relational Databaseccoeviiiiiiiiiiiiiiiiii e 13
3.3.1 LG A= | (U3 (o] £ Y PN 13
3.3.2 DOCUMENT STOrE..cuuiiiiiiiiiiiiiiiiii it 14
3.3.3 Graph Database ...c.cuiiiiiiiic e 14
3.34 Column Oriented Database.......cccveuiiiiiiiiiiiiiiiiiiiiiicccce e, 14
3.3.5 Object Oriented Databaseccvvuieriiiiiiiiiiei et e e 14

3.3.6 Grid and CloUud Database c..cueuieiniiiiiiiiiiiiiei et eeeeaeaens 14

3.3.7 XML Database.......ccoivuiiiiiiiiiiiiiiiiiiii 14
3.3.8 Multidimensional Database.........ccooouvviiiiiiiiiiiiiiiiiiiiii e, 14
3.3.9 Multivalue Databasec.cocuviiuiiiiiiiiiiiiiiiii e 14
3.3.10 Multimodel Database........cccoeuiiuiiiiiiiiiiiiiiiiiiii 14
TR T B B O] Y PP PP PR 15
3.4 Database Management SYSTEMIS.....vu it ee e ees 15
R 1 | PP PO PPP PPN 15
3.5.1 DDL OPEratioNS cuuiunieiiiieiieiieiie et ee e eeeeeneeneeneeneeneeneenaenstaenstnsansennes 15
3.5.2 DML OPerationNs cuucue ettt et et e ene e enaeneenaeneaneensennan 15
3.5.3 TranNSACTIONS ..ceuuiiuiiiiiiiiiii ittt ea e e eaaee 16

I N [0 <] o = L ¢z 1] o] (=T S 17
4.1 {070 o [o3 -1 o} (P 17
4.2 Connectionto Database.......c...ccoiiiiiiiiiiiiiiiiii 19
4.3 ROUTINES ..ttt e a e e 21
4.3.1 ShOWTADLE ..vuiiiiiiiii 21
4.3.2 =LY { o £ 23
4.3.3 TADLEINTO ceuieiiiiii 24
4.4 Y0 IS =1 (=] 0 0 1=T o < TS 25
4.4.1 CREATE TABLEeeeiee ettt et e e e et e eeea 25
4.4.2 1NN] = o U UPP PR UPPRRPPPINN 28
4.4.3 ALTER TABLE ... ettt e et e een e 32
4.4.4 UPDATE TABLE ...ttt ettt 33
4.4.5 SELECTWIth JOIN c.ceeiiiiiiieii ettt e 36
4.4.6] = I = 0 I PP PP PR UPPRR PP 39
4.4.7 DELETE FROM with ROLLBACKc..uiiiiiiiiiiiiieeeie e 42
4.4.8 DROP TABLE ...ttt e e e et e e e e e e e eeen 45
A5 CURL ettt e e e et e e e e e e enas 48
5 Round-up and OUTLOOKeueuiiiiieei et eee e e e ee e s e e s eaaanaans 52
FaY o] o1=T o o |1 TR 53
AT.CREATE TABLE ...ttt ettt e e e et e e et e et e e eeea e e eenaeeeenans 53
A2 INSERT .ttt ettt et ettt e ettt e et e e et e e et e e ean e e enn e eena e eenans 54
AS.ALTER TABLE ...ttt et e et e e ee e e e e e e eenans 56

A4 UPDATE TABLE ... e 57

A5. SELECT WIth JOIN c..ceeiii ettt et s e e s e e e e eenae e e eenaes 58
AB. SELECT ..ttt et ettt s e e e e e e aaaes 60
A7.DELETE FROM With ROLLBACKeitiieeiiee ettt ettt e e e et e eeeaans 62
AB.DROP TABLE ...ttt e e e et e et e e eeeae e e eenae e e eenans 63
A, CURL .ttt ettt et e et e e et e e taa e e et e et ea e ettt e een e eena e eeenans 64
A10. Routing —db_CONN....cuiiiiiiiiiiiiiiiiiiici e e 66
A11. Routine = ShowTable........c.oiiiiiiiiiiiiiiiiiiii e 67
AT2. ROUTINE — BBTCOLS cuuiuiiiiie ettt te e ee e e ee e e eeeneeeensaneansaneansanaansanns 68
A13. Routine —tablelnfocceuiuiiiiiiiii e 68
Lo (=T =] oot SO PO 69
Download LinKS.....ccuiiuiiiiiiiiiiiiiiii e 71
List of aids for SemMinar PAPEr/INESIS ..uu it eee e eae e e e eneanas 72

List of Figures

Figure 1: Download lINK OOREXXiuiiiiiiiiiiireireeireeeirteereeeeeeneeensensnsessnsessnsenensensnns 3
Figure 2: UnDBLOCKING fIile ..euiiniieii ittt e et e e s e e e s e e e e anees 3
Figure 3: Installation ProCesSS OOREXX cuuivuiiuiiniiiiiiiiiiriieiieie ettt et et et et eeeeeeseneensennes 3
Figure 4: Download LINK JAVac.eeiiniiiiiiee ettt et ee e e et s e e e e enees 5
Figure 5: Installation ProCeSS JaVa ...c.veiiniiii ittt e e e e e e e e 6
Figure 6: Download link BSFAOOREXX ..c.cvuieniiniiiiiiiieieiieie et ete et et et eeeeeeeeeeneennes 6
Figure 7: UnbLloCKING file cueninii i ettt e e e e e s e s s e e e e eaas 7
Figure 8: Installation file BSFAOOREXXvuivuiiiiiiiiiiiieie ettt e e e e e e 7
Figure 9: Installation proCess BSFAOOREXX.....iueiiiiiiiiiiiiiiiieiiiiee ettt e e e eeeseeeansenes 7

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:

Download UNK INTELLJ ..c.eineei ettt e e e e e e e e e ee e e eens 8
Installation process INTELLIJ c..oueeiniii e 8
Download Link 00REXX PLUGIN .. euiuiiiiiieiieiee et e e e e e e e eens 9
Configuration iN INTELL ettt ee e e 9
Download LINKJDBEC DIiVEL cu.iuiiiiiiiiiieiiie ettt et ee e e e s e e e ae s eaeaeaaan 9
Path fOr . Jar-file cuieeinie et e e e e 10
Download lINK SQLITE...ucuieiiiiiie e e eaeas 10

UNDBLOCK FILE cueniiieiie ittt et et st sas e sas e sn e sns s snsensnnsnnes 10
SQLite commMaNd lINE tOOLS ..ueuinieiiiiiiiiii e ees 10
Download LINK DB BrOWSET ...cuuiuiiiiiiiieie e e eie e teeee e e e teeeeeeneeneaneeaanaanns 10
Installation proCess DB BrOWSErcuiiiiiiiiiiiiiiei e e e 11
Entity Relationship Diagram of z00.db.......ccviuiiiiiiiiiiirii e 17
Table “animals” format. . ..o iii i e e e e e e anas 18
Table "inhabitants" format.....cccovi i e e e 18
SQLite command line tool - Create Tablecuveveiiiiiiiiiiiieiicreereeeeaes 25
DB Browser - Create Table, Select “animals”cccoveveiiiiiiiiiiiiiiiiieenenenen 25
DB Browser - Create Table, Select "inhabitants"cccovviviiiiiiiiiiiiiiienenene. 25
Result of Create Table StatemMent.....ccviiiiiiiiiiir e e e 27
SQLite command line tool - INSErt INTO.c.uvuininieiiiiii e eeeeaeeens 28
DB Browser - Insert Into, Select animalscooeeeeiiiiiiiiiiiiic e 28
DB Browser - Insert Into, Select inhabitantscccocvviiiiiiiiiiiiiiiiiiecenen, 28
Result before Insert statemMeENntcuin i 31
Result after Insert statement e 31
SQLite command line tool - ALLEr Table ..euenininieiiiii s 32
DB Browser - Alter Table ... e ees 32
Result after ALEr Table ...t e s e e e e e 33
SQLite command line tool - Insert Into and Update Tablecccceevevvininnannen. 34
DB Browser —Table “inhabitants” before Updatecccoeviviiiiiiiiiiiiinennnn.n. 34
DB Browser - Table "inhabitants" after Update........ccooeveviiiiiiiiniiiiiniiiieenenns 34

Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

Result after Insert Into and Updateceueeiiniiiiiiiiiiie e 36
SQLite command line tool - Select With JOIN....c.cuveiiiiiiiiiiens 36
DB Browser - SEleCt With JOIN ..o e e 36
Tables used for JOIN OPErationccveiiiiiiiiiiii e e e 39
Result of Select statement With JOIN ..cciviiiiiiiiii e, 39
SQLite command liNe toOl - SELECT ..envnininiiiieiee s 40
DB BroWSEr - SELECT ..uniiiiiiiii et e e e e e e e e e e eas 40
Result of Select statemMeEntiviniiiiiie e e e e 42
SQLite command line tool — Select tables, Delete and Rollback................... 42
SQLite command line tool - Select tables after Rollbackc.cc.ceeevnininnnnn.n. 43
DB Browser — Delete, Select “animals” ..c.oeveveiiiiiiiiiiiiiiiiiiiiinenieeneenenenes 43
DB Browser — Delete, Select “inhabitants”c.covvviviiiiiiiiiiiiiiiiiiieceenenen 43
DB Browser — Select “animals” again after Rollbackcccccvevveiviiiiinennanns 43
DB Browser — Select “inhabitants” again after Rollbackccccceevveiieeninne 43
Result of Delete From statement before rollback........cccccoviiiniiiiiiiiiinnnn.n. 44
Result of Delete From statement after rollbackcccviviiiiiiiiiniiinininnnn.n. 45
SQLite command line tool - Drop Tableeuvuiniiiiniieiiieeieeee e eeens 45
DB Browser - Drop Table, Select “animals”cccovieviiiiiiiiiiiiiiieeeceeee e, 46
DB Browser — Drop Table, Select “inhabitants”cccoviiiiiiiiiiiiiiiiineenene, 46
Result of Drop Table statementeeveieniiiiiii e 47
SQLite command line tool - Create Table, Insert Into, Rollback, Drop Table ..48
DB Browser - Create Table “animals”cc.eeiiiiiiiiiiiiiecec e 48
Insert Into, Select table "animals ...t eeeeeeeaees 48
Rollback, SeleCt "animals .ottt et et eeeeaeaeneeeereenenenenes 49
Drop Table, Select "animals”ccueeiiiiiiiee e e 49
Result of Insert Into, rollback and Drop Tableccccvevieiiiiiiininininnireeeene, 51

List of Codes

Code 1: Creation of database Url.......cueeeieiiiiiie et ee e e e s e e e eaas 19
Code 2: Establish database CONNECTIONcuiieiiiiiiii e e e 20
Code 3: Select statement and format OULPULeuinieiiiiiiiii e e 21
Code 4: Get NUMDbBET Of COLUMNS ..ininiiiiiii e e e e e e e e e e e e eas 23
Code 5: Gt COLUMMN NAIMIES ..iniiiiiiiiiiei ettt ee e ee e et et e tea e e s saessaassaesssernssesnees 24
Code 6: Create Table StatemMENt. ... i e e e e e e e e e e eas 26
Code 7: Insert Into with prepared statement.......cccoeviiiiiiiiiiin e 29
Code 8: Alter Table StatemMENT.....cu i e e e e e e e e e e e e e s e e e aeans 32
Code 9: Insert Into with prepared statemMent.....c.ceuieiiiiiiiiiiiieeeeeeeee e 35
Code 10: Update with prepared statement .. .cccouieiiiiiiiii e e 35
Code 11: Select statement With JOIN ..o e e e e 37
Code 12: Format output for Select statement with JOINooviiiiiiiiiiiiii e, 37
Code 13: SEleCt StatEMENT ..t e e e e e e e e e e e e aneas 40
Code 14: Get metadata and format QULPULcuieiiiiiiiii e e e 41
Code 15: Close database CONNECTIONcuiiiiieiiiii e e e e e eaas 41
Code 16: Delete From statement with Rollbackcccviiiiiiiiiiiiee s 44
Code 17: Drop Table StatemMENt. .. i ee e e e eae e eae e eneeeneaeneenens 46
Code 18: Create Table and Insert INtO With lOOP c..euieinieiiiiiiiiii e, 49
Code 19: Parse animal weight from WEbSITEc.viiiiiiiiiiiiiiririr e 50
Code 20: Rollback and Drop Table ... e 51
Code 21: Z00TCreatelable.rEXX . i e e 53
C0AE 22: ZOOZ2INSEIT.FEXX teuiuntniueinireeneuetnereteeeesaersnesesssriesereressssessnesessssesssresssrnsnernses 54
(OFo o (I A B o Lo 1o 7= |1 (=T o =] o] (= (=) PP 56
C0dE 24: ZOOAUPAATE.FEXX evniniuinireiitetitetieeetiruerenerieretteseteeetnseesnsesresnssesssresssrnsnernses 57
Code 25: ZOOBSELECTOIN.IEXX cuutuieietieeeeeeetieeeeieeeeieeeeieeeeeeeeeenesaeneeneansraesnsraeansnnns 58
Code 26: ZOOBSELECTCOLUMMNS.TEXX 1euuiuiuieneieeneieeneeeeeteeeeeeeeesnetesnseesneresnssessnsenns 60
Code 27: ZO07dELETEIIOMILIEXX ciuiiiiiitiirie e e e e e e re e treeeteeeeeaeeeaneesansaneansanns 62
Code 28: Z00BArOPTADLE.FEXX cuuiuiieieieiie ettt te e ee e e ee e e e e e e e e e s e eaneanns 63
(0700 [174S o181 g .o Lo I 1= ¢ UT PP R 64
Code 30: A _CONN TOULING .enetiieitiieiieii ettt et eateneeeaeessaeenseeneenseensnseneensneenes 66
Code 31: ShOWTADLE FOULINE ..cuieiiii e e e e e e s e e e e e e anees 67
(%00 (SRS Y A - (=) { OF0] K3 (o] U | o =S 68
Code 33:tablelNfo FOULINE .u.euiee e e et e e eee e e e e e s ee e e eans 68

Vi

1 Introduction

This chapter introduces the programming languages used in this bachelor thesis which
are ooRexx and SQL as well as Java through BSF4o0Rexx. First, we will take a closer look
at ooRexx, its history and syntax. Then the focus will be on BSF4o00Rexx, the bridge to the
widely used programming language Java. Lastly the relational database engine SQLite as
well as the IDBC Driver and the DB Browser will be presented in more detail.

1.1 ooRexx

ooRexx which is short for Open Object Rexx is a high-level, object-oriented programming
language that works on all operating systems and is maintained to this day. Because of its
cross-platform interoperability ensured by its compliancy with the "Information
Technology — Programming Language REXX” ANSI X3.274-1996 standard programs from
its predecessor “classic” Rexx work under ooRexx as well. (Wikipedia, 2025-a)

1.1.1 History

As Smalltalk became the main programming language at IBM in 1988 the project Oryx led
by Simon C. Nash was tasked with merging the “classic” Rexx language with the object
model of Smalltalk. As a result, Object Rexx was developed and presented in 1992.
(EDM2, 2019)

The discontinuation of Object Rexx at IBM led to the transfer of the source code and
licensing rights to the non-profit Rexx Language Association (RexxLA) in 2004. ooRexx was
released in 2005 as free and open-source software and has been continuously improved
ever since, ooRexx 5.2.0 being the newest version released in 2025. (Wikipedia, 2025-a)

1.1.2 Language

Rexx is an easy to learn programming language, that was designhed with the general user
in mind in contrast to languages that require more advanced programming knowledge
such as C or Fortran. (Cowlishaw, 1984)

Afocus lies on readability which is implemented in a way that Rexx code reads almost like
normal text. There are several design choices for the purpose of improving readability
such as the support for mixed upper- and lower-case letters, usage of blanks in the most
readable way and the omission of punctuation. (Cowlishaw, 1984)

In an attempt to make the programming language as user-friendly as possible particular
value was placed on high predictability of features as well as consistency without making
it too restrictive. (Cowlishaw, 1984)

https://en.wikipedia.org/wiki/American_National_Standards_Institute

As opposed to the popular strong typing languages, Rexx supports natural data typing
which means all data are defined in the same form and only checked depending on their
usage. (Cowlishaw, 1984) Also variables do not need to be declared.

In accordance with the emphasis on Rexx being “human centric” it was a design choice
to keep the language small with few key words to make it easier to learn and remember.
(Flatscher, 2013)

1.2 BSF400Rexx

BSF400Rexx was developed based on the Bean Scripting Framework which was created
by IBM to allow the use of scripting in Java code. It acts as a bridge between ooRexx and
Java that allows for communication in both directions. For Java objects to be created in
ooRexx the BSF.CLS package is required. (Wikipedia, 2024)

1.3 SQLite

SQLite was started in 2000 and is an in-process library that implements a self-contained,
serverless, zero-configuration, transactional SQL database engine. (SQLite, 2025) The
entire database including definitions, tables, indices and data is stored as a single file that
can be accessed by more than one process at the same time. To make this possible the
file is locked during writing. (Wikipedia, 2025-b)

SQLite can be operated without the use of a database management system or a database
administrator. (Wikipedia, 2025-b) In the process of developing the nutshell examples for
this thesis the command-line tool as well as the DB Browser for SQLite were used to
navigate and manipulate an SQLite database.

1.3.1 JDBC Driver

Via the Java Database Connectivity API any kind of tabular data as in this case a SQLite-
database can be accessed by Java applications. The JDBC driver is necessary to connect
to the database, send queries and update statements to the database and retrieve and
process the results received as a response from the database. (Oracle, 2024)

1.3.2 DB Browser

The DB Browser for SQLite (DB4S) is a high quality, visual, open source tool designed to
create, search and edit SQLite or SQLCipher database files. (SQLitebrowser, 2025) It
works on all operating systems and provides a graphical interface that allows for the
management of tables and data. Additionally, the execution of SQL queries is supported
in order to define and manipulate SQLite databases. (SQLitebrowser, 2025)

2 Required Software

The following programs are needed to run the nutshell programs from chapter 4. For each
software componenta quick installation guide is provided including screenshots for every
step. The installation steps mentioned are only valid for the Windows operating system,
but there are versions of all the programs available for Linux and Apple. The fulldownload
links are given at the end of the thesis.

2.1 ooRexx

ooRexx is available for all operating systems at sourceforge.net where older versions can
be downloaded as well. For this paper the following version was used: ooRexx 5.0.0-
12583.windows.x86_64.exe.

Download Latest Version
ooRexx-5.0.0-12583.windows.x86_64.exe (22.8 MB)

Figure 1: Download link ooRexx

After downloading it is important to right click on the file in the download folder and
accept the security warning to avoid an error message when trying to execute the file.

Adtribute: (] schreibgeschitzt Erweitert..
[CVersteckt
Sicherheit Die Datei stammtvon einem anderen ® Zulassen

Computer. Der Zugriff wurde aus
Sicherheitsgriinden eventuell
blockiert |

Abbrechen Ubernehmen

LI

Figure 2: Unblocking file

Then simply follow the steps of the installation wizard as shown in the following

screenshots.
@4 Open Object Rexx 5.0.0-12583 Setup = X ‘ @8 Open Object Rexx 5.0.0-12583 Setup = X
_ License Agreement
Welcome to the Ope'! ObIECt Rexx Please review the license terms before installing Open Object Rexx 5.0.0-12583. @Q
5.0.0-12583 Setup Wizard |
This wizard will guide you through the installation of Open ‘ Press Page Down to see the rest of the agreement.
Object Rexx 5.0.0-12583. |
Common Public License Version 1.0
Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update 'THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
relevant system files without having to reboot your | PUBLIC
computer. | LICENSE ("AGREEMENT). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
| PROGRAM
Click Next to continue. [CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.
1. DEFINITIONS
"Contribution” means:
If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Open Object Rexx 5.0.0-12583.
Next > Cancel < Back 1 Agree Cancel
Figure 3: Installation process ooRexx Figure 3 (continued): Installation process ooRexx

@4 Open Object Rexx 5.0.0-12583 Setup - X
Choose Components
Choose which features of Open Object Rexx 5.0.0-12583 you want to install, @Q

Check the components you want to install and uncheck the components you don't want to
install. Click Next to continue.

Description

Position your mouse

Select components to install:

Open Object Rexx Core (f
"

Open Object Rexx Docur|

Space required: 46.0MB

Nullsoft In:

< Back Next > Cancel

89 Open Object Rexx 5.0.0-12583 Setup - X

Choose Install Location
Choose the folder in which to install Open Object Rexx 5.0.0-12583, @Q

Setup will install Open Object Rexx 5.0.0-12583 in the following folder. To installin a different
folder, dick Browse and select another folder. Click Next to continue.

Destination Folder

Browse...

Space required: 46.0MB
Space available: 382.8G8

Mullsoft Insta

Figure 3 (continued): Installation process ooRexx

#9 Open Object Rexx 5.0.0-12583 Setup - X

Associate file extensions with the coRexx executables.

Any, or all, of the ooRexx executables (rexx.exe, rexxhide.exe, or rexxpaws.exe) @Q
can be associated with a file extension.

Windows file assodiations define how Windows treats a file type on your system. File
assodations control, among other things, what happens when a user double-dicks a file,
mm appears for a file by default, and how the file appears when viewed in Windows
E er.

Assodating a file extension with an ooRexx executable allows Rexx programs to be executed
by double dicking them in Windows Explorer, and to be run from the command line by just
typing their file name. In addition, you can spedfy an editor for the file type. This editor is
used when the Edit item of the context menu for the file is selected.

Check the check box to have the installer create file assodations. The following pages will

allow you to specify which assodiations are created. Uncheck the check box if you do not
want any associations to be created.

8 Create Windows file associations

Mullsoft In

< Back Next > Cancel

Figure 3 (continued): Installation process ooRexx

@4 Open Object Rexx 5.0.0-12583 Setup - X

Associate a file extension with rexx.exe.
Pick the editor to be used when the Edit item of the context menu is selected. @@

Select the editor to be used with your ooRexx file type(s). This adds the Edit menu item to
the context menu of the file type. The same editor is used for all file types.

Full path to editor:

C:\Windows'System32\NotePad.exe Browse...

By default in Open Object Rexx installations the Rexx interpreter, rexx.exe, is assodated
with the .rex extension using the file type name of RexxScript. However, you can change
these values if you care to.
File Assodation for rexx.exe
8 Create rexx.exe file assodation
Extension (no spaces): .rex File type name (no spaces): RexxScript

Mullsoft Inst

< Back Next > Cancel

Figure 3 (continued): Installation process ooRexx

< Back - Cancel

Figure 3 (continued): Installation process ooRexx

@9 Open Object Rexx 5.0.0-12583 Setup - X
Create ‘Send To' items for the Rexx executables.
'Send To' items can be used instead of file assodiations, or in addition to file @Q

l assocations.

The 'Send To' context menu item for objects displayed in the Windows Explorer contains a list
of programs that the object can be 'sent to." Typically, the items in the list are executables
that can process the file or directory object sent to them. 'Sending’ your Rexx program to
one of the Rexx executables will execute your program.

Rather than create a file for rexxhid and r €xe you may wish to
create a'Send To' item for those executables. Or create both a file assodiation and 'Send To'
items for those executables. Usually a file association is created for rexx.exe and not a
‘Send To' item.

[[)Create 'Send To' Rexx item (Typically this is not done.)

I8 Create 'Send To' Rexx Hide (rexxhide. exe) item

1B Create 'Send To' Rexx Pause {rexxpaws.exe) item

Nullsoft Inst:

<o (o>] oo

[

Figure 3 (continued): Installation process ooRexx

@8 Open Object Rexx 5.0.0-12583 Setup — X

Associate a file extension with rexxhide exe and / or rexxpaws exe

rexxhide default file extension: ".rexg” file type: "RexxHide”™ @Q

rexpaws default file extension: ".rexp” file type: "RexxPaws”,

rexxhide runs Rexx programs without creating a console window.
File Assodiation for rexxhide.exe
[[) Create rexxhide.exe file association

Extension (no spaces): .rexg File type name (no spaces): RexxHide

rexxpaws runs a Rexx programs and 'pauses’ until the user hits the Enter key, allowing any
output to be read before the console window doses.

File Assodation for rexxpaws.exe
(] Create rexxpaws. exe file assodation

Extension (no spaces): .rexp File type name (no spaces): RexxPaws

Mullsoft Install System v2.46

<o (o>] | come

Figure 3 (continued): Installation process ooRexx

@4 Open Object Rexx 5.0.0-12583 Setup - X

Open Object Rexx is ready for installation.
All options for Open Object Rexx have been collected. @Q

All the parameters needed to install Open Object Rexx on your system have been gathered
together.

Click the: Install button to begin installation. Click the Back button to review or change any
settings. Click the Cancel button to abort the installation altogether.

< Back Cancel

Figure 3 (continued): Installation process ooRexx

@4 Open Object Rexx 5.0.0-12583 Setup =

Open Object Rexx 5.0.0-12583 has been installed on your
computer.
@ Click Finish to dose this wizard.

8 Create Open Object Rexx Desktop Shortcut

Completing the Open Object Rexx
5.0.0-12583 Setup Wizard

() Show Open Object Rexx Release Notes I

Getting started with Windows Open Object Rexx

Figure 3 (continued): Installation process ooRexx

2.2 Java

@4 Open Object Rexx 5.0.0-12583 Setup —

Installation Complete
Setup was completed successfully. @Q

Completed

Create shortcut: C:\ProgramDataMicrosoft\Windows\Start Menu\Programs\Open Ob...
Create shortcut: C:\ProgramData'Microsoft\Windows\Start Menu\Programs\Open Ob...
Create shortcut: C:\ProgramData\Microsoft\Windows\Start Menu\Programs \Open Ob...
Create shortcut: C:\ProgramData Microsoft\Windows\Start Menu'\Programs\Open Ob...
Create shortcut: C:\ProgramDataMicrosoft\Windows\Start Menu\Programs\Open Ob...
Create shortcut: C:\ProgramData'Microsoft\Windows\Start Menu\Programs\Open Ob...
Create shortcut: C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Open Ob...
Create shortcut: C:\ProgramData \Microsoft\Windows\Start Menu'\Programs\Open Ob...
Create shortcut: C:\ProgramDataMicrosoft\Windows\Start Menu\Programs\Open Ob... |
Completed

Back Next >

Figure 3 (continued): Installation process ooRexx

Java can be retrieved from different websites such as azul.com and java.com. In this case
Liberica Full JDK 24.0.1+11 x86 64 for Windows from bell-sw.com was installed, but older
versions are sufficient as well to run the nutshell programs in chapter 4.

All versions JDK 8 LTS JDK 11 LTS JDK 17 LTS JDK 21 LTS
-l Windows Liberica Full JDK 24.0.1+11 x86 64 for Windows
=
86 AR L v 32124 0 s
Package: Full JDK . L e o D s
J Source code, 190.40Mb 0 sha

Figure 4: Download link Java

Just follow the installation client. Nothing needs to be changed.

"8 Liberica JOK 24 Full (64-bit) Setup = X "M Liberica JDK 24 Full (64-bit) Setup = X

Custom Setup

Welcome to the Liberica JDK 24 Full Select the way you want features to be installed.
(64-bit) Setup Wizard

. Liberica IDK

Click the icons in the tree below to change the way features will be installed.

The Setup Wizard will install Liberica JDK 24 Full (64-bit) on
your computer. Click Next to continue or Cancel to exit the [ERER] Liberica J0K Ful Liberica JDK 24.0.1.11-Full
Setup Wizard. | N \2~| Add to PATH
I =3~ Setup JAVA_HOME

=3~ | Associate .jar files
----- =3~ | Create JavaSoft registry keys
This feature requires 604MB on your
hard drive. It has 4 of 4 subfeatures
selected. The subfeatures require 3KB
on your hard drive.

Location: C:\Program Files\BellSoft\LibericalDK-24-Full\, Browse...
Back Next Cancel Reset Disk Usage Back Next Cancel
Figure 5: Installation process Java Figure 5 (continued): Installation process Java
| "M Liberica JDK 24 Full (64-bit) Setup — X "8 Liberica JOK 24 Full (64-bit) Setup . - X %

Ready to install Liberica JDK 24 Full (64-bit) . Liberica IDK

Completed the Liberica JDK 24 Full !
(64-bit) Setup Wizard i

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Click the Finish button to exit the Setup Wizard.

Back -'Instal\ Cancel Back Cancel

Figure 5 (continued): Installation process Java Figure 5 (continued): Installation process Java

2.3 BSF4o00Rexx

After the successful installation of ooRexx and Java the “bridge” BSF400Rexx can be
installed. The download link of BSF4o0Rexx_install_v850-20240707-refresh is available
on sourceforge.net as well as older versions.

Download Latest Version

BSF4ooRexx_install_v850-20240707-refresh.zip (22.0 MB)

Figure 6: Download link BSF4o0Rexx

As with the ooRexx file the downloaded .zip-file needs to be “unblocked” before

unpacking.

Altribute (] schreibgeschiitzt Erweitert
[T Versteckt

1 Sicherheit Die Datei stammt von einem anderen
Computer. Der Zugriffwurde aus

¢ Sicherheitsgrunden eventuell
blockiert

B zulassen

0K 1 Abbrechen Ubernehmen

Figure 7: Unblocking file

In the unpacked BSF4o00Rexx_install_v850-20240707-refresh folder go to “install”, then
select the right operating system and click on install.cmd.

J > -+ install > windows

T Sor

Name

Vor langer Zeit

B8 kickoff.rex

B elevate.rex

[%] install.cmd

[%] reinstall.cmd
[%] uninstall.cmd

Figure 8: Installation file

BSF400Rexx

Then a command window opens to install the program. If neither Libre Office nor Open
Office is installed there will be a warning message. In that case press Enter to continue
the installation process.

OpenOffice
to uninstall as Administrator run: Oo_r dministrator.cmd

tEnvironment4000.cmd]: help i environment
for running OpenOffi

mode=[install], run 'install00o.cmd'
e # [982] j.cmd wasInstallationSuccessful.rxj | rxqueue
been called
been called b .bsf i 3% AndJava in an unnamed module (
/bsf4o0R 851
da

enable-native-acce INAMED to avoi y in this module
methods will be blocked in a future rel: unless native access is enabled

2
C:\Prog
! Installation of
! Installation of
ecution du 0
ing ended.

setupAllAndRun end of
Please hit enter to end pr

Figure 9: Installation process BSF4ooRexx

After the installation process you should be able to run Rexx programs using the Bean
Scripting Framework via the shortcut GUI RexxTry Program or in the command line.

2.4 Intelli)

U | Intelli) IDEA Community Edition

The IDE for Java and Kotlin enthusiasts

Download .exe (Windows) w

Fres G

Figure 10: Download link IntelliJ

As there is a ooRexx plugin available for the integrated development environment Intelli)
it was used for developing and running the nutshell programs. Apart from the fee-based
version for professional development there is a community edition thatis completely free
and sufficient in this case. Both can be downloaded from the jetbrains.com download
section. Then just execute the .exe file and follow the installation wizard.

EM Intelli) IDEA Community Edition Setup - X Intelli) IDEA Community Edition Setup - X
. Choose Install Location
Welcome to IntelliJ IDEA Choose the folder in which to install Intelli] IDEA Community
Community Edition Setup 4 Edition.
Setup will guide you through the installation of Intelli] IDEA Setup will install Intelli] IDEA Community Edition in the following folder. To install in a
Community Edition. 1 different folder, click Browse and select another folder. Click Next to continue.

It is recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue.
Destination Folder

Program Files\JetBrains\Intelli] IDEA Community Edition 2025.1 Browse...

Space required: 3.1 GB
Space available: 384.7 GB

Figure 11: Installation process Intelli) Figure 11 (continued): Installation process Intelli)
Intell) IDEA Community Edition Setup — X Intelli) IDEA Community Edition Setup - X

Installation Options Choose Start Menu Folder
Configure your Intelli] IDEA Community Edition installation Choose a Start Menu folder for the Intelli) IDEA Community
Edition shortcuts.

L]
1 Select the Start Menu folder in which you would like to create the program's shortcuts. You

Create Desktop Shortcut Update PATH Variable (restart needed) can also enter a name to create a new folder.

Tntelli] IDEA Community Edition [CJ Add "bin" folder to the PATH |

Accessibility

Update Context Menu Accessories
Administrative Tools
[] Add "Open Folder as Project" BSF400Rex850
LibreOffice

Create Associations { Maintenance
McAfee

[java [].gradle [.groovy Okt [ks [).pom Microsoft Office Toals
Open Object Rexx
Palo Alto Networks
Portrait Displays
Startup

< Back Cancel < Back Install Cancel

e e

Figure 11 (continued): Installation process Intelli) Figure 11 (continued): Installation process IntelliJ

A e A S R AL L A s

Intelli) IDEA Community Edition Setup -

Completing IntelliJ IDEA
Community Edition Setup

Intellid IDEA Community Edition has been installed on your
computer.

Click Finish to close Setup.

[_JRun Intelli) IDEA Community Edition

< Back Cancel

Figure 11 (continued): Installation process IntelliJ

2.5 ooRexx Plugin for Intelli)

In order to program in ooRexx the ooRexx plugin for IntelliJ is required. It can be retrieved

from sourceforge.net. For this paper the version ooRexxPlugin-2.5.0-GA was used.

ooRexxPlugin-2.5.0-GA.zip

Figure 12: Download link ooRexx
Plugin

Itis important to notice that the downloaded .zip file does not need to be unpacked, but
only installed in Intelli) as follows: On the startpage of IntelliJ go to “Settings”, then
“Plugins” and in the drop-down menu select “Install Plugin from Disk”. Choose the
downloaded .zip file and you should be able to use ooRexx as programming language in
IntelliJ.

Settings
Check for Updates Update Plugins Automatically

About Manage Plugin Repositories...

Edit Custom Properties... HTTP Proxy Settings...

Edit Custom VM Options... Manage Plugin Certificates...

Collect Logs and Diagnostic Data

< Install Plugin from Disk...

)) o . Disable All Downloaded Plugins
Figure 13: Configuration in IntelliJ sabie AT Downleaced Fligins

Enable All Downloaded Plugins

Figure 13 (continued): Configuration
in IntelliJ

2.6 JDBC Driver

The JDBC driver necessary for the SQLite database connection can be downloaded from
github.com.

Dsqlite-jdbc-3.49.1.0,jar

Figure 14: Download link JDBC
Driver 9

In order to be found by Java the downloaded .jar-file needs to be putin the class path. This
can be done by putting the file in the lib directory of the program folder BSF400Rexx850
as itis part of the class path.

C:\Program Files\BSF4ooRex«@50\ib]

B ® W TN Sortiere

Name "
Q bsf4ooRexx-v850-20240707-binjar
Q Jni4net-0.8.8.0 jar
jnidnetn.w32.v20-0.8.80.4dIl
jnidnetn.w32.v40-0.8.80.4dIl
jni4netn.w4.v20-0.8.8.0.dll
jnidnetn.w4.v40-0.8.8.0.dll
[%] jnidnetn-0.8.8.0.dll
@ oorexcnetdll
ﬂ oorexcnetjar

s sqlite-jdbc-3.49.1.0jar

Figure 15: Path for .jar-file

The .jar-file could also be placed in the following newly created directory:
"%USERPROFILE%\BSF400Rexx\lib" (Windows) or "$HOME/BSF4o00Rexx/lib". Another
option is to check and adapt the current environment variables. To do this type
“sysdm.cpl”in the search bar, go to “Advanced” and then select “Environment variables”.
There select the line “CLASSPATH” and click on the “Edit” icon. Then either add a path via
“New” or search for an existing folder.

2.7 SQLite

SQLite can be retrieved from the download page of sqlite.org,
https://www.sqlite.org/download.html. As it is the case with the ooRexx programs the .zip
file needs to be “unblocked” before unpacking.

SCI||tE'tOO|S'W|n'X6£}' Attibute () Schreibgeschitzt Erwsitert ? sqlite3_rsync.exe
3490100.zip Oversiech
i Sicherheit Die Datei st; it i d -
(6.12 MiB) I Gomputer Der Zugriwnde s EZulassen . W sqlite3_analyzer.exe
Sicherheitsgrinden eventuell
blockiert. ?
; . i sgldiff.exe
F/gufe 16: Download link FITE Em—
SQLite

? sqlite3.exe

Figure 18: SQLite
command line tools

Figure 17: Unblock file

2.8 DB Browser

The DB Browser for SQLite, which allows for a more graphical interface for managing
SQLite databases can be downloaded from https://sqlitebrowser.org/dl/. There are two
options the standard installer and a .zip version without installer. Here the “Standard
installer for 64-bit Windows” was selected.

« DB Browser for SQLite - Standard installer for 64-bit Windows

Figure 19: Download link DB Browser 10

Then execute the downloaded file and just follow the installation wizard according to the

screenshots below.
"8 DB Browser for SQLite Setup = X

Welcome to the DB Browser for SQLite
Setup Wizard

This Setup Wizard will install DB Browser for SqQLite on your
computer.

If you have a previous version already installed, this installation
process will update it.

Back Next Cancel

Figure 20: Installation process DB Browser

K
"8 DB Browser for SQLite Setup — X
| Shortcuts =
Select the shortcuts for the application. v
: DB Browser for SQLite uses the latest version of SQLite, so you can enjoy all of its new

features and bug fixes, but it does not have encryption support.

Tt is also built with SQLCipher as a separate application. SQLCipher is an open source
| extension to SQLite providing transparent 256-bit AES encryption of database files, but uses
a slightly older version of SQLite.

Both applications (with and without SQLCipher) are installed and can run concurrently.

This page allows you to choose the shortcuts for each application and where to place them.

DB Browser (SQLite) DB Browser (SQLCipher)

8 peskiop () Desktop
ngram Menu Prngram Menu

Back Next Cancel

Figure 20 (continued): Installation process DB Browser

"M DB Browser for SQLite Setup - X

| 7
| Ready to install DB Browser for SQLite | E

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Back #y Install Cancel

Figure 20 (continued): Installation process DB Browser

‘I‘-‘_| DB Browser for SQLite Setup = X

! End-User License Agreement /
Please read the following license agreement carefully [

|DB Browser for SQLite is bi-licensed under the |
Mozilla Public License

Version 2, as well as the GNU General Public
License Version 3 or later.

Modification or redistribution is permitted
under the conditions of these licenses.

AL L. LIRS AR A A £ il m £ Wl hmees K

I accept the terms in the License Agreement

Print Back - Cancel

Figure 20 (continued): Installation process DB Browser

DB Browser for SQLite Setup - X

| Custom Setup [
" Select the way you want features to be installed. I

Click the icons in the tree below to change the way features will be installed.

The complete package
- &3] SQLite Extensions
1 -9-| Math
gl Formats
=3~ | sqlean
This feature requires 46MB on your
hard drive. It has 1 of 1 subfeatures
selected. The subfeatures require
840KB on your hard drive.
]
q
‘
1 Location: C:\Program Files\DB Browser for SQLite\, Browse,
{
]
Reset Disk Usage Back Next Cancel

Figure 20 (continued): Installation process DB Browser

"8 DB Browser for SQLite Setup = X

Completed the DB Browser for SQLite
Setup Wizard

Click the Finish button to exit the Setup Wizard.

Thank you for installing DB Browser for SQLite.

Back Cancel

Figure 20 (continued): Installation process DB Browser

11

3 Database Theory

In this chapter some theoretical concepts concerning databases in general and the
different types of database systems will be discussed. First a general definition will be
given. Then the difference between relational and non-relational databases will be
identified followed by information on database management systems and the query
language SQL.

3.1 Definition

“A database is an organized collection of structured information, or data, typically stored
electronically in a computer system.” (Oracle, 2020)

A database management system such as MySQL can be used to operate the database
which results in a database system. A database usually consists of tables that store
interconnected data in rows and columns. (Oracle, 2020)

3.2 Relational Database

Depending on the kind of usage different types of databases can be identified.

Relational databases are based on the relational model which provides a standard to
unify the way how data is stored, namely in formally described tables. Before it took a lot
of knowledge about the specific data base to retrieve data as there was no common way
to structure databases. (Oracle, 2021)

Logical and physical data are stored separately. Changing the physical structure of the
database does not affect the logical side such as tables, views and indexes. (Oracle,
2021)

A relational database consists of tables with columns and rows that each contain a
unique instance of data. The tables are also in a relationship with each other. Typically,
SQL is used to access and modify the data in relational databases. (Jatana et al., 2012)

3.2.1 OLTP

OLTP stands for Online Transaction Processing and is mostly used by relational databases
as the data must always be consistent for fast-paced requirements such as the day-to-
day operations in organizations like sales, accounting, manufacturing and so forth.
(Harrington, 2016)

3.2.2 ACID

In contrast to non-relational databases relational databases are compliant with the ACID
modelthatis usedto checkthe reliability of databases. The properties of the ACID models
are as follows:

12

e Atomicity means that a transaction is considered failed, if not every single part of
the transaction was completed successfully.

e Consistency stands for a valid state of the database before and after a transaction.

e |solation requires a serialised processing of transactions, so that they cannot
affect each other when they are executed at the same time.

e Durability ensures that data stays in the same state and does not change after a
finished transaction. (Jatana et al., 2012)

3.2.3 Normalization

The concept of normalization of databases aims to avoid data redundancy and thus
problems with updates of the tables. Redundancy means that there is at least one item
that occurs more than once in a database. Duplicates add potentially a lot of work to

changes like “insert”, “update” or “delete” as they need to be executed on all the tables
that include the same data. (Eessaar, 2016)

There are up to six normal forms, but usually only the criteria of the first three are met. The
first normal form requires that a single cell does not hold more than one value, there must
be at least a composite primary key, rows and columns are unique and for each column
and row there can only be one value in the table.

For the second normal form the first normal form needs to be already established as a
prerequisite and there cannot be any repeating groups. That means some values are
dependent on a part of the composite primary key, which is not allowed in the second
normal form. In order to solve this, the dependencies are shown in separate tables.

In third normal form it is not allowed that an attribute which is not part of the primary key
is dependent on another non-prime attribute and the tables must be in second normal
form as well. This connection needs to be placed in a separate table in order to comply
with the third normal form. (FreeCodeCamp, 2022)

3.3 Non-Relational Database

Non-relational databases do not rely on related tables as related databases do, but have
different ways to structure, store and retrieve data. While they do not necessarily provide
the ACID properties as discussed before they eventually are consistent. They also do not
possess a fixed schema, nor do they support the query language SQL. (Jatana et al., 2012)

So called NOSQL databases are primarily classified on how they store the data. (Jatana
etal., 2012)

3.3.1 Key Value Store
The data is stored in pairs of a string key and the value, which can be of any type such as
string, integer, array or an object. For this schema-less kind of data storage the

requirement of a fixed data model goes away.
13

3.3.2 Document Store

Here a computer program with a storage structure that is called a document is
responsible for managing data stored in a database. The data is encoded in a standard
format such as XML, BSON, PDF or Microsoft office. Via queries or APls documents
corresponding to certain parameters can be retrieved quickly.

3.3.3 Graph Database

The data is represented via nodes, properties and edges. The nodes stand for entities like
people or objects and possess further information represented by properties. Together
with the edges, that show the relationship of the nodes the full picture of the database
can be observed.

3.3.4 Column Oriented Database

In contrast to row-oriented databases column store databases provide data storage in
columns which leads to the serialization of all data of one column. Adding new values for
all rows of a column is more efficient as the other columns remain unchanged.

3.3.5 Object Oriented Database
Data is stored as objects in a database system. As it is the case in object-oriented
programming inheritance and thus reusability is supported.

3.3.6 Grid and Cloud Database

This is a combination of grid and cloud computing in order to manage different databases
with geographically distributed locations. Cloud computing helps with accessing remote
hardware and storage resources.

3.3.7 XML Database
In this database system XML data is stored while XML is the main storage format.

3.3.8 Multidimensional Database
Here data is stored in a n-dimensional matrix. The precompilation and storage of relevant
aggregates allows for interactive roll-ups and drill-downs.

3.3.9 Multivalue Database
A multivalue database possesses three dimension which are “field”, “value” which is a
breakdown of “field” and “subvalue” which has in turn more detail on “value”. Advantages
are the high flexibility of the database as well as the option of having calculated columns
via small calculation programs.

3.3.10 Multimodel Database
Multimodel databases are a mixture of some of the database types that were already
mentioned in order to maximize the advantages through combination. (Jatanaetal.,2012)

14

3.3.11 OLAP

OLAP which is short for online analytical processing is mostly used by non-relational
databases even though there are OLAP relational databases as well. OLAP provides for
example the data on organizational performance in the right format and serves as the
basis for high-level decisions. (Harrington, 2016)

3.4 Database Management Systems

A comprehensive software program that serves as an interface between databases and
users is called a database management system (DBMS). On one hand itenables the users
to retrieve, update and manage the information stored in the database, on the other hand
administration including performance monitoring, backup and recoveryis enabled. There
are many popular database management systems such as My SQL, Microsoft Access and
Oracle Database. (Oracle, 2020)

3.5 SQL

SQL whichis short for Structured Query Language was developed at IBM in the 1970s and
is the most used programming language to work with relational databases. It consists of
a variety of statements to define, manipulate and query data. (Oracle, 2020)

The most common SQL commands can be divided into data definition language
commands and data manipulation language commands where DDL commands deal with
the creation or changes of the entire table and DML commands keep the data up to date.
(Oracle, n.d.-a)

3.5.1 DDL Operations

The SQL statement “Create Table” creates an empty table that has a name and column
names with a specified format for example “Text” for strings or “Integer” for numeric data.
This command is mainly used at the beginning of building a database and not so much
needed later when the management of the data inside the table is more relevant than the
table itself.

“Alter Table” is used to change the structure of a table. That means a column is either
added or removed, but it can also be used for changes of table constraints and column
attributes. (Oracle, n.d.-a)

The command “Drop Table” removes the table entirely from the database. (Oracle, n.d.-a)
If foreign key constraints are enabled in SQLite the data inside the table is deleted first to
invoke any violations of foreign key restrictions. If thatis the case the table is not dropped.
(SQLite, 2024)

3.5.2 DML Operations
The “Insert” statement enables the addition of new rows to an existing table. The table
can be empty or already filled with data before the “Insert”.

15

With the “Update” command the value of one or more existing fields in the table can be
changed or added.

The “Delete” statement is used to remove one or more rows from a table.

The select statement does not change any data in the tables but only shows the content
of one or more tables in a specified way. The rows that match the selection statement are
called the “result set”. The selection can also be further specified by adding a “where”
clause for only selecting rows that satisfy certain criteria. Via the “Join” operator data from
two or more tables can be viewed combined. (Oracle, n.d.-a)

3.5.3 Transactions

In order to ensure data consistency as well as data concurrency, transactions, which are
sets of one or more SQL statements are used. Transactions either leave the database in a
consistent state with a “commit” or all changes are completely undone in a so-called
“rollback”. Data concurrency means that more than one user should be able to access a
database at the same time. There are different levels on which the data can be “locked”
for other users while they are being manipulated. While a table lock locks the whole table
if there are uncommitted transactions, a row lock locks all of the rows in a table and
ensures that only one user can access the same row. (Oracle, n.d.-a)

16

4 Nutshell Examples

The explanation of the nutshell examples is split in five parts. First the concept of the
database used in the programs is presented. Afterwards the establishment of the
connection to the SQLite database using the JDBC driver is explained more thoroughly.
Then the routines responsible for retrieving and formatting the resulting data output into
readable tables, that are called in all the programs are described more precisely.
Furthermore, the SQL commands as well as functions like prepared statements and
rollback of a transaction are dealt with. Finally, a standalone program is introduced that
explores the curl function in Rexx in combination with SQL statements.

4.1 Concept

The following chapters aim to describe the definition and manipulation of a simple
database consisting of two tables with merely a few entries using only Rexx or
BSF4o00Rexx and SQL syntax. Itis recommended to run the nutshell programs in the same
order as the chapters to avoid error messages. At least the first one
“zoolcreatetable.rexx” is a prerequisite for the other nutshell examples.

After executing the nutshell programs but the last one, which would delete everything, the
SQLite database “zoo.db” should look like this:

inhabitants animals
N 1
name TEXT animal_id TEXT
animal TEXT name TEXT
age INTEGER weight TEXT

Figure 21: Entity Relationship Diagram of zoo.db

The table “inhabitants” includes the following data on animals that live in the zoo: “name”
shows the first name of the animal, column “animal” holds the type of animal such as
“lion” and age, which is added later via an “Alter Table” command. Then there is the
second table “animals” which has information on animals in general. It possesses the
columns “animal_id”, which is the way the animal is named on the website of the zoo
Vienna, “name” which is the animal type like “lion” and “weight”. The relationship
according to the entity-relationship model would be 1:n meaning one type of animal can
be represented more than once in the zoo, but every zoo “inhabitant” can only be one type
of animal. However, SQLite foreign key support was not activated so this relationship is
not enforced by primary and foreign keys.

17

The visual representation of the tables will be structured as shown in figure 22 and 23:

ANIMALS

animal_id	name	weight
Lowe	lion	250 kg
totenkopfaffe	monkey	1 kg
giraffe	giraffe	1.200 kg
burchell-zebra	zehra	300 kg
felsenpinguin	penguin	2,5 kg
Figure 22: Table “animals” format

INHABITANTS

name	animal	age
Nico	lion	The NIL object
Pingi	penguin	The NIL object

Figure 23: Table "inhabitants" format

4.2 Connection to Database

As afirst step the connection to an SQLite database needs to be established. For this the
folder for the database and the SQLite database file itself should be created if not already
available. Afterwards the connection to the SQLite database must be configured resulting
in the connection object “conn” that is used further for creating the statement objects in
the nutshell programs. This happens in the routine “db_conn” that is part of the
“zoodbtools.rexx” program that includes routines that apply to all the nutshell programs.

First the “getProperty” method from the System class in Java package java.lang is used to
determine the home directory of the current user. Thanks to BSF4o0Rexx it is possible to
use Java classes like that. This should work for Windows as well as for Linux operating
systems. Then a folder “Database” is created in the home directory via the Rexx utility
function “sysMkDir” with the return code 0 for successful creation and 183 for the case,
that the folder already exists. Subsequently the database file used for the nutshell
programs “zoo.db” is added to the whole path which in combination with “jdbc:sqglite:”
results in the url variable. Lastly the database connection object “conn “is retrieved from
the “db_conn” routine.

homeDir=. java. lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir [|"\"||dbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database folder already there"

if ret = 0 then say "Database folder successfully created"”

dbfile = "zoo.db"
dbfilepath = dbdirpath [["\"[|dbfile

url = "jdbc:sqlite:"||dbfilepath;

conn = db_conn(url)

Code 1: Creation of database url

19

The routine “db_conn” enables the access to the SQLite database. First the JDBC driver
class and the driver manager class are loaded. In the next step the JDBC driver is handed
to the driver manager. Via the “getConnection” method the object “conn” for the database
connection is created. This connection can be verified with a simple “if” statement that
says “Connection successful” if the return code is not 0. If the connection object should
be 0, the specific syntax error “No result object” is raised accompanied by the message
“Connection to database failed”.

*# Establish connection to SQLite-database */

::ROUTINE db_conn public
/* Uses url to database */
USE ARG url

« Create new object, load JD

mydriver=.bsf~new('org.sqlite.JOBC")

* Load class DriverManager #*/

man=bsf.loadClass("java.sql.DriverManager")

/* Register driver as driver manager #*/

ive as ari

man~registerDriver(mydriver)

'* Returns connection object %/

conn=man~getConnection(url)

if conn=0 then DO
RAISE SYNTAX 91.900 additional "Connection to database failed"
END

say Connection successful

/* Return statement object #*/

RETURN conn

Code 2: Establish database connection

20

4.3 Routines

The routines which are described in the following chapters are called in all of the nutshell
programs and therefore only once explained in more detail. They can be found in the
“zoodbtools.rexx” program which is accessed by the nutshell programs. The purpose of
the routine “showTable” is to select the table and display the current state in a readable
way to verify the success of the SQL commands in the main program. For formatting the
output, a method is needed to getthe number of columns which is provided by the routine
“getCols”. Also, the names of the columns are coming from the routine “tablelnfo”. Both
routines “getCols” and “tableInfo” showcase Rexx syntax, but could be replaced using
metadata of the result set, which will be explained later.

4.3.1 showTable

Within the routine “showTable” data from the table which is passed as an argument from
the main program is selected and made visually readable by adding borders and
separators. The object “conn” is required as well to create the statement object just like it
is the case in the main programs. Then the names of the columns which are saved in the
variable “Attribute.List” are retrieved from the subroutine “tablelnfo” passing table and
the statement object as arguments.

Afterwards the “select” query is executed using the “executeQuery” method of the
statement object and thus creating the result set “rSet”. As the length of the outer and
inner borders made of “=” and “-“ respectively depend on the number of columns, this
information is retrieved from the subroutine “getCols” using the result set object “rSet”.
The “getCols” routine will be explained in more detail in the next chapter. Then the header
variable is constructed out of a “|” at the beginning and between the names of the
columns which are retrieved from the “Attribute.List” variable. This is done as many times
as there are columns in the table that was passed as an argument to the routine. In this
program the width of each columnis 15.

::ROUTINE showTable public

USE ARG table, conn

statement=conn~createStatement

Attribute.List = tableInfo(table, statement)

rSet = statement~executeQuery("SELECT %= FROM" table ";")

border.top = "="~copies(15*getCols(rSet)+(getCols(rSet)-1)*3+4)

border.in = "-"~copies(15*getCols(rSet)+(getCols(rSet)-1)*3+4)
header = "|"

Code 3: Select statement and format output

21

/* Get number of columns from routine getCols */
DO i=1 TO getCols(rSet)
/* Get column names from routine tablelInfo =/

header = header left(Attribute.List[i], 15) "|"
END

Code 3 (continued): Select statement and format output

To print the table name as well as the header including outer, inner borders and column
names the Rexx “say” command is used. In the second step the data output is formatted
in a readable way. This is done for every row in the result set as long as there is data for
the “next” method of the “rset” object. As it was the case for the header, the data variable
also starts with a “|” and then includes the field from the “getString” method of the “rSet”
object. The width of each column is again 15 and every field ends with a “|” to create a
vertical separating line in the output. At the end of every “do” loop the entire row is printed
via the Rexx “say” command and at the end the outer border is printed to mark the end of
the table. At the end of the routine no value is returned.

/% Print table name x/
SAY table
'* Header output */

say border.top
say header
say border.in

/* Create data output =*/
DO WHILE rset~next
f* Create data separator %/

data = "[|"

Use column number from routine getCols */

D0 i=1 TO getCols(rSet)

/* Format data output */

data - data left(rset~getString(i), 15) "|"
END
/*Data output */

say data
END
say border.top

RETURN

Code 3 (continued): Select statement and format output

22

4.3.2 getCols

In the routine “getCols” the number of columns is determined with Rexx functionalities
using the result set as an argument. The Rexx command “signal on” is evoked when the
program runs into an error. This is the case when the “do” block reaches an error because
the “getString” method of the result set with a certain number does not exist. That means
one column must be subtracted to receive the humber of columns of the table in the
result set which is what happens when the trapname “done” is reached. Finally, the
routine returns the number of columns.

x et number oy columns oy table

::ROUTINE getCols public

USE ARG res

top when "done" is reached

SIGNAL ON ANY NAME done

cols=0
DO FOREVER
cols+=1
res~getString(cols)
END
done:

return cols-1

Code 4: Get number of columns

23

4.3.3 tablelnfo

The routine “tablelnfo” stores the column names in an array using the table and the
statement object as arguments. First the result set is created by executing the “PRAGMA
table_xinfo” query. This is specific to SQLite and stores every column name in a new row.
Then a new array is created namely “Attribute.List” which is then filled with the data in the
result set “rSet” via the “getString” method as long as the “next” method of the result set

is valid. At the end of the routine the array “Attribute.List” with the column names is
returned.

::ROUTINE tableInfo public
USE ARG table, statement
rSet=statement~executeQuery("Pragma table_xinfo(" table ");")

* Array for column names */

Attribute.List=.Array~new

DO WHILE rSet~next()

Attribute.list~append(rSet~getString(2))
END

RETURN Attribute.list

Code 5: Get column names

24

4.4 SQL Statements

In this chapter only the “SQL” parts of the nutshell programs are described in more detail.

4.4.1 CREATE TABLE

Forthe purposes of this thesis two tables, “animals” and “inhabitants”, should be created
in the until now empty SQLite database “zoo.db”. They serve as the base to showcase
different SQL commands in simple nutshell programs. After creating these tables, the
success should be verified by selecting them followed by formatting and printing the
result. To achieve this ooRexx and Java via the BSF4o0Rexx bridge as well as the JDBC
driver for database connection should be used. Creating the tables and performing a
“select” command could be done alternatively by using the DB Browser or the SQLite3
command line. As the tables are necessary for the other nutshell programs to function,
“zoolcreatetable.rexx” needs to be run before any of the following programs.

As shown in figure 24, 25 and 26 the tables hold no data.

sqlite> .open zoo.db
sqlite> Create table if not exists animals ('animal_id' TEXT, 'name' TEXT, 'weight' TEXT);
sqlite> Create table if not exists inhabitants ('name' TEXT, ‘'animal' TEXT);

sqlite> select * from animals;
sqlite> select * from inhabitants;
sqlite> |

Figure 24: SQLite command line tool - Create Table

SQL1* @
1 CREATE TABLE IF NOT EXISTS animals ('animsl TEXT, 'weight' TEXT);
2 CREATE TABLE IF NOT EXISTS inhabitants ('name’ 1" TEXT) ;
3 Select * from animals;

animal_id name weight

Figure 25: DB Browser - Create Table, Select “animals”

SQL1* 3
1 CREATE TABLE IF NOT EXISTS animals ('animal id' TEXT,
CREATE TABLE IF NOT EXISTS inhabitants ('name' TEXT,
3 Select * from inhabitants;
name animal

Figure 26: DB Browser - Create Table, Select "inhabitants”

25

First the statement object needs to be created with the “createStatement” method of the
JDBC connection object “conn”. (Oracle, n.d.-b) To perform data defining language
operations as in this case the “Create table” SQL command, the “executeUpdate”
method of the before created “statement” object is used. The SQL command is provided
as a string with the “-“ to go over more than one line according to Rexx syntax. Finally, the
result set object “rSet” is checked if the update was successful. Because of the “if not
exists” inthe SQL command the result setis also 0, meaning successful, if the tables have
already existed before the update. The code lines for the table creation are executed twice
with different data as two tables are needed for the presentation of the “join” command.

»

Afterwards the routine “showTable” is called for both tables which includes a “select
command and the “design” of the output which has already been discussed in more
detail. The connection object “conn” is passed, as it is necessary to create “statements”
within the routine. Finally, the connection to the database is closed via the “close” method
of the “conn” object. To have access to the routines “db_conn” and “showTable” the
“zoodbtools.rexx” program is required as well as the “BSF.CLS” file to gain access to the
Java functionalities. This is accomplished by using the “::REQUIRES” statement.

statement=conn~createStatement

m

rSet = statement~executeUpdate("CREATE TABLE IF NOT EXISTS animals" -
"('animal_id' TEXT, ‘name' TEXT, ‘'weight' TEXT);")

if rSet = 0 then say "Table 'animals' successfully created"

rSet = statement~executeUpdate("CREATE TABLE IF NOT EXISTS inhabitants" -
"('name' TEXT, 'animal' TEXT);")

if rSet = 0 then say "Table 'inhabitants' successfully created"

CALL showTable animals, conn
CALL showTable inhabitants, conn

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 6: Create Table statement

26

As shown in the following figure the output of the program “zoo1createtable.rexx” the
folder “Database” did not exist in the home directory before, so it was newly created. Then
the connection to the SQLite database was successfully established and two tables were
created that show no data yet.

Database folder successfully created
CONNECTION SUCCESSFUL

Table 'animals' successfully created
Table 'inhabitants' successfully created

ANIMALS

| animal_id | name | weight |
INHABITANTS

| name | animal

Process finished with exit code O

Figure 27: Result of Create Table statement

27

4.4.2 INSERT

After successfully creating two empty tables in the SQLite database “zoo.db” they need
to be filled with data. In this case the table “animals” should hold different types of
animals while the table “inhabitants” should include specific animals that live in the zoo.
The lines in this chapter should show how to insert data into the until now empty tables
with SQL statements by using ooRexx and Java with the help of BSF4o00Rexx and the JDBC
driver. Before and after the “Insert” the tables should be displayed graphically to prove
that it has worked. Again, this could be done by using the DB Browser or via the SQLite3
command line tool.

Insert into animals (animal_id, name, weight) values ('lowe', 'lion', '250 kg');

Insert into animals (animal_id, name, weight) values ('totenkopfaffe', 'monkey', 'l kg');
Insert into animals (animal_id, name, weight) values ('giraffe', 'giraffe', '1.200 kg');
Insert into animals (animal_id, name, weight) values ('burchell-zebra', 'zebra', '300 kg');
Insert into animals (animal_id, name, weight) values ('felsenpinguin', 'penguin', '2,5 kg');
Insert into inhabitants (name, animal) values ('Nico', 'lion');

Insert into inhabitants (name, animal) values ('Pingi', 'penguin');

Select * from animals;

N

lowe lion

totenkopfaffe monkey
giraffe giraffe
burchell-zebra zebra

felsenpinguin penguin

sqlite> Select * from inhabitants;

Nico 1
Pingi penguin

Figure 28: SQLite command line tool - Insert Into

1 Insert into animals (animal_ id, name, weight) wvalues
2 Insert into animals (animal id, name, weight) values
3 Insert into animals (animal_ id, name, weight) values
4 Insert into animals (animal id, name, weight) values
5 Insert into animals (animal_id, name, weight) wvalues
6 Select * from animals;

animal_id name weight
1 lowe lion 250 kg

2 totenkopfaffe monkey 1 kg

3 giraffe giraffe 1.200 kg
4 burchell-zebra zebra 300 kg

5 felsenpinguin penguin 2,5 kg

Figure 29: DB Browser - Insert Into, Select animals

Insert into inhabitants (nams, animzl) values

Insert into inhabitants (name, animzl) walues
Select * from inhabitants;

N S N

name animal
1 Nicoe licn
2 Pingi penguin
Figure 30: DB Browser - Insert Into, Select inhabitants

28

As an attempt to prevent SQL injection attacks prepared statements should be used
instead of the regular statement object. The program “zoolcreatetable.rexx” is a
prerequisite for this code to work.

To emphasize the difference that the update makes, the tables are displayed via the
routine “showTable”to show their state before the update. The “insert” command is a data
manipulation language operation. Therefore, prepared statements with variable bind
parameters were used. (Oracle, n.d.-b) Instead of the classic “statement” object the
“preparedStatement” object was created via the “prepareStatement” method of the
“conn” object. The values in the SQL command are replaced with “?” and passed later
with the “setString” method. Then the prepared statement gets executed via the
“executeUpdate” method, just like the normal statement, but with empty brackets.

showTable animals, conn
showTable inhabitants, conn

iahles */

/% Prepare object preparedStatement with variables =%/
preparedStatement = conn~prepareStatement("INSERT INTO animals" -
"(animal_id, name, weight) VALUES (2, ?, 2)")

/* Pass Values for the variables in the prepared statement =*/
preparedStatement~setString(l, "lowe")
preparedStatement~setString(2, "lion")
preparedStatement~setString(3, "250 kg")

/* Execute prepared Statement */

rSet = preparedStatement~executelUpdate()

/* Puss Values for the variables in the prepared statement */
preparedStatement~setString(l, "totenkopfaffe")
preparedStatement~setString(2, "monkey™)
preparedStatement~setString(3, "1 kg")

/* Execute prepared Statement =/

rSet = preparedStatement~executelUpdate()

/* Pass Values for the variables in the prepared statement =%/
preparedStatement~setString(1, "giraffe")
preparedStatement~setString(2, "giraffe")

preparedStatement~setString(3, "1.200 kg")

Code 7: Insert Into with prepared statement

29

The passing of variables with the “setString” method and the “executeUpdate” method
afterwards is then repeated with different values. Then a new prepared statement is
defined for the second table and with only two variables which are filled again with the
“setString” method and “executeUpdate”. Afterwards the tables are displayed again via
the “showTable” routine and the database connection is closed.

/* Prepare object preparedStatement with variables */
preparedStatement = conn~prepareStatement("INSERT INTO inhabitants" -
"(name, animal) VALUES (?, 2)")

/* Pass Values for the variables in the prepared statement =/

preparedStatement~setString(l, "Nico")
preparedStatement~setString(2, "Llion™)

/% Execute prepared Statement */
Execute prepared Statement */

rSet = preparedStatement~executelpdate()

hles

/* Pass Values for the variables

| Jes] in the prepared statement */
preparedStatement~setString(1, "Pingi")
preparedStatement~setString(2, "penguin")

/* Execute prepared Statement */

rSet = preparedStatement~executelUpdate()
7

* Cal

y Call routine to show table graphically =/
SAY "Tables after"

CALL showTable animals, conn

CALL showTable inhabitants, conn

I rine intaohac ~0 ~tio ¥
/* Close database connection #*/

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 7 (continued): Insert Into with prepared statement

30

Figure 31 shows the empty tables before the “insert” statement.

Tables hefore

ANIMALS

| animal_id | name | weight |
INHABITANTS

| name | animal |

Figure 31: Result before Insert statement

To show the progress, the content of both tables is selected again via the “showTable”

routine.

Tables after

ANIMALS

animal_id	name	weight
lowe	lion	250 kg
totenkopfaffe	monkey	1 kg
giraffe	giraffe	1.200 kg
burchell-zebra	zebra	300 kg
felsenpinguin	penguin	2,5 kg
INHABITANTS

| name | animal |

| Nico | lion |

| Pingi | penguin |

Figure 32: Result after Insert statement

31

4.4.3 ALTER TABLE

The goal of this program is to demonstrate the DDL operation “Alter Table” which in this
case adds a column “age” to the existing table “inhabitants” in the SQLite database
“zoo.db”. Here ooRexx and Java via BSF4o00Rexx should be used together with the JDBC
driver to enable database connection. Before and after the “Alter Table” command the
table should be selected and the result printed in a readable way. As before DB Browser
and the SQLite3 command line tool are other ways to achieve this. To be able to change
the structure of the table, it must already be there, so it is crucial that the table
“inhabitants” has been already created by the program “zoo1createtable.rexx”.

sqlite> Alter table inhabitants add column age integer;
sqlite> Select * from inhabitants;

Nico lion
Pingi penguin

Figure 33: SQLite command line tool - Alter Table

SQL1* @

1 ALTER TABLE inhabitants ADD COLUMN zge INTEGER;

2 Select * from inhabitants;

name animal age
1 Nico licm

2?2 Pingil penguiln

Figure 34: DB Browser - Alter Table

As this command does not have several variables a classic “statement” object is created
via the “createStatement” method of the JDBC connection object “conn”. Again, the table
is shown before any changes are implemented for comparison purposes. As before, the
SQL command is provided as a string. Afterwards the contents of the table are selected
again via the “showTable” routine to verify the result and finally the database connection
is closed via the “close” method of the “conn” object.

statement=conn~createStatement

SAY "Table before"
CALL showTable inhabitants, conn

rSet = statement~executeUpdate("ALTER TABLE inhabitants ADD COLUMN age INTEGER;")

Code 8: Alter Table statement

32

SAY "Table after"
CALL showTable inhabitants, conn

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 8 (continued): Alter Table statement

Figure 35 shows that the table “inhabitants” has a new column “age” after the update.

Table before

INHABITANTS

name	animal
Nico	lion
Pingi	penguin

Table after

INHABITANTS

name	animal	age
Nico	lion	The NIL object
Pingi	penguin	The NIL object

Figure 35: Result after Alter Table

4.4.4 UPDATE TABLE

Now data inside the table “inhabitants” in the SQLite database “zoo.db” is supposed to
be changed. A lion with the name Emma should be inserted into the table “inhabitants”
followed by a change of the value in the column “animal” from “lion” to “zebra”. This
program should insert data into a table and then change it with the SQL “update”
command. Prepared Statements should be used as there are variables to avoid injection
attacks. Before and after the update the table “inhabitants” should be shown to present
the success of the update. DB Browser or the SQLite3 command line tool are valid options
to process the insert and update commands. However, they should be implemented with
ooRexx and Java via BSF4o0Rexx and the JDBC driver for connecting to the database as
already explained. As it is the case for the other programs, the nutshell example
“zoolcreatetable.rexx” needs to be run before running this program in order to create the
required table “inhabitants”.

33

sqlite> Insert into inhabitants (name, animal) values
sqlite> Select * from inhabitants;

lion
penguin
lion

sqlite> Update inhabitants set animal = 'zebra' where
sqlite> Select * from inhabitants;

lion
penguin
zebra

Figure 36: SQLite command line tool - Insert Into and Update Table

SQL1* @

1 Insert intc inhabitants (name, animal) values ("Emma', 'licn');

M

Select * from inhabitants;

name animal
1 Nico lion
2 Pingi penguin
3 Emma lion

Figure 37: DB Browser - Table “inhabitants” before Update

QLI @

[y

Update inhabitant=s set animal = 'zebrz' where nzms = 'Emms'

[d

Select * from inhabitants;

name animal
1 Nico lion
2 Pingi penguin

3 Emma zebra

Figure 38: DB Browser - Table "inhabitants" after Update

34

First one set of data is inserted into the table “inhabitants” in the form of a prepared
statement. For this the “preparedStatement” object is created with the
“prepareStatement” method of the “conn” object. Then the values for the variables are
given via the “setString” method and finally the “preparedStatement” object is executed
via the “executeUpdate” method with empty brackets. Afterwards the contents of the
table is selected in the “showTable” routine to show the data before the update.

/* Prepare object preparedStatement with variables =*/

preparedStatement = conn~prepareStatement("INSERT INTO inhabitants" -
"(name, animal) VALUES (2, ?2)")

variables in the prepared statement %/
preparedStatement~setString(l, "Emma")
preparedStatement~setString(2, "lion")

/* Execute prepared Statement */

rSet = preparedStatement~executelUpdate()

/% Ca routine to show table graphically =%/
SAY "Table before update"
CALL showTable inhabitants, conn

Code 9: Insert Into with prepared statement

The prepared statement for the SQL “update” follows the same logic as with the SQL
“insert” command. A prepared statement object is created via the “prepareStatement”
method, and the SQL “update” command is provided as a string except for the values for
animal and the “where”-clause. These binding variables are given in the next step via the
“setString” method of the “preparedStatement” object. Subsequently the prepared
statement is executed. The routine “showTable” is called again, to verify the changes that
have been made to the data. Atthe end of the program, the database connectionis closed
with the “close” method of the “conn” object.

* Prepare object preparedStatement with variables =*/

preparedStatement = conn~prepareStatement("UPDATE inhabitants SET animal = ? WHERE name = ?;")

'* Pass Values for the va

variables in the prepared statement */

preparedStatement~setString(1, "zebra")
preparedStatement~setString(2, "Emma")
/* Execute prepared Statement */

rSet = preparedStatement~executelUpdate()

J* Cal 1 routine to show table graph icall
SAY "Table after update"
CALL showTable inhabitants, conn

Close datatk = connection %/

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 10: Update with prepared statement
35

Figure 39 shows the table “inhabitants” after the insert, which is before the update and
after the update. The field in the column “animal” was changed from “lion” to “zebra”
where the animals name equals “Emma”.

Table hefore update

INHABITANTS
| name | animal |
| Emma | lion |

Tahle after update

INHABITANTS
| name | animal |
| Emma | zebra |

Figure 39: Result after Insert Into and Update

4.4.5 SELECT with JOIN

In contrast to the programs above, there should be no changes to the data or the tables in
the SQLite database “zoo.db”. A table structure should be selected that contains the
following information: name, animal and weight. The columns “name” and “animal” come
from the table “inhabitants” while the column “weight should be retrieved from the table
“animals”. The tables should be joined viathe columns “animal” and “name” respectively.
The following implementation is supposed to use ooRexx and Java via BSF4ooRexx and
the JDBC driver to show the result of an SQL “join” command. The resulting table should
be formatted and printed. As before, doing this with the DB Browser or the SQLite3
command line tool would be an option as well. To function, the programs
“zool1createtable.rexx” and “zoo2insert.rexx” must be run in this order to create the tables
and fill them with the necessary data.

sqlite> SELECT inhabitants.name, inhabitants.animal, animals.weight FROM inhabitants LEFT
JOIN animals ON animals.name = inhabitants.animal WHERE inhabitants.animal = 'lion';

e [t e

Figure 40: SQLite command line tool - Select with Join

1 SELECT inhabitants.name, inhabitants.animal, animals.weight FROM inhabitants
2 LEFT JOIN animals ON animals.name = inhabitants.animal WHERE inhabitants.animal = 'lion';

name animal weight

1 Nico lion 250 kg

Figure 41: DB Browser - Select with Join

36

Initially, the statement object “statement” is created via the “createStatement” method
of the database connection object “conn”. Now for the SQL “select” command the
“executeQuery” method of the “statement” object is used. As a “join” operation is used
data is selected from two tables to form a new table. In this case it is a left join which
means thatfrom the first table all data and from the second table only corresponding data
is selected. The whole SQL command is entered as a string over three lines with the “-“

symbol following Rexx syntax.

Afterwards the routine “showlJoin” is called with the result set as variable to format and

show the result.

x Creates statement object for SQL commands */

statement=conn~createStatement

rSet = statement~executeQuery("SELECT inhabitants.name, inhabitants.animal," -
"animals.weight FROM inhabitants LEFT JOIN animals ON animals.name =" -
"inhabitants.animal WHERE inhabitants.animal = 'lion';")

/* Call routine to show table graphically #*/

SAY "Joined Table"

CALL showJoin rSet

Code 11: Select statement with Join

Then the outer border which should consist of “=” forming a double line and the inner
border with a single line out of “-“ are defined as “border.top” and “border.in”. Also the
titles of the columns should be separated by “|” which is declared as header. Then the
headers “Field1” to “Field3” are created for the three columns of the newly joined table.
Finally, the outer border, the header and the inner boarder are printed via “say” as stated

in the Rexx syntax.

::ROUTINE showdJoin
/* Use resuvlt set for data output =*/
USE ARG rSet
/* Check if select successful =*/
IF rSet <> 0 THEN
Do
SAY "JOIN: inhabitants LEFT JOIN animals ON" -
"animals.name = inhabitants.animal WHERE inhabitants.animal = lion"
END
ELSE SAY "Error"
/* Create outer and inner border, including spaces and separator
border.top = "="~copies(15#3+(3-1)%3+4)
border.in = "-"~copies(15*3+(3-1)*3+4)
/* Create header separator =*/

header = "|"

Code 12: Format output for Select statement with Join

37

/* Iterate over 3 columns x/
DO i=1 TO 3

header = header left("Field"|[]i, 15) "[|"
END

/*Header output =*/
say border.top
say header

say border.in

Code 12 (continued): Format output for Select statement with Join

The “next” method is used to iterate through the result set until it is empty. (Oracle, n. d.)
Then the data separator is defined as “|”. With the “getString” method of the “rset” object
the data from each of the three columns is retrieved. At the end of the “do” block the
variable “data” contains one row of the table. To close the table with the before defined

outer border the variable “border.top” is printed again.

i Pront _— it %/
/* Lredte data output =%/

D0 WHILE rset~next

/ /

~ ,
’ ranteo ata e aratar %
* Lreate data separator */

data = "|"
D0 i=1 TO 3

/* Format data output =/
Format data output %,

1 output %/
ouTput *,;

END
say border.top

RETURN

data = data left(rset~getString(i), 15) "|"

Code 12 (continued): Format output for Select statement with Join

Finally the database connection is closed at the end of the program.

/* Close database connection */

conn~close

Code 12 (continued): Format output for Select statement with Join

38

These are the tables used for the “join” operation.

ANIMALS

animal_id	name	weight
Lowe	lion	250 kg
totenkopfaffe	monkey	1 kg
giraffe	giraffe	1.200 kg
burchell-zebra	zebra	300 kg
felsenpinguin	penguin	2,5 kg
INHABITANTS

| name | animal |

| Nico | lion |

| Pingi | penguin |

Figure 42: Tables used for Join operation

This is the result of the left join with a “where” clause.

JOIN: inhabitants LEFT JOIN animals ON animals.name = inhabitants.animal WHERE inhabitants.animal = lion

Figure 43: Result of Select statement with Join

4.4.6 SELECT

While in the other nutshell programs the routines “getCols” and “tableInfo” were used to
gain information on the number of columns and the column names, this example
showcases another method to get this type of information. Therefore, only the columns
“name” and “weight” from the SQLlite “zoo.db” database table “animals” should be
selected, formatted and printed. The select command would work with DB Browser or
SQLite3 command line tools with no problem, but the point of this nutshell program is to
show the use of meta data from the result set. So, this example should be implemented
with ooRexx and Java via BSF4ooRexx and the JDBC driver for database connectivity. As
in the previous example the programs zoo1createtable.rexx and zoo2insert.rexx need to
be run first, before running this program to have data, that can be selected.

39

sqlite> SELECT name, weight FROM animals;

e [v |

lion

monkey
giraffe
zebra
penguin

Figure 44: SQLite command line tool - Select

SQL1* @
1 SELECT name, weight FROM animals;
name weight
i lion 250 kg

2 monkey 1 kg
3 giraffe 1.200 kg
4 zebra 300 kg

§ penguin 2,5 kg

Figure 45: DB Browser - Select

First, the statement objectis created via the “createStatement” method of the connection
object. Then the “Select” command that selects the columns “name” and “weight” from
the table “animals” is executed with the “executeQuery” method. The table name is
printed as well as information on the output and the “showSelect” routine is called.

statement=conn~createStatement

rSet = statement~executeQuery("SELECT name, weight FROM animals;")

SAY "ANIMALS: Result of Select"
CALL showSelect rSet

Code 13: Select statement

The routine “showSelect” uses the result set “rSet” as an argument to derive the meta
data via the “getMetaData()” method from it. The newly created object “rSetMeta”
includes information on the number of columns via the method “getColumnCount()”. The
creation of the outer and inner border is the same as in the “showTable” routine except
the variable columncount is used instead of the “getCols” routine. The header starts with
an “|” followed by the column name via “getColumnName” and a “|”. That is repeated as
long as there are columns. Finally the outer border, the header and the inner border are
printed via the Rexx command “say”.

40

::ROUTINE showSelect public

/* Use table and statement for sql select %/

USE ARG rSet

rSetMeta = rSet~getMetaData()
columncount = rSetMeta~getColumnCount()

/* Create outer and inner border, including spaces and separators */
border.top = "="~copies(15#columncount+(columncount-1)#3+4)
border.in = "-"~copies(15*columncount+(columncount-1)*3+4)

/* Create header separator */
header = "|"
/* Get number of columns from routine getCols */

DO i=1 TO columncount

/* Get column names from routine tablelnfo */

header = header left(rSetMeta~getColumnName(i), 15) "|"
END
/* Header output */

say border.top
say header
say border.in

Code 14: Get metadata and format output

The “do” block is again the same as in the “showTable” routine with the exception that the
variable “columncount” is used instead of the routine “getCols”. As the header the data
output starts with an “|” as well, followed by the value from the result set via the
“getString” method and ends with a “|”. This gets repeated for every column. Afterwards
the created “data” string is printed as well as the outer border string. At the end of the
program the database connection is closed via the “close” method of the “conn” object.

/* Create data output */
DO WHILE rset~next
/* Create data separator */
data = "[|"
/* Use column number from routine getCols %/
D0 i=1 TO columncount

C N ']
/* Format data output */

data = data left(rset~getString(i), 15) "["

END
say border.top

RETURN

Code 14 (continued): Get metadata and format output

/* Close database connection */

coion

conn~close

Code 15: Close database connection

41

Figure 46 shows the result of the “Select” command. Only the values of the columns
“name” and “weight” are displayed.

ANIMALS: Result of Select

name	weight
lion	250 kg
monkey	1 kg
giraffe	1.200 kg
zebra	300 kg
penguin	2,5 kg

Figure 46: Result of Select statement

4.4.7 DELETE FROM with ROLLBACK

After having created and manipulated the tables “animals” and “inhabitants” in the
SQLite “zoo.db” database, the data of both tables are now supposed to be deleted, but
the deletion should be reversed with eventually no changes occurring. This should be
implemented with the “rollback” command whose effect should be visualized by
selecting, formatting and printing the tables before and after the rollback. This is also
doable in the DB Browser or the SQLite3 command line tool. However, in this thesis
ooRexx and Java with the help of BSF4o0Rexx and the JDBC Driver for connecting to the
database should be used. The programs “zoo1createtable.rexx” and “zoo2insert.rexx” are
prerequisites for this code to function properly.

sqlite> Select * from animals;

N N

lowe lion
totenkopfaffe monkey
giraffe giraffe
burchell-zebra zebra
felsenpinguin penguin

sqlite> Select * from inhabitants;

name animal

Nico lion

Pingi penguin

begin transaction;

delete from animals;
delete from inhabitants;
Select * from animals;
Select * from inhabitants;
rollback;

Figure 47: SQLite command line tool — Select tables, Delete and Rollback

42

sqlite> select *# +rom animals;

s [e [e

lowe lion
totenkopfaffe monkey
giraffe giraffe
burchell-zebra zebra
felsenpinguin penguin

sqlite> select * from inhabitants;

name animal

Nico lion
Pingi penguin

Figure 48: SQLite command line tool - Select tables after Rollback

SQL1* @ SQL1* @
1 Begin transaction; 1 Begin transaction;
2 delete from animals; 2 delete from animals;
3 delete from inhabitants; 3 delete from inhabitants;
4 select * from animals; 4 select * from animals;
5 select * from inhabitants;
animal_id name weight
name animal

Figure 49: DB Browser — Delete, Select

“« H »
animals . . .
Figure 50: DB Browser — Delete, Select “inhabitants”
SQL1* @ SQL1* @
1 Begin transaction; 1 Begin transaction;
2 delete from animals; 2 delete from animals;
3 delete from inhabitants; 3 delete from inhabitants;
4 select * from animals; 4 select * from animals;
5 select * from inhabitants; 5 select * from inhabitants;
? roilbact;f e 6 rollback;
select TOm animats; 7 select * from animals;
.)) 8 select * from inhabitants;
animal_id name weight
1 lows lion 250 kg

name animal

? totenkopfaffe monkey 1 kg i Nico lion

3 giraffe giraffe 1.200 kg 2 Pingi penguin

4 burchell-zebra zebra 300 kg
Figure 52: DB Browser - Select “inhabitants”

5 felsenpinguin penguin 2,5 kg X
= T again after Rollback

Figure 51: DB Browser — Select “animals”
again after Rollback

Firstly, the statement object “statement” is created as before using the
“createStatement” method of the database connection object“conn”. Then a transaction
is started with the “begin transaction” command in SQL followed by the “delete” SQL
statements for both tables. Subsequently the “showTable” routine is called to show the
content of the tables, which should be empty as all data has been deleted. Then the SQL
operation “rollback” is executed which reverses the effects of the “delete” SQL
commands. Alternatively, the SQL statement “Commit” would cause all changes to be
saved. To prove that the rollback worked, the “showTable” routine is called a second time

43

and should show entries in both tables. At the end of the program the database
connection is closed again with the “close” method of the “conn” object.

- - ot e onl e
/* Creates statement object for SQL commands */

statement=conn~createStatement

/* Start of transaction */

rSet = statement~executeUpdate("BEGIN TRANSACTION;")

/* Execute DELETE statement =*/

rSet = statement~executeUpdate("DELETE FROM animals;")

rSet = statement~executeUpdate("DELETE FROM inhabitants;")

SAY "Tables before"

CALL showTahle animals, conn
CALL showTahle inhabitants, conn
/* End of transaction */

rSet = statement~executeUpdate("ROLLBACK;™)
say "ROLLBACK"

/* Call routine to show table graphically =*/
SAY "Tables after rollback"
CALL showTable animals, conn

CALL showTabhle inhabitants, conn

/* Close database connection */

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 16: Delete From statement with Rollback

As shown in figure 53 the tables are empty after the execution of the “delete” command,
but contain data after the rollback as illustrated in figure 54.

Tables bhefore

ANIMALS

| animal_id | name | weight |
INHABITANTS

| name | animal |

Figure 53: Result of Delete From statement before rollback

44

ROLLBACK

Tables after rollback

ANIMALS

animal_id	name	weight
lowe	lion	250 kg
totenkopfaffe	monkey	1 kg
giraffe	giraffe	1.200 kg
burchell-zebra	zebra	300 kg
felsenpinguin	penguin	2,5 kg
INHABITANTS

| name | animal |

| Nico | lion |

| Pingi | penguin |

Figure 54: Result of Delete From statement after rollback

4.4.8 DROP TABLE

Finally, the tables “inhabitants” as well as “animals” of the SQLite database “zoo.db”
should be deleted entirely. This ooRexx program with the help of Java via BSF4o0Rexx and
the JDBC driver for the database connection should delete the entire tables “animals” and
“inhabitants”. The tables should be shown in a formatted way before being dropped. If
that was successful information should be given. Dropping a table via the SQL “Drop”
command in the SQLite3 command line or just pressing “Delete table” in the DB Browser
are alternative options. In order to work, the program “zoo1createtable.rexx” needs to be

run before running this nutshell example.

sqlite> drop table animals;

sqlite> drop table inhabitants;
sqlite> select * from animals;
Parse error: no such table: animals

sqlite> select * from inhabitants;
Parse error: no such table: inhabitants
sqlite> |

Figure 55: SQLite command line tool - Drop Table

45

0sQLi* @ UisQL1* @

1 drop table animals; 1 Drop table animals;
2 drop table inhabitants; 2 Drop table inhabitants;
3 selseh. L. Erom. anina k. 3 SRASEh. L EROR. ARG ARRR.

Ausfithrung wurde mit Fehlern beendet. Ausfithrung wurde mit Fehlern beendet.

Ergebnis: no such table: animals Ergebnis: no such table: inhabitants

Figure 56: DB Browser — Drop Table, Select “animals” Figure 57: DB Browser - Drop Table, Select “inhabitants”

It starts with the creation of the statement object “statement” using the
“createStatement” method of the database connection object “conn”. Then the data of
the tables are selected via the “showTable” routine to show the tables before making any
changes. Then the result set object “rSet” is created via the “executeUpdate” method of
the “statement” object and the SQL “drop table” command is given as a string in brackets.
For this SQL command the result set should be 0 if the execution was successful. This is
checked with an “if” clause. Finally, the database connection is closed again via the
“close” method.

/* Creates statement object for SQL commands */
statement=conn~createStatement

/* Call routine to show table graphically %/
SAY "Tables before"

CALL showTable animals, conn

CALL showTable inhabitants, conn

/* Execute DROP statement x/
rSet = statement~executeUpdate("DROP TABLE animals ;")

if rSet = 0 then say "Table 'animals' successfully dropped"

rSet = statement~executeUpdate("DROP TABLE inhabitants;")
if rSet = 0 then say "Table 'inhabitants' successfully dropped"

/* Close database connection */

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 17: Drop Table statement

46

As the figure below shows the tables “animals” and “inhabitants” exist and contain data
before they are dropped.

Tables before

ANIMALS

animal_id	name	weight
lowe	lion	250 kg
totenkopfaffe	monkey	1 kg
giraffe	giraffe	1.200 kg
burchell-zebra	zebra	300 kg
felsenpinguin	penguin	2,5 kg
INHABITANTS

| name | animal |

| Nico | lion |

| Pingi | penguin |

Table 'animals' successfully dropped

Table 'inhabitants' successfully dropped

Figure 58: Result of Drop Table statement

47

4.5 CURL

This program works on its own and explores the “curl” command in combination with SQL
commands as well as the transaction/rollback function. First the table “animals” should
be created in the SQLite database “zoo.db”. Then a list of animals should be created, that
is inserted into the table as well as the animals weight that should be retrieved from the
website of the zoo Vienna. This should be implemented by using the “curl” command to
get the HTML-code of the website of the zoo Vienna. Curlis a shell command in Windows
and Linux that is given to the shell via the “ADDRESS SYSTEM” statement. Then the output
should be narrowed further down to the information on the animals weight by using the
“parse” command. After the insert as well as after the rollback the table should be
selected, formatted in a readable way and printed to view the progress. All of this should
be implemented using ooRexx and Java via BSF4oo0Rexx with JDBC driver for connecting
to the SQLite database. Just the SQL commands could be executed with the SQLite
command line tool or the DB Browser as well.

CREATE TABLE IF NOT ' TEXT, 'name' TEXT, 'weight' TEXT);
begin transaction;

Insert into animals (animal_id, weight) values ('lowe', '250 kg');

Insert into animals (animal_id, weight) values ('totenkopfaffe', 'l kg');

Insert into animals (animal_id, weight) values ('giraffe', '1.200 kg');

Insert into animals (animal_id, weight) values ('burchell-zebra',K '300 kg');
Insert into animals (animal_id, weight) values ('felsenpinguin', '2,5 kg');

Select * from animals;

s o v

lowe
totenkopfaffe
giraffe
burchell-zebra
felsenpinguin

sqlite> rollback;

sqlite> Select * from animals;
sqlite> drop table animals;

sqlite> Select * from animals;
Parse error: no such table: animals

Figure 59: SQLite command line tool - Create Table, Insert Into, Rollback, Drop Table

1 CREATE TABLE IF NOT EXISTS animals ('animal 1d' TEXT, 'name' TEXT, "weight' TEXT);

Figure 60: DB Browser - Create Table “animals”

1 BEGIN TRANSACTION;
2 Insert into animals (animal_id, weight) walues
3 Insert into animals (animal_id, weight) wvalues
4 Insert into animals (animal id, weight) walues
5 Insert into animals (animal_id, weight) walues
6 Insert into animals (animal_id, weight) walues
7 Select * from animals;

animal_id name weight
1 lows 250 kg
2 totenkopfaffe 1 kg
3 giraffe 1.200 kg
4 burchell-zebra 300 kg
5 felsenpinguin 2,5 kg

Figure 61: Insert Into, Select table "animals"

48

8 Lrollback;

9 Select * from animals;

animal_id name weight
Figure 62: Rollback, Select "animals"

10 LDIOP table animals;
11 Selegk. r from. aninelad

animal_id name weight

Rusfiihrung wurde mit Fehlern beendet.

Ergebnis: no such table: animals

Figure 63: Drop Table, Select "animals”

It starts with the creation of the statement object via the “createStatement” method of

the connection object. Afterwards the table animals is created if it does not exist already

with the column names “animal_id”, “name” and “weight”. They are all type “text”.

Then a new array called “animalslist” is created and filled with values, namely animals

that are presented on the zoo Vienna website, with the “makeArray” method.

Subsequently a transaction is started via the SQL command “Begin transaction”. The

“insert into” SQL statement is placed inside a loop over all the entries in the array

“animalslist” to fill the table with the value in the “animal” variable. The weight of the

respective animal is determined with the help of the “animalWeight” routine that uses the

argument “animal”. Then the loop ends.

/* Creates statement object for SQL commands */
statement=conn~createStatement

/* Execute CREATE TABLE statement =%/

rSet = statement~executeUpdate("CREATE TABLE IF NOT EXISTS animals" -
"('animal_id' TEXT, 'name' TEXT, 'weight' TEXT);")

/* Define new array */

animalslist = .Array~new

/* Fill array with values */

/* "Start of Transaction" */

rSet = statement~executeUpdate("BEGIN TRANSACTION;")

/* Iterate over array */

loop animal over animalslist
/* Execute INSERT statement, get weight and unit from animalWeight routine */
rSet = statement~executeUpdate("INSERT INTO animals" -
"(animal_id, weight) VALUES ('"animall|"', '"animalWeight(animal)"');™)

end

animalslist = ('lowe', 'totenkopfaffe', 'giraffe', 'burchell-zebra', 'felsenpinguin')~makeArray

Code 18: Create Table and Insert Into with loop

49

In the routine “animalWeight” the weight of the respective animal in the argument
“animal” is retrieved from the “zoovienna” website in real time. First the variable
“command” is constructed out of “curl”, the url of the zoo and the “animal” variable in
lowercase. Then an array to store the output is created as well as one to store error
messages. Then the “ADDRESS” keyword statement is executed with before defined
variables. To extract only the small information needed which is the weight of the animal
in this case the Rexx “parse” command is used with a pattern before and after the
information of interest. As the weight is not always given in the same format, itis checked
with an “if” clause that changes the variables if the first value is numeric. To verify the
result, it is printed via the “say” command. The double “|” serves to eliminate any spaces.

Finally, the routine returns the variables weight and unit of the respective animal.

::ROUTINE animalWeight
USE ARG animal

command="curl https://www.zoovienna.at/tiere/saeugetiere/"||animal~Tlower]|["/"

outArr=.array~new

errArr=.array~new

ADDRESS SYSTEM command WITH OUTPUT USING (outArr) ERROR USING (errArr)

parse VAR outArr '"animal-fact-list__headline">Gewicht' bis weight unit ""

if bis~datatype(numeric) then do
unit = weight
weight = bis

end

say animall|": " weight unit

RETURN weight unit

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 19: Parse animal weight from website

After inserting data into the table the routine “showTable” is called to show the state of
the table after defining and manipulating the data. Then the SQL command “Rollback” is
executed and the “showTable” routine is called again to check if the table is empty again.
Afterwards the table is dropped via the “drop table” SQL statement that gets executed
with the “executeUpdate” method of the “statement” object. If the result setis 0 then the
table was successfully dropped. At the end of the program the connection is closed via
the “close” method of the connection object and the “exit” instruction finally ends it.

50

/* Call routine to check if inserts were successful */
CALL showTable animals, statement

/* Rollback, changes are not saved #*/

rSet = statement~executeUpdate("ROLLBACK;")
SAY rollback

/* Check if inserts are gone */

CALL showTable animals, statement

/* Delete table, rSet should be 0 %/

rSet = statement~executelUpdate("DROP TAELE animals;")
IF rSet = 0 THEN SAY table dropped

/* Close database connection */
conn~close

/* End program */

exit

/* End main program */

Code 20: Rollback and Drop Table

As visible in the figure below the information was curled and then parsed correctly from
the website of the zoo Vienna. The table was filled with data until the rollback set the
contents back to zero. Finally, the table was dropped with a result set of 0 and therefore
“Table dropped” was printed.

lowe: 250 kg
totenkopfaffe: 1 kg
giraffe: 1.200 kg
burchell-zebra: 300 kg
felsenpinguin: 2,5 kg

ANIMALS

| animal_id | name | weight |
lowe The NIL object 250 kg
totenkopfaffe The NIL object 1 kg

| | | |
| | | |
| giraffe | The NIL ohject | 1.200 kg

| | | |
| | | |

burchell-zebra The NIL object 300 kg
felsenpinguin The NIL object 2,5 kg

ROLLBACK

ANIMALS

| animal_id | name | weight |

TAELE DROPPED

Figure 64: Result of Insert Into, rollback and Drop Table

51

5 Round-up and Outlook

First an overview of the programming languages that were used for several nutshell
programs was given. Afterwards the information on how to install the necessary software
components was provided. Subsequently the difference between relational and non-
relational databases was shown along with a more detailed explanation of the two types
of databases. Finally, the combination of the programming languages ooRexx, Java via the
bridge BSF4oo0Rexx and SQL was demonstrated in some nutshell examples.

While the aim of this thesis was only to show the basic functionalities of SQLite, further
work could be about designhing a more complex database taking integrity constraints into
account. For this, SQLite foreign key support would need to be activated. With a bigger
database looking into indexing could be interesting to speed up database queries.
Another field to explore would be triggers, a tool to automate the response of the database
to certain events such as “Insert” or “Update”.

52

Appendix
A1. CREATE TABLE

Listing 21 shows the complete code for the program zoo1createtable.rexx.

/* This program creates the tables "animals" and "inhabitants"

in the SQLite Database "zoo.db" */

/*Create directory for database =/
homeDir=.java.lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir [["\"]|[dbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database folder already there"

if ret = 0 then say "Database folder successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath ||"\"[|dbfile

/* Path to database */
url = "jdbec:sqlite:"||dbfilepath;

/* Pass url to db_conn routine */

conn = db_conn(url)

/* Creates statement object for SQL commands */
statement=conn~createStatement

/* Execute CREATE TABLE statement =%/

rSet = statement~executeUpdate("CREATE TABLE IF NOT EXISTS animals" -
"('animal_id' TEXT, 'name' TEXT, 'weight' TEXT);")

/* Output when successful (rSet = @) %/

if rSet = 0 then say "Table 'animals' successfully created"

Code 21: zoo1createtable.rexx

rSet = statement~executeUpdate("CREATE TABLE IF NOT EXISTS inhabitants" -
"('name' TEXT, 'animal' TEXT);")

/* Output when successful (rSet = 0) */

if rSet = 0 then say "Table 'inhabitants' successfully created"

/* Call rouvtine to show table graphically =*/
CALL showTable animals, conn
CALL showTable inhabitants, conn

/* Close database connection */

conn~close

::REQUIRES zoodbtools.rexx
: :REQUIRES BSF.CLS

Code 21 (continued): zoo1createtable.rexx

53

A2. INSERT

Listing 22 shows the complete code for the program zoo2insert.rexx.

/* This program inserts data into the table "animals".
It is required to execute zoocreatetable before running this program. */

/*Create directory for database */

homeDir=. java.lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir |["\"|[dbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database file already there"

if ret = 0 then say "Database file successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath [|"\"|[dbfile

/* Path to database */

url = "jdbc:sglite:"||dbfilepath;
/* Pass url to db_conn routine */
conn = db_conn(url)

/* Show table before insert statement */
SAY "Tables before"

CALL showTable animals, conn

CALL showTable inhabitants, conn

/* Prepare object preparedStatement with variables /
preparedStatement = conn~prepareStatement("INSERT INTO animals" -
"(animal_id, name, weight) VALUES (?, ?, ?2)")

Code 22: zoo2insert.rexx

/* Puss Values for the variables in the prepared statement */
preparedStatement~setString(l, "lowe")
preparedStatement~setString(2, "lion")
preparedStatement~setString(3, "250 kg")

/* Execute prepared Statement */

rSet = preparedStatement~executeUpdate()

/* Pass Values for the variables in the prepared statement */
preparedStatement~setString(l, "totenkopfaffe")
preparedStatement~setString(2, "monkey")
preparedStatement~setString(3, "1 kg")

/* Execute prepared Statement */

rSet = preparedStatement~executeUpdate()

/* Pass Values for the variables in the prepared statement =/
preparedStatement~setString(1, "giraffe")
preparedStatement~setString(2, "giraffe")
preparedStatement~setString(3, "1.200 kg")

Code 22 (continued): zoo2insert.rexx

54

45 /* Execute prepared Statement */

1) rSet = preparedStatement~executelUpdate()

47 /* Pass Values for the variables in the prepared statement */
48 preparedStatement~setString(1, "burchell-zehra")

49 preparedStatement~setString(2, "zebra")

50 preparedStatement~setString(3, "300 kg")

51 /* Execute prepared Statement */

52 rSet = preparedStatement~executelUpdate()

/* Pass Values for the variables in the prepared statement */

4 preparedStatement~setString(1, "felsenpinguin™)

preparedStatement~setString(2, "penguin')
preparedStatement~setString(3, "2,5 kg")
/* Execute prepared Statement */

rSet = preparedStatement~executelUpdate()

/* Prepare object preparedStatement with variables */
61 preparedStatement = conn~prepareStatement("INSERT INTO inhabitants" -
&2 "(name, animal) VALUES (2, ?)")

b4 /* Pass Values for the variables in the prepared statement */
preparedStatement~setString(1, "Nico")
preparedStatement~setString(2, "lion")

/* Execute prepared Statement */

rSet = preparedStatement~executelUpdate()

/* Pass Values for the variables in the prepared statement */
1 preparedStatement~setString(1, "Pingi")
2 preparedStatement~setString(2, "penguin')
/* Execute prepared Statement */
4 rSet = preparedStatement~executelUpdate()

Code 22 (continued): zoo2insert.rexx

/* Call routine to show table graphically =/
77 SAY "Tables after"

78 CALL showTable animals, conn

79 CALL showTable inhabitants, conn

81 /* Close database connection */

82 conn~close

B4 ::REQUIRES zoodbtools.rexx
85 : :REQUIRES BSF.CLS

Code 22 (continued): zoo2insert.rexx

55

A3. ALTER TABLE

Listing 23 shows the complete code for the program zoo3altertable.rexx.

/* This program adds a new column "age" to the table "inhabitants".
It is required to execute zoocreatetable before running this program. x/

/*Create directory for database */

homeDir=. java.lang.System~getProperty("user.home")

dbdir = "Database"

dbhdirpath=homeDir ||"\"|ldbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database file already there"

if ret = 0 then say "Database file successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath [|"\"[|dbfile

/* Path to database */

url = "jdbc:sqlite:"||dbfilepath;
/* Pass url to db_conn routine */
conn = db_conn(url)

/* Creates statement object for SQL commands */

statement=conn~createStatement

/* Show table before alter statement #*/
SAY "Table before"
CALL showTable inhabitants, conn

/* Execute ALTER TABLE statement */
rSet = statement~executeUpdate("ALTER TABLE inhabitants ADD COLUMN age INTEGER;")

Code 23: zoo3altertable.rexx

/* Show table after alter statement */
SAY "Table after”
CALL showTable inhabitants, conn

/* Close database connection */

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 23 (continued): zoo3altertable.rexx

56

A4. UPDATE TABLE

Listing 24 shows the complete code for the program zoo4update.rexx.

/* This program inserts data into table "inhabitants" and changes a field.
It is required to execute zoocreatetable before running this program. */

/*Create directory for database */
homeDir=.java.lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir ||"\"[ldbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database file already there"

if ret = 0 then say "Database file successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath |["\"||dbfile

/* Path to database */

url = "jdbc:sqlite:"||dbfilepath;
/* Pass url to db_cenn routine */
conn = db_conn(url)

/* Prepare object preparedStatement with variables */
preparedStatement = conn~prepareStatement("INSERT INTO inhabitants" -
"(name, animal) VALUES (2, 20")

/* Pass Values for the variables in the prepared statement */
preparedStatement~setString (1, "Emma")
preparedStatement~setString(2, "lion")

/* Execute prepared Statement */

rSet = preparedStatement~executeUpdate()

Code 24:

zoo4update.rexx

/* Call routine to show table graphically #*/
SAY "Table before update"
CALL showTable inhabitants, conn

/* Prepare object preparedStatement with variables */

preparedStatement = conn~prepareStatement("UPDATE inhabitants SET animal = ? WHERE name = ?;")

/* Pass Values for the variables in the prepared statement */
preparedStatement~setString(1, "zebra")
preparedStatement~setString(2, "Emma'")

/* Execute prepared Statement */

rSet = preparedStatement~executeUpdate()

/* Call routine to show table graphically #*/
SAY "Table after update"
CALL showTable inhabitants, conn

/* Close database connection */

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 24

(continued): zoo4update.rexx

57

A5. SELECT with JOIN

Listing 25 shows the complete code for the program zoo5selectjoin.rexx.

/* This program joins data from table "animals" and "inhabitants".

1) zoolcreatetable
2) zooZinsert */

/*Create directory for database */

homeDir=. java.lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir ||"\"|[dbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database file already there"

if ret = 0 then say "Database file successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath |["\"]|[dbfile

/* Path to database =/

url = "jdbc:sglite:"||ldbfilepath;
/* Pass url to db_conn routine %/
conn = db_conn(url)

/* Creates statement object for SQL commands */

statement=conn~createStatement

/* Execute SELECT query with LEFT JOIN */

"animals.weight FROM inhabitants LEFT JOIN animals ON animals.name =" -
"inhabitants.animal WHERE inhabitants.animal = 'lion';")

It is required to execute the following programs before running this program:

rSet = statement~executeQuery("SELECT inhabitants.name, inhabitants.animal," -

Code 25: zoo5selectjoin.rexx

/* Call routine to show table graphically =*/
SAY "Joined Table"
CALL showJoin rSet

/* Close database connection =/
conn~close

Code 25 (continued): zoo5selectjoin.rexx

::ROUTINE showJoin
/* Use result set for data output =/
USE ARG rSet
/* Check if select successful #*/
IF rSet <> 0 THEN
Do
SAY "JOIN: inhabitants LEFT JOIN animals ON" -

END
ELSE SAY "Error"

"animals.name = inhabitants.animal WHERE inhabitants.animal =

lion"

Code 25 (continued): zoo5selectjoin.rexx

58

47 /* Create outer and inner border, including spaces and separators */
border.top = "="~copies(15#3+(3-1)*3+4)
49 border.in = "-"~copies(15#3+(3-1)*3+4)

/* Create header separator */

51 header = "|"

52 /* Iterate over 3 columns */

53 DO i=1 TO 3

header = header left("Field"|[|i, 15) "|"

55 END

/*Header output =/
say border.top

say header

say border.in

/* Create data output */

D0 WHILE rset~next

3 /* Create data separator =/

b4 data = "|"

DO i=1 TO 3

béb /* Format data output =/

Y data = data left(rset~getString(i), 15) "|"
END

/* Data output =/

say data
71 END

2 say border.top

74 RETURN

Code 25 (continued): zoo5selectjoin.rexx

A6. SELECT

Listing 26 shows the complete code for the program zoo6selectcolumns.rexx.

/* This program selects data from the table "animals".

It is required to execute the following programs before running this program:
1) zoolcreatetable

2) zooZinsert */

/*Create directory for database */

homeDir=. java.lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir [["\"|ldbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database folder already there"

if ret = 0 then say "Database folder successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath ||"\"[|dbfile

/* Path to database */
url = "jdbc:sqlite:"||dbfilepath;

/* Pass url to db_conn routine %/

conn = db_conn(url)

/* Creates statement object for SQL commands */
statement=conn~createStatement

rSet = statement~executeQuery("SELECT name, weight FROM animals;")
/* Call routine to show table graphically %/

SAY "ANIMALS: Result of Select"
CALL showSelect rSet

Code 26: zoo6selectcolumns.rexx

/* Close database connection %/
conn~close

Code 26 (continued): zoo6selectcolumns.rexx

60

36 ::ROUTINE showSelect public
/* Use table and statement for sgl select #*/
USE ARG rSet

40 rSetMeta = rSet~getMetaData()
41 columncount = rSetMeta~getColumnCount()

43 /* Create outer and inner border, including spaces and separators #*/
44 border.top = "="~copies(15*columncount+(columncount-1)*3+4)
45 border.in = "-"~copies(15#columncount+(columncount-1)+3+4)
46 /* Create header separator */
47 header = "|"
48 /* Get number of columns from routine getCols =/
49 DO i=1 TO columncount

/* Get column names from routine tableInfo */
1 header = header left(rSetMeta~getColumnName(i), 15) "["
52 END
/* Header output */
4 say border.top
say header

say border.in

Code 26 (continued): zoo6selectcolumns.rexx

/* Create data output =/
59 DO WHILE rset~next

60 /* Create data separator =/
61 data = "|"
62 /* Use column number from routine getCols =%/
D0 i=1 TO columncount
b4 /* Format data output =/
65 data = data left(rset~getString(i), 15) "[|"
hb END
67 /*Data output */
say data
END
say border.top

72 RETURN

Code 26 (continued): zoo6selectcolumns.rexx

61

A7.DELETE FROM with ROLLBACK

Listing 27 shows the complete code for the program zoo7deletefrom.rexx.

/* This program deletes all data from "animals" and inhabitants,

but changes are followed by a "rollback"

It is required to execute the following programs before running this program:
1) zoolcreatetable
2)

zoo2insert x/

/*Create directory for database */

homeDir=. java.lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir [["\"]||dbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database file already there"

if ret = 0 then say "Database file successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath |["\"[|dbfile

/* Path to database */
url = "jdbc:sglite:"||dbfilepath;

/* Pass url to db_conn routine */
conn = db_conn(url)

/* Creates statement object for SQL commands */
statement=conn~createStatement

/* Start of transaction */
rSet = statement~executeUpdate("BEGIN TRANSACTION;")

Code 27: zoo7deletefrom.rexx

/* Execute DELETE statement =/
rSet = statement~executeUpdate("DELETE FROM animals;")

rSet = statement~executeUpdate("DELETE FROM inhabitants;")

SAY "Tables before"
CALL showTable animals, conn
CALL showTable inhabitants, conn

/* End of transaction #*/
rSet = statement~executeUpdate("ROLLBACK;")
say "ROLLBACK"

/* Call routine to show table graphically */
SAY "Tables after rollback"

CALL showTable animals, conn

CALL showTable inhabitants, conn

/* Close database connection */
conn~close

::REQUIRES zoodbtools.rexx
: :REQUIRES BSF.CLS

Code 27 (continued): zoo7deletefrom.rexx

62

A8. DROP TABLE

Listing 28 shows the complete code for the program zoo8droptable.rexx.

/* This program deletes the tables "animals" and "inhabitants"

It is required to execute zoocreatetable before running this program.

/*Create directory for database */
homeDir=.3java.lang.System~getProperty("user.home")

dbdir = "Database"

dbdirpath=homeDir |["\"]||dbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database file already there"

if ret = 0 then say "Database file successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath [|"\"|[dbfile

/* Path to database =*/
url = "jdbc:sqlite:"||dbfilepath;

/* Pass url to db_conn routine =/
conn = dh_conn(url)

/* Creates statement object for SQL commands */
statement=conn~createStatement

/* Call routine to show table graphically */
SAY "Tables hefore"

CALL showTable animals, conn

CALL showTable inhabitants, conn

%/

Code 28:

zoo8droptable.rexx

/* Execute DROP statement */
rSet = statement~executeUpdate("DROP TABLE animals ;")
if rSet = 0 then say "Table 'animals' successfully dropped"”

rSet = statement~executeUpdate("DROP TABLE inhabitants;")
if rSet = 0 then say "Table 'inhabitants' successfully dropped”

/* Close database connection */

conn~close

::REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 28 (continued): zoo8droptable

63

A9. CURL

Listing 29 shows the complete code for the program curlzoo.rexx.

/* Main program */

/*Create directory for database */

homeDir=. java.lang.System~getProperty("user.home")
dbdir = "Database"

dbdirpath=homeDir |["\"||dbdir

ret = sysMkDir(dbdirpath)

if ret = 183 then say "Database folder already there"

if ret = 0 then say "Database folder successfully created"

dbfile = "zoo.db"
dbfilepath = dbdirpath |["\"]||dbfile

/* Path to database */
url = "jdbc:sqlite:"||dbfilepath;

/* Pass url to db_conn routine %/
conn = db_conn(url)

/* Creates statement object for SQL commands */

statement=conn~createStatement

/* Execute CREATE TABLE statement %/

rSet = statement~executeUpdate("CREATE TABLE IF NOT EXISTS animals" -
"('animal_id' TEXT, 'name' TEXT, 'weight' TEXT);")

/* Define new array */

animalslist = .Array~new

/* Fill array with values */

animalslist = ('lowe', 'totenkopfaffe', 'giraffe', 'burchell-zebra', 'felsenpinguin')~makeArray

Code 29: curlzoo.rexx

/* "Start of Transaction" %/

rSet = statement~executeUpdate("BEGIN TRANSACTION;")

/* Iterate over array */

Loop animal over animalslist
/* Execute INSERT statement, get weight and unit from animalWeight routine #*/
rSet = statement~executeUpdate("INSERT INTO animals" -
"(animal_id, weight) VALUES ('"animall|"', '"animalWeight(animal)"');")

end

/* Call routine to check if inserts were successful =/
CALL showTable animals, statement

/* Rollback, changes are not saved */

rSet = statement~executeUpdate("ROLLBACK;"™)

SAY rollback

Code 29 (continued): curlzoo.rexx

64

/* Check if inserts are gone */

CALL showTable animals, statement

/* Delete table, rSet should be 0 */

rSet = statement~executeUpdate("DROP TABLE animals;")
IF rSet = O THEN SAY table dropped

/* Close database connection */
conn~close

/* End program */

exit

/* End main program */

Code 29 (continued): curlzoo.rexx

/* Get animal weight =*/
::ROUTINE animalWeight

USE ARG animal
/* Curl zoo website =/
command="curl https://www.zoovienna.at/tiere/saeugetiere/"|lanimal~lower|]|"/"
/* Create array to store output =%/
outArr=.array~new
/* Create array for error messages */
errArr=.array~new
/* Give command to operating system */
ADDRESS SYSTEM command WITH OUTPUT USING (outArr) ERROR USING (errArr)
/* Parse only weight */
parse VAR outArr '"animal-fact-list__headline">Gewicht' bis weight unit ""
/* Check format and adapt */
if bis~datatype(numeric) then do
unit = weight
weight = bis
end

say animall|": weight unit

/* Return weight and unit of animal =*/
RETURN weight unit

: :REQUIRES zoodbtools.rexx
::REQUIRES BSF.CLS

Code 29 (continued): curlzoo.rexx

65

A10. Routine-db conn

Listing 30 shows the complete code for the routine db_conn.

v]

::ROUTINE db_conn public

/* Uses url to database */

USE ARG url

/* Create new object oac

mydriver=.bsf~new('org.sqlite.JOBC")

/* Load class DriverManager */

man=hsf.loadClass("java.sql.DriverManager")

/* Register driver as driver manager */

man~registerDriver(mydriver)

/* Returns connection object =%/

conn=man~getConnection(url)

if conn=0 then DO
RAISE SYNTAX 91.900 additional "Connection to database failed"

END
say Connection successful

/* Return statement object %/

RETURN conn

Code 30: db_conn routine

66

A11. Routine - showTable

Listing 31 shows the complete code for the routine showTable.

::ROUTINE showTable public
/* Use table and statement for sql select */
USE ARG table, conn
/* Create statement object */
statement=conn~createStatement

/* Get column names from routine tableInfo */
Attribute.List = tableInfo(table, statement)
/* Execute SELECT statement */
rSet = statement~executeQuery("SELECT * FROM" table ";")
/* Create outer and inner border, including spaces and separators =/
border.top = "="~copies(15*getCols(rSet)+(getCols(rSet)-1)%3+4)
border.in = "-"~copies(15+getCols(rSet)+(getCols(rSet)-1)#3+4)
/* Create header separator */
header = "|"
/* Get number of columns from routine getCols =*/
DO i=1 TO getCols(rSet)
/* Get column names from routine tablelInfo */
header = header left(Attribute.list[i], 15) "|"
END
J/* Print table name */
SAY table
/* Header output =/
say border.top
say header
say border.in

Code 31: showTable routine

/* Create data output */
D0 WHILE rset~next
/* Create data separator */
data = "|"
/* Use column number from routine getCols */
DO i=1 TO getCols(rSet)
/* Format data output */
data = data left(rset~getString(i), 15) "|"
END
/*Data output */
say data
END
say border.top

RETURN

Code 31 (continued): showTable routine

67

A12. Routine —getCols

Listing 32 shows the complete code for the routine getCols.

/* Get number of columns of table */
::ROUTINE getCols public
/* Use resultset from select query */
USE ARG res
/* Stop when "done" is reached */
SIGNAL ON ANY NAME done
cols=0
/* Get string from result set until the column doesn't exist -->
DO FOREVER
cols+=1
res~getString(cols)
END
done:
/* Return last successful column = number of columns */
return cols-1

Error

* /

Code 32: getCols routine

A13. Routine - tablelnfo

Listing 33 shows the complete code for the routine tablelnfo.

/* Get column names %/
::ROUTINE tableInfo public
USE ARG table, statement
/* Get info from pragma table =/
rSet=statement~executeQuery("Pragma table_xinfo(" table ");")
/*# Array for column names #*/

Attribute.List=.Array~new

DO WHILE rSet~next()
/* Add name to array */
Attribute.lList~append(rSet~getString(2))
END

RETURN Attribute.Llist

Code 33: tablelnfo routine

68

References

Cowlishaw, M. F. (1984). The design of the REXX language. IBM Systems Journal, Vol 23,
No 4, 1984. Retrieved May 7, 2025, from
https://dl.acm.org/doi/pdf/10.1145/24686.24687

EDM2. (2019). IBM Object REXX. Retrieved May 7, 2025, from
https://www.edm2.com/index.php/IBM_Object_REXX

Eessaar, E. (2016). Database Normalization Theory and The Theory of Normalized
Systems: Finding a Common Ground. Baltic J. Modern Computing, Vol. 4,
No. 1, 5-33. Retrieved June 8, 2025, from
https://www.researchgate.net/profile/Erki-
Eessaar/publication/297731569_The_Database_Normalization_Theory_and_the_
Theory_of _Normalized_Systems_Finding_a_Common_Ground/links/56e18d9508
ae40dc0abf50a1/The-Database-Normalization-Theory-and-the-Theory-of-
Normalized-Systems-Finding-a-Common-Ground.pdf

Flatscher, R. G. (2013). Introduction to Rexx and ooRexx: From Rexx to Open Object Rexx
(ooRexx) (1. ed.). Facultas Verlags- und Buchhandels AG.

FreeCodeCamp. (2022). Database Normalization — Normal Forms 1nf 2nf 3nf Table
Examples. Retrieved June 8, 2025, from
https://www.freecodecamp.org/news/database-normalization-1nf-2nf-3nf-table-
examples/

Harrington, J. L. (2016). Relational Database Design and Implementation. Elsevier Inc.
Retrieved May 14, 2025, from
https://books.google.at/books?hl=de&lr=&id=yQgfCgAAQBAJ&oi=fnd&pg=PP1&d
g=database+design&ots=qQFxlYVA2v&sig=iGewcrNn5SkuZqpywZ76_eDai80&re
dir_esc=y#v=onepage&q=database%20design&f=false

Jatana, N., Puri, S., Ahuja, M., Kathuria, I., Gosain, D. (2012). A Survey and Comparison of
Relational and Non-Relational Database. International Journal of Engineering
Research & Technology (IJERT), 2278-0181, Vol. 1 Issue 6. Retrieved May 14, 2025,
from
https://d1wqtxts1xzle7.cloudfront.net/76957411/a-survey-and-comparison-of-
relational-and-non-relational-database-libre.pdf?1640094061=&response-
content-
disposition=inline%3B+filename%3DA_Survey_and_Comparison_of_Relational_
an.pdf&Expires=1747240350&Signature=YuYTP2IM6JKHOUIHrgnUhRdkY~byEfyr
MOYQWhPxLtdHa12WmFmIfmAVTlaghV6J0iG6~aeQPTL5RQr3nRLEpVzjwl0zMuP
XrZalgWal5lpGAaydeVkXR9fsnGbEtNJChW9OKhXOQ3RfiQgHONk-

69

g6L393ukAzdwhKa967M-
QNZJi1SIX3t7nOilYm5WWIMwyxgY~kXjapRveNLftNEIGT8f19eQ6Bu4025vHbZvd4
SSjsqwqdTrzfmqjgl7DjZy32sRfLmzBimMZe GQUtHMNvVPCRGO8KR0S-
CwFe7zLsBrndIBXLp11SGBtvR37IUTXSUT-AJ2VWOWUQqVbuxnhpSDg__&Key-Pair-
[d=APKAJLOHF5GGSLRBV4ZA

Oracle. (n.d.-a). A Relational Database Overview. Retrieved June 1, 2025, from
https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html

Oracle. (n.d.-b). JDBC-getting started. Retrieved May 22, 2025, from
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/IDBC-
getting-started.html#GUID-44000A82-7B5E-49A9-BB87-8A3A794E8F3A

Oracle. (2020). What Is a Database?. Retrieved May 14, 2025, from
https://www.oracle.com/uk/database/what-is-database/

Oracle. (2021). What Is a Relational Database? (RDBMS)?. Retrieved May 14, 2025, from
https://www.oracle.com/uk/database/what-is-a-relational-database/

Oracle. (2024). JDBC Introduction. Retrieved May 7, 2025, from
https://docs.oracle.com/javase/tutorial/jdbc/overview/index.html

SQLite. (2024). SQLite Foreign Key Support. Retrieved June 2, 2025, from
https://www.sqlite.org/foreignkeys.html

SQLite. (2025). About SQLite. Retrieved May 7, 2025, from
https://www.sqglite.org/about.html

SQLitebrowser. (2025). DB Browser for SQLite. Retrieved May 7, 2025, from
https://sqlitebrowser.org/

Wikipedia. (2024). Bean Scripting Framework. Retrieved May 7, 2025, from
https://en.wikipedia.org/wiki/Bean_Scripting_Framework

Wikipedia. (2025-a). Object Rexx. Retrieved May 7, 2025, from
https://en.wikipedia.org/wiki/Object_REXX

Wikipedia. (2025-b). SQLite. Retrieved May 7, 2025, from
https://en.wikipedia.org/wiki/SQLite

70

Download Links

Java https://bell-sw.com/pages/downloads/#jdk-24 (retrieved 27.04.2025)
ooRexx https://sourceforge.net/projects/oorexx/files/oorexx/5.1.0beta/
(retrieved 27.04.2025)

BSF4o0Rexx https://sourceforge.net/projects/bsfdoorexx/files/GA/BSF4o00Rexx-
850.20240304-GA/ (retrieved 27.04.2025)

Intelli) https://www.jetbrains.com/idea/download/?section=windows
(retrieved 27.04.2025)

Plugin IntelliJ https://sourceforge.net/projects/bsfdoorexx/files/Sandbox/aseik/
ooRexxIDEA/GA/2.5.0/ (retrieved 27.04.2025)

JDBC Driver https://github.com/xerial/sqlite-jdbc/releases (retrieved 27.04.2025)

SQLite https://www.sqlite.org/download.html (retrieved 27.04.2025)

DB Browser https://sqlitebrowser.org/dl/ (retrieved 27.04.2025)

71

Wirtschaftsuniversitat Wien
Vienna University of Economics and Business WRTSCHARTS
UNIVERSITAT

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

gauis [ascss G0 AmbA

List of aids for seminar paper/thesis

Title of paper/thesis: Managing an SQLite Database with ooRexx and
JDBC using BSF4o00Rexx

Author(s):

Last name(s), first name(s), student ID number(s):
Hofstetter, Cornelia, 01550814

Aids/tools Type(s) of use Affected Documentation
used areas/chapters

ChatGPT | ChatGPT 4.2 https://chatgpt.com/share/685172d2-
was used Connection | 81cc-8000-9d0c-b95f714d26d0
to describe | to Database
ooRexx p. 20
code
4.5 Curl p. 50
ChatGPT | ChatGPT Abstract https://chatgpt.com/share/685172d2-
was used 81¢cc-8000-9d0c-b95f714d26d0
to gain
general
information
on a topic

| hereby declare that | have listed all the aids | have used in the list above. If no aids have
been used, itis also indicated in the list (to be listed under “Aids/tools used: none”).

22.07.2025 (oo, Hop

Date Signature(s)

72

	1.1 ooRexx
	1.1.1 History
	1.1.2 Language

	1.2 BSF4ooRexx
	1.3 SQLite
	1.3.1 JDBC Driver
	1.3.2 DB Browser

	2.1 ooRexx
	2.2 Java
	2.3 BSF4ooRexx
	2.4 IntelliJ
	2.5 ooRexx Plugin for IntelliJ
	2.6 JDBC Driver
	2.7 SQLite
	2.8 DB Browser
	3.1 Definition
	3.2 Relational Database
	3.2.1 OLTP
	3.2.2 ACID
	3.2.3 Normalization

	3.3 Non-Relational Database
	3.3.1 Key Value Store
	3.3.2 Document Store
	3.3.3 Graph Database
	3.3.4 Column Oriented Database
	3.3.5 Object Oriented Database
	3.3.6 Grid and Cloud Database
	3.3.7 XML Database
	3.3.8 Multidimensional Database
	3.3.9 Multivalue Database
	3.3.10 Multimodel Database
	3.3.11 OLAP

	3.4 Database Management Systems
	3.5 SQL
	3.5.1 DDL Operations
	3.5.2 DML Operations
	3.5.3 Transactions

	4.1 Concept
	4.2 Connection to Database
	4.3 Routines
	4.3.1 showTable
	4.3.2 getCols
	4.3.3 tableInfo

	4.4 SQL Statements
	4.4.1 CREATE TABLE
	4.4.2 INSERT
	4.4.3 ALTER TABLE
	4.4.4 UPDATE TABLE
	4.4.5 SELECT with JOIN
	4.4.6 SELECT
	4.4.7 DELETE FROM with ROLLBACK
	4.4.8 DROP TABLE

	4.5 CURL
	A1. CREATE TABLE
	A2. INSERT
	A3. ALTER TABLE
	A4. UPDATE TABLE
	A5. SELECT with JOIN
	A6. SELECT
	A7. DELETE FROM with ROLLBACK
	A8. DROP TABLE
	A9. CURL
	A10. Routine – db_conn
	A11. Routine – showTable
	A12. Routine – getCols
	A13. Routine – tableInfo

