
Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

BSF4ooRexxooRexxREXX

Business Programming 1 Business Programming 2

Security,
Debugging

Commands,
APIs

Window-
Automatisation,
Web-Scripting

Graphical User
Interfaces (GUI),

Sockets,
...

Basics,
Parsing

JSON (JavaScript Object Notation)

2 Prof. Rony G. Flatscher

Overview
● Introduction to JSON and the ooRexx package json.cls

– The json.cls package got introduced with ooRexx 5.0.0
– ooRexx 5.1.0 improves it

● Includes full JSON Boolean type support, handles all ooRexx collection classes
● Adds the ability to create a legible (human friendly) rendering of JSON text
● The 5.1.0 version can be used to replace deployed 5.0.0 versions

● Nutshell examples
● Roundup

3 Prof. Rony G. Flatscher

JSON Encoded Data from Wikipedia
● JSON got defined in the beginning of the 2000 to ease exchange of

structured data via the Internet with JavaScript
● JSON

– Acronym for "JavaScript Object Notation"
– JSON-Datatypes

● Object – a collection of comma separated name-value pairs (a Map) in curly brackets
● Array – an ordered list of comma separated values in square brackets
● String – a quoted sequence of UTF-8 characters
● Boolean – true or false
● Number – any number
● null (void) – null

– Cf. https://www.json.org/, https://en.wikipedia.org/wiki/JSON

4 Prof. Rony G. Flatscher

The ooRexx package json.cls
● Introduced with ooRexx 5.0.0, improved in ooRexx 5.1.0
● Needs to be required, such that its public class .json becomes accessible

(::requires "json.cls")
– Explicitly supplies JSON Boolean values with .json~true and .json~false which behave like

ooRexx .true and .false (can be used as ooRexx Booleans as well)

● Class methods for reading/writing JSON data directly from/to file
– fromJsonFile(path2file), returns a Rexx object representing the JSON data
– toJsonFile path2file, rexxObject [, legible]), where legible is .false (default) or .true

● Class (and instance) methods for turning an ooRexx object into a JSON string or
a JSON string into an ooRexx object
– toJson(rexxObject [, legible]), where legible is .false (default) or .true
– fromJson(jsonString), returns a Rexx collection object with the JSON data

5 Prof. Rony G. Flatscher

Wikipedia JSON Encoded Data (Legible)
Cf. Wikipedia https://en.wikipedia.org/wiki/JSON (2025-08-18, "wikipedia.json")

{
 "first_name": "John",
 "last_name": "Smith",
 "is_alive": true,
 "age": 27,
 "address": {
 "street_address": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postal_code": "10021-3100"
 },
 "phone_numbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
],
 "children": [
 "Catherine",
 "Thomas",
 "Trevor"
],
 "spouse": null
}

6 Prof. Rony G. Flatscher

json_01.rex
Nutshell 1: Unencode and Encode JSON Data (1/3)

● Read JSON encoded data from file
– Use Wikipedia's example

● JSON encoded sample data is broken up into lines and indented for better legibility
● Usually JSON encoded data is "minimized", i.e. does not contain ignorable whitespace

meant for easying legibility and comprehensibility for humans
– Result is an ooRexx directory object that contains all imported data

● JSON arrays are represented as ooRexx array objects
● JSON objects (maps) get represented as ooRexx directory objects

– At the end the generated ooRexx directory object will be used to create a legible
and a minimal JSON rendering of it

7 Prof. Rony G. Flatscher

json_01.rex
Nutshell 1: Unencode and Encode JSON Data (2/3)

-- ooRexx 5.1 or higher
parse arg fn -- get file name
o = .json~fromJsonFile(fn) -- reads and unencodes JSON file

say .json~toJson(o,.true) -- encode as legible (human-friendly) JSON string
say "---"
say .json~toJson(o) -- encode as minimized (standard) JSON string

::requires "json.cls" -- get access to the JSON class

8 Prof. Rony G. Flatscher

{
 "address": {
 "city": "New York",
 "postal_code": "10021-3100",
 "state": "NY",
 "street_address": "21 2nd Street"
 },
 "age": 27,
 "children": [
 "Catherine",
 "Thomas",
 "Trevor"
],
 "first_name": "John",
 "is_alive": true,
 "last_name": "Smith",
 "phone_numbers": [
 {
 "number": "212 555-1234",
 "type": "home"
 },
 {
 "number": "646 555-4567",
 "type": "office"
 }
],
 "spouse": null
}

Output (note attributes are sorted by name to ease locating them):

"rexx json_01.rex wikipedia.json"
Nutshell 1: Unencode and Encode JSON Data (3/3)

{
 "first_name": "John",
 "last_name": "Smith",
 "is_alive": true,
 "age": 27,
 "address": {
 "street_address": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postal_code": "10021-3100"
 },
 "phone_numbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
],
 "children": [
 "Catherine",
 "Thomas",
 "Trevor"
],
 "spouse": null
}

rexx json_01.rxj wikipedia.json

{"address":{"city":"New
York","postal_code":"10021-
3100","state":"NY","street_address":"21
2nd Street"},"age":27,"children":
["Catherine","Thomas","Trevor"],"first_nam
e":"John","is_alive":true,"last_name":"Smi
th","phone_numbers":[{"number":"212 555-
1234","type":"home"},{"number":"646 555-
4567","type":"office"}],"spouse":null}

wikipedia.json

Minimal (standard):
– no white space characters
– no carriage-return characters
– no line-feed characters

9 Prof. Rony G. Flatscher

json_02.rex
Example 2: JSON Encoding from ooRexx Data (1/2)

● The toJSON class method takes an ooRexx object to encode
● The example creates an ooRexx structure using an ooRexx relation object, an ooRexx

array and an ooRexx list and demonstrates how to encode that data
– Encoding to JSON demonstrates how a JSON Boolean value gets employed
– The toJSON class method creates minimized encodings by default
– An instance of the JSON class encodes for humans if toJSON's optional legible

argument is set to .true

10 Prof. Rony G. Flatscher

rel = .relation~new -- create a relation (allows duplicates)
rel["WU"]="Vienna Business University"
rel["Wien"]= ("Vienna", "Vienne") -- English, French
rel["historical districts"] = .list~of(1190, 1090, 1020)
rel["currently in district"] = 1020
rel["is older than Harvard"] = .json~false -- a JSON false value

say .json~toJson(rel) -- encode as minimized JSON (standard)
say "---"
say .json~toJson(rel,.true)-- encode as legible JSON (human friendly)

::requires "json.cls" -- get access to the JSON class

json_02.rex
Example 2: JSON Encoding from ooRexx Data (2/2)

{"WU":"Vienna Business University","Wien":
["Vienna","Vienne"],"currently in
district":1020,"historical districts":
[1190,1090,1020],"is older than
Harvard":false}

{
 "WU": "Vienna Business University",
 "Wien": [
 "Vienna",
 "Vienne"
],
 "currently in district": 1020,
 "historical districts": [
 1190,
 1090,
 1020
],
 "is older than Harvard": false
}

11 Prof. Rony G. Flatscher

Roundup
● ooRexx 5.0 introduced the Rexx package json.cls

– Implements a public ooRexx class named .json
● The fromJSON class and instance methods allow for turning JSON encoded string

data into an ooRexx structure (collection)
● The toJSON class and instance methods allow for encoding any ooRexx structure

(collection) into a JSON string

● ooRexx 5.1 improves "json.cls"
– Compatible with ooRexx 5.0 "json.cls" (hence no need to change programs)
– Adds explicit support for JSON Boolean values
– The attribute legible, if set to .true will encode JSON in a human friendly form
– Adds utility class methods to directly read (fromJsonFile(fileName)) from or

write to files (toJsonFile(fileName, rexxObject[, isLegible=.false]))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

