
Java Native Methods

Alligator Descartes

http://www.symbolstone.org

c©1996-2000 Alligator Descartes

November 16, 2000

“Java Native Methods” was written, illustrated and prepared by Alligator
Descartes using the DocBook DTD, OpenJade and LATEX.

Copyright c©1996-2000 Alligator Descartes – All Rights Reserved

The contents of this document may not be copied or duplicated in any
form, in whole or in part, without the prior written permission of Alligator
Descartes

Java is a registered trademark of Sun Microsystems, Inc.

Notes on this edition

This book is the virtually complete text of a book called “Java Native
Methods”. Note that this material has not undergone final editing and
that Chapter 14, “Native Rendering from Java” is not completely finished.
Furthermore, there is no index for this book.

These points notwithstanding, this is a (virtually) complete book discussing
native method programming with both the JNI (Java Native Interface) and
RNI (Raw Native Interface) APIs.

Demonstration Code

The full demonstration code for this book can be downloaded from:

http://www.symbolstone.org/technology/java/nmbook/nmbook_src.tar.gz

http://www.symbolstone.org/technology/java/nmbook/nmbook_src.zip

Due to some issues with the formatting engine used, some of the demonstra-
tion code examples within the pages of the book have suffered line-wrap
and hyphenation where it should not have occurred. The downloadable
demonstration code does not suffer from this problem.

Author

Alligator Descartes has been an itinerant fiddler with computers from a
very early age ruined only by obtaining a BSc in Computer Science from
the University of Strathclyde, Glasgow. His computing credits include sev-
eral years of Oracle DBA work, multi-user Virtual Reality servers, high-
performance 3D graphics programming and several Perl modules. His spare
time is spent trudging around Scotland looking for stone circles and Pictish
symbol stones to photograph.

Alligator Descartes is not his real name.

Table of Contents
1. Preface ..11

Resources ...13
Acknowledgements ..14

2. Introduction..15

Programming Complexity..15
Performance ...16
Portability and Native Interfaces..17
Legacy Code...17
Applets or Applications?..18
Speaking in Tongues ..18
The Shape of Things To Come...19
Pictish Symbol Stones and the Sample Code...20

3. Java Architecture...21

The Java Virtual Machine ..21
Class Files ..22
Type Signatures..23

Primitive Data Types ..24
Class Types...24
Array Types ..25

Native Code Libraries ..25
Unix/Linux ...26
Windows ...29
OS/2..30
MacOS..32
Loading Native Code into the JVM..36

Netscape and Native Libraries ..38

4. Introducing the Java Native Interface ...41

The JNI Execution Environment..41
Implementing JNI Native Methods..44

Writing The Java Code ...44
The Glue Layer...45
Implementing the Native Method Body ...48

JNI Data Types...50
Primitive Data Types ..50
Reference Data Types...51
The jvalue Data Type..53

5. Introducing the Raw Native Interface ...55

1

The Microsoft JVM..55
Implementing RNI Native Methods...56

Writing The Java Code ...56
The Glue Layer...57
Implementing the Native Method Body ...61

RNI Data Types..63
Primitive Data Types ..64
Classes and Objects ..65
Arrays ...66

6. Working with Strings ..68

Creating Strings..68
Converting Strings..69

Conversion with JNI ...70
Conversion with RNI..73

Sizing Strings ...74

7. Manipulating Arrays ...76

Creating Arrays ..76
Creating Arrays with JNI..76
Creating Arrays with RNI ..79

Manipulating Array Elements with JNI ...81
Manipulating Primitive Array Elements...82

Critical sections...84
Committing changes ...85
Ranges...87

Manipulating Object Array Elements...88
Manipulating Array Elements with RNI ..90
Multi-dimensional Arrays ..92

Multi-dimensional arrays with JNI...92
Multi-dimensional arrays with RNI..95

Sizing Arrays..98

8. Classes and Objects with the JNI ...100

Locating Classes ..100
Testing Class and Object Characteristics ...106
Accessing Fields ..106

Field Identifiers...107
Manipulating Field Data...109

Retrieving Field Values...109
Setting Field Values ..110

Invoking Methods ..111

2

Method Identifiers ..112
Invoking Instance Methods...113
Invoking Methods of a Superclass..115
Invoking Class Methods ...117

Creating Objects...117
Invoking Object Constructors...117
Creating Objects without Constructors ..120
The Gotcha of Object Creation...120

9. Classes and Objects with the RNI ..122

Locating Classes ..122
Testing Object and Class Characteristics ...125
Accessing Fields ..127
Invoking Methods ..131

Specifying Methods..131
Invoking The Located Methods..132

Creating Java Objects...136

10. Exception Handling ...141

Throwing Exceptions ...141
Throwing Exceptions with JNI...141
Throwing Exceptions with RNI..143

Catching Exceptions ..145

11. Threading ...148

Synchronization and Monitors ...148

12. Memory Management ...151

Persistent Objects...151
Controlling the Garbage Collector ...153

JNI Memory Management..154
RNI Garbage Collection Control..156

13. Embedding a JVM...158

Using the JNI Invocation API ..158
Creating a JVM...158

Configuring the JVM ..158
Really Creating The JVM!..169

Attaching and Detaching Threads ..171
Destroying the JVM ...173
Compiling Invocation API Programs ...174

Registering Native Methods Programmatically ..174
Embedding a JVM with RNI ...176

Attaching To a JVM ...176

3

Detaching From a JVM ..178

14. Native Rendering from Java ...180

Inside AWT Components...181
Swing / JFC..182

Rendering Directly to Swing ..183
Rendering to a Virtual Framebuffer..184

Locating Window Information...184
The SUN JVM and Derivatives ..185

Drawing Surfaces..185
Locking Drawing Surfaces..190
The AWT Native Interface..193

The Microsoft JVM ..195
Integrating Native Rendering and AWT...196
Summing Up ..199

15. JNI Function Reference ..200

AllocObject ..200
AttachCurrentThread ...200
Call<Type>Method ..201
Call<Type>MethodA..203
Call<Type>MethodV..204
CallNonvirtual<Type>Method ...206
CallNonvirtual<Type>MethodA ..207
CallNonvirtual<Type>MethodV ..209
CallStatic<Type>Method ...211
CallStatic<Type>MethodA ..212
CallStatic<Type>MethodV ..214
DefineClass ..215
DeleteGlobalRef...216
DeleteLocalRef ..217
DeleteWeakGlobalRef..218
DestroyJavaVM..219
DetachCurrentThread...219
EnsureLocalCapacity ...220
ExceptionCheck ...221
ExceptionClear...222
ExceptionDescribe ...223
ExceptionOccurred...223
FatalError ...224
FindClass..225
FromReflectedField..225

4

FromReflectedMethod ...226
Get<Type>ArrayElements..227
Get<Type>ArrayRegion ...229
Get<Type>Field..230
GetArrayLength ...231
GetEnv..232
GetFieldID ...233
GetJavaVM...234
GetMethodID ...235
GetObjectArrayElement...236
GetObjectClass...237
GetPrimitiveArrayCritical ..237
GetStatic<Type>Field ..239
GetStaticFieldID ..240
GetStaticMethodID ..241
GetStringChars...242
GetStringCritical ..242
GetStringLength...244
GetStringRegion...244
GetStringUTFChars ...246
GetStringUTFLength ...246
GetStringUTFRegion ...247
GetSuperclass...248
GetVersion..249
IsAssignableFrom ..250
IsInstanceOf ...251
IsSameObject ...252
JNI_CreateJavaVM ..252
JNI_GetCreatedJavaVMs...253
JNI_GetDefaultJavaVMInitArgs..254
JNI_OnLoad...255
JNI_OnUnload ...256
MonitorEnter ..257
MonitorExit ..258
New<Type>Array...259
NewGlobalRef..260
NewLocalRef ...260
NewObject, NewObjectA, NewObjectV..261
NewObjectArray ..263
NewString ..264

5

NewStringUTF...264
NewWeakGlobalRef...265
PopLocalFrame ..266
PushLocalFrame...267
RegisterNatives ..268
Release<Type>ArrayElements...269
ReleasePrimitiveArrayCritical ...271
ReleaseStringChars ..272
ReleaseStringCritical ...273
ReleaseStringUTFChars...274
Set<Type>ArrayRegion..275
Set<Type>Field ..276
SetObjectArrayElement ...277
SetStatic<Type>Field ...278
Throw ...280
ThrowNew..280
ToReflectedField ..281
ToReflectedMethod ..282
UnregisterNatives...283

16. RNI Function Reference..285

Array Handling ..285
ArrayAlloc..285
ArrayCopy ..285
ClassArrayAlloc ...286
ClassArrayAlloc2 ...287

Class Handling ...288
AddPathClassSource ..289
ClassClassToClassObject ...289
ClassObjectToClassClass ...290
Class_GetAttributes..291
Class_GetField ...291
Class_GetFieldByIndex..292
Class_GetFieldCount..293
Class_GetInterface ...294
Class_GetInterfaceCount..295
Class_GetMethod ...295
Class_GetMethodByIndex ...296
Class_GetMethodCount ...297
Class_GetName ..298
Class_GetSuper ..298

6

FindClass ..299
FindClassEx..300
FindClassFromClass...301

Debugging ..302
jio_snprintf ...302
jio_vsnprintf ...303

Exception Handling..304
HResultFromException ..304
SignalError ...304
SignalErrorHResult ..305
SignalErrorPrintf ..306
exceptionClear ..307
exceptionDescribe ..308
exceptionOccurred..308
exceptionSet ...309
getPendingException..310

Field Handling..310
Field_Get<Type> ..311
Field_GetOffset ..312
Field_GetStaticPtr ..312
Field_GetValue ...313
Field_GetValue64 ...314
Field_Set<Type>...314
Field_SetValue..316
Field_SetValue64..316

Garbage Collection ..317
GCDisable ..318
GCDisableCount...318
GCDisableMultiple...318
GCEnable ...319
GCEnableCompletely...320
GCFramePop ..320
GCFramePush...321
GCFreeHandle..322
GCFreePtr...322
GCGetPtr ..323
GCNewHandle..324
GCSetObjectReferenceForHandle..324
GCSetObjectReferenceForObject ..325

JVM Embedding ..326

7

PrepareThreadForJava ..326
PrepareThreadForJavaEx..327
UnprepareThreadForJava ...327

Member Information ..328
Member_GetAttributes...329
Member_GetClass ..329
Member_GetName ...330
Member_GetSignature ...331

Method Handling ...331
do_execute_java_method..332
execute_java_constructor, execute_java_constructorV..333
execute_java_constructor_method..334
execute_java_dynamic_method, execute_java_dynamic_method64,

execute_java_dynamic_methodV...335
execute_java_interface_method, execute_java_interface_method64,

execute_java_interface_methodV ...337
execute_java_static_method, execute_java_static_method64, execute_java_static_methodV

339
get_methodblock ..340

Miscellaneous...341
AddModuleResourceClassSource ..342
GetCurrentJavaTimeMillis ...342
GetNativeMethodCallersClass ...343
GetNativeMethodCallersMethodInfo ...343
GetNativeMethodsClass ...344
GetNativeMethodsMethodInfo...344
RNIGetCompatibleVersion...345
Thread_IsInterrupted ..345

Monitors ...346
ObjectMonitorEnter..346
ObjectMonitorExit..347
ObjectMonitorNotify ..348
ObjectMonitorNotifyAll...348
ObjectMonitorWait ...349
monitorEnter...350
monitorExit...350
monitorNotify ...351
monitorNotifyAll ..352
monitorWait ..352

Object Characteristics ..353

8

ImplementsInterface ...353
isInstanceOf..354
is_instance_of ...355
is_subclass_of...356

Object Information...357
Object_GetClass ...357

String Handling ..357
MakeByteString..358
javaString2CString ...358
javaStringLength...359
javaStringStart ..360
makeJavaString...360

9

List of Tables
3-1. Primitive Type Signature Characters..24
3-2. Unix Shared Library Compiler Incantations ..27
3-3. Unix Include File Locations ...28
4-1. Special character sequences for parameter type...47
4-2. JNI Primitive Data Type Mappings ..50
5-1. RNI Primitive Data Type Mappings...64
9-1. java.lang.Class to RNI Functions...126

List of Figures
3-1. A Configured HelloWorld Project ..33
3-2. The Appropriate Link Order for HelloWorld ...33
3-3. Configuring CodeWarrior to Emit Headers..34
3-4. Merging Shared Libraries...36
3-5. Netscape Navigator’s Security Interface ..39
4-1. The JNI Execution Environment ..41
4-2. JNI Reference Data Types..53
7-1. Multi-Dimensional JNI Arrays...92
14-1. Drawing Surfaces ...185
14-2. X11 Windowing Architecture ..187
14-3. Win32 Windowing Architecture...188
14-4. AWT Event Routing ...197

List of Examples
4-1. Native method declaration (HelloWorld.java)..44
4-2. Header file for HelloWorld.java ...46
4-3. Native code body of the native method (nativeHelloWorld.cpp) ...49
5-1. Native method declaration (HelloWorld.java)..56
5-2. Auto-generated RNI header file (HelloWorld.h) ..58
5-3. Native code body of the native method (nativeHelloWorld.cpp> ..61

10

Chapter 1. Preface
Java is arguably the most popular cross-platform programming language in use today, with ports
available for almost any operating system, from mainframes down to handheld PCs. However, with the
panacea of platform-independence comes the price of potentially reduced performance and the inability
to directly access hardware-dependent features, a major problem in the field of 3D graphics and other
hardware-accelerated areas.

To address these issues and provide the developer with a way to access this important functionality, Java
provides a mechanism callednative methods, an technique that allows your code to seamlessly switch
execution from Java into compiled, platform-specific code. This book discusses the two most common
APIs in use today, the widely used Java Native Interface (JNI) and the Microsoft-specific Raw Native
Interface (RNI).

I have tried to provide a logical path through the various aspects of both native method interfaces such as
basic techniques to manipulate variables, strings and arrays, to more complex techniques such as
interfacing with the garbage collector and management of references. When possible, both the JNI and
RNI are discussed together as many of the concepts behind a topic are identical for both interfaces,
differing only in the actual API calls.

However, in some cases, the differences in the way that the JNI and RNI address problems are so
radically different that I have dedicated a chapter entirely to each interface.

Here’s a rundown of the book, chapter by chapter:

Chapter 2,Introduction to Java Native Methods

This chapter introduces the topic of native methods and some good reasons to use them. It also
discusses when you should consider using them and when it might not be worth using them.

I also introduce the examples used throughout the book.

Chapter 3,Java Architecture

This chapter discusses the basic architecture used by the Java Virtual Machine and how native
methods fits into that overall design. We also discuss the basic concepts of class files and how data
types are used by the native interfaces. This information is used again and again throughout the
book, so this chapter is recommended reading.

We also discuss the concrete reality of trying to write native method code that will work on a variety
of platforms. I outline the principles behind, and examples of, compiling and linking dynamically
loadable libraries on UNIX, Windows, MacOS and OS/2 platforms.

11

Chapter 1. Preface

Chapter 4,Introducing the Java Native Interface

This chapter discusses the architecture behind the JNI and how it interacts with the Java Virtual
Machine. We also discuss how data type mapping occurs within the JNI and what the JNI-specific
data types are.

A simple example is discussed showing how you call a native method from Java and how to
implement your first native method.

Chapter 5,Introducing the Raw Native Interface

This chapter discusses the architecture behind the RNI and how it interacts with the Microsoft Java
Virtual Machine. Also discussed is how the standard C data types map to the data types used by the
RNI.

A simple example is discussed showing how you call a native method from Java and how to
implement your first native method.

Chapter 6,Working with Strings

This chapter dissects the way in which Java strings are created and manipulated using both the JNI
and the RNI.

Chapter 7,Manipulating Arrays

This chapter discusses how arrays can be created and manipulated from both the JNI and the RNI.

Chapter 8,Class Operations with the JNI

This chapter is dedicated to the JNI and discusses the way that information stored within a class
can be retrieved, for example, values stored within variables. Secondly, we discuss how we can
invoke methods at both a class-level and instance-level. Thirdly, we look into the techniques behind
creating and manipulating objects with the JNI and, finally, we discuss how meta-information about
a class can be retrieved and used within your code.

This chapter is JNI-specific.

Chapter 9,Class Operations with the RNI

This chapter contains the same content as Chapter 8, but only discusses the RNI.

Chapter 10,Exception Handling

Java typically uses an exception-based error-triggering and handling system as opposed to a pure
return code system used by languages such as C.

12

Chapter 1. Preface

This chapter discusses how you can trigger exceptions from within native code, or safely handle
exceptions thrown when your native code is executing.

Chapter 11,Threading

This chapter discusses how to manage multi-threading in native code.

Chapter 12,Memory Management

This chapter covers one of the more complex areas of native method programming, that of
interacting with the Virtual Machine’s garbage collector. I explain the ins and outs of what the
garbage collector is doing, and how this can be problematic with writing native method code. We
also discuss how our native method code can explicitly control the garbage collector for
performance reasons.

Chapter 13,Embedding a JVM

This chapter discusses one of the more exciting uses of native method programming which allows
you to embed a Java Virtual Machine into an executable program. This is almost the complete
opposite technique to the way that the book has been structured so far in that we will now be talking
about a compiled program making Java calls, rather than a Java program making native calls!

We’ll discuss how to embed a JVM into programs using both the RNI and the JNI and also discuss
how to register native methods with the JNI in a way that gives you better application security.

Chapter 14,Native Rendering from Java

This chapter looks at some of the issues associated with rendering graphics from native code onto
Java AWT and Swing drawing surfaces.

Resources
As further reference to the material in this book, there are a few books and web sites that discuss the
topic of native method programming:

http://www.javasoft.com

JavaSoft’s home page. This site contains the downloadable specification for the Java Native
Interface and also contains a very simple tutorial on native method programming.

You can also download the Java Development Kit from this site.

13

Chapter 1. Preface

http://www.microsoft.com/java

Microsoft’s Java Development home page. This site contains the specification for the Raw Native
Interface. There is very little in the way of actual example code or tutorials.

You can download the Microsoft Java Software Development Kit from here.

Essential JNI, by Rob Gordon

"Essential JNI" covers the JNI API (including Java-2) extensively, but, as the title would suggest,
does not cover RNI.

The Java Native Interface: Programmer’s Guide and Specification, by Sheng Liang

This book, written by the designer of JNI, is a comprehensive look at the interface.

Concurrent Programming in Java, by Doug Lea

This excellent book covers the topic of multi-threading within the Java environment and threading
design patterns and methodologies.

Acknowledgements
I would like to thank, first and foremost, my wife Carolyn for once again having to watch the painful
process of me writing yet another book.

Martin McCarthy deserves a magnum of Trappist beer (with accompanying packet of Alka Selzter) for
proofreading drafts of the book and trying out the example code. Chet Haase also managed to survive
reading early drafts and review copies and is no doubt a better person for the experience! And, last, but
not least, Rob "Telescope Boy" DeMillo seems also to have survived the process with a modicum of
self-respect.

Thanks, and mountain survival gear, go to Paula Ferguson for doing a fabulous editing job and sticking
with the book through the long period which it took to write and bang into shape.

Finally, thanks to the people that used, and complained about, the Magician Java/OpenGL bindings over
the years. The experience of writing that software enriched the information in this book no end. In no
particular order: Jason "Mr. Wiggles" Osgood, Hayden Schultz, Jon Leech, Bruce D’Amora, Tim
Donovan, Jack Middleton, David Yu, Michael Gold and Suzy Deffeyes.

14

Chapter 2. Introduction
The Java programming language developed by Sun Microsystems has captured the attention of the
computing industry since it was introduced in 1995. The language boasts various features that are
attractive to computing professionals, such as platform-independence, reusable object-oriented modules,
and the heady claim of “Write once, run anywhere”. Java is not without its drawbacks, however. Two
major concerns involve legacy code and the performance of Java programs.

Java source code is compiled into platform-independent byte codes that are designed to execute within a
Java Virtual Machine (JVM). The compiled byte codes are then loaded into the JVM for execution. The
problem is that the JVM adds a layer of translation between the software and the processor of the
computer that it is running on, which can cause a fairly dramatic slowdown in performance. This is the
first “popularly acclaimed” major problem with Java.

The second, more pervasive, problem concerns legacy code. With the advent of such a popular
computing environment, many developers have abandoned other languages and jumped on the Java
bandwagon. However, completely rewriting an application to take full advantage of a Java-centric system
involves sweeping aside all the code written in other languages. If this is done on a large scale,
thousands, if not millions, of programmer-hours of software development may be lost.

Native methods offer a solution to both of these problems. Anative methodis essentially a function
declared within Java source code that is actually implemented using “native” code—code written in
another language and compiled for a specific processor. Since native methods are compiled for a
particular platform, you can use them to bypass the performance limitations inherent in the Java
environment. In addition, with some design work, native methods can be used to integrate legacy
software into Java-centric systems.

Unfortunately, a lot of information regarding native method programming is hearsay at best and
disinformation at worst. In the rest of this chapter, I plan to set the record straight about native
methods—both dispelling some myths about them and making it clear what you are getting into when
you decide to use them. My goal is to help you understand when it is appropriate to use native methods
and when it is best to avoid them completely.

Programming Complexity
Without a doubt, native methods are extremely tricky to program. This is one of the major issues that you
must take into consideration when you are deciding whether or not a particular application should use
native methods.

Programming native methods might appear to be a straightforward task, a case of simply following the
interfaces defined by the JVM you are targetting and then writing the code. What you must realize is that
with native methods you are interacting directly with the JVM in many places, and this in itself is an art

15

Chapter 2. Introduction

form. There are many occasions when particular operations can cause the JVM to crash. The JVM can
also push a stick through your spokes and induce bizarre behavior within your native code. All this can
make programming robust native methods extremely difficult.

Another issue that affects programming complexity is portability across operating systems. Once you
decide to use native methods, you lose the inherent portability that Java promises. Now you have to
decide which platforms to support. Should you support Windows 95/98/NT/2000, as well as Unix?
Instead of Unix? Or just various Unix platforms? For each operating system you choose to support, you
will probably have to make subtle modifications in order to compile and execute your code correctly on
that platform. And if you want to use operating-system-specific functionality, such as integration with
X/Motif or support for COM, you are looking at massive rewrites.

Performance
In the early days of Java Virtual Machine development, native methods offered a surefire way to improve
the performance of an application. Using native methods for compute-intensive functionality could often
cut the execution time for an application by at least a factor of three. And for particularly intensive tasks,
speed increases of a factor of ten were not unheard of.

Today’s JVMs, however, are a far more sophisticated bunch. They not only have been internally
optimized on various operating systems for maximum performance, but may also have been enhanced
with “just-in-time compilation”. This feature, commonly referred to as JIT, involves compiling Java byte
codes on-the-fly into native code that is then executed by the JVM. There is a small delay while the Java
byte codes are compiled, but when a program is running, its speed of execution is extremely close, if not
identical, to code written in C.

In addition, a native method incurs a slight additional overhead in execution time foreach invocationof
the method, due to the operation of “dropping into” native code from Java. For a short, frequently called
operation, such as summing a small array of numbers, a native method may not prove to be particularly
effective as a performance booster. In fact, short operations may takelonger in native code than in Java!
For long and computationally expensive operations, however, this delay occurs less often and is less
significant in terms of overall performance.

What all this means is that native methods do not necessarily offer the speed-kick that was previously
believed. If you are planning to use native methods for performance reasons, you should rigorously
benchmark their effectiveness in your application before you commit to using them. For example, using
native methods to provide high-performance 3D rendering or video decompression is probably a good
idea, since these are extremely computationally intensive operations. However, using a native method to
add two numbers together may not be a particularly good idea. If you benchmark some test operations,
you should be able to get an idea of the performance increase you are likely to see with native methods.

When you perform your benchmark tests, you should run them on JVMs both with and without

16

Chapter 2. Introduction

just-in-time compilation. That way you can determine whether the performance of your application will
be acceptable on non-JIT JVMs. If the performance proves unacceptable, and you cannot guarantee that
your users are going to be using JVMs with JIT, you may want to use native methods to even things out.
In other words, even though native methods might not be necessary when your application is running in a
JVM with JIT, they can make a big difference to users who don’t have JIT.

Portability and Native Interfaces
As I already mentioned briefly, native methods are compiled for a specific platform, so they are
inherently unportable. For example, native code written using a particular feature of Unix (e.g., the
select() function), will not work on a Windows 95/98/NT/2000 system. To port the native method to
the Windows platform, you need to replace the errant function with something Windows-specific. This
may not be such a large problem with simple native methods that stick to using extremely standard
functions and libraries, but in the case of native methods that interface with non-standard libraries such
as X/Motif, OpenGL, or Direct X, your code will rapidly become extremely difficult to maintain. This is
the curse of C- and C++-based software in industry today; entering into these realms forces you to
abandon Java’s cozy nest of platform-independence.

To make portability matters worse, each JVM can define and use its own native method interface (NMI).
In this book, we’ll discuss the two most prevalent ones: the newer Java Native Interface (JNI) supported
by Java 1.1 and later, and the more low-level Raw Native Interface (RNI) that is based on the older NMI
used in Java 1.0. You now have more branches of source code to support!

In other words, a Java program that uses native methods does not benefit from the “Write once, run
anywhere” philosophy. In addition to the portability issues of supporting both Windows 95/98/NT/200
and Unix, you may have to worry about supporting various NMIs. This problem is particularly acute if
you are using native methods in applets, where you have to support the two most popular browsers,
Microsoft Internet Explorer and Netscape Communicator. In this scenario, one native method requires at
least four separate code branches to support both platforms and both browsers.

Legacy Code
Within large Java projects, native methods are commonly used to provide a new unified front-end for
legacy code. For example, in an organization that provides telephone sales, each agent may use a
GUI-based form running under Windows to access a database. However, the database administration
staff may well be using Unix workstations, and they might want to be able to test out the GUI for
machine benchmarking or database performance. With a C-based application, this would require the GUI
to be ported to a Unix windowing toolkit like Motif.

17

Chapter 2. Introduction

If instead the GUI is written in Java, both the sales agents and the administration team can use exactly
the same program on different platforms. But now what do we do about all the complex legacy code that
accesses and manipulates the database? Do we write off all that work and reimplement it in Java?
Fortunately, with native methods, the answer is no. You can replace the GUI front-end with a Java-based
solution for optimum portability, but encapsulate the legacy database connectivity code in native
methods to take advantage of the work that has already been done.

Using native methods to integrate existing legacy code with new portable front-ends is a compelling
solution to a widespread problem. As more and more companies develop intranets to provide access to
corporate databases, they have to deal with the problems posed by heterogeneous systems. This is a
scenario where it is easy to justify the use of Java native methods.

Applets or Applications?
Another thing to consider with regard to native methods is whether you are developing applets or
full-blown Java applications. Applets give Java a sense of seamlessness within a networked environment.
When a user loads a web page that has applets embedded within it, he can perform sophisticated tasks
and interact directly with the content provided in the page. The ability to dynamically run programs
without any direct user intervention is a powerful feature of Java. Unfortunately, native methods don’t
mesh very well with the seamlessness of applets.

As the author of a Java applet, you don’t care which operating system or browser the user is using
because Java is, after all, platform-independent. Your program is guaranteed to run safely on the user’s
computer within the protective sandbox of the JVM. If your applet uses a native method, however, all of
a sudden you do care about the user’s choice of operating system and browser. More importantly, in
order for your native method to work, the user must install a code library on his system. This obviously
requires user intervention, destroying the seamless nature of applets.

A related problem is that native code is inherently dangerous. A malicious or badly written native
method could do untold damage to your hard disk or local area network. While Java is regarded as a
secure language, native methods are not subject to any of Java’s security mechanisms. Native methods
are inherently insecure, which may discourage users from downloading a native code library for use in
an applet.

So, unless you are planning on providing a native interface that will prove hugely popular, you should
not use native methods in applets that are available on the Internet. Native methods make it much more
difficult to install and use an applet. Of course, if you are creating applets for a corporate intranet and you
need native methods to interact with a legacy system, that’s a different matter. In this case, installation of
the required software on each computer is simply part of the job of your information systems staff.

For Java applications, on the other hand, you don’t really have to worry about the installation process. A
user, or system administrator, generally has to install an application on the target machine anyway, so

18

Chapter 2. Introduction

there’s no issue with having to install a native code library as well.

Speaking in Tongues
Until now, I haven’t said anything about the language used to implement native methods. Java native
methods can actually be implemented in either C or C++, since bindings exist for both languages.

So, which language should you use? The answer actually depends on a number of factors. If you are
using native methods to integrate legacy code into a Java-based system, you clearly want to use the
language of the legacy code, if that code is written in C or C++. (We’ll talk in a minute about how to
handle code that isn’t written in one of these languages.) If you are going to be writing the native code
while you are developing a Java application, you should use the language that you or your development
team is most comfortable with.

All other things being equal, you simply have to choose. In my experience, with the RNI (or the very old
Java 1.0 NMI), C is a far better choice—there are no benefits to be gained from using C++. However, if
you are using the JNI, the C++ interface is far more intuitive. For example, with C++ you are far less
likely to make silly mistakes with pointers. Consider the following C syntax:

JNIEnv *env;

(*env)->FindClass(env, "some/class/name");

versus this C++ syntax:

JNIEnv *env;

env->FindClass("some/class/name");

The C++ syntax is quite obviously more readable and less prone to errors, as you’ll see even more
clearly when we get into the details of the JNI in Chapter 4.

It is actually possible to implement native methods using other languages, like FORTRAN or COBOL,
since code written in these languages can be compiled into libraries that contain symbol tables, just like
C and C++ programs are. However, the standard NMIs only provide tools to produce interface code in C
or C++. To use another language, you have to write an additional glue layer of C or C++ code that calls
the FORTRAN or COBOL code. Although this technique is more complex and time consuming, it is
often the easiest way to integrate legacy code, especially from mainframe machines.

19

Chapter 2. Introduction

The Shape of Things To Come
This chapter has outlined some of the salient issues of native methods programming. If I haven’t
dissuaded you from implementing native methods, you should be praised for your courage! In upcoming
chapters, we’ll be exploring how to write native methods using both the Java Native Interface and the
Raw Native Interface on Unix, Windows 95/98/NT/2000, MacOS, and OS/2 platforms. This material
will give you plenty of hints on maximizing native method efficiency for different operating systems and
virtual machines.

Pictish Symbol Stones and the Sample Code
Throughout this book, I have endeavoured to use a unified set of examples which will hopefully allow
you to figure out what each piece of code does rather than trying to figure out what the example means!

The examples revolve around the archaeological fascination of Pictish Symbol Stones. These
monuments, sprinkled liberally around the north and east of Scotland, were created around
AD600-AD900 (or thereabouts. No-one’s really that sure yet...). They can be partitioned into three
"classes", the earliest being rough pillars of stone with strange symbols incised into them, then
rectangular slabs with interlace and symbols, and finally slabs with no symbols and only interlace.

Our example system define two Java classes to encapsulate some information about these stones called
SymbolStone andDimension3D , the latter describing the physical proportions of the stone.

If you wish to find out more about these fascinating stones, or see what they tend to look like, a good
place to start is:

http://www.symbolstone.org/archaeology/archaeodb/index.html

Where using the example system would be really convoluted, I’ve simply resorted to illustrating various
techniques with more pathological examples.

20

Chapter 3. Java Architecture
This chapter turns towards more technical issues, namely the architecture of the Java Virtual Machine,
which we shall refer to from now on as a JVM. A JVM provides a platform-independent and secure
execution environment for Java programs. All Java programs are compiled into platform-independent
byte codes that are the machine language of the JVM. As a native method programmer, your interaction
with Java objects and classes is through the JVM, so it is beneficial to understand the architecture that is
implemented by most, if not all, JVMs.

The Java Virtual Machine
The JVM is a representation of an imaginary computer, or, in other words, the JVM is actually a program
emulating a computer.1 This allows us to write programs for this imaginary computer, and, provided that
the software that emulates the imaginary computer is running on a particular operating system, we can
run those programs on that operating system. Similarly, if the program that emulates the imaginary
computer runs on more than one operating system, we can use the same code, without recompilation, on
all of those operating systems. This is the concept of the Java Virtual Machine and the root of the “Write
once, run anywhere” mantra of Sun.

More importantly, however, is that virtual machines are not restricted to running only as software-based
implementations. There are plans in progress to burn a JVM onto a chip that can be embedded into small
appliances, such as television sets or even toasters! Even though the hardware is radically different in
function to a computer, these consumer devices will be capable of executing exactly the same Java
programs, without modification, that run on Windows or Unix machines in software-based JVMs.

The embeddability of the JVM into many different operating systems and applications makes Java quite
powerful, but the existence of a JVM alone is not enough to be of any real use. For example, we need a
way to input information to and output information from a JVM. What’s needed is the ability to load
Java code that performs basic functions, in the same way that C programs require a standard library that
contains many simple functions that programs use, such asprintf() and so on. This code is
encapsulated asclass files, which are small Java programs that implement discrete object classes in the
object-oriented programming methodology.

Java comes with a number of standard class files, grouped into packages, that provide basic functionality,
such as string manipulation, file handling, and networking. While some of these classes are written
completely in Java, not all of them can be, due to the fact that the JVM may be running in radically
different environments. Consider the code needed to provide I/O facilities when one JVM is running on a
standard UNIX workstation with a keyboard and monitor, while another JVM is runnning on a small
hand-held video game that has an input device of a joystick and a small LCD for output. Each JVM
requires its own underlying I/O handling capabilities, and these are provided bynativecode for that

21

Chapter 3. Java Architecture

particular platform or operating system.

Native code, as we discussed in Chapter 2, is code written with a compilable language, usually C or C++,
that is compiled to a form that is executable only on computers running identical operating systems.2 The
actual guts of the I/O code for Java is generally written in C and compiled into libraries that are made
available to the JVM for a particular platform. These libraries are called by the standard Java class files
to provide I/O support.

Thus, there are three distinct layers to a functional JVM:

1. The JVM itself, which provides the general execution environment for Java programs

2. A collection of Java programs, or class files, that provide standard Java functionality

3. Native code implementations of platform-specific functions, such as I/O, that translate the desired
operations in the Java class files into appropriate functions for the platform upon which the JVM is
running

Class Files
Class files are the backbone of a fully functional Java system, since they are the programs that the JVM
runs. These files contain the results of compiling Java source code; they are the machine-code
representations of particular Java programs. As with machine-code that runs on standard processors,
such as the Intel 80x86 family, the processor interprets each byte of a program in a different way. For
example, some bytes instruct the processor to store values, and others instruct the processor to start
executing machine-code at a different location. As a native methods programmer, you don’t need to
know about the format of class files, but if you want to know more, you can check outJava Virtual
Machine, by Jon Meyer and Troy Downing (O’Reilly), orThe Java Virtual Machine Specification, by
Tim Lindholm and Frank Yellin (Addison-Wesley).

Each class file contains the machine-code for a Javaclass, which essentially encapsulates the definition
of anobjectwithin the object-oriented software design methodology. Thus, if we want to create a new
object of a given class, the constructor of the appropriate class is executed to create a new instantiation of
that class. You can now manipulate the new object in many different ways, the most common being to
execute methods on the object.

Many class files are distributed with a JVM; they provide a large base of classes fundamental to the
execution of Java programs. For example, the ultimate parent of every class isjava.lang.Object .
This has its own class file, as does the mathematics class,java.lang.Math . These classes, along with
all the others in the core Java APIs, can be used to create some complex Java programs.

Class files demonstrate a core feature of Java: the flexibility to dynamically extend the language by
loading new class files on demand from various places. Through a powerful mechanism called the

22

Chapter 3. Java Architecture

ClassLoader , classes can be pulled into the JVM from many disparate sources, such as from a local
filesystem, over a network, or even across cables connected to the machine running the JVM. This
feature makes Java an extremely powerful and customizable tool, but could possibly be exploited to load
destructive or unsafe Java programs into a JVM.

To allow the flexibility of dynamic extension but maintain the security of the JVM, theClassLoader

performs an extremely important task known as byte-code verification. This subjects the class file to
rigorous checks before it is loaded into the JVM. A detailed discussion of this operation is beyond the
scope of this book, but there is one aspect of the process that pertains directly to native method
programming.

Part of the byte-code verification process checks that the definition of the class, its fields, and its methods
are all valid. Further checking is done on the return type of each method to ensure that the byte code
returning values does not violate type-safety.3 The actual test is performed by comparing the type
signature associated with a field or method against the type signature expected by the byte-code verifier.
A type signature is simply an encoding of a data type (e.g.,int , float). Type signatures also
encompass actual Java classes, such asjava.lang.Object or java.lang.String . As a native
method programmer, you must, unfortunately, understand the encoding that the JVM uses to represent
data types, so that you can fully interact with Java classes and the JVM itself, as we shall discuss in later
chapters of the book.

Type Signatures
Type signatures are strings of characters that represent data types, such asint , char[] , and even
java.lang.String . The JVM uses these encoded signatures to verify byte codes and, possibly more
importantly, to ensure that the correct method is invoked where polymorphic methods exist.

As we’ll see later, when you are writing native code and you want to interact with a Java object by
calling a method on it, you have to specify exactly which method you want to use by giving the type
signature of the method. This is because in Java you can have polymorphic methods. In other words, you
can have a single method declared in two different ways. For example:

public int someMethod(int a, int b, int c);
public int someMethod(int a, float b);

Without type signatures, there is no way to distinguish between these methods, as all your native code
can say is “executesomeMethod() ”. Which one gets called?

To specify exactly which method you want to execute, you can say “execute the version of
someMethod() with this particular type signature”. This ensures that the correct method is called.4 With
this explanation in mind, let’s take a look at the way data types are mapped to type signatures.

23

Chapter 3. Java Architecture

Primitive Data Types
Data types in type signatures tend to be represented by single characters, to make them faster to decode
and more compact to store.5 Table 3-1 lists the mapping between primitive data types and their
type-signature characters.

Table 3-1. Primitive Type Signature Characters

Character Type Description

B byte signed byte

C char character

D double double precision IEEE float

F float single precision IEEE float

I int integer

J long long

S short signed short

Z boolean true or false

V void void

In the type signature for a method, the data types for the method parameters are specified within
parentheses, in the order that the parameters are specified. In addition, the return type of the method is
listed after the parameter list, outside of the parentheses. Given these rules and the mappings in Table
3-1, our earliersomeMethod() method declarations can be described in the following way:

(III)I
(IF)I

Note that the method name isnot included as part of the type signature for the method. As you can see,
type signatures for methods that use primitive data types are quite simple.

Class Types
Because the JVM can load classes dynamically, the encodings for class types cannot be mapped
statically within the JVM, as the primitive types are. Fortunately, the developers of the JVM have devised
an extremely simple and elegant solution to this problem. To represent a Java class in a type signature,
you specify the letterL, followed by the fully qualified class name (e.g., full package name plus class
name), followed by a semi-colon (;).

24

Chapter 3. Java Architecture

Consider the following method declaration, in which the method takes two objects as parameters and
returns a third object:

com.oreilly.returnObject someMethod(java.lang.Object o1,
java.lang.Integer i1);

In this case, the method has the following type signature:

(Ljava/lang/Object;Ljava/lang/Integer;)Lcom/oreilly/returnObject;

Note that the dots (.) used in package names are replaced in type signatures by slashes (/). Most
operations that directly reference classes in the JVM tend to convert the period character into a slash.

If a class does not belong to a package, the class name stands alone for reference purposes. In other
words, a class calledsomeClass that does not specify a package (and is therefore in the default
package) is mapped to a signature ofLsomeClass; .

Array Types
The last thing we have to consider with regard to type signatures is array types. When a parameter or a
return value is an array, it is specified with a left square-bracket ([), followed by the type signature for the
data type of the array. For example, a method with a return type ofint[] has the following signature:

()[I

For a more complex example, consider a method that takes an array ofchar values as a parameter and
returns an array ofObject values. The signature for this method is:

([C)[Ljava/lang/Object;

This is all quite straightforward, but what happens in the case of arrays of arrays? All of the dimensions
of a multidimensional array must be of the same type, so the rule is to use multiple left square-bracket
characters as a prefix, one for each dimension of the array, followed by the type of the array. Thus, a
method that takes achar[][] as a parameter can be expressed as:

([[C)

25

Chapter 3. Java Architecture

Native Code Libraries
As I explained earlier, the JVM relies on natively implemented code to provide its essential I/O
functionality. But how exactly is this native code packaged up and made available to the JVM? And more
importantly, how do you package up native methods that you have written and make those available to
the JVM?

The answer lies in the ability of modern operating systems to dynamically load libraries of information
into running programs on demand. This is a similar idea to that of loading class files as we need them. In
C and C++ programming, it is quite common to group many small routines that perform similar tasks
together into an entity called alibrary. For instance, the math library that exists on all Unix platforms has
functions that calculate the sine, cosine, and tangent of angles, among other things. Each of these
functions is really too small to have in its own separate file, but together they form a useful collection.
When a developer wants to use the math functions, she simplylinksher application with the math library.
Native code implemented for a JVM gets similar treatment.

The instructions for compiling a library for a particular operating system obviously depend on the
operating system. Compilation also depends on the native method interface you have chosen for
implemeting your native methods, as you’ll see when we get to covering the two native method
interfaces in the remainder of this book. Once you have compiled your library for use in the JVM,
however, you have to place it somewhere on the filesystem, so that the JVM can find it when it wants to
load it. Again, this is a platform-specific and JVM-specific issue. The following sections offer some
guidance on compilation and installation for the most popular setups.

Unix/Linux
Unix-based platforms, such as Solaris, Irix, and Linux, all use a piece of software called a dynamic linker
or dynamic loader. The actual program is usually calledld.so. This software is invoked when a program
containing libraries is loaded; its purpose is to load all the libraries into the running executable to
“complete” the program. Therefore, to allowld.soto handle loading the library that contains your native
method implementation, you simply need to configure that program correctly.

ld.sois generally configured with environment variables, such asLD_LIBRARY_PATHor LD_RUN_PATH.
These variables contain lists of directories that are searched for dynamic libraries when a program
instructsld.sothat a certain library is required. For example:

/usr/lib:/lib:/usr/local/lib:/usr/local/java/lib/i586

There may be slight differences in the way in whichld.sooperates on a particular Unix platform, so it is
always wise to read themanpage for it and take the appropriate steps described therein.

26

Chapter 3. Java Architecture

By default, libraries under UNIX are namedlibsomename.so. In other words, a library is prefixed with
lib to indicate that it is a library, and suffixed with.soto specify that the file in question is a shared
library. When you are referencing the library, however, either at compile-time or when you are loading it
into the JVM, you don’t need to mention either thelib prefix or the.sofile extension.6

When you are building a shared library under Unix, you have to tell the compiler that you are building a
shared library, not a complete program. If you have not specified the appropriate compiler flags, you may
see a message about themain() function being missing. For example:

/usr/lib/crt1.o(.text+0x5a): undefined reference to ‘main’

The flags that specify the creation of a shared library vary on a per-platform and per-compiler basis. Let’s
assume we want to create a library calledlibHelloWorld.sofrom a file containing native methods called
nativeHelloWorld.cpp. Table 3-2 shows some of the more common incantations required to do it.

Table 3-2. Unix Shared Library Compiler Incantations

Platform Command

Linux gcc -shared -o libHelloWorld.so

nativeHelloWorld.cpp

Solaris CC -G -o libHelloWorld.so

nativeHelloWorld.cpp

Irix CC -shared -o libHelloWorld.so

nativeHelloWorld.cpp

AIX xlC_r -c nativeHelloWorld.cpp

makeC++SharedLib -p 1 libHelloWorld.so

nativeHelloWorld.o

This list is by no means exhaustive; you shouldalwayscheck themanpage for your compiler to see
exactly which flags are needed.

When you are compiling native libraries for the Sun JVM, you also need to make sure you are
referencing the appropriate include-file directories for the JVM, so the compiler can find files likejni.h.
In particular, you need to reference both the generic Java SDK include directory and the platform-specific
one, or the compiler may give you errors about being unable to locatejni_md.h, among other things.

The include file directory is always calledincludeand exists within the base Java installation directory on
your machine. This directory could be literally anywhere on your filesystem, depending on whether you
installed Java yourself or it came preinstalled from your machine vendor. The easiest, but not necessarily
best, way to locate theincludedirectory is to use thefind program and search for a file namedjni.h.

The platform-specific directories vary by operating system, but they are always located within the

27

Chapter 3. Java Architecture

genericincludedirectory. Table 3-3 shows some of the more common directories as you would specify
them with compiler flags.

Table 3-3. Unix Include File Locations

Platform Compiler Flags

Linux -I/usr/local/java/include

-I/usr/local/java/include/genunix

Solaris -I/usr/local/java/include

-I/usr/local/java/include/solaris

Irix -I/usr/java/include

-I/usr/java/include/irix

Typing all this stuff in is fairly tedious, so Unix gurus tend to use themakeprogram to compile libraries.
Here’s a sampleMakefilefor building a “Hello World” example for Linux, Solaris, and Irix:

The source code containing the native method implementations
SRCS=nativeHelloWorld.c
OBJS=$(SRCS:.c=.o)

The Java source code of the application
JSRCS=HelloWorld.java
JOBJS=$(JSRCS:.java=.class)

The location of any include files used by the native methods
You would need to alter “genunix” to suit your own platform,
e.g.,
Solaris -> ’solaris’
Linux -> ’genunix’
Irix -> ’irix’
INCLUDES=-I$(JAVA_HOME)/include -I$(JAVA_HOME)/include/genunix -I.

The flag used to generate shared libraries. This needs to be
altered to suit your platform, e.g.,
Solaris -> ’-G’
Linux -> ’-shared’
Irix -> ’-shared’
SHARED_FLAG=-shared

.SUFFIXES: .java

.SUFFIXES: .class

How to compile the Java code

28

Chapter 3. Java Architecture

JAVAC=javac -verbose -classpath $(CLASSPATH)

How do we generate the include files for the Java classes?
JAVAH=javah -jni

all: $(JOBJS) $(OBJS) libHelloWorld

Compiles the Java code if necessary and generates the include file
.java.class:
$(JAVAC) $*.java

$(JAVAH) $*

Compiles the C code into an object file
.c.o:
gcc -c $*.c $(INCLUDES)

Creates the shared library
libHelloWorld:
gcc $(SHARED_FLAG) -o libHelloWorld.so $(OBJS)

Removes all the intermediate build files
clean:
rm -f *.o
rm -f *.class
rm -f *.so

This Makefileis pretty simplistic, but it does compile your Java code for you when the source file is
newer than the object file or shared library. It also compiles your native method implementation file
when you have changed that. Finally, it creates the shared library containing the native method
implementations required for your application to run.

Windows
Windows systems (95, 98, 2000, and NT) are similar to Unix systems in terms of how they load libraries,
known as DLLs under Windows. Windows searches directories for suitably named libraries to provide
missing symbols for programs, but unlike with Unix, there is no special piece of software that performs
this task. To point Windows at a directory that contains shared libraries that need to be loaded by the
JVM, you simply add that directory to thePATHenvironment variable.

In terms of filenames, dynamic libraries on Windows systems havenoprefix, but they are suffixed with
.dll. Thus, a shared library namedlibHelloWorld.soon a Unix system appears asHelloWorld.dll in

29

Chapter 3. Java Architecture

Windows. But from Java’s perspective, this file is still simplyHelloWorld. This translation between
names is performed automatically by the JVM.

This situtation is generally fine for loading libraries with the JVM released with the Microsoft Java SDK
or the Sun Java SDK or JRE packages. However, Netscape Communicator also requires that the library
be installed within its installation area, typically\Program
Files\Netscape\Communicator\Program\Java\Bin, since thePATHenvironment variable is regarded as
untrusted.

Building native libraries with an IDE, such as Visual C++, is extremely straightforward. When creating a
new project, you should select the project type ofWin32 Dynamic-Link Library. This sets up the
appropriate default settings in your workspace for compiling a DLL.

For a JNI native library, the only other setting you need to configure involves the include file directories.
Bring up theProject Settingsdialog and input the directories where the Java include files are stored on
your system. By default, these files are installed into\jdk1.2\includefor the Java SDK 1.2 release. You
must also add the platform-specific include files directory, to avoid getting strange errors, such as being
unable to locatejni_md.h. For Windows platforms, this directory is\jdk1.2\include\win32.

Setting up compilation options for native methods written using RNI is somewhat more involved. You
have to configure the include-file path as with JNI, to locate the directory that contains the main RNI
implementation include file,native.h. If you have installed Version 4.0 of the Microsoft Java SDK, this
location is\Program Files\Microsoft SDK For Java 4.0\includeby default. In addition, for RNI builds,
you must link with a library provided by Microsoft that contains the implementations of the RNI
functions. This library is calledmsjava.liband can be found in the\Program Files\Microsoft SDK For
Java 4.0\lib\i386directory for Intel-based platforms. This file should be added to theLink tab in your
project settings.

After configuring these options, you should be able to compile your native method implementations into
a shared library suitable for use with either JNI- or RNI-based JVMs. I personally create a different
configuration within my workspace for each JVM, which allows me to build suitable native libraries
quickly and easily. For example, I might have configurations forSun VM, Sun VM Debug, Microsoft VM,
Microsoft VM Debug, SuperCede VM, andSuperCede VM Debug, so that I can not only build separate
libraries, but batch build all of them for distributions of code. The advantage of this approach is that once
each project is set up, I don’t need to make any alterations to recompile for a different JVM.

OS/2
OS/2 tips its hat to both Windows and Unix in the way in which it searches for native libraries. OS/2 uses
a configuration file calledconfig.sysboot-time to set up various environment variables that regulate how
the operating system runs. This is similar to theautoexec.batfile under DOS and Windows. Within this
file, theLIBPATH variable specifies a list of directories that contain libraries that can be dynamically

30

Chapter 3. Java Architecture

loaded by programs. Thus, you should add the directories that contain your shared libraries to this
environment variable and reboot.

Libraries on OS/2 are named just like libraries on Windows, in that the library name is suffixed with.dll
and there is no prefix. Thus, if you want to load a library calledHelloWorld from Java, the filename
under OS/2 isHelloWorld.dll.

That’s the easy part. Compiling native method implementations into a shared library can be a bit trickier.
I use the EMX/GCC package on OS/2 to compile programs, instead of a commercial compiler such as
IBM’s Visual Age, since EMX tends to make porting from Unix a lot easier in terms of recognizable
features. Building native methods under Visual Age is probably more straightforward though, since it’s a
GUI-based IDE, rather than a collection of a compiler, a linker, and other tools.

Compiling the native method files is easy, in that you simply usegcc in the standard way, by specifying
the C or C++ file to compile and any include-file paths. For example, the following command entered at
an OS/2 prompt compiles thenativeHelloWorld.cppfile:

gcc -c nativeHelloWorld.cpp -I/java11/include -I/java11/include/os2 \
-DJAVA_EXE -DOS2 -Zomf

There are a couple of strange flags here that need some elucidation. The JNI include files shipped by
IBM with their port of the Sun JVM have some conditional compilation sections that are picked up when
theOS2value is defined. To ensure that these OS/2-specific sections are correctly picked up, it is
recommended that you define theOS2symbol. Also, the JNI function-calling convention can differ
depending on which compiler you are using. In order for EMX to work correctly, you need to define the
JAVA_EXEsymbol to ensure that the correct values ofJNIEXPORTandJNICALL are used.7

The final flag worthy of special discussion is-Zomf . With EMX, there are two different methods of
linking object files together. One method is to use a port of the GNU linker calledld that produces
libraries.ld accepts the standard object file output format as input files to link. However, the use ofld can
be problematic when shipping shared libraries to other machines. The other linker, shipped with OS/2, is
called LINK386. This linker accepts OMF format object files and can be used to generate native libraries
that are easily shipped to other OS/2 machines. Specifying the-Zomf flag tellsgccto produce OMF
object files as opposed to files suitable for linkage with GNUld. These files are suffixed with a.OBJ
extension, as opposed to the more standard.O.

Once you have compiled all of your files that contain native method implementations, you need to link
them together. Once again,gcccan be used in the following manner:

gcc -Zso -Zdll -Zomf -Zsys nativeHelloWorld.obj HelloWorld.def \
-o HelloWorld.dll

31

Chapter 3. Java Architecture

The flags prefixed with-Z tell gccto use LINK386 to produce a shared library. They also indicate that
the shared library must not depend on EMX at runtime. In other words, if you give the DLL to another
programmer, that programmer does not need to have EMX installed to use the DLL.

The other interesting aspect of the linkage step is the file namedHelloWorld.def. This file is not a
compiled file at all. Instead, it specifies a list of functions contained within the source files that should be
exported, or made available, outside the shared library. Every native method that you have implemented
in any of the source files must be listed in this file, along with some other directives that are used by
LINK386 to determine exactly how the library should behave. Here is a sample export file that can be
used as a template, simply changing the exported function names:

LIBRARY INITINSTANCE
DATA MULTIPLE NONSHARED
CODE SHARED
EXPORTS

Java_HelloWorld_printString
Java_HelloWorld_anotherNativeMethod
Java_SymbolStone_describe
Java_Dimension3D_getWidth

The final issue regarding compilation of shared libraries under OS/2 is automating the build. You can
download a port of GNUmakefrom http://www.leo.org. This allows you to use aMakefile, as described
earlier for Unix systems.

MacOS
Native method programming on MacOS is fundamentally similar to native method programming on
other platforms. The main problems you tend to encounter revolve around trying to configure your build
environment correctly and diagnose why a particular native library is failing to load. Such is MacOS!

To make things a little bit more complicated, the Mac supports a few different JVMs, such as Apple’s
MRJ (Mac Runtime for Java) and Metrowerks’ JVM, bundled with their CodeWarrior product. Since
both of these JVMs are actually quite commonly used and as you’ll probably be using CodeWarrior to
compile your code anyway, I’m going to discuss how to use native methods with both of them.

Libraries on MacOS are known as shared libraries and have no prefix. They are usually located within
theSystem Extensionsfolder and have a creator type ofshlband a creator code ofcfrg. The naming of
shared libraries differs depending on which JVM you are using. For example, if you want to load the
HelloWorld library from Java, the Apple MRJ expects a shared library name ofHelloWorld.
CodeWarrior is actually bundled with two JVMs, a standard one and a JIT-aware one. These JVMs
expect different library names:Java_HelloWorldandJavaJIT_HelloWorld, respectively.

32

Chapter 3. Java Architecture

Armed with this knowledge, the next step is to actually compile your native method implementations
into shared libraries that can be loaded into the JVMs. The following discussion uses CodeWarrior
Professional Release 4, although other IDEs under MacOS should be similar enough for you to work out
what’s going on. The first step is to create a new project for our sample application. We’ll call this
HelloWorld. Within CodeWarrior, you should choose to create a newJava Library. When you clickOK
in theNew Projectwindow, a new project window is opened for the HelloWorld project.

By default, the new project window isn’t very useful for working with native methods. I’d recommend
making some changes to the project groups, so that the window looks like the one shown in Figure 3-1.
This format allows you to quickly see which external native libraries and classes are being used and also
which Java and C++ source code files your project composed of.

Figure 3-1. A Configured HelloWorld Project

This project currently has three targets. TheJavatarget is defined to build the Java source files. TheMW
PPC target builds the shared library suitable for use on a PPC-based Mac under the Metrowerks JVM.
All Targetsis simply there to allow us to build everything in one go. We will be adding extra targets for
the Metrowerks JIT JVM and the Apple MRJ shortly.

The files that you see in theNative Librariesgroup can be found in the CodeWarrior installation on your
machine. These are required for basic MacOS system functions and the JNI to work; they must be
specified in the order shown. Furthermore, you should correctly set up the link order for your native code

33

Chapter 3. Java Architecture

targets as shown in Figure 3-2.

Figure 3-2. The Appropriate Link Order for HelloWorld

Now we need to configure each target to build the various bits and pieces of code. The first step is to
configure the Java target to have a linker type ofJava Linker. This ensures that your Java code is built
correctly. You also need to configure CodeWarrior to automatically generate include files for your JNI
methods, as shown in Figure 3-3. This replaces thejavahtool used on other platforms. The other settings
required for Java compilation can be found in the CodeWarrior documentation; they don’t relate directly
to configuring CodeWarrior for native code compilation.

34

Chapter 3. Java Architecture

Figure 3-3. Configuring CodeWarrior to Emit Headers

The next step is to configure theMW PPCtarget to build a shared library suitable for loading into the
JVM. This target should have the linker type ofMacOS PPC Linker.8 In thePPC Targetsetting, be sure
to specify the name of the shared library. Because this target is building a shared library for use with the
Metrowerks JVM, the shared library name is simplyHelloWorld. Similarly, in thePPC Linkersetting,
you must set theSegment Nameto be the name of the shared library. The final target configuration task is
to clear any unnecessary linker settings, such as entry points into the shared library. No entry points are
required and specifying any will cause your library linking to fail.

In addition to compiling your native code, you also need to generate an export file that lists all the
functions that your shared library exports to applications that are using the library. The export file must
contain the names of all your native methods. CodeWarrior can automatically generate this file for you if
you tell it to. Once you have generated this file, I recommend that you include the file explicitly as a
target file to compile and switch off auto-generation. You may also need to edit the file to remove any
spurious symbol definitions, such as static variables used in your native code. The file is a simple list of
function names in ASCII form, so this is easy to do.

The last configuration task you may need to perform is to have the MacOS libraries you are using within
your project imported into the shared library. If you don’t do this, it is unlikely that these libraries will be
found when you are loading your shared library from Java and anUnsatisfiedLinkError may be
thrown. Configuring the libraries is easy. Simply click on a library name and selectProject Inspector. A
window similar to that shown in Figure 3-4 appears and you can click on theMerge Into Outputoption.

35

Chapter 3. Java Architecture

Figure 3-4. Merging Shared Libraries

Once you have done these things, you should be able to compile your Java and native code, producing a
JAR file and a shared library. At this stage, the shared library can be moved into theSystem Extensions
folder where it is loaded by the JVM. Adding support for additional JVMs or native code targets is just
as straightforward. These can be created initially as copies of the already configured target and tweaked
accordingly. The most important setting is the name of the shared library; it should be set according to
the rules I outlined earlier in this section.

Loading Native Code into the JVM
Now that you have a library containing native code on your machine, you’ve put it in the correct location,
and you’ve configured the appropriate operating system parameters to know where to find the library,
you need to instruct the JVM to load the native code. This is actually the most straightforward procedure
in the whole project: you simply need to invoke theloadLibrary() method defined in the
java.lang.System class. This works for all JVMs except Netscape Navigator, which implements a
more sophisticated security management system, as we’ll discuss later in this section.

TheSystem class encapsulates platform-specific information about both the machine and the runtime

36

Chapter 3. Java Architecture

that you are using (e.g., theSystem class for the JVM shipped with Sun’s Java SDK is different from the
System class shipped with Microsoft’s JVM, even though they may be running on the same computer).
Therefore, to load the library in a platform-independent way, we need to load it from Java itself. The
following code snippet illustrates the procedure, assuming our native library is calledHelloWorld:

/* Loads a native library called HelloWorld */
public class testHelloWorld {

static {
System.loadLibrary("HelloWorld");

}
}

We have placed theSystem.loadLibrary() invocation in astatic block that is executed when the
testHelloWorld class is loaded in the JVM. You don’t need to add the platform-specific prefixes or
suffixes to the library name (e.g.,lib, .so, .dll). The JVM automatically works out the appropriate naming
scheme for the libraries on the machine upon which it is running.

What happens if something goes wrong? Well, most problems occur due to unresolved symbols in your
native code (i.e., functions or variables that you have referenced, but never defined). This is not an
unusual occurrence, as your code can compile just fine, but you won’t discover that a function definition
has mismatched types or that you’ve made a typo until you try to link the library to another program. A
general purposeException calledUnsatisfiedLinkError is thrown whenever a shared library
either does not exist or has unresolved symbols within it.

Fixing problems inherent with unresolved symbols can be quite a daunting process and is generally
specific to your particular development environment. Here’s a tip I find useful on Unix systems: run the
nmutility against your library andgrepfor the letter “U” or word “UNDEF”, to see which symbols are
undefined. In many cases, undefined symbols are legitimately undefined, since they actually exist within
another library, like the math library. But you may be able to spot some obvious problems with this
technique. Another multipurpose tip is to use the highest level of compilation and link debugging
available to you within your development environment, as this may flag suspicious problems that can
cause your library to contain unresolved symbols.

If your library has simply not been found, you should double check that you have correctly set the
appropriate environment variables and that the library has the correct name. Another Unix tip is to use
thetrussor straceprograms to trace all system calls while the JVM is running.9 You cangrepthe copious
output of these programs for the name of your library to see how the particular call to perform the load
operation failed. This might help you narrow down the cause of the failure somewhat.

To make your Java code more user-friendly in cases where the library containing your native code has
failed to load, you should catch the resultingUnsatisfiedLinkError and present a pleasant error

37

Chapter 3. Java Architecture

message to the user, instead of spewing gobbledigook onto the screen. The following code illustrates a
simple mechanism for doing this:

/*
* Loads a library named HelloWorld with some sort of error
* checking.
*/

public class testHelloWorld {

static {
try {

System.loadLibrary("HelloWorld");
} catch (UnsatisfiedLinkError e) {

System.err.println("The program has failed to load an integral");
System.err.println("component of the system. Please contact the");
System.err.println("Java development team and give them the");
System.err.println("following information:");
System.err.println("\n\t-----------------\n");
e.printStackTrace();

}
}

}

And that’s all there is to loading native code into the JVM!

If you are using native code within an applet, you should know about an important restriction concerning
applets: applets themselves cannot callSystem.loadLibrary() since this is regarded as being unsafe.
However, applets can instantiate other classes that load native libraries, but these “helper” classes must
reside in the user’sCLASSPATH(i.e., they must be installed on the user’s machine). Also note that native
libraries bundled into JAR files are not be loaded by applets due to security restrictions.

Netscape and Native Libraries

Netscape Navigator implements a slightly tighter security layer regarding native libraries than the Sun
JVM, appletviewer, and the Microsoft JVM. With Navigator, you cannot load native libraries unless
either the applet has been signed with a privilege that allows it to do this or you specifically request this
privilege and the user grants it. For example, if your applet tried to execute the earlier code to load the
HelloWorld library under Navigator, it would simply fail. Note that Internet Explorer does not implement
anything beyond the standard security policy of not allowing applets to callloadLibrary() .

We need to use Navigator’s security mechanism to tell the browser that it’s okay to load a library.
Performing this is quite easy, using a class callednetscape.security.PrivilegeManager that is
bundled with Netscape Navigator. This class allows you to enable various privileged operations, such as

38

Chapter 3. Java Architecture

writing to a file from an applet or loading native libraries, but when the privileges are enabled, the
browser pops up a window, similar to that in Figure 3-5, asking the user if it’s okay to proceed with that
untrusted operation.

Figure 3-5. Netscape Navigator’s Security Interface

The privilege we need to enable is calledUniversalLinkAccess . It can be enabled by the following
segment of code, which should be executed prior to theSystem.loadLibrary() call:

netscape.security.PrivilegeManager pm =
new netscape.security.PrivilegeManager();

pm.enablePrivilege("UniversalLinkAccess");

Once the user has allowed the privilege to be enabled, Navigator loads the shared library containing the
native method implementations.

Notes
1. Just as, say, a Sinclair ZX Spectrum emulator is a piece of software emulating an actual computer.

Given that a Spectrum emulator exists for UNIX and Windows 95, you can now play the same

39

Chapter 3. Java Architecture

original Spectrum games on two different operating systems.

2. This is roughly true. Operating systems may run on different processor architectures that are
incompatible, whereas compiled programs for different operating systems, but for an identical
processor architecture, may run under another operating system. Linux is a good example of this, in
that SCO Unix binaries for the Intel 386 processor may run under Linux on Intel 386 processor
machines.

3. Since the Java compiler would have flagged this error of type-safety at compile-time, the byte-code
verifier can safely assume that the class file has been either corrupted or tampered with.

4. C++ also uses type signatures to distinguish between methods. Unfortunately, to allow C++ and
standard C programs to link together, C++ methods can be declared asextern "C" , which
effectively removes the type signature. This can cause symbol clashes in overloaded method
definitions.

5. Not to mention harder to understand!

6. HP/UX differs by using the suffix of.sl instead of.so. To quickly determine which suffix is used on
your system, you can look in/usr/lib and see whether you see.soor .sl files. Libraries suffixed with
.a are not shared libraries so pay no attention to those.

7. These two values are discussed in more detail in Chapter 4.

8. I am assuming that you are using a PowerPC-based Mac. The Apple MRJ does not support the 68K
architecture at all.

9. Available on Solaris and Linux, respectively. Remember to redirect bothstdoutandstderr to a file, as
these programs generate alot of output.

40

Chapter 4. Introducing the Java Native Interface
The Java Native Interface, or JNI, represents a codification of native-method programming interfaces
implemented in various virtual machines. The JNI allows you to write Java native methods using a
unified programming API, instead of writing code for the native-method interface implemented in each
JVM. Historically, there are three main branches of JVM, each sporting its own native method interface.
These include JVMs derived from the original Sun JVM, Netscape’s JVM and Plugin Development Kit,
and Microsoft’s JVM. Without the JNI, you’d be looking at writing at least three separate versions of the
same code for your native methods to work on the major JVMs.

The JNI provides a generic programming interface to the JVM, ensuring that code written for the JNI
works on any JVM that supports the JNI. Of course, there are penalties to pay for this portability. The
most obvious potential penalty is that operation of the JNI may be somewhat slow, since it provides a
generic, non-optimized access path into the JVM. Fortunately, most JVMs that support the JNI use
optimized access paths and perform internal caching to help route function calls efficiently, so
performance is not necessarily a problem, as we’ll discuss in the next section.

The JNI provides a layer of abstraction over the internals of the virtual machine. This can be construed as
a second penalty, especially if you are used to the power of the JDK-1.0 or RNI interface. This is a
potentially sound objection to using the JNI, since you now have no direct access to the Cstruct that
represents a class. The JNI requires much higher processing overhead to reference the same amount of
data; we’ll discuss this issue in more detail later in the chapter.

Thus, using the JNImaybe slightly slower than using an earlier, non-standard native interface. Given
that native methods are supposed to be used in handling non-trivial amounts of computation, however,
the performance overhead in entering the native method may be negligible compared to the amount of
computation the native code performs. In the words of Michael Abrash: “Profile before you optimize.”
Of course, the benefit of being able to write and maintain a single body of code that works seamlessly on
all JVMs is a seductive lure.

The JNI Execution Environment
The main advantage of the JNI is that it is portable across all JVMs, regardless of who has written the
JVM. The JNI achieves this by implementing a three-tier access path from your native code to the JVM
currently being used, as illustrated in Figure 4-1.

41

Chapter 4. Introducing the Java Native Interface

Figure 4-1. The JNI Execution Environment

JNIEnv *

JNI Interface Pointer Pointer to GetFieldID

Pointer to GetMethodID

Pointer to FindClass

GetFieldID()

GetMethodID()

FindClass()

Interface FunctionsFunction Table

This figure shows how the JNI has been designed to support not only native methods, but also the ability
to embed a JVM within another application. Some good examples of this are the JVMs embedded in the
Netscape Navigator and Microsoft Internet Explorer web browsers. The ability to embed a JVM implies
that a “host” program, such as a browser, can have multiple Java programs running simultaneously, each
of which is a completely separate entity.

To enforce Java security restrictions, programs must be kept completely separate from each other. The
JNI enforces this separation with an explicit pointer to the thread within the JVM instance that is
currently running the program in question. In JNI terminology, this pointer to the JVM is called theJNI
interface pointer. Pointers of this type vary on a per-thread basis. In other words, if you invoke a native
method from within a single program, but from two different threads, the interface pointer will vary. This
keeps thread data compartmentalized, ensuring a higher level of data integrity and security, not to
mention optimized performance on multiprocessor systems.

The interface pointer itself points at an array of functions, known as afunction tableor jump table.1 This
table simply contains pointers to JNI functions, which are known asinterface functionsand are
implemented within the JVM. This design is portable, as any JVM implementation need only implement
the standard JNI interface pointer and function table code to allow any native method code to be portable
between JVMs. The underlying interface functions within the JVM can then be implemented in a way
that provides optimal access to the desired JVM functionality.

Another advantage of this approach is that a virtual machine implementation can have multiple JNI
implementations. For example, you might want to have one implementation that does very strict
compile-time checking and valid parameter checking, for debugging purposes, and a second that has no
checks whatsoever, for release-quality software. With the architecture of the JNI, changing
implementations is as easy as swapping the JNI interface pointer to point at the appropriate function
table.

Of course, elegant as this design may be, it does add an additional two layers of computation to the
invocation of any JNI functions. Over a period of many invocations, this may amount to quite a large
amount of time spent just locating the interface functions. But before you worry too much about the
performance implications, you should be sure to profile the amount of time spent invoking the JNI
functions against the time it takes to execute your native code. The ratio may be inconsequential, in

42

Chapter 4. Introducing the Java Native Interface

which case you don’t need to fret.

When you are writing native code, you don’t need to know anything about the function table itself, since
all JNI function invocations are funneled through the interface pointer automatically. The interface
pointer is of typeJNIEnv * . It points at a structure that contains pointers for all the JNI functions, where
each pointer references the corresponding entry in the function table. The interface pointer is of foremost
importance when you are writing native methods using the JNI; it is passed as the first argument toevery
JNI function.

Furthermore, when you want to invoke a JNI function, you must do so through the interface pointer, since
the function can only exist within the context of the interface pointer’s jump table. The actual use of a JNI
interface pointer to locate JNI functions is somewhat more convoluted than you might expect, however.

Since the JNI interface pointer contains another pointer, you must dotwodereferences to locate the
correct jump table. For example, to access theGetFieldID() JNI function with a given JNI interface
pointer calledenv , you need to write the following C code:

JNIEnv *env;

jfieldID someFieldID =
(*env)->GetFieldID(env, clazz, name, signature);

This code is not terribly intuitive, and it can be a source of misery, if you forget to dereference*env and
dereferenceenv instead.

With C++, the situation is a bit better, as you do not need to worry about the extra dereference. The JNI
interface pointer is implemented as a C++ class, and the jump table of JNI functions is implemented as a
set of C++ member functions within that class, which makes your life a lot easier. The following C++
code stub is functionally equivalent to the previous C example:

JNIEnv *env;

jfieldID someFieldID =
env->GetFieldID(clazz, name, signature);

The message here is that if you are implementing your JNI code using C, you need to beverycareful.
Forgeting the extra dereference gives you perfectly legal C code that your compiler will quite happily
turn into native code, albeit native code that will inexplicably crash!

Since the C++ JNI interface is more intuitive and easier to debug, the example code in this chapter uses
C++. This should not pose any problems for compilation on Microsoft Windows or modern Unix
platforms, as C++ compilers, such asg++ from the Free Software Foundation, are prevalent and easily
acquired.

43

Chapter 4. Introducing the Java Native Interface

One final issue about language choice arises if you are porting software to a Win32 platform using Visual
C++. In this case, you are required to implement your JNI code using the C++ interface, instead of the C
interface, due to the automatic definition of various C preprocessor symbols, such ascplusplus . The
definition of this symbol causes the JNI include files to use the C++ interface automatically, meaning that
perfectly legitimate C code will completely fail to compile.

Implementing JNI Native Methods
There are three basic tasks involved with writing native methods using JNI:

• Declaring the appropriate methods asnative methods in the Java class.

• Writing the native code itself, using the correct function prototypes.

• Providing the “glue” layer that stitches the native code and the Java class together, to ensure that both
pieces know where each other are and can communicate.

Writing The Java Code
Informing the JVM that a method is implemented natively, instead of in Java, is the easiest part of
developing native methods. You simply declare your native methods with thenative keyword. Example
4-1 shows a Java class that defines a native method that prints output on the screen. The example prints
two messages, one using Java code to print toSystem.out , and the other using the native method.

Example 4-1. Native method declaration (HelloWorld.java)

public class HelloWorld {

/** static initializer block which loads the native library */
static {

try {
System.loadLibrary("HelloWorld");

} catch (UnsatisfiedLinkError e) {
System.err.println("Cannot load HelloWorld library: " +

e.toString());
}

}

/** The natively implemented method to print a String */
public native void printNative(String str);

44

Chapter 4. Introducing the Java Native Interface

/** The Java implemented method to print a String */
public void printString(String str) {

System.err.println("String printed: " + str);
}

/** Create a main() method so that we can run this class from a shell */
public static void main(String argv[]) {

/** Create a new instance of the HelloWorld class */
HelloWorld hw = new HelloWorld();

}

/** Construct a new instance of HelloWorld */
public HelloWorld() {

/** Print from Java */
printString("This string will get printed from Java!");

/** Print from native code */
printNative("This string will get printed from native code!");

}
}

Besides the method that is declared asnative , there is one other important aspect of native methods
programming in this short example. You must remember to explicitly load the library that contains your
native methods. If you forget to do this, the invocation of any native method will fail, throwing an
UnsatisfiedLinkError in the process.

As you can see from the previous example, native methods are invoked in exactly the same way as
normal, Java-implemented methods. The advantage of this approach is that it provides you with the
freedom to optimize your code in the future. For example, you might want to prototype a program using
Java, to ensure that the concept and design is correct. When you require faster production code, however,
you might consider implementing certain performance-intensive methods in native code. The cunning
part is that the code that is invoking these methods need not be changed to support the new, optimized
native code. As far as Java’s concerned, a method is a method and the invocation syntax does not differ.

The Glue Layer
Theglue layeris the functionality that bridges the gap between Java code and a native method. This
layer is required because a Java class, when asked to invoke a native method, only knows a few bits of
information about the function it is going to call, such as the name of the function and its parameter
types. The class expects the native methodfunction prototypeto conform to its idea of what the name
and parameters are and how they should be declared. The glue layer enforces, via a C include file, the
function prototype expected by the Java class.

45

Chapter 4. Introducing the Java Native Interface

The C include file that provides the glue layer is generated from a compiled class file. There is exactly
one include file for each Java class that contains native methods. You generate the include file using the
javahprogram that comes as part of the Sun Java SDK.2 Here’s how to generate the include file for the
HelloWorld class from Example 4-1:

% javah -jni HelloWorld

Provided that there are no errors,javahcreates a file namedHelloWorld.hin the current working
directory. The contents of this header file should look something like what is shown in Example 4-2.

Example 4-2. Header file for HelloWorld.java

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h >

/* Header for class HelloWorld */

#ifndef _Included_HelloWorld
#define _Included_HelloWorld
#ifdef __cplusplus
extern "C" {
#endif
/*

* Class: HelloWorld
* Method: printNative
* Signature: (Ljava/lang/String;)V
*/

JNIEXPORT void JNICALL Java_HelloWorld_printNative
(JNIEnv *, jobject, jstring);

#ifdef __cplusplus
}
#endif
#endif

An include file essentially contains a function prototype for each method you declared asnative within
the Java class. For your native method to be invoked successfully, the implementation of the native
method mustexactlyduplicate the function prototype for the native method in this file. Note that the
comment for each native method contains the type signature for the method, in case you need it later on.

TheJNIEXPORTkeyword is always present in a native method function prototype before the return type
of the native method, to support portable compilation. For example, Unix doesn’t require any special
declarations to specify that functions are part of a library instead of a program, soJNIEXPORTis defined
as being empty on Unix systems. Under Win32, however, a function needs to declare itself as

46

Chapter 4. Introducing the Java Native Interface

__declspec(dllexport) to be made part of a library, soJNIEXPORTis defined as such on Win32
systems. Similarly,JNICALL is defined on Unix platforms as being empty, whereas on Win32 this
keyword specifies the type of function calling convention (__cdecl or __stdcall) that should be used
for the method.

The function prototype in the include file also specifies the actual function name for the native method
implementation. Every native method name is prefixed withJava_ to begin with. For a class that does
not belong to an explicitly declared package, the class name and method name are then appended to this
string, separated by underscores. Thus, in our example, the function name is
Java_HelloWorld_printNative .

If a class belongs to a package, the fully-qualified class name is appended toJava_ , with dots replaced
by underscores, followed by the method name. If, for instance, ourHelloWorld class belonged to the
com.oreilly package, the class name would expand out tocom_oreilly_HelloWorld and the
resulting method name would beJava_com_oreilly_HelloWorld_printNative . While this name
is not short, it should be unique.

When a class defines multiple native methods with the same name but different parameters (overloaded
methods), additional rules are needed to generate unique function names, since the rules we’ve seen so
far would lead to multiple functions with the same name. In this case, the parameters of the method are
used to provide differentiation. Whenever a class defines overloaded methods, two underscores are
appended to the end of the method name, followed by the type signature of each parameter. There are
also some special character sequences that are used to handle Unicode characters, underscores, and array
and object parameter types, which include open brackets and semicolons. Table 4-1 shows these rules.

Table 4-1. Special character sequences for parameter type

Type Signature Character Escape Sequence

A Unicode characterUUUU _0UUUU

The underscore character (_) _1

The semicolon in class type signatures (;) _2

The open bracket in array type signatures ([) _3

The slash character in class type signatures (/) _

For example, let’s say we have declared the following three native methods within theHelloWorld

class:

public native void printNative();
public native void printNative(String str);
public native void printNative(String str, int indent);

47

Chapter 4. Introducing the Java Native Interface

These three methods result in the following native method names:

Java_com_oreilly_HelloWorld_printNative__
Java_com_oreilly_HelloWorld_printNative__Ljava_lang_String_2
Java_com_oreilly_HelloWorld_printNative__Ljava_lang_String_2I

The first native method has no arguments at all, so its name simply has two underscores appended to
it—remember that all overloaded native method names separate the method name from the parameters
with two underscores. The other two methods declare parameters, so the parameter types are appended to
the name. Note that the slashes used in the type signature are converted to underscores in the method
name, and the semicolon that terminates each class type is converted to_2.

The final point you should notice about the function prototype for a native method involves the first two
parameters. Every native method declaration includes two parameters that are inserted before the
parameters you declared within your Java code. These parameters correspond to the JNI interface pointer
for the current executing JVM thread and a pointer to the current object, orthis in C++ terminology.

As we discussed in the section calledThe JNI Execution Environment, every JNI function is invoked via
a JNI interface pointer of typeJNIEnv . Thus, this parameter is passed to your native method
implementation, so you can use it to invoke any JNI functions within your native code and thereby
ensure the integrity of your application within the JVM.

The second parameter is equally important, as it preserves the object-oriented nature of Java within your
native code, which can be written in a non-object-oriented language, such as C. When a native method is
an instance method (i.e., it operates on a particular object), this second parameter is of typejobject , as
in the case of ourprintNative() method. When a native method is a class (static) method,
however, the second parameter is of typejclass .

Implementing the Native Method Body
Implementing the native method body is, as you might imagine, the most important stage of native
method programming. The main work to be done here involves writing the actual code that does
whatever your native method needs to do. The complexity of this task obviously depends on what you
want your native method to do. Since native methods can be written to do just about anything, there’s not
much more we can say about this task here.

The one important thing I do want to emphasize is the function prototype for your native method. It is
absolutely imperative that you get the function prototype right, or the native method will never be
executed.

To go back to ourHelloWorld class, we know from looking at theHelloWorld.hinclude file that the
JVM is expecting the following function prototype for theprintNative() native method:

48

Chapter 4. Introducing the Java Native Interface

JNIEXPORT void JNICALL Java_HelloWorld_printNative
(JNIEnv *, jobject, jstring);

Now all that remains is to write some native code that prints a message, which the following C++ code
does admirably. Notice that the function prototype in Example 4-3 been implemented exactly as
specified in the include file.

Example 4-3. Native code body of the native method (nativeHelloWorld.cpp)

/**
* Implements the body of the native method ’printNative()’ declared
* in the HelloWorld class.
*/

#ifndef WIN32
extern "C" {
#endif /** !WIN32 */

#include <stdio.h >

#include <HelloWorld.h >

JNIEXPORT void JNICALL
Java_HelloWorld_printNative(JNIEnv *env, jobject arg,

jstring instring) {

const jbyte *str =
(const jbyte *)env- >GetStringUTFChars(instring, JNI_FALSE);

printf("Native string: %s\n", str);

env- >ReleaseStringUTFChars(instring, (const char *)str);

return;
}

#ifndef WIN32
}

#endif /** !WIN32 */

One final point about your native method implementation is that you need to remember to include the
generated include file for each class that has a native method body implemented in the current file. In
other words, the following line innativeHelloWorld.cppis critical:

#include <HelloWorld.h >

49

Chapter 4. Introducing the Java Native Interface

If you forget to include this file, several things can happen, depending on your compiler. The best case
scenario is that the compiler generates a warning that the function cannot be referenced or resolved. In
the worse case, however, a default function prototype might be inserted in place of the function prototype
declared within the include file. If this happens, it is the same as if you have specified the function
prototype incorrectly, meaning that your native method will fail upon invocation.

JNI Data Types
Before we go any further with the JNI, we need to take some time to understand the data types used by
JNI and how they correlate to Java data types. The JNI data types are the building blocks that all the JNI
functions are based on, whether we are talking about values that are being returned from JNI function
invocations or parameters that are being passed to JNI functions. Every single piece of data that is passed
from Java code to the JNI or created within a native method and passed back to Java is of one of the JNI
data types.

Primitive Data Types
For each primitive Java data type, there is a corresponding JNI type, as shown in Table 4-2.

Table 4-2. JNI Primitive Data Type Mappings

Java Type JNI Type Size

boolean jboolean unsigned 8 bits

byte jbyte signed 8 bits

char jchar unsigned 16 bits

short jshort signed 16 bits

int jint signed 32 bits

long jlong signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

void void N/A

As you can see, the mapping between the JNI data types and their Java counterparts is straightforward
and intuitive. In addition, the types are declared and manipulated in exactly the same way as the standard
Java and C data types. The JNI data types are guaranteed to be the given size, no matter which platform

50

Chapter 4. Introducing the Java Native Interface

you are writing JNI code for. For example, on an Intel-based microprocessor, anint is usually 32 bits in
length. However, on a 64-bit microprocessor such as the Digital Alpha, anint might be 64 bits. By using
jint values, you are guaranteed that the values are the same size no matter what platform you are using.

Reference Data Types
The JNI provides reference data types to represent generic objects, classes, strings, arrays, and throwable
objects:

jobject

This JNI data type corresponds to a generic Java object; objects in JNI are referenced and
manipulated via this opaque data type.

In the same way that all objects within Java code can be safely cast to be of type
java.lang.Object , all reference types within native code can be safely cast to be of type
jobject . Furthermore, with the exception of the other reference types listed here, there are no
specific data types defined for different kinds of objects—all objects are simply of typejobject .

As we discussed in the section calledThe Glue Layer, when a native method is an instance method,
the second parameter of the function prototype for the native method is always of typejobject .
This parameter passes the object on which the method was invoked to the native code, so that you
can manipulate the object in your code.

jclass

This data type corresponds to a Java object of typejava.lang.Class , which contains
information on the attributes of a particular Java class. Whereas a variable of typejobject

contains a specific instance of a class, ajclass variable contains information about the class itself.
You use this type of variable when you need to perform operations on a particular class, such as
creating new objects of a given class or invokingstatic methods of a class.

JNI provides several functions for locating information on classes. The most commonly used
methods areFindClass() , which returns ajclass value that contains information about the
desired class, andGetObjectClass() , which returns ajclass value that contains information
about the class of the given Java object. Other JNI functions, such asGetFieldID() and
GetMethodID() , require ajclass argument. This argument is used to retrieve information about
the class, such as whether a field or method exists.

jstring

This data type corresponds to ajava.lang.String object within Java (i.e., a string of Unicode
characters). SinceString is a full-fledged class type and almost certainly the most commonly used

51

Chapter 4. Introducing the Java Native Interface

data type, it is convenient to have a separate data type to represent strings.

The JNI defines several function for manipulatingjstring variables, including functions to
convert strings from the Unicode UTF-8 format to “standard” C/C++ character arrays and back
again. There are also functions for calculating the length of ajstring and creating a newjstring

from existing data. These string manipulation functions make it easy to pass strings between Java
code and native code.

jarray

The jarray data type acts as a general data type for arrays. For each primitive data type listed in
Table 4-2, there is a corresponding array type, as listed in Table 4-3.jarray is the common parent
to all of these types, which theoretically means that you can cast arrays of different data types to
each other, although this is rarely done.3

Table 4-3. JNI Array Data Types

JNI Data Type Description

jobjectarray Array of java.lang.Object values

jbooleanarray Array of boolean values

jbytearray Array of byte values

jchararray Array of char values

jshortarray Array of short values

jintarray Array of int values

jlongarray Array of long values

jfloatarray Array of float values

jdoublearray Array of double values

The odd-man-out in this list of array data types isjobjectArray ; it is the only array that doesn’t
contain primitive data types. It is, in fact, an array ofjobject values, which can represent any kind
of Java object. Thus, if you have an array ofString objects (String[]) within your Java code as,
the corresponding declaration within native code is of typejobjectArray .

jthrowable

This type corresponds to ajava.lang.Throwable object, which is a type of object that is thrown
when an error occurs. The most common throwable objects arejava.lang.Exception objects.
For example, if you attempt to reference a non-existent field within a given class, anException is
thrown. Your Java code can catch this exception to provide error handling. The JNI provides
functions that allow you to implement orthogonal error handling in your native code, as we’ll

52

Chapter 4. Introducing the Java Native Interface

discuss later in Chapter 11.

Figure 4-2 shows the relationship between the various JNI reference types.

Figure 4-2. JNI Reference Data Types

jobject
jclass
jstring
jarray

jthrowable

jobjectArray
jbooleanArray
jbyteArray
jcharArray
jshortArray
jintArray
jlongArray
jfloatArray
jdoubleArray

The jvalue Data Type
JNI provides one final data type,jvalue , that is defined as a Cunion of all the primitive data types and
jobject . This data type can be used to construct argument lists to be passed to various JNI functions,
when the data type of a given argument is not known in advance. Thejvalue data type therefore acts
opaquely for all the data types it encapsulates. The definition ofjvalue is as follows injni.h:

typedef union jvalue {
jboolean z;
jbyte b;
jchar c;
jshort s;
jint i;
jlong j;
jfloat f;
jdouble d;
jobject l;

} jvalue;

Notes
1. Or in C++ terminology, a virtual function table.

53

Chapter 4. Introducing the Java Native Interface

2. This program supports both the generation of JNI and JDK-1.0 native method glue layers, so you
need to specify the-jni argument when you want to generate JNI include files

3. For example, you can cast an array of floating-point numbers expressed as ajdoubleArray to an
array of integers expressed as ajintArray , but this causes any fractional parts of the numbers to be
truncated.

54

Chapter 5. Introducing the Raw Native Interface
The two most commonly used Java Virtual Machines are JVMs based on Sun’s reference implementation
and the Microsoft Virtual Machine. At the time of writing, the Sun JVM is being used by Sun, SGI,
Netscape, Symantec, and IBM to name but a few, while Microsoft’s JVM is being used solely by
Microsoft. This split has an effect on native method programming, since the Sun JVM uses the portable
Java Native Interface (JNI), but the Microsoft JVM primarily supports its own proprietary native method
interface known as the Raw Native Interface (RNI). The Microsoft JVM now also supports the JNI, but
the performance of JNI compared to RNI is not as optimal.

While it is tempting to ignore Microsoft’s JVM technology and simply support JNI-based JVMs,
Microsoft’s JVM is too widely deployed to validate this solution. Internet Explorer, which uses
Microsoft’s JVM, is now installed as the preferred browser on over 50% of machines. There are also
considerable differences in the maturity and performance of JNI-based JVMs, further reducing the
efficacy of the JNI path. Finally, the performance of the Microsoft JVM is highly optimized; it has been
benchmarked as one of the fastest JVMs available at the time of this writing.

This book covers the RNI alongside the JNI where possible, or in separate chapters where the differences
between the two interfaces are difficult to reconcile. This will hopefully give you the information you
require to decide whether to support a pure JNI native codebase or a mixed JNI and RNI codebase. Note
that even though I am discussing RNI throughout this book, I am not going to cover Microsoft
technologies such as J/Direct or COM integration with native methods.

The Microsoft JVM
The Microsoft JVM is a formidable piece of technology that uses extreme internal optimization to
provide excellent performance in executing Java code. The Microsoft JVM is quite closely tied to the
operating system (at least on Win32 platforms), which has allowed Microsoft to develop code that
extracts every last drop of performance out of the JVM. The Microsoft JVM is further help by
just-in-time (JIT) compilation.

Given that pure Java code is so fast on a Microsoft JVM, you may be wondering why you would want to
use platform- and JVM-dependent native methods? The answer is that native methods are still very
useful when it comes to integrating existing legacy code with a Java application. For example, say you
have an application that performs financial transactions, with GUIs written for Windows, the Mac, and
the X Window System. Rewriting the entire application in Java would mean replicating all the financial
transactions functionality. Instead, you might convert the GUI code to Java, but use native methods to
access the existing legacy code that performs the real work. This solution has the benefit of reducing
development and support on the GUI code, while not losing any of the existing application functionality.

There are fundamental differences in architecture between the JNI-based JVMs and the Microsoft JVM.

55

Chapter 5. Introducing the Raw Native Interface

As we discussed in Chapter 4, the JNI-based JVMs use a three-tier architecture that abstracts the JNI
away from the underlying implementation of each JNI function. This is what affords JNI its portability
across JVMs.

On the other hand, the Microsoft JVM directly exposes the internals of the JVM and its data structures to
the RNI, giving you far more power over exactly how you want to interface with the JVM. As we’ll see
as we work with the RNI in later chapters, every Java object stored within the JVM is exposed as a C
struct instead of as an indirect reference. This provides an extremely direct way of manipulating Java
objects and classes from native code. Of course, this power also requires greater responsibility—you
must be incredibly careful in choosing the operations you perform and how you perform them, as it is
very easy to cause JVM corruption or crashes if you are not careful.

Implementing RNI Native Methods
Just as with the JNI, there are three basic tasks involved with writing native methods using the RNI:

• Declaring the methods you want to implement as native code asnative methods in the Java class.

• Writing the native code bodies, using the correct function prototypes.

• Generating the “glue” layer that connects the native code and the Java class, to ensure that both pieces
know where each other are and can communicate.

Writing The Java Code
Informing the JVM that a method is implemented natively, instead of in Java, is the easiest part of native
methods programming. All you do is declare your native methods with thenative keyword. Example
5-1 shows a Java class that defines a native method that outputs to the screen. The example prints two
messages, one using a native method, and the other using Java code to print toSystem.out .

Example 5-1. Native method declaration (HelloWorld.java)

/** Invokes a Java-implemented method and a native method */
public class HelloWorld {

/** static initializer block which loads the native library */
static {

try {
System.loadLibrary("HelloWorld");

} catch (UnsatisfiedLinkError e) {
System.err.println("Cannot load HelloWorld library: " +

56

Chapter 5. Introducing the Raw Native Interface

e.toString());
}

}

/** The natively implemented method to print a String */
public native void printNative(String str);

/** The Java implemented method to print a String */
public void printString(String str) {

System.err.println("String printed: " + str);
}

/** Create a main() method so that we can run this class from a shell */
public static void main(String argv[]) {

/** Create a new instance of the HelloWorld class */
HelloWorld hw = new HelloWorld();

}

/** Construct a new instance of HelloWorld */
public HelloWorld() {

/** Print from Java */
printString("This string will get printed from Java!");

/** Print from native code */
printNative("This string will get printed from native code!");

}
}

If you compare Example 5-1 with Example 4-1, you’ll see that the two programs are identical. As you’d
expect with Java, there’s nothing about your Java code that differs between writing native methods for
JNI or RNI.

Besides the method that is declared asnative , this short example demonstrates one other important
aspect of native methods programming: the call toSystem.loadLibrary() . You must remember to
explicitly load the library that contains your native methods. If you forget to do this, the invocation of
any native method will fail and throw anUnsatisfiedLinkError in the process.

As you can see from Example 5-1, native methods are invoked in exactly the same way as normal,
Java-implemented methods. As we discussed in Chapter 4, this approach has the advantage allowing you
to optimize your code in the future, by changing certain performance-intensive methods from Java code
to native code. As far as Java’s concerned, a method is a method and the invocation syntax does not
differ, so all you have to do is change the method declaration to achieve this.

57

Chapter 5. Introducing the Raw Native Interface

The Glue Layer
As we discussed in Chapter 4, the glue layer is the bridge between Java code and a native method. When
a Java class is asked to invoke a native method, it has limited information about the function it is going to
call, such as the name of the function and its parameter types. The class expects the native method
function prototype to conform to its idea of what the name and parameters are and how they should be
declared. The glue layer enforces, via a C include file, the function prototype expected by the Java class.

The C include file that provides the glue layer is generated from a compiled class file. There is exactly
one include file for each Java class that contains native methods. Generating an include file is extremely
simple and is done using themsjavahprogram that is bundled with the Microsoft Java SDK. Here’s how
to generate the include file for theHelloWorld class from Example 5-1:

C:\> msjavah HelloWorld

Provided that there are no errors,msjavahcreates a file namedHelloWorld.hin the current working
directory. The contents of this header file should look something like what is shown in Example 5-2.

Example 5-2. Auto-generated RNI header file (HelloWorld.h)

/* DO NOT EDIT - automatically generated by msjavah */
#include <native.h >

#pragma warning(disable:4510)
#pragma warning(disable:4512)
#pragma warning(disable:4610)

struct Classjava_lang_String;
#define Hjava_lang_String Classjava_lang_String

/* Header for class HelloWorld */

#ifndef _Included_HelloWorld
#define _Included_HelloWorld

#define HHelloWorld ClassHelloWorld
typedef struct ClassHelloWorld {
#include <pshpack4.h >

const long MSReserved;
#include <poppack.h >

} ClassHelloWorld;

typedef struct ClassArrayOfHelloWorld {
const int32_t MSReserved;
const unsigned long length;

58

Chapter 5. Introducing the Raw Native Interface

HHelloWorld * const body[1];
} ClassArrayOfHelloWorld;
#define HArrayOfHelloWorld ClassArrayOfHelloWorld
#define ArrayOfHelloWorld ClassArrayOfHelloWorld

#ifdef __cplusplus
extern "C" {
#endif
__declspec(dllexport) void __cdecl HelloWorld_printNative (struct HHel-
loWorld *, struct Hjava_lang_String *);
#ifdef __cplusplus
}
#endif

#endif /* _Included_HelloWorld */

#pragma warning(default:4510)
#pragma warning(default:4512)
#pragma warning(default:4610)

This file might seem a bit confusing at first glance, but the interesting parts are a Cstruct that
represents the structure of the class and a function prototype for each method declared asnative within
the class. We’ll concentrate on the function prototype for now and talk about thestruct later in this
chapter.

Only methods declared with thenative keyword have a function prototype within an include file. For
your native method to be invoked successfully, the implementation of the native method mustexactly
duplicate the function prototype for the native method in this file.

The__declspec(dllexport) keyword is always present in an RNI function protoype. This keyword
is required under Win32 when you are compiling a method for use within a library. In order for the
function to be visible to other applications that use the library, the function must be exported. To achieve
this, a function needs to declare itself as__declspec(dllexport) , which is exactly what the include
file does for you automatically.

For convenience when writing native method implementations, I tend to replace
__declspec(dllexport) with RNIEXPORTand__cdecl with RNICALL. I define these as follows in
my native method implementations:

#define RNIEXPORT __declspec(dllexport)
#define RNICALL __cdecl

These definitions make my RNI code easier to type and also causes them to look similar to JNI native
methods that are declared usingJNIEXPORTandJNICALL . It also allows you to rapidly alter your code

59

Chapter 5. Introducing the Raw Native Interface

if the definitions generated bymsjavahchange (e.g., if__cdecl changes to__stdcall). These
conventions are used throughout the RNI examples in this book.

The function prototype in the include file also specifies the actual function name for the native method
implementation. In order to provide some degree of uniqueness,msjavahgenerates the function name
automatically from the class name and the package in which the class is placed. For a class that does not
belong to an explicitly declared package, the class name and method name are simply joined together
with an underscore (e.g.,HelloWorld_printNative()).

If a class belongs to a package, the fully-qualified class name is used, with the dot separators replaced by
underscores. The method name is then added, separated from the package and class name with another
underscore. For example, if ourHelloWorld example belonged to thecom.oreilly package, the
automatically generated function name for theprintNative() method would be
com_oreilly_HelloWorld_printNative() .

Unlike thejavahprogram,msjavahdoes not produce different method names when you have overloaded
native methods. For example, to specify a point in 2- or 3-dimensional space, a class might contain the
following overloaded methods:

public native void vertex(int x, int y)
public native void vertex(float x, float y)
public native void vertex(int x, int y, int z)
public native void vertex(float x, float y, float z)

Running these method declarations throughmsjavahgenerates four function prototypes with identical
names, but different parameters. Any good C++ compiler should be able to handle this, but compilation
with a standard C compiler will probably fail. Thus, if you have overloaded native methods, you should
really consider using a C++ compiler.

If you are forced to use a C compiler for some reason, there is a workaround for problem, but it’s rather a
kludge. The idea is to implement dispatcher methods in Java that simply invoke uniquely named native
methods. Here are a couple ofvertex() methods done using this technique:

/* Private native method dispatcher */
private native void vertex2i(int x, int y);

/* Public overloaded method */
public void vertex(int x, int y) {

vertex2i(x, y);
}

/* Private native method dispatcher */
private native void vertex2f(float x, float y);

60

Chapter 5. Introducing the Raw Native Interface

/* Public overloaded method */
public void vertex(float x, float y) {

vertex2f(x, y);
}

This system preserves both the uniqueness of native method names and the overloaded methods. Of
course, there are now two method invocations required instead of one, but at least it works. Obviously,
this solution doesn’t work very well if you are doing both JNI and RNI versions of your native code.

The final point you should notice about the function prototype for an RNI native method involves the
first parameter. Every native method declaration includes a parameter that is inserted before the
parameters you declared within your Java code. This parameter corresponds to the current object, which
can be correlated with the implicitthis value in C++ terminology. In our Hello World example, you can
see that this parameter is a pointer to a structure of typeHHelloWorld ; we’ll learn more about this
structure later in the chapter, we when talk about RNI data types. This parameter is important, as it
preserves the object-oriented nature of Java within your native code, which can be written in a
non-object-oriented language, such as C.

Implementing the Native Method Body
Implementing the native method body is really the heart of native method programming. The foremost
issue here is the actual native method content—the actual code that you want to execute when the native
method is invoked from Java. The complexity of this code obviously depends on what you want your
native method to do, which can be just about anything, so there’s not much more I can say about the task
here.

The one important thing I do want to emphasize is the function prototype for your native method. It is
absolutely imperative that the function prototype is correct or the native method will never execute.

To go back to ourHelloWorld class, we know from looking at theHelloWorld.hinclude file that the
JVM is expecting the following function prototype for theprintNative() native method:

__declspec(dllexport) void __cdecl
HelloWorld_printNative (struct HHelloWorld *,

struct Hjava_lang_String *);

Now all that remains is to implement some native code that prints a message, as the following C++ code
does admirably. Notice that the function prototype in Example 5-3 been implemented exactly as
specified in the include file.

61

Chapter 5. Introducing the Raw Native Interface

Example 5-3. Native code body of the native method (nativeHelloWorld.cpp>

/**
* Implements the body of the native method ’printNative()’ declared
* in the HelloWorld class.
*/

#ifndef WIN32
extern "C" {
#endif /** !WIN32 */

#include <stdio.h >

#include "../../rnidefs.h"
#include "HelloWorld.h"

#ifdef RNIVER
DWORD RNIGetCompatibleVersion() {

return RNIVER;
}

#endif /** RNIVER */

RNIEXPORT void RNICALL
HelloWorld_printNative(struct HHelloWorld *arg,

struct Hjava_lang_String *instring) {

/** Temporary buffer */
char buf[1024];

/** Extract the Java String */
javaString2CString(instring, buf, sizeof(buf));

/** Print the string out... */
printf("%s\n", buf);

}

#ifndef WIN32
}

#endif /** !WIN32 */

One final point about your native method implementation is that you must remember to include the
generated include file for each class that has a native method body implemented in the current file. In
other words, the following line innativeHelloWorld.cppis critical:

#include <HelloWorld.h >

62

Chapter 5. Introducing the Raw Native Interface

If you forget to include this file, several things can happen, depending on your compiler. The best case
scenario is that the compiler generates a warning that the function cannot be referenced or resolved. In
the worse case, however, a default function prototype might be inserted in place of the function prototype
declared within the include file. If this happens, it is the same as if you have specified the function
prototype incorrectly, meaning that your native method will fail when it is invoked.

All of the RNI functions are actually defined with an include file callednative.h. You do not need to
explicitly include this file in your code, as allmsjavah-generated header files automatically include this
file for you.

Note that newer versions of the Microsoft Virtual Machine (newer than build 2239 or 2252) as shipped
with the Microsoft Java SDK Version 2.0 or higher, Internet Explorer 4 or higher, or separately installed
from Microsoft’s web site places a new requirement on you regarding RNI programming. When the JVM
loads a native library, it attempts to invoke a method calledRNIGetCompatibleVersion() , which is
supposed to return an integer that corresponds to the version number of the RNI implemented in the
current JVM. This method is easy to implement; the following stub code is generally all you should ever
need to use:

#ifdef RNIVER
DWORD RNIGetCompatibleVersion() {

return RNIVER;
}

#endif /* RNIVER */

RNIVER is a symbol defined withinnative.h; it exists in Version 2 only. Thus, the previous stub only
attempts to compile theRNIGetCompatibleVersion() method if that symbol is defined. The main
issue with this approach is that you cannot use a Version 1 compiled library against a Version 2 JVM.
There is no such restriction when using a Version 2 compiled library against a Version 1 JVM, however.

RNI Data Types
Before we dive further into the RNI, we need to take a moment to understand the data types used by RNI
and how they correlate to Java data types. The RNI data types are the building blocks that all the RNI
functions are based on, including values that are returned from RNI function invocations or parameters
that are passed to RNI functions. Every single piece of data that is passed from Java code to the RNI or
created within a native method and passed back to Java uses one of the RNI data types.

The RNI is far simpler with regard to data types than the JNI. The JNI defines lots of special data types
that represent native code reflections of Java objects and data types. RNI, on the other hand, uses simple
C data types to represent standard values and Cstruct structures to represent Java classes and objects.

63

Chapter 5. Introducing the Raw Native Interface

Primitive Data Types
The RNI provides a simple mapping between the primitive Java data types and data types that represent
them in native code. This process makes manipulating Java data from within native code far simpler than
having to translate values from a format suitable for use within Java to a format suitable for use within
native code. Table 5-1 shows the RNI mappings.

Table 5-1. RNI Primitive Data Type Mappings

Java Data Type RNI Data Type

boolean long

byte long

char long

short long

int long

long int64_t

float float

double double

As you can see, the mapping between the Java data types and RNI data types is quite obvious and
intuitive. All the integer data types are at least 32 bits in length, and the Javalong type is a 64-bit value.
Floating-point data types are preserved as 32-bitfloat values or 64-bit double-precisiondouble

values. These data types can be used directly in manipulating and setting new values within Java objects
or as parameters for method or constructor invocation.

To help you make sure you have mapped a Java data type to the correct RNI data type, each generated
include file contains declarations of the fields within that Java class. For example, say we define the
following Java class:

public class Vertex {

public float x;
public float y;
public float z;

...
}

If we usemsjavahto create an include file for this class, we end up with the following code fragment in
that include file:

64

Chapter 5. Introducing the Raw Native Interface

#define HVertex ClassVertex
typedef struct ClassVertex {
#include <pshpack4.h >

const long MSReserved;
float x;
float y;
float z;

#include <poppack.h >

} ClassVertex;

As you can see, theClassVertex structure contains declarations that match the fields in theVertex

Java class.

Classes and Objects
As we’ve just seen, when you usemsjavahon a Java class, the generated include file contains astruct

definition that mirrors the class declaration. This data structure is the data type that is used to refer to that
class in native code. So, with ourVertex class, the corresponding RNI data type isClassVertex . In
general, the name of the RNI data structure is the fully-qualified name of the Java class, with dot
separators replaced by underscores and withClass prepended. Thus, if theVertex class were part of
thecom.oreilly package, the name of the data structure would beClasscom_oreilly_Vertex .

To refer to an object of a particular class with the RNI, we use a pointer to the data structure defined in
the include file. Thus, we can refer to an instance of theVertex class with astruct HVertex *

variable in native code. By convention, we use a different name for the data structure, however, to
indicate that we are dealing with an object. With ourVertex example, notice thatHVertex is defined to
be the same asClassVertex . The “H” represents that fact that we are dealing with a “handle” to the
object. The general naming convention for referring to objects is to prefix the fully-qualified class name
with anH. Thus, if theVertex class were part of thecom.oreilly package, the handle to an object
would be declared asstruct Hcom_oreilly_Vertex * .

The final RNI data type that concerns classes and objects is theClassClass type. A variable of this
type contains meta-information about a particular class (i.e., it corresponds to thejava.lang.Class

class in Java). Certain RNI functions that manipulate classes require class information about a particular
class. You can get aClassClass variable for a particular Java class using theFindClass() or
Object_GetClass() function, as we’ll discuss in more detail in Chapter 9.

The Cstruct defined in the generated include file actually contains fields for all of the fields defined
within the Java class and all of its superclasses, right up to the class that inherits from
java.lang.Object . If you have fields in a subclass that shadow fields in a superclass, the field names
in thestruct are modified slightly to avoid naming collisions. Consider the following Java classes:1

65

Chapter 5. Introducing the Raw Native Interface

public class Vertex {

public float x;
public float y;
public float z;

...
}

public class Subvertex (

public float x;

....
}

Usingmsjavahon Subvertex creates an include file that contains the following:

#define HSubvertex ClassSubvertex
typedef struct ClassSubvertex {
#include <pshpack4.h >

const long MSReserved;
/* Members of Vertex */
float x_1;
float y;
float z;
/* Members of Subvertex */
float x;

#include <poppack.h >

} ClassSubvertex;

Arrays
Within the RNI, an array is represented by the data typeHArrayOf Type , whereType is one of the
primitive data types. For example, an array ofbyte values is represented by the typeHArrayOfByte in
native code. There is also a catch-all array type calledHArrayOfObject , which represents an array of
Java objects. Chapter 7 covers working with arrays in detail.

66

Chapter 5. Introducing the Raw Native Interface

Notes
1. And ignore why you would ever create pathological classes like this!

67

Chapter 6. Working with Strings
The string is probably the most commonly used data type in any programming language, so we’ll start
our discussion of the specifics of native method programming by focusing on strings.

The JNI places a particular emphasis on strings, by providing thejstring especially for working with
them. Both the JNI and RNI define several functions that allow you to manipulate strings from within
native code. These methods can be subdivided into the basic categories of string creation, string
conversion, and string sizing. The ability to manipulate strings from within native methods is absolutely
essential. An application that uses native methods almost always needs to pass strings into native code
and return strings to Java from native code.

The JNI and RNI string manipulation functions are especially important because Java programs are
written using the Unicode character set, rather than the ASCII or ISO Latin-1 encoding used by most
other programming languages. While Unicode makes internationalization and localization easier, it
makes string handling somewhat trickier. The JavaString class shields you from Unicode, by
automatically translating ISO Latin-1 data into Unicode before manipulating the string. Native code does
not provide such niceties, however, since it is primarily geared towards an ISO Latin-1 environment. If
you reference the data in a JavaString directly within native code, you’ll see the Unicode
representation, which appears as complete gibberish unless you have Unicode translation code of your
own. Similarly, if you create a string within native code and pass it back into Java, the resulting Java
String contains rubbish. To avoid needing to write Unicode translation routines yourself, you should
use the JNI and RNI functions to handle string data within your native methods.

Creating Strings
The ability to create new strings in your native code is key to being able to return a Java string from a
native method. It doesn’t take much imagination to see that this is something you’ll want to do fairly
often.

The JNI defines a function calledNewStringUTF() that creates a JavaString object from an array of
C/C++ character data. UTF stands for UTF-8, which is an ISO Latin-1 (and ASCII) compatible
transformation format for Unicode characters. The function actually returns ajstring value, which is
equivalent to aString when it gets passed back to Java code. In our symbol stones example, the name
of the stone can be queried by invoking thegetName() method against aSymbolStone object. This
native method returns a JavaString and is written as follows:

/** Returns the name of the stone */
JNIEXPORT jstring JNICALL
Java_SymbolStone_getName(JNIEnv *env, jobject arg) {

/** Extract the pointer */

68

Chapter 6. Working with Strings

jfieldID pDataFieldID = \
env->GetFieldID(env->GetObjectClass(arg), "_pData", "I"); \

SymbolStone_t *stone = \
(SymbolStone_t *)env->GetIntField(arg, pDataFieldID);

/** Safety check */
if (stone == NULL || (int)stone == -1) {

return NULL;
}

/** Create a new Java String from the name */
return env->NewStringUTF(stone->name);

}

NewStringUTF() is designed only for creating strings from 8-bit ISO Latin-1 data. If the character data
is your native code is 16-bit data, you should use the JNINewString() function instead.

Creating Java strings using the RNI is equally straightforward; the function that performs this task is
calledmakeJavaString() . This function simply takes a C string and its length as arguments and
returns the new JavaString (Hjava_lang_String) if it is created successfully. For example, with the
RNI, theWorld.getName() method can be written as follows:

/** Returns the name of the stone */
RNIEXPORT struct Hjava_lang_String * RNICALL
SymbolStone_getName(HSymbolStone *arg) {

/** Extract the pointer */
SymbolStone_t *stone = (SymbolStone_t *)arg->_pData;

/** Safety check */
if (stone == NULL || (int)stone == -1) {

return NULL;
}

/** Create a new Java String from the name */
return makeJavaString(stone->name, strlen(stone->name));

}

The RNI functionmakeJavaStringFromUtf8() is similar tomakeJavaString() , except that it
takes a C string that contains null-terminated Unicode UTF-8 formatted data, instead of ISO Latin-1
data. One final RNI function,makeJavaStringW() , converts non-UTF-8 Unicode character data to a
JavaString .

69

Chapter 6. Working with Strings

Converting Strings
By converting strings, I mean the ability to convert the Unicode data stored within Java string objects to a
form that can be used in native code. TheSymbolStone class declares a method calledload() which
takes a string argument that specifies the name of a file containing symbol stone data.

Thus, we need to convert the filename passed into the native method from Unicode to ISO Latin-1. Both
the JNI and RNI define functions that allow you to convert JavaString objects into an array of
characters.

Conversion with JNI
The JNI function for converting a JavaString object into a character array is called
GetStringUTFChars() . This function extracts the ISO Latin-1 representation of a Unicode string into
an array of characters that can be manipulated in the same way as any other C/C++ array.

GetStringUTFChars() makes life simple for you by working out the size of the string being converted
and allocating the memory needed to store it. However, just because the function does the memory
allocation for you doesn’t mean that you don’t have to worry about memory management—you still need
to remember to deallocate the buffer before you return from the native method. If you return to Java
without performing the deallocation, a memory leak will occur. If you are converting Java strings on a
regular basis, this memory leak can affect the performance and stability of your program. To deallocate
the storage created byGetStringUTFChars() , call ReleaseStringUTFChars() with the original
Java string object and the new character buffer as arguments.

GetStringUTFChars() can actually operate in two different ways, depending on the garbage
collection state and the JVM upon which your code is executing, among other things. One mode involves
GetStringUTFChars() returning a direct pointer to the converted string data—in other words, no
additional memory is allocated and no string data is transferred to a buffer. This can happen when the
JavaString object’s data is already 8-bit data and is stored contiguously within the JVM. Otherwise,
GetStringUTFChars() allocates a temporary buffer and copies the JavaString data to it. This is far
slower and uses more temporary memory while the string data is being copied about.

If you want to know which techniqueGetStringUTFChars() has used, you can pass the address of a
jboolean variable as the second argument to the function. When the function returns, the variable
contains eitherJNI_TRUE, to signify that a new buffer has been allocated, orJNI_FALSE , to indicate
that you are operating directly on the internalString data. Regardless of the technique the JVM uses, I
recommend that you always callReleaseStringUTFChars() when you are done with the string, to
avoid any possibility of memory leaks. This function does the right thing no matter whether a buffer is
allocated or not.

With all that explanation out of the way, let’s look at how to useGetStringUTFChars() . Here is the
JNI native method implementation of theload() method:

70

Chapter 6. Working with Strings

/**
* Scans the given data file and instantiates an array of SymbolStone objects
* from it
*/

JNIEXPORT jobjectArray JNICALL
Java_SymbolStone_load(JNIEnv *env, jclass arg, jstring filename) {

/** The return array of objects... */
jobjectArray rv = NULL;

/** Extract the filename */
char *filenameChars =

(char *)env->GetStringUTFChars(filename, NULL);

/** Load the data from file into C structures... */
int numRecords = 0;
SymbolStone_t *stones = load(filenameChars, &numRecords);
SymbolStone_t *sptr = stones;

/** Release the filename */
env->ReleaseStringUTFChars(filename, filenameChars);

...

return rv;
}

I’ve used a coding convention in the previous example that I’ll continue to use throughout this book.
When extracting the data from a string, I store the extracted data in a variable that uses the name of the
string with “Chars” appended (e.g.,filenameChars). This makes the code easier to read and also
allows you to track down cases where you might have forgotten to release the buffer.

In the previous implementation, we didn’t worry about whetherGetStringUTFChars() made a copy
of the string. If we care to know, however, we can alter the code in the following way:

...

/** Stores our copy status */
jboolean isCopy;

/** Extract the filename */
char *filenameChars =

(char *)env->GetStringUTFChars(filename, &isCopy);
if (isCopy == JNI_TRUE) {

71

Chapter 6. Working with Strings

fprintf(stderr, "-> A copy has been made of the String data\n");
} else {

fprintf(stderr, "-> No copy of the String data has been made\n");
}

...

TheGetStringUTFChars() andReleaseStringUTFChars() functions both handle only 8-bit
character data. If your native code uses 16-bit character data, say to represent Chinese or Japanese
characters, you need to use functions that preserve the “wide” Unicode characters. These Unicode-aware
functions areGetStringChars() andReleaseStringChars() . Since the names of the 8-bit and
16-bit functions are so similar, you need to be careful not to mix them up or your application may start
producing strange string data.

As of Java 2, Version 1.2, the JNI adds several new functions for working with strings. For example,
there are two new functions that allow you to extract a substring directly from a JavaString :
GetStringRegion , which performs the substring operation on a Unicode string, and
GetStringUTFRegion() , which performs the substring operation on a UTF-8 representation of the
string. These functions take parameters that specify the starting index for the substring, the number of
characters in the substring, and a pointer to a programmer-allocated buffer into which the substring data
is copied.

For example, when you are working with the filename that specifies the data file to load symbol stone
data from, you might want to split the filename into two sections, an eight-character prefix and a
three-character suffix that conform to DOS standards. Here is a partial implementation of the
SymbolStone.load() native method that does this usingGetStringUTFRegion() :

...

/* Allocate the buffers for prefix and suffix for filename splitting */
jchar *prefix = (jchar *)malloc(sizeof(jchar) * 8);
jchar *suffix = (jchar *)malloc(sizeof(jchar) * 3);

/* Extract the regions of the filename */
env->GetStringUTFRegion(filename, 0, 8, prefix);
env->GetStringUTFRegion(filename, 9, 3, suffix);

...

/* Release the region buffers */
free(prefix);
free(suffix);

72

Chapter 6. Working with Strings

...

Since this code allocates buffers for the substrings withmalloc() , it deallocates them withfree() .
Whenever you useGetStringRegion() or GetStringUTFRegion() , you must remember to handle
both the allocation and, more importantly, the deallocation within your application.

Another new function as of Java 2, Version 1.2, isGetStringCritical() . This function allows you to
extract a string and then rely on the fact that the JVM will not move the extracted string data. Using this
function also makes it more likely that the extracted string data is a direct pointer to theString , not a
copy. In other words, when you useGetStringCritical() , the JVM may internally reorganize the
string data so that it can provide a direct pointer.

GetStringCritical() can be used interchangeably withGetStringChars() (it returnsjchar

data), although there are some restrictions on its use. When you callGetStringCritical() , the JVM
assumes that it is entering acritical sectionof code that cannot be interfered with. As such, you must not
call any other JNI functions except the corollaryReleaseStringCritical() , which releases the
extracted string data.ReleaseStringCritical() marks the end of the critical section, so the JVM
can assume normal functioning at that point. Inside the critical section, you must also be sure that you
don’t cause the thread in which the native method is being invoked to block, or the JVM’s internal state
may become unstable.

TheGetStringCritical() andReleaseStringCritical() functions should be used with the
utmost of care. They should only be used when you absolutely require direct access to theString data
and the JVM would not ordinarily provide this access. Despite these warnings, you should know that
these functions do provide a far faster access path to your string data thanGetStringChars() , so they
are definitely worth using in the appropriate circumstances.

Conversion with RNI
The RNI is far simpler than the JNI with regards to converting JavaString objects. The RNI defines a
single method,javaString2CString() , to extract the string data convert it from Unicode UTF-8
characters into ISO Latin-1 characters. The resulting string is stored in a buffer that has been
pre-allocated by the programmer.

The following code shows the section of theSymbolStone.load() and illustrates how we can convert
a Java string to a standard C string.

/**
* Scans the given data file and instantiates an array of SymbolStone objects
* from it
*/

RNIEXPORT HArrayOfObject * RNICALL

73

Chapter 6. Working with Strings

SymbolStone_load(ClassSymbolStone *arg,
struct Hjava_lang_String *filename) {

/** The return array of objects... */
HArrayOfObject *rv = NULL;

/** Temporary buffers */
char filenameChars[1024];

/** Extract the filename */
javaString2CString(filename, filenameChars, sizeof(filenameChars));

/** Load the data from file into C structures... */
int numRecords = 0;
SymbolStone_t *stones = load(filenameChars, &numRecords);
SymbolStone_t *sptr = stones;

...

Sizing Strings
The final aspect of string manipulation involves the ability to calculate the length of a string. If you have
already extracted an ISO Latin-1 representation of a JavaString , you can simply use the C/C++
strlen() function to get the length of the string. There are times, however, when you might want to
calculate the length of a JavaString without having to extract it first.

For JavaString objects that contain data that is representable in the ISO Latin-1 character set, you can
call the JNI functionGetStringUTFLength() to get the length of the data containedin theString . If
your JavaString contains Unicode data, use the JNI functionGetStringLength() instead.
Obviously, if you mix these functions up, the sizing information for the string will probably be wrong.

For example, we might need to verify that the filename for the symbol stone data file is less than or equal
to 14 characters in length, in case we have to deploy the software on older UNIX flavors. Thus, when we
call theSymbolStone.load() method, we useGetStringUTFLength() to check that the filename
isn’t too long.

...

/*
* Check that the filename length <= 14 chars. Return NULL if it’s too
* long

74

Chapter 6. Working with Strings

*/
if (env->GetStringUTFLength(filename) >= 14) {

return NULL;
}

/** Otherwise, load up the data file... */
...

If you are using RNI, you can use the functionjavaStringLength() to retrieve the length of a Java
String . This function takes into account the different representations of strings (i.e., 16-bit Unicode
values or simple UTF-8 values). The following code shows the RNI implementation of theload()

method:

...

/* Check that the filename is <= 14 characters long */
if (javaStringLength(filename) >= 14) {

return NULL;
}

/** Otherwise, load the data file... */
...

75

Chapter 7. Manipulating Arrays
Arrays are quite commonly used within Java code. Within native code, arrays can be used to provide
string functionality and to shield programmers from explicit pointer manipulation. As such, it is quite
probable that at some point your Java code and your native code will need to share array data.
Fortunately, the JNI and RNI provide functionality to help you work with arrays. These functions support
array creation, array manipulation, and array sizing.

One of the issues of working with arrays involves the organization of array data in memory. For instance,
if you declare an array ofint values within native code, the data is guaranteed to inhabit a contiguous
segment of memory. In other words, with a pointer to the array, you can advance sequentially through
memory and see your integer values. The JVM, however, does not necessarily store array data
sequentially—in particular, a JVM may have special ways of storing array data to support optimal
garbage collection. Fortunately, the JNI and RNI array manipulation functions coalesce the array
elements into a contiguous buffer, allowing you to treat them as a normal C/C++ array.

Creating Arrays
The ability to create new Java arrays from within your native code is absolutely essential. One common
use involves legacy code that returns an array, that you then need to pass back to Java. Another possble
use arises when you are performing massive amounts of array manipulations, such as with a huge
spreadsheet. Array manipulations in Java can be considerably slower than in native code, in part due to
the non-contiguous nature of Java arrays. Thus, in an array-intensive Java application, it may be faster to
drop into native code, make a native copy of the Java array data, perform the calculations on the native
array, and pass the result back.

The basic techniques for creating arrays with the JNI and RNI are quite similar, but the JNI provides far
more functions defined for creating arrays and has a more abstracted design than the RNI, so we’ll
consider each API separately.

Creating Arrays with JNI
The JNI provides a battery of functions for array creation, but these functions are all virtually identical
and differ only in the data type of the new array. These functions can be further split into functions that
create arrays of Java objects or arrays of primitive data types. And to make life really simple, the JNI
functions all have names of the formNewType Array , whereType is the type of the array to create.
With all of the primitive type functions, all you have to specify is the number of elements in the array
being created.

76

Chapter 7. Manipulating Arrays

The JNI array creation functions operate as though you were creating an array within Java. For example,
consider the following Java code:

int[] array = new int[5];

This code creates an array of integers, where each element is initialized to a default value (zero).
Similarly, if you create an array of objects, such asString objects, the elements are initialized to the
default value ofNULL. To do anything meaningful with the array, you need to set the value of each
element to a particular value.

This functionality is reflected in the JNI functions for array creation. When you use a JNI function to
create a primitive array, each array element is initially set to zero. When you create an array of Java
objects withNewObjectArray() , however, you must specify an object that represents the default value
for each elemust. If you don’t want to initialize the elements of an object array to a default value, you can
passNULLas the value of the initial element, to create a placeholder array. In this case, though, you must
remember that you cannot access any of the elements of the array until you manually create them or a
NullPointerException is thrown. If you do specify a default object, you need to be aware that each
element is a reference to the default object you have specified. In other words, if you make a change to
the object referenced by a particular array element, all of the array elements are similarly altered. To
make each element reference a unique object, you have to manually create and set each array element
after you create the array.

To illustrate the use of these functions, let’s return to our symbol stones example. Once we have created a
SymbolStone object, we can query its dimensions indirectly via aDimension3D object. The
getDimensions() method declared within this class return the width, height and depth as a 3 element
array of floating point numbers. The implementation of this native method follows:

/**
* Returns a 3 element float array containing the width, height and depth
*/

JNIEXPORT jfloatArray JNICALL
Java_Dimension3D_getDimensions(JNIEnv *env, jobject arg) {

/** Extract the pointer */
jfieldID pDataFieldID =

env->GetFieldID(env->GetObjectClass(arg), "_pData", "I");
Dimension3D_t *dim =

(Dimension3D_t *)env->GetIntField(arg, pDataFieldID);

/** The return array of objects... */
jfloatArray rv = NULL;

/** Safety check */

77

Chapter 7. Manipulating Arrays

if (dim == NULL || (int)dim == -1) {
return NULL;

}

/** Allocate the array */
rv = env->NewFloatArray(3);
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array\n");
return NULL;

}

...

return rv;
}

Note that this example does not show the code that populates the new array. I’ve omitted this code for
now because it uses JNI functions for accessing array elements that we haven’t discussed yet. We’ll see a
complete implementation of this method later in the chapter.

UsingNewObjectArray() to create an array of Java objects is slightly more involved than creating an
array of a primitive data type. WithNewObjectArray() , you have to supply not only the number of
elements in the array, but also the class type for the array elements (as ajclass) and a default object of
that type. As we already discussed, the default object can beNULL.

To illustrate this, we will look again at theSymbolStone.load() method which creates and returns an
array ofSymbolStone objects from a data file. The relevant part of this method is implemented as
follows:

/**
* Scans the given data file and instantiates an array of SymbolStone objects
* from it
*/

JNIEXPORT jobjectArray JNICALL
Java_SymbolStone_load(JNIEnv *env, jclass arg, jstring filename) {

/** The return array of objects... */
jobjectArray rv = NULL;

/** Load the data from file into C structures... */
...

/** Allocate an array of jobjects and initialize to NULL... */
rv = env->NewObjectArray(numRecords, arg, NULL);

78

Chapter 7. Manipulating Arrays

if (rv == NULL) {
fprintf(stderr, "Failed to allocate return array of SymbolStone ob-

jects\n");
return NULL;

} else {
fprintf(stderr, "Allocated array of %d records\n", numRecords);

}

/**
* Iterate through each record, allocate a new object and store
* in the array
*/

...

return rv;
}

As with theDimension3D.getDimensions() implementation, this example only shows the array
creation. It omits the code that populates the array with useful values, as that code uses functions we
haven’t discussed yet. We won’t actually see a full implementation until Chapter 8, since we need to
discuss object creation before we can implement the appropriate functionality.

Creating Arrays with RNI
As we saw in Chapter 5, a Java array is represented in RNI native code by the data typeHArrayOf Type ,
whereType is one of the primitive data types. For example, an array ofint values is represented by the
typeHArrayOfInt in native code. There is also a catch-all array type calledHArrayOfObject , which
represents an array of Java objects. All of these array types share a common way of referencing and
manipulating the information stored within them.

The RNI defines two functions for creating arrays: one for creating arrays of primitive data types (e.g.,
int , float) and one for creating arrays of Java objects (e.g.,SymbolStone). TheArrayAlloc()

function should be used when you want to allocate an array of a primitive data type. This function returns
a pointer to an array of the requested type, if successful.ArrayAlloc() takes a type argument of the
form T_Type (e.g.,T_FLOAT, T_CHAR). You also have to specify the number of elements in the array.

Here’s an RNI implementation of theDimension3D.getDimensions() native method that shows the
use ofArrayAlloc() :

/**
* Returns a 3 element float array containing the width, height and depth
*/

79

Chapter 7. Manipulating Arrays

RNIEXPORT HArrayOfFloat * RNICALL
Dimension3D_getDimensions(HDimension3D *arg) {

/** Extract the pointer */
Dimension3D_t *dim = (Dimension3D_t *)arg->_pData;

/** The return array of objects... */
HArrayOfFloat *rv = NULL;

/** Safety check */
if (dim == NULL || (int)dim == -1) {

return NULL;
}

/** Allocate the array */
rv = (HArrayOfFloat *)ArrayAlloc(T_FLOAT, 3);
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array\n");
return NULL;

}

...

return rv;
}

This example does not show the code that copies the native float array into the Java array. I’ve omitted
this code for now because it uses RNI functions that we haven’t discussed yet. We’ll see a complete
implementation of this method later in the chapter.

The other array allocation function defined within the RNI isClassArrayAlloc() . This function is
almost identical in operation toArrayAlloc() , except that it allocates an array of objects of a particular
class. WithClassArrayAlloc() , you specify a type argument ofT_CLASS, the number of elements in
the array, and an additional class name that indicates the class type of the array elements.1

TheSymbolStone.load() native method implementation uses this function to allocate an empty array
of objects that will be populated as records are read from the data file.

/**
* Scans the given data file and instantiates an array of SymbolStone objects
* from it
*/

RNIEXPORT HArrayOfObject * RNICALL
SymbolStone_load(ClassSymbolStone *arg,

80

Chapter 7. Manipulating Arrays

struct Hjava_lang_String *filename) {

/** The return array of objects... */
HArrayOfObject *rv = NULL;

/** Load the records from the data file */

/** Allocate an array of objects... */
rv = (HArrayOfObject *)ClassArrayAlloc(T_CLASS, numRecords, "Symbol-

Stone");
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array of SymbolStone ob-
jects\n");

return NULL;
} else {

fprintf(stderr, "Allocated array of %d records\n", numRecords);
}

/**
* Iterate through each record, allocate a new object and store
* in the array
*/

...

return rv;
}

As with the other array creation examples, the code I’ve shown here only creates the array of
SymbolStone objects—it does not populate the array. We’ll look at the code that populates the array in
Chapter 9, after we’ve learned about object creation. The important point to remember is that if you
simply callClassArrayAlloc() to create an array and then return that array, accessing any element
results in aNullPointerException , since all the array elements areNULL. This behavior mirrors that
of creating arrays of objects within Java code.

Newer versions of the Microsoft JVM have added a new RNI function,ClassArrayAlloc2() , that has
the same behavior asClassArrayAlloc() with one slight difference. Instead of taking a string that
specifies the class name as its third argument, it takes a pointer to a class information structure of type
ClassClass . This structure is discussed in detail in Chapter 9.

81

Chapter 7. Manipulating Arrays

Manipulating Array Elements with JNI
Within Java, simply creating an array does not initialize the elements of that array to meaningful values.
As we’ve seen, the same is true when you are creating a Java array with JNI. In order to set the array
elements to meaningful values, we need to be able to access the individual elements with JNI functions.
There are also other situations when we need to be able to manipulate array elements in native code, such
as when a native method takes an array argument and we need to work with the individual elements of
that array. The techniques for accessing and setting array elements is different between primitive type
arrays and object type arrays, so we’ll discuss the two types separately.

Manipulating Primitive Array Elements
As with array creation, JNI provides a group of functions for accessing primitive array elements. These
functions extract the elements of the given Java array into a chunk of contiguous memory that acts
exactly like an array definition in C or C++. You can then traverse the elements of the array in an
extremely simple and efficient manner within your native code. Once you have finished manipulating the
elements, you can copy those changes back into the original Java array and free up any memory used in
extracting the array elements.

The JNI array extraction functions take the form ofGet Type ArrayElements() , whereType is the
data type of the array elements. Each function returns a prointer to a section of contiguous memory that
is created and filled with the elements of the Java array. You can use this pointer to carry out array and
pointer operations in your native code. Once you have finished manipulating the extracted elements of
the array, you can propagate those changes back into the original Java array using the corresponding
Release Type ArrayElements() function. Each of these functions copies any changes in the extracted
array element data back into the Java array, if desired, and also deallocates the temporary buffer into
which the extracted elements were stored. It is extremely important that you remember to release the
extracted array elements—if you don’t, serious memory leaks can occur.

Now that we know how to manipulate primitive array elements, we can return to the
Dimension3D.getDimensions() method and look at the complete implementation. This method
creates a new array offloat values, extracts the array elements so that we can insert the position values
from the native library, and then sets the new values back to the Java array:

/**
* Returns a 3 element float array containing the width, height and depth
*/

JNIEXPORT jfloatArray JNICALL
Java_Dimension3D_getDimensions(JNIEnv *env, jobject arg) {

/** Extract the pointer */
jfieldID pDataFieldID = \

82

Chapter 7. Manipulating Arrays

env->GetFieldID(env->GetObjectClass(arg), "_pData", "I"); \
Dimension3D_t *dim = \

(Dimension3D_t *)env->GetIntField(arg, pDataFieldID);

/** The return array of objects... */
jfloatArray rv = NULL;

/** Safety check */
if (dim == NULL || (int)dim == -1) {

return NULL;
}

/** Allocate the array */
rv = env->NewFloatArray(3);
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array\n");
return NULL;

}

jfloat *rvElements =
(jfloat *)env->GetFloatArrayElements(rv, NULL);

rvElements[0] = dim->width;
rvElements[1] = dim->height;
rvElements[2] = dim->depth;

env->ReleaseFloatArrayElements(rv, rvElements, 0);

return rv;
}

I follow a personal naming convention for variables that contain extracted elements of an array: the name
of the array withElements appended. This convention makes it easier to keep track of which elements
are associated with which arrays. It also helps locate situations where you may have forgotten to call
Release Type ArrayElements() on an array.

Depending on the way a particular JVM organizes array element data internally, the
Get Type ArrayElements() routines can either allocate a new memory buffer and copy the array
elements into the buffer or give you a pointer to the actual array data stored within the JVM itself. This is
important for several reasons. If the returned pointer is for a copy of the original array elements, then if
you make any changes to those elements and return to Java, the changes you have made will be lost.
However, if the returned pointer points at the original Java array data, you must be very careful not to
make any mistakes in the operations that you perform on the data, in case you invalidate the data
contained within the Java array. Each method of operation has pros and cons: getting a copy of the Java

83

Chapter 7. Manipulating Arrays

array data provides slower access but it is safer to modify the elements, while a direct pointer to the
elements provides faster access but it is more more dangerous to modify the elements.

Unfortunately, the JNI does not allow you to specify which mode you want these functions to use—it
simply tells you whether or not a copy has been made. Of course, this knowledge is still useful. Knowing
that the JNI is making a copy of the array data allows you to decide how often to call
Get Type ArrayElements() . For example, the cost of this method in copying a large array may
overshadow the performance savings that using native code provides, so you may decide not to use
native code.

The final parameter ofGet Type ArrayElements() can beNULL, to specify that you don’t want to
know whether the extracted elements are a copy or a direct reference to the array contents. If you do want
to know, however, simply specify the address of ajboolean variable. The variable is set toJNI_TRUE if
the array elements are a copy orJNI_FALSE if the function returns a direct reference. For example:

jboolean isCopy;
jfloat *arrayElements =

env->GetFloatArrayElements(array, &isCopy);

if (isCopy == JNI_TRUE) {
printf("A copy was made of the elements!\n");

} else {
printf("No copy was made of the elements!\n");

}

Critical sections

As of Java 2 Version 1.2, the JNI provides two new methods for array element extraction:
GetPrimitiveArrayCritical() andReleasePrimitiveArrayCritical() . When the JVM does
not support the concept ofarray pinning, the elements of an array that have been extracted in native code
may be moved, resulting in wrong results when accessing the array elements. (Pinning is discussed in
more detail in Chapter 11, when we talk about global and local references.) Consider the following
scenario: you access the array elements usingGet Type ArrayElements() , which returns a direct
pointer to the array elements; garbage collection occurs, moving the array and its contents; you attempt
to access the elements via the pointer. At best, you get incorrect results, and, at worst, your application
crashes.

GetPrimitiveArrayCritical() enforces that the array elements and the array itself are not subject
to garbage collection. When you call this function, the JNI considers the function invocation as marking
the beginning of acritical section, a section of code in which the array is safe from the machinations of
the garbage collector. The critical section is ended as soon asReleasePrimitiveArrayCritical()

is called.

84

Chapter 7. Manipulating Arrays

GetPrimitiveArrayCritical() is similar to the normal array element extraction methods, but
works for all array types. One of the parameters is declared as ajarray , the supertype of all JNI arrays,
and the return type isvoid * , which is essentially an opaque pointer that can be freely cast to whichever
type is expected. For example, here is how to create a safe set of array elements for afloat array:

/* An array of floating point values created elsewhere */
jfloatArray array;

/* Are we making a copy of the array elements? */
jboolean isCopy;

/* The elements of the floating point array */
jfloat *arrayElements =

(jfloat *)env->GetPrimitiveArrayCritical(array, &isCopy);

In addition to preventing garbage collection,GetPrimitiveArrayCritical() makes a better attempt
to return a direct pointer to the internal array data than the standard array element extraction functions.
Direct access to the array data is not guaranteed, however, so you should use the final parameter to
GetPrimitiveArrayCritical() to check whether copying has occurred. The potential performance
benefits from direct access are substantial, so I’d recommend usingGetPrimitiveArrayCritical()

for any serious array manipulation in your native code.

You must not make any other JNI calls between callingGetPrimitiveArrayCritical() to extract
the array elements and releasing them withReleasePrimitiveArrayCritical() . Doing so can
cause internal instability in the JVM. Note, however, that you can nest
GetPrimitiveArrayCritical() andReleasePrimitiveArrayCritical() calls, if more than
one array needs to be manipulated within a critical section simultaneously. The only additional restriction
here is that you release the arrays in the reverse order in which they were acquired. For example:

jfloat *arrayOneElements =
(jfloat *)env->GetPrimitiveArrayCritical(arrayOne, NULL);

jfloat *arrayTwoElements =
(jfloat *)env->GetPrimitiveArrayCritical(arrayTwo, NULL);

env->ReleasePrimitiveArrayCritical(arrayTwo, arrayTwoElements, 0);
env->ReleasePrimitiveArrayCritical(arrayOne, arrayOneElements, 0);

Committing changes

As we’ve already discussed, when you use one of theGet Type ArrayElements() functions, the JNI
may allocate memory to store the extracted array elements, so you have to deallocate the memory before

85

Chapter 7. Manipulating Arrays

you return to Java code to avoid memory leaks. And if you’ve altered any array elements, you probably
want to copy those changes back to the Java array. You can accomplish both of these tasks with the
Release Type ArrayElements() functions, as we’ve already seen.

What we haven’t discussed is that theRelease Type ArrayElements() functions have a few different
modes of operation, depending on how you want to handle any changes you’ve made to the array
elements. The final parameter of theRelease Type ArrayElements() functions controls the mode that
is used. The valid values are:0 (zero),JNI_COMMIT, andJNI_ABORT.

The most basic mode is the one that we’ve already seen: copying the altered data back into the Java array
and releasing any allocated memory. To do this, simply callRelease Type ArrayElements() with a
final argument of0. This operating mode copies the array data back into the Java array and releases any
memory used to store the temporary array elements.

If you don’t want to copy the altered array elements back into the original Java array, make the final
argumentJNI_ABORT. This can be useful when you are simply accessing the elements of a Java array
within native code, but not actually altering them. For example, your legacy code might have a function
that is passed an array offloat values that you currently have within Java. The legacy code doesn’t alter
the array elements at all, so it is expensive and unnecessary to copy all the array elements back into Java,
When you passJNI_ABORT as the final argument toRelease Type ArrayElements() , the function
deallocates any memory used by the extracted array elements, but doesnot copy the elements back into
the Java array.

The final mode of operation, which is not very commonly used but can be extremely useful, emulates a
database-style commit procedure. When lots of changes are being made to an array within native code
and some other process or thread is waiting for the updated data, you can use this mode to makes
sections of updated data available before the entire array has been processed. For example, say you are
performing some set of massive stock market calculations that required real-time updates of stock prices
stored in an array. In this case, waiting for the calculations on all the companies to complete would result
in decidedly non-real-time data. To make the system more dynamic, you might update the Java array
after each company calculation is complete. However, since other companies’ information is still waiting
to be calculated, you don’t want the memory containing the extracted array elements to be released—you
simply want the array values to be copied. PassingJNI_COMMIT as the final argument to a
Release Type ArrayElements() call provides this mode of operation. Of course, once you have
finally finished with the array elements, you need to ensure that you release the memory used by the
extracted array elements by callingRelease Type ArrayElements() with a different mode value.

UsingJNI_COMMIT to transfer updated data back into Java on a regular basis and on large arrays can be
extremely expensive. To provide faster data copying and higher overall application performance, you
should consider using theSet Type ArrayRegion() functions instead, as we’ll discuss in the next
section.

As a final note on copying array elements back to Java, let me remind you that the
Release Type ArrayElements() functions are only relevant for copying data back to Java when the

86

Chapter 7. Manipulating Arrays

extracted elements are acopyof the original data. If you are dealing with a direct pointer to the Java data,
any changes you make happen in-place and are visible immediately.

Ranges

You can also extract a range of elements from an array, instead of extracing the entire array. The JNI
again defines a function for each primitive data type, in the form ofGet Type ArrayRegion() . These
functions are most useful when you only want to manipulate or reference a small portion of a large array,
to avoid the performance and memory overhead of extracting all of the array elements.

One important way in which theGet Type ArrayRegion() functions differ from the
Get Type ArrayElements() functions is that the memory buffer to which the region of elements is
extracted isnot allocated by the JNI. With theGet Type ArrayRegion() functions, you must allocate
this buffer prior to invocation. This preallocated buffer should be the same size as the number of
elements that you want to extract from the array and it should be of the correct JNI data type. For
example, to extract a region of 100 integers from a Java array, you need to create a buffer of typejint

within your native code that can contain 100jint values.

When you useGet Type ArrayRegion() to extract a region of elements and manipulate them in some
way, you can useSet Type ArrayRegion() to copy the changes back to the Java array. Here is a code
fragment that shows the use of these functions:

/* Start element of the range and size of the batches */
int startElement = 0;
int batchSize = 100;

/* The array created elsewhere */
jintArray array;

/* The length of the array */
int arrayLength = env->GetArrayLength(array);

/*
* Allocate the buffer to store 100 jint values to be extracted
* from the array
*/

jint *arrayElements = (jint *)malloc(sizeof(jint) * 100);

/* Extract the array elements from the array in batches */
while (startElement < arrayLength - 1) {

int thisBatchSize =
(startElement + arraySize < arrayLength) ?

startElement + arraySize : arrayLength - 1;

87

Chapter 7. Manipulating Arrays

for (int i = startElement ; i < thisBatchSize ; i++) {
/* Extract the array region */
env->GetIntArrayRegion(array, startElement, thisBatchSize,

arrayElements);

/* Manipulate the array elements somehow */
...

/* Update the results back into the Java array */
env->SetIntArrayRegion(array, startElement, thisBatchSize,

arrayElements);
}

startElement += thisBatchSize;
}

/* Clean up */
free(arrayElements);

This example is reasonably optimal as it reuses the same nativejint buffer for each iteration of the
loop, as opposed to allocating and deallocating a new buffer for each iteration. Note also that the
example frees thearrayElements buffer when the array manipulations are complete. You need to
remember to do this to avoid memory leaks in your native code.

Set Type ArrayRegion() can also be used to copy back a portion of an array, even if you have
extracted the entire contents usingGet Type ArrayElements() . calls. This is an excellent way to
rapidly update a massive array in a real-time way. The short stock market scenario outlined earlier would
benefit greatly from using this technique. The only restriction on usingSet Type ArrayRegion() is
that the region you want to copy must be contiguous in the array, although it can of course be as small as
a single element. Finally, if you do useSet Type ArrayRegion() to copy portions of an array extracted
with Get Type ArrayElements() , you still need to remember to call
Release Type ArrayElements() to release any allocated memory, as well as to explicitly free any
buffers you created to work with the array regions.

Manipulating Object Array Elements
If you have an array of Java objects, you can reference particular elements within that array with the
GetObjectArrayElement() function. The function returns a singlejobject that represents the Java
object located at the specified array index. Thisjobject can be manipulated like any other Java object.
BecauseGetObjectArrayElement() returns a reference to an object, any operations that you perform
on the reference actually update the object stored within the array, so there is no need to copy the object
back to the array. This makes is very easy to update fields in an object in an array, for example.

88

Chapter 7. Manipulating Arrays

When you want to replace an object in an array, however, you don’t want to have to alter every field
within the object. In this case, you can use theSetObjectArrayElement() function to set a given
element within an array to a specific object. This function is also useful for swapping objects in an array,
such as during a sort operation, or for resetting all the elements to a default object. Unlike with the
primitive types, JNI does not provide any functions that extract all of the elements of an object array, so
you’ll want to use a looping construct if you need to manipulate an entire array of objects.

One thing to remember about object arrays is that you can specify a default object for all of the elements
when you create an object array withNewObjectArray() . In this case, however, each element is a
reference to the same object. Thus, if you create an array and then start manipulating elements, you may
encounter unexpected results. For example, if we implemented theSymbolStone.load() method using
the following logic, we would end up with every element being equal to the last loaded symbol stone!

/** The return array of objects... */
jobjectArray rv = NULL;

(char *)env->GetStringUTFChars(filename, NULL);

/** Load the data from file into C structures... */
...

/** Default initial element */
jobject aSymbolStone = ...;

/** Allocate an array of jobjects... */
rv = env->NewObjectArray(numRecords, arg, aSymbolStone);
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array of SymbolStone ob-
jects\n");

return NULL;
} else {

fprintf(stderr, "Allocated array of %d records\n", numRecords);
}

for (int i = 0 ; i < numRecords ; i++) {
/** Get the stone to work with... */
jobject stone = env->GetObjectArrayElement(rv, i);

/** Update the fields within the class */
...

}

return rv;
}

89

Chapter 7. Manipulating Arrays

To resolve this problem, we should initialise the array to having aNULL initial element and, for each
element in the array, create a new Java object. This removes the reference problem completely. For
example:

/** The return array of objects... */
jobjectArray rv = NULL;

/** Load the data from file into C structures... */

/** Allocate an array of jobjects... */
rv = env->NewObjectArray(numRecords, arg, NULL);
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array of SymbolStone ob-
jects\n");

return NULL;
} else {

fprintf(stderr, "Allocated array of %d records\n", numRecords);
}

for (int i = 0 ; i < numRecords ; i++) {
/** Allocate a new object for this element in the array... */
jobject stone = ...;

/** Update the fields within the class */
...

/** Stuff the object into the array */
env->SetObjectArrayElement(rv, i, stone);

}

return rv;
}

Manipulating Array Elements with RNI
With the RNI, it is extremely easy to access array elements because the Microsoft JVM does not
internally fragment arrays into non-contiguous sections of memory. While some JVM implementations
internally optimize array data by splitting it into separate chunks that are located in different areas of
memory, the Microsoft JVM does not do this. All arrays are stored in the same form, as contiguous data,

90

Chapter 7. Manipulating Arrays

just like arrays allocated within C or C++. As a result, arrays are far faster to access and manipulate than
with the JNI.

As I mentioned earlier in the chapter, all arrays in RNI are represented by a set of special data types,
HArrayOf Type . Each of these types behaves in an identical way, with the only difference being the
internal data type that the array contains. Referencing the array elements of the array is extremely
simple. AnHArrayOf Type variable is a pointer to astruct that contains a single variable calledbody .
This is true for arrays of any data type, including arrays of Java objects. The variablebody points to a
contiguous section of memory of the size required by the number of elements in the array. This array
elements can be referenced either via a pointer or in the style of C arrays.

With this understanding, we can now look at a full implementation of the
Dimension3D.getDimensions()() method:

/**
* Returns a 3 element float array containing the width, height and depth
*/

RNIEXPORT HArrayOfFloat * RNICALL
Dimension3D_getDimensions(HDimension3D *arg) {

/** Extract the pointer */
Dimension3D_t *dim = (Dimension3D_t *)arg->_pData;

/** The return array of objects... */
HArrayOfFloat *rv = NULL;

/** Safety check */
if (dim == NULL || (int)dim == -1) {

return NULL;
}

/** Allocate the array */
rv = (HArrayOfFloat *)ArrayAlloc(T_FLOAT, 3);
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array\n");
return NULL;

}

rv->body[0] = dim->width;
rv->body[1] = dim->height;
rv->body[2] = dim->depth;

return rv;
}

91

Chapter 7. Manipulating Arrays

All array types in RNI work in this manner. The only difference that you should expect to see when
manipulating arrays of objects, arrays of arrays, or arrays of strings is that the techniques used to
manipulate each element are different. However, each element is, of course, simply an object of that type
and the usual rules apply there also.

Multi-dimensional Arrays
So far in this chapter, we’ve been talking about how to interact with and manipulate one-dimensional
arrays within native code. But multi-dimensional arrays, or arrays of arrays, are fairly common, so now
it’s time to talk about them. For example, you might delare a 4x4 matrix as follows:

float[][] matrix = new float[4][4];

The techniques for creating and manipulating multi-dimensional arrays in native code rely on the basic
one-dimensional array handling techniques, with a few conceptual tweaks that are applicable to both the
JNI and RNI.

Multi-dimensional arrays with JNI
Creating a multi-dimensional array with the JNI is straighforward, since the JNI defines ajarray as a
subtype ofjobject . This allows you to declare the outer array as ajobjectArray , with each element
being ajarray of a particular data type, as illustrated in Figure 7-1.

Figure 7-1. Multi-Dimensional JNI Arrays

float[][] matrix = new float[4][4];

matrix[1]
matrix[2]
matrix[3]

matrix[0]
jfloatArray size 4
jfloatArray size 4

jfloatArray size 4

jfloatArray size 4

For example, thematrix array defined earlier can be created within JNI with the following stub of code:

JNIEXPORT jobjectArray JNICALL
Java_matrix2_createArray(JNIEnv *env, jobject arg) {

int i = 0,
j = 0;

92

Chapter 7. Manipulating Arrays

/** Create the “outer” array of objects, length 4... */
jobjectArray outerArray =

env->NewObjectArray(4, env->FindClass("java/lang/Object"),
NULL);

/** Iterate through each “outer” array element */
for (i = 0 ; i < env->GetArrayLength(outerArray) ; i++) {

/** Create a new array of floats... */
jfloatArray floatArray = env->NewFloatArray(4);

/** Extract the array elements for this subarray */
jfloat *floatArrayElements =

(jfloat *)env->GetFloatArrayElements(floatArray, NULL);

/** Set them... */
for (j = 0 ; j < env->GetArrayLength(floatArray) ; j++) {

floatArrayElements[j] = (i * 10) + j;
}

/** Tidy up... */
env->ReleaseFloatArrayElements(floatArray, floatArrayElements, 0);

/** Set the new float array into the outer array */
env->SetObjectArrayElement(outerArray, i, floatArray);

}

return outerArray;
}

Since we are creating multi-dimensional array of a primitive data type, we can create the outer array of
objects using the basicjava.lang.Object class. This works because the actual object array elements
are explicitly set to being an array anyway. SinceNewObjectArray() requires a class to be given, it
makes sense to use the superclass of all Java classes.

Creating a multi-dimensional array of actual objects, such asSymbolStone or String objects is even
easier. Again, you create the outer array as an object array of typejava.lang.Object , but each
subarray is created as anotherjobjectArray that is manipulated in the normal way. For example,
here’s some code that creates a 4x4 multi-dimensional arrays ofString objects:

JNIEXPORT jobjectArray JNICALL
Java_matrix3_createArray(JNIEnv *env, jobject arg) {

93

Chapter 7. Manipulating Arrays

int i = 0,
j = 0;

/** Create the “outer” array of objects, length 4... */
jobjectArray outerArray =

env->NewObjectArray(4, env->FindClass("java/lang/Object"),
NULL);

/** Iterate through each “outer” array element */
for (i = 0 ; i < env->GetArrayLength(outerArray) ; i++) {

/** Create a new array of floats... */
jobjectArray stringArray =

env->NewObjectArray(4, env->FindClass("java/lang/String"),
NULL);

/** Set them... */
for (j = 0 ; j < env->GetArrayLength(stringArray) ; j++) {

/** Create a new string... */
char s[1024];
sObjectprintf(s, "String_%d%d", i, j);

/** Create the Java String and set it in the array */
jstring string = env->NewStringUTF(s);
env->SetObjectArrayElement(stringArray, j, string);

}

/** Set the new float array into the outer array */
env->SetObjectArrayElement(outerArray, i, stringArray);

}

return outerArray;
}

Referencing the elements within an existing multi-dimensional array in native code is simply the reverse
of creating the array. You iterate through the elements of the object array one by one, extracting the
object and casting it to the appropriate array data type. Extraction and manipulation of those elements is
now just a standard one-dimensional array issue. For example, the following native method takes a
multi-dimensional array of floating point numbers:

JNIEXPORT void JNICALL
Java_matrix1_printArray(JNIEnv *env, jobject arg,

jobjectArray array) {

94

Chapter 7. Manipulating Arrays

int i = 0,
j = 0;

/** Iterate through each “outer” array element */
for (i = 0 ; i < env->GetArrayLength(array) ; i++) {

/** Extract the array stored within this array... */
jfloatArray floatArray =

(jfloatArray)(env->GetObjectArrayElement(array, i));

/** Extract the array elements for this subarray */
jfloat *floatArrayElements =

(jfloat *)env->GetFloatArrayElements(floatArray, NULL);

/** Iterate through them and print... */
for (j = 0 ; j < env->GetArrayLength(floatArray) ; j++) {

fprintf(stderr, "[%d][%d]: %f\n", i, j, floatArrayElements[j]);
}

/** Tidy up... */
env->ReleaseFloatArrayElements(floatArray, floatArrayElements, 0);

}

return;
}

Manipulating a multi-dimensional array of objects follows the same principle. The only difference is in
the way in which you extract the "inner" array elements.

While we’ve only looked at two-dimensional arrays in this section, the principles we’ve used can be
applied to three-dimensional arrays and beyond.

Multi-dimensional arrays with RNI
The RNI takes a similar approach, by allowing multi-dimensional arrays to be defined as elements of an
HArrayOfArray . For example, afloat[4][4] array can be composed of anHArrayOfArray , where
each array element is anHArrayOfFloat . Here’s some code for creating a multi-dimensional array of
floating point values:

RNIEXPORT HArrayOfArray * RNICALL
matrix2_createArray(Hmatrix2 *arg) {

int i = 0,

95

Chapter 7. Manipulating Arrays

j = 0;

/** Create the “outer” array of objects, length 4... */
HArrayOfArray *outerArray =

(HArrayOfArray *)ClassArrayAlloc(T_CLASS, 4, "java/lang/Object");

/** Iterate through each “outer” array element */
for (i = 0 ; i < obj_length(outerArray) ; i++) {

/** Create a new array of floats... */
HArrayOfFloat *floatArray =

(HArrayOfFloat *)ArrayAlloc(T_FLOAT, 4);

/** Set them... */
for (j = 0 ; j < obj_length(floatArray) ; j++) {

floatArray->body[j] = (float)(i * 10) + j;
}

/** Set the new float array into the outer array */
outerArray->body[i] = (HObject *)floatArray;

}

return outerArray;
}

Creating a multi-dimensional array of Java objects with the RNI is just as easy:

RNIEXPORT HArrayOfArray * RNICALL
matrix3_createArray(Hmatrix3 *arg) {

int i = 0,
j = 0;

/** Create the “outer” array of objects, length 4... */
HArrayOfArray *outerArray =

(HArrayOfArray *)ClassArrayAlloc(T_CLASS, 4, "java/lang/Object");

/** Iterate through each “outer” array element */
for (i = 0 ; i < obj_length(outerArray) ; i++) {

/** Create a new array of floats... */
HArrayOfObject *stringArray =

(HArrayOfObject *)ClassArrayAl-
loc(T_CLASS, 4, "java/lang/String");

96

Chapter 7. Manipulating Arrays

/** Set them... */
for (j = 0 ; j < obj_length(stringArray) ; j++) {

/** Create the string */
char s[1024];
sprintf(s, "String_%d%d", i, j);

/** Set it within the array */
stringArray->body[j] =

(HObject *)makeJavaString(s, strlen(s));
}

/** Set the new float array into the outer array */
outerArray->body[i] = (HObject *)stringArray;

}

return outerArray;
}

As with the JNI, referencing the elements stored within a multi-dimensional is simply a case of reversing
the operations used to create a new multi-dimensional array. The multi-dimensional array is treated as an
array of object arrays, and for each of those elements, you simply cast it to an array of the appropriate
type. The following code illustrates how to extract the values stored within a 4x4 matrix of floating-point
numbers:

RNIEXPORT void RNICALL
matrix1_printArray(Hmatrix1 *arg, HArrayOfArray *array) {

int i = 0,
j = 0;

/** Iterate through each “outer” array element */
for (i = 0 ; i < obj_length(array) ; i++) {

/** Extract the array stored within this array... */
HArrayOfFloat *floatArray =

(HArrayOfFloat *)array->body[i];

/** Iterate through them and print... */
for (j = 0 ; j < obj_length(floatArray) ; j++) {

fprintf(stderr, "[%d][%d]: %f\n", i, j, floatArray->body[j]);
}

}

return;

97

Chapter 7. Manipulating Arrays

}

Referencing the elements within a multi-dimensional arrays of object is virtually identical, except that
each subarray is of typeHArrayOfObject and each element of that array is a Java object and should be
treated as such.

Again, as with the JNI, the principles we’ve seen here with two-dimensional arrays in RNI can be
applied to three-dimensional arrays and beyond.

Sizing Arrays
In all the array examples we’ve seen so far, we’ve assumed that we know the length of the array we are
working with. Knowing the length is important, as it keeps you from running off the end of the array and
throwing anArrayIndexOutOfBoundsException . But if an array gets passed into a native method,
you aren’t likely to know its length in advance.

Fortunately, and not suprisingly, both the JNI and RNI provide a function that lets you determine the
length of a Java array from within native code. With the JNI, this function is calledGetArrayLength()

and it works for both arrays of objects (and arrays) and arrays of primitive data types. This function
returns the number of elements within the given array; it operates in exactly the same way as quering the
value of thelength variable implicitly associated with every Java array object. For example,

jfloatArray aFloatArray = ...;

for (int j = 0 ; j < env->GetArrayLength(aFloatArray); j++) {
/* Do something to each element */
...

}
}

The corresponding RNI function is calledobj_length() . This function correctly counts the number of
elements within any type of array, including arrays of primitive data types and arrays of objects (and
arrays). For example:

HArrayOfFloat *aFloatArray = ...;

for (int j = 0 ; j < obj_length(aFloatArray); j++) {
/* Do something to each element */
...

}

98

Chapter 7. Manipulating Arrays

}

Notes
1. ClassArrayAlloc() can also be used to allocate an array of a primitive data type, by passing the

same parameters as withArrayAlloc() . In this case, the final parameter should beNULL.

99

Chapter 8. Classes and Objects with the JNI
Because Java is an object-oriented language, classes and objects are central in every Java program.
Objects, which are instantiations of classes, form the basic building blocks that your programs use to
manipulate data. Thus, it goes without saying that you need to be able to manipulate classes and objects
in your native code. Since the JNI and the RNI have very different behaviors with regards to working
with classes and objects, we’re going to focus exclusively on the JNI in this chapter. Chapter 9 discusses
class and object manipulation with the RNI.

In Chapter 4, I mentioned that the JNI requires you to specify the class of a given Java object in order to
locate specific pieces of information within that class or perform operations on it. To access a field or call
a method within an object or class, you need a value of typejclass that contains the class information
for the class in question. Thus, being able to locatejclass values for relevant classes is a prerequisite
for accessing fields and calling methods of Java classes and objects within native code. The JNI provides
several ways for you to getjclass values.

There are a number of object- and class-based operations that you perform on a routine basis within Java
that you might want to perform in native code. For example, you might need to check that an object of
one class is castable to another class. Or you might want to find out whether two classes have a common
superclass. These operations are possible within native code using the JNI.

This chapter also discusses how to perform common object actions from within native code: retrieving
and setting values of fields defined within a Java class, invoking methods defined within a Java class, and
creating new Java objects.

Locating Classes
The JNI defines three functions that let you locatejclass values that represent Java classes. One
function takes the name of a class file and attempts to scan any classes on your hard disk for the class
information. Another function gives you the class information for an existing Java object. The final
method allows you to construct a new Java class from an arbitrary stream of data, such as raw data
coming in over a network connection.

FindClass() is the most commonly used function. It scans the directories and ZIP files defined in the
CLASSPATHenvironment variable for a given class, and, if successful, returns thejclass value for that
class.FindClass() takes one argument, the fully qualified class name of the class for which you are
searching. For example, theString class has the fully qualified name ofjava/lang/String , where
java/lang is the package that the class belongs to. While the period (.) is used as a separator in class
names in Java code, JNI functions expect a slash (/) character instead.

As of Java 2 SDK Version 1.2, the functionality ofFindClass() has been extended in an important
way. Prior to this version,FindClass() could only locate local classes. Now the function can also

100

Chapter 8. Classes and Objects with the JNI

locate classes that have been loaded from a remote location with a customizedClassLoader .

If successful,FindClass() returns ajclass value for the desired class. Upon failure, however, the
function simply returnsNULL. This can occur if the class cannot be located within theCLASSPATHor if
the class can be located but is corrupted or fails the byte code verification stage. If the function fails, it
throws an exception that specifies the exact cause of the problem.

Now let’s look at an example of usingFindClass() . Each symbol stone has the possibility of having
some names that it is alternatively known as. We can retrieve these names, if they exist, using the
SymbolStone.getAlternativeNames() method which returns an array ofString s. Therefore,
before we create any of theString s to return we need to locate thejclass value for the
java/lang/String class.

jclass stringClass = env->FindClass("java/lang/String");
if (stringClass == NULL) {

fprintf(stderr, "Failed to locate class information!\n");
return NULL;

}

fprintf(stderr, "Located class information!\n");

...

FindClass() is a useful function when you know in advance exactly which classes you want to
manipulate within native code. If you don’t know the names of the classes of interest in advance,
however, or you have native code that performs operations on objects without really caring which class
they belong to,FindClass() isn’t the right function.

If you have an object of the class you need to manipulate, it is much easier to use the JNI function
GetObjectClass() instead. This function simply returns ajclass value that represents the class from
which the object was instantiated. Say you have a Java object that is passed into native code as an
argument to a method.GetObjectClass() makes it easy to get thejclass value, so that you can
access fields or call methods within that object. Here’s a short example of usingGetObjectClass() in
just this way:

Java_Class_method(JNIEnv *env, jobject arg, jobject targetObject) {

/* Get the class information for targetObject */
jclass targetObjectClassblock = env->GetObjectClass(targetObject);

/* Now you can access fields and call methods of targetObject */
...

}

101

Chapter 8. Classes and Objects with the JNI

DefineClass() is the final function that produces ajclass value and it is far more tricky to use than
the functions we’ve already discussed. This function lies at the heart of Java’s dynamic extensibility.

DefineClass() reads a stream of data from an external source, such as a file or network connection,
and creates a Java class from it. The data stream must contain valid Java byte codes (i.e., the contents of
a class file). TheDefineClass() function itself is quite simple: you just pass a a buffer that contains
valid Java byte codes and it returns ajclass value for that class. What’s complex is defining the
infrastructure of transferring the data into the buffer in the first place.

DefineClass() relies on theClassLoader mechanism supplied in standard Java to load foreign Java
classes into the JVM. For example, a VRML scene might contain aScript node, which is a piece of
logic written in Java that drives part of an animation of the scene. A VRML browser written in Java
might use aClassLoader to download the class file data from the given location and execute the
resulting Java class to drive the scene’s animation.

Similarly, aClassLoader can be used to dynamically extend the abilities of Java. If you loaded a dumb
TV-set-like device with a JVM and aClassLoader , you could conceivably download Java code over the
standard television channels and run it on your TV set (or your toaster or any other device that could use
Java). This is why Java’s dynamic extensibility makes it so powerful.

Creating a newClassLoader is a privileged activity, which means that applets cannot do it. To
determine whether your application can create a newClassLoader , your program should invoke the
following lines of code:

try {
/* Check to see if we can create a new ClassLoader */
System.getSecurityManager().checkCreateClassLoader();

} catch (SecurityException e) {
System.err.println("ClassLoader cannot be created! " + e.toString());

/** Abort the DefineClass() procedure! */
} catch (NullPointerException e2) {

System.err.println("No security manager present!");

/** This isn’t fatal, so keep going... */
}

The first step in using native code andDefineClass() to create a new class is to define a custom
ClassLoader in Java. The following class, calledtestClassLoader , simply subclasses
ClassLoader and overrides theloadClass() method that returns the class information of the new
class. In this case,loadClass() calls a native method that returns the valid class data:

public class testClassLoader extends ClassLoader {

102

Chapter 8. Classes and Objects with the JNI

/** static initializer block to load the native library */
static {

try {
System.loadLibrary("defineclass1");

} catch (UnsatisfiedLinkError e) {
System.err.println("Cannot load defineclass1 native library: " +

e.toString());
}

}

/** Native method that defines a class */
private native Class defineClass(String classname);

/** The loadClass method */
public synchronized Class loadClass(String name, boolean resolve) {

Class c = defineClass(name);
return c;

}
}

The next step is using the customClassLoader within your Java code. For example:

/**
* Check the SecurityManager that we can create a new
* ClassLoader.
*/

try {
System.getSecurityManager().checkCreateClassLoader();
System.err.println("We can create a new ClassLoader!");

} catch (SecurityException e) {
System.err.println("We cannot run this example since we cannot cre-

ate a new ClassLoader!");
System.exit(1);

} catch (NullPointerException e) {
System.err.println("No security manager!");

}

testClassLoader classLoader = new testClassLoader();

/** Invokes the native method */
Class c = class-

Loader.loadClass("../../../classes/testObject.class", true);

/** Print out the results to see if the class has loaded OK... */

103

Chapter 8. Classes and Objects with the JNI

if (c != null) {
System.err.println(c.toString());

}

...

Finally, here’s the implementation of the native method that actually reads the class data from a file,
defines the new class, and returns thejclass value:

/**
JNIEXPORT jclass JNICALL
Java_testClassLoader_defineClass(JNIEnv *env, jobject arg,

jstring className) {

int i;

/** Classblock info for the class we’re creating from bytecode */
jclass testClass;

/** Buffer to ’stat()’ the file into */
struct stat classStat;

/** The buffer to read the bytecode into */
const jbyte *bytecodeBuffer;

/** Read in the raw data for the test class from disk */
FILE *classFile;

fprintf(stderr, "here\n");

/** Get the filename containing the bytecode... */
const char *classNameChars = env->GetStringUTFChars(className, NULL);

classFile = fopen(classNameChars, "r");
if (classFile == NULL) {

fprintf(stderr, "Failed to open %s for reading!\n", class-
NameChars);

/** Deallocate the class name String */
env->ReleaseStringUTFChars(className, classNameChars);

return NULL;
}

104

Chapter 8. Classes and Objects with the JNI

/** Get the length of the bytecode */
if (stat(classNameChars, &classStat) != 0) {

fprintf(stderr, "Error occurred in stat()’ing %s!\n", class-
NameChars);

/** Deallocate the class name String */
env->ReleaseStringUTFChars(className, classNameChars);

return NULL;
}

/** Create the buffer to read the bytecode into */
fprintf(stderr, "Allocating buffer of %d bytes\n",

(classStat.st_size * sizeof(jbyte)));
bytecodeBuffer =

(const jbyte *)malloc(classStat.st_size * sizeof(jbyte));
memset(bytecodeBuffer, 0, classStat.st_size * sizeof(jbyte));

/** Read the bytecode from the file */
if (fread((jbyte *)bytecodeBuffer, sizeof(jbyte),

classStat.st_size, classFile) != classStat.st_size) {
fprintf(stderr, "Error occurred in reading %s!\n", classNameChars);
return NULL;

}

/** Check the magic header of the byte-
code. It should equals 0xCAFEBABE */

fprintf(stderr, "Checking magic header: 0x");
for (i = 0 ; i < 4 ; i++) {

fprintf(stderr, "%X", bytecodeBuffer[i] & 0xff);
}

fprintf(stderr, "\n");

/**
* Now that we have read the bytecode for the test class
* into an appropriate buffer, try a use ’DefineClass()’ to extract
* the classblock of it.
*/

testClass =
env->DefineClass((const char*)"testObject",

NULL, bytecodeBuffer,
classStat.st_size);

if (testClass != NULL) {
fprintf(stderr, "Located classblock from defined class!\n");

} else {

105

Chapter 8. Classes and Objects with the JNI

fprintf(stderr, "Failed to locate classblock from de-
fined class!\n");

}

/** Deallocate the class name String */
env->ReleaseStringUTFChars(className, classNameChars);

/** Deallocate the bytecode buffer */
free((jbyte *)bytecodeBuffer);

return testClass;
}

The second argument toDefineClass() allows you to specify theClassLoader with which the class
should be loaded. If your native code is being called from a customClassLoader , it is better to specify
NULL to avoid circularity. However, when a standardClassLoader can be used, you may specify an
instance of it with this argument.

Being able to instantiate Java classes from native code adds additional flexibility to Java’s class loading
mechanisms. The JavaClassLoader is restricted in that it can only load Java class files from sources
that can be established using other Java classes, which limits the sources to files and network
connections. WithDefineClass() , however, you can write some extremely powerful and
self-expanding software that can seamlessly use underlying hardware devices, such as infrared beams
and television signals, as the source for Java class information.

Testing Class and Object Characteristics
Within Java, there are certain core operations you can perform on classes and objects. For example, you
can use theinstanceof keyword to determine whether a given object is an instance of a certain class
and the= operator to see if two object references point at the same object. To make life easier for you,
the JNI defines several functions that let you perform these same operatons on classes and objects in
native code.

The JNI functions for operating on classes areGetSuperclass() , which returns ajclass value that
represents the superclass of the given class, andIsAssignableFrom() , which determines whether an
object of one class can be safely cast to another class. For working with objects, there is
IsInstanceOf() , which tests to see whether a given object is an instance of the given class, and
IsSameObject() , which tests whether two object references refer to the same Java object.

106

Chapter 8. Classes and Objects with the JNI

Accessing Fields
Accessing the values of fields within Java objects is an extremely common operation in Java
programming. Given that native methods are simply an extension of standard Java code, native code
needs direct access to fields as well. It is also quite common for a Java method to update the values of a
number of fields within an object. If a native method calculates new values for these fields, it should be
able to update them directly too.

Without the ability to access and update fields directly, your native code would start to resemble
spaghetti. You would need to pass many more arguments to your native methods, in place of reading the
fields from native code. You would also need to invoke multiple native methods, each returning a single
value, in order to update multiple fields to new values. This would make native methods rather
cumbersome, to say the least.

Fortunately, the JNI defines functions that let you both access and update the values of fields within Java
classes (class, orstatic , fields) and fields within objects instantiated from those classes (instance
fields).

Field Identifiers
Before you can access the value stored within a field of a Java class or object, you have to get afield
identifier that uniquely identifies the field. This identifier is based on the class in which the field is
declared, as well as the name and type signature of the field. This might seem like overkill, but consider
the implications if we don’t specify all this information. By specifying the type signature, we can ensure
that we get an identifier for the exact field we want, not a field with the same name but different type that
is defined in a superclass, for example.

Thus, the first step in accessing a field is getting its unique identifier, which is ajfieldID value. Of
course, to get ajfield value, you first have to obtain ajclass value for the class in which the field is
declared, as we discussed in the previous section. You also need to know the name of the field that you
want to access and its type signature. For more information about type signatures, see Chapter 4.

The JNI defines two functions for getting a unique identifier for a field:GetFieldID() and
GetStaticFieldID() . GetFieldID() locates an instance field, whileGetStaticFieldID()

locates a class (static) field. Thus, you have to know which kind of field you are dealing with, in order
to call the appropriate function. Beyond that, both methods take exactly the same arguments and both
return ajfieldID value that represents a unique field identifier. Just be sure that you call the right
function, depending on whether you are dealing with an instance or class field, otherwise you may get
unpredictable results.

For example, in most of the symbol stone native methods, we tend to retrieve an integer value from the
SymbolStone object stored in the_pData field as follows:

107

Chapter 8. Classes and Objects with the JNI

/* Returns the name of the stone */
JNIEXPORT jstring JNICALL
Java_SymbolStone_getName(JNIEnv *env, jobject arg) {

/** Extract the pointer... */
jfieldID pDataField =

env->GetFieldID(env->GetObjectClass(arg), "_pData", "I");

...

Another way that we can locate a field identifier from a class is to use the Reflection API. This allows us
to "look into" the definition of a class and extract information about field, methods and other bits of
information. This sort of thing can be useful if you don’t know in advance the names of fields that you
might want to extract information from, for example, if you were implementing a debugger or class file
inspector.

For example, we can use theClass.getFields() method to return an array of
java.lang.reflect.Field objects, one per field in the class. With the JNI, we can go one step
further and convert theField object to ajfieldID for use within our native methods. For example:

...

/** Invoke the Class.getFields() method...Returns an array of Field */
jobjectArray fieldsArray =

(jobjectArray)env->CallObjectMethod(env-
>GetObjectClass(arg), getFieldsMethodID);

if (fieldsArray == NULL) {
fprintf(stderr, "Failed to invoke getFields()\n");
return;

}

/** Convert the fields from java/lang/reflect/Field to jfieldID... */
for (int i = 0 ; i < env->GetArrayLength(fieldsArray) ; i++) {

jfieldID fieldID =
env->FromReflectedField(env->GetObjectArrayElement(fieldsArray,

i));

/** Display the value of the field... */
...

}

...

108

Chapter 8. Classes and Objects with the JNI

Similarly, if we wished to, we can convert thejfieldID value to ajava/lang/reflect/Field

object by using the corollaryToReflectedField() JNI method.

And, now that we have located the unique identifier pointing to the field of interest, we can look into how
we manipulate the value stored within it.

Manipulating Field Data
There are two operations you can perform upon fields within a class: getting the field data and setting the
field data. In other words, you can retrieve the current value of a field and set a field to a new value.
These two operations allow your native code to read data that has been created or calculated in Java and
pass data directly back into Java objects.

One of the common questions asked by neophyte native method programmers is “How can I store a C
struct or C++ class within a Java object?” If you are using native code to tie some legacy code to a Java
front end, it can be quite useful to store pointers to native data structures within your Java classes, as
we’ve seen with our example. This may seem to be a conundrum though, since C and C++ programs use
pointers to track this type of information, but Java doesn’t have pointers!

What you need to remember is that that a pointer is basically just a number that represents a memory
address. Thus, it’s easy to store a pointer within a Java object in a variable declared as anint .1 Within
your native code, if you need to store a Cstruct and keep track of it in your Java code, you can simply
usemalloc() to allocate the memory for thestruct and then set the value of the Javaint field to the
memory address at which thestruct is located. Later, when you need to recover your original data
structure, you only need to extract theint value from the Java object and cast it back to a pointer to the
struct . Not suprisingly, this is exactly the technique that the symbol stone example code uses!

Retrieving Field Values

Once you have a field ID for a Java instance field, you can get the value of the field using one of the
Get Type Field() functions. The JNI provides a function for every primitive data type, plus a single
function,GetObjectField() , for object-type fields. Each of these functions takes an object reference
(jobject) and a field ID and returns the value of the field as the appropriate type. You need to be sure to
call theGet Type Field() function that matches the type of the instance field you are working with.

If you are dealing with a class (static) field, use theGetStatic Type Field() functions instead.
Again, there is a function for every primitive data type, plus a single function,
GetStaticObjectField() , for object-type data. The only difference between these functions and the
ones for instance fields is that eachGetStatic Type Field() function takes ajclass value as its first
argument, instead of ajobject value. The second argument is still a field ID, although it should be a
field ID that refers to astatic field, of course. As with instance fields, each function returns the value
of the class field as the appropriate type.

109

Chapter 8. Classes and Objects with the JNI

As we’ve already discussed, almost every native method in the symbol stone example needs to access the
_pData field in a Java class. This field contains a pointer to the appropriate legacy data structure. Here’s
part of the code for the JNI implementation of theSymbolStone.getName() method that shows how
to extract the field value and cast it to aSymbolStone_t value:

/** Returns the name of the stone */
JNIEXPORT jstring JNICALL
Java_SymbolStone_getName(JNIEnv *env, jobject arg) {

/** Extract the pointer */
jfieldID pDataFieldID = \

env->GetFieldID(env->GetObjectClass(arg), "_pData", "I"); \
SymbolStone_t *stone = \

(SymbolStone_t *)env->GetIntField(arg, pDataFieldID);

/** Safety check */
if (stone == NULL || (int)stone == -1) {

return NULL;
}

/** Create a new Java String from the name */
return env->NewStringUTF(stone->name);

}

If you are accessing a field that contains an object reference, you need to use eitherGetObjectField()

or GetStaticObjectField() . The return type of each function isjobject , so you need to cast the
returned value to the appropriate object type before you use it in your native code.

These two functions can also be used to retrieve a Java array from a Java class or object, which is
important because the JNI does not provide separate functions for accessing array fields. If you recall our
discussion of JNI data types from Chapter 4, the data type that represents Java arrays,jarray , is a
“child” of the jobject data type. Thus it is perfectly legitimate to use theGetObjectField() and
GetStaticObjectField() functions to get the value of an array field from Java. All you have to do is
cast the returned value to the appropriate array data type and then you can use the array as described in
Chapter 7.

Setting Field Values

The JNI functions for setting field values follow the same format as the functions for retrieving field
values: there are separate functions for setting both instance and class fields for each of the primitive data
types, as well as the generic Java object type,jobject . As you might expect, these functions take the
form Set Type Field() andSetStatic Type Field() .

110

Chapter 8. Classes and Objects with the JNI

These methods are syntactically identical except that in the case of the static variable methods the class
in which you wish to set the field’s value is specified instead of the Java object.

To set the value of an instance field within a Java object, you simply need to invoke the appropriate
function, passing the object reference (jobject , the field ID, and the new field value. For a class
(static) field, the only difference is that you pass ajclass value instead of ajobject . For example,
to set the value of an instanceint field from native code, you use theSetIntField() function and
specify the new value as ajint . Passing a value of a different data type than what is expected by the
method (e.g., passing afloat to SetIntField()) can have unpredictable results. The most likely
effect is that the value will suffer the usual consequences of casting between the two data types, but in
extreme cases the JVM itself may panic and abort.

Here’s the JNI implementation of theSymbolStone.load() native method that shows how the_pData

field is set to a pointer to the corresponding legacySymbolStone_t structure:

...

for (int i = 0 ; i < numRecords ; i++) {
/** Create a new SymbolStone object */
jobject stone = ...;
if (stone == NULL) {

fprintf(stderr, "failed to construct new instance of Symbol-
Stone class\n");

return NULL;
}

/** Set the pData pointer... */
jfieldID pDataFieldID =

env->GetFieldID(arg, "_pData", "I");
if (pDataFieldID == NULL) {

fprintf(stderr, "failed to locate fieldID for pData\n");
return NULL;

}
env->SetIntField(stone, pDataFieldID, (jint)sptr);

...
}

...

Just as with the object field retrival functions, theSetObjectField() and
SetStaticObjectField() functions can be used to set the value of an object- or array-type Java field.
This is possible because thejarray JNI data type is castable tojobject , the generic Java object data
type.

111

Chapter 8. Classes and Objects with the JNI

Invoking Methods
Even more so than accessing fields, you are going to want to invoke methods on Java objects and classes
from your native code. That’s because almost all functionality in a Java program happens as a result of
method calls. In fact, you can typically think of a Java program as a series of “cascading method
invocations”, where a method calls another method, which in turn calls another method, and so on. For
example, our symbol stone example creates instances ofSymbolStone objects, which in turn contain
Dimension3D objects. If you want to print out the dimensions of each stone, it can invoke the
toString() method in theSymbolStone object which might call thetoString() method of the
relevantDimension3D .

Without the ability to invoke Java methods from native code, there really wouldn’t be any point to
linking Java code with native code. Being able to call Java method allows you to take advantage of Java
functionality in your native code, instead of having to reimplement the functionality in native code. The
whole point of combining Java code with native code is to support the use of legacy code, while taking
advantage of the strengths of Java.

Given the importance of being able to invoke Java methods, it shouldn’t suprise you to find out that the
JNI defines functions that let you invoke methods on an object (instance methods) and methods on a
class (class, orstatic methods).

Method Identifiers
Just as with accessing fields, the first step in invoking a Java method from native code is getting amethod
identifier that uniquely identifies the method. This identifier is based on the class in which the method is
declared, as well as the name and type signature of the method. These three parameters uniquely identify
the method you want to invoke. The type signature is particularly important in identifying methods,
given that Java supports overloaded methods, whereby multiple methods can have the same name but
different parameters and return types.

For example, a 3D graphics library might define several methods to specify a point in two- or
three-dimensional space. Here are some overloaded method declarations for specifying a point:

void vertex(int x, int y)
void vertex(float x, float y)
void vertex(int x, int y, int z)
void vertex(float x, float y, float z)

These four methods are all defined in the same class and they have the same name, so you can see why
we need to specify a type signature to get the method we want.

112

Chapter 8. Classes and Objects with the JNI

The JNI provides two functions for retrieving method identifiers:GetMethodID() for instance methods
andGetStaticMethodID() for class (static) methods. Each function takesjclass value for the
class in which the method is declared, the name of the method, and its type signature, and returns the
unique identifier of typejmethodID for the desired Java method, provided that the method exists. You
can get the appropriatejclass value usingFindClass() or GetObjectClass() , as we discussed
earlier. For more information about type signatures, see Chapter 4. Finally,be sure that you call the right
function, depending on whether you are dealing with an instance or class method, otherwise you may get
unpredictable results.

For example, here is a code fragment that shows how to locate the method ID for each of thevertex()

methods we declared previously:

/* The vertex() methods are defined within a class called Point */
jclass PointClassblock = env->FindClass("Point");

/* Locate the method IDs for each method variant */
jmethodID vertex2intsMethodID =

env->GetMethodID(PointClassblock, "vertex", "(II)V");

jmethodID vertex2floatsMethodID =
env->GetMethodID(PointClassblock, "vertex", "(FF)V");

jmethodID vertex3intsMethodID =
env->GetMethodID(PointClassblock, "vertex", "(III)V");

jmethodID vertex3floatsMethodID =
env->GetMethodID(PointClassblock, "vertex", "(FFF)V");

Note the use of character strings to specify the method name and type signatures. That’s all there is to
retrieving method IDs.

TheGetMethodID() andGetStaticMethodID() functions return ajmethodID value if the function
call succeeds. Of course, these functions can fail for a number of reasons, including misspelled method
names or invalid type signatures. In cases of failure, the function returns aNULLvalue and throws an
exception that specifies the reason for failure.

We can also use the Reflection API to locate method identifiers in a way similar to that discussed earler
regarding fields. For example, we can invokeClass.getMethods() which will return an array of
java/lang/reflect/Method objects. We could convert those objects tojmethodID values using the
JNI FromReflectedMethod() method. Or, convert them vice versa usingToReflectedMethod() .

Furthermore, as constructors are also represented byjmethodID values,
To/FromReflectedMethod() will also convert to and fromjava/lang/reflect/Constructor

objects.

113

Chapter 8. Classes and Objects with the JNI

Invoking Instance Methods
When you invoke an instance method on an object, you are typically calling the method that is defined by
the class of that object. However, in some cases, you may want to invoke the method defined by the
superclass of the object, performing the native code equivalent of using thesuper keyword in Java. In
this section, we’re just going to look at invoking instance methods defined by the object in question;
we’ll get to details on invoking superclass methods in the next section.

The JNI defines a whole slew of different functions for invoking instance methods. These functions come
in three basic groups:

Call TypeMethod()

Call TypeMethodA()

Call TypeMethodV()

In each group of functions,Type refers to the return type of the method being called. There are separate
functions for each of the primitive data types, forjobject , and for a return type ofvoid .

The difference between each group of functions is in the way in which the arguments to be passed to the
Java method are packaged up. The standard way of invoking a Java method from native code is with the
Call Type Method() functions, which simply require that you pass arguments that match the
parameters required by the Java method. For example, if we want to call thevertex() method that
takes two integer parameters, we might useCallVoidMethod() as follows:

env->CallVoidMethod(aPoint, vertex2intsMethodID, 333, 444);

In this case,333 and444 are the arguments to be passed to the Java method. This function call is
equivalent to the following Java code:

vertex(333, 444);

TheCall Type MethodA() functions take a slightly different approach to passing arguments to the Java
method. With these functions, you pass in an array ofjvalue values, where each element of the array
contains an argument value. Thus, in the case of thevertex(int x, int y) method, we need to
create and populate an array of twojvalue values.

One advantage of theCall Type MethodA() functions is that they provide optimized memory access to
the arguments being passed in. With thevertex() method, for example, we are passing two separate
jint values that could be located in totally different areas of memory, which means that it could take
longer to access the values. If we specify the arguments as an array ofjvalue values, however, the two
integers are guaranteed to be contiguous in memory. When a method has many arguments and is called
frequently, the processing time saved by usingCall Type MethodA() can add up.

114

Chapter 8. Classes and Objects with the JNI

Another advantage with these functions is that you don’t have to worry about explicitly casting
arguments to the appropriate types before invoking the method. Setting a value within ajvalue ensures
that it is set to the correct type prior to method invocation.

Here’s an example of usingCallVoidMethodA() to invoke thevertex() method that takes three
float arguments:

/* Allocate an array of 3 jvalues to store the arguments in */
jvalue *argArray = (jvalue *)malloc(3 * sizeof(jvalue));

/* Store the three argument values in the array */
argArray[0].f = 111.11;
argArray[1].f = 222.22;
argArray[2].f = 333.33;

/* Invoke the method passing the argument array */
env->CallVoidMethodA(aPoint, vertex3floatsMethodID, argArray);

/* Deallocate the array */
free(argArray);

Before you callCall Type MethodA() , you must create the array ofjvalue values yourself—the JNI
does not do this for you. And when you are done, you must also remember to deallocate the array or a
memory leak will occur.

Recall thatjvalue is aunion , which means that you can set it to any primitive value or ajobject

value. Here we’ve used thef segment, which corresponds to ajfloat value. If we wanted to set an
integer value instead, we would use thei segment as follows:

argArray[0].i = 111;

The final group of method invocation functions,Call Type MethodV() , uses the standard ANSI C
varargs interface to batch up the arguments. The varargs interface allows you to define a list of arguments
dynamically; the argument list is encoded and decoded internally by the varargs interface. The varargs
functions make sense when you require flexibility, such as when the number of arguments is not known
at compile-time. Another benefit is that allocating and deallocating varargs lists is more friendly than
manual allocation and deallocation of memory for arrays ofjvalue values.

However, the downside to using the varargs interface is that it may not be portable between operating
systems and even compilers. Each compiler tends to implement its own version of varargs, and, even
though it is part of ANSI C, the actual implementation of varargs can vary greatly in quality across
platform as well. Caveat emptor.

115

Chapter 8. Classes and Objects with the JNI

Invoking Methods of a Superclass
As I mentioned earlier, there are some situations where you want to be able to call the method defined in
the superclass of an object, rather than the one defined in the class of the object itself. In Java, this can be
done with thesuper keyword:

super.toString();

This code executes thetoString() method defined in the superclass, instead of the method defined in
the actual class of the object.

The ability to invoke the superclass’ method comes into play when a Java class defines a method that
overrides the method defined in the superclass. In this case, the overriding method may need to be able to
call the method defined in the superclass, to take advantage of the functionality it provides. Suppose, for
example, that ourvertex() method overrides the method in its superclass. If we want to invoke the
superclass method, we can do so as follows:

public void vertex(int x, int y) {
/* Do some stuff */
...

/* Call the superclass method */
super.vertex(x, y);

}

Note that thesuper keyword can only be used this way within the overriding class, as we’ve shown here.

Within the JNI, the corresponding functionality is provided by three groups of functions:

CallNonvirtual TypeMethod()

CallNonvirtual TypeMethodA()

CallNonvirtual TypeMethodV()

Each group of function handles arguments in a particular way (i.e., a list of arguments, an array of
jvalue values, and as varargs), just like the methods for invoking instance methods that we discussed in
the previous section. And in each group, there is a separate function for each of the primitive data types,
for jobject , and for a return type ofvoid .

The nonvirtual invocation functions are used almost identically to their virtual counterparts, except that
they all take an additional argument of typejclass .2 The jclass value should represent the superclass
in which the method you want to invoke is defined, while thejobject value specifies the actual object
on which the method is to be invoked. In addition, the method ID you pass to a nonvirtual invocation
function should specify the methodwithin the superclass. One final warning is that thejclass value

116

12pt Chapter 8. Classes and Objects with the JNI

you specify as the superclass of the object really should be the superclass, or the JVM is likely to do
something extremely unpredictable.

Invoking Class Methods
The JNI defines three more groups of functions for invoking class (static) methods:

CallStatic TypeMethod()

CallStatic TypeMethodA()

CallStatic TypeMethodV()

Each group handles method arguments differently, as we’ve already seen. And just as with the instance
method invocation functions, each group has a separate function for each primitive type, forjobject ,
and for a return type ofvoid .

The only difference between the functions that invoke instance methods and the ones that invoke class
methods is that the later functions all take ajclass argument instead of ajobject . This argument
specifies the class in which to invoke thestatic method.

Creating Objects
Objects are central to any Java program, so it is imperative that you be able to create Java objects from
within native code. As you would expect, the JNI provides functions that allow you to do just that. One
situation where it is useful to be able to create Java objects within native code is when you are
manipulating arrays of objects and need to set array elements to new objects. Another example of object
creation occurs when your legacy code creates a new object internally that needs to be reflected in Java.
The JNI supports two basic techniques for object creation: invoking an object constructor or allocating a
new object without invoking a constructor.

Invoking Object Constructors
The simplest way to create a new Java object from within native code is to execute one of the
constructors defined by the object’s class. This is exactly what you do to create a new object within Java
itself. The JNI defines three functions for executing constructors that differ only in the way in which
arguments to the constructor are specified:

NewObject()

NewObjectA()

117

Chapter 8. Classes and Objects with the JNI

NewObjectV()

These three functions mirror the JNI method invocation functions in their handling of arguments. The
standard way of executing a constructor is withNewObject() , which simply requires that you pass
arguments that match the parameters required by the Java constructor.NewObjectA() bundles the
arguments into an array ofjvalue values that are passed to the constructor in one contiguous block.
NewObjectV() uses the standard ANSI C varargs interface to specify a single list of argument values
for the constructor.

Each of these functions takes ajclass value and a method identifier specified as ajmethodID value, in
addition to any arguments that are passed along to the constructor. Thejclass specifies the class that
you wish to create a new object of. You can get the appropriatejclass value usingFindClass() or
GetObjectClass() , as we discussed earlier.

The jmethodID argument may seem a bit puzzling, until you realize that constructors are just methods,
albeit methods with a special purpose. So, before you can invoke a constructor, you have to call
GetMethodID to get ajmethodID for the constructor. The only tricky part is specifying the “method
name” of the constructor, since in Java constructors have the same name as the class. With the JNI, you
use a method name of<init > for a constructor. The type signature is specified just as for any other
method, except that the return type is alwaysvoid .3 Note that a class can have multiple constructors that
take different arguments, just like methods can be overloaded, so it is important to specify the correct
type signature.

NewObject() , NewObjectA() , andNewObjectV() each returns ajobject value that represents the
new Java object, if the function executes successfully. If the function call fails for some reason, it returns
NULLand throws an exception that specifies the reason for failure.

Now that we’ve discussed how to create objects, we can revisit theSymbolStone.load() native
method we have discussed in passing throughout earlier chapters. This static method returns an array of
SymbolStone objects created from an external data file and is implemented as follows:

/**
* Scans the given data file and instantiates an array of SymbolStone objects
* from it
*/

JNIEXPORT jobjectArray JNICALL
Java_SymbolStone_load(JNIEnv *env, jclass arg, jstring filename) {

/** The return array of objects... */
jobjectArray rv = NULL;

/** Extract the filename */
char *filenameChars =

(char *)env->GetStringUTFChars(filename, NULL);

118

Chapter 8. Classes and Objects with the JNI

/** Load the data from file into C structures... */
int numRecords = 0;
SymbolStone_t *stones = load(filenameChars, &numRecords);
SymbolStone_t *sptr = stones;

/** Release the filename */
env->ReleaseStringUTFChars(filename, filenameChars);

/** Safety check... */
if (stones == NULL || numRecords == 0) {

fprintf(stderr, "stones array == NULL or %d records == 0\n", num-
Records);

return NULL;
}

/** Otherwise, for each stone, allocate a new Java object and populate */
jmethodID ctorMethodID =

env->GetMethodID(arg, " <init >", "()V");
if (ctorMethodID == NULL) {

fprintf(stderr, "Cannot locate constructor for Symbol-
Stone class!\n");

return NULL;
}

/** Allocate an array of jobjects... */
rv = env->NewObjectArray(numRecords, arg, NULL);
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array of SymbolStone ob-
jects\n");

return NULL;
} else {

fprintf(stderr, "Allocated array of %d records\n", numRecords);
}

for (int i = 0 ; i < numRecords ; i++) {
jobject stone = env->NewObject(arg, ctorMethodID);
if (stone == NULL) {

fprintf(stderr, "failed to construct new instance of Symbol-
Stone class\n");

return NULL;
}

/** Set the pData pointer... */
jfieldID pDataFieldID =

119

Chapter 8. Classes and Objects with the JNI

env->GetFieldID(arg, "_pData", "I");
if (pDataFieldID == NULL) {

fprintf(stderr, "failed to locate fieldID for pData\n");
return NULL;

}
env->SetIntField(stone, pDataFieldID, (jint)sptr);

/** Stuff the object into the array */
env->SetObjectArrayElement(rv, i, stone);

/** Increment the pointer... */
sptr++;

}

return rv;
}

Creating Objects without Constructors
Another way to create a Java object from within native code is to create the objectwithout invoking a
constructor. Creating an object using a constructor can be an expensive and lengthy operation. If you
don’t need to perform any initialization on an object, you can call the JNI functionAllocObject() to
create the object without invoking a constructor. This is especially useful if you are performing an
operation within native code that requires a large number of objects being created, temporarily worked
on, then destroyed.

AllocObject() simply takes ajclass value that specifies the class of object to create. The function
returns ajobject that represents the new object instantiated from the given class. Since no constructors
are executed, there is no additional setup time for locating method identifiers or invoking methods, which
means you can create far more objects with far less overhead.

The Gotcha of Object Creation
The ability to manipulate objects from within native code is extremely useful and provides the means for
interacting with the JVM in an extremely optimized and high-performance manner. However, there is a
major gotcha to all these shenanigans: garbage collection. As you may have noticed, there are no
corollary object deletion or deallocation methods defined within the JNI. Thus, you cannot arbitrarily
delete Java objects. If you allocate or construct ten thousand objects within a native method, you are
totally at the mercy of the garbage collector to deallocate the memory consumed by these objects.

120

Chapter 8. Classes and Objects with the JNI

This is actually no different from the way things work in Java code, but you may have mistakenly thought
that you had more control over the matter by using native code. This is not the case. It is still a bad idea
to wantonly create Java objects that you do not necessarily use to their full extent. The benefit, however,
is that you have more direct control over how you interact with these objects after you have created them.

Notes
1. Of course, with the advent of 64-bit architectures, you may need to use along value for pointer

storage instead of anint .

2. Nonvirtual refers to the fact that, by default, all methods in Java are virtual methods.

3. Recall that Java constructors are declared with no return type, not evenvoid .

121

Chapter 9. Classes and Objects with the RNI
Java programs revolve around classes and objects. So far, the RNI examples we’ve seen have
manipulated data passed into the native methods via arguments. This makes sense for certains kinds of
data, but there many other situations where we need to access data stored within a Java class or object.
Furthermore, there are times when we need to invoke a Java method from native code or create an
entirely new Java object within a native method and return the object to Java.

All of these operations imply some sort of knowledge about the Java class we are manipulating. When an
object is passed into a native method as an argument, knowing this class information is not strictly
necessary, since we can directly reference the fields of the object via the structure defined in the relevant
include file. However, if that information is not available directly, we must be able to retrieve it indirectly
by some means. This chapter discusses how to get that information with the RNI. In addition, it covers
common object actions, such as retrieving and setting values of fields defined within a Java class,
invoking methods defined within a Java class, and creating new Java objects.

Locating Classes
With the RNI, information representing a specific class is encapsulated in a structure called
ClassClass . Most RNI functions that require class information, such as the functions that create
objects and invoke methods, take a pointer to one of these structures,ClassClass * . Before you can
use a pointer to class information to create an object or invoke a method, however, you must first locate
the class information.

The RNI defines two functions for locating class information:FindClass() andFindClassEx() .
Both functions take the name of a class and return a pointer to the appropriateClassClass structure.
The way in which they operate, however, differs slightly.

FindClass() is the more commonly used function. When given the fully-qualified name of a class, it
either return theClassClass information for that class orNULL if the class cannot be located. The
following code fragment shows the use ofFindClass() to locate thejava.lang.Object class:

/* Attempt to locate the class information for java.lang.Object */
ClassClass *jlOClassblock = FindClass(NULL, "java/lang/Object", TRUE);

/* Test to see if the call was successful */
if (jlOClassblock == NULL) {

fprintf(stderr, "Failed to locate class information!\n");
} else {

fprintf(stderr, "Located class information!\n");
}

122

Chapter 9. Classes and Objects with the RNI

The first and last arguments toFindClass() are unimportant—always pass the valueNULL for the first
argument and the valueTRUEfor the third argument.

One thing you need to know aboutFindClass() is that it always causes the class to be loaded into the
JVM if it hasn’t already been loaded. Thus, if the class you are trying to locate has a static initializer
block, the code in that block is executed when the class is loaded into the JVM. This might not be a
desired side-effect, especially if the static initializer triggers additional code like native library loading.

To circumvent this potential problem, Microsoft has added theFindClassEx() function, which gives
you more control over how locating classes interacts with the JVM’s class loading mechanism. It also
allows you to perform non-standard, Microsoft-specific operations, such as case-insensitive class
searching.

If you want to prevent static initializers from being executed, you can pass the value
FINDCLASSEX_NOINIT to FindClassEx() along with the class name. Similarly, to perform
case-insensitive class searches, you can use the valueFINDCLASSEX_IGNORECASE. Note that
case-insensitive searches contravene the Java Language Specification for class naming—class names in
Javaarecase-sensitive. Here is a code fragment that shows the use of optional arguments with
FindClassEx() :

/* The class information */
ClassClass *jlOClassblock;

/*
* Attempt to locate the class information for java.lang.Object
* without invoking any static initializers
*/

jlOClassblock = FindClassEx("java/lang/Object", FINDCLASSEX_NOINIT);

/* Test to see if the call was successful */
if (jlOClassblock == NULL) {

fprintf(stderr, "Failed to locate class information!\n");
fprintf(stderr, "Trying case-insensitive search...");

/* Try a case-insensitive search for java.lang.object */
jlOClassBlock = FindClassEx("java/lang/object",

FINDCLASSEX_IGNORECASE);

if (jlOClassblock == NULL) {
fprintf(stderr, "failed\n");

} else {
fprintf(stderr, "succeeded!\n");

}
} else {

fprintf(stderr, "Located class information!\n");

123

Chapter 9. Classes and Objects with the RNI

}

The arguments for the operation mode ofFindClassEx() can also be combined with a logical OR:

ClassClass *cb = FindClassEx("someClass",
FINDCLASSEX_NOINIT | FINDCLASS_IGNORECASE);

Newer versions of the Microsoft JVM have added an extra RNI function that can be used to locate
classes via a customClassLoader , as opposed to the defaultClassLoader . This function,
FindClassFromClass() , works likeFindClassEx() , except that it takes an additional parameter of
typeClassClass * that represents the customClassLoader .

TheFindClass() andFindClassEx() functions locate classes using the JVM’s class path, while
FindClassFromClass() requires a customClassLoader . Sometimes, however, you want to look
outside of the class path without going to the hassle of creating a customClassLoader . For just this
situation, the RNI defines a function calledAddPathClassSource() . It allows you to dynamically
append or prepend new directories to the JVM’s internal class path. This function takes two arguments:
the path to add to the class path and a flag that indicates whether the path is to be appended or prepended.
For example:

/* Try and locate the SymbolStone class in the default class path */
ClassClass *symbolStoneClassblock = FindClass(NULL, "SymbolStone", TRUE);
if (symbolStoneClassblock == NULL) {

/* Haven’t found the classblock, so append a develop-
ment path and retry */

AddPathClassSource("\dev\classes", TRUE);
symbolStoneClassblock = FindClass(NULL, "SymbolStone", TRUE);
...

}

One final technique that you can use to get the class information for a given class is to query an existing
object of that class for its class information. This technique is particularly useful when you don’t have
the actual class name, but you have an object of the class. The RNI functionObject_GetClass() takes
an object and returns the class information in the form of aClassClass * , as shown in the following
code fragment:

RNIEXPORT void RNICALL
someClass_someMethod(struct HSymbolStone *stone) {

/* The class information for the SymbolStone class */
ClassClass *symbolStoneClassblock = Object_GetClass(stone);

124

Chapter 9. Classes and Objects with the RNI

/* Check the class information is OK... */
if (symbolStoneClassblock == NULL) {

fprintf(stderr, "Cannot extract class information from object!\n");
} else {

fprintf(stderr, "Extracted class information!\n");
}

...

Testing Object and Class Characteristics
Java contains some useful keywords that can be used to test certain characteristics of objects and classes
such asinstanceof . The RNI provides native code mirrors of these functions affording you
considerable power in class manipulation within your native methods.

The RNI defines two forms ofinstanceof which do similar, but not quite identical, things. They are
also both rather confusingly named similarly.

The first of these two functions is calledisInstanceOf() and returns a boolean value indicating
whether or not a given Java object is instantiated from the class named in the second argument. For
example, the following code stub tests whether or not a given object was instantiated from the
SymbolStone class.

/** The object of unknown instantiation */
HObject *object;

/** Test whether this is an instantation from the SymbolStone class */
if (isInstanceOf(object, "SymbolStone") == TRUE) {

fprintf(stderr, "The object is of class SymbolStone\n");
} else {

fprintf(stderr, "The object isn’t of class SymbolStone\n");
}

The second form ofinstanceof defined within the RNI is the functionis_instance_of() which
again returns a boolean value. This function tests whether or not the given object can be cast to the given
class, specified by a class information structure.

For example, the following code shows how you can test whether or not an object of classSymbolStone

can be safely cast tojava.lang.String :

/** The symbol stone object to try casting */

125

12pt Chapter 9. Classes and Objects with the RNI

HObject *stone;

/** Locate the class information for java.lang.String */
ClassClass *jlsClassblock = FindClass(NULL, "java.lang.String", TRUE);

/** Test to see if the object can be safely cast */
if (is_instance_of(stone, jlsClassblock, NULL) == TRUE) {

fprintf(stderr, "SymbolStone ob-
ject can be cast to java.lang.String!\n");

} else {
fprintf(stderr, "SymbolStone object can-

not be cast to java.lang.String!\n");
}

A further useful function defined within the RNI isis_subclass_of() which determines whether or
not a given class is a subclass of another class. This function takes two class information pointers as
arguments and returns a boolean value indicating whether or not the subclass relationship is present
between the two classes. For example, the following code stub tests whether or notjava.lang.String

is a subclass ofjava.lang.Object .

/** The class information for java.lang.String */
ClassClass *jlsClassblock = FindClass(NULL, "java.lang.String", TRUE);

/** The class information for java.lang.Object */
ClassClass *jloClassblock = FindClass(NULL, "java.lang.Object", TRUE);

if (is_subclass_of(jlsClassblock, jloClassblock, NULL) == TRUE) {
fprintf(stderr, "java.lang.String is a subclass!\n");

} else {
fprintf(stderr, "java.lang.String is not a subclass!\n");

}

There are several more functions defined within the RNI that allow testing and fetching of various
aspects of classes. These generally are RNI reflections of the methods defined within the
java.lang.Class class and can be summarised by the following table.

Table 9-1.java.lang.Class to RNI Functions

java.lang.Class Corresponding RNI Function

getModifiers() Class_GetAttributes

getField() Class_GetField()

126

Chapter 9. Classes and Objects with the RNI

java.lang.Class Corresponding RNI Function

getInterface() Class_GetInterface()

getMethod() Class_GetMethod()

getName() Class_GetName()

getSuperclass() Class_GetSuper()

Accessing Fields
There are two operations that you may perform upon fields within a class. You may read the values
currently set within Java objects or classes and, if you have modified these values within your native
code, you can write the modified values back. The two operations are usually called “getting” and
“setting”.

Getting and setting is one of the more common things that you will wish to do. They enable you to pass
data directly back into Java objects that can be then referenced within Java code. Similarly, it enables you
to read data that has been created or calculated within Java code in your native methods.

For example, one of the favourite questions asked by neophyte native method programmers is “how can I
store a Cstruct or C++ class within a Java object?”. This is quite a common thing to want to do since
our legacy code will undoubtedly create all sorts of objects and data structures containing information
used internally by the legacy code. Ordinarily, our C- or C++-based program would track these using
pointers or variables, but Java doesn’t have pointers!

The neat trick here is to remember that a pointer is basically just a number representing a memory
address. Therefore, it’s easy to store pointers within a Java object in a variable declared as anint .
Within your native code, if you wished to store a Cstruct , you could simply usemalloc() to allocate
the amount of memory that thestruct takes up then set the value of the Javaint field to that of the
memory address at which thestruct is located.

Similarly, in later operations when you need to recover your original data structure, you only need to
extract theint value from the Java variable and cast it to being a pointer to thestruct . And that’s
firstly, how you store C/C++ data structures within Java objects and secondly, one reason why
manipulating Java field data within native code is incredibly useful!

Another extremely good reason why this functionality is useful is that you can update several different
Java variables within a single native method instead of having to return values from the native method
and setting the Java variables to the return values. This technique, although workable, only allows you to
set a single value per native method which can provoke major architectural headaches.

Unlike the JNI, the RNI does not define actual functions for getting and setting fields within Java objects
or classes. You may access the fields of a class directlyvia the Cstruct that represents the class as

127

Chapter 9. Classes and Objects with the RNI

defined in the appropriate automatically generated#include file.

As objects within native code are referencedvia pointers, accessing fields can be achieved by a simple
dereference operation. For example, to access the_pData field within theSymbolStone class

/** Returns the name of the stone */
RNIEXPORT struct Hjava_lang_String * RNICALL
SymbolStone_getName(HSymbolStone *arg) {

/** Extract the pointer */
SymbolStone_t *stone = (SymbolStone_t *)arg->_pData;

...

This illustrates that the fields contained within a Java object or class can be referenced and manipulated
in exactly the same way as you would access standard C variables stored within astruct . You can
check the#include file for the actual C data types that the Java variables are represented by.

Furthermore, if a variable stored within a Java object is actually another object, this can be further
dereferenced and manipulated. For example, within thejava.awt.Component class, there exists a
variable calledminSize of type java.awt.Dimension that holds the minimum size of the component.
Therefore, to access the information stored within that particular variable, you would need to run
msjavah java.awt.Dimension and peek into the structure of that object. If you do you can see that
within that class, two variables exist calledwidth andheight which tell you the dimensions of the
component.

In cases where multiple dereferencing is required, you must remember to generate an include file for that
class and also include it explicitly within your code otherwise the structure of the object will not be
available to you. The following code stub illustrates how to access the dimensions of the minimum size
of a component.

#include <MyComponent.h >
#include <java_awt_Dimension.h >

RNIEXPORT void RNICALL
MyComponent_getMinimumSize(struct HMyComponent *component) {

/**
* Dereference the “minSize” variable within the component and extract
* the width value
*/

int width = component->minSize->width;

/**
* Dereference the “minSize” variable within the component and extract

128

Chapter 9. Classes and Objects with the RNI

* the width value
*/

int height = component->minSize->height;
}

Setting the values within objects is essentially an identical operation to simply referencing the values.
The only difference between getting and settings within the RNI is that a new value of an appropriate
data type is assigned to the referenced field. For example, to set the_pData field within aSymbolStone

object, the following code fragment can be used.

/** Create a new SymbolStone object */
HSymbolStone *stone = ...;

/** Set the _pData pointer... */
stone->_pData = (long)sptr;

...

A final note on this topic concerns referencing the values stored within objects. In the above examples, I
have shown the simple cases where variables have been mapped to standard C data types. What happens
if the variable we are referencing is something like a string?

In these instances, the appropriate functions within the RNI should be used to manipulate these objects.
For example, in the case of strings the standard string manipulation functions that were discussed in
Section should be used to access and manipulate the value stored within it.

Setting the values of objects is equally simple. This might be useful if you have created a new Java object
within native code and wish to replace an existing object with the new one. Similarly, you might wish to
update the value contained within a string to a new value. Within the context of the RNI, this type of
operation is essentially a pointer assignment which alters the internal references used by Java to access
objects.

And that’s all there is to field manipulation within the RNI! It’s a far more succinct syntax than field
manipulation within the JNI, but has more caveats in that you must always remember to generate and
include the necessary#include files within your code if you are accessing multiple object types.
Similarly, if you change the structure of your class in any way, youmustregenerate the include file for
that class otherwise the representation in memory of the object and the representation stored within the
include file may not match. This is a bad thing since you are directly operating on raw memory addresses
and can potentially corrupt or crash the JVM completely by overwriting the contents of the wrong
memory address! Be careful!

A slightly less powerful, but more flexible, approach to getting and setting field data also is defined
within the RNI. Within the Java classjava.lang.Class , there exists a set of methods such as

129

Chapter 9. Classes and Objects with the RNI

getField() that will retrievereflectionsof the fields contained within a Java class. Each field is
encapsulated by thejava.lang.reflect.Field class which in turn contains methods such as
getInt() , getDouble() andsetInt() andsetDouble() . A method exists for getting and setting
field values of all the primitive datatypes and objects.

The RNI features a native code equivalent to these operations allowing you to programmatically set the
contents of various fields using functions rather than by directly addressing the member variables of the
C struct representing the class.

As I mentioned before, these getting and setting operations within Java operate on an instantiation of the
java.lang.reflect.Field class which encapsulates all the information stored on a particular field.
The RNI defines an equivalent data type that is used for all field-related functions. This data type is of
typestruct fieldblock and can be fetched from the class information for the correct class.

Once the class information for the relevant class has been successfully located, we can use the RNI
function calledClass_GetField() to return thestruct fieldblock value encapsulating the
desired field within the class. The following code stub demonstrates how this operation works.

/** The class information for the SymbolStone class */
ClassClass *symbolStoneClassblock = FindClass(NULL, "Symbol-

Stone", TRUE);

/** Test that we’ve found the class information... */
if (symbolStoneClassblock != NULL) {

/** Locate the field information for the “_pData” field */
struct fieldblock *pDataFieldInfo =

Class_GetField(symbolStoneClassblock, "_pData");

/** Test that we’ve found the field info... */
if (pDataFieldInfo == NULL) {

fprintf(stderr, "Failed to locate field info within class!\n");
} else {

fprintf(stderr, "Located field info within the class!\n");
}

} else {
fprintf(stderr, "Failed to locate the class information!\n");

}

Now that you have the correct information to reference any field within a Java object, you can use the
getter and setter methods to manipulate the values stored within them. Each primitive data type and the
Object data type all have getter and setter methods associated with them all following a standard
declaration and can all be used in the same way. Youmustensure that you use the correct function for the
correct data type otherwise unpredictable results might occur resulting in your program, the JVM or both
crashing.

130

Chapter 9. Classes and Objects with the RNI

This technique is certainly more verbose than directly manipulating the member variables of thestruct

representing the Java class in question, but it makes your code somewhat more readable and does ensure
a certain level of type-safety not afforded by the more direct approach.

It does essentially boil down to a matter of personal preference in the long run. My personal preference is
to use the direct approach since it is considerably less wordy. However, if your code did use the
information for each field in more detail, for example, you were developing a classfile browser or IDE,
you might find the extra information to be worth the effort of writing more verbose code.

Invoking Methods
In object-orientated languages such as Java, invocation of methods declared and implemented within
classes is an extremely important concept. For example, variables within a class or object should not be
accessed directly butvia accessor functions. Similarly, the notion ofmethod overridingin subclasses
means that complex chains of method invocation might occur.

For example, our example program might create aSymbolStone object. This object, in turn, might
contain an array ofString s representing the alternative names the symbol stone is known by. If you
wished to print out information on the stone, you might invoke theSymbolStone.toString() which,
in turn, would iterate through the array of alternative names further invoking thetoString() method
on those.

Given that invoking methods is a fairly useful thing to do it would stand to reason to suggest that being
able to do so from native code would also be useful. This functionality is most useful when you have
Java code that carries out a defined task in a modular fashion and you need to be able to perform this
operation during the running of a native method. For example, a rendering package might execute some
native code to raytrace an image. After each line of the image has been rendered, it might be desirable to
update a progress bar AWT component in the GUI to inform the user of the program what the progress of
the rendering is.

In this instance, all the functionality for manipulating a progress bar component lies within Java code.
Therefore, by invoking appropriate Java methods from native code, you would be able to continue to use
the progress bar from native code without having to rewrite functionality that already works perfectly
well.

Specifying Methods
Before you can invoke Java methods from within native code, you must uniquely identify the method
that you are interested in. This is done by a composite of theclassfrom which an object is instantiated,
thenameof the method that you wish to execute and thesignatureof the method.

131

Chapter 9. Classes and Objects with the RNI

The first two parameters are fairly obvious in identifying methods but what has a type signature got to do
with it? The answer lies in one of Java’s more powerful features calledmethod overloading. This allows
you to define multiple methods with the same name and return type1 but different parameters. For
example, a 3d graphics library might have a class calledPoint that defines a point in 2- or
3-dimensional space. This class also contains methods that let you specify the point itself. The
overloaded method declarations for this method would look like

void vertex(int x, int y)
void vertex(float x, float y)
void vertex(int x, int y, int z)
void vertex(float x, float y, float z)

Therefore, if you simply attempted to locate a method by its name and class only, you have 4 potential
results in the case of thevertex() method. This is not exactly unique! Specifying the type signature for
the desired method will ensure that you are returned the method identifier for the correct method.

For example, the type signatures for the above methods respectively work out as

(II)V
(FF)V
(III)V
(FFF)V

The technique used to assemble the type signature is described in full in Chapter .

Invoking The Located Methods
There are two main ways defined in the RNI to invoke Java methods, the slower but easier way and the
faster but harder way. The easy and slower way hides some additional internal method handling that you
might not want to deal with. However, if you are optimizing your code for maximum performance, using
the underlying internal methods instead of the more convenient methods can be very beneficial.

The easy way to invoke Java methods from native code is to use the RNI functions
execute_java_dynamic_method() for instance methods orexecute_java_static_method()

for statically declared methods. These functions take the object or class against which you wish to invoke
the method, the method identification parameters and any arguments to the method as parameters to the
call. The parameters for both instance and static methods are identical.

Using either of these methods is very straightforward and needs little explanation. For executing the
vertex() instance methods from the example shown above, you could simply write

132

Chapter 9. Classes and Objects with the RNI

execute_java_dynamic_method(NULL, aPoint, "ver-
tex", "(FF)V", 111.11, 222.22);

whereaPoint is an instance of thePoint class. Each required argument for the Java method is simply
listed after the type signature for the method.

Class methods, that is methods declared as beingstatic within Java, require an additional stage of
preparation. This extra stage is necessary because you need to pass information on the class in which the
method is declared rather than an object. Therefore, you need to find that information out in advance.

Fortunately, this is easy to do and can be effected by using eitherFindClass() , FindClassEx() or
Object_GetClass() all of which are discussed in the previous section. Once you have located the
class information for the desired class, you can now invoke your Java method from native code using
execute_java_static_method() with the following code snippet.

/** Locate the class information for the Point class */
ClassClass *PointClassblock = FindClass(NULL, "Point", TRUE);

/** Execute the static method “vertex(float,float)” */
execute_java_static_method(NULL, PointClassblock, "vertex", "(FF)V",

111.11, 222.22);

These forms of method invocation can be quite expensive in terms of performance. For each invocation
of either of these RNI functions, a lookup is done formethod informationon the relevant method
internally. This additional lookup is actually unnecessary in cases of multiple executions of the same
method. The following psuedo-code illustrates the idea more clearly.

/** Locate the class information for the Point class */
Class *PointClassblock = FindClass(NULL, "Point", TRUE);

/** Specify a million points */
for (int i = 0 ; i < 1000000 ; i++) {

// execute_java_static_method(NULL, PointClassblock, "vertex",
// "(FF)V", 111.11, 222.22);
/** Locate the method information for the vertex() method */

/** Execute the method using the fetch method information */
}

As can be seen, by using these more convenient method invocation functions, we might be locating
method information unnecessarily 999,999 times in the main loop! Can we improve on this at all?

133

Chapter 9. Classes and Objects with the RNI

Fortunately, yes we can, and this is the slightly more involved, but much faster, way of invoking
methods. This is a more low-level approach to method invocation and requires an extra stage of
processing before you can invoke your methods.

The basis of this technique is tomanuallylocate themethodblockfor the method prior to invoking it.
This is a chunk of data that represents the Java method itself. The performance boost comes with the fact
that you can reuse the methodblock over and over again for subsequent invocations of that method.

Java methods are invoked using this technique with thedo_execute_java_method() RNI function
which can handle the invocation of both instance and static methods by passing appropriate values as an
argument.

The methodblock itself is located using theget_methodblock() which, if successful, will return a
pointer to a structure of typestruct methodblock . The example shown above could be re-written to
use the fast method invocation technique in the following way.

struct methodblock *vertexMethodblock =
get_methodblock(aPoint, "vertex", "(FF)V");

do_execute_java_method(NULL, aPoint, NULL, NULL, vertexMethodblock, FALSE,
111.11, 222.22);

The parameters of this method require a little explanation. Parameter 1 is alwaysNULLas are parameters
3 and 4. Parameter 2 is either the object or classblock you wish to invoke the method against depending
on whether the method is instance- or class-level. Parameter 5 is the methodblock for the method that
you have already located. The final formal parameter is a boolean value signifying whether or not the
method is static or not. In this example, the method is instance-level which implies the parameter should
beFALSE. In cases of class methods, this parameter should beTRUE. After these parameters, the actual
parameters to be supplied to the method itself should be specified.

The fast method of invoking methods is best used where repeated invocations of the same method is
required within a native method, within a tight loop. For example, our million vertex loop example from
above could be re-written in the following way which is appreciably faster than the original code.

/** Locate the method information for the vertex() method */
struct methodblock *vertexMethodblock =

get_methodblock(aPoint, "vertex", "(FF)V");

/** Specify a million points */
for (int i = 0 ; i < 1000000 ; i++) {

/** Execute the method with the pre-fetched methodblock */
do_execute_java_method(NULL, aPoint, NULL, NULL, vertexMethodblock,

FALSE, 111.11, 222.22);
}

134

Chapter 9. Classes and Objects with the RNI

The saving of not having to locate the methodblock will increase relative to the number of iterations of
the loop. However, in cases where a single method invocation is desired, using the
execute_java_dynamic_method() andexecute_java_static_method() functions is probably
easier to use and takes the same amount of time from a performance point of view.

As with many aspects of native method programming, “profile before you optimize”. Using the slower,
more convenient, methods may well give you perfectly acceptable performance for your application
without having to optimize each and every method invocation.

In newer versions of the RNI Specification, additional functions relating to method invocation have been
added given you further control over what activities you can carry out from native methods.

A set of functions relating to interface-based method execution have been added allowing you to invoke a
method against an object through an interface which that object implements. That is, if the
SymbolStone class implemented theRunnable interface, you can now execute therun() interface
method from native code.

The main function which defines this functionality isexecute_java_interface_method() which
operates in a similar way toexecute_java_dynamic_method() . The main difference between these
two functions is that since the method is being invoked within a class different to that from which the
object was instantiated, an additional argument containing the class information of the interface is
required.

For example, if we used the example of theSymbolStone class implementing theRunnable interface,
the invocation of therun() method can be expressed in the following way.

/** Locate the class information for the Runnable interface */
ClassClass *runnableClassblock =

FindClass(NULL, "java/lang/Runnable", TRUE);

/**
* Invoke the “run()” method in the interface against the
* symbol stone
*/

execute_java_interface_method(NULL, stone, runnableClassblock,
"run", "()V");

Unfortunately, thedo_execute_java_method() function cannot be used to speed up the execution of
interface methods at all in the current version of the RNI Specification. Therefore, repeated execution of
interface methods may begin to cause bottlenecks within your native methods.

The RNI Specification added some other functions to the topic of method invocation with the addition of
execute_java_dynamic_method64() , execute_java_static_method64() and
execute_java_interface_method64() which now correctly cope with methods that return a true
64-bit value from methods. This is particularly useful when a method returns along value and ensures

135

Chapter 9. Classes and Objects with the RNI

that the value is not truncated to suit the processor architecture upon which you are running the JVM.
This typically occurs on platforms where the size of along int value is less than 64 bits.

The final new functions for method invocation that have been added to the RNI Specification simply
specify a different way of passing arguments to Java methods. With
execute_java_dynamic_method() and friends, the arguments required by the target Java method are
simply passed as a list of individual values. Theexecute_java_dynamic_methodV() ,
execute_java_static_methodV() andexecute_java_interface_methodV() methods act in a
similar way but the required arguments are stored within an ANSI varargs list.

Creating Java Objects
In object-orientated languages, such as Java, you will be using objects on an extremely regular basis.
Objects, or instantiations of classes, form the basic building blocks that your programs use to manipulate
data. For example, if you wish to perform operations on a string, that string is encapsulated by the class
java.lang.String . Similarly, our example system encapsulates the notion of a symbol stone in the
SymbolStone class.

The creation of Java objects within the average Java program is an extremely frequent operation be they
objects being created by the JVM in order to carry out tasks underneath the bonnet or objects created by
you in order to execute the logic of your program. It would also be extremely useful to be able to create
objects from within native methods also.

An example of where the ability to create object from within native methods is where legacy code creates
a new object internally that needs to bereflectedin Java. To return all the bits of data that the object
comprises of from native code to Java is unwieldy and impractical. However, creating a new object
within native code and returning anHObject value for that object is elegant and fast.

Another subject touched on earlier in an earlier chapter is the allocation of arrays of objects from within
native code. The RNI function to allocate arrays of objects from within only allocates the space for the
array and does not actually initialize each member element. Therefore, to populate this fledgling array
from native code, we must be able to create Java objects natively.

The RNI defines a single function for object creation from within native code,
execute_java_constructor() . This function operates in a similar way to the method execution
functions since theclassthat you wish to construct an object from is a required parameter. The other
extremely important parameter is thesignatureof the constructor that you wish to invoke.

Constructors are actually just methods with special meaning. Therefore, the technique used to construct a
signature for a method is equally pertinent for constructors, the only difference being that constructors do
not have a return type at all2. The remaining arguments are just the arguments that the constructor
requires.

136

Chapter 9. Classes and Objects with the RNI

To illustrate the object creation process from native code, we can look at the full implementation of the
SymbolStone.load() method:

/**
* Scans the given data file and instantiates an array of SymbolStone objects
* from it
*/

RNIEXPORT HArrayOfObject * RNICALL
SymbolStone_load(ClassSymbolStone *arg,

struct Hjava_lang_String *filename) {

/** The return array of objects... */
HArrayOfObject *rv = NULL;

/** Temporary buffers */
char filenameChars[1024];

/** Extract the filename */
javaString2CString(filename, filenameChars, sizeof(filenameChars));

/** Load the data from file into C structures... */
int numRecords = 0;
SymbolStone_t *stones = load(filenameChars, &numRecords);
SymbolStone_t *sptr = stones;

/** Safety check... */
if (stones == NULL || numRecords == 0) {

fprintf(stderr, "stones array == NULL or %d records == 0\n", num-
Records);

return NULL;
}

/** Allocate an array of jobjects... */
rv = (HArrayOfObject *)ClassArrayAlloc(T_CLASS, numRecords, "Symbol-

Stone");
if (rv == NULL) {

fprintf(stderr, "Failed to allocate return array of SymbolStone ob-
jects\n");

return NULL;
} else {

fprintf(stderr, "Allocated array of %d records\n", numRecords);
}

for (int i = 0 ; i < numRecords ; i++) {

137

Chapter 9. Classes and Objects with the RNI

HSymbolStone *stone =
(HSymbolStone *)execute_java_constructor(NULL, "Symbol-

Stone", NULL, "()");
if (stone == NULL) {

fprintf(stderr, "failed to construct new instance of Symbol-
Stone class\n");

return NULL;
}

/** Set the pData pointer... */
stone->_pData = (long)sptr;

/** Stuff the object into the array */
rv->body[i] = (HObject *)stone;

/** Increment the pointer... */
sptr++;

}

return rv;
}

The parameters forexecute_java_constructor() are worth some explanation. Parameter 1 is
alwaysNULL. Parameter 2 is the fully-qualified name of the class including package. The package
delimeter to be used a forward slash (/). For example, if theSymbolStone class belonged to the
com.oreilly package, the fully-qualified class name iscom/oreilly/SymbolStone . Parameter 3 is
also alwaysNULLand parameter 4 is the type signature for the constructor you wish to invoke. This
ensures the correct constructor is always invoked. After these parameters have been specified, you should
list the appropriate parameters required by the constructor in question.

The value returned from executingexecute_java_constructor() is of typeHObject . This data
type can be cast to any class type whatsoever,e.g., you can cast it fromHObject to HSymbolStone

quite happily in cases where a newSymbolStone object has been created andHObject is simply an
opaque Java object reference just as all Java objects can be cast tojava.lang.Object .

Similarly, if an error occurs during object instantiation, the valueNULLwill be returned and an exception
will be thrown further specifying what the problem was.

Newer versions of the Microsoft JVM have added another couple of RNI functions which allow you to
optimize the invocation of Java constructors in a way similar to the way in which we can optimize Java
method invocations.

execute_java_constructor() operates by taking the name of the class to execute a constructor of
and the type signature of the appropriate Java constructor. While this approach is quite simple to use,
from an internal point of view, it can be quite costly.

138

Chapter 9. Classes and Objects with the RNI

This is due to the fact that a Java constructor is treated as being a method of name<init > with a return
type of a Java object of the relevant class. Therefore, for every call to
execute_java_constructor() , the JVM needs to look up the methodblock for the relevant
constructor and invoke it. Over a number of iterations, the repeated, and unnecessary, methodblock
lookups starts to mount up in terms of performance overhead.

The new RNI functions that have been added to allow for repeated constructor invocation with little
overhead are calledexecute_java_constructor_method() and
execute_java_constructor_methodV() which operate in a similar way to
do_execute_java_method() anddo_execute_java_methodV() .

This allows us to optimize Java constructor invocation by looking up the methodblock representing the
desired constructoronce, then making repeated calls toexecute_java_constructor_method()

passing that methodblock as an argument.

For example, the example listed above showing the construction of individualSymbolStone objects to
be used as array elements could be re-written in a more optimized fashion as follows.

...

/** Locate the methodblock for the desired SymbolStone constructor */
struct methodblock *symbolStoneCtorMethodblock =

Class_GetMethod(FindClass(NULL, "SymbolStone", TRUE),
" <init >", "()");

/** Now, populate the array by creating new stones for each element */
for (int i = 0 ; i < numRecords ; i++) {

HSymbolStone *stone =
(HSymbolStone *)execute_java_constructor_method(symbolStoneC-

torMethodblock);
if (stone == NULL) {

fprintf(stderr, "failed to construct new instance of Symbol-
Stone class\n");

return NULL;
}

...
}

...

Therefore, the RNI can be used in both simple and complex ways to maximize either your ease of
programming or your application performance when allocating Java objects from native code.

139

Chapter 9. Classes and Objects with the RNI

Notes
1. And similar functionality if your code is written correctly and clearly.

2. An extremely common mistake is to specify that the constructor either returns a value that is the type
of the class orvoid .

140

Chapter 10. Exception Handling
Java implements its error handling capabilities with exceptions. An exception is a Java object that is
“thrown” when a particular error occurs. Once an exception is thrown, it propagates through the Java
method invocation stack until a method “catches” it and deals with it or it reaches the top of the
invocation stack and the program execution stops.

Exceptions are a significant improvement over the simple return values returned by functions in C. Since
an exception is an actual object, instead of a simple value, it can contain more information about the
exact reason that a particular method failed. There are different exception types for different kinds of
errors, such asArrayIndexOutOfBoundsException for trying to go off the end of an array and
NullPointerException for trying to access a reference that is set toNULL.

The JNI and RNI define several functions that allow you to interact directly with exceptions, in terms of
both throwing new exceptions from native code and also catching and handling them in native code.

Throwing Exceptions
If the legacy code you are interfacing with is well-written, there is a good chance that each function has a
set of defined return codes. Similarly, if you are writing new native code, you probably have a defined set
of return values for each of your important functions. While it is certainly possible to define your native
methods to return these error values back to Java for processing, but it is far more sophisticated and
extensible to throw exceptions from your native code that can be caught within Java.

Throwing Exceptions with JNI
The JNI defines several functions that allow you to throw an exception from native code:ThrowNew() ,
which creates a new exception object for you and throws it,Throw() , which throws a previously
constructed exception object, andFatalError() , which immediately halts the JVM.ThrowNew() is
the most useful of these functions, since it handles creating the exception object for you. for you. Here is
the function prototype forThrowNew() :

jint ThrowNew(JNIEnv *env, jclass clazz, const char *message)

Calling theThrowNew() function is exactly like the following Java code you might use to throw a new
NullPointerException object:

throw new NullPointerException("Yikes! A NULL pointer!");

141

Chapter 10. Exception Handling

The only real difference between throwing an exception in Java and in native code is that in native code
we need to provide ajclass object that represents the class of the exception to throw. In this case, to
throw aNullPointerException , we need thejclass value for the
java.lang.NullPointerException class, which we can retrieve withFindClass() . Thus, we can
throw aNullPointerException from native code as follows:

/* Throw a NullPointerException */
env->ThrowNew(env->FindClass("java/lang/NullPointerException"),

"Yikes! A NULL pointer!");

/* Return to Java immediately! */
return;

When you make the call toThrowNew() , the exception isn’t actually thrown, but instead placed on a
pending stack. The actual throwing process is triggered by returning from the method in which the
exception was made pending, which in this case is the native method. Therefore, it’s good practice to
immediately return control from the native method to Java after you callThrowNew() , to ensure that the
exception is thrown as soon as possible.

To illustrate the throwing of exceptions from within native code, we’ll look at thedescribe() method
of theSymbolStone class in our example application. This method simply returns a string describing
the stone based on its symbols. If the stone has no symbols, aNoSymbolsException is thrown. The
declaration of the native method is written in the usual way with the addition of thethrows clause
declaring which exceptions might be thrown during the native method execution.

/** Attempts to describe the stone... */
public native String describe() throws NoSymbolsException;

/** Describes the stone... */
JNIEXPORT jstring JNICALL
Java_SymbolStone_describe(JNIEnv *env, jobject arg) {

char rv[1024];

/** Extract the pointer */
jfieldID pDataFieldID = \

env->GetFieldID(env->GetObjectClass(arg), "_pData", "I"); \
SymbolStone_t *stone = \

(SymbolStone_t *)env->GetIntField(arg, pDataFieldID);

/** Safety check */
if (stone == NULL || (int)stone == -1) {

return JNI_FALSE;

142

Chapter 10. Exception Handling

}

if (stone->numSymbols == 0) {
sprintf(rv, "%s has no symbols!", stone->name);
env->ThrowNew(env->FindClass("NoSymbolsException"), rv);
return NULL;

} else {
sprintf(rv, "%s has %d symbols", stone->name, stone->numSymbols);
return env->NewStringUTF(rv);

}
}

TheThrow() function performs exactly the same operation asThrowNew() , but it requires you to
construct an exception of the correct class manually and pass that toThrow() . I personally recommend
staying away from this function, as it offers up plenty of scope for incorrectly constructing exception
objects, not to mention that it involves far more work on your part for exactly the same effect.

The final way you can signal that an error has occurred within your native code is to use the
FatalError() function. This function is not to be taken lightly, as it flags a fatal error within the JVM,
which causes it to shutdown immediately and report the specified message as the reason as for the
shutdown.FatalError() executesimmediately(i.e., it isn’t put made pending), and it is not
interruptable nor can it fail.

The decision to invokeFatalError() should only be taken after considering the consequences of
doing so. If you have multiple programs running within a browser environment, such as Netscape
Navigator, bear in mind that although there are separate programs in operation, onlyoneJVM is likely to
be running. Thus, if you decide to invokeFatalError() in a Java program, all of the programs running
within the browser will die immediately. In addition, the browser will probably require restarting, as the
JVM has now aborted and will not be able to run any future applets.

Throwing Exceptions with RNI
The RNI defines a function calledSignalError() that is similar to JNI’sThrowNew() .
SignalError() takes the class name of the exception object to throw and the message to be associated
with the new exception, creates a new exception object of the desired class, and makes it pending. Here’s
how to throw aNullPointerException with RNI:

/* Throw a NullPointerException */
SignalError(NULL, "java/lang/NullPointerException",

"Yikes! A NULL pointer!");

/* Return to Java immediately! */

143

Chapter 10. Exception Handling

return;

Just as with the JNI, the exception is placed on a pending stack and not actually thrown until the method
returns, so your code should return immediately.

The RNI also defines a variant ofSignalError() calledSignalErrorPrintf() . This function
performs exactly the same action asSignalError() , but instead of passing a single string that contains
the descriptive message, you can pass arguments in the form thatprintf() uses. For example, if you
want to throw an exception that lists not only the error message, but also the line number and C source
file the exception was thrown in, you can use the following call toSignalErrorPrintf() :

/* Throw a NullPointerException */
SignalErrorPrintf("java/lang/NullPointerException",

"Yikes! A NULL pointer occurred in %s, line %d",
__FILE__, __LINE__);

/* Return to Java immediately! */
return;

As with printf() , the number of arguments specified after the format string should match the number
of variables specified within the format string.

With SignalErrorPrintf() we can now implement an RNI version of the
SymbolStone.describe() native method that may throw aNoSymbolsException .

/** Describes the stone... */
RNIEXPORT struct Hjava_lang_String * RNICALL
SymbolStone_describe(HSymbolStone *arg) {

/** Extract the pointer */
SymbolStone_t *stone = (SymbolStone_t *)arg->_pData;

/** Safety check */
if (stone == NULL || (int)stone == -1) {

return NULL;
}

if (stone->numSymbols == 0) {
SignalErrorPrintf("NoSymbolsException",

"%s has no symbols", stone->name);
return NULL;

} else {
char rv[1024];
sprintf(rv, "%s has %d symbols", stone->name, stone->numSymbols);

144

Chapter 10. Exception Handling

return makeJavaString(rv, strlen(rv));
}

}

The RNI also provides theexceptionSet() function to throw a pre-created exception object, just like
with the JNIThrow() function.exceptionSet() is a lot more convoluted to use than either
SignalError() or SignalErrorPrintf() , so I recommend avoiding it in favor of the simpler
methods. Finally, the RNI has no corresponding function for JNI’sFatalError() function.

Catching Exceptions
It is impossible to implement a native code equivalent of Java’stry /catch statements, in that you
cannot use native code to catch an exception that has been thrown within a Java class. However, you can
catch exceptions that have been thrown as a result of the failure of a JNI or RNI function call.

Consider, for example, theFindClass() function, which returns a non-NULLvalue (i.e.,jclass in
JNI, ClassClass in RNI) when it successfully locates the class you are looking for. When the function
fails, however, it returnsNULL. This failure could be for a number of reasons, so the function also throws
an exception to provide more useful information. These exceptions includeClassFormatError ,
ClassCircularityError , andNoClassDefFoundError , relating to different problems with the
class you have tried to locate.

Here’s some Java code that corresponds to a call toFindClass() :

Class someClass = Class.forName("NonExistentClass");

With this Java code, you can wrap the call within atry /catch statement to catch the various exceptions
as soon as one is thrown. Within native code, however, all you know is thatFindClass() has failed
because it has returnedNULL. How exactly can we deal with the exception that’s now waiting to be
thrown?

We’ve already seen the first technique for dealing with exceptions, when we looked at throwing
exceptions from native code. This technique involves declaring the native method that calls
FindClass() as one that can throw the various exceptions that can be generated by the function. Then,
in the native code, we can simply return immediately after a failed call toFindClass() and allow the
Java code to deal with the exception.

This technique is perfectly legitimate: the operation failed and Java can be used to make a recovery from
the situation. There are cases, however, when you might want to ignore certain exceptions or do

145

Chapter 10. Exception Handling

something else to handle it without leaving the native method. This requires some ability to manipulate
exceptions within native code.

For example, theSetObjectArrayElement() JNI function can result in a couple of different
exception objects being thrown, namelyArrayIndexOutOfBoundsException and
ArrayStoreException . These are both fairly important errors, but
ArrayIndexOutOfBoundsException is one that we could recover from by simply recalculating
another array index at which to place the object.

Within native code, there are really only three operations we can perform to handle an exception: detect
that an exception has occurred; clear any pending exceptions; and print a stack trace showing where the
exception occurred.

The first of these operations is the native code equivalent to the Javatry /catch construct. With the JNI,
we can call theExceptionOccurred() function after invokinganyfunction that might throw an
exception. If an exception has been thrown,ExceptionOccurred() returns ajthrowable value that
corresponds to theException object that is pending. Otherwise, if there are no pending exceptions,
ExceptionOccurred() returnsNULL.

To provide identical functionality totry /catch in native code, we need to do a little more work,
however. Thejthrowable value simply refers to a general exception object, so to provide error
handling based on the exception type, we need to work out which class the exception belongs to. This is
simply a matter of locating the class information for a class and comparing it against the class of the
jthrowable returned byExceptionOccurred() . For example, here’s a little piece of code which
handles recovery from anArrayIndexOutOfBoundsException :

jthrowable exception;
int index;
jobject someObject;
jobjectArray anArray;

...

env->SetObjectArrayElement(anArray, index, someObject);
if ((exception = env->ExceptionOccurred()) != NULL) {

/* The class information for the ArrayIndexOutOfBoundsExcep-
tion class */

jclass aioobClassblock =
env->FindClass("java/lang/ArrayIndexOutOfBoundsException");

/* Compare the class of the thrown exception to the AIOOBException */
if (env->GetObjectClass(exception) == aioobClassblock) {

/* Clear up the exception */
env->ExceptionClear();

146

Chapter 10. Exception Handling

/* Execute the fallback code here.... */
} else {

/* Return immediately and let the excep-
tion be dealt with in Java */

return;
}

}

...

As you can see, this technique is quite wordy and it only gets worse as you need to handle multiple
exception types! I recommend using it sparingly, although it is a very powerful way of providing more
robust native methods.

A further caveat is that the RNI does not support the detection of the class of a thrown exception. So, if
you choose to perform sophisticated exception handling within your JNI native code, instead of passing
the exceptions back to Java, your code will be a lot less portable to the RNI.

The RNI defines the functionexceptionOccurred() , which allows you to establish whether or not an
exception is pending. This function simply returns a Boolean value, rather than an exception object.
Thus, with RNI, you can only establish that an exception has been thrown, but not the type of the
exception.

Sometimes, when you detect an exception, you can simply ignore it. With the JNI, you can clear all the
pending exceptions withExceptionClear() with the RNI, the function isexceptionClear() .
These functions are generally useful in cases where an exception might be thrown to signify that an error
has occurred, but the error has no real impact on the correct functioning of the program. For example, a
native method might generate various exceptions to aid in debugging. You might not want these
exceptions to propagate to either your native exception handler or back to your Java code. In this
instance, explicitly clearing the pending exception allows you to continue debugging without exception
handlers kicking in all over the place.

The third operation that you might want to perform when you detect an exception in native code is to
print a stack trace. This is not commonly done, as it doesn’t afford particularly flexible debugging, but
you might find it useful for quick error diagnosis. With the JNI, you can call the
ExceptionDescribe() function; it performs exactly the same function as calling
printStackTrace() on anException object in Java. The corresponding RNI function is
exceptionDescribe() . The stack trace is written to the system error-reporting stream, which might
bestderr or System.err if you are using a standalone JVM or the Java Console if you are using
Netscape Navigator. As withprintStackTrace() , these functions are not particularly flexible, but
they do report exactly where your program has been prior to throwing the exception. I find them quite
invaluable for fast debugging at the outset of development projects.

147

Chapter 11. Threading
One of the major benefits to programming in Java is its inherent multi-threading capabilities. This
enables you to write extremely powerful software capable of handling several tasks simultaneously.
There are, of course, pitfalls with threading. One of the main ones, which this chapter discusses, revolves
around the problem known as therace condition.

Race conditions exist when two threads are competing for a single resource. For example, if we had a
GUI that performed drawing from different native methods, a race condition would inherently exist in
the actual drawing loop as only one thread may access that at any given time. The section of code causes
the problem is known as acritical sectionand should be somehow flagged as being susceptible to race
conditions.

Synchronization and Monitors
Java provides thesynchronized keyword that allows you to use a Java object as a semaphore, or in
Java parlance, amonitor, which in turn defines a critical section of code and protects it from race
conditions. For example, if we had a native method which only one thread can simultaneously enter, we
can wrap the call with asynchronized block, or declare the method as beingsynchronized .

/** The native method - only one thread can access at a time */
public synchronized native void someNativeMethod();

/** Another native method -
control access to this via a synchronized block */
public native void someOtherNativeMethod();

/** Declare the monitor object to lock on */
Object lockObject;

/** Call the native method in a thread-safe manner */
synchronized(lockObject) {

someOtherNativeMethod();
}

This technique ensures that the method cannot be invoked until the monitor lock is entered. This gives us
a level of robustness, but in the case of intensive native methods with potentially long running time, it
might reduce the effectiveness of your application operating in a multi-processing environment.

148

Chapter 11. Threading

Within pure Java code, it is possible for us to wrap any chunk of Java code with asynchronized , even
down to a single line of code. Can we do the same thing from native code instead of having to lock the
entire native method?

Both the JNI and RNI make functions available for entering and exiting monitor locks. Under the JNI
these areMonitorEnter() andMonitorExit() . Under the RNI,monitorEnter() and
monitorExit() . For example, with the JNI:

JNIEXPORT void JNIEXPORT
Java_someClass_someNativeMethod(JNIEnv *env, jobject arg, jobject moni-
tor) {

/** Perform some code that doesn’t require protection */
...

/** Protect the critical section */
if (env->MonitorEnter(monitor) != 0) {

fprintf(stderr, "Monitor enter failed! Potentially unstable re-
sults!\n");

}

/** Execute the unsafe code */
...

/** Leave the monitor */
if (env->MonitorExit(monitor) != 0) {

fprintf(stderr, "Monitor exit failed! The applica-
tion may hang!\n");

}

/** Finish processing and exit... */
}

The implementation of this method under the RNI is very similar.

RNIEXPORT void RNIEXPORT
someClass_someNativeMethod(HsomeClass *arg, HObject *monitor) {

/** Perform some code that doesn’t require protection */
...

/** Protect the critical section */
monitorEnter((unsigned int)monitor);

/** Execute the unsafe code */
...

149

Chapter 11. Threading

/** Leave the monitor */
monitorExit((unsigned int)monitor);

/** Finish processing and exit... */
}

In both cases, we have passed the Java object to lock on into the native method, but this object could be
created within native code, perhaps as a global reference.

The RNI also features three other methods revolving around the topic of threading control:
monitorNotify() , monitorNotifyAll() andmonitorWait() . These methods simulate the
methods declared injava.lang.Object for managing threads.

For much more in-depth information on multi-threading issues within Java, you should consult Doug
Lea’s "Concurrent Programming in Java" (Addison Wesley, 1997).

150

Chapter 12. Memory Management
The Java Virtual Machine is a complex piece of software that performs a lot of housekeeping tasks that
programmers usually have to do themselves. One key such area is memory management. Classic
programming languages, such as C, allow the programmer to allocate and deallocate memory explicitly.
The onus is therefore on you to handle this correctly, and, in particular, to free allocated memory when
you have no further need of it. Forgetting to release allocated memory is a common problem in C
programs; it results in programs that have memory leaks. And when a program asks for chunks of
memory repeatedly without freeing the chunks appropriately, the accumulated memory leaks can cause
the amount of free memory on the system to drop dramatically.

The JVM takes a different approach and manages your program’s memory for you. That is, if you create
a bunch of Java objects, the JVM cleans them up once you have no further need of them. This operation
is known asgarbage collectionand is one of the reasons that Java is such an easy language to program
with: someone else takes care of your memory management for you. Although garbage collection is
generally regarded as a good thing, when you are writing native methods, it can sometimes be a positive
pain in the neck.

There are two main problems that can arise with native methods and garbage collection. One occurs
when the garbage collector moves or cleans up data that you are still referencing. Paradoxically, the other
problem is that the garbage collector is disabled during the execution of native methods. We’ll look
separately at both of these issues and solutions to them in this chapter.

Persistent Objects
If you refer to a particular object within native code on a regular basis, it might make sense to try to
cache the reference to this object, to avoid the time and effort involved in retrieving it repeatedly. What
you need is a way to make the object persistent for a certain length of time. Fortunately, both the JNI and
the RNI provide mechanisms for just this kind of functionality. The JNI distinguishes between global and
weak global references, while the RNI calls them strong and weak references.

As you know, Java doesn’t provide an explicit pointer to an object, but rather a reference to an object. A
reference actually contains a pointer to the underlying location of an object within the JVM, but as a Java
application programmer, you don’t have or need access to this pointer. During garbage collection, the
JVM may move the object to a more optimal location in memory, but the reference to the object does not
change. Thus, from the application’s point of view, the object is exactly where it always was, even
though in reality it is not.

It’s only when you start sharing references between Java code and native code that problems can arise. If
you store a reference to an object in native code and then try to refer to it later, after the garbage collector

151

Chapter 12. Memory Management

has run, you may find that the garbage collector has relocated the object. In this case, you’ll find that the
reference is no longer valid, often with dramatic consequences.

In order to cache a reference to an object in your native code, you need to be able to tell the JVM not to
move an object at all, or, in other words, to ignore the object during garbage collection. The idea is that
you arepinningan object to a specific location in memory. This guarantees that the object will not be
moved, so that you can rely on the cached references to it.

Both the JNI and the RNI support the following types of references:

Local references (JNI and RNI)

The default mode of operation for references within a native method. A local reference is valid for
the lifetime of the currently executing native method. When the method exits, the local reference is
freed automatically by the garbage collector. While the native method is executing, however, the
garbage collector does not relocate or free any local references.

In other words, any objects that you are referencing within a native method are protected against the
machinations of the garbage collector. This ensures that a reference that is valid in one line of code
does not suddenly become invalid in the next line.

Global (JNI) or strong (RNI) references

Allow you to pin a reference for longer than the duration of a single native method invocation.
When you make an object reference into a global or strong reference, you can rely on that reference
not to be garbage collected until you explicitly unpin the reference. When you unpin a global or
strong reference, it becomes a local reference again, so the garbage collector is free to relocate or
remove it.

Weak global (JNI) or weak (RNI) references

Acts in the same way as a global or strong reference, but allows the garbage collector to move or
free the underlying object. If the garbage collector moves the object, the reference tracks the
location of the object, so that you can still use the reference. If the garbage collector frees the object,
however, the reference is made to point toNULL. Note that weak global references are new in the
JNI as of Java 2 Version 1.2.

Thus, to create a safe global variable that is not subject to the whims of the garbage collector, you simply
need to turn a local reference into a global or strong reference, thereby pinning the reference. With the
JNI, you call theNewGlobalRef() function, which takes a ajobject as an argument and returns a
jobject value that is a global reference to the original object. The corresponding RNI fucntion is
GCNewHandle() .

Because pinning an object causes the JVM to essentially ignore it, the JVMnevergarbage collects that
object until you unpin it. If you forget to unpin a global or strong reference after you have finished with

152

Chapter 12. Memory Management

it, the resources used by that object are never released. If you continually pin objects and forget to release
them, the performance of the JVM will degrade and it will consume more of your machine’s resource.
This a similar problem to memory leaks, but it degrades the ability of the JVM to function correctly
much much faster.

To unpin a global or strong reference, you simply turn it back into a local reference. Then, when the
native method exits, the garbage collector sees that the reference is now unpinned and thus available for
garbage collection. To unpin a global or strong reference with the JNI, callDeleteGlobalRef() . The
corresponding RNI function isGCFreeHandle() .

If you don’t need the absolute safety of a global or strong reference, and you only need to know whether
a reference has been relocated, consider using a weak global or weak reference instead. Such a reference
does not protect data from being moved by the garbage collector, but the reference does track the desired
object. In other words, if the garbage collector moves an object, the weak (global) reference is updated to
point at its new location in memory. This is extremely useful for making Java data persistent across
native methods.

As of Java 2 Version 1.2, you can create weak global reference with the JNI by calling the
NewWeakGlobalRef() function. If successful, the function returns a newjobject that is a weak
global reference to the original object. If the referent object is moved by the garbage collector, the weak
global reference is updated to point at its new location. However, if the referent object is freed by the
garbage collector, the weak global reference is set toNULL, allowing you to detect that is has been
removed. Thus, when you are using a weak global reference, you always need to check that it isn’tNULL

before you use it. The RNI defines theGCGetPtr() function for creating weak references, which
function in exactly the same manner. When you want to release a weak global or weak reference, you
simply callDeleteWeakGlobalRef() with the JNI orGCFreePtr() with the RNI.

Before you go off and start creating all manner of persistent references, let me warn you about a potential
problem. Using global variables makes it much more difficult to write multi-thread safe code, since
multiple running threads can simultaneously alter the value of the object referenced by the variable. As a
consequence, you would be wise to use persistent references sparingly, if at all. If you do use them, you
need to take extra caution and design your native methods with multithreading in mind. Wrapping your
native method calls insynchronized blocks can certainly help avoid deadlock or race conditions, but
this alone does not allow you necessarily to guarantee the validity of an object referenced by a global
variable.

Controlling the Garbage Collector
When your Java code enters a native method, the JVM suspends garbage collection. The JVM does this
because garbage collection during native code execution can be difficult to perform safely and at
acceptable speeds. In most cases, native methods return very quickly, so the fact that garbage collection

153

Chapter 12. Memory Management

has halted is not necessarily a problem since it is automatically reenabled upon leaving the native
method. However, if you have a native method that does some heavy-duty processing or runs for a long
period of time, the disabling of the garbage collector can be a drain on memory, as redundant objects are
never freed up. To alleviate this problem, the JNI and the RNI both allow you to explicitly control
various aspects of memory management during native method execution.

JNI Memory Management
With the JNI, you can explicitly remove a local reference to an object by callingDeleteLocalRef() .
Obviously, once you have calledDeleteLocalRef() on a reference, you cannot rely on that object
being available anymore. It may not be removed immediately, but don’t plan on reusing it unless you
want to see strange errors in your program.

To consider how this function might be useful, say you are performing lots of string operations within
native code, for example, running a lexical analyzer. Your program might only need a small number of
strings to operate correctly, with the vast majority of strings needed only temporarily during analysis.
However, these temporary string are not garbage collected until the native method exits, since a local
reference exists for each unwanted string. In this case, callingDeleteLocalRef() on each unwanted
string removes the local reference almost immediately, during the native method’s execution, rather than
when the native method exits. You can think of this function as a JNI equivalent tofree() in C.

As of Java 2 Version 1.2, the JNI provides additional functionality that allows more fine-grained control
over the allocation and operation of local references. It is actually possible to create too many local
references in a native method, so that further local reference creation fails. For example, say you are
manipulating a large array. If you are allocating a local reference for each array element as you iterate
through the array, but not releasing those local references explicitly withDeleteLocalRef() , you may
exhaust the supply of local references. The newEnsureLocalCapacity() function allows you to
ensure that at least a certain number of local references can be created within the current native method.
The default number of local references that the JVM allocates is 16.

When a program enters a native method, the JVM creates a new local reference frame, which basically
sets the scope of local references to be within that particular frame. When the native method is exited, the
local reference frame is deleted, freeing up all the local references created within it. As of Java 2 Version
1.2, thePushLocalFrame() andPopLocalFrame() functions allow you to explicitly create and
destroy a new local reference frame within which local references are allocated. The new frame is created
with a given number of local references that can be allocated. For example, if you are scanning through a
multi-dimensional array of objects that you want to create local references for, performance may suffer if
you implement your code using a single local reference frame as shown in the following code fragment:

/* Default local reference frame is active upon native method entry */
...

154

Chapter 12. Memory Management

/* Scan the array */
for (int i = 0 ; i < arrayWidth ; i++) {

for (int j = 0 ; j < arrayHeight ; j++) {
/* A new local reference is allocated for the array ele-

ment at [i,j] */
}

}

As the number of local references mounts up through scanning the array, performance issues may arise
as the local reference frame holds more and more references. A solution around this problem is to create
and destroy a local reference frame for each “slice” of the array. For example:

/* Default local reference frame is active upon native method entry */
...

/* Scan the array */
for (int i = 0 ; i < arrayWidth ; i++) {

/*
* Allocate a new local reference frame for the required number of
* references
*/

env->PushLocalFrame(arrayHeight);

/* Scan a slice of the array */
for (int j = 0 ; j < arrayHeight ; j++) {

/*
* A new local reference is allocated for the array
* element at [i,j]
*/

}

/* Destroy the current local reference frame and free those references */
env->PopLocalFrame(NULL);

}

One final operation you can perform with the JNI as of the Java 2 Version 1.2 is copying a reference,
using theNewLocalRef() function. This allows you to create a new local reference that is a copy of an
exising local or global reference.

With the collection of JNI functions we’ve discussed here, it is possible to achieve a certain level of
fine-grained memory management within Java’s existing garbage collection framework. With careful
application, these features can be used to provide leaner Java programs, in terms of their memory
requirements and usage.

155

Chapter 12. Memory Management

RNI Garbage Collection Control
Memory management in RNI native methods is a bit different than with JNI methods, as the RNI
provides a way to enable the garbage collector during native method execution. Prior to entering a
computationally- or memory-intensive section of code in an RNI native method, you can call
GCEnable() to enable the garbage collector, causing it to run simultaneously with your native code.
And when that section of code is done, or prior to returning from the native method, you must then call
GCDisable() to disable the garbage collector.

It is extremely important to ensure that every call toGCEnable() has a matching call toGCDisable()

because returning from a native method call causesGCEnable() to be called automatically. If you
already have the garbage collector enabled (i.e., you haven’t calledGCDisable() , you may experience
bizarre problems in the operation of your code or outright crashes of the JVM.

The ability to enable garbage collection explicitly within a native method brings up the problem of the
interaction between native code and the garbage collector again. For example, say you have a pointer to
an object that you are using within your native code. As we’ve already discussed, during garbage
collection this object may be moved to another location in memory, making your pointer invalid. While
this is a problem, you really do need garbage collection to occur. Fortunately, the RNI defines a way in
which you can have your cake and eat it too.

With the RNI, you can declare a structure known as aGCFrameand push objects into it that the garbage
collector has to leave alone. For example, you can declare a Cstruct that contains the pointers to all
the objects that you do not wish to be moved. You then simply associate this data structure with the
GCFrameusingGCFramePush() .

Pushing this information onto the garbage collector stack actually does allow the garbage collector to
move the objects, but the pointers contained within thestruct are automatically updated with the new
locations of the objects within memory. Therefore, instead of referring to the original pointer when you
wish to manipulate objects, you should use the pointers stored within thestruct .

Finally, once you have disabled garbage collection, you must deallocate theGCFrameyou have been
using, to allow the garbage collector to function as normal when you exit from the native method. To
perform this operation, you should callGCFramePop() . As with theGCEnable() /GCDisable() pair,
you must remember to pop everyGCFramethat you push! Here is a code fragment that shows the use of
a GCFrame:

RNIEXPORT void RNICALL
SymbolStone_someMethod(struct HSymbolStone *stone) {

/*
* Declare a structure containing the pointer(s) that the
* garbage collector has to leave alone.
*/

156

Chapter 12. Memory Management

struct {
HSymbolStone *safeStone;

} gcProtect;

/* Declare the GCFrame */
GCFrame gcf;

/* Push the frame and pointer structure into the garbage collector */
GCFramePush(&gcf, &gcProtect, sizeof(gcProtect));

/* Store the object pointer(s) within the protected structure */
gcProtect.safeStone = stone;

/* Enable garbage collection */
GCEnable();

/*
* At this point, the object pointed at by the stone parameter
* might be moved. The following statement has a good chance of
* crashing the VM, so it is commented out:
*
* SymbolStone_t *sptr = (SymbolStone_t *)stone->_pData;
*/

/*
* Instead, you should refer to the stone pointer stored within
* the protected structure. This pointer tracks any changes
* made to the object’s location by the garbage collector.
*/

SymbolStone_t *safesptr = (SymbolStone_t *)gcProtect.safeStone->_pData;

/* Disable garbage collection... */
GCDisable();

/* ...and free up the pushed GCFrame */
GCFramePop(&gcf);

/* And now we can safely exit from this native method! */
}

As this example illustrates, computationally-intensive RNI native methods can be made efficient in terms
of memory consumption, with some careful programming.

157

Chapter 13. Embedding a JVM
To this point, our discussion of native method programming has been about using native code to
implement certain Java methods in C or C++. There is, however, another way to use native code and the
JNI or RNI: you can embed a JVM within a C/C++ program and manipulate Java classes and objects
from within that program. This mode of interaction between native code and Java is more far-reaching in
its application and power than simple native method development. For example, a Java-enabled web
browser uses this form of interaction to allow you to run applets within web pages. In this case, the
natively written web browser has a JVM embedded within it and drives the operation of the JVM from
native code.

Both the JNI and the RNI allow you to embed a JVM within a program, but the way in which they do
this differs considerably. The JNI uses a subsidiary API known as the Invocation API that is distinct from
the core JNI specification itself. The RNI, however, simply provides two functions that hook you directly
into the JVM.

Using the JNI Invocation API
With the JNI Invocation API, the core operations for embedding a JVM in a program are creating a new
JVM, destroying a JVM, attaching a thread to a running JVM, and detaching from a JVM. Once you
have created a JVM and, if necessary, attached a thread, you simply perform JNI operations to execute
any Java code you want to run.

Creating a JVM
The creation of a JVM is a fairly simple task which is performed by using the Invocation API method
calledJNI_CreateJavaVM() . Prior to invoking this method, you will need to perform some variable
declarations and setup of the JVM environment in order for the JVM to function in a useful way.

Configuring the JVM

Prior to creating a JVM for use within your native application, some configuration is required before the
JVM will function in a useful way. A short piece of stub code illustrating the variables required in JVM
creation and configuration is shown below.

#include <jni.h > /** The Invocation API methods are declared here */

/** A pointer to an object encapsulating a Java VM representation */
JavaVM *jvm;

158

Chapter 13. Embedding a JVM

/** A pointer to a valid JNI environment */
JNIEnv *env;

/** A structure which contains the actual settings the JVM will operate un-
der */
JDK1_1InitArgs vmArgs;

...

Of these declarations, theJDK1_1InitArgs structure is the particularly interesting one. This structure
contains a number of fields which can be set changing the way in which the JVM will operate after
creation. The following table shows the contents of theJDK1_1InitArgs structure.

typedef struct JDK1_1InitArgs {
jint version;

char **properties;
jint checkSource;
jint nativeStackSize;
jint javaStackSize;
jint minHeapSize;
jint maxHeapSize;
jint verifyMode;
char *classpath;

jint (JNICALL *vfprintf)(FILE *fp, const char *format, va_list args);
void (JNICALL *exit)(jint code);
void (JNICALL *abort)();

jint enableClassGC;
jint enableVerboseGC;
jint disableAsyncGC;
jint verbose;
jboolean debugging;
jint debugPort;

} JDK1_1InitArgs;

The majority of these fields may be familiar to you if you have used thejava program shipped with the
Sun JDK or JRE. This program allows you to set various JVM operating parameters from command line
arguments. By sheer coincidence, many of those parameters correspond to the fields within this structure!

It is important that all the fields within this structure are initialized to valid values prior to creating a
JVM otherwise it is likely that either initialization will silently fail or the application will just keel over.

159

Chapter 13. Embedding a JVM

Fortunately, there’s a handy method defined in the Invocation API that will populate the structure with
platform-specific values. This method is calledJNI_GetDefaultJavaVMInitArgs() and it’s use can
be demonstrated with the following short program which populates the structure then displays the default
values.

/**
* showArgs1.cpp - Populates a JDK1_1InitArgs structure with default values
*/

#include <stdlib.h >

#include <jni.h >

int main() {

JDK1_1InitArgs vmArgs;

/** Get the default VM arguments */
JNI_GetDefaultJavaVMInitArgs(&vmArgs);

/** Print them all out */
printf("JNI Information\n");
printf("===============\n");
printf("\tJDK version: %#010x\n", vmArgs.version);
printf("\n");

printf("Properties and Classpath\n");
printf("========================\n");
printf("\tProperties: 0x%08x\n", vmArgs.properties);
printf("\tClasspath: %s\n",

(vmArgs.classpath == NULL) ? "not set" : vmArgs.classpath);
printf("\n");

printf("Class Loader Information\n");
printf("========================\n");
printf("\tCheck Source? %s\n",

(vmArgs.checkSource == JNI_TRUE) ? "yes" : "no");
printf("\tVerify Classes? %s\n",

(vmArgs.verifyMode == JNI_TRUE) ? "yes" : "no");
printf("\n");

printf("Garbage Collector Information\n");
printf("=============================\n");
printf("\tEnable Class GC? %s\n",

(vmArgs.enableClassGC == JNI_TRUE) ? "yes" : "no");

160

Chapter 13. Embedding a JVM

printf("\tEnable Verbose GC? %s\n",
(vmArgs.enableVerboseGC == JNI_TRUE) ? "yes" : "no");

printf("\tDisable Async GC? %s\n",
(vmArgs.disableAsyncGC == JNI_TRUE) ? "yes" : "no");

printf("\n");

printf("Debugging Information\n");
printf("=====================\n");
printf("\tRemote Debugging Enabled? %s\n",

(vmArgs.debugging == JNI_TRUE) ? "yes" : "no");
printf("\tRemote Debugging Port: %d\n", vmArgs.debugPort);
printf("\n");

printf("Memory Allocation Information\n");
printf("=============================\n");
printf("\tNative Thread Stack Size (bytes): %d\n",

vmArgs.nativeStackSize);
printf("\tJava Thread Stack Size (bytes): %d\n",

vmArgs.javaStackSize);
printf("\tMinimum JVM Heap Size (bytes): %d\n",

vmArgs.minHeapSize);
printf("\tMaximum JVM Heap Size (bytes): %d\n",

vmArgs.maxHeapSize);
printf("\n");

printf("Function Hooks\n");
printf("==============\n");
printf("\tvfprintf() @ %x\n", vmArgs.vfprintf);
printf("\texit() @ %x\n", vmArgs.exit);
printf("\tabort() @ %x\n", vmArgs.abort);

exit(0);
}

After compiling and running this program on Linux with JDK-1.1.7, the output of the program shows the
following default values.

JNI Information
===============
JDK version: 0x00010001

Properties and Classpath
========================
Properties: 0x00000000

161

Chapter 13. Embedding a JVM

Classpath: /opt/jdk1.1.7/lib/i386/green_threads/../../../classes:/opt/jdk1.1.7/lib/i386/gre e

Class Loader Information
========================
Check Source? no
Verify Classes? yes

Garbage Collector Information
=============================
Enable Class GC? yes
Enable Verbose GC? no
Disable Async GC? no

Debugging Information
=====================
Remote Debugging Enabled? no
Remote Debugging Port: 0

Memory Allocation Information
=============================
Native Thread Stack Size (bytes): 131072
Java Thread Stack Size (bytes): 409600
Minimum JVM Heap Size (bytes): 1048576
Maximum JVM Heap Size (bytes): 16777216

Function Hooks
==============
vfprintf() @ 0
exit() @ 0
abort() @ 0

It is extremely important to note the default states of these variables as altering them to setting other than
the default can cause unexpected stability or performance problems in your applications. As I elaborate
on each of the variables in theJDK1_1InitArgs structure, I shall point out what some of these caveats
are.

Theversion field contains a hexadecimal representation of the current JNI version. For example, a
JDK-1.1 JVM will return0x00010001 . This value corresponds to what the JNI methodGetVersion()

returns. You can decode this value by taking the high 16 bits of the value to represent themajor version
of Java and the lower 16 bits to represent theminor Java version. You can assign new values to this
variable causing the JVM to change modes of operation. For example, there have been several
enhancements added to the JNI and Invocation API for Java-2. By assigning an appropriate value to the
version variable, you can “turn on” and “switch off” these values depending on which version of the

162

Chapter 13. Embedding a JVM

API your code conforms to. Setting this value after JVM creation is not recommended. At best it will
have no effect, at worst it will crash your application.

You can also assign values to a group of variables that dictate the quantity of memory the JVM will
allocate for its own internal usage,i.e., its stackandheapsizes. These variables arenativeStackSize ,
javaStackSize , minHeapSize andmaxHeapSize and should be assigned an integerial value
specified inbytes. Alteration of these values can be useful if you know in advance that your application
has a high turnover of objects, for example. By allocating more heap space to the JVM, your application
may run faster by requiring less dynamic memory allocation for objects. However, it is also possible to
allocate too much space for the JVM which will cause your machine to page and swap more often
causing an degradation in overall system performance.

Another group of variables defined within this structure regulate operations on bytecode when loading
classes. These variables arecheckSource andverifyMode and signify whether or not the source of a
Java class is newer than the class when the class is loaded and whether or not the bytecode being loaded
should be passed through thebytecode verifierwhen loaded1. Both variables accept either the values of
JNI_TRUE or JNI_FALSE specifying their mode of operation.

You can also exert some level of control over the global garbage collector settings by altering the
variables namedenableClassGC , enableVerboseGC anddisableAsyncGC . All three variables take
a value of eitherJNI_TRUE or JNI_FALSE to specify the new mode of operation. Each variable has a
slightly different effect on JVM garbage collecting in thatenableClassGC allows garbage collection of
unused class information,enableVerboseGC enables the displaying of what the garbage collector is
doing as it does it anddisableAsyncGC alters the way in which the garbage collector runs. Garbage
collection usually occurs within a separate low-priority background thread and runs asynchronously of
the main application. The main effect of this is that unused classes and objects can be removed quietly
from the JVM without any obvious performance impacts on your applications. By disabling
asynchronous garbage collection, the garbage collection operations may run slightly faster, but your
application may be suspended during garbage collection. If a large quantity of redundant objects and
classes are being garbage collected, this may render your application almost unusable.

It is possible to configure the remote debugging capabilities of the JVM through two variables defined
within this structure. Thedebugging variable may be set to eitherJNI_TRUE or JNI_FALSE indicating
whether or not remote debugging capabilities are to be enabled or disabled. You may also specify the
port on which a Java debugger is configured to be listening on by assigning the port number, in integerial
form, to thedebugPort variable. Another useful variable within theJDK1_1InitArgs structure is
verbose which simply verbosely prints out what the JVM is up to. This is useful to watch class files
loading up to ensure the application is finding the correct classes to use. This variable takes either
JNI_TRUE or JNI_FALSE as its new value enabling or disabling verbose operation respectively.

TheJDK1_1InitArgs structure also defines threefunction hookswhich allows you to redefine the
operation of three JVM operations. The function hooks allow you to redefine what happens when the
JVM aborts, it prints out some diagnostic information or it exits. For example, if you wished to redirect

163

Chapter 13. Embedding a JVM

the output of the JVM’s operation as it runs verbosely, you can implement a customizedvfprintf()

function which writes the information out to a file. The following code stub illustrates this principle.

#include <jni.h >

#include <stdio.h >

/** The JVM initialization arguments */
JDK1_1InitArgs vmArgs;

static FILE *debugFile = NULL;
static jboolean fpCanWrite = JNI_TRUE;

/** Customized vfprintf() function that writes any diagnos-
tic data to a file */
jint (JNICALL myvfprintf)(FILE *fp, const char *fmt, va_list args) {

jint rv;

/** If the file isn’t already open..... */
if (debugFile == NULL) {

/** Have we tried opening it before? */
if (fpCanWrite == JNI_TRUE) {

/** No, so open the file up... */
if ((debugFile = fopen("vmdebug.out", "w")) == NULL) {

/** Yikes! We can’t open the file! Flag it as unopenable */
fpCanWrite = JNI_FALSE;
return -1;

}
}

}

/** Pass the data to the real vfprintf() */
rv = vfprintf(debugFile, fmt, args);

/** Flush the file and return the value from the “real” vfprintf() */
fflush(fp);
return rv;

}

/** The main application body */
int main(int argc, char **argv) {

/** Get the default VM arguments */
JNI_GetDefaultJavaVMInitArgs(&vmArgs);

164

Chapter 13. Embedding a JVM

/** Turn on verbose operation of the JVM */
vmArgs.verbose = JNI_TRUE;

/** Redirect vfprintf() to our customized function */
vmArgs.vfprintf = myvfprintf;

...
}

This example debugging function uses a static filehandle to write the data out to a file called
vmdebug.out . You could write the function to open and close a local filehandle for each debug message
printed out, but this may prove detrimental to the overall performance of your application. The other two
function hooks can be used in exactly the same way as the example above, obviously after changing the
function prototypes and return type to suit.

The only remaining variables in this structure that I have not discussed pertain to the setting of system
properties and the setting of the path in which class files may be found. These two variables are named
properties andclasspath respectively.

Theclasspath variable is by far the most important variable in the entire structure as it specifies a list
of directories, zip andjar files that class files can be found in. It is important to note that this includes
all the system classes such as those contained within thejava.lang package.

In JVMs conforming to JDK-1.1.3 or earlier, the default value of theclasspath variable wasNULLas
shown in the default values output above. This had the unfortunate effect that if you did not explicitly set
theclasspath variable in your application prior to callingJNI_CreateJavaVM() , none of the system
classes could be found and your application would die immediately. In JVMs conforming to JDK-1.1.4
and later, theclasspath field defaults to the value of theCLASSPATHenvironment variable as set in
your current shell which is slightly more sensible. The major problem inherent in the use of the
CLASSPATHenvironment variable is that if you ship your application to another user, you cannot
guarantee that their environment is setup in the same way as yours which may lead to your application
failing.

Another snag with setting theclasspath value within theJDK1_1InitArgs structure is that the actual
format of the classpath varies depending on the platform upon which the application is being run. For
example, the directory separator for UNIX is a forward slash (/), but on Windows a backslash is used
which needs to be escaped (\\). Similarly, on UNIX the separator between class file locations is a colon
(:) but Windows uses a semi-colon (;).

My usual solution to this problem is to use preprocessor definitions and specify both forms. This ensures
that your application will continue to run provided you keep the variables in synchronization! For
example

165

Chapter 13. Embedding a JVM

/** Virtual Machine initialization arguments */
JDK1_1InitArgs vmArgs;

/** Setup the classpath depending on platform */
#ifdef WIN32 /** Windows-only */
vmArgs.classpath = "c:\\jdk1.1.7\\lib\\classes.zip;c:\\dev\\classes";
#else /** WIN32 */
#ifdef UNIX
vmArgs.classpath = "/opt/jdk1.1.7/lib/classes.zip:/opt/descarte/dev/classes";
#else /** UNIX */
#ifdef MACOS
vmArgs.classpath = "Sys-
tem Folder: Java: Classes;Disk: Descarte: Dev: Classes";
#endif /** MACOS */
#endif /** UNIX */
#endif /** WIN32 */

A similar work-around solution for JVMs of version JDK-1.1.3 or earlier would be to just pick up the
CLASSPATHenvironment variable. For example

vmArgs.classpath = getenv("CLASSPATH");

Since theclasspath variable is simply a string, you can concatenate strings together usingstrcat()

or evensprintf() . This allows you to build classpath values suitable for your environment and
hopefully helps you avoid hard-coded values.

The final variable within theJDK1_1InitArgs structure is that ofproperties . This variable contains
an array of name & value pairs specifying the values of given properties. For example, if you were using
a mail reader which allowed you to set properties including one containing your email address, the name
/ value pair would be

email.emailAddress=descarte@arcana.co.uk

Within the context of the Invocation API, properties of this type can be set by creating an array of strings
containing these pairs. To create a property list with the above property, you would write

/** The JVM initialization structure */
JDK1_1InitArgs vmArgs;

/** Setup the properties that you want to pass into the JVM */
char *properties[] = {

"email.emailAddress=descarte@arcana.co.uk",

166

Chapter 13. Embedding a JVM

NULL
};

/** Assign your properties to the structure for initialization */
vmArgs.properties = properties;

You mustmake sure that you haveNULL-terminated the list of properties. Similarly, as with the setting of
theclasspath variable, any properties that refer to files must conform to the format expected for that
particular platform. Again, preprocessor directives could be used to control the correct specification for
multiple platform support.

The Java-2 Invocation API takes a slightly different approach to the allocation and specification of
arguments to be used when initializing a JVM. The data structure of typeJDK1_1InitArgs is quite
JVM-specific and results in a certain amount of unportability and general inflexibility regarding the
specification of a JVM configuration. The Java-2 defines a new opaque format for configuration
specification revolving around the structure of typeJavaVMInitArgs . This structure is defined as

typedef struct JavaVMInitArgs {
jint version;

jint nOptions;
JavaVMOption *options;
jboolean ignoreUnrecognized;

} JavaVMInitArgs;

in the Java-2 version ofjni.h . The way in which this structure is used to to allocate a single instance of
JavaVMInitArgs then further allocate the required number ofJavaVMOption structures to contain
information on each particular configuration option.

TheJavaVMOption structure is defined in the following way

typedef struct JavaVMOption {
char *optionString;
void *extraInfo;

} JavaVMOption;

and is essentially a strictly type name / value pair in that the name of the option is assigned to thename

variable and the appropriate value of that configuration option should be set in thevalue union.

Using this system is relatively simple and if you wished to configure a verbosely executing JVM with a
given classpath, you could write it as

/**

167

Chapter 13. Embedding a JVM

* showArgs2.cpp - Populates a VMInitArgs structure with default values
*/

#include <stdlib.h >

#include <jni.h >

int main() {

/** Arguments used to configure the JVM */
JavaVMInitArgs vmArgs;

/** Array of options for the JVM configuration. We need two elements */
JavaVMOption vmOptions[2];

/** Setup the base configuration */
vmArgs.version = 0x00010002;
vmArgs.nOptions = 2;

/** Setup the classpath option */
char *classpath = getenv("CLASSPATH");
sprintf(classpath, "-classpath %s", classpath);
vmOptions[0].optionString = classpath;

/** Setup the verbose option... */
vmOptions[1].optionString = "-verbose:gc,class";

/** Set the options within the base configuration */
vmArgs.options = vmOptions;

}

The major caveats with this form of configuration are that you must correctly specify the names of each
configuration option for it to work correctly. A further problem is that there is no way of enumerating the
options available for each JVM. Options that are not portable between JVMs are prefixed with an
underscore (_). For example, the initial and maximum heap size values are now called_ms and_mx.

However, all JVM implementations must support a small, but important, subset of configuration options
as standard. These areclasspath , properties , verbose , vprintf , exit andabort . All these
options conform to the descriptions given previously with the exception ofverbose . This parameter
now takes a comma-separated string containing the aspects of the JVM that you wish to report verbosely
on rather than a simple on-off toggle. Some sample values for this string aregc for verbose garbage
collection tracing,jni for verbose JNI tracing andclass which reports class loading activities.

168

Chapter 13. Embedding a JVM

One useful aspect of the Java-2 additions to theJavaVMInitArgs structure is that by specifying a value
of JNI_FALSE to theignoreUnrecognized field, any badly specified arguments will simply be
ignored.

A final bonus for using the Java-2 approach for JVM configuration is that the concept of
JNI_GetDefaultJavaVMArgs() does not exist anymore and there is no point in calling that method.

Really Creating The JVM!

Finally! Now that we have explored the various options available to you when you wish to create a new
Java Virtual Machine from within your native application, it’s time to actually create it!

Unfortunately, after all the build up and excitement of configuring all the various options available to
you, the actual JVM creation is extremely easy and requires you to invoke a single method, namely
JNI_CreateJavaVM() . I shall detail a short example in a moment that illustrates the whole procedure
from specifying some options within theJDK1_1InitArgs structure down to actually creating the JVM
and testing that it worksvia this small Java class.

public class testClass {

/** Static method which simply prints out a short message */
public static void printMessage() {

System.out.println("Hello from the Java test class!");
}

}

The corresponding native application which will use this Java class is

/**
* invtest.cpp
*
* Test embedding a JVM into an application using the Invocation API in
*/

#include <stdlib.h >

#include <string.h >

#include <jni.h >

/** The Java Virtual Machine representation */
JavaVM *jvm;

/** A JNI Environment pointer */
JNIEnv *env;

169

Chapter 13. Embedding a JVM

/** The initialization arguments for the JVM creation phase */
JDK1_1InitArgs vmArgs;

/** The main application */
int main() {

/** Set the basic classpath to point at the system class files */
char *classpath = "e:\\jdk1.3\\jre\\lib\\rt.jar";

/** Concatenate the custom directories to the classpath */
#ifdef WIN32

strcat(classpath, ";..\\..\\..\\classes");
#else

strcat(classpath, ":../../../classes");
#endif /** WIN32 */

/** Fetch the default VM initialization arguments */
JNI_GetDefaultJavaVMInitArgs(&vmArgs);

/** Configure the JVM initialization arguments for this application */
vmArgs.classpath = classpath;
vmArgs.verbose = JNI_TRUE;
vmArgs.enableVerboseGC = JNI_TRUE;

/** Create a new JVM */
#ifdef JNI_VERSION_1_2

JNI_CreateJavaVM(&jvm, (void **)&env, &vmArgs);
#else

JNI_CreateJavaVM(&jvm, &env, &vmArgs);
#endif /** JNI_VERSION_1_2 */

fprintf(stderr, "here\n");

/** Test that the JVM works by invoking a method in a test class */
jclass testClassClassblock = env->FindClass("testClass");
if (testClassClassblock == NULL) {

env->FatalError("testClassClassblock is NULL! Aborting!");
}

jmethodID printMessageMethodID =
env->GetStaticMethodID(testClassClassblock, "printMessage", "()V");

if (printMessageMethodID == NULL) {
env->FatalError("printMessageMethodID is NULL! Aborting!");

}

170

Chapter 13. Embedding a JVM

env->CallStaticVoidMethod(testClassClassblock, printMessageMethodID);

/** Destroy the JVM and deallocate all its resources */
jvm->DestroyJavaVM();

}

As you can no doubt see from the latter lines in this example, invoking the static method with the test
class is using the standard JNI methods that we have already discussed within the earlier section of this
chapter.

Attaching and Detaching Threads
The JVM creation technique that I outlined in the previous section suits single-thread applications
perfectly. However, if you wish to integrate a JVM into a multi-threaded program or more directly into
an operating system, you will rapidly hit problems.

The major difficulty with integration of a JVM into multi-threaded programs is the fact that theJNIEnv

function table pointers are generally invalid across multiple threads. That is, each thread will use a
completely differentJNIEnv 2.

However, being able to use a JVM created within your application from separate threads does seem like a
fairly useful thing to be able to do. For example, an application depending on constantly streamed data
from a network might read this data in a low priority background thread using a native method. It would
be extremely useful to be able to simply invoke a Java method to trigger some sort of update mechanism
within the application when new data is received. However, if the JVM embedded within the application
had not been created within the network reading thread, how does it invoke the appropriate Java method
safely?

The answer to this problem lies in two methods calledAttachCurrentThread() and
DetachCurrentThread() . AttachCurrentThread() does pretty much what the name implies. It
hooks the current thread into the JVM which you have already created and populates aJNIEnv data
structure with data pertinent to that thread. At this point, you can use the newJNIEnv structure to issue
JNI calls. For example,

/** Globally declared JVM embedded within the application */
extern JVM *jvm;

/**
* Handles network reads and screen updates accordingly. This function is
* the entry point for a native thread...

171

Chapter 13. Embedding a JVM

*/
void readAndRedraw() {

/** Return code from the network */
int returnCode = 0;

/** Make connection to network */
...

/**
* The JNIEnv environment pointer for this thread. This will be populated
* after thread attachment
*/

JNIEnv *env;

/**
* The arguments for the JVM. This will also be populated after thread
* attachment
*/

JDK1_1AttachArgs *threadArgs;

/** Attach this thread to the JVM before any JNI calls can be made! */
jvm->AttachCurrentThread(&env, &threadArgs);

/** Some commonly used Java information about the updater class */
jclass updaterClassblock =

env->FindClass("updater");
jmethodID doUpdateMethodID =

env->GetMethodID(updateClassblock, "doUpdate", "()V");

/** Some commonly used Java information about the main Java class */
jclass realTimeAppClassblock = env->FindClass("RealTimeApp");
jfieldID updaterFieldID =

env->GetStaticFieldID(realTimeAppClassblock, "_updater",
"Lupdater;");

jobject _updater =
env->GetStaticField(realTimeAppClassblock, updaterFieldID);

/** Infinitely loop until we get a network disconnect */
while (returnCode != 666) {

/** Read data from network */

/** Perform different actions depending on the data coming in */
switch (returnCode) {

case 333: {

172

Chapter 13. Embedding a JVM

/** Trigger the update */
env->CallObjectMethod(_updater,

doUpdateMethodID);

break;
}

default: {
break;

}
}

}

/** We’ve exited the loop at this point, so, detach the thread.... */
jvm->DetachCurrentThread();

}

WhenAttachCurrentThread() is called, two data structures are created, the afore-mentioned
JNIEnv information and a structure of typeJDK1_1AttachArgs which is populated with information.
Under JDK-1.1, this structure is empty and contains no information whatsoever!

However, under the Java-2 JNI SpecificationAttachCurrentThread() takes a new third parameter
conforming to the version of function table the second parameter is to be populated with. The third
parameter will take values of either0x00010001 which indicates a JDK-1.1 function table and
0x00010002 signifying a Java-2 function table. However, it still appears that nothing useful in placed in
the resulting data structure even in Java-2!

Finally, it is extremely important to detach any threads you have attached to the JVM once you’re
finished with them otherwise invocations ofDestroyJavaVM() will block until the thread is detached.
In the example above, the thread would die without detaching the thread from the JVM and this would
cause problems with JVM operation and eventual destruction. It is possible to diagnose whether or not
the current thread is attached to a particular JVM by using the Java-2 specificIsAttached() method.
This will returnJNI_TRUE if the current thread is attached to the given JVM andJNI_FALSE if not.
Please remember that a thread can only be attached tooneJVM at any time!

Destroying the JVM
The final stage of JVM interaction that should be taken from a native application is to explicitly destroy
the JVM once your application has finished using it. This ensures that all resource is completely
deallocated. Destruction of the JVM is very simple to achieve and is achieved by the Invocation API
method calledDestroyJavaVM() .

173

Chapter 13. Embedding a JVM

There are some catches to using this method in that the thread attempting to destroy the JVM must be the
only thread still running in the JVM. That is, you should not have attached any new thread and not
detached them otherwise theDestroyJavaVM() call will block until all other threads die. Also,
JDK-1.1 virtual machines do not support the unloading, or destruction, of a JVM. This has the side-effect
that the return status ofDestroyJavaVM() on a JDK-1.1 JVM is always-1 indicating failure.

Furthermore, the JDK-1.1 placed the restriction upon you that the thread in which the JVM was created
must always destroy the JVM. This restriction has been lifted in Java-2 in which any thread can destroy
the JVM. However, that thread must be the only one currently attached to the JVM at that point
otherwise, theDestroyJavaVM() call will block as usual.

Compiling Invocation API Programs
The way in which Invocation API programs are compiled and executed differs somewhat from the usual
native methods build style. By using the Invocation API, you are embedding Java into an existing
program, not implementing certain Java methods using native code. Therefore, the focus of the build is
moved away from creating an object, or shared library, that is “pulled into” the JVM at runtime to
compiling a standalone program that simply links with the JVM as well as other libraries.

Therefore, if all that is required to compile our standalone code that uses the Invocation API is to link
with some additional libraries, what are these and where are they? Under JDK-1.1.7, the library in
question for the Sun JVMs is calledlibjava.so on UNIX platforms andjavai.lib on Windows and
OS/2. This library can be found in thelib directory in your Java installation3. Simply add that library to
the list of libraries you are linking with to ensure that all the Invocation API functions are in place and
that Java will be present within your programs.

For Java-2 platforms, things get a little more complicated. On UNIX, the libraries in question can involve
libjvm.so andlibhpi.so 4. Under Win32, the library is simplyjvm.lib . These libraries are typically
found within thejre subdirectory of your Java installation.

To help clarify this, you should examine the sampleMakefile s and Visual Studio project files provided
with the example code.

Registering Native Methods Programmatically

A final topic of using the JVM in an embedded form that we shall cover is the topic of being able to
statically link native methods into your application. This essentially dispenses with the need to call
System.loadLibrary() , but requires you toregisteryour native methods with the JVM
programmatically. This technique is not specifically categorised as being part of the Invocation API, but
really only useful in this context.

The idea of registering your native methods through a static library instead of relying on dynamically

174

Chapter 13. Embedding a JVM

loaded them through a shared library is beneficial for two good reasons. Firstly, it greatly simplifies your
application deployment as your application executable will have your native methods statically linked
into it and, secondly, the security of your application improves. One potential issue with dynamic library
loading is that a malicious person could replace your native method implementations with a shared
library containing implementations that, instead of managing your data, might erase your hard disk, or
worse!

To register native methods within your application, you should write your program as usual. That is,
configure and create your JVM. However, before you locate the method IDs for your methods, you need
to initialise an array containing information on the native methods to register and register them. The
following stub of example code shows how to do this:

...

/** Configure the JVM... */
...

/** Create the JVM... */
#ifdef JNI_VERSION_1_2

JNI_CreateJavaVM(&jvm, (void **)&env, &vmArgs);
#else

JNI_CreateJavaVM(&jvm, &env, &vmArgs);
#endif /** JNI_VERSION_1_2 */

/** Test that the JVM works by invoking a method in a test class */
jclass testNativeClassClassblock = env->FindClass("testNativeClass");
if (testNativeClassClassblock == NULL) {

env->FatalError("testNativeClassClassblock is NULL! Aborting!");
}

/** Setup the native methods for registration */
JNINativeMethod nativeMethods[] = {

{ "printString", "(Ljava/lang/String;)V",
Java_testNativeClass_printString }

};

/** Register the native methods... */
jint numRegistered =

env->RegisterNatives(testNativeClassClassblock, nativeMethods, 1);
fprintf(stderr, "Successfully registered %d native methods\n", numRegis-

tered);
if (env->ExceptionOccurred() != NULL) {

env->ExceptionDescribe();
exit(1);

175

Chapter 13. Embedding a JVM

}

...

The description of the native methods is set up by creating an array ofJNINativeMethod structures,
one per native method to register. The elements of the structure are the name and the signature of the
native method and the function pointer of your implementation of the native method. The function
pointer is made accessible to your program by including the header file for the Java class containing the
native method.

Once this structure has been declared, you simply need to call theRegisterNatives() JNI method.
This associates the native methods from the JVM’s point of view with your implementations. Therefore,
once you invoke the native method, beit from your program or from Java, it’ll work. And all without
having to dynamically load the code!

It’s perhaps worth mentioning a potential caveat in usingRegisterNatives() that I tripped up on. If
you declare yourJNINativeMethod array before creating the JVM,RegisterNatives() will
probably fail and, when theNoSuchMethodError triggered by the call is checked, it states that the class
causing the problem is random text! Therefore, it’s worth declaring your array of native method
descriptors immediately before callingRegisterNatives() and to always check the return value is not
negative.

Finally, we should discuss the issue of static compilation. When compiling the program using the
Invocation API, we should simply additionally link the object file containing the native method
implementations along with our program object files. Therefore, we’ll simply end up with an application
program with the native method implementations included. The example code including sample
Makefile s and Visual Studio projects which should help you understand the process more clearly.

Embedding a JVM with RNI

Attaching To a JVM
The basic premise of using a JVM from within an existing application is that youattachthe current
thread of execution to the JVM such that RNI calls can be used throughout your application. These RNI
calls will operate in exactly the same way as if you were using native methods from a Java application.

The whole issue of the loading and initialization of the JVM occurs when you attach the first thread
using thePrepareThreadForJava() call. Therefore, there is no real explicit JVM startup sequence
that you need to perform. The JVM will initialize itself when required.

176

Chapter 13. Embedding a JVM

The term “thread” is worth explaining here in order to understand exactly how your native application
will interact with the JVM. A thread is a self-contained thread of execution within a program. In a
standard native C or C++ program, at least one thread will exist namely the “main” thread of execution.
If you have written a program that uses multi-threading, you will have several threads of execution
within one process. This is fundamentally identical to the use of threading within Java.

In the simplest case, if you have a single-threaded program you should only need to attach to the JVM
exactly once. That is, you only need to invokePrepareThreadForJava() once.

This function is quite simple to use as it takes a single argument which is a pointer to a thread
information structure of typeThreadEntryFrame and returns a boolean value indicating whether or not
the thread attached successfully to the JVM.

For example, the simplest example we can usefully implement can be written as

#include <windows.h >
#include <stdio.h >

#include <stdlib.h >

#include "../../rnidefs.h"
#include "testClass.h"

int main(int argc, char **argv) {

/** Structure containing information about the attached thread */
ThreadEntryFrame threadFrame;

/** Class information for the "testClass" class */
ClassClass *testClassClassblock;

/** Attempt to attach the thread to the JVM */
if (PrepareThreadForJava(&threadFrame) == TRUE) {

fprintf(stderr, "Attached thread to the JVM!\n");

/** Locate the classblock for "testClass" */
testClassClassblock = FindClass(NULL, "testClass", 0);
if (testClassClassblock == NULL) {

fprintf(stderr, "Failed to find class!\n");
exit(1);

}

/** Invoke the "printMessage()" method */
execute_java_static_method(NULL, testClassClassblock, "printMes-

sage", "()V");
} else {

fprintf(stderr, "Failed to attach the thread to Java\n");

177

Chapter 13. Embedding a JVM

}

/** Detach the thread... */
...

exit(0);
}

WhenPrepareThreadForJava() is invoked for that thread, the thread information structure is
populated with information pertinent to that attachment and should be stored for each attached thread as
it will be required later when detaching from the JVM.

In applications using multiple-threads,each threadrequiring interaction with the JVMmustattach to the
JVM prior to making any RNI calls otherwise undefined, but probably catastrophic, problems will occur.
For example, if your application created a separate thread to read streaming data from the network, but
the main thread exclusively handled the GUI, only the separate thread would need to call
PrepareThreadForJava() as no RNI access is needed within the main program thread.

Detaching From a JVM
The corollary operation from attaching a thread to a JVM is to detach that thread once you have no
further need to call back into the JVM from your native application. This operation should only ever be
undertaken for threads that are already attached to the JVM.

Detaching a thread from a JVM is extremely easy and can be achieved by calling the RNI function called
UnprepareThreadForJava() . This function takes a single argument which is the thread information
structure forthat threadpopulated whenPrepareThreadForJava() was successfully executed. Using
a thread information structure for a different thread is an extremely bad idea and can result in
catastrophic errors in your program!

To illustrate the use ofUnprepareThreadForJava() , we can re-implement the above example in the
following code.

/** We’re finished with RNI calls, so detach the thread */
UnprepareThreadForJava(&threadFrame);

Each thread attached to the JVM should have a corollary detach call to ensure that the JVM is not
destabilised in any way. This is especially important if you are interacting with a JVM that is perhaps
embedded within a device or within the operating system and is shared by multiple applications.

178

Chapter 13. Embedding a JVM

Notes
1. The “Java Virtual Machine” book published by O’Reilly should be consulted for more information

on these topics.

2. This is not necessarily the case, but it is an extremely sensible idea to assume that it is. This ensures
your code won’t break in strange places.

3. Depending on the platform, this file may be buried quite deep into the hierarchy. For example, for
Linux, the library is located in$JAVA_HOME/lib/i586/green_threads .

4. And, on Linux, the systemlibpthread.so .

179

Chapter 14. Native Rendering from Java
This chapter is designed to demonstrate some of the more practical uses for native methods programming
in conjunction with integrating legacy code. It also discusses one of the most commonly asked questions
I tend to get asked about native method programming and describes some of the problems inherent in
this activity.

Possibly the most frequently asked question I get asked by native methods programmers is “how do I
draw onto an AWT or Swing component from native

This capability has a myriad of uses in different types of applications ranging from 3-dimensional
rendering from a high-performance rendering library such asOpenGLor Direct3D, realtime video
streaming or even the display of documents in encoded formats such asPDF, PostScriptor even
Microsoft Word.

Establishing the how of doing this is simply a technological problem whereas establishingwhyyou’d
want to do this is a more thorny topic.

The main reason that drawing onto an existing Java component is useful is that you can treat the native
window as you would any Java component. This functionality encompasses aspects of Java such as
repainting partially or completely exposed windows and other event handling, such as mouse and
keyboard events. The bonus of using Java for these tasks is that your window handling code will be
totally portable. Therefore, all that is required from you is the underlying native code that provides data
to draw onto the AWT or Swing component.

This might sound great. In fact, it is great. This functionality, coupled with either existing legacy libraries
or new high-performance native code, can enable developers to deploy portable applications very quickly
as any GUI integration code need only be written once. This speeds up the development time of
multi-platform technologies quite dramatically and can lead to a far more stable and bug-free product.

Without this functionality, native code is constrained to creating its own “top-level” windows for drawing
into and handling its own window-system specific events for window manipulation. This destroys the
seamlessness of slotting, say, a realtime video stream into an video-conferencing application of which
90% of the code is written in Java.

There are three other good reasons for architecting your code to draw onto an AWT Component. The first
reason is one we have discussed in the previous chapters namely, why rewrite all that legacy code that
you know works? The second reason isspeed. Much as the gap in execution speeds between Java and
compiled code is closing steadily, Java will have a hard time beating the assembler-level hand-tuned
optimizations put into existing software such as OpenGL or a realtime video decoder. For these
applications, porting to Java would not only consume vast amounts of programmer-hours but it would
also result in a far more sluggish system. In the cases of 3D graphics or video decoding, speed is
everything. The final reason is that Java cannot take advantage of hardware accelerated operations, for
example, a 3D graphics accelerator card. By using native code to perform your rendering, you can take

180

Chapter 14. Native Rendering from Java

full advantage of the performance a hardware accelerator can give you. This is true for both 3D graphics
and other multimedia areas such as video playback.

However, there are some important caveats to these techniques, some political and others technical. From
a political point of view, using native code to render onto Java is most certainly not “100% Pure Java”.
The use of native methods in Java programs is generally frowned upon by the “Pure Java” proponents.
This fact has a knock-on effect into the technical issues.

There are several technical issues surrounding drawing onto Java components from native code. Firstly,
since native methods are not “Pure Java”, JavaSoft do not guarantee that the technique that we’re about
to explore will continue to be supported in future releases of the Sun JVM. This stems from the political
stance I mentioned in the previous paragraph. A further technical issue is that the way in which the
internal data is accessed uses internal Java classes. These classes are bundled with the Sun VM and
derivatives, but are regarded as being “subject to change” and should not be used directly by developers.
A final point is that the way in which these classes are manipulated varies between JVMs and operating
systems bringing up quite a few issues that must be clarified before true portability can occur.

The fact that the internal classes are subject to change is quite a worrying development. The way in
which underlying AWT information can be accessed from native methods changed radically for the
better between the release of JDK-1.0 and JDK-1.1 and above. Microsoft’s JVM uses its own proprietary
access path which has remained stable throughout all their JVMs.

Inside AWT Components
AWT components are a group of functional GUI parts that can be snapped together to build complex and
sophisticated user interfaces. The AWT is also completely window-system transparent and will translate
the platform-independent AWT calls and components into appropriate window-system specific widgets.

The architecture of the AWT is built around the concept of peer classes. Each AWT component had a
corresponding peer class which actually implemented the native method code that hooked into a
particular window system. Thus, the classes defined in thejava.awt package could be written
completely in Java with the peers handling the platform specific functionality. This system worked
perfectly well but consumed quite heavy quantities of memory to store internal structures for each of the
native window-system widgets and was tied closely to the underlying window-system. The peer
architecture was also quite difficult to extend and could only support components that had native code
written for them. Therefore, components that have an associated peer class is generally known as being a
“heavyweight” component.

Since heavyweight components are closely tied to the underlying window-system, each component has a
native window into which it is drawn. This allows us to locate the information on the window-system
resources that will enable us to “piggyback” our native rendering onto that window.

181

Chapter 14. Native Rendering from Java

Given that we will be writing an application that performs 3D rendering onto a window, it makes the
most sense to subclass thejava.awt.Canvas class which you can use in Java to draw onto. This will
allow us to slot our native rendering into an existing drawing framework with very little effort.

After all this hoo-hah, a good question still remains. What exactly is it that the peer class provides that is
needed to allow rendering to the AWT component? Native code generally will require some sort of
window handleto draw onto. In X Windows, this is usually called adrawableand is of data type
Window. In Win32, a generic window handle of data typeHWNDrepresents the window.

The ways in which we extract the window handle depends on both the operating system or window
system that the JVM is current running on as well as depending on the actual JVM implementation itself.
That is to say, the technique used for the Sun JVM is not the same as that used with the Microsoft JVM.
Similarly, the techniques differ slightly between UNIX and Win32 platforms.

The following sections will discuss how you can extract the window information from Java components
in various JVMs and also how to use this information safely within a multi-threaded environment, such
as Java.

Swing / JFC
To confuse matters further, the JDK-1.1 in advance of the newJava Foundation Classesor SwingAPI,
have shifted focus from the old architecture of usingpeerclasses to new “lightweight” components. This
impacts the ability to access internal window system information in order to draw onto the Java
component.

The main problem arises from the fact that where AWT components have a one-to-one mapping between
themselves and native window system information, Swing components do not. Swing components are
implemented purely within Java and use Java to draw themselves, not native code. This poses us a real
problem in terms of finding a valid native window to render onto.

Swing does touch AWT in a few places, typically to create top-level windows into which other Swing
components are drawn. Therefore, for a complex Swing GUI, there might be only one component with a
peer class that can be rendered into.

To confound things further, Swing components and heavyweight components are generally not rendered
at the same time which results in a particularly nasty problem known as thez-ordering problem. This
occurs when a heavyweight component is placed into a Swing-based GUI and the resulting effect is that
the heavyweight components will always hide any Swing components underneath!

Therefore, not only do we need to do a lot of extra work to find out the window information to render
into, we also need to be aware of potential z-ordering problems.

Finally, if we do decide to draw onto a Swing component from native code, the offset of that component
within its particular layout managers must be taken into account in order for the native code to render

182

Chapter 14. Native Rendering from Java

into the correct place. This is necessary because the target Swing component will be occupying the same
peered window as many other Swing components. Therefore, if we simply render to the entire peer
window instead of a defined region of that window, we’ll overwrite all the other Swing components.

Therefore, there are two general solutions to rendering to a Swing component from native code. One is to
take into account the fact that a peer class needs to be located within the GUI hierarchy, offsets need to
be calculated to work out where to draw and z-ordering issues need to be addressed before actually
renderingdirectly from native code to the peer window. The second approach is to render into a virtual
framebuffer, oroffscreen buffer, then use Java’s standardGraphics class to copy that buffer to the
Swing component.

Rendering Directly to Swing
If you decide to implement the first approach, the first thing you need to do is locate a peered component
within the GUI component hierarchy. This can be achieved by traversing recursively up the hierarchy
testing each component as you go until a heavyweight component is located. This is possible using the
isHeavyweight() method defined within the core SwingJComponent class. For example

Component c = Swing canvas to render onto;
while (JComponent.isLightweight(c)) {

/** Recurse up the hierarchy */
c = c.getParent();

}

This code will give you the heavyweight component that the target Swing component is using as a peer
and you can then usethiscomponent to extract the underlying window-system information as discussed
in later sections.

The larger problem is to correctly track the position of the target Swing component within the peer
window. That is, if we are rendering an image directly to a top-level window which contains a lot of
Swing components, we must make sure that we render exactly the correct size of image to exactly the
correct location, otherwise we’ll cause havoc with the displaying of the other components.

This is theoretically simple to do in that the target Swing component can be asked for its location and
dimensions. Unfortunately, the dimensions relate the the size of the component unaffected by
components within which it is contained which may alter the visible region of the target component. For
example, a scroller pane window will allow sub-regions of the target component to be visible without
affecting the actual component dimensions.

Furthermore, because of the way that Swing is architected, the offset of the target component is always
given as being the offset from itsparentcontainer and not the top-level window. Therefore, we need to

183

Chapter 14. Native Rendering from Java

recurse upwards through the component hierarchy again totally the offsets to determine where the native
code has to render to.

Sound a bit complicated yet? It gets worse. This doesn’t take into account things like internal frame title
bars or customized borders around components. If your target component is sitting within one of these
graphical entities, you need to make additional offset calculations to work out where to draw.

There is no straight-forward or surefire way to work this out although it is possible to implement a
solution targetted completely for your application. This will make things easier, but still not completely
straight-forward.

Rendering to a Virtual Framebuffer
Rendering to avirtual framebufferand copying that to the Swing component can be a simpler way of
integrating native rendering with Swing than direct rendering to a target Swing component.

The theory behind this technique is that the renderer renders its output to a virtual framebuffer, or
basically a block of memory representing a window, then uses the standard JavaGraphics class
methods to transfer that buffer to the Swing component. Since Swing components are implemented
purely in Java using theGraphics class, this technique slots quite nicely into the general scheme of
things.

Furthermore, you completely sidestep issues such as z-ordering and offset tracking. Z-ordering is cured
because you are rendering to the Swing componentvia Java as opposed to a native renderer and the
offset of the Swing component is already implicit within theGraphics object associated with each
Swing component.

This sounds great! All the benefits of the previous technique with none of the really horrible problems!

Not quite. This technique has several deficiencies, typically involving performance. The two main
problem areas are firstly, because a virtual framebuffer is being used, hardware acceleration will not be
used when rendering and secondly, because Java’s image manipulation and transfer APIs are being used1,
the performance of the transfer from virtual framebuffer to Swing component may be quite poor.
Therefore, if you decide to use this technique for native code rendering to a Swing component, be aware
that the performance may be totally unacceptable.

Summing up, it is currently extremely difficult to implement native code rendering to a Swing component
for various reasons. On one hand, you could implement the high-performance approach which requires a
lot of work in order to correctly track the rendering within the Swing hierarchy. On the other hand, you
can implement an easier approach which has potentially unacceptable performance. Neither way is
particularly satisfactory, to be honest. Sun are aware of these problems and are working to solve them.

184

Chapter 14. Native Rendering from Java

Locating Window Information
The first stage in rendering to an existing Java GUI component from native code is to locate the
window-system information for the window to which we wish to render.

This process differs literally on a per-JVM and a per-platform basis, so it can become quite difficult to
maintain over a large number of JVMs and platforms. This section simply discusseshowto extract the
information and a later section will discuss how to organize your window extraction code in a more
elegant and maintainable manner.

For the sake of simplicity, I’ve separated JVMs into two groups, those that are derived or follow the Sun
JVM implementation and the Microsoft JVM.

The SUN JVM and Derivatives
The Sun JVM is used by many vendors as a reference implementation to implement their their own JVM
technologies from. This situation ensures that a good bulk of these technologies all support JNI and the
techniques I’m about to tell you about. From your point of view, this ensures that you will get a
reasonably high level of coverage across deployed JVMs on end-user’s machines. It also means you don’t
need to maintain a horrendous number of source code branches to support all these virtual machines!

Drawing Surfaces

For the JDK-1.1 compliant virtual machine, Sun has engineered a new way in which underlying
windows are referenced. These windows are now termeddrawing surfacesand each AWT component
that supports native window access has a drawing surface associated with it.

Information on the drawing surface associated with a given AWT class can be accessedvia an interface
calledDrawingSurfaceInfo which describes a particular drawing surface. Each heavyweight class
implements thesun.awt.DrawingSurface interface which defines only one method namely
getDrawingSurfaceInfo() .

However, here’s the crunch.DrawingSurfaceInfo is simply a generic interface that provides no real
low-level information. To access the actual information on the drawing surfacefor the current operating
system, you need to use either thesun.awt.motif.MDrawingSurfaceInfo , the
sun.awt.windows.WDrawingSurfaceInfo class or thesun.awt.macos.ADrawingSurfaceInfo

class on X Windows / Motif platforms, Win32 and MacOS respectively. Figure illustrates the flow of this
code more clearly and the following code stub illustrates how you can access the low-level information
of a CustomCanvas object which is a simple subclass of thejava.awt.Canvas class.

185

Chapter 14. Native Rendering from Java

Figure 14-1. Drawing Surfaces

java.awt.Canvas

sun.awt.DrawingSurface

sun.awt.DrawingSurfaceInfo

sun.awt.win32.WDrawingSurfaceInfo

sun.awt.motif.MDrawingSurfaceInfo

implements

implements

superclass of

superclass of

/** Create a new drawing surface */
CustomCanvas c = new CustomCanvas();

/** Get the heavyweight peer object associated with this component */
ComponentPeer peer = c.getPeer();

/** Extract the drawing surface info for this surface via the peer */
DrawingSurfaceInfo dsi = ((DrawingSurface)peer).getDrawingSurfaceInfo();

/** Get hold of the OS we’re using... */
String os = System.getProperty("os.name");

/** ...and extract the underlying surface info appropriately.. */
if (os.startsWith("Windows")) {

/** Convert the opaque DrawingSurfaceInfo object..... */
sun.awt.windows.WDrawingSurfaceInfo wdsi =

(sun.awt.windows.WDrawingSurfaceInfo)dsi;

186

Chapter 14. Native Rendering from Java

/** Now extract the HWND handle for this window */
int hWND = wdsi.getHWnd();

/** Do our custom processing using this window handle.... */
...

} else {
if (os.startsWith("MacOS")) {

/** Convert the opaque DrawingSurfaceInfo object..... */
sun.awt.macos.ADrawingSurfaceInfo adsi =

(sun.awt.macos.ADrawingSurfaceInfo)dsi;

/** Now, extract the GWorld handle for this window... */
int gWorld = adsi.getPort();

/** Do our custom processing using this window handle... */
...

} else {
/** Assume we’re running on a UNIX system using Motif... */
/** Convert the opaque DrawingSurfaceInfo object... */
sun.awt.motif.MDrawingSurfaceInfo mdsi =

(sun.awt.motif.MDrawingSurfaceInfo)dsi;

/** Now, extract the Drawable pointer for this window... */
int drawable = mdsi.getDrawable();

/** Do our custom processing using this window handle... */
...

}
}

Each window system returns slightly different information for the window handles. For example, the
sun.awt.motif.MDrawingSurfaceInfo interface will return the X Window ID of the drawing
surface when thegetDrawable() method is invoked. Equally importantly, the ID of the X server
display is also accessiblevia thegetDisplay() method. Other items of potentially useful information
such as the ID of the allocated colourmap and X visual can also be accessedvia methods defined in this
interface.

187

Chapter 14. Native Rendering from Java

Figure 14-2. X11 Windowing Architecture

Visual

Screen

Screen

Screen

Drawable

Drawable

Drawable

Drawable

Drawable

Display

Display

Similarly, thesun.awt.win32.WDrawingSurfaceInfo interface returns information on a window
created under Win32. The methods defined in this interface are similar in function to those provided in
the Motif interface but differ slightly in terms of the underlying window system data they provide.

For example, window IDs under Win32 are represented by anHWNDvalue which is returned by the
getHwnd() method. Furthermore, in Win32 to draw to a window, a structure known as adevice context
is sometimes required. This too can be accessedvia getHdc() .

188

Chapter 14. Native Rendering from Java

Figure 14-3. Win32 Windowing Architecture

Device Context

Device Context

Device Context

Display

HWND

HWND

HWND

These values, whatever the window system, represent the underlying window ID that is encapsulated by
theCanvas class or another heavyweight component. Therefore, if you wished to draw onto an AWT
component from native code, these values represent the drawing surfaces to draw onto.

Of course, if you look at the return types of these functions, they simply returnint values notHWND

values orDisplay values. This is a neat trick that can be done with Java regarding storing structures or
memory areas allocated in native code within a Java class. Instead of storing the memory itself, you
simply copy thepointerto that memory into a Javaint value. Therefore, when you drop down into
native code, you simply cast theint to the appropriate type,i.e.,

int drawablePointer = ...; /** Value extracted by getDrawable() */
int displayPointer = ...; /** Value extracted by getDisplay() */
...
/** Get the pointer to the X display */
Display *dpy = (Display *)displayPointer;

/** Get the pointer to the X window */
Window *drawable = (Window *)drawablePointer;
...

The pointers to the native window structures, after casting, can be used immediately to draw or render
images onto the AWT component. However, a fully functional integration with Java components and

189

Chapter 14. Native Rendering from Java

native rendering is not quite as straight-forward as simply being able to draw. We also require the
capability to handle events being generated against that window. In this case, we have two options for
implementing code. The first option is to write native code event handlers which trap appropriate events
directly and route them accordingly within your application or you could use Java’s AWT event handlers
and integrate that event handling with native methods.

In legacy applications with custom event handlers, the first route might seem initially attractive, but you
must be aware that Java is a fully multi-threaded language and implements event handling on top of this
multi-threaded core. In these circumstances, your own event handlers within native code can potentially
cause problems if Javaalsotries to perform some operation on the same window.

These problems can be almost completely circumvented bylockingthe drawing surface prior to carrying
out any operations on it.

Locking Drawing Surfaces

Java is a multi-threaded environment which brings its own set of problems to native method
programming. This is more evident when integrating AWT, native methods and underlying
window-system functions since the underlying window system may not be “thread-safe”. This section
explains how locking can be performed by you to circumvent multi-threading issues that may arise in
your applications when integrating with AWT.

Thread-safeness is a term used to describe code that can be used within a multi-threaded environment
without being subject to “interference” or corruption when being run simultaneously by multiple threads.
Another term for functions that are thread-safe is that they arere-entrant. For example, code using and
updating values stored within global variables are not thread-safe. The following example has a single
global variable that can be updated from two functions that are driven from two threads. One function
updates the value by one, the other by ten.

int value = 0;

void thread1() {
while (1) {

value++;
printf("thread1: value = %d\n", value);

}
}

void thread2() {
while (1) {

value += 10;
printf("thread2: value = %d\n", value);

}

190

Chapter 14. Native Rendering from Java

}

Under normal circumstances, the desired effect would be that the value would print values like:

thread1: value = 0
thread2: value = 0
thread1: value = 1
thread2: value = 10
thread1: value = 2
thread2: value = 20
thread1: value = 3
thread2: value = 30
...

whereas in actual fact you are likely to end up with

thread1: value = 0
thread1: value = 1
thread2: value = 11
thread1: value = 21
thread1: value = 22
thread1: value = 23
thread2: value = 33
...

which is totally wrong. Since both threads are updating the same variable, each thread will corrupt the
value for the other thread causing bizarre problems for the developer to track down. A good example of
the problems that this can cause is thestrtok() string handling function defined in ANSI C. This
function stores a global pointer to track the position in a string. However, ifstrtok() is called from
multiple threads, the pointer value will be moved to potentially illegal positions within the wrong string
causing either program crashes or simply wrong results. Theerrno variable is another thread-unsafe
aspect of the standard C libraries.

Window systems, such as X11, also suffer from these problems, where global variables are used heavily2.
However, since Java is a multi-threaded environment this has the potential to cause problems.

Java provides “system threads” in its JVM to handle functionality that all users and programmers are
likely to want. For example, a system thread for garbage collection exists as do threads to handle AWT
functionality. The existence of these threads imply that the AWT is both asynchronous and
multi-thread-aware whereas X11 is simply asynchronous. Therefore, the possiblity of AWT events or
activity causing thread corruption in X11 is quite high but not predictable.

191

Chapter 14. Native Rendering from Java

The nature of these problems occur through the exercising of a effect known as arace condition. This
occurs when two resources compete for a single resource. Depending on which one wins the race for
resource, different effects may manifest in your code. For example, in the example above concerning the
global variables, if the two threads competed to update the value and the first thread won the first 6 races
the program would appear to run correctly. However, when the second thread wins, the program starts
behaving strangely and starts generating wrong answers.

This is quite important in windowing environments where operations take place asynchronously and also
may take a period of time to execute. Both of these aspects can exercise race conditions in the strangest
places providing you with false debugging information and useless stack traces. Therefore, a system
needs to be implemented that removes the threat of race conditions from your code.

The internal peer classes that the AWT uses all performlockingwhich is implemented internally within
the AWT. When any underlying window-system functionality is about to be used, the AWT will attempt
to acquire a lock which regulates access to the window-system functions. If another AWT thread is using
the window-system functions, the other thread will wait until the first thread releases that lock. This
ensures that only one thread can ever access the window-system functions at the same time and
circumvents the lack of thread-safety in these window systems.

Since you will be implementing code using the underlying window system and integrating this with
AWT peer classes, you will need to use the locking mechanisms that the
sun.awt.DrawingSurfaceInfo classes provide.

There are two methods in thesun.awt.DrawingSurfaceInfo classes that are used for locking. These
are namedlock() andunlock() . Thelock() method attempts to acquire the global AWT lock
required to allow you to call underlying window system functions. Similarly, you shouldalwayscall
unlock() after you are finished otherwise AWT will deadlock completely. It is also good programming
practice to lock as little code as you need otherwise performance of your application may suffer. That is,
in most cases it is only necessary to protect one function call that will use the underlying window system.
If the native method performs additional processing before or after the window-system call, you
shouldn’t lock this code at all since it will hold the lock much longer than is actually necessary. When
this happens, AWT itself will be waiting on the lock being released which might cause sluggish user
response times.

Under X11, you might see an error appear from the X server along the lines of:

Xlib: unexpected async reply (sequence 0x68fe)!

upon which your application locks up completely. This error occurs when the X server receives input
from two threads simultaneously causing a corruption internally in the X server. This is exactly the error
that explicitly locking and unlocking your peer class is designed to circumvent.

You may have noticed that X11 is discussed quite heavily in regard with problems caused by
multi-threading. Win32 platforms do not seem to be affected by these issues since Win32 is inherently

192

Chapter 14. Native Rendering from Java

thread-safe, but it is still prudent to explicitly lock and unlock your drawing surfaces rather than take the
chance of a stray event mangling your application.

A important regarding locking is that 3rd party libraries or legacy code that you might be interfacing
with in your native methods may also internally call window-system specific functions. A good example
of this is the OpenGL functionglViewport() which is usually called when the window containing an
OpenGL window is resized. This function resizes the various buffers that OpenGL uses to render into
and will call window-system specific functions internally. SinceglViewport() is an expensive
operation, there is a very good chance that AWT will attempt to asynchronously process another event
during aglViewport() call. Under X11, this will likely cause an error of the “unexpected async reply”
variety locking up your application. Therefore, to avoid this problem you should calllock() prior to
glViewport() andunlock() immediately afterwards. This will ensure that X does not trip up.

There is a caveat to lockingvia the drawing surface classes. If you need to lock a native method against
AWT interference when a drawing surface isnot involved, then this technique will not work. You have to
resort to slightly more underhand methods.

For example, you might wish to use an OpenGL offscreen rendering buffer. In this scenario, the buffer is
created independent of any drawing surfaces but is rendered to from native code and may use certain
window-system calls to copy data around. Without locking, there is a very real possibility that an AWT
call might execute simultaneously with an offscreen buffer operation. When this occurs, the application
will lock up completely.

A neat technique to circumvent this issue is to explicitly lock and unlock using the AWT monitor that all
AWT methods must acquire prior to performing any window-system operations.

Under Java-2 and above, this can be achieved by declaring a variable within your code corresponding to
the object used with the JVM for the AWT monitor. This should be declared as:

extern jobject awt_lock;

Locking and unlocking can now simply be achieved by calling the standard JNIMonitorEnter() and
MonitorExit() functions using theawt_lock variable as the object to lock on.

Avoiding these problems is extremely important since an error of this sort will cause your application to
unrecoverably lock up. There are no warnings, no exceptions and no second chances!

The AWT Native Interface

Another way in which you can locate window information has been introduced in JDK-1.3 called the
"AWT Native Interface". This is a collection of functions that allow you to interface with AWT
components directly from native code through a specifically designed API, as opposed to our slightly
sneaky back-door technique.

193

Chapter 14. Native Rendering from Java

The core of this API is implemented through native code reflections of the AWT DrawingSurface classes
that we have already discussed. As with the sneaky method, this AWT exposes the functionality critical
to manipulating AWT components such as acquiring and releasing drawing surfaces and locking and
unlocking those drawing surfaces prior to and after use.

For example, a simple drawing implementation using either X11 or Win32 might be written as

#include <jawt_md.h >

JNIEXPORT void JNICALL
Java_CustomCanvas_nPaint(JNIEnv *env, jobject arg) {

JAWT awt;
JAWT_DrawingSurface *ds;
JAWT_DrawingSurfaceInfo *dsi;

#ifdef HAVE_LIBX11
JAWT_X11DrawingSurfaceInfo *dsi;

#else
JAWT_Win32DrawingSurfaceInfo *dsi;

#endif

/** The AWT version must be set prior to using the API */
awt.version = JAWT_VERSION_1_3;
if (JAWT_GetAWT(env, &awt) == JNI_FALSE) {

fprintf(stderr, "Cannot locate AWT!\n");
return;

}

/** Get the drawing surface for the component */
ds = awt.GetDrawingSurface(env, arg);

/** Lock the drawing surface */
ds->Lock(ds);

/** If failed to acquire the lock, release the drawing surface and re-
turn */

if (lock & JAWT_LOCK_ERROR) != 0) {
fprintf(stderr, "Failed to lock drawing surface\n");
awt.FreeDrawingSurface(ds);
return;

}

/** Get the drawing surface info */
#ifdef HAVE_LIBX11

dsi = (JAWT_X11DrawingSurfaceInfo *)dsi->platformInfo;
#else

194

Chapter 14. Native Rendering from Java

dsi = (JAWT_Win32DrawingSurfaceInfo *)dsi->platformInfo;
#endif

/** Do our drawing through the window-system structures in ’dsi’ */
...

/** Free the drawing surface info */
ds->FreeDrawingSurfaceInfo(dsi);

/** Unlock the drawing surface */
ds->Unlock(ds);

/** Free the drawing surface */
awt.FreeDrawingSurface(ds);

return;
}

The important things to note about this interface are, firstly, that each drawing surface info structure
contains platform-dependent information and must be conditionally compiled for each platform and,
secondly, that if you acquire a lock on a drawing surface, youmustremember to release it! If you fail to
do so, your application will hang the AWT!

The Microsoft JVM
The Microsoft JVM was originally based on the Sun reference JVM implementation. However, over the
years it has mutated into being an extremely powerful Win32-specific technology capable of executing
Java bytecode at an astonishing rate due to optimized garbage collection and excellent JIT capabilities.

Microsoft realized before Sun that programmers might wish to access the underlying window that an
AWT component encapsulates and provided a standard3 mechanism to do this.

The Microsoft JVM has defined a Microsoft-specific interface which most AWT component classes
implements namedcom.ms.awt.peer.ComponentPeerX . This interface defines several methods
which allow you to locate window handles for Win32 windows. The method that is of most use for
rendering into an AWT component from native code isgetHwnd() which returns theHWNDvalue for the
given AWT component. And that’s literally all there is to it!

For example, if you have a class that extendsjava.awt.Canvas , you can invokegetHwnd() against
an object instantiated from that class immediately. There are no additional layers of indirection to
support platform independence. A piece of Java code to extract theHWNDvalue from a given class is

195

Chapter 14. Native Rendering from Java

/** Our component class that is rendered onto from native code */
CustomCanvas dragc = new CustomCanvas(200, 200);

/** Extract the pointer to the HWND of this component */
int hwndPointer = dragc.getHwnd();

/** Do some native processing */
dragc.createNativeWindow(hwndPointer);

This value can then be passed into native code as an integer and cast to theHWNDdata type for use in the
native Win32 functions for window manipulation. For example

RNIEXPORT void RNICALL
CustomCanvas_createNativeWindow(struct HCustomCanvas *canvas,

long hwndPointer) {

/** Cast the extracted value to HWND */
HWND windowHandle = (HWND)hwndPointer;

/** Do some Win32-specific stuff */
...

}

Although this extracting the window handle is extremely easy, there are some major problems that you
might encounter when implementing code in the Microsoft JVM. The most common occurrence of these
issues arises from the interaction between multi-threading and window handling which I shall discuss
later in this chapter.

Integrating Native Rendering and AWT
The previous sections of this chapters discussed the techniques that can be applied to the commoner
JVMs in order to support rendering or drawing to an AWT or Swing component from native code. The
other aspect, and the aspect that will be visible to programmers wishing to use this functionality, is to
integrate this native rendering capability into the AWT way of doing things such that Java applications
can use it easily.

The AWT is designed around the principle of components and listeners. That is, each AWT component,
such as aCanvas , can have listeners attached to it through which events of a certain type are routed. For
example, if you wished to track the position of the mouse whilst it is over a particular AWT component,
you would register aMouseMotionListener against that component. Therefore, whenever the

196

Chapter 14. Native Rendering from Java

underlying window system picks up an event signifying that the mouse has moved, a Java AWT event is
routed into Java for you to query. Figure illustrates the concept.

Figure 14-4. AWT Event Routing

Registered MouseListener
Registered MouseMotionListener

Screen Display

X/Win32/MacOS Event

AWT translates event into an AWT Event

Java AWT Event

Using these event listeners seems like a good thing to do. They encourage structured event handling, they
are completely portable and, from my personal point of view, turn event handling code into something
that isn’t complete gibberish. You can actually follow what’s supposed to be happening.

Therefore, by rendering directly onto an AWT component from native code, we automatically are
blessed with the ability to use the event listener mechanisms present in AWT straight away.

The most important functionality that graphical components generally require is the ability to refresh or
repair damage to the window either from hiding and showing the window or the window appearing in the
first place. Similarly, this functionality usually doubles up to redraw the screen when the data in your
application is to be drawn. For example, the application will request a screen refresh whenever
something moves in the world.

In X Windows you are required to trackExposure eventsto allow for window repainting. These events
are generated whenever a window is “brought-forward” from behind another window, or part of the
window needs redrawn for whatever reason. Not only are you required to trap these events, but you also

197

Chapter 14. Native Rendering from Java

need to parse them for the appropriate redraw information to correctly refresh the window, or part of a
window, that has been exposed. This sounds pretty painful and, believe me, it can be. Can we improve on
this by using AWT’s event mechanism?

Of course we can. Each AWT component uses two methods calledrepaint() andpaint() to regulate
component redrawing when exposed. Because of the way that AWT sits on top of the underlying window
system, whenever an exposure event is trapped, AWT simply calls thepaint() or repaint() methods
for the appropriate components.

From the native rendering perspective, this is ideal in that we only need one entry point to the underlying
native code to handle screen redrawing. This native method simply needs to be called within a custom
paint() andrepaint() method in order to completely satisfy our needs.

Putting these different pieces of the jigsaw together, we can write a fairly straight-forward AWT
component that allows native rendering to be performed in the following way.

import java.awt.*;

public class CustomCanvas extends Canvas {

/** Native method that performs initialization of the native window */
private boolean nInitialize();

/** A value used to store the pointer to the underlying window data */
private int pData = -1;

/** Native method used to repaint the window when required */
private void nRepaint();

/** Overridden painting methods */
public void paint(Graphics g) {

/** Re-render the scene and display it */
nRepaint();

}

/** Repaints the component */
public void repaint() {

/** Re-render the scene and display it */
nRepaint();

}
}

This component would have the corresponding native implementations of thenInitialize() and
nRepaint() methods implemented using one of the techniques discussed earlier in this chapter.

198

Chapter 14. Native Rendering from Java

This general framework will work portably across X-based, Win32, MacOS and OS/2 using JNI and
Win32 using Microsoft’s JVM. The worst part by far is dealing with the extraction of the window
information, but once that stage has been accomplished, manipulation of the low-level windows is
actually quite straight-forward as the AWT has taken most of the pain of event handling away.

The benefits of this approach are fairly immediate in that your Java code will now be totally portable and
make GUI development far easier since the majority of horrors is now hidding “under the hood”. This
can only be a good thing.

Summing Up
This chapter has only begun to scratch the surface of the uses and power inherent in integrating custom
AWT components native rendering code. There are many pitfalls, more than I could possibly hope to list
and elucidate in this book. The number of pitfalls increases exponentially as you migrate your code to
different JVMs and different operating systems, but my personal view is that it’s worth the effort. The
relief in not having to write explicit Motif or Win32 event handlers is beyond measure!

This chapter has also concentrated on rendering to native windows. I have not specified any particular
way in which this rendering is to occur but merely left it blank. This blank is where your legacy code and
applications comes in. The techniques outlined in this chapter will provide you with a window to draw
onto but what you draw is entirely up to you. It could be 3D graphicsvia OpenGL or a Word document,
PDF, PostScript, real-time video...the list is endless.

All of the above are possible and you too can reap the benefits of Java’s flexibility and ease of use
coupled with the raw performance that native code and possible hardware acceleration can give you. Not
to mention deploy some awesomely powerful applications that’ll impress your users no end!

Notes
1. Such asImageProducer andImageConsumer .

2. X11R6 is now thread-safe on many popular UNIX platforms. You can use a function called
XInitThreads() to check whether your X libraries and X server have been built in a thread-safe
configuration. Solaris is known to be thread-safe, whereas Linux generally is not. Linux, however,
can be re-built to be thread-safe using the GNUglibc and LinuxThreads. This task is outwith the
scope of this book.

3. By standard, I mean that it exists in both versions 1 and 2 of the Microsoft JVM. Whether or not it
will continue to be supported remains to be seen. However, Microsoft’s proprietary J/Direct
technology also seems to use this functionality internally which bodes well for continuing support.

199

Chapter 15. JNI Function Reference
This chapter contains quick reference material for the JNI functions. It covers Version 1.2 of the JNI,
which is the current version as of Java 2 SDK Version 1.3. Collections of related functions that vary only
by the type of data on which they operate appear under special parametric headings. For example, all the
functions that call non-static methods are listed under “Call<Type>Method”.

AllocObject

Name
AllocObject —

Synopsis

jobject AllocObject(JNIEnv *env, jclass clazz)

Parameters

env

The native interface pointer

clazz

The class information of the class to be instantiated

Description
Allocates a new object of the given class, but does not call any of the object’s constructors

200

Chapter 15. JNI Function Reference

AttachCurrentThread

Name
AttachCurrentThread —

Synopsis

jint AttachCurrentThread(JavaVM *vm, void **penv, jint version)

Parameters

vm

The JVM to attach to

penv

The native interface pointer

version

The required version of the JNI function table

Description
Attaches the current thread of execution within the native program to the specified JVM. This allows you
to interface directly with the JVM from that thread.

201

Chapter 15. JNI Function Reference

Call<Type>Method

Name
Call <Type>Method —

Synopsis

jboolean CallBooleanMethod(JNIEnv *env, jobject obj, jmethodID methodID,
args)

jbyte CallByteMethod(JNIEnv *env, jobject obj, jmethodID methodID, args)
jchar CallCharMethod(JNIEnv *env, jobject obj, jmethodID methodID, args)
jdouble CallDoubleMethod(JNIEnv *env, jobject obj, jmethodID metho-
dID, args)
jfloat CallFloatMethod(JNIEnv *env, jobject obj, jmethodID methodID, args)
jint CallIntMethod(JNIEnv *env, jobject obj, jmethodID methodID, args)
jlong CallLongMethod(JNIEnv *env, jobject obj, jmethodID methodID, args)
jobject CallObjectMethod(JNIEnv *env, jobject obj, jmethodID methodID,

args)
jshort CallShortMethod(JNIEnv *env, jobject obj, jmethodID methodID, args)
void CallVoidMethod(JNIEnv *env, jobject obj, jmethodID methodID, args)

Parameters

env

The native interface pointer

obj

The Java object against which to invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in comma-separated form

202

Chapter 15. JNI Function Reference

Description
CallBooleanMethod() , CallByteMethod() , CallCharMethod() , CallDoubleMethod() ,
CallFloatMethod() , CallIntMethod() , CallLongMethod() , CallObjectMethod() ,
CallShortMethod() , andCallVoidMethod() all invoke the specified Java instance method with the
indicated return type on the given Java object. The result of the method is returned as a value of the
appropriate type. The method is specified by a unique method identifier previously fetched with
GetMethodID() . Each argument that the method expects should be supplied in a comma-separated list.

Call<Type>MethodA

Name
Call <Type>MethodA —

Synopsis

jboolean CallBooleanMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jbyte CallByteMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jchar CallCharMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jdouble CallDoubleMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jfloat CallFloatMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jint CallIntMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jlong CallLongMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jobject CallObjectMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

jshort CallShortMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

void CallVoidMethodA(JNIEnv *env, jobject obj,
jmethodID methodID, jvalue *args)

203

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

obj

The Java object against which to invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified as an array ofjvalues

Description
CallBooleanMethodA() , CallByteMethodA() , CallCharMethodA() , CallDoubleMethodA() ,
CallFloatMethodA() , CallIntMethodA() , CallLongMethod()A , CallObjectMethodA() ,
CallShortMethodA() , andCallVoidMethodA() all invoke the specified Java instance method with
the indicated return type on the given Java object. The result of the method is returned as a value of the
appropriate type. The method is specified by a unique method identifier previously fetched with
GetMethodID() . Each argument that the method expects should be supplied as an array ofjvalues .

Call<Type>MethodV

Name
Call <Type>MethodV —

Synopsis

jboolean CallBooleanMethodV(JNIEnv *env, jobject obj,
jmethodID methodID, va_list args)

jbyte CallByteMethodV(JNIEnv *env, jobject obj,

204

Chapter 15. JNI Function Reference

jmethodID methodID, va_list args)
jchar CallCharMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)
jdouble CallDoubleMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)
jfloat CallFloatMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)
jint CallIntMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)
jlong CallLongMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)
jobject CallObjectMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)
jshort CallShortMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)
void CallVoidMethodV(JNIEnv *env, jobject obj,

jmethodID methodID, va_list args)

Parameters

env

The native interface pointer

obj

The Java object against which to invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in a varargs list

Description
CallBooleanMethodV() , CallByteMethodV() , CallCharMethodV() , CallDoubleMethodV() ,
CallFloatMethodV() , CallIntMethodV() , CallLongMethodV() , CallObjectMethodV() ,
CallShortMethodV() , andCallVoidMethodV() all invoke the specified Java instance method with
the indicated return type on the given Java object. The result of the method is returned as a value of the

205

Chapter 15. JNI Function Reference

appropriate type. The method is specified by a unique method identifier previously fetched with
GetMethodID() . Each argument that the method expects should be supplied in the form of an ANSI
varargs list.

CallNonvirtual <Type>Method

Name
CallNonvirtual <Type>Method —

Synopsis

jboolean CallNonvirtualBooleanMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jbyte CallNonvirtualByteMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jchar CallNonvirtualCharMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jdouble CallNonvirtualDoubleMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jfloat CallNonvirtualFloatMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jint CallNonvirtualIntMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jlong CallNonvirtualLongMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jobject CallNonvirtualObjectMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

jshort CallNonvirtualShortMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

void CallNonvirtualVoidMethod(JNIEnv *env, jobject obj, jclass clazz,
jmethodID methodID, args)

206

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

obj

The Java object against which to invoke the method

clazz

The class in which to actually invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in the comma-separated form

Description
CallNonvirtualBooleanMethod() , CallNonvirtualByteMethod() ,
CallNonvirtualCharMethod() , CallNonvirtualDoubleMethod() ,
CallNonvirtualFloatMethod() , CallNonvirtualIntMethod() ,
CallNonvirtualLongMethod() , CallNonvirtualObjectMethod() ,
CallNonvirtualShortMethod() , andCallNonvirtualVoidMethod() all invoke the specified
Java method with the indicated return type in the given Java class on the given Java object. The specified
class must be a superclass of the class of the specified Java object. The result of the method is returned as
a value of the appropriate type. The method is specified by a unique method identifier previously fetched
with GetMethodID() . Each argument that the method expects should be supplied in a comma-separated
list.

207

Chapter 15. JNI Function Reference

CallNonvirtual <Type>MethodA

Name
CallNonvirtual <Type>MethodA —

Synopsis

jboolean CallNonvirtualBooleanMethodA(JNIEnv *env, job-
ject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jbyte CallNonvirtualByteMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jchar CallNonvirtualCharMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jdouble CallNonvirtualDoubleMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jfloat CallNonvirtualFloatMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jint CallNonvirtualIntMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jlong CallNonvirtualLongMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jobject CallNonvirtualObjectMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
jshort CallNonvirtualShortMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)
void CallNonvirtualVoidMethodA(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, jvalue *args)

Parameters

env

The native interface pointer

obj

The Java object against which to invoke the method

208

Chapter 15. JNI Function Reference

clazz

The class in which to actually invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in an array ofjvalues

Description
CallNonvirtualBooleanMethodA() , CallNonvirtualByteMethodA() ,
CallNonvirtualCharMethodA() , CallNonvirtualDoubleMethodA() ,
CallNonvirtualFloatMethodA() , CallNonvirtualIntMethodA() ,
CallNonvirtualLongMethodA() , CallNonvirtualObjectMethodA() ,
CallNonvirtualShortMethodA() , andCallNonvirtualVoidMethodA() all invoke the specified
Java method with the indicated return type in the given Java class on the given Java object. The specified
class must be a superclass of the class of the specified Java object. The result of the method is returned as
a value of the appropriate type. The method is specified by a unique method identifier previously fetched
with GetMethodID() . Each argument that the method expects should be supplied as an array of
jvalues .

CallNonvirtual <Type>MethodV

Name
CallNonvirtual <Type>MethodV —

Synopsis

jboolean CallNonvirtualBooleanMethodV(JNIEnv *env, job-
ject obj, jclass clazz,

jmethodID methodID, va_list args)
jbyte CallNonvirtualByteMethodV(JNIEnv *env, jobject obj, jclass clazz,

209

Chapter 15. JNI Function Reference

jmethodID methodID, va_list args)
jchar CallNonvirtualCharMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)
jdouble CallNonvirtualDoubleMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)
jfloat CallNonvirtualFloatMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)
jint CallNonvirtualIntMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)
jlong CallNonvirtualLongMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)
jobject CallNonvirtualObjectMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)
jshort CallNonvirtualShortMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)
void CallNonvirtualVoidMethodV(JNIEnv *env, jobject obj, jclass clazz,

jmethodID methodID, va_list args)

Parameters

env

The native interface pointer

obj

The Java object against which to invoke the method

clazz

The class in which to actually invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in a varargs list

210

Chapter 15. JNI Function Reference

Description
CallNonvirtualBooleanMethodV() , CallNonvirtualByteMethodV() ,
CallNonvirtualCharMethodV() , CallNonvirtualDoubleMethodV() ,
CallNonvirtualFloatMethodV() , CallNonvirtualIntMethodV() ,
CallNonvirtualLongMethodV() , CallNonvirtualObjectMethodV() ,
CallNonvirtualShortMethodV() , andCallNonvirtualVoidMethodV() all invoke the specified
Java method with the indicated return type in the given Java class on the given Java object. The specified
class must be a superclass of the class of the specified Java object. The result of the method is returned as
a value of the appropriate type. The method is specified by a unique method identifier previously fetched
with GetMethodID() . Each argument that the method expects should be supplied in an ANSI varargs
list.

CallStatic <Type>Method

Name
CallStatic <Type>Method —

Synopsis

jboolean CallStaticBooleanMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jbyte CallStaticByteMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jchar CallStaticCharMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jdouble CallStaticDoubleMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jfloat CallStaticFloatMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jint CallStaticIntMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jlong CallStaticLongMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jobject CallStaticObjectMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jshort CallStaticShortMethod(JNIEnv *env, jclass clazz,

211

Chapter 15. JNI Function Reference

jmethodID methodID, args)
void CallStaticVoidMethod(JNIEnv *env, jclass clazz,

jmethodID methodID, args)

Parameters

env

The native interface pointer

obj

The Java class against which to invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in comma-separated form

Description
CallStaticBooleanMethod() , CallStaticByteMethod() , CallStaticCharMethod() ,
CallStaticDoubleMethod() , CallStaticFloatMethod() , CallStaticIntMethod() ,
CallStaticLongMethod() , CallStaticObjectMethod() , CallStaticShortMethod() , and
CallStaticVoidMethod() all invoke the specified Java class (static) method with the indicated
return type on the given Java object. The result of the method is returned as a value of the appropriate
type. The method is specified by a unique method identifier previously fetched withGetMethodID() .
Each argument that the method expects should be supplied in a comma-separated list.

CallStatic <Type>MethodA

Name
CallStatic <Type>MethodA —

212

Chapter 15. JNI Function Reference

Synopsis

jboolean CallStaticBooleanMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jbyte CallStaticByteMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jchar CallStaticCharMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jdouble CallStaticDoubleMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jfloat CallStaticFloatMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jint CallStaticIntMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jlong CallStaticLongMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jobject CallStaticObjectMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

jshort CallStaticShortMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

void CallStaticVoidMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, jvalue *args)

Parameters

env

The native interface pointer

obj

The Java class against which to invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in an array ofjvalues

213

Chapter 15. JNI Function Reference

Description
CallStaticBooleanMethodA() , CallStaticByteMethodA() , CallStaticCharMethodA() ,
CallStaticDoubleMethodA() , CallStaticFloatMethodA() , CallStaticIntMethodA() ,
CallStaticLongMethodA() , CallStaticObjectMethodA() , CallStaticShortMethodA() , and
CallStaticVoidMethodA() all invoke the specified Java class (static) method with the indicated
return type on the given Java object. The result of the method is returned as a value of the appropriate
type. The method is specified by a unique method identifier previously fetched withGetMethodID() .
Each argument that the method expects should be supplied as an array ofjvalues .

CallStatic <Type>MethodV

Name
CallStatic <Type>MethodV —

Synopsis

jboolean CallStaticBooleanMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jbyte CallStaticByteMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jchar CallStaticCharMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jdouble CallStaticDoubleMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jfloat CallStaticFloatMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jint CallStaticIntMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jlong CallStaticLongMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jobject CallStaticObjectMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

jshort CallStaticShortMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

void CallStaticVoidMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

214

Chapter 15. JNI Function Reference

jchar CallStaticCharMethod(JNIEnv *env, jclass clazz,
jmethodID methodID, args)

jchar CallStaticCharMethodA(JNIEnv *env, jclass clazz,
jmethodID methodID, yjvalue *args)

jchar CallStaticCharMethodV(JNIEnv *env, jclass clazz,
jmethodID methodID, va_list args)

Parameters

env

The native interface pointer

obj

The Java class against which to invoke the method

methodID

The unique identifier for a Java method

args

The correct number of arguments for the method, specified in a varargs list

Description
CallStaticBooleanMethodV() , CallStaticByteMethodV() , CallStaticCharMethodV() ,
CallStaticDoubleMethodV() , CallStaticFloatMethodV() , CallStaticIntMethodV() ,
CallStaticLongMethodV() , CallStaticObjectMethodV() , CallStaticShortMethodV() , and
CallStaticVoidMethodV() all invoke the specified Java class (static) method with the indicated
return type on the given Java object. The result of the method is returned as a value of the appropriate
type. The method is specified by a unique method identifier previously fetched withGetMethodID() .
Each argument that the method expects should be supplied in an ANSI varargs list.

215

Chapter 15. JNI Function Reference

DefineClass

Name
DefineClass —

Synopsis

jclass DefineClass(JNIEnv *env, const char *name, jobject loader,
const jbyte *buf, jsize bufLen)

Parameters

env

The native interface pointer

name

The fully-qualified name of the class to create

loader

A ClassLoader object

buf

An allocated buffer that contains the raw byte codes that define the class

bufLen

The size of the buffer

Description
Defines a new Java class from raw byte codes.

216

Chapter 15. JNI Function Reference

DeleteGlobalRef

Name
DeleteGlobalRef —

Synopsis

void DeleteGlobalRef(JNIEnv *env, jobject globalRef)

Parameters

env

The native interface pointer

globalRef

The previously created global reference to delete

Description
Deletes a global reference that has been created for an object.

DeleteLocalRef

Name
DeleteLocalRef —

217

Chapter 15. JNI Function Reference

Synopsis

void DeleteLocalRef(JNIEnv *env, jobject localRef)

Parameters

env

The native interface pointer

localRef

The local reference, or Java object, to garbage collect

Description
Marks an object as ready for garbage collection and causes it to be removed from memory as soon as
possible.

DeleteWeakGlobalRef

Name
DeleteWeakGlobalRef —

Synopsis

void DeleteWeakGlobalRef(JNIEnv *env, jweak obj)

Availability
Java 2 SDK Version 1.2 and later

218

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

obj

The weak global reference

Description
Deletes the given weak global reference.

DestroyJavaVM

Name
DestroyJavaVM —

Synopsis

jint DestroyJavaVM(JavaVM *vm)

Parameters

vm

The JVM to destroy

Description
Destroys the specified Java Virtual Machine.

219

Chapter 15. JNI Function Reference

DetachCurrentThread

Name
DetachCurrentThread —

Synopsis

jint DetachCurrentThread(JavaVM *vm)

Parameters

vm

The JVM to detach from

Description
Detaches a previously attached thread from the given JVM. After this function has executed, you cannot
interface with the JVM from this thread until you reattach to the JVM.

EnsureLocalCapacity

Name
EnsureLocalCapacity —

Synopsis

jint EnsureLocalCapacity(JNIEnv *env, jint capacity)

220

Chapter 15. JNI Function Reference

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

capacity

The minimum number of required local references

Description
Indicate to the developer whether or not a potentially large number of local references can be allocated
within the current native method prior to attempting creation of these references. For example, if you
want to create 1,000,000 local references within a native method temporarily, the JVM might not support
this and crash. By callingEnsureLocalCapacity() , you can find out in advance whether this
allocation will succeed. Returns zero upon success or a negative number upon failure. An
OutOfMemoryError is also thrown upon failure.

ExceptionCheck

Name
ExceptionCheck —

Synopsis

jboolean ExceptionCheck(JNIEnv *env)

221

Chapter 15. JNI Function Reference

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

Description
ReturnsJNI_TRUE when there is a pending exception orJNI_FALSE if no exceptions are pending.

ExceptionClear

Name
ExceptionClear —

Synopsis

void ExceptionClear(JNIEnv *env)

Parameters

env

The native interface pointer

222

Chapter 15. JNI Function Reference

Description
Clears any pendingException objects from the exception stack.

ExceptionDescribe

Name
ExceptionDescribe —

Synopsis

void ExceptionDescribe(JNIEnv *env)

Parameters

env

The native interface pointer

Description
Essentially invokesprintStackTrace() on the givenException object. The output is written to
System.err , or the equivalent, in the current JVM (e.g., the Java Console in Netscape Navigator).

ExceptionOccurred

Name
ExceptionOccurred —

223

Chapter 15. JNI Function Reference

Synopsis

jthrowable ExceptionOccurred(JNIEnv *env)

Parameters

env

The native interface pointer

Description
Determines whether anException is pending. If so, a reference to theException object is returned.

FatalError

Name
FatalError —

Synopsis

void FatalError(JNIEnv *env, const char *msg)

Parameters

env

The native interface pointer

msg

The message to display with the JVM shutdown

224

Chapter 15. JNI Function Reference

Description
Terminates the JVM immediately and irrevocably.

FindClass

Name
FindClass —

Synopsis

jclass FindClass(JNIEnv *env, const char *name)

Parameters

env

The native interface pointer

name

The fully-qualified name of the class to locate

Description
Locates information about the given class.FindClass() only operates on classes located in your
CLASSPATHenvironment variable.

225

Chapter 15. JNI Function Reference

FromReflectedField

Name
FromReflectedField —

Synopsis

jfieldID FromReflectedField(JNIEnv *env, jobject field)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

field

A reference to ajava.lang.reflect.Field object

Description
Returns the field ID that corresponds to the specifiedjava.lang.reflect.Field or NULL if an
exception occurs.

226

Chapter 15. JNI Function Reference

FromReflectedMethod

Name
FromReflectedMethod —

Synopsis

jmethodID FromReflectedMethod(JNIEnv *env, jobject method)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

field

A reference to ajava.lang.reflect.Method object

Description
Returns the method ID that corresponds to the specifiedjava.lang.reflect.Method or NULL if an
exception occurs.

227

Chapter 15. JNI Function Reference

Get<Type>ArrayElements

Name
Get<Type>ArrayElements —

Synopsis

jboolean *GetBooleanArrayElements(JNIEnv *env, jbooleanArray array,
jboolean *isCopy)

jbyte *GetByteArrayElements(JNIEnv *env, jbyteArray array,
jboolean *isCopy)

jchar *GetCharArrayElements(JNIEnv *env, jcharArray array,
jboolean *isCopy)

jdouble *GetDoubleArrayElements(JNIEnv *env, jdoubleArray array,
jboolean *isCopy)

jfloat *GetFloatArrayElements(JNIEnv *env, jfloatArray array,
jboolean *isCopy)

jint *GetIntArrayElements(JNIEnv *env, jintArray array,
jboolean *isCopy)

jlong *GetLongArrayElements(JNIEnv *env, jlongArray array,
jboolean *isCopy)

jshort *GetShortArrayElements(JNIEnv *env, jshortArray array,
jboolean *isCopy)

Parameters

env

The native interface pointer

array

The array from which to extract the elements

isCopy

The address of a variable that indicates whether the extracted elements are a direct pointer to or
copy of the original array elements

228

Chapter 15. JNI Function Reference

Description
GetBooleanArrayElements() , GetByteArrayElements() , GetCharArrayElements() ,
GetDoubleArrayElements() , GetFloatArrayElements() , GetIntArrayElements() ,
GetLongArrayElements() , andGetShortArrayElements() each extracts all of the elements in the
specified array into a contiguous C array.

Get<Type>ArrayRegion

Name
Get<Type>ArrayRegion —

Synopsis

void GetBooleanArrayRegion(JNIEnv *env, jbooleanArray array, jsize start,
jsize len, jboolean *buf)

void GetByteArrayRegion(JNIEnv *env, jbyteArray array, jsize start,
jsize len, jbyte *buf)

void GetCharArrayRegion(JNIEnv *env, jcharArray array, jsize start,
jsize len, jchar *buf)

void GetDoubleArrayRegion(JNIEnv *env, jdoubleArray array, jsize start,
jsize len, jdouble *buf)

void GetFloatArrayRegion(JNIEnv *env, jfloatArray array, jsize start,
jsize len, jfloat *buf)

void GetIntArrayRegion(JNIEnv *env, jintArray array, jsize start,
jsize len, jint *buf)

void GetLongArrayRegion(JNIEnv *env, jlongArray array, jsize start,
jsize len, jlong *buf)

void GetShortArrayRegion(JNIEnv *env, jshortArray array, jsize start,
jsize len, jshort *buf)

229

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

array

The array from which to extract a region

start

The starting element of the region

len

The number of elements to be extracted

buf

A pre-allocated C array large enough to contain extracted elements

Description
GetBooleanArrayRegion() , GetByteArrayRegion() , GetCharArrayRegion() ,
GetDoubleArrayRegion() , GetFloatArrayRegion() , GetIntArrayRegion() ,
GetLongArrayRegion() , andGetShortArrayRegion() each extracts a contiguous portion of the
specified array.

Get<Type>Field

Name
Get<Type>Field —

Synopsis

jboolean GetBooleanField(JNIEnv *env, jobject obj, jfieldID fieldID)
jbyte GetByteField(JNIEnv *env, jobject obj, jfieldID fieldID)

230

Chapter 15. JNI Function Reference

jchar GetCharField(JNIEnv *env, jobject obj, jfieldID fieldID)
jdouble GetDoubleField(JNIEnv *env, jobject obj, jfieldID fieldID)
jfloat GetFloatField(JNIEnv *env, jobject obj, jfieldID fieldID)
jint GetIntField(JNIEnv *env, jobject obj, jfieldID fieldID)
jlong GetLongField(JNIEnv *env, jobject obj, jfieldID fieldID)
jobject GetObjectField(JNIEnv *env, jobject obj, jfieldID fieldID)
jshort GetShortField(JNIEnv *env, jobject obj, jfieldID fieldID)

Parameters

env

The native interface pointer

obj

The object from which to extract a field value

fieldID

The unique identifier for the desired field

Description
GetBooleanField() , GetByteField() , GetCharField() , GetDoubleField() ,
GetFloatField() , GetIntField() , GetLongField() , GetObjectField() , and
GetShortField() each returns the value contained in an instance field of the speficied type within the
given object.

GetArrayLength

Name
GetArrayLength —

231

Chapter 15. JNI Function Reference

Synopsis

jsize GetArrayLength(JNIEnv *env, jarray array)

Parameters

env

The native interface pointer

array

The array to be counted

Description
Returns the number of elements within the given array.

GetEnv

Name
GetEnv —

Synopsis

jint GetEnv(JavaVM *vm, void **penv, jint version)

Availability
Java 2 SDK Version 1.2 and later

232

Chapter 15. JNI Function Reference

Parameters

vm

A pointer to a JVM

penv

A native interface pointer

version

A version number

Description
If the current thread is attached to the JVM,penv is set to the appropriate native interface pointer and the
function returnsJNI_OK . If the current thread is not attached to the JVM,penv is set toNULLand the
function returnsJNI_EDETACHED. If the specified version is not supported (an earlier JVM, for instance
), penv is set toNULLand the function returnsJNI_EVERSION. in native code.

GetFieldID

Name
GetFieldID —

Synopsis

jfieldID GetFieldID(JNIEnv *env, jclass clazz,
const char *name, const char *sig)

233

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

clazz

The class in which to look for a field

name

The name of the field

sig

The signature of the field

Description
Locates a unique identifier for an instance field within a Java class. This identifier allows you to perform
operations on that field in native code.

GetJavaVM

Name
GetJavaVM —

Synopsis

jint GetJavaVM(JNIEnv *env, JavaVM **vm)

Availability
Java 2 SDK Version 1.2 and later

234

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

vm

A pointer to a location to store the JVM

Description
Returns a pointer to the JVM to which the current thread is attached.

GetMethodID

Name
GetMethodID —

Synopsis

jmethodID GetMethodID(JNIEnv *env, jclass clazz,
const char *name, const char *sig)

Parameters

env

The native interface pointer

clazz

The class in which to look for a method

235

Chapter 15. JNI Function Reference

name

The name of the method

sig

The signature of the method

Description
Locates a unique identifier for an instance method within a Java class. This identifier allows you to
invoke the Java method from native code.

GetObjectArrayElement

Name
GetObjectArrayElement —

Synopsis

jobject GetObjectArrayElement(JNIEnv *env, jobjectArray array,
jsize index)

Parameters

env

The native interface pointer

array

The array from which to fetch an element

236

Chapter 15. JNI Function Reference

index

The index of the desired element

Description
Extracts a single JavaObject from an array of objects.

GetObjectClass

Name
GetObjectClass —

Synopsis

jclass GetObjectClass(JNIEnv *env, jobject obj)

Parameters

env

The native interface pointer

obj

The object from with to retrieve class information

Description
Returns class information for the specified object.

237

Chapter 15. JNI Function Reference

GetPrimitiveArrayCritical

Name
GetPrimitiveArrayCritical —

Synopsis

void GetPrimitiveArrayCritical(JNIEnv *env, jarray array,
jboolean *isCopy)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

array

The Java array

isCopy

The address of a variable that indicates whether the extracted elements are a direct pointer to or
copy of the original array elements

Description
This function is generally identical to the standardGet<Type>ArrayElements() functions, but
calling it increases the likelihood that a pointer to the array elements is returned instead of a copy of the
elements. This call begins a “critical section” of code. Inside this critical section, the currently executing
thread must not block and no other JNI functions can be executed. To exit the critical section, call

238

Chapter 15. JNI Function Reference

ReleasePrimitiveArrayCritical . GetPrimitiveArrayCritical() calls can be nested,
however, and should be freed in the correct order.

GetStatic <Type>Field

Name
GetStatic <Type>Field —

Synopsis

jboolean GetStaticBooleanField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jbyte GetStaticByteField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jchar GetStaticCharField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jdouble GetStaticDoubleField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jfloat GetStaticFloatField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jint GetStaticIntField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jlong GetStaticLongField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jobject GetStaticObjectField(JNIEnv *env, jclass clazz, jfieldID fieldID)
jshort GetStaticShortField(JNIEnv *env, jclass clazz, jfieldID fieldID)

Parameters

env

The native interface pointer

clazz

The class from which to extract a field value

fieldID

The unique identifier for the desired field

239

Chapter 15. JNI Function Reference

Description
GetStaticBooleanField() , GetStaticByteField() , GetStaticCharField() ,
GetStaticDoubleField() , GetStaticFloatField() , GetStaticIntField() ,
GetStaticLongField() , GetStaticObjectField() , andGetStaticShortField() each returns
the value contained in a class (static) field of the speficied type within the given object.

GetStaticFieldID

Name
GetStaticFieldID —

Synopsis

jfieldID GetStaticFieldID(JNIEnv *env, jclass clazz,
const char *name, const char *sig)

Parameters

env

The native interface pointer

clazz

The class in which to look for a field

name

The name of the field

sig

The signature of the field

240

Chapter 15. JNI Function Reference

Description
Locates a unique identifier for a class (static) field within a Java class. This identifier allows you to
perform operations on that field in native code.

GetStaticMethodID

Name
GetStaticMethodID —

Synopsis

jmethodID GetStaticMethodID(JNIEnv *env, jclass clazz,
const char *name, const char *sig)

Parameters

env

The native interface pointer

clazz

The class in which to look for a method

name

The name of the method

sig

The signature of the method

241

Chapter 15. JNI Function Reference

Description
Locates a unique identifier for a class (static) method within a Java class. This identifier allows you to
invoke the Java method from native code.

GetStringChars

Name
GetStringChars —

Synopsis

const jchar *GetStringChars(JNIEnv *env, jstring string,
jboolean *isCopy)

Parameters

env

The native interface pointer

string

The JavaString

isCopy

The address of a variable that indicates whether the extracted characters are a direct pointer to or
copy of the original array elements

Description
Extracts the characters from the JavaString in Unicode format.

242

Chapter 15. JNI Function Reference

GetStringCritical

Name
GetStringCritical —

Synopsis

const jchar *GetStringCritical(JNIEnv *env, jstring string,
jboolean *isCopy)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

string

The JavaString

isCopy

The address of a variable that indicates whether the extracted characters are a direct pointer to or
copy of the original array elements

Description
This function is generally identical to theGetStringChars() function, but calling it increases the
likelihood that a pointer to the characters is returned instead of a copy of the elements. This call begins a
“critical section” of code. Inside this critical section, the currently executing thread must not block and

243

Chapter 15. JNI Function Reference

no other JNI functions can be executed. To exit the critical section, callReleaseStringCritical .
GetStringCritical() calls can be nested, however, and should be freed in the correct order.

GetStringLength

Name
GetStringLength —

Synopsis

jsize GetStringLength(JNIEnv *env, jstring string)

Parameters

env

The native interface pointer

string

The JavaString

Description
Calculates the length of a given JavaString in terms of Unicode characters.

244

Chapter 15. JNI Function Reference

GetStringRegion

Name
GetStringRegion —

Synopsis

void GetStringRegion(JNIEnv *env, jstring str, jsize start,
jsize len, jchar *buf)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

str

The JavaString

start

The starting element within the string

len

The number of bytes to be copied

buf

The buffer that will contain the string region

245

Chapter 15. JNI Function Reference

Description
Extracts the given substring of a JavaString to a standard C array of Unicode characters.

GetStringUTFChars

Name
GetStringUTFChars —

Synopsis

const jchar *GetStringUTFChars(JNIEnv *env, jstring string,
jboolean *isCopy)

Parameters

env

The native interface pointer

string

The JavaString

isCopy

The address of a variable that indicates whether the extracted characters are a direct pointer to or
copy of the original array elements

Description
Extracts the characters from the JavaString in UTF-8 format (which is compatible with ASCII and
ISO Latin-1).

246

Chapter 15. JNI Function Reference

GetStringUTFLength

Name
GetStringUTFLength —

Synopsis

jsize GetStringUTFLength(JNIEnv *env, jstring string)

Parameters

env

The native interface pointer

string

The JavaString

Description
Calculates the length of a given JavaString in terms of UTF-8 characters (which are compatible with
ASCII and ISO Latin-1).

GetStringUTFRegion

Name
GetStringUTFRegion —

247

Chapter 15. JNI Function Reference

Synopsis

void GetStringUTFRegion(JNIEnv *env, jstring str, jsize start,
jsize len, jchar *buf)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

str

The JavaString

start

The starting element within the string

len

The number of bytes to be copied

buf

The buffer that will contain the string region

Description
Extracts the given substring of a JavaString to a standard C array of UTF-8 characters (which are
compatible with ASCII and ISO Latin-1).

248

Chapter 15. JNI Function Reference

GetSuperclass

Name
GetSuperclass —

Synopsis

jclass GetSuperclass(JNIEnv *env, jclass clazz)

Parameters

env

The native interface pointer

clazz

The class for which to retrieve superclass information

Description
Returns class information for the superclass of the given class.

GetVersion

Name
GetVersion —

249

Chapter 15. JNI Function Reference

Synopsis

jint GetVersion(JNIEnv *env)

Parameters

env

The native interface pointer

Description
Returns the version of JNI as implemented by the current JVM.

IsAssignableFrom

Name
IsAssignableFrom —

Synopsis

jboolean IsAssignableFrom(JNIEnv *env, jclass clazz1, jclass clazz2)

Parameters

env

The native interface pointer

clazz1

The class information for the first class

250

Chapter 15. JNI Function Reference

clazz2

The class information for the second class

Description
Tests whether an object instantiated fromclazz1 can be cast to an object of typeclazz2 .

IsInstanceOf

Name
IsInstanceOf —

Synopsis

jboolean IsInstanceOf(JNIEnv *env, jobject obj, jclass clazz)

Parameters

env

The native interface pointer

obj

The object to test

clazz

The class to test against

251

Chapter 15. JNI Function Reference

Description
Carries out the same operation as theinstanceof keyword in Java code. The given object is tested to
see if it is an instance of the given class.

IsSameObject

Name
IsSameObject —

Synopsis

jboolean IsSameObject(JNIEnv *env, jobject ref1, jobject ref2)

Parameters

env

The native interface pointer

ref1

The first object

ref2

The second object

Description
Tests to see whether the two given objects are, in fact, identical.

252

Chapter 15. JNI Function Reference

JNI_CreateJavaVM

Name
JNI_CreateJavaVM —

Synopsis

jint JNI_CreateJavaVM(JavaVM **pvm, void **penv, void *args)

Parameters

pvm

A pointer to a location to store the new JVM

penv

A native interface pointer

args

An array of arguments

Description
Creates a new Java Virtual Machine for use within existing native programs. The newly created JVM is
placed within the address specified in the first argument. The JNI interface pointer is placed within the
address specified by the second argument. The final argument points to an array of initialization
arguments that are used to regulate the creation of the JVM.

253

Chapter 15. JNI Function Reference

JNI_GetCreatedJavaVMs

Name
JNI_GetCreatedJavaVMs —

Synopsis

jint JNI_GetCreatedJavaVMs(JavaVM **vmBuf, jsize bufLen, jsize *nVMs)

Parameters

vmBuf

An array of created JVMs

bufLen

Maximum number of entries to be written to the buffer

nVMs

The number of created JVMs

Description
Returns a buffer of the created JVMs within the currently executing program. A pointer to each JVM is
written to the given buffer and the actual number of JVMs present is stored in thenVMsargument.

254

Chapter 15. JNI Function Reference

JNI_GetDefaultJavaVMInitArgs

Name
JNI_GetDefaultJavaVMInitArgs —

Synopsis

void JNI_GetDefaultJavaVMInitArgs(void *vm_args)

Availability
Deprecated as of Java 2 SDK Version 1.2

Parameters

vm_args

The default JVM initialization arguments

Description
Populates the given argument with the default JVM initialization arguments required when creating a
new JVM via the Invocation API. This function is deprecated as of Java 2 SDK Version 1.2, as the syntax
of JNI_CreateJavaVM() has changed.

JNI_OnLoad

Name
JNI_OnLoad —

255

Chapter 15. JNI Function Reference

Synopsis

jint JNI_OnLoad(JavaVM *vm, void *reserved)

Availability
Java 2 SDK Version 1.2 and later

Parameters

vm

A pointer to a Java Virtual Machine

reserved

Reserved for future use

Description
The JVM callsJNI_OnLoad() when the native library is loaded.JNI_OnLoad() must return the JNI
version required by the native library to run correctly. For example, to use any of the new Java 2 SDK
Version 1.2 JNI functions,JNI_OnLoad() must return0x00010002 . Similarly, if JNI_OnLoad() is
not defined within a native library, the JVM assumes that only Java 1.1 JNI functions are available. If the
version number returned byJNI_OnLoad() is unrecognized or otherwise illegal, the library load fails
completely.

JNI_OnUnload

Name
JNI_OnUnload —

256

Chapter 15. JNI Function Reference

Synopsis

void JNI_OnUnload(JavaVM *vm, void *reserved)

Availability
Java 2 SDK Version 1.2 and later

Parameters

vm

A pointer to a Java Virtual Machine

reserved

Reserved for future use

Description
The JVM callJNI_OnUnload() when the class loader that loaded the native library is garbage
collected. Therefore,JNI_OnUnload() can be used to perform clean up operations.

MonitorEnter

Name
MonitorEnter —

Synopsis

jint MonitorEnter(JNIEnv *env, jobject obj)

257

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

obj

The object to be locked

Description
Enters the monitor associated with the specified object.

MonitorExit

Name
MonitorExit —

Synopsis

jint MonitorExit(JNIEnv *env, jobject obj)

Parameters

env

The native interface pointer

obj

The object to be unlocked

258

Chapter 15. JNI Function Reference

Description
Exits the monitor associated with the specified object.

New<Type>Array

Name
New<Type>Array —

Synopsis

jbooleanArray NewBooleanArray(JNIEnv *env, jsize length)
jbyteArray NewByteArray(JNIEnv *env, jsize length)
jcharArray NewCharArray(JNIEnv *env, jsize length)
jdoubleArray NewDoubleArray(JNIEnv *env, jsize length)
jfloatArray NewFloatArray(JNIEnv *env, jsize length)
jintArray NewIntArray(JNIEnv *env, jsize length)
jlongArray NewLongArray(JNIEnv *env, jsize length)
jshortArray NewShortArray(JNIEnv *env, jsize length)

Parameters

env

The native interface pointer

length

The length of the array

Description
NewBooleanArray() , NewByteArray() , NewCharArray() , NewDoubleArray() ,
NewFloatArray() , NewIntArray() , NewLongArray() , andNewShortArray() , each creates a new

259

Chapter 15. JNI Function Reference

array of primitive values that islength elements long.

NewGlobalRef

Name
NewGlobalRef —

Synopsis

jobject NewGlobalRef(JNIEnv *env, jobject obj)

Parameters

env

The native interface pointer

obj

The object for which a global reference is to be made

Description
Creates a global reference for a given object, thereby eliminating the possibility that the object can be
garbage collected.

260

Chapter 15. JNI Function Reference

NewLocalRef

Name
NewLocalRef —

Synopsis

jobject NewLocalRef(JNIEnv *env, jobject ref)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

ref

The object for which to create a new reference

Description
Creates a new local reference to the specified reference and returns the new reference. The specified
reference can be global or local.

261

Chapter 15. JNI Function Reference

NewObject, NewObjectA, NewObjectV

Name
NewObject, NewObjectA, NewObjectV —

Synopsis

jobject NewObject(JNIEnv *env, jclass clazz, jmethodID methodID, args)
jobject NewObjectA(JNIEnv *env, jclass clazz, jmethodID methodID,

jvalue *args)
jobject NewObjectV(JNIEnv *env, jclass clazz, jmethodID methodID,

va_list args)

Parameters

env

The native interface pointer

clazz

The class information of the class to be instantiated

methodID

The unique method identifier for the constructor to be invoked

args

The correct number of arguments for the constructor, in the format expected by the JNI function
being used (i.e., comma-separated, an array ofjvalues , or a varargs list).

Description
NewObject() allocates a new object of the desired class and invokes the specified constructor.
Arguments to the constructor are passed as a comma-separated list of values.

262

Chapter 15. JNI Function Reference

NewObjectA() operates in a similar way toNewObject() , but requires that the arguments are specified
as an array ofjvalues .

NewObjectV() operates in a similar way toNewObject() , but requires that the arguments are specified
as an ANSI varargs list.

NewObjectArray

Name
NewObjectArray —

Synopsis

jarray NewObjectArray(JNIEnv *env, jsize length, jclass elementClass,
jobject initialElement)

Parameters

env

The native interface pointer

length

The length of the array

elementClass

The class type of the array

initialElement

A Java object that specifies the default element value for the array

263

Chapter 15. JNI Function Reference

Description
Creates a new array of Java objects of the specified class and of the given dimension.

NewString

Name
NewString —

Synopsis

jstring NewString(JNIEnv *env, const jchar *bytes, jsize len)

Parameters

env

The native interface pointer

unicodeChars

A string of Unicode character data

len

The number of Unicode characters in the string

Description
Creates a new JavaString object from the given Unicode string.

264

Chapter 15. JNI Function Reference

NewStringUTF

Name
NewStringUTF —

Synopsis

jstring NewStringUTF(JNIEnv *env, const jchar *bytes, jsize len)

Parameters

env

The native interface pointer

unicodeChars

A string of UTF-8 character data

len

The number of UTF-8 characters in the string

Description
Creates a new JavaString object from the given UTF-8 string (which is compatible with ASCII and
ISO Latin-1).

265

Chapter 15. JNI Function Reference

NewWeakGlobalRef

Name
NewWeakGlobalRef —

Synopsis

jweak NewWeakGlobalRef(JNIEnv *env, jobject obj)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

obj

The object for which to create a new weak global reference

Description
Reates a new weak global reference to the given object. If the object isNULLor if the JVM has no more
memory available,NULL is returned and anOutOfMemoryError is thrown.

266

Chapter 15. JNI Function Reference

PopLocalFrame

Name
PopLocalFrame —

Synopsis

jobject PopLocalFrame(JNIEnv *env, jobject result)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

result

An object for which to return a local reference orNULL

Description
Destroys the current local reference frame and deallocate all local references created within it. Ifresult

is notNULL, a local reference to the given object within the previous local reference frame is returned. If
you do not need to return a local reference from the frame being destroyed, theresult parameter should
be specified asNULL.

267

Chapter 15. JNI Function Reference

PushLocalFrame

Name
PushLocalFrame —

Synopsis

jint PushLocalFrame(JNIEnv *env, jint capacity)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

capacity

The number of local references to allocate

Description
Creates a new local frame in which the given number of local references can be created.
PushLocalFrame() returns zero upon succesfull creation of a new frame and a negative number upon
failure. AnOutOfMemoryError is also thrown upon failure.

268

Chapter 15. JNI Function Reference

RegisterNatives

Name
RegisterNatives —

Synopsis

jint RegisterNatives(JNIEnv *env, jclass clazz,
const JNINativeMethod *methods, jint nMethods)

Parameters

env

The native interface pointer

clazz

The class with which the methods are to be associated

methods

An array of native methods to be registered

nMethods

The number of native methods to be registered

Description
Registers the specified native methods with the JVM and associates them with the specified class. The
methods parameters specifies an array ofJNINativeMethods structures that contain the names,
signatures, and function pointers of the native methods, whilenMethods indicates the number of native
methods in the array.

269

Chapter 15. JNI Function Reference

Release<Type>ArrayElements

Name
Release <Type>ArrayElements —

Synopsis

void ReleaseBooleanArrayElements(JNIEnv *env, jbooleanArray array,
jboolean *elements, jint mode)

void ReleaseByteArrayElements(JNIEnv *env, jbyteArray array,
jbyte *elements, jint mode)

void ReleaseCharArrayElements(JNIEnv *env, jcharArray array,
jchar *elements, jint mode)

void ReleaseDoubleArrayElements(JNIEnv *env, jdoubleArray array,
jdouble *elements, jint mode)

void ReleaseFloatArrayElements(JNIEnv *env, jfloatArray array,
jfloat *elements, jint mode)

void ReleaseIntArrayElements(JNIEnv *env, jintArray array,
jint *elements, jint mode)

void ReleaseLongArrayElements(JNIEnv *env, jlongArray array,
jlong *elements, jint mode)

void ReleaseShortArrayElements(JNIEnv *env, jshortArray array,
jshort *elements, jint mode)

Parameters

env

The native interface pointer

array

The array from which the elements were extracted

elements

The previously extracted elements of the array

270

Chapter 15. JNI Function Reference

mode

The mode used to free the array elements

Description
ReleaseBooleanArrayElements() , ReleaseByteArrayElements() ,
ReleaseCharArrayElements() , ReleaseDoubleArrayElements() ,
ReleaseFloatArrayElements() , ReleaseIntArrayElements() ,
ReleaseLongArrayElements() , andReleaseShortArrayElements() each synchronizes the Java
array and extracted array elements. Amode value of0 causes the array elements to be written back to the
Java array and the C array deallocated. Amode value ofJNI_COMMIT copies the array elements back
into the Java array but does not free the C array. Amode value ofJNI_ABORT frees the C array but does
not copy the possibly altered array elements back into the Java array.

ReleasePrimitiveArrayCritical

Name
ReleasePrimitiveArrayCritical —

Synopsis

void ReleasePrimitiveArrayCritical(JNIEnv *env, jarray array,
void *carray, jint mode)

Availability
Java 2 SDK Version 1.2 and later

271

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

array

The Java array

carray

The array elements

mode

The mode used to free the array elements

Description
This function corresponds toRelease <Type>ArrayElements() , but is used when you have used
GetPrimitiveArrayCritical() to extract the elements of an array. Calling
ReleasePrimitiveArrayCritical() marks the end of the “critical section” begun by calling
GetPrimitiveArrayCritical() .

ReleaseStringChars

Name
ReleaseStringChars —

Synopsis

void ReleaseStringChars(JNIEnv *env, jstring string, const jchar *chars)

272

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

string

The JavaString from which the contents were extracted

chars

The buffer into which theString contents were extracted

Description
Copies the extracted Unicode characters forming the string back into the JavaString .

ReleaseStringCritical

Name
ReleaseStringCritical —

Synopsis

void ReleaseStringCritical(JNIEnv *env, jstring string,
const jchar *carray)

Availability
Java 2 SDK Version 1.2 and later

273

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

string

The JavaString

carray

The extracted characters

Description
Releases the extracted string data and also marks the end of the critical section started when
GetStringCritical() was invoked.

ReleaseStringUTFChars

Name
ReleaseStringUTFChars —

Synopsis

void ReleaseStringUTFChars(JNIEnv *env, jstring string,
const jbyte *chars)

Parameters

env

The native interface pointer

274

Chapter 15. JNI Function Reference

string

The JavaString from which the contents were extracted

chars

The buffer into which theString contents were extracted

Description
Copies the extracted UTF-8 characters (compatible with ASCII and ISO Latin-1) forming the string back
into the JavaString .

Set<Type>ArrayRegion

Name
Set <Type>ArrayRegion —

Synopsis

void SetBooleanArrayRegion(JNIEnv *env, jbooleanArray array, jsize start,
jsize len, jboolean *buf)

void SetByteArrayRegion(JNIEnv *env, jbyteArray array, jsize start,
jsize len, jbyte *buf)

void SetCharArrayRegion(JNIEnv *env, jcharArray array, jsize start,
jsize len, jchar *buf)

void SetDoubleArrayRegion(JNIEnv *env, jdoubleArray array, jsize start,
jsize len, jdouble *buf)

void SetFloatArrayRegion(JNIEnv *env, jfloatArray array, jsize start,
jsize len, jfloat *buf)

void SetIntArrayRegion(JNIEnv *env, jintArray array, jsize start,
jsize len, jint *buf)

void SetLongArrayRegion(JNIEnv *env, jlongArray array, jsize start,
jsize len, jlong *buf)

void SetShortArrayRegion(JNIEnv *env, jshortArray array, jsize start,
jsize len, jshort *buf)

275

Chapter 15. JNI Function Reference

Parameters

env

The native interface pointer

array

The array in which the region of elements is to be set

start

The starting index of the region

len

The number of elements in the region

buf

A C array that contains the new element values

Description
SetBooleanArrayRegion() , SetByteArrayRegion() , SetCharArrayRegion() ,
SetDoubleArrayRegion() , SetFloatArrayRegion() , SetIntArrayRegion() ,
SetLongArrayRegion() , andSetShortArrayRegion() each copies the C buffer back into the
designated region of the Java array.

Set<Type>Field

Name
Set <Type>Field —

Synopsis

void SetBooleanField(JNIEnv *env, jobject obj, jfieldID fieldID,
jboolean newValue)

276

Chapter 15. JNI Function Reference

void SetByteField(JNIEnv *env, jobject obj, jfieldID fieldID,
jbyte newValue)

void SetCharField(JNIEnv *env, jobject obj, jfieldID fieldID,
jchar newValue)

void SetDoubleField(JNIEnv *env, jobject obj, jfieldID fieldID,
jdouble newValue)

void SetFloatField(JNIEnv *env, jobject obj, jfieldID fieldID,
jfloat newValue)

void SetIntField(JNIEnv *env, jobject obj, jfieldID fieldID,
jint newValue)

void SetLongField(JNIEnv *env, jobject obj, jfieldID fieldID,
jlong newValue)

void SetObjectField(JNIEnv *env, jobject obj, jfieldID fieldID,
jobject newValue)

void SetShortField(JNIEnv *env, jobject obj, jfieldID fieldID,
jshort newValue)

Parameters

env

The native interface pointer

obj

The object in which to set the field value

fieldID

A unique identifier for the desired field

newValue

The value to which the field should be set

Description
SetBooleanField() , SetByteField() , SetCharField() , SetDoubleField() ,
SetFloatField() , SetIntField() , SetLongField() , SetObjectField() , and
SetShortField() each sets the value of an instance field of the appropriate Java type to a new value
within the given object.

277

Chapter 15. JNI Function Reference

SetObjectArrayElement

Name
SetObjectArrayElement —

Synopsis

void SetObjectArrayElement(JNIEnv *env, jobjectArray array,
jsize index, jobject value)

Parameters

env

The native interface pointer

array

The array in which to set an element

index

The index for the array element

value

The new value for the array element

Description
Sets the given element of the array to the specifiedObject .

278

Chapter 15. JNI Function Reference

SetStatic <Type>Field

Name
SetStatic <Type>Field —

Synopsis

void SetStaticBooleanField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jboolean newValue)

void SetStaticByteField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jbyte newValue)

void SetStaticCharField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jchar newValue)

void SetStaticDoubleField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jdouble newValue)

void SetStaticFloatField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jfloat newValue)

void SetStaticIntField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jint newValue)

void SetStaticLongField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jlong newValue)

void SetStaticObjectField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jobject newValue)

void SetStaticShortField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jshort newValue)

Parameters

env

The native interface pointer

clazz

The class in which to set the field value

fieldID

A unique identifier for the desired field

279

Chapter 15. JNI Function Reference

newValue

The value to which the field should be set

Description
SetStaticBooleanField() , SetStaticByteField() , SetStaticCharField() ,
SetStaticDoubleField() , SetStaticFloatField() , SetStaticIntField() ,
SetStaticLongField() , SetStaticObjectField() , andSetStaticShortField() each sets the
value of a class (static) field of the appropriate Java type to a new value within the given class.

Throw

Name
Throw —

Synopsis

jint Throw(JNIEnv *env, jthrowable obj)

Parameters

env

The native interface pointer

obj

A Throwable object

Description
Throws a precreatedThrowable object, typically anException of some type.

280

Chapter 15. JNI Function Reference

ThrowNew

Name
ThrowNew —

Synopsis

jint ThrowNew(JNIEnv *env, jclass clazz, const char *message)

Parameters

env

The native interface pointer

clazz

The class information for the object to be thrown; typicallyException or Error object of type
Throwable

message

The text message for theThrowable object

Description
Creates a newThrowable object from the given class and throws it.

281

Chapter 15. JNI Function Reference

ToReflectedField

Name
ToReflectedField —

Synopsis

jobject ToReflectedField(JNIEnv *env, jclass clazz, jfieldID fieldID,
jboolean isStatic)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

clazz

The class that contains the field

fieldID

A unique identifier for the desired field

isStatic

Whether the field ID specifies a class (static) field

Description
Converts the specified field ID into an instance of thejava.lang.reflect.Field class.

282

Chapter 15. JNI Function Reference

ToReflectedMethod

Name
ToReflectedMethod —

Synopsis

jobject ToReflectedMethod(JNIEnv *env, jclass clazz, jmethodID methodID,
jboolean isStatic)

Availability
Java 2 SDK Version 1.2 and later

Parameters

env

The native interface pointer

clazz

The class that contains the method

fieldID

A unique identifier for the desired method

isStatic

Whether the method ID specifies a class (static) method

Description
Converts the specified method ID into an instance of thejava.lang.reflect.Method class.

283

Chapter 15. JNI Function Reference

UnregisterNatives

Name
UnregisterNatives —

Synopsis

jint UnregisterNatives(JNIEnv *env, jclass clazz)

Parameters

env

The native interface pointer

clazz

The class with which the methods are associated

Description
Unregisters native methods associated with a class.

284

Chapter 16. RNI Function Reference

Array Handling

ArrayAlloc

Name
ArrayAlloc —

Synopsis

HObject *ArrayAlloc(int type, int cItems)

Parameters

type

The type of array to allocate. Valid values include T_FLOAT, T_DOUBLE, T_BYTE, T_SHORT,
T_INT, T_LONG and T_CHAR

cItems

The number of elements in the array

Description
ArrayAlloc() is used to create arrays of primitive datatypes, for example arrays of floating point values or
integers.

285

Chapter 16. RNI Function Reference

ArrayCopy

Name
ArrayCopy —

Synopsis

void ArrayCopy(HObject *srch, long src_pos,
HObject *dsth,
long dst_pos,
long length)

Parameters

srch

The source array to copy data from

src_pos

The position of the first element to copy from the source array

dsth

The destination array to copy data to

dst_pos

The array element to copy the data to

length

The number of elements to copy

Description
This function acts in a similar way to System.arraycopy() in that elements from one array are transferred
to the other.

286

Chapter 16. RNI Function Reference

ClassArrayAlloc

Name
ClassArrayAlloc —

Synopsis

HObject *ClassArrayAlloc(int type, int cItems,
char *szSig)

Parameters

type

The type of array to allocate. All the primitive datatype values are valid here as is T_CLASS
signifying an array of Java Objects

cItems

The number of elements in the array

szSig

The signature of the class to create an array of if the type parameter is T_CLASS

Description
ClassArrayAlloc() creates a new Java array of the given length of either primitive datatypes or Java
Objects depending on the type parameter.

287

Chapter 16. RNI Function Reference

ClassArrayAlloc2

Name
ClassArrayAlloc2 —

Synopsis

HObject * ClassArrayAlloc2(int type, int cItems,
ClassClass * cb)

Parameters

type

The type of array to allocate. All the primitive data type values are valid here as is T_CLASS
signifying an array of Java Objects

cItems

The number of elements in the array to allocate

cb

The address of the class object to be used to allocate the array elements

Description
Allocates a Java array of primitive data types or Java Objects

288

Chapter 16. RNI Function Reference

Class Handling

AddPathClassSource

Name
AddPathClassSource —

Synopsis

BOOL AddPathClassSource(const char * path,
BOOL fAppend)

Parameters

path

The path that is to be appended to prepended to the class path

fAppend

If true, the given path is appended to the class path, otherwise it is prepended

Description
Dynamically adds a path to the Microsoft VM’s internal class path

289

Chapter 16. RNI Function Reference

ClassClassToClassObject

Name
ClassClassToClassObject —

Synopsis

HObject * ClassClassToClassObject(ClassClass * cls)

Parameters

cls

The address of the class object

Description
Retrieves a java.lang.Class object for a given ClassClass value.

ClassObjectToClassClass

Name
ClassObjectToClassClass —

Synopsis

ClassClass * ClassObjectToClassClass(
HObject * object)

290

Chapter 16. RNI Function Reference

Parameters

object

A java.lang.Class object

Description
Retrives the ClassClass pointer for a given Java class

Class_GetAttributes

Name
Class_GetAttributes —

Synopsis

int Class_GetAttributes(ClassClass *cls)

Parameters

cls

The class to fetch the attributes from

Description
This function returns a bitmask of the ACC_*constants that are applicable to the given class

291

Chapter 16. RNI Function Reference

Class_GetField

Name
Class_GetField —

Synopsis

struct fieldblock *Class_GetField(
ClassClass *cls,
const char *name)

Parameters

cls

The classblock of the pertinent class

name

The name of the field to return the fieldblock information for

Description
Class_GetField() returns the fieldblock information for the desired field in the given class specified by
the classblock

Class_GetFieldByIndex

Name
Class_GetFieldByIndex —

292

Chapter 16. RNI Function Reference

Synopsis

struct fieldblock *Class_GetFieldByIndex(
ClassClass *cls,
unsigned index)

Parameters

cls

The classblock of the pertinent class

index

The index of the field to return the fieldblock information for

Description
This function returns the fieldblock information for the field given by the field index

Class_GetFieldCount

Name
Class_GetFieldCount —

Synopsis

unsigned Class_GetFieldCount(ClassClass *cls)

293

Chapter 16. RNI Function Reference

Parameters

cls

The classblock of the pertinent class

Description
This function returns the number of fields in the class including supers

Class_GetInterface

Name
Class_GetInterface —

Synopsis

ClassClass *Class_GetInterface(ClassClass *cls,
unsigned index)

Parameters

cls

The class to fetch the interface from

index

The index number of the interface to return

294

Chapter 16. RNI Function Reference

Description
Class_GetInterface() returns the classblock interface for the interface located at the given index in the
class

Class_GetInterfaceCount

Name
Class_GetInterfaceCount —

Synopsis

unsigned Class_GetInterfaceCount(ClassClass *cls)

Parameters

cls

The class to return the number of interfaces for

Description
Class_GetInterfaceCount() returns the number of interfaces that this class implements

Class_GetMethod

Name
Class_GetMethod —

295

Chapter 16. RNI Function Reference

Synopsis

struct methodblock *Class_GetMethod(
ClassClass *cls,
const char *name,
const char *signature)

Parameters

cls

The classblock of the class to query

name

The name of the method in question

signature

The type signature of the desired method

Description
This function returns the methodblock information for the desired method specified by the given name
and signature

Class_GetMethodByIndex

Name
Class_GetMethodByIndex —

Synopsis

struct methodblock *Class_GetMethodByIndex(
ClassClass *cls,

296

Chapter 16. RNI Function Reference

unsigned index)

Parameters

cls

The classblock of the class to query

index

The index of the method to return the methodblock information for

Description
Class_GetMethodByIndex() returns the methodblock information for the method numbered by the given
index in the class

Class_GetMethodCount

Name
Class_GetMethodCount —

Synopsis

unsigned Class_GetMethodCount(ClassClass *cls)

Parameters

cls

The classblock of the class to query

297

Chapter 16. RNI Function Reference

Description
This function returns the number of methods within the given class

Class_GetName

Name
Class_GetName —

Synopsis

const char *Class_GetName(ClassClass *cls)

Parameters

cls

The class of which the name will be returned

Description
This function returns the fully qualified class name for the given class

Class_GetSuper

Name
Class_GetSuper —

298

Chapter 16. RNI Function Reference

Synopsis

ClassClass *Class_GetSuper(ClassClass *cls)

Parameters

cls

The class of which to return the superclass of

Description
Class_GetSuper() returns the classblock information for the superclass of the given class

FindClass

Name
FindClass —

Synopsis

ClassClass *FindClass(ExecEnv *ee,
char *classname,
bool_t resolve)

Parameters

ee

The execution environment. This should be passed a value of NULL.

299

Chapter 16. RNI Function Reference

classname

The fully qualified name of the class to locate. The package separator character is a slash ’/’

resolve

This flag specifies whether or not the class should be resolved. In the Microsoft JVM, this flag is
ignored.

Description
FindClass() locates the classblock information for the given class which can be used in other methods,
such as execute_java_constructor().

FindClassEx

Name
FindClassEx —

Synopsis

ClassClass *FindClassEx(char *pszClassName,
DWORD dwFlags)

Parameters

pszClassName

The fully qualified name of the class to locate. The package separator character is a slash ’/’

dwFlags

This flag specifies the mode in which this function should operate. A value of
FINDCLASSEX_NOINIT prevents the static initializers of the class from executing. A value of

300

Chapter 16. RNI Function Reference

FINDCLASSEX_IGNORECASE performs an case-insensitive search for the class name and a
value of FINDCLASSEX_SYSTEMONLY searchs for the named class only if a system class.

Description
FindClass() locates the classblock information for the given class which can be used in other methods,
such as execute_java_constructor().

FindClassFromClass

Name
FindClassFromClass —

Synopsis

ClassClass * FindClassFromClass(
const char * pszClassName,
DWORD dwFlags,
ClassClass * pContextClass)

Parameters

pszClassName

The name of the class to locate

dwFlags

This flag specifies the mode in which this function should operate. A value of
FFINDCLASSEX_NOINIT prevents the static initializers of the class from executing. A value of
FINDCLASSEX_IGNORECASE performs an case-insensitive search for the class name and a
value of FINDCLASSEX_SYSTEMONLY searches for for the named class only if a system class

301

Chapter 16. RNI Function Reference

pContextClass

The ClassLoader class context

Description
FindClass() locates the classblock information for the given class which can be used in other methods,
such as execute_java_constructor(). This method is similar to FindClassEx() but takes an extra
ClassClass * parameter specifying the ClassLoader context to use

Debugging

jio_snprintf

Name
jio_snprintf —

Synopsis

int jio_snprintf(char *str, size_t count,
const char *fmt,
... args)

Parameters

str

The string to print to

count

The maximum number of characters to print

302

Chapter 16. RNI Function Reference

fmt

The format string as used by printf()

args

Any other arguments specified in the format

Description
Prints to a string with a capped number of characters

jio_vsnprintf

Name
jio_vsnprintf —

Synopsis

int jio_vsnprintf(char *str, size_t count,
const char *fmt,
va_list args)

Parameters

str

The string to print to

count

The maximum number of characters to print

fmt

The format string as used by printf()

303

Chapter 16. RNI Function Reference

args

The arguments specified in the format string

Description
Prints to a string with argument values stored as a variable-length list

Exception Handling

HResultFromException

Name
HResultFromException —

Synopsis

HResult HResultFromException(
OBJECT *exception_object)

Parameters

exception_object

The Exception object to convert

Description
HResultFromException() converts a Java Exception object into an HRESULT object

304

Chapter 16. RNI Function Reference

SignalError

Name
SignalError —

Synopsis

void SignalError(struct execenv *ee, char *ename,
char *detailMessage)

Parameters

ee

The execution environment. This should be given a value of NULL.

ename

The fully qualified class name of the Exception you wish to be thrown

detailMessage

An explanatory message associated with the Exception

Description
This function creates a new object of type Throwable from the specified class, attaches the specified
method and throws the exception

305

Chapter 16. RNI Function Reference

SignalErrorHResult

Name
SignalErrorHResult —

Synopsis

void SignalErrorHResult(HRESULT theHRESULT)

Parameters

theHRESULT

The standard return value signifying success or failure

Description
Creates a Java Exception object from an HRESULT object.

SignalErrorPrintf

Name
SignalErrorPrintf —

Synopsis

void SignalErrorPrintf(char *ename,
char *pszFormat,
... args)

306

Chapter 16. RNI Function Reference

Parameters

ename

The fully qualified class name of the Exception object you wish thrown

pszFormat

A format string in the form used by printf

args

Any other arguments specified in the format string

Description
This function creates a new object from the given class and attaches a message specified by the format
string and arguments. The new exception object is then thrown

exceptionClear

Name
exceptionClear —

Synopsis

void exceptionClear(ExecEnv *ee)

Parameters

ee

The execution environment. This should be given a value of NULL

307

Chapter 16. RNI Function Reference

Description
exceptionClear() removes any exceptions waiting to be thrown. The program then acts as if the
exceptions had never been thrown in the first place

exceptionDescribe

Name
exceptionDescribe —

Synopsis

void exceptionDescribe(ExecEnv *ee)

Parameters

ee

The execution environment. This should be passed a value a NULL

Description
This function actually invokes the printStackTrace() method of the Throwable class. This displays,
usually to System.err, the backtrace of why a particular exception had been thrown

308

Chapter 16. RNI Function Reference

exceptionOccurred

Name
exceptionOccurred —

Synopsis

bool_t exceptionOccurred(ExecEnv *ee)

Parameters

ee

The execution environment. This should be given a value of NULL

Description
exceptionOccurred() tests to see whether or not an exception has been signalled at any point so far during
a native method’s execution

exceptionSet

Name
exceptionSet —

Synopsis

void exceptionSet(ExecEnv *ee,
HObject *phThrowable)

309

Chapter 16. RNI Function Reference

Parameters

ee

The execution environment.

phThrowable

A pointer to the Exception object that is to be set

Description
Sets the pending Exception to be thrown to be the given Exception object

getPendingException

Name
getPendingException —

Synopsis

HObject *getPendingException(ExecEnv *ee)

Parameters

ee

The execution environment. The value of NULL should always be passed for this argument.

Description
This function returns the current pending Exception. If no exceptions are pending, NULL is returned.

310

Chapter 16. RNI Function Reference

Field Handling

Field_Get<Type>

Name
Field_Get <Type>—

Synopsis

<rtype > Field_Get <Type>(HObject *obj,
struct fieldblock *field)

Parameters

obj

The object to fetch the field value from

field

The fieldblock information for the appropriate field

Description
This function returns the value stored in the given field of the given object. The available RNI functions
and return types are as follows:

RNI Return Type Function

bool_t Field_GetBoolean
signed char Field_GetByte
unicode Field_GetChar
short Field_GetShort
__int32 Field_GetInt
__int64 Field_GetLong

311

Chapter 16. RNI Function Reference

float Field_GetFloat
double Field_GetDouble
HObject * Field_GetObject

Field_GetOffset

Name
Field_GetOffset —

Synopsis

unsigned Field_GetOffset(struct fieldblock *field)

Parameters

field

The address of fieldblock

Description
Returns the offset of dynamic fields in the class

Field_GetStaticPtr

Name
Field_GetStaticPtr —

312

Chapter 16. RNI Function Reference

Synopsis

PVOID Field_GetStaticPtr(struct fieldblock *field)

Parameters

field

The address of a fieldblock

Description
Returns the address of static data in the class

Field_GetValue

Name
Field_GetValue —

Synopsis

__int32 Field_GetValue(HObject *obj,
struct fieldblock *field)

Parameters

obj

The object to fetch the field value from

313

Chapter 16. RNI Function Reference

field

The fieldblock information for the appropriate field

Description
This function returns the value stored in the given field in the given object where the field is of datatype
int, byte, char or short

Field_GetValue64

Name
Field_GetValue64 —

Synopsis

__int64 Field_GetValue64(HObject *obj,
struct fieldblock *field)

Parameters

obj

The object to fetch the field value from

field

The fieldblock information for the appropriate field

Description
This function returns the value stored in the given field in the given object where the field is of datatype
long

314

Chapter 16. RNI Function Reference

Field_Set<Type>

Name
Field_Set <Type>—

Synopsis

void Field_Set <Type>(HObject *obj,
struct fieldblock *field,
<rtype > value)

Parameters

obj

The object to set the field value in

field

The fieldblock information for the appropriate field

value

The new value for the field

Description
This function sets the value of the given field in the given object. The available RNI functions and data
types are as follows:

RNI DataType Function

bool_t Field_SetBoolean
signed char Field_SetByte
unicode Field_SetChar
short Field_SetShort
__int32 Field_SetInt

315

Chapter 16. RNI Function Reference

__int64 Field_SetLong
float Field_SetFloat
double Field_SetDouble
HObject * Field_SetObject

Field_SetValue

Name
Field_SetValue —

Synopsis

void Field_SetValue(HObject *obj,
struct fieldblock *field,
__int32 value)

Parameters

obj

The object to set the field value in

field

The fieldblock information for the appropriate field

value

The new value for the function

Description
This function sets the value of the given field in the given object where the field is of datatype int, byte,
char or short

316

Chapter 16. RNI Function Reference

Field_SetValue64

Name
Field_SetValue64 —

Synopsis

void Field_SetValue64(HObject *obj,
struct fieldblock *field,
__int64 value)

Parameters

obj

The object to set the field value in

field

The fieldblock information for the appropriate field

value

The new value for the field

Description
This function sets the value of the given field in the given object where the field is of datatype long

317

Chapter 16. RNI Function Reference

Garbage Collection

GCDisable

Name
GCDisable —

Synopsis

int GCDisable()

Description
Disable garbage collection

GCDisableCount

Name
GCDisableCount —

Synopsis

int GCDisableCount()

Description
Disables the counting performed by the garbage collector for reference usage

318

Chapter 16. RNI Function Reference

GCDisableMultiple

Name
GCDisableMultiple —

Synopsis

void GCDisableMultiple(int cDisable)

Parameters

cDisable

The number of times to increment the block count

Description
Increments the block count a given number of times

GCEnable

Name
GCEnable —

Synopsis

int GCEnable()

319

Chapter 16. RNI Function Reference

Description
Enable garbage collection

GCEnableCompletely

Name
GCEnableCompletely —

Synopsis

int GCEnableCompletely()

Description
Resets the reference count to 0 and enables garbage collection immediately

GCFramePop

Name
GCFramePop—

Synopsis

void GCFramePop(PVOID pGCFrame)

320

Chapter 16. RNI Function Reference

Parameters

pGCFrame

The GCFrame to pop off the protected stack

Description
This function removes any garbage collector tracking of the objects stored within the GCFrame

GCFramePush

Name
GCFramePush —

Synopsis

void GCFramePush(PVOID pGCFrame, PVOID pObjects,
DWORD cbObjectStructSize)

Parameters

pGCFrame

The GCFrame to push onto the protected stack

pObjects

The objects to protect

cbObjectStructSize

The size of the GCFrame that you wish to protect

321

Chapter 16. RNI Function Reference

Description
This function specifies object references that should be automatically tracked by the garbage collector

GCFreeHandle

Name
GCFreeHandle —

Synopsis

void GCFreeHandle(HObject **pphobj)

Parameters

pphobj

The strong pointer to free

Description
GCFreeHandle() releases a strong pointer to an object

GCFreePtr

Name
GCFreePtr —

322

Chapter 16. RNI Function Reference

Synopsis

void GCFreePtr(HObject **pphobj)

Parameters

pphobj

The previously allocate weak pointer to release

Description
GCFreePtr() releases a weak pointer allowing the object to be garbage collected as normal

GCGetPtr

Name
GCGetPtr —

Synopsis

HObject **GCGetPtr(HObject *phobj)

Parameters

phobj

The object to return a weak pointer for

323

Chapter 16. RNI Function Reference

Description
This function returns a new weak pointer for the given object which disallows the garbage collector from
moving the object about

GCNewHandle

Name
GCNewHandle —

Synopsis

HObject **GCNewHandle(HObject *phobj)

Parameters

phobj

The object to allocate a strong pointer for

Description
This function allocates a strong pointer to the object

GCSetObjectReferenceForHandle

Name
GCSetObjectReferenceForHandle —

324

Chapter 16. RNI Function Reference

Synopsis

void GCSetObjectReferenceForHandle(
HObject **handle,
HObject *phobj)

Parameters

handle

The handle to update

phobj

The new handle value

Description
GCSetObjectReferenceForHandle() allows the altering of the value of a handle in a GC-safe way.
Attempts to alter a handle without using this method will generally cause the JVM to crash

GCSetObjectReferenceForObject

Name
GCSetObjectReferenceForObject —

Synopsis

void GCSetObjectReferenceForObject(
HObject **location,
HObject *object)

325

Chapter 16. RNI Function Reference

Parameters

location

Pointer to a field within an object

object

The new object pointer

Description
GCSetObjectReferenceForObject() allows the updating of a field value within in an object in a GC-safe
way.

JVM Embedding

PrepareThreadForJava

Name
PrepareThreadForJava —

Synopsis

BOOL PrepareThreadForJava(PVOID pThreadEntryFrame)

Parameters

pThreadEntryFrame

An instance of a thread entry frame that will be populated upon a succesful attach to a JVM

326

Chapter 16. RNI Function Reference

Description
This function should be called within standalong native programs to enable access to the JVM from those
programs. No RNI calls should be made until after PrepareThreadForJava() has successfully executed.

PrepareThreadForJavaEx

Name
PrepareThreadForJavaEx —

Synopsis

BOOL PrepareThreadForJavaEx(PVOID pThreadEntryFrame,
DWORD flags)

Parameters

pThreadEntryFrame

An instance of a thread entry frame that will be populated upon a succesful attach to a JVM

flags

Flags specifying extended entry behaviour. For example, if the
PTJF_DONTINSTALLSTANDARDSECURITY bit is defined, the default security manager is not
installed for the first caller that initializes the VM

Description
This function is an extension of PrepareThreadForJava() and should be called within standalong native
programs to enable access to the JVM from those programs. No RNI calls should be made until after
PrepareThreadForJava() has successfully executed.

327

Chapter 16. RNI Function Reference

UnprepareThreadForJava

Name
UnprepareThreadForJava —

Synopsis

VOID UnprepareThreadForJava(
PVOID pThreadEntryFrame)

Parameters

pThreadEntryFrame

An instance of a thread entry frame. This should point at the same frame used in
PrepareThreadForJava() when entering the JVM

Description
UnprepareThreadForJava() disassociates a given OS thread from an instance of a JVM. Any RNI calls
made within this thread after UnprepareThreadForJava() is called will cause JVM instability or simply
crash.

328

Chapter 16. RNI Function Reference

Member Information

Member_GetAttributes

Name
Member_GetAttributes —

Synopsis

int Member_GetAttributes(PVOID member)

Parameters

member

The address of a methodblock or fieldblock

Description
Returns the attributes of the class the method or field is implemented in

Member_GetClass

Name
Member_GetClass —

329

Chapter 16. RNI Function Reference

Synopsis

ClassClass *Member_GetClass(PVOID member)

Parameters

member

The address of a methodblock or fieldblock

Description
Returns the name of the class the method or field belong to

Member_GetName

Name
Member_GetName—

Synopsis

const char *Member_GetName(PVOID member)

Parameters

member

The address of a methodblock or fieldblock

330

Chapter 16. RNI Function Reference

Description
Returns the name of a method or field

Member_GetSignature

Name
Member_GetSignature —

Synopsis

const char *Member_GetSignature(PVOID member)

Parameters

member

The address of a methodblock or fieldblock

Description
Returns the signature of a method or field

331

Chapter 16. RNI Function Reference

Method Handling

do_execute_java_method

Name
do_execute_java_method —

Synopsis

long do_execute_java_method(ExecEnv *ee,
void *obj,
char *method_name,
char *signature,
struct methodblock *mb,
bool_t isStaticCall,
... args)

long do_execute_java_methodV(ExecEnv *ee,
void *obj,
char *method_name,
char *signature,
struct methodblock *mb,
bool_t isStaticCall,
va_list args)

Parameters

ee

The execution environment. This should be the value NULL.

obj

The object or class against which the method should be invoked

332

Chapter 16. RNI Function Reference

method_name

The name of the method to invoke

signature

The type signature of the method to invoke

mb

A previously located methodblock for the given method

isStaticCall

Specifies whether or not the method to invoke has been declared as being static or not

args

Any other arguments required by the Java method

Description
This function invokes a method specified by the given name and type signature. In order to provide
high-performance when invoking Java methods, this method also uses pre-fetched methodblock
information instead of fetching the method block for each invocation of the method. The arguments for
the Java method should be supplied as a comma-separated list of values except when
do_execute_java_methodV() is used when an ANSI varargs list should be used.

execute_java_constructor, execute_java_constructorV

Name
execute_java_constructor, execute_java_constructorV —

Synopsis

HObject *execute_java_constructor(ExecEnv *ee,
char *classname,
ClassClass *cb,

333

Chapter 16. RNI Function Reference

char *signature,
... args)

HObject *execute_java_constructorV(ExecEnv *ee,
char *classname
ClassClass *cb,
char *signature
va_list args)

Parameters

ee

The execution environment. This should be given a value of NULL.

classname

The fully qualified name of the class from which an object should be instantiated from

cb

The classblock describing the class to instantiate the object from

signature

The type signature of the constructor to invoke

args

Any other arguments required by the constructor

Description
execute_java_constructor() executes one of the constructors of the given class and instantiates a new
object of that class. The new object is returned. Any arguments to the constructor are specified as a
comma-separated list.

execute_java_constructorV() operates in a similar manner but the arguments to be supplied to the
constructor are specified as an ANSI varargs list.

334

Chapter 16. RNI Function Reference

execute_java_constructor_method

Name
execute_java_constructor_method —

Synopsis

void execute_java_constructor_method(struct methodblock * mb,
... args)

void execute_java_constructor_methodV(struct methodblock *mb,
va_list args)

Parameters

mb

A pointer to the methodblock structure for the desired constructor

args

Arguments

Description
Invokes the given Java constructor method with the arguments for the constructor being given as a
comma-separated list of values. Invokingexecute_java_constructor_methodV() will produce the
same result, but the arguments should be specified as an ANSI varargs list instead of a comma-separated
list.

execute_java_dynamic_method,
execute_java_dynamic_method64,

335

Chapter 16. RNI Function Reference

execute_java_dynamic_methodV

Name
execute_java_dynamic_method, execute_java_dynamic_method64,
execute_java_dynamic_methodV —

Synopsis

long execute_java_dynamic_method(ExecEnv *ee,
HObject *obj,
char *methodname,
char *signature,
... args)

int64_t execute_java_dynamic_method64(ExecEnv *ee,
HObject *obj,
char *methodname,
char *signature,
... args)

int64_t execute_java_dynamic_methodV(ExecEnv *ee,
HObject *obj,
char *methodname,
char *signature,
va_list args)

Parameters

ee

The execution environment. This should be given a value of NULL.

obj

The object against which to invoke the method

methodname

The name of the method to invoke

336

Chapter 16. RNI Function Reference

signature

The type signature of the method to invoke

args

Any other arguments required by the method

Description
execute_java_dynamic_method() invokes an instance method in the given object. The method name and
type signature should match up to provide a valid method to invoke. Any arguments to the method are
specified as a comma-separated list.

execute_java_dynamic_method64() operates in an identical way to execute_java_dynamic_method(), but
returns a 64-bit value from the Java method as opposed to, typically, a long int.

execute_java_dynamic_methodV() operates as per execute_java_dynamic_method(), but any arguments
to the method are specified in an ANSI varargs list instead of a comma-separated list.

execute_java_interface_method,
execute_java_interface_method64,
execute_java_interface_methodV

Name
execute_java_interface_method, execute_java_interface_method64,
execute_java_interface_methodV —

Synopsis

long execute_java_interface_method(ExecEnv *ee,
HObject *pobj,
ClassClass j_interface,
char *methodname,
char *signature,

337

Chapter 16. RNI Function Reference

... args)

int64_t execute_java_interface_method64(ExecEnv *ee,
HObject *pobj,
ClassClass j_interface,
char *methodname,
char *signature,
... args)

int64_t execute_java_interface_methodV(ExecEnv *ee,
HObject *pobj,
ClassClass j_interface,
char *methodname,
char *signature,
va_list args)

Parameters

ee

The execution environment. This should be given a value of NULL.

pobj

The object against which to invoke the method

j_interface

The Java interface to invoke the method in

methodname

The name of the method to invoke

signature

The type signature of the method to invoke

args

Any other arguments required by the method

338

Chapter 16. RNI Function Reference

Description
execute_java_interface_method() invokes a method against the the given object defined within a given
interface. The method name and type signature should match up to provide a valid method to invoke.
Any arguments required by the Java method are specified as a comma-separated list.

execute_java_interface_method64() operates in an identical way to execute_java_interface_method(), but
returns a 64-bit value instead of a long int.

execute_java_interface_methodV() is identical in operation to execute_java_interface_method() other
than that any arguments to be passed to the Java method are supplied in an ANSI varargs list.

execute_java_static_method,
execute_java_static_method64,
execute_java_static_methodV

Name
execute_java_static_method, execute_java_static_method64,
execute_java_static_methodV —

Synopsis

long execute_java_static_method(ExecEnv *ee,
ClassClass *cb,
char *method_name,
char *signature,
... args)

int64_t execute_java_static_method64(ExecEnv *ee,
ClassClass *cb,
char *method_name,
char *signature,
... args)

int64_t execute_java_static_methodV(ExecEnv *ee,
ClassClass *cb,

339

Chapter 16. RNI Function Reference

char *method_name,
char *signature,
... args)

Parameters

ee

The execution environment. This should be passed a value of NULL.

cb

A classblock value describing the class in which the static method to invoke is defined

method_name

The name of the method to invoke

signature

The type signature of the method to invoke

args

Any other arguments required by the specified method

Description
execute_java_static_method() invokes a method declared within a Java class as being static, i.e.,
class-level and not instance-level. Any arguments required by the Java method are specified as a
comma-separated list.

execute_java_static_method64() has the same operation but returns a 64-bit value.
execute_java_static_methodV() also provides the same functionality but any arguments required by the
Java method are supplied in the form of an ANSI varargs list.

340

Chapter 16. RNI Function Reference

get_methodblock

Name
get_methodblock —

Synopsis

struct methodblock *get_methodblock(
HObject *pjobj,
char *methodname,
char *signature)

Parameters

pjobj

The object containing the method which you wish to retrieve the methodblock for

methodname

The name of the method to return the methodblock for

signature

The type signature for the desired method

Description
get_methodblock() returns information on a given method within a class which can be used in
conjunction with do_execute_java_method(), a more optimized function for invoking Java methods from
native code.

341

Chapter 16. RNI Function Reference

Miscellaneous

AddModuleResourceClassSource

Name
AddModuleResourceClassSource —

Synopsis

void AddModuleResourceClassSource(HMODULE hMod,
DWORD dwResID)

Parameters

hMod

A handle to a module

dwResID

The unique resource ID

Description
Notifies the Microsoft JVM of a Win32 resource containing class files. When classes are loaded, the
resource is searched for the appropriate classes as if it were a directory on the class path

342

Chapter 16. RNI Function Reference

GetCurrentJavaTimeMillis

Name
GetCurrentJavaTimeMillis —

Synopsis

__int64 GetCurrentJavaTimeMillis()

Description
Returns the same result as defined by java.lang.System.currentTimeMillis()

GetNativeMethodCallersClass

Name
GetNativeMethodCallersClass —

Synopsis

ClassClass *GetNativeMethodCallersClass()

Description
Returns the class information for the class or object whose method was invoked to enter the current
native method

343

Chapter 16. RNI Function Reference

GetNativeMethodCallersMethodInfo

Name
GetNativeMethodCallersMethodInfo —

Synopsis

struct methodblock *GetNativeMethodCallersMethodInfo()

Description
Returns the method information about the natively declared method invoked to enter the current native
method

GetNativeMethodsClass

Name
GetNativeMethodsClass —

Synopsis

ClassClass * GetNativeMethodsClass()

Description
Retrieves information about the currently executing native method’s class

344

Chapter 16. RNI Function Reference

GetNativeMethodsMethodInfo

Name
GetNativeMethodsMethodInfo —

Synopsis

struct methodblock * GetNativeMethodsMethodInfo()

Description
Retrieves information about the currently executing native method

RNIGetCompatibleVersion

Name
RNIGetCompatibleVersion —

Synopsis

DWORD RNIGetCompatibleVersion()

Description
This function must be defined in your native libraries returning the value of RNIVER as defined with
<native.h> in order to load into the JVM.

345

Chapter 16. RNI Function Reference

Thread_IsInterrupted

Name
Thread_IsInterrupted —

Synopsis

BOOL Thread_IsInterrupted(BOOL fResetInterruptedFlag)

Parameters

fResetInterruptedFlag

Indicates whether or not to reset the interrupt flag

Description
Checks to see if the current thread has been interrupted and resets the interrupt flag, if desired. This is
used within RNI code to determine whether or not Thread.interrupt() has been called from within
another thread and wants the current thread to stop

Monitors

ObjectMonitorEnter

Name
ObjectMonitorEnter —

346

Chapter 16. RNI Function Reference

Synopsis

void ObjectMonitorEnter(HObject *object)

Parameters

object

A synchronization object

Description
ObjectMonitorEnter() is actually a macro which simply takes the given Java object, casts it to an
unsigned int and invokes monitorEnter() for you.

ObjectMonitorExit

Name
ObjectMonitorExit —

Synopsis

void ObjectMonitorExit(HObject *object)

Parameters

object

A synchronization object

347

Chapter 16. RNI Function Reference

Description
ObjectMonitorExit() is actually a macro which simply takes the given Java object, casts it to an unsigned
int and invokes monitorExit() for you.

ObjectMonitorNotify

Name
ObjectMonitorNotify —

Synopsis

void ObjectMonitorNotify(HObject *object)

Parameters

object

A synchronization object

Description
ObjectMonitorNotify() is actually a macro which simply takes the given Java object, casts it to an
unsigned int and invokes monitorNotify() for you.

348

Chapter 16. RNI Function Reference

ObjectMonitorNotifyAll

Name
ObjectMonitorNotifyAll —

Synopsis

void ObjectMonitorNotifyAll(HObject *object)

Parameters

object

A synchronization object

Description
ObjectMonitorNotifyAll() is actually a macro which simply takes the given Java object, casts it to an
unsigned int and invokes monitorNotifyAll() for you.

ObjectMonitorWait

Name
ObjectMonitorWait —

Synopsis

void ObjectMonitorWait(HObject *object)

349

Chapter 16. RNI Function Reference

Parameters

object

A synchronization object

Description
ObjectMonitorWait() is actually a macro which simply takes the given Java object, casts it to an unsigned
int and invokes monitorWait() for you.

monitorEnter

Name
monitorEnter —

Synopsis

void monitorEnter(unsigned int object)

Parameters

object

A synchronization object

Description
monitorEnter() causes synchronization to occur upon the given object. This is equivalent to using the
synchronized keyword within Java code

350

Chapter 16. RNI Function Reference

monitorExit

Name
monitorExit —

Synopsis

void monitorExit(unsigned int object)

Parameters

object

A synchronization object

Description
This function releases the synchronization lock held on the given object

monitorNotify

Name
monitorNotify —

Synopsis

void monitorNotify(unsigned int object)

351

Chapter 16. RNI Function Reference

Parameters

object

A synchronization object

Description
This function wakes up a single thread waiting on the given synchronization object. This is equivalent to
the java.lang.Object.notify() method in Java code.

monitorNotifyAll

Name
monitorNotifyAll —

Synopsis

void monitorNotifyAll(unsigned int object)

Parameters

object

A synchronization object

Description
This function wakes up all threads waiting on the given synchronization object. This is equivalent to the
java.lang.Object.notifyAll() method in Java code.

352

Chapter 16. RNI Function Reference

monitorWait

Name
monitorWait —

Synopsis

void monitorWait(unsigned int object)

Parameters

object

A synchronization object

Description
This function causes the monitor to wait until the synchronization object is notified by another thread.
This is equivalent to the java.lang.Object.wait() method in Java code.

Object Characteristics

ImplementsInterface

Name
ImplementsInterface —

353

Chapter 16. RNI Function Reference

Synopsis

BOOL ImplementsInterface(ClassClass *cb,
ClassClass *icb,
ExecEnv *ee)

Parameters

cb

The class information to test

icb

The class information for the interface in question

ee

The execution environment. This should always have the value of NULL passed to it

Description
This function determines whether or not the given class implements the given interface

isInstanceOf

Name
isInstanceOf —

Synopsis

BOOL isInstanceOf(JHandle *phobj,
char *classname)

354

Chapter 16. RNI Function Reference

Parameters

phobj

Handle to a Java object

classname

The fully qualified classname of the class to test against with a package delimiter of slash ’/’

Description
isInstanceOf() tests an object to see if it is an instantiation of the given class.

is_instance_of

Name
is_instance_of —

Synopsis

BOOL is_instance_of(JHandle *phobj,
ClassClass *dcb,
ExecEnv *ee)

Parameters

phobj

Handle to a Java object

dcb

Class information for the target class

355

Chapter 16. RNI Function Reference

ee

The execution environment. A value of NULL should be passed as this argument.

Description
is_instance_of() tests an object to see if it can be cast to the given target class.

is_subclass_of

Name
is_subclass_of —

Synopsis

BOOL is_subclass_of(ClassClass *cb,
ClassClass *dcb,
ExecEnv *ee)

Parameters

cb

The classblock to test

dcb

The class information to test against

ee

The execution environment. A value of NULL should always be passed for this argument

356

Chapter 16. RNI Function Reference

Description
is_subclass_of() tests the given class to determine whether or not it is a subclass of the class specified by
“dcb”

Object Information

Object_GetClass

Name
Object_GetClass —

Synopsis

ClassClass *Object_GetClass(HObject *obj)

Parameters

obj

The object to return the classblock information from

Description
This function returns the classblock information for the given object

357

Chapter 16. RNI Function Reference

String Handling

MakeByteString

Name
MakeByteString —

Synopsis

HArrayOfByte *MakeByteString(char *str, long len)

Parameters

str

A C string containing the data from which the Java array will be initialized from

len

The number of characters in the C string. The Java array will be created to this length

Description
MakeByteString() creates a new array of bytes from a C string.

javaString2CString

Name
javaString2CString —

358

Chapter 16. RNI Function Reference

Synopsis

char *javaString2CString(Hjava_lang_String *s,
char *buf,
int buflen)

Parameters

s

The Java String object from which the characters will be extracted

buf

The pre-allocated buffer to extract the characters into

buflen

The size of the C buffer

Description
This function extracts the characters from a Java String and copies them into a pre-allocated C buffer
allowing you to manipulate Java String easily within C.

javaStringLength

Name
javaStringLength —

Synopsis

int javaStringLength(Hjava_lang_String *s)

int javaStringLengthAsCString(HString *s)

359

Chapter 16. RNI Function Reference

Parameters

s

The Java String to calculate the length of

Description
javaStringLength() returns the length of the given Java String. javaStringLengthAsCString() functions in
a similar way but returns the length of the Java String as if it was a C string.

javaStringStart

Name
javaStringStart —

Synopsis

unicode *javaStringStart(HString *string)

Parameters

string

The Java String

Description
javaStringStart() returns a pointer to the first character of the Java String object. Note that this pointer
will become invalid as garbage collection occurs.

360

Chapter 16. RNI Function Reference

makeJavaString

Name
makeJavaString —

Synopsis

Hjava_lang_String *makeJavaString(char *str, int len)

Hjava_lang_String *makeJavaStringW(unicode *str, int len)

Hjava_lang_String *makeJavaStringFromUtf8(const char *str,
int len)

Parameters

str

A C string containing the data from which the Java string will be initialized

len

The length of the C string data

Description
makeJavaString() and makeJavaStringFromUtf8() create a new Java String object from existing C string
data in ASCII and UTF-8 format.

makeJavaStringW() similarly creates a new String object from Unicode data.

361

