Seminar Winter Term 2000/2001
Plugin-Architecture of the Browsers
Netscape Communicator,
Microsoft Internet Explorer,
Opera

Michael Fischer
December 2000

Chair for Information Systems and Software Techniques
University of Essen



CONTENTS CONTENTS

Contents
1 Basics 4
1.1 Helper Applications . . . . . ... ... ... . 5
1.2 Netscape Plugins . . . . . . . . .. ... L. 6
1.3 Java Applets . . . . . ... 6
1.4 ActiveX-Controls . . . . . . . . . e 7
1.5 Selection of a suitable technique to develope a Rexx-Plugin . . . . . 8
2 Netscape Plugins in Detail 9
2.1 Implementation in HTML . . . . . . .. ... ... ... .. ..... 9
2.1.1 Full PageMode . . . . . . . ... ... 9
2.1.2 Embedded Mode . . . . .. ... .. ... ... 9
2.1.3 Visible/Hidden Plugins . . . ... ... ... ......... 11
2.14 Windowed / Windowless Plugins . . . . .. .. ... ... .. 11
2.2 Overview of NPAPI-functions . . . . .. ... ... ... ....... 11
2.3 program run by calling a HTML-page . . ... ... ......... 11
24 LiveConnect . . . . . . . . . . o e 14
2.5 Plugin Template . . . . .. .. .. ... ... ... 14
3 Developing a Rexx-Plugin 16
3.1 Requirements . . . . . . .. .. ... 16
3.2 Implementation . . . . . ... . ... 17
321 NPP New . . ... ... i 17
322 NPP Destroy ... .... ... ... .. 18
3.2.3 NPP NewStream . ....................... 18
324 NPP WriteReady . . ... ... . ... ... ......... 18
325 NPP Write. . ... ... ... ... .. 18
3.2.6 NPP_ DestroyStream . . . ... ... ... ... ....... 19
327 TEXX €XEC . . . . v v i e e 19
3.2.8 hook RXSIOSAY . ...... ... ... ... ... ..., 19
3.29 handle RXSIOSAY . ... ......... .. ........ 20
3.3 Example . . . . ..o 22
4 Conclusion 23



CONTENTS CONTENTS

Abstract

WWW-Browsers allow the dynamical loading of applications (“plugins”)
from third parties, e.g. Adobe, to get PDF-files from the browser and display
it in the browsers window. Moreover, there exist serveral plugins for scripting
languages like Perl or TCL in source code, as well as detailed documentation,
which can be get from the internet. This makes it posible to use client-side
scripting in addition to javascript.

Topic of this seminar paper is to weave-in into the plugin architecture of
browsers, get to know existing plugins for scripting languages and the design
and implementation of plugins for the scripting language Rexx.



1 BASICS

1 Basics

Many informations from the internet require special applications in order to be
viewed, played, listened or printed. Because of the further deployment of file for-
mats, a browser should not only be able to load informations from the internet and
possibly store them on a local memory medium. It should exist a way to handle
these informations correctly by a simple mouse click. But it is not possible to im-
plement all available file formats in a browser, on the one hand, because the great
number of formats cannot be handled by a single application, on the other hand,
because by developing new file formats the browser must permanently be replaced.

Alternativly to the enlargement of the browser, the information could be pre-
pared on the server side and delivered as HTML-page. The browser is only required
for input and output. Indeed this way increases both, the load of the network, as
well as the load of the server, it is not possible to play video and audio files and
the validation of user input requires additional data traffic on the network. There
exist several proprietary extensions, from Microsoft as well as from Netscape, which
makes it possible to show multimedia data with HTML (e.q. the tag <BGSOUND>
[8])- But these are not part of the HTML standard [15].

web based applications

server side client side
server external  code saved code saved
extension app. persisten temporary

SS|I  scripting same separate helper |plug-ing|interpreted machine
process process app. code code

Figure 1: Classification of Web Based Applications [13]

Figure 1 outlines the possiblities of client-side and server-side extensions. The
focus of this seminar paper lies on the client-side extension by using plugins. The
term “plugin” is not exactly defined. The extract from [14] explains this term as
follows:

"Starting with an application, the common characteristics are that:

e It is a standalone program.

o A desktop program, including Web browsers, invokes an application in a sep-
arate window.

e An application normally implements a specific application protocol such as
FTP, telnet, or SMTP.

On the other hand, a plug-in’s characteristics are that:
e [t represents an extension to a Web browser.
o [t implements a specific MIME type in an HTML document.

o It normally operates within the browser window.



1 BASICS 1.1 Helper Applications

And then we have the Java applet. Is it a "small application,” or is it
something else? A Java applet

o s written in the Java language and compiled by a Java compiler
e Can be included in an HTML document
o Is downloaded and executed when the HTML document is viewed

e Requires the Java runtime to execute”

In the following, a short description of several ways is given, which expand the posi-
bilties of viewing informations of the web browsers Netscape Navigator /Communicator
, Microsoft Internet Explorer and Opera beyond HTML. In addition to Netscape’s
“plugins” and Microsoft’s “ActiveX”, there are also “Helper Applications” and “JavaAp-
plets” presented to explain the term “plugin”.

1.1 Helper Applications

Since the first version of Netscape Navigator and Opera, both browsers make it
possible to assign a file format to a specific application. By clicking on a URL
to a file, the assigned application is started and views the content of this file in
accordance to the file format. The application “helps” the browser to process the
file format.

Because of the high integration of the Internet Explorer in the operating system
Microsoft Windows, there must not done any assignment between file formats and
applications. This assignment is stored in the configuration of the operating system,
the behavior of the Internet Explorer is the same as of Netscape Navigator.

Advantages of Helper Applications:

e In the beginning of the internet, the great advantage of helper applications was
the easier handling of downloaded files by starting the assigned application
by a single mouse click. Nowadays this advantage moved to the background
because of new and smarter techniques.

e if processing of a file content is required, helper applications are still usefull.

Disadvatnages of Helper Applications :

e The whole file must first be downloaded before it can be processed (i.e.: no
streaming of audio- or video-data).

e A special application must be installed for every file format to process the
content of the downloaded file. Because there does not exist a viewer appli-
cation for every file format (like Adobe Acrobat Reader or WordView), the
providing of applications needs a high amount of ressources.

e The helper application is started in addition to the web browser. The down-
loaded information is not viewed in the context of the HTML-page, but in a
separate window. This leads to an unclear representation of the information.



1 BASICS 1.2 Netscape Plugins

1.2 Netscape Plugins
The term ”plugin” is defined by Netscape as follows [10]:

"A plug-in is a separate code module that behaves as though it is part
of the Netscape Communicator browser. You can use the Plug-in API
to create plug-ins that extend Communicator with a wide range of in-
teractive and multimedia capabilities, and that handle one or more data
(MIME) types. You can even use the Plug-in API to create plug-ins that
work in browsers other than the Navigator component of Communica-
tor."

With version 2 of the Netscape Navigator, the plugin technology was introduced.
Unlike helper applications, plugins are not stand-alone applications but software
modules, which are dynamically loaded on demand and enhance the functionality of
the browser. They are build as dynamic link libraries (DLL) for microsoft windows
respectivly as shared objects (SO) for Unix/Linux. For the operating systems Mac-
OS and OS/2 there are comparable libraries build.

With version 3 of the Navigator, Netscape extends the plugin technology by
LiveConnect. LiveConnect links the plugin technology with Java and JavaScript.

Since version 3 of the Internet Explorer the plugin technology of Netscape is
supported by Microsoft with several restrictions. Theses Restricitons are partly
described by Microsoft [4].

The browser Opera supports plugins since version 4.02, but only for Microsoft
Windows.

Advantages of Netscape Plugins

e In contrast to Java Applets, Plugins are installed once and available until they
are deleted.

e Plugins are written in C/C++ and therefore easy to build for several plat-
forms.

Disadvantages of Netscape Plugins

e There exist no security concepts like the sandbox of Java. By using C/C++
the plugin developer is able to use many possiblities to manipulate client-side
data.

e The compatibility to other platforms is made difficult by using system specific
libraries. The graphical user interface must be developed especially for each
operating system.

1.3 Java Applets

Also with Netscape Navigator 2 and Internet Explorer 3 Java-Applets are supported.
A Java Applet is a program, that resides as precompiled bytecode on the webserver
and is downloaded by the browser. On execution, the bytecode is interpreted by
the Java-Virtual-Machine [12], which is integrated in the browser. In contrast to
plugins, applets are downloaded and executed by every call of the HTML-page.

The browser Opera supports Java since version 4.02, but only for Microsoft
Windows .



1 BASICS 1.4 ActiveX-Controls

Advantages of Java Applets

e security by using the sandbox concept, no possibility to access files or execute
external programs

e platform independent

e providing a uniform graphical user interface on all supported operating sys-
tems

Disadvantages of Java Applets

e Java bytecode must be interpreted, therefore Java is slower than e.g. Plugins
or ActiveX

e class libraries, which are required by a Java Applet but not available locally
must be downloaded in addition to the applet on the first access to the HTML-
page. This increases the download time.

1.4 ActiveX-Controls

With Version 3 of Internet Explorer, Microsoft introduced the ActiveX technology.
ActiveX [6] is based on the Component Object Model [7], an interface technology,
which theoretically could be used on every operating system. But COM, and there-
fore also ActiveX, is only available on Windows operating systems. In Addition,
ActiveX works only with the Internet Explorer.

To make ActiveX-Controls available to Netscape’s Browser and Opera, there
exist serveral Plugins, e.g. from Esker[3],which gets a link to the required ActiveX-
control. But the HTML-Code must be modified with JavaScript and the use of
ActiveX-Controls is still restricted to Windows operating systems.

Under [11] exists a FAQ-list which explains, why ActiveX-Controls never be
supported by Opera. The main reasons are the dependence on the operating system
and in the lack of security of ActiveX-Controls.

Similar to plugins a ActiveX-Control has to be downloaded once and is available
until it is deleted. An AktiveX-Control is system-wide available and has access to
all system ressources. Therefore there exists no security concept like e.g. in JavaAp-
plets. On the other hand, ActiveX-Controls are available for many programming
languages for application development (e.g. MS Visual C++, Borland Delphi).

Advantages of ActiveX-Controls
e possiblity to use many operating system specific features
e there exists a great number of available ActiveX-Controls

e high performance on execution

Disadvantages of ActiveX-Controls
® no security concept

e platform-dependent



1 BASICS 1.5 Selection of a suitable technique to develope a Rexx-Plugin

| Browser | Applets | ActiveX | Plugins |
X

Internet Explorer

Netscape Navigator for MS Windows
Netscape Navigator for Linux

Opera for MS Windows

Opera for Linux

Sikalkalls
Slkalkalls

Table 1: Availability of Java Applets, ActiveX and Netscape Plugins on MS Win-
dows and Linux

1.5 Selection of a suitable technique to develope a Rexx-
Plugin

Table 1 shows the availability of the former described plugin technologies by us-
ing the possible browser- and operating-system combinations. Helper Applications
are not listed here because of the lack of needed integration in HTML-pages. An
additional criterion is to execute a external program. Because the script delivered
by the webserver must be interpreted by the Rexx interpreter, it must be possible
to execute this interpreter. Because of the sandbox-technique, it is not possible to
execute external programs from Java Applets.

Also ActiveX is not suitable because of its platform-dependence. Indeed it is
possible to execute ActiveX-Controls under Netscape Navigator, but there does not
exist a way to execute ActiveX-Controls on other operating system than Microsoft
Windows.

In the following the plugin technique of Netscape is described. The Foundation
is the documentation of “Netscape Developer Plugin-Guide” [10] and the “Netscape
Plugin Software Development Kit”[9].



2 NETSCAPE PLUGINS IN DETAIL

2 Netscape Plugins in Detail

2.1 Implementation in HTML

Plugin
Embedded Full Page
Mode Mode
Visible Hidden
Mode Mode

Windowed Windowless

Figure 2: Display Modes of Plugins

Figure 2 shows the different display modes of a plugin. Basically the embedded
mode and the full page mode is distinguished.

2.1.1 Full Page Mode
By giving the HTML-Statement

<A HREF="myavi.avi”>play myavi</A>

a link with the label “play myavi” is displayed. A click on this link creates a browser
window, which is fullfilled with the plugin window. Alternativly the file myavi.avi
can be opended by the browsers file-open menu. It is not possible to pass any
aditional parameters to the plugin, when working in full page mode.

2.1.2 Embedded Mode

To embbed plugins in HTML-pages there are two tags. The first, EMBED-Tag, is
not part of the HTML-specification [15], but is supported by all browsers.

EMBED-Tag The embedded mode is created by the HTML-Tag <EMBED>.
The plugin is invoked at the place of the EMBED-definition in the HTML-page,
in the size given by the parameters WIDTH and HEIGHT. The option SRC is the
URL of the file to display. If a plugin has to be started, which does not need any
data (e.g. a plugin to show the current time and date), there must no option SRC
be provided, but the MIME-type must be specified via the TYPE-option.



2 NETSCAPE PLUGINS IN DETAIL 2.1 Implementation in HTML

Every plugin has a window for the graphical output. This window is integrated
in the HTML-page, the position is specified by the option ALIGN and by the posi-
tion of EMBED-Tag. If the option HIDDEN is part of the EMBED-tag, no window
is displayed. In that case there must no additional information about the width
and height of the plugin be given.

Table 2 lists the more important options of the EMBED-tag: Additional to

| Option | Description |
SRC URL of the file to display
TYPE MIME-Type of Plugin
ALIGN Alignment of Plugin: Left, Right, Top, Bottom
BORDER Widht of Frame for Plugin-Window
FRAMEBORDER | “NO”, if no border neccessary
HEIGHT Height of Plugin-Window
WIDTH Width of Plugin-Window
HIDDEN Plugin without graphical output
HSPACE Horicontal space around the plugin
VSPACE Vertical space around the plugin

Table 2: EMBED-Tag

these options there can be given more options, which are ignored by the browser
and passed to the plugin. The HTML-statement

<EMBED SRC="movie.avi" HEIGHT=100 WIDTH=100 LOOP=TRUE>

loads the plugin, which is assigned to the filetype “.avi” and creates a window with
the size 100x100. The option LOOP is not meaningful for the browser and ignored.
All four options are passed to the plugin, where they are analyzed.

OBJECT-Tag In contrast to the EMBED-Tag, which only embeds plugins, the
OBJECT-tag is able to embed also Applets, ActiveX-controls, images or any other
ressources, which are outside of a HTML-page and should be embedded. As a
general object reference it prevents from creating new tags for every new ressource,
which must be supported by HTML in the future. For example, the introduction
of the OBJECT-tag obsolets the APPLET-tag.

| OBJECT-Tag Option | Description | EMBED-Tag Option |
DATA URL of the file SRC
TYPE MIME Type of Plugins TYPE
ALIGN Alignment of Plugins ALIGN
HEIGHT Height of Plugin-Window HEIGHT
WIDTH Width of Plugin-Window WIDTH

Table 3: OBJECT-Tag

Table 3 lists the important options of the OBJECT-tag together with the cor-
responding options of the EMBED-tag. For passing parameters to the plugin, one
must use the PARAM-tag within the OBJECT-tag. The former example of the
EMBED-tag is defined as OBJECT-tag as follows:

10



2 NETSCAPE PLUGINS IN DETAIL 2.2 Overview of NPAPI-functions

<OBJECT DATA="movie.avi” HEIGHT=100 WIDTH=100>
<PARAM NAME="LOOP” VALUE="TRUE">
</OBJECT>

Further documentation is given by [15] and [8].

2.1.3 Visible/Hidden Plugins

The display mode “Visible” is the standard mode for embedded plugins and is turned
off by specifying the option HIDDEN in EMBED-tags. Because there is no corre-
sponding option to HIDDEN in the OBJECT-tag, the WIDTH and HEIGHT is set
to zero. A hidden plugin has no graphical output window and claims no space in
the HTML-page.

2.1.4 Windowed / Windowless Plugins

The display mode “Windowless” was introduced with Netscape Communicator 4.
In contrast to windowed plugins, which have an defined output range, windowless
plugins can access any drawing context, which is provided by a window-handle.
Windowless plugins are not supported by the X-Windows system, therefore the
explanation of windowless plugins does not appear here.

2.2 Overview of NPAPI-functions

\ 4

Browser NPP_-Functions

Plug-In

A

NPN_-Functions

Figure 3: Interface between Browser and Plugin

The interface between browsers and plugins is defined in the Netscape Plugin
Application Programming Interface (NPAPI) and divided into two main parts (Fig-
ure 3). Functions, which are called from the browser and provided by the plugin
are named with the prefix “NPP_”. Functions, which are called by the plugin and
provided by the browser are named with the prefix “NPN_”.

Further, the more important functions are listed. Detailed explanations to the
parameters can be read in [10] . A practical example follows in Section 3.

Table 4 lists the more important functions, which are provided by the plugin and
called by the browser. These functions are the basic functionality of the plugin and
must be implemented, otherwise an error messages occurs by calling the plugin.
Table 5 lists the more important functions, which the browser provides for the
plugin.

2.3 program run by calling a HTML-page

By starting the browser, all available plugins are registered. Available plugins re-
side in the subdirectory “plugins” of the browsers program directory. Under Unix
a additional directory “$(HOME)/.netscape/plugins” is searched by the Netscape
browser. To register the supported MIME-types, two different strategies are used:

11



2 NETSCAPE PLUGINS IN DETAII2.3 program run by calling a HTML-page

| Function | Description |

NPP _Initialize Provides global initialization for a plug-in

NPP_ Shutdown Provides global deinitialization for a plug-in

NPP_New Creates a new instance of a plug-in

NPP_ Destroy Deletes a specific instance of a plug-in

NPP_NewStream Notifies a plug-in instance of a new data stream

NPP_ WriteReady Determines maximum number of bytes that the plug-
in can consume

NPP_ Write Delivers data to a plug-in instance

NPP DestroyStream Tells the plug-in that a stream is about to be closed
or destroyed

NPP_SetWindow Tells the plug-in when a window is created, moved,

sized, or destroyed
NPP_GetMIMEDescription | MIME-Type of the Plugins

NPP _GetValue Allows Communicator to query the plug-in for infor-
mation

NPP _GetJavaClass Returns the Java class associated with the plug-in

NPP_ Print Requests a platform specific print operation

NPP URLNotify Notifies the instance of the completion of a URL re-
quest

NPP_StreamAsFile Provides a local file name for the data from a stream

Table 4: Functions provided by the plugin

| Function | Description
NPN_ MemAlloc Allocates memory from Communicator’s memory space
NPN MemFree Deallocates a block of allocated memory
NPN_GetUrl Requests Communicator to create a stream for the specified URL
NPN NewStream Requests the creation of a new data stream
NPN_ Write Pushes data into a stream produced by the plug-in
NPN_DestroyStream | Closes and deletes a stream

Table 5: Functions provided by the browser

Windows The information about the MIME-type is stored in the DLL. For this, a
ressource-file containing version information must be created, which is linked to the
DLL. By registering the plugin the browser reads this version information, which
contain the MIME-type.

Unix Plugins under Unix must have the NPAPI-functions NPP__ GetMIMEDescription
and NPP _GetValue, which are called by the browser. NPP__GetMIMEDescription
sends back a string like “MIME-Type:File Extension:Description”. NPP _GetValue

is used to get the name of the Plugin and a description text.

A list of all available plugins can be get by selecting the menu item “help->about
plugins” in Netscape Browsers. Opera has a plugin dialog under “file- >preferences”.
Microsoft Internet Explorer does not give any possibility to query the installed
plugins. One can write a simple JavaScript program, which uses the methods of the
object “navigator”. This object is also provided by MS IE. The following example
is from [§]:

12



2 NETSCAPE PLUGINS IN DETAII2.3 program run by calling a HTML-page

<html><head> <title>Test < /title>

< /head><body>

<script language="JavaScript" >

document.writeln("<table border>");

for(i=0; i<navigator.plugins.length; i++)

{

document.writeln(" <tr>");

document.writeln(" <td>" + navigator.plugins[i].name + "< /td>");
document.writeln("<td>" + navigator.plugins[i].description + "< /td>");
document.writeln("<td>" + navigator.plugins]i] filename + "< /td>");
document.writeln("< /tr>");

}

document.writeln(" < /table>");

< /script>
< /body></html>
NPP_Initialize
NPP_New | i
; ! Instance-
Pl ugi n- Ker nel > :
9 ' Data
NPP_Dest r oy — E
saved | nstance-Data
NPP_New | i
; ! Instance-
Pl ugi n- Ker nel > :
9 ' Data
NPP_Dest r oy — i
NPP_Shut down

Figure 4: program run of a plugin

Figure 4 shows a coarse scheme of initializing and instanciating a plugin, which is
called twice in a HTML-page.

NPP _ Initialize is executed at the first call of the HTML-page, NPP _Shutdown
is executed by closing the page, after the last instance of the plugin is destroyed.

After NPP _Initialize the function NPP_New is executed for every plugin in-
stance. For example, in the case, that a plugin is called two times on the same
page, the function NPP_New is called twice by displaying this page. This is also
be done, if a second browser window is invoked.

The instance data is created in NPP_New by each plugin instance and is re-
moved in NPP_Destroy. An instance can pass its instance data to the following
instance by allocating memory and passing a pointer to that memory to the browser.

13



2 NETSCAPE PLUGINS IN DETAIL 2.4 LiveConnect

A plugin, which is instanciated by calling the same URL, gets this pointer with the
call to NPP_New as parameter and can access the instance data of the former
instance.

One part of the plugin kernel is the refreshing of the plugins window by calling
NPP _SetWindow and the data exchange with the webserver. By getting data from
the webserver, the plugin-function NPP _NewStream is called by the browser. Here
can be decided, in which way the data has to be handled. In general there is the
stream-oriented and the file-oriented way of processing data.

In stream-oriented mode the functions NPP_ WriteReady and NPP_Write are
called until all data from the webserver is sent to the plugin and the stream is
closed by calling NPP_DestroyStream. With NPP _WriteReady the amount of
data, which is passed to NPP _Write, is determined by the plugin. This amount of
data is send to the plugin by calling a following NPP_Write. The data stream can
be interrupted at any time by the plugin by calling NPN _DestroyStream.

In file-oriented mode, the browser creates a file, which stores all the data sent
by the webserver. Then the browser calls NPP _StreamAsFile and gives the name
of the local file to the plugin. The processing and deleting of this file must be done
in the plugin.

2.4 LiveConnect

1. call Java methods from plug-ins

2. call native methods implemented in plug-ins from Java
3. call Java methods from JavaScripts

4, call JavaScript from Java methods

Figure 5: LiveConnect [10]

LiveConnect was introduced with Netscape Navigator 4. LiveConnect integrates
plugins, Java and JavaScript. It is possible, to access java objects from a plugin
and vice versa, to access plugin functions from a java applet. Figure 5 shows how
to indirectly get access from JavaScript to plugins.

LiveConnect needs a modified Java Virtual Machine [12], which is only imple-
mented in Netscape Browsers. Therefore LiveConnect is not supported on Opera
or Internet Explorer. And even in the Version 6 of Netscape Communicator is no
modified JVM installed, which in the long run leads to the end of LiveConnect.

2.5 Plugin Template

As a starting point to develope plugins, the Plugin Software Development Kit pro-
vides a Plugin Template, in which all necessary functions are predefined. The
plugin developer has only to fill these functions with some code. Figure 6 shows
the division of the different files of the template. For simplification, files of the
LiveConnect-implementation are not shown.

14



2 NETSCAPE PLUGINS IN DETAIL 2.5 Plugin Template

npunix.c
< <
Browser «— § npmac.cpp Z |—— Plugin
o Q.
c . <
npwin.cpp

Figure 6: Plugin Template

Because of the platform dependence of plugin code, there are different source
files for every supported platform, which are adapted to the conventions of a specific
operating system. To create a plugin library, the appropriate file must be used, e.g.,
npunix.c, to build a shared object for linux/unix.

The header file npupp.h contains the function prototypes and function table,
which the browser needs to call the plugin functions. The initialization and the
wrapper functions for the functions specified in the table are defined in the three
source files npunix.c, npmac.cpp and npwin.cpp.

The most important file for the plugin developer is npapi.h, because here are all
function prototypes and structures implemented, which are used to create plugin
sourcecode.

By setting the compiler options XP _UNIX, XP_PC or XP_MAC, the appro-
priate source files for the target platform are compiled. Additional, the compiler
option PLUGIN _TRACE kann be defined, to trace every function call to the plu-
gin by generating messages to the standard error queue (stderr). By this way it is
possible to test the program run described in 2.3.

15



3 DEVELOPING A REXX-PLUGIN

3 Developing a Rexx-Plugin

As a conceptual foundation for the rexx plugin there are the implementations of
the scripting languages TCL [16] and Perl [5] as Netscape Plugins. Both are based
on the fact, that the interpreter is already installed on the client machine and can
be executed. The scripting source is passed as stream to the plugin and stored in
a temporary file. The filename is delivered as parameter to the interpreter. The
<SCRIPT>-tag is not considered in the Rexx-Plugin.

Further informations about the scripting language Rexx are given by [1].

3.1 Requirements

A plugin on the foundation of the Netscape Plugin SDK hast to be developed. On
calling an URL, which points to a rexx scripting file with the extension “.rex”, the
content of this file is delivered to the client-side installed rexx interpreter and is exe-
cuted. The rexx script creates HTML code, which is displayed by the browser. The
plugin becomes a parameter, which is the target of the HTML output. Additional
a second parameter is provided, which is delivered to the rexx interpreter. There is
no need for a plugin window, because a graphical output is not created. The MIME
type (Multipurpose Internet Mail Extension) [2] is defined as “application/x-rexx”.
The data is received as stream and stored in a local temporary file. In summary,
the Plugin will have the following attributes according to the description in chapter
2.1:

e Embedded Mode
e Hidden

e stream-oriented

The coarse run of the plugin is shown in figure 7.

A

Browser

New Stream New Stream / Get URL

\ A

NPAPI

Plugin

Rexx SAA AP

RexxStart System Exit Handler

\ A

Rexx Interpreter

Figure 7: Program run of the Rexx Plugin

16



3 DEVELOPING A REXX-PLUGIN 3.2 Implementation

3.2 Implementation

In the following are only these “NPP_”-functions introduced, which have a concrete
task within the plugin kernel. All other functions listed in table 4, which are not
shown here, must even be implemented to build a correct working plugin. These
functions reside empty in the plugin source.

| Fieldname | Data Type | Description |

Window NPWindow* Handle of the plugin window

tmpFile int Handle of the temporary scripting
file

tmpFileName char[L._tmpnam] | Name of the temporary scripting file

target char* Name of the target for HTML output

input char* Parameter for Rexx

rexx_ stream NPStream Pointer to the HTML data stream

fHTML int Handle of HTML-File (only Win-
dows)

fHTMLFileName | [L_tmpnam| Name of HTML-File (only Windows)

Table 6: Instance Data Structure

3.2.1 NPP_New

For every instance, memory is allocated, that holds the instance data. The structure
of the instance data is defined by the plugin developer. The structure of the rexx
plugin is described in table 6. The NPP_New function gets an uninitialized pointer
instance->pdata. All in the following called functions get a pointer as parameter
to the instance data.

instance->pdata = NPN_MemAlloc(sizeof(PluginInstance));
memset (instance->pdata, 0, sizeof(PluginInstance));
This = (PluginInstance*) instance->pdata;

Memory for plugins is always allocated by using the function NPN_MemAlloc in-
stead of malloc, because the browser does its own memory management.

The next step is to analyze the parameters, which were deliverd by the HTML
tag. argn[| contains the names, argv]] the values and argc the number of parameters.

for (i=0; i<arge; i++) {
if (stremp(argn[i], "target") == 0)
copy_ param(&This->target, argvl[i]);
if (stremp(argn[i], "input") == 0)
copy_ param(&This->input, argv[i]);

}

The function tmpnam, which is part of the ANSI-C-library, creates an unique file-
name. With this filename a file is created, in which the rexx script is stored.

tmpnam (This->tmpFileName);
if ((This->tmpFile = creat(This->tmpFileName, S_IWRITE | S_IREAD))
< 0)

return NPERR GENERIC ERROR;

17



3 DEVELOPING A REXX-PLUGIN 3.2 Implementation

3.2.2 NPP_Destroy

Each function, which must have access to the instance data, makes a reference to
these by executing the statement

This = (PluginInstance*) instance->pdata;

Therefore, this line is at the beginning of almost every function. In the following,
the variable “This” is allways a pointer to the instance data.

By calling NPP_ Destroy, the browser requests the plugin to erase all data and
files, which were created by the plugin instance. NPN _MemFree() is equivalent to
free(). unlink closes and erases the temporary file.

if (This I= NULL) {
unlink(This->tmpFileName);
NPN MemFree(This->target);
NPN _MemFree(This->input);
NPN_MemFree(instance->pdata);
instance->pdata = NULL;

}

3.2.3 NPP_NewStream

NPP_NewStream signals, that the browser wants to send a data stream to the plu-
gin. One can refuse the data stream by returning a value not equal NPP__ NO ERROR.

3.2.4 NPP_WriteReady

As the return value the browser expects the maximum size of data the plugin can
handle at this time. For the Rexx-Plugin this amount is defined as STREAM-
BUFSIZE=4096. It is possible to insert a algorithm, which calculates the optimal
amount of data to handle.

return STREAMBUFSIZE;

After every call to NPP_ WriteReady a data paket is sent to the function NPP_ Write
with a maximum number of STREAMBUFSIZE bytes. This process is repeated as
often as data is available or the plugin calls NPN DestroyStream to interrupt the
data stream.

3.2.5 NPP_Write

The data received in buffer are written to the temporary file by the write-statement.
A maximum amount of STREAMBUFSIZE bytes is written. The actual processed
amount of data is given back to the browser as return value.

return write(This->tmpFile, (char*)buffer, (size_t)(len<=STREAMBUFSIZE
? len : STREAMBUFSIZE));

With this return value the browser calculates the next data paket to send. If, for

example, instead of 4096 bytes only 2048 bytes are written, the browser again sends
first the 2048 bytes, which were not processed by the plugin.

18



3 DEVELOPING A REXX-PLUGIN 3.2 Implementation

3.2.6 NPP_DestroyStream

After all data has been sent to the plugin, the function NPP DestroyStream is
called by the browser. The temporary file has to be closed and the Rexx interpreter
is started. The if-Statement is going to be explained later in context with 3.2.9.

if (stream != This->rexx_stream) {

close(This->tmpkFile);
return rexx_exec(instance);

3.2.7 rexx exec

To control a running Rexx script, one can set so called “hooks”, which interrupt
the program run and call “hooked” function. Such hooks are realized by System
Exit Handlers. System Exit Handlers are functions from the Rexx SAA (System
Architecture Application) API, a interface between Rexx and other programming
languages, e.g. C. Further information can be get at [1].

To catch the output of the Rexx-command “SAY”, the function hook RXSIOSAY
has to be registered by the API-function RexxRegisterExitExe with the identical
name “hook RXSIOSAY”. As a additional parameter, a pointer to the instance
data of the plugin is delivered.

UserDataAddr = (long)instance;

sysexit[0].sysexit _code = RXSIO;

sysexit[0].sysexit _name = "hook RXSIOSAY";
sysexit[1].sysexit code = RXENDLST;
RexxRegisterExitExe("hook RXSIOSAY", hook RXSIOSAY,
(PUCHAR)&UserDataAddr);

After that, the Rexx interpreter is called by using the API-function RexxStart. As
Paramter, this function gets the name of the temporary scripting file and an input
parameter, which was determined in NPP _New, and the array sysexit, which holds
the names of all System Exit Handlers. In this case it is only “hook RXSIOSAY”.

arglist[0].strptr = This->input;

arglist[0].strlength = strlen(This->input);

RexxStart(1, arglist, This->tmpFileName, NULL, NULL, RXCOM-
MAND, sysexit, &ReturnCode, &Result);

After the script is executed, the hook is going to be deleted.
RexxDeregisterExit("hook_RXSIOSAY", NULL);

Alternativly, the hook could be registered in NPP New oder NPP Initialize .

3.2.8 hook RXSIOSAY

Before the Rexx command “SAY” is executed by the interpreter, all may registered
hooks are called with some information about the type of call. The call is clearly
defined by a exit number and a subfunction number. The Rexx plugin catches all
standard I/O-calls (RXSIO) and from these only the SAY-command (RXSIOSAY).
For all other System Exits, the return value RXEXIT NOT HANDLED is given
back. By this return value, the interpreter continues with the acutal command. If
the return value is RX EXIT HANDLED, the interpreter skips the execution of
this command.

19



3 DEVELOPING A REXX-PLUGIN 3.2 Implementation

switch (ExitNumber) {

case RXSIO:
switch (Subfunction) {

case RXSIOSAY: return handle_ RXSIOSAY (ParmBlock);
default: return RXEXIT NOT_HANDLED;

}
default: return RXEXIT NOT_HANDLED;

}

3.2.9 handle_RXSIOSAY

To hold the plugins instance data, there must be memory allocated for a pointer.
UserDataAddr = NPN_ MemAlloc(8);

The memory is filled by the API-function RexxQueryExit with a pointer, which
was delivered by the function RexxRegisterExitExe. So it is possible to get access
to the instance data similar to the “NPP_ ”-functions.

RexxQueryExit("hook_RXSIOSAY", NULL, &Flag, (PUCHAR)UserDataAddr);
instance = (NPP)*UserDataAddr;
This = (PluginInstance*)instance->pdata;

At this point, there are differences between the plugin code for Linux and the
Windows plugin. It is not possible for the Microsoft Internet Explorer to execute
the NPN _NewStream. It seems, that this function is not implemented by Microsoft.

LINUX: The output of the Rexx program is delivered as stream to the browser.
To create a stream from a plugin to the browser, the function NPN _NewStream is
called once on the first call of the Exit Handler. After the first call of NPN_NewStream,
the variable This->rexx stream is initialized, so no second call to NPN_NewStream

is done. The parameter This->target contains the target of the output. This

is either the name of a frame of the actual HTML page or one of the constants
_blank/ new for a new browser window, _parent or _self.

if (This->rexx_stream == NULL) {
if (NPN_ NewStream(instance, "text/html", This->target,
&This->rexx_stream) != NPERR_NO_ERROR) {

NPN_MemFree(UserDataAddr);
return RXEXIT HANDLED;

}

For every call of the Exit Handler the output of the Rexx program is given to
NPN _ Write. ParmBlock is a pointer to data for this Exit Handler. In case of the
Exit Handler RXSTIO:RXSIOSAY it is a pointer to a RXSTRING-structure, which
holds the output of the Rexx program.

NPN_ Write(instance, This->rexx stream,
((EXIT*)ParmBlock)->siosay.rxsio _string.strlength,
((EXIT*)ParmBlock)->siosay.rxsio_string.strptr);

NPN_ MemFree(UserDataAddr);

return RXEXIT HANDLED;

20



3 DEVELOPING A REXX-PLUGIN 3.2 Implementation

The return value RXEXIT HANDLED shows the interpreter, that the SAY-command
is successfull executed.

The following code is from the function rexx exec. After removing the Exit
Handler by RexxDeRegisterExe, the data stream to the browser has to be closed
by NPN _DestroyStream.

#ifdef XP_ UNIX
if (This->rexx_stream != NULL)

NPN _ DestroyStream(instance, This->rexx_stream, NPRES DONE);
#endif /* XP_UNIX */

WINDOWS: Because the Internet Explorer does not accept streams, a tempo-
rary file must be created, which stores the output of the SAY-command. Even like
the NPN NewStream, the creation of this file is done once.

if (This->fHTML == 0) {

tmp = _tempnam(NULL, "rexx");
strepy (This- >fHTMLFileName, tmp);
free(tmp);
if ((This->fHTML = creat(This->fHTMLFileName, S_IWRITE
| S_IREAD)) < 0) {
NPN_MemFree(UserDataAddr);
return RXEXIT HANDLED;

}

The output of the SAY-command is written in the file.

write(This->fHTML,
((EXIT*)ParmBlock)->siosay.rxsio_string.strptr,
((EXIT*)ParmBlock)->siosay.rxsio_string.strlength);
NPN_MemFree(UserDataAddr);

return RXEXIT HANDLED;

And even in rexx_exec the file has to be closed. The main difference is the usage of
NPN _GetURL, which requests the browser to open the given URL. In that case, it
is the temporary created HTML-page. The complete URL is created in the variable
“url” and is delivered to the browser together with the paramter This->target.

#ifdef XP_PC
if (This->fHTML != 0) {
close(This->fHTML);
sprintf(url, "file://%s", This->fHTMLFileName);
if (INPN _ GetURL((NPP)instance, url, This->target) ==
NPERR_NO_ERROR)
return NPERR_GENERIC ERROR;

#endif /* XP_PC */
If one specifies “_self” as target, the temporary created page is shown in the same

window as the plugin. The great disadvantage of this method is the crash of the
browser. If one specifies a different target, this problem is bypassed.

21



3 DEVELOPING A REXX-PLUGIN 3.3 Example

3.3 Example

As example a HTML-page is created, which can get a parameter for the Rexx
program. The main page contains a frame with a button and a textbox, the plugin
and a second empty frame, which is the target for all output operations of the Rexx
program. The plugin can be started by pushing the button on frame 1 and gets the
global variable “global”. This variable is declared on the main page by the following
statements:

<script language="JavaScript" >
<=

var global = "test";

/]=>

< /script>
This is the definition of the frameset:

<frameset rows="40%, 60%">

<frame src="framel.html" name="{framel" >
<frame src="frame2.html" name="{frame2" >
< /frameset >

The page framel.html contains a function, which is executed by the OnClick-event
of the button. The content of the textbox is stored in the variable “global”, because
after executing “location.reload()” the page framel.html is going to be refreshed,
which leads to erasing the textbox content.

<script language="JavaScript" >
<I-
function rexx_ parameter()

{

parent.global = document.rpi.rp.value;
location.reload();

}
/1>

< /script>

The plugin is embedded by the OBJECT-Tag . The global variable is referenced
by “&{parent.global};”. The target for the output is set with “frame2”.

<object data="test.rexx" type="application /x-rexx" height=0 width=0>

<param name="target" value="frame2" >
<param name="input" value=&{parent.global};>

< Jobject>
Here is the definition of the textbox and button:

<form name="rpi" >

Rexx Parameter:

<input name="rp" type=text value=&{parent.global}; size=20 maxlength=20>
<input type=button value="exec rexx" onclick="rexx parameter()">

</form>

By pushing the button, the following Rexx script is executed:

22



4 CONCLUSION

say "<HTML><HEAD>"

say "<TITLE>foo bar</TITLE>"
say "</HEAD><BODY>"

say "<H1>rexx script executed at "
say date() " "

say time()

say "</H1>"

if arg() > 0 then do

say "<p>parameter: "

say arg(1)
say n</p>n
end
say "</BODY></HTML> "

This script creates HTML-code, which displays the actual date and time and below
the parameter, given by the textbox.

The use of JavaScript would not be neccessary, if the option “declare” of the
OBJECT-tag would work. With that, the plugin is only declared and not executed.
In Addition to “declare”, the option “id” must be defined to give a unique identifier to
the plugin. This identifier is used in the OnClick-event. By pushing the button, the
plugin is started. The content of the textbox can directly be delivered to the plugin,
so no JavaScript is needed. Unfortunatly the “delcare” option is not supported by
Netscape Communicator, even it is a part of the official HTML specification [15] .

4 Conclusion

The selection of the plugin technology in chapter 1.5 was based on the available
support of plugins for different platforms and browsers. The demand for platform
independence is fullfilled by plugins only in the architecture of the NPAPI. For every
platform a different library has to be created. But it is surely acceptable to create
a single file for every platform.

The support of plugins by Microsoft is disappointing. A documentation of the
restricted support does not exist, one must figure out Problems by e.g. reading
newsgroups and after that, as shown in the source code of the Rexx plugin, either
find another way of solution or write platform-specific code.

Even for the browser Opera exists only a remark, that plugins are supported.
May it is possible, that the plugin support for opera is integrated for the Linux
version, if the beta stadium has ended. It was not investigated, how the plugin
technology is supported by Opera for Windows.

Because of the different architectures of the graphical user interfaces, a graphical
output in the plugin window is very extensive. A solution for that could be Live-
Connect, because it is possible to integrate graphical elements of Java in plugins
by using LiveConnect. But the support of LiveConnect by Windows does not exist
und even Netscape stopps supporting LiveConnect with Netscape Communicator
6.

Since january 1998 the documentation of NPAPI was not refreshed. On the
one hand, this could mean, the plugin technology is nearly perfect. On the other
hand, it is possible, that Netscape has no further interests in developing the plugin
technology because of other, maybe smarter technolgies.

23



LIST OF TABLES LIST OF FIGURES

List of Figures

N O Ok LW N

Classification of Web Based Applications [13] . . . . . ... ... .. 4
Display Modes of Plugins . . . . . ... .. ... ... ........ 9
Interface between Browser and Plugin . . . .. ... ... ...... 11
programrunof aplugin . . . ... ... ... ... . ... 13
LiveConnect [10] . . . . . . . . ... i i 14
Plugin Template . . . . .. .. .. ... . ... ... ... 15
Program run of the Rexx Plugin . . . . . ... ... ... ...... 16

List of Tables

1

ST W N

Availability of Java Applets, ActiveX and Netscape Plugins on MS

Windows and Linux . . . . .. .. ... ... ... ... 8
EMBED-Tag . . . . . .o i it e e 10
OBJECT-Tag . . . .« o o i it et e e e e e e e e e 10
Functions provided by the plugin . . . . . .. ... ... .. ..... 12
Functions provided by the browser . . . . ... ... ......... 12
Instance Data Structure . . . . . . ... .. ... .. ... ... 17

24



REFERENCES REFERENCES

References

[1] Rexxla, the rexx language associaction. http://www.rexxla.org.
[2] Rfc2045, multipurpose internet mail extensions.
[3] Esker activex 4.1 plugin. http://www.esker.com, 2000.

[4] Microsoft Corp. Microsoft knowledge base search.
http://search.support.microsoft.com/kb.

[5] Frank Holtry. The perlplus netscape plug-in. http://home.rmi.net/ fholtry.

[6] Microsoft Corp., http://www.microsoft.com/com/tech/activex.as. ActiveX
Controls.

[7] Microsoft Corp., http://www.microsoft.com/com. Component Object Model
Specification.

[8] Stefan Miinz. SELFHTML. TeamOne, Kistlerhofstr. 111, D-81379 Miinchen,
7 edition, April 1998.

[9] Netscape Communications Corporation,
http://developer.netscape.com/docs /manuals/communicator /plugin/index.htm.
Plug-in SDK.

[10] Netscape Communications Corporation,
http://developer.netscape.com/docs /manuals /communicator /plugin /index.htm.
Plug-in Guide, devedge online documentation edition, January 1998.

[11] Opera Software, http://opera.nta.no/security /activex.htm. ActiveX FAQ.

[12] Frank Yellin Tim Lindholm. The Java(TM) Virtual Machine Specification.
Sun Microsystems, Inc.,
http://java.sun.com/docs/books/vmspec/html/VMSpecTOC.doc.html, 1997.

[13] Prof. Volker Turau. Techniken zur realisierung web-basierter anwendungen.
Informatik-Spektrum, Springer Verlag, 1999.

[14] Billy Barron Mark Bishop Keith Brophy Anténio Miguel Ferreira Edward
Hooban Daniel I. Joshi Timothy Koets Bryan Morgan Rob McGregor Zan
Oliphant Stig Erik Sando Dave Taylor Rick Tracewell Richard Wainess
Greg Wiegand William F. (Bill) Anderson, Robert F. Breedlove. Web
Programming Unleashed, chapter 1: An Overview of Internet Programming.
Sams.net Publishing, Sams.net Publishing, 201 W. 103rd St., Indianapolis,
IN46290, first edition, 1996.

[15] World Wide Web Consortium,
http://www.w3.org/TR/1999/REC-html401-19991224. HTML /.01
Specification. Chapter 13: Objects, Images, and Applets.

[16] TCL Developer Xchange. Tclplugin.
http://dev.scriptics.com/software /plugin.

25



