A concept for and an implementation of
the Bean Scripting Framework for Rexx

Peter Kalender

swl1163@uni—essen.de

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

Table of contents

IO I 0= o= xRS 3
L IWEE IS REXX ...ttt ettt et et e e et e e e et e e e e bae e e nnneeeeneeeennneeennns 3
1.2What @@ JAVABEANS?.........eeieiiiie ettt sttt nee e 4
1.3What iSthe BSF? = A QUICK OVEIVIBWooiiiiiiiieeieee ettt 4

2. A closer look at the Bean Scripting Framework............cooeiiniiie e 6
P2 R I Lo 1S 0 1 (= oi (0] Y USSP 6
2.2’BSFENQINE & "BSFENGINEIMPLooiiiiiee e 7
2.3 BSFIMANAGEL" ...t e e e e e e e e e e ne e e ar e e e e e annreeeeaaas 7
FZ |V I o USRS 8
2.5The Cf" & "CS AITECIOMES.....cueee ettt e e 8

3. REXX ANATNE BSF ... ettt 9
3.1 BEANS TN REXX..eeiiiiiiiiiie ettt ettt ettt st sttt e e e bt e enb e e e s be e e e e e e s beeeebeeanneeeennen 9
3.2 ConNECtiNG JAVA ANA REXX......cciuiieiiiieeiie ettt sttt sbe e e s ne e e eee e 11

2L REXX SAA APt a e aee e 11
G302 |\ | USROS OPRRUPRORN 12
3.3 Implementing the Rexx engine for BSF..........ccoo i 13
3.3.1INitidiziNg the @NQINE.........eeiiiie e 13
3.3.2 RUNNING @ REXX SCIL...eeeiteie it stiee ettt sttt e ste e et e s te e b e e s seesneeesnneeas 13
3.3.3 Calling the BSF frOmM REXX......ccoiuiiiiiieeiiie sttt 14

o] o 11 o] o OO POPPRRRRR 14

AppendixX A — DIreCtory Of FIQUIES.........uiiiiie et 15

Appendix B — Bibliography..........oo oo 15

APPENIX C = SOUICE COUBS......ccoueieiiiieeiiieeeetie e e eite e stee et e e ssae e snbee e e sbeeesteeessseeesnnneeenneeens 16
REXXENGINEJAVA.....eeiieie ettt ettt e e st e e s be e e s ne e e e nneeeennneens 16
JAVAREXXSAA JAVEALeeineieeeieieeeitee et ettt ettt e ettt e e st e e sae e e e sate e e anse e e anbeeesnbeeenbeeeanbeeeanreeeanreeas 18
2 S TN ol o] o TR PUPPRPRPTI 23

AppendiX D — SaMPIE PrOGraMS.........ueeiiiee i ie ettt ree st e et e e ssee e s snneeenaeee s 26
HEHO WOttt e st e e st e e e ne e e ennes 26
SNOW SIZE.....eeee ettt et e e a e bt e e nb e e bb e e e ne e e ere e e e reeeans 27
OIEELINGS. ...t eetee ettt ettt e st e e ettt e s st e e st e e e st e e e abe e e eabe e e embe e e ense e e eae e e enbeeeanbeeeanneeeanreeeans 28

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

1.The basics

The 'Bean Scripting Framework’ from IBM alows other programs to control Java
applications with scripts written in Non—Java scripting languages. The goa of this seminar is
to analyze the BSF and to design a possible concept for interfacing Rexx to the BSF and
finally to write an implementation of that interface.

Before this problem can be tackled there are some basic questions that need to be answered
first.

1.1What is Rexx?

Rexx is a scripting language, that was developed by Mike Cowlishaw of IBM UK
Laboratoriesin 1979. It is based on alanguage called EXEC 2. The first EXEC was not much
more than a batch language, that was used to wrap up severa (system-)commands into one.

EXEC 2 was an enhanced version of EXEC with afocus on writing macros for awide variety
of applications. The mayor drawback of this language was the rather complicated way it
handled variables and language keywords. It was mainly designed to handle commands, but
more complex macros needed variables and control structures.

So Mike Cowlishaw came up with a language, he called REX (because it sounded nice), in
which he tried to unite the powerful command and string programming facilities of EXEC 2
with more classica syntax and semantics of languages like Pasca or PL/I. The first
specification of this new language, which aso included three sample programs, was released
on 29 March 1979. At that time not a single line of implementation code had been written.
The specification was first discussed and refined and in late 1979 afirst version was released
on IBM’ s world-wide internal network. It soon became very popular and alot of suggestions
for improvement were made over the net. This direct feedback was and still is one of Rexx’s
trademarks and it insures, that the language is as close to the user’s needs as possible. REX
went through some major changes over the years, one of them was adding an’ X’, so it isnow
called Rexx, an abbreviation for REstructured eXtended eXecutor.

In 1987 Rexx became IBM’s Procedures Language for its Systems Application Architecture
(SAA). The first Rexx compiler was developed at IBM’s Vienna Laboratory in 1989. In 1990
the first international Rexx Symposium for Developers and Users was held. Rexx was
included in al versions of OS/2 and could even handle multimedia devices.

In 1990 an object oriented version of Rexx became available and in 1996 NetRexx was
introduced.

Rexx today isa very powerful scripting language. It was designed to be a macro language, so
it is possible to introduce new functions to Rexx that enable it to control Non—Rexx
programs. It is aso very easy to use and very readable. Rexx is available for almost any
platform.

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

1.2What are Java Beans?

The Java Beans API alows users to create component software in Java. Components are
small independent software units, that can be used to visually create new applications.

Beans expose their features to builder tools. The tool puts the bean into atoolbox. From there
users are able to grab it, add it to an application, change it's appearance and define it’s
behavior if certain events occur. All beans are able to fire and handle events, through which
they can communicate with each other. For example a button—bean might fire a *clicked' -
event and a text—field—bean might receive that event and react, by displaying a new text.

All these bean—features can be manipulated in a visual way, without having to write a single
line of code.

Similar concepts can be found in Borland Delphi, or Microsoft Visual Basic.

1.3What is the BSF? — A quick overview

The Bean Scripting Framework is an architecture that allows Java and scripting languages to
interact. There are two ways to do this.

The first, would be to write a Java

programn and to use certan sub-

commands or functions, that are written

in a scripting language. For example,

most scripting languages are very good o
at processing and evaluating strings, so ans;;er) = [

instead of writing dozens of lines of Engine
Java code, a user might choose, to let a
small script handle the string and return f \
the result back to the Java program.

Scripting Scripting
Java programs are able to call functions Engine Engine

and get a return value. They can also
evaluate, execute or even compile a]]
scripting engine.

The second way would be to use the scripting language to provide the 'main’ program, that
controls the Java Beans. For example, a user might want to use Java Beans to get a nice
graphical interface for his Rexx program.

The core bean of the BSF architecture isthe BSFManager. This bean provides all the services
necessary to incorporate scripting into Java. It has aregistry of scripting engines, that the BSF
can handle. It also has a registry for beans, that, once registered, can be manipulated by the
scripting engines.

The BSFENgine is the interface, that connects the BSFManager and the Scripting Engine. In

most cases, this will be implemented in Java, but in some cases it is implemented in another
language and connected to Java via JNI. The BSFEngine allows scripts to look up pre-

4

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx
registered beans, to register new beans, to modify beans, register events and call bean
functions.

The term Bean Scripting Framework is also a bit mideading, because in fact the framework
can be used to access all Java Objects, not just beans.

The current version is 2.1 and it supports the following languages:

* BML

o Jacl

e JavaScript

* Jpython

* NetRexx

« TCL

o XSL/T

e OnWin32: VBScript, Jscript and Perl Script

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

2. A closer look at the Bean Scripting Framework

Now it's time to take a closer look at all the components, that make up the Bean Scripting
Framework. Figure 2 shows the main files and directories.

B com
B ibm
B - bsf
Ell--epgines
| - activescript
. Bjad
. B -java
. B javaclass
E Gl - javascript
' B jpython
' B netrexx
! EF-rexx
. Bl
B util
- B5FClagsLoader java
- BEFEnginelmpl java
- BSFEventProcessor java
- BSFFunctions. java
.- Engineltils java
- JMIUtls.
- JNILLls. b
--BSFDeclaredBean. java
-BSFEngine java
-BSFException. java
-BSFManager. java
Languages. properies
--Main java

G e e ——

type

-cf

‘CS
El--went
E_}..
Gk - wtil

- - build. xml

Figure 2: The main BSF files

2.1 The 'bsf’ directory

The "bsf’ directory contains al the 'core files, the 'cf’ and 'cs directories contain just
"helper’ classes.

All the engines are located in sub—directories of the 'engines directory. In most of these
there is just one file present, implementing all engine functions relevant to that scripting
engine. The ’activescript’ directory contains severa files, implementing al the Win32
scripting engines.

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

Some very useful utilities can be found in the’utils' directory. There are some *INIULilS for
those scripting languages that can’'t be directly accessed from Java and have to use the Java
Native Interface to cal C Functions. The 'BSFClassLoader’ can load classes from a
temporary directoy. The 'BSFEventProcessor’ is used to bind scripts to certain events. The
"BSFFunctions contain a 'bsf’ class, that can be used as an object in some scripting
languages. These languages then use the methods this object provides to access their beans.
"EngineUtils contains several methods to create beans, call functions and create event
listeners.

The 'BSFDeclaredBean’ is used internally to pass information between the BSFManager and
it's scripting engines. The ' BSFEXxception’ class defines six different bsf—exceptions that can
be thrown. The’Languages.properties file lists al the different scripting languages that BSF
supports, the names and locations of their engines and the file extensons used by scripts
written in a certain language.

2.2 'BSFEnqgine’ & 'BSFEnginelmpl’

The 'BSFENgine is just an interface, that every scripting engine needs to implement. To
make things easier, there aready is a basic implementation of the 'BSFEngine,
"BSFEnginelmpl’. Most of the scripting engines choose to extend this class.

But what’s in there? First of all, there is an initialize and a terminate method, doing all the
usual stuff, that can be expected from methods of that name. (For more details see Chapter 3).

Then there are several methods to handle scripts. The 'cal’ method is used to call functions
belonging to an object. 'apply’ tries to invoke an anonymous function, that is a value
returning piece of script. The ’eval’ method evaluates a piece of script, in most cases a string
and may return a value. 'exec’ executes a piece of script, but doesn’t return a vaue.
"compileApply’, 'compileExpr’ and 'compileScript’ compile pieces of script and dump the
resulting code in the code buffer. *compileApply’ isfor anonymous functions, ' compileExpr’
isfor value returning expressions and ' compileScript’ isfor compiling pieces of scripts.

Of course not all engines use all of these functions. For example many scripts can't be
compiled, they are just interpreted.

Finaly, there are 'declareBean’ and 'undeclareBean’ methods. (See chapter 2.3 for more
details on these.)

2.3 'BSFManager’

The 'BSF Manager’ is the central class of the whole BSF. A Java application wanting to use
scripts has to include a’ BSFManager’ .

The 'BSFManager’ offers several methods to handle scripting engines. The engines are stored
in a hash—table. There are methods to register and unregister engines and there is a method to
that looks up if an engine is registered or not. File extensions are also kept in a hash—table
and can be looked up to find out to which scripting engine a certain file belongs. Thereis aso
a method to load scripting engines. All engines contained in the ’Languages.properties file
are automatically registered on startup.

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

There are severa methods to handle debugging and some to handle class loaders. An object
registry and atemporary directory are defined.

Beans can be registered and unregistered. Registered beans are kept in the object registry and
can be accessed by name and be manipulated. Beans can also be declared and undeclared.
Declared beans are automatically registered as well, but declared beans are aso supposed to
be made pre—available to scripting engines. In object oriented scripting languages, that would
mean to create objects in the scripting language that corresponding to the declared beans.
Furthermore there is alookup function, that returns a handle to a given bean.

Finaly, there are al the methods for handling scripts, which call their counterparts, of the
needed engines.

2.4 'Main’

If an application isto be written in a scripting language and that application wants to use Java
objects, then it needs to use the BSF. But in most cases you won't be able to start up the BSF
from a scripting language, so a little trick is needed. That’s what this’Main’ class was made
for.

It implements a 'BSFManager’, offering all the BSF functions. Then it tries to run a script
specified by command line arguments. Said script is then able to use al BSF functions, thus
remote controlling Java objects.

2.5 The 'cf’ & 'cs’ directories

The "cf’ directory contains a code—formatter—bean, which can be used to format raw Java
code.

The’cs directory contains some tools. The’event’ directory contains several classes, that can
set up event handlers, file them in a registry and handle incoming events. In the 'type
directory there is atype converter, that is able to convert an object from one class to another.
The "util’ directory contains utilities for many different tasks. For example, there are string—
utilities, code—buffer—utilities, etc.

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

3. Rexx and the BSF

First things first. The BSFManager needs to know, that it will soon support Rexx scripts. So
the ' Languages.properties file hasto be edited and the line

rexx = comibm bsf. engi nes. rexx. RexxEngi ne, rexx

needs to be added. The left part is the language descriptor, that the BSFManager uses, the
middle part is the engine class and on the right are the file extensions, that scripting engine’s
filesuse. In case of Rexx, there isjust one extension.

3.1 Beans in Rexx

One of the biggest problems when implementing a BSF scripting engine for Rexx is how to
represent objects in a non—object—oriented language. The only 'objects Rexx knows, are
strings. But you can’t call methods belonging to a string (because there aren’t any) and you
can’'t add event listenersto strings.

—»{ CallBSF] addEventListener—mel beaniiame —ml evantSetiiame ———mel fitter |—wf script | -

] callFunction —w{ beantiame —wl function |}
I—rflargTypel—Pl arg |—|—

—PI exit I
] rogisterBean |—we{ beantiame —wl BeanTipe |

I—rrl argType —w]| arg |—|—

] unregisterBean —we{ beantiame |

Figure 3: The CallBSF function

Fortunately beans don’t have to be kept in the scripting language. The BSFManager does that
instead. So the only thing Rexx needs to be able to do isto call the BSFManager and tell it
what to do with a certain bean. To this end the CallBSF function was designed.

The CallBSF function is actualy five functions in one. The first parameter specifies, which
function isto be called.

If there are no pre-registered beans available, Rexx first needs to register some beans of it's
own. To do so, CallBSF is used, with the first parameter being 'registerBean’. The second
parameter has to be the bean’s name. This can be any name and is later used to identify that
bean. The third parameter specifies the type of that bean. A very basic type would be
'Java.awt.frame’, an empty window. The following parameters are optional constructor
arguments.

These arguments are a bit tricky, because Rexx can only provide strings, where Java expects
integers, booleans and several other types. So somewhere on their way from Rexx to the
constructor method a type conversion has to take place. To let the converter know into which
type an argument has to be converted the arguments have to come in pairs of argument type
and argument value.

9

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

Possible values for argType are:

- boolean

- integer

: long

- float

: double

- bean (object)
> string

W oOomr —w

In case of a’javaawt.frame object a string containing the window title is expected so the
command would look something like this:

cal Cal | BSF ' registerBean’, "W ndow "java.awm . frane’, 'S,
" Ti

[
Title

If abean isno longer needed, it may be unregistered with CallBSF. The first parameter has to
be’unregisterBean’ and the second has to be the name of the bean.

To call acertain function belonging to a certain bean, the first parameter of CallBSF has to be
"callFunction’, the second, as always, is the name of the bean and the third is the name of the
function. Again, the arguments for the function being called come in pairs of argument type
and argument value, so they can be converted into the correct type.

In order for beans to interact with each other, event listeners have to be added. To do this,
CallBSF is used with 'addEventListener’ as the first parameter. The second parameter is the
name of the bean firing the event. The third parameter specifies an event set. Event sets group
events by categories. For example, there are "WindowListener’ events, 'Mouselistener’
events, 'ActionListener’ events and so on. The 'filter’ parameter specifies the exact event
from a set and the fifth parameter is the script to be run, if the event fires.

For example, in case of a’java.awt.frame something should happen if the user tries to close
the window. In that situation it may be a good idea, to terminate the program as well. To do
this, acommand like this might be used:

cal | Cal | BSF "addEvent Li st ener’ "W ndow "W ndow
"W ndowCl osing’, 'exit’

But unfortunately, this won't work, because it will only terminate the Rexx programm, but
the Java program providing the BSFManager will keep on running and the frame won't be
closed. To handle this situation, the CallBSF function was extended, to include an exit
function, that terminates the Java application running the script. So to make the above
example work, it would have to look like this:

cal | Cal | BSF "addEvent Li st ener’ "W ndow "W ndow
"w ndowCl osing’, 'CallBSF('exit’)’

10

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

3.2 Connecting Java and Rexx

The other big problem is how to connect Java and Rexx to each other. Rexx can be accessed
by other programming languages via the Rexx SAA API. Unfortunately the Rexx SAA API
uses a C header file, so it would be best to have a C or C++ application handling the access to
Rexx. And C functions can be called from Java through the JNI.

Java Rexx
RegisterBSF >| RegisterBSF
Start
CallBSF
CallBSF CallBSF

Figure 4: Connecting Java and Rexx

3.2.1 Rexx SAA API

The Rexx Systems Application Architecture Application Programming Interface is Rexx’s
port to the outside world. Through it Rexx can communicate with other high level
programming languages. In most cases thiswill be C or C++.

The Rexx SAA API functionality can be divided into several areas:

* Subcommand handlers
can be used to register subcommands written in another language than Rexx. Every cal to
such a command is trapped and executed by the external application. Subcommands can
either be part of that application or they might be part of a dynamic library.
Subcommands don’t have any arguments, but they may return a value.

» Externa function handlers
are quite smilar to subcommand handlers. They can be registered with Rexx and are
either part of an external application or a dynamic library. The main difference is, that
external functions may receive any number of arguments. They aso may return avalue.

* Interpreting
allows non—Rexx applications to execute pieces of Rexx code.

11

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

Variableinterface
enables applications to set, retrieve and drop variablesin the Rexx interpreter.

System exits

enable an application to trap certain situations, like Rexx terminating, or Rexx accessing
I/O streams. If a predefined Situation arises, the application may take over and handle it
itself.

To create a link between BSF and Rexx, only external function handlers and interpreting of
Rexx scripts will be needed.

3.2.2 NI

The Java Native I nterface is Java' s port to other programming languages.

The NI’ s functionality can be divided into several aress:

Native methods

enable Java to access functions written in Non—Java code. To do so, a Java method has to
be declared as being 'native'. It isthen compiled normally, using javac. Next a header file
has to be created with javah. That header can then be included in other programming
languages. The native code has to be compiled into a shared library, so the Java
application can use it.

Callbacks

alow native methods to call Java methods. To do so, the native method has to get a
method ID. To do so, the name and argument types of the Java method have to be known.

Mapping
is a way of accessing Java types from a native language. Especially strings and arrays
need to be converted, before they can be use in alanguage like C++.

Invoking the Java Virtual Machine
enables a Non—Java application to embed a VM and use it to run Java applets.

To create a link between Java and Rexx, native methods, callbacks and mapping will be
needed.

12

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

3.3 Implementing the Rexx enqgine for BSF

The actua implementation of the Rexx engine was in many parts inspired by the Jacl engine.
For example, the Jacl engine uses something quite similar to the CallBSF method.

The first thing that is needed is the engine itself. It is an extension of the BSFEnginelmpl and
thus has to implement at least an ’initialize’ method and a’call’ method. Some method to run
ascript would also be nice.

3.3.1 Initializing the engine

The "initialize method calls it's parents initalizer and creates a new JavaRexxSAA object.
This object uses NI to call C++ functions, that call Rexx SAA API functions. Furthermore
the RegisterBSF method is called.

RegisterBSF is a native method written in C++. Because the JNI adds the package name to
the function name, in C++ the function is caled
"Java_com_ibm_bsf_engines rexx_JavaRexxSAA_RegisterBSF. All it does is to register a
new function called’ CallBSF with the Rexx interpreter.

3.3.2 Running a Rexx script

The BSF offers several ways to run scripts, but because Rexx scripts can’t be compiled, so al
the "compile*’ methods wouldn't make sense. "apply’ returns an object, that Rexx can’t
handle and 'exec’ doesn’t return anything at all. So the most appropriate way to run Rexx
scripts seems to be the’eval’ method.

A ’call’ method has also to be present, because it’s part of the BSFENngine interface. But this
method is used to call a method belonging to an object, which Rexx can’'t provide, so this
method was |eft empty. The only thing it doesis returning 'null’.

The’eval’ method of the Rexx engine is used in two ways. The first isto run a normal piece
of Rexx script that is stored on disc in some file. The second way is to run a script as a
reaction to some event. In most cases the 'main’ Rexx script will aready have terminated
when an event fires. That's because some Java objects, like the ’java.awt.frame’ will keep on
running until they are explicitly terminated. In that case an event script trying to call a
subroutine or function defined in the ’'main’ Rexx program won'’t be able to find it anymore.
So a’dirty trick’ isused.

The main script is stored in the "mainScript’ string for future reference. Whenever an event
script is called, "eval’ attaches *mainScript’ to the event script. That way al the subroutines
and functions the event script might need are present. To keep the Rexx interpreter from
running the 'main’ script again a’'return’ command is inserted between the event script and
the 'main’ script.

To run a piece of script the engine uses the ' Start’ method, written in C++. Start converts the
Java string containing the source script into a Rexx string and calls the RexxStart method.

13

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

3.3.3 Calling the BSF from Rexx

If a Rexx application wants to call the BSF, it uses the CallBSF function. There are actually
two functions of that name, but the one Rexx calls is the one implemented in C++. This
function converts all the arguments stored in an array of Rexx strings into an array of Java
strings and then calls the Java function. Any return value is converted to a Rexx string and
passed back to Rexx.

The main problem here is that a NI environment pointer is needed to call back to a Java
function. No pointer of that kind is present in this function and normally this would be a dead
end.

But another ’dirty trick’ is used. Because it is assumed that all Rexx programs calling
"CallBSF will be run from the *Start’ function, the JNI environment that function receives
from Java can be used. To this end the 'INlenv’ pointer is stored in a globa variable. The
same goes for the object pointer. Now ’'CallBSF can use these to call back to Java. If the
Rexx program calling *CalBSF is not run from the *Start’ function this pointer will point
nowhere and the program will crash.

The Java version of the 'CallBSF function does al the 'real’ BSF stuff. It checks, which
function of the five avaible isto be used. Next it checks if the correct number of arguments
was used and converting all that need conversion. Then it calls the appropriate BSF function,
making heavy use of the’EngineUtils . These can handle most of the tasks, from calling bean
functions to adding event listeners.

For more detailed information about the implementation, see Appendix C.

4. Conclusion

As it turned out, creating a concept for a BSF Rexx engine implementation was quite
interesting and not too hard, although at first it didn’t seem that way at all. "Objectsin a non—
oo-language, impossible!" was my first thought. Well it’ s possible after all.

In the end, the biggest problem | had was my C compiler, who just didn’t seem to like me.

For future versions of this engine, the C part of the engine should be made to throw
exceptions if something goes wrong. And the argument type conversion in 'CallBSF might
be put in a separate function. Maybe some better way of handling subroutines written in Rexx
could be found, the 'dirty trick’ of always attaching the whole source code to event scripts
works, but it may slow bigger programs down alot.

And maybe the engine could be extended for Object Rexx. In that case beans might be

properly declared and even the "call’ function could be realized. Perhaps. But that’s not part
of this seminar.

14

Peter Kalender

10.12.2000

A concept for and an implementation of the BSF for Rexx

Appendix A — Directory of figures

Figure 1: The BSF architecture
http://oss.software.ibm.com/devel operworks/opensource/bst/arch.html

Figure 2, 3, 4, 5, 6, 7 made by Peter Kalender

Appendix B — Bibliography

Rexx

http://www.RexxL A.org
http://wwwi.wu—wien.ac.at/Studium/L VV A—Unterlagen/poolv/folien/

Rexx history

http://www2.hurd ey.ibm.com/rexx/rexxhist.htm
http://www?2.hurd ey.ibm.com/rexx/fag4.htm

Regina Rexx interpreter

http://www.lightlink.com/hesdling/Regina/

BSF

http://oss.software.ibm.com/devel operworks/opensource/bst/
http://www.javaworld.com/javaworld/jw—03—2000/jw—03—beans.html

Java

http://java.sun.com/

JNI

http://java.sun.com/docs'books/tutoria/

http://devel oper.java.sun.com/devel oper/onlineT rai ning/Programming/JD CBook/index.html

15

Peter Kalender

10.12.2000

A concept for and an implementation of the BSF for Rexx

Appendix C — Source codes

RexxEngine.java

package com.ibm.bsf.engines.rexx;

import java.util .*;

import javaio.*;

import com.ibm.bsf.*;

import com.ibm.bsf.util.BSFEnginelmpl;

import com.ibm.bsf.engines.rexx.JavaRexxSAA;

/**

* Thisisthe interface to use (Regina) Rexx with the BSF

**/

public class RexxEngine extends BSFENnginelmpl {

private JavaRexxSAA Rexx; //thelink to the Rexx interpreter
private String mainScript; //used to store the script, needed
/[for calls to Rexx functions

/**

* ’initialize’ creates a link to the Rexx interpreter and
* registersthe’callBSF function with Rexx
**/
public void initialize (BSFManager mgr, String lang,
Vector declaredBeans) throws BSFException {

super.initialize (mgr, lang, declaredBeans);

Rexx = new JavaRexxSAA(mgr, this);

Rexx.RegisterBSF();
}

/**

* *eval’ runs a piece of Rexx script
* if the script is marked as beeing an’ <event—script>’
* the main script is added, so that any subcommands defined
* there can be run appropriately
**/
public Object eval (String source, int lineNo, int columnNo,
Object oscript) throws BSFException {
String script = oscript.toString ();
if(source.equal s(" <event—script>"){
script = script+"\nReturn;\n"+mainScript;
} else{
mainScript = script;
}

Rexx.Start(script);
return null;

16

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

/**

* 'call’ hasto be present, becauseit’s part of the
* BSFENgine interface, however, there is no way to implement
* callsto Objects in a non—oo0-language
**/
public Object call (Object object, String method, Object[] args)
throws BSFException {
return null;

}
}

17

Peter Kalender

10.12.2000

A concept for and an implementation of the BSF for Rexx

JavaRexxSAA.java

package com.ibm.bsf.engines.rexx;

import java.util .*;

import javaio.*;

import com.ibm.bsf.*;

import com.ibm.bsf.util.*;

import com.ibm.bsf.BSFManager;
import com.ibm.bsf.util.BSFEnginelmpl;

class JavaRexxSAA {
BSFManager mgr;
BSFENgine rengine;

/**

* This class uses JNI to call a dynamic library written in C++
* that access Rexx through the Rexx SAA API
**/
JavaRexxSAA(BSFManager mgr, BSFEngine rengine) {
this.mgr = mgr; /lthe current BSFManager
this.rengine=rengine, //the current RexxEngine

}

/**

* 'RegisterBSF' — a native function to register the’CallBSF’
* function with the Rexx interpreter

**/

public native long RegisterBSF();

/**

* 'Sart’ — a native function to start evaluating a piece
* of Rexx script

**/

public native long Start(String script);

/**

* a static method to load the dynamic library ' JaReSAA’

**/

static {
System.loadLibrary("JaReSAA");
}

/**

* The’CallBSF’ function is called by Rexx to access the BSF
* First parameter has to be a function name
— addEventListener
— callFunction
- exit
— registerBean
— unregisterBean
Second paramter is a bean name
The following parameters arethe 'real’ parameters
for the called function

* Ok % ok kX Kk ok

18

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx
* in some cases argTypes are used these can be:
* — B: boolean

* — | integer

* — L:long
*
*
*
*

- F: float

- D: double

— O: bean (object)

- S string
**/

public String CallBSF(String args[]) throws BSFEXxception{

/***

* CallIBSF addEventListener beanName eventSetName filter script
*
* — beanName: the bean that fires the event
* — eventSetName: the set the event belongs to
* — filter: the actual event
* — script: the script to berun, if the event fires
***/
if(args[0].equal slgnoreCase(" addEventL istener™)) {
if(args.length!=5)}{
throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,
"invalid # of args, usage: CallBSF " +
"addEventListener beanName eventSetName filter script)");

}
Object bean = mgr.lookupBean(args[1]);
if (bean==null){

throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,
"Bean'"+argg1]+"’ not registered");

}
arg9 3] = argg[3].equals("") ? null : args[3];
try {
EngineUtils.addEventListener(bean, argg 2], argy 3],
rengine, mgr, "<event—script>",
0, 0, args[4]);
} catch (BSFEXxception e){
e.printStackTrace ();
System.out.println("got BSF exception: " + e.getM essage ());

}

/***

* CallBSF call Function beanName function (argType arg)

*

* — peanName: the bean whos function is to be called

* — function: the function’s name
* — argType: the type of an argument
* — arg: the argument’s value
***/
if(args[0].equal slgnoreCase(" callFunction™)) {
if((args.length<3) | ((args.length—3)%2!=0)}{
throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,
"invalid # of args, usage: CallBSF " +
"ca | Function beanName function (argType arg)");

}
Object bean = mgr.lookupBean(args[1]);

if(bean==null){

19

Peter Kalender

10.12.2000

A concept for and an implementation of the BSF for Rexx

}

throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,

"Bean'"+argg1]+"’ not registered");

//convert function—arguments to the correct type
Object funcArgg[] = new Object[(args.length—-3)/2];
if(args.length>3){
for(int i=3, j=0; i<args.length; i+=2, j++){
switch(argg[i].charAt(0)){

}
}

case’'B’:
funcArgg]j] = new Boolean(argdgi+1]);
break;

case’l’:
funcArgg[j] = new Integer(arggi+1]);
break;

case’L’:
funcArgg[j] = new Long(argg[i+1]);
break;

case’'F':
funcArgg[j] = new Float(argg[i+1]);
break;

case’'D’:
funcArgg[j] = new Double(argg[i+1]);
break;

case’O':
funcArgg[j] = mgr.lookupBean(argg[i+1]);
if(funcArgs[j]==null){

throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,

"Bean '"+arggi+1]+"" not registered");
}
break;
case’'S':
funcArgq]j] = argd[i+1];
break;
default:

throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,

"argType '"+argg[i]+"" unknown");

}
//call the function
Object result;

try {

result = EngineUtils.callBeanM ethod(bean, args[2], funcArgs);

if(result==null) {return null;}

el se{

return result.toString();

}
} catch (BSFEXxception e){
e.printStackTrace ();
System.out.println("got BSF exception: " + e.getM essage ());

}

20

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

/***

* CallBSF exit
* terminates the application

***/

if(argg[0] .equal slgnoreCase("exit")) {
System.exit(0);

/***

* CallBSF registerBean beanName beanType (argType arg)
*

* — beanName: the bean’s name
* — beanType: the bean’s type
* — argType: the type of a constructor argument
* — arg: the argument’s value
***/
if(args[0].equal slgnoreCase("registerBean")) {
if((args.length<3) | ((args.length—3)%2!=0){
throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,
"invalid # of args; usage: CallBSF " +
"registerBean beanName beanType (argType arg)");
}
//convert arguments to the correct type
Object funcArgg[] = new Object[(args.length—-3)/2];
if(args.length>3){
for(int i=3, j=0; i<args.length; i+=2, j++){
switch(argg[i].charAt(0)){
case’'B’:
funcArgg]j] = new Boolean(arggi+1]);
break;
case’l’:
funcArgg]j] = new Integer(arggi+1]);
break;
case’L’:
funcArgg[j] = new Long(argg[i+1]);
break;
case’'F':
funcArgg[j] = new Float(argg[i+1]);
break;
case’'D’:
funcArgg[j] = new Double(argg[i+1]);
break;
case’O':
funcArgg[j] = mgr.lookupBean(argg[i+1]);
if(funcArgs[j]==null){
throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,
"Bean '"+arggi+1]+"" not registered");
}

break;
case’S':
funcArgq]j] = argd[i+1];
break;
default:
throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,
"argType’"+argg[i]+" unknown");

21

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

}

/[create the bean
try {
Object bean = EngineUtils.createBean(args[2] ,funcArgs);
mgr.registerBean(argg[1], bean);
} catch (BSFEXxception e){
e.printStackTrace ();
System.out.println("got BSF exception: " + e.getMessage ());
}

/***

* CallBSF unregisterBean beanName
*

* — pbeanName: the bean to unregister
***/
if(args[0].equal slgnoreCase(" unregisterBean™)) {
if(args.length!=2){
throw new BSFException (BSFEXxception.REASON_EXECUTION_ERROR,
"invalid # of args, usage: CallBSF " +
"unregisterBean beanName");
}
mgr.unregisterBean(args] 1]);
}

return null;

22

Peter Kalender

10.12.2000

A concept for and an implementation of the BSF for Rexx

JaReSAA.cpp

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <jni.h>

#include "com_ibm_bsf_engines rexx_JavaRexxSAA.h"
#define INCL_RXSHV

#define INCL_RXFUNC

#include <rexxsaa.h>

#ifdef _MSC_VER
pragma warning(disable:4100)
#endif

#define DLLNAME "JaReSAA"
#define FUNCTION1 CalIBSF
#define NAME_FUNCTIONL1 "CalIBSF"

RexxFunctionHandler CallBSF;

INIEnv *GlobEnv; //used by CallBSF to call back to Java
jobject GlobObj; //used by CallBSF to call back to Java

/**

* 'CallBSF’ calls back to the Java method ' CallIBSF’
**/
APIRET APIENTRY
FUNCTION1(PSZ name,
ULONG argc,
PRXSTRING argv,
PSZ queuename,
PRXSTRING retstr) {
//get Java method ' CalIBSF’
jclass cls = (* GlobEnv).GetObj ectClass(GlobOby);
jmethodID mid = (* GlobEnv).GetM ethodI D(cls, "CallBSF",

"([Ljavallang/String;)Ljavallang/String;");

if (mid == 0) return -1,

/[convert arguments array to Java format
jobjectArray arr;

arr = (*GlobEnv).NewObjectArray(argc, (* GlobEnv).FindClass("javallang/String"),

(* GlobEnv).NewStringUTF(""));
for(ULONG i=0; i<argc; i++) {

(* GlobEnv).SetObjectArrayElement(arr, i, (* GlobEnv).NewStringUTF(argv([i].strptr));

}

/Icall Java method and create Rexx return value

jstring ReturnValue = (jstring)(* GlobEnv).Call ObjectM ethod(GlobObj, mid, arr);

if(ReturnValue!=NULL) {

const char *str = GlobEnv—>GetStringUTFChars(ReturnVaue, 0);

retstr—>strptr = new char[strlen(str)];
strepy(retstr—>strptr, str);
retstr—>strlength = strlen(str);

} else{

23

Peter Kalender

10.12.2000

A concept for and an implementation of the BSF for Rexx

retstr—>strptr = new char[Q];
retstr—>strlength = 0;
}

return O;

}

/**

* 'RegisterBSF’ registersthe’CallBSF' method with the
* Rexx interpreter
**/
JNIEXPORT jlong JNICALL
Java_com_ibm_bsf_engines rexx_JavaRexxSAA_RegisterBSF(INIEnv *env,
jobject obj) {
LONG ReturnValue;

ReturnValue = RexxRegisterFunctionDII("CalIBSF", "JaReSAA.dII", "CalBSF");

return ReturnVaue;
}

/**

* *Sart’ runs a piece of Rexx script
**/
JNIEXPORT jlong INICALL
Java_com_ibm_bsf_engines rexx_JavaRexxSAA_Start(INIEnv *env,
jobject obyj,
jstring source) {
//set global variables for callbacks to Java
GlobEnv = env;
GlobObj = oby;

//convert Java string containing script to Rexx string

const char *str = env—>GetStringUTFChars(source, 0);

char * sourceStr;

sourceStr = new char[strlen(str)];

strcpy(sourcesStr, str);

PRXSTRING Instore;

RXSTRING RXsourceStr[2];
MAKERXSTRING(RXsourceStr[0], sourceStr, strlen(sourceStr));
MAKERXSTRING(RXsourceStr[1], NULL, NULL);

[/start Rexx

SHORT ReturnCode;

LONG ReturnValue;

char ResultBuffer[250];

RXSTRING Result;

MAKERXSTRING(Result, ResultBuffer, sizeof(ResultBuffer));
Instore = & RXsourceStr[0];

PSZ ProgramName="";

ReturnVaue = RexxStart(

0, /ILONG ArgCount
NULL, /IPRXSTRING ArgList
ProgramName, 1IPZ ProgramName
Instore, /IPRXSTRING Instore
NULL, IPZ EnvName
RXSUBROUTINE, //LONG CallType
NULL, [IPRXSYSEXIT Exits

& ReturnCode, /IPUSHORT ReturnCode

24

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

& Result /IPRXSTRING Result
);
Global Free(& RX sourceStr[1]);

env—>Rel easeStringUTFChars(source, str);
return ReturnVaue;

25

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

Appendix D — Sample programs

Hello World!

This small program creates a new window and puts a button in it. When either the window is
closed or the button is pressed, the program terminates.

call CallBSF 'registerBean’, 'Window’, ’'java.awt.Frame', 'S, 'Hello World!’
call CallBSF’addEventListener’, 'Window’, "window’, 'windowClosing’, ' CalIBSF(’ exit’)’

call CallBSF 'registerBean’, 'Button’, ’java.awt.Button’, ’'S’, ' Press me!”’
call CalBSF’addEventListener’, 'Button’, "action’, *’, ' CalIBSF(’ exit’)’

cal CalBSF 'callFunction’, "Window’, 'add’, 'O, ' Button’
call CalBSF ’callFunction’, *Window’, ' pack’

cal CalBSF ’callFunction’, 'Window’, ' show’

cal CalBSF 'callFunction’, 'Window’, 'toFront’

return

The ouput of this program can be seen in figure 5.

=3 Hello World! [EIJ=]

Press me!

Figure5: A small "Helloworld" programm

26

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

Show Size

This program creates a window containing a label and a button. Whenever the button is
pressed, the label is updated to show the current size of the frame.

call CallBSF 'registerBean’, 'Window’, ’java.awt.Frame', 'S, * Show size
call CalBSF’addEventListener’, "Window’, "window’, 'windowClosing’, ' CalIBSF(’ exit’)’

call CallBSF 'registerBean’, 'Button’, ’java.awt.Button’, ’'S’, ' Press me!”’
call CallBSF ' addEventListener’, 'Button’, "action’, ', 'call ShowSize

call CallBSF 'registerBean’, 'Label’, ’java.awt.Label’
call CalBSF’callFunction’, 'Label’, ’setAlignment’, '1", ' 1’

cal CallBSF 'calFunction’, 'Window’, 'add’, 'S, 'Center’, 'O, ' Label’
cal CalBSF ' cdlFunction’, '"Window’, 'add’,’S', ' South’, 'O’, ' Button’
call CalBSF’callFunction’, *Window’, ' pack’

cal CallBSF ’callFunction’, *Window’, ' show’

cal CalBSF 'callFunction’, 'Window’, 'toFront’

return

ShowSize:

call CalBSF’callFunction’, *Window’, ' getSize'

parse var result "width=" width ",height=" height "]"

cal CalBSF ’calFunction’, ’Label’, 'setText’, 'S, "(" width "," height ")"
return

The ouput of this program can be seen in figure 6.

E’,ﬂ'ﬁhuw size | _ O] x|
(189,207
Press mel

Figure 6: The" ShowSize" program

27

Peter Kalender 10.12.2000

A concept for and an implementation of the BSF for Rexx

Greetings

This program demonstrates how a dialog window might be created with Rexx. The window
contains a list box and two text fields. The user is asked to select his’her gender and to enter
hisgher first name and surname. The program will then greet the user appropriately.

call CalBSF 'registerBean’, 'Labell’, 'java.awt.Labd’, 'S, 'Gender: ’
call CallBSF 'registerBean’, 'Label2’, 'java.awt.Label’,’S', 'First Name:’
call CallBSF 'registerBean’, 'Label3', ’java.awt.Label’,’S', ’ Surname: ’
call CallBSF 'registerBean’, ' DropDown’, ’java.awt.Choice

call CalBSF’callFunction’, ' DropDown’, "additem’,’S', "mal€’

call CalBSF ' calFunction’, ' DropDown’, "additem’, 'S, "femal€

call CallBSF 'registerBean’, ' Surname’, ’java.awt. TextField’

call CallBSF 'registerBean’, 'Name', 'java.awt. TextFied’

call CallBSF 'registerBean’, 'OK’, 'java.awt.Button’, ’'S’, ' OK’

call CalBSF’addEventListener’, 'OK’, "action’, ’’, "call Greetings

call CallBSF 'registerBean’, ' Cancel’, *java.awt.Button’, ’S', ' Cancel’
call CalBSF’addEventListener’, ’Cancel’, "action’, '’, ' CallBSF(exit’)’

call CallBSF 'registerBean’, ' Background', ’java.awt.Color’, 'I’, * 150", ’I’, " 150", 'I’, " 250’

call CallBSF 'registerBean’, 'GLayout’, 'java.awt.GridLayout’, 'I’,’4",'I’,’ 2
call CalBSF 'registerBean’, ' Window’, ’java.awt.Frame’, 'S, ' Greetings!’
call CalBSF’addEventListener’, 'Window’, "window’, 'windowClosing’, ' CalIBSF(’ exit’)’

call CalBSF ' callFunction’, "Window’, *setLayout’, 'O, ' GLayout’
cal CalBSF ' cadlFunction’, "Window’, 'add’, 'O’, 'Label1’

call CalBSF ' calFunction’, "Window’, 'add’, 'O’, ' DropDown’

cal CalBSF ' cadlFunction’, "Window’, "add’, 'O’, 'Label2’

call CallBSF 'callFunction’, 'Window’, 'add’, 'O’, 'Name'

cal CalBSF ’cdlFunction’, "Window’, 'add’, 'O’, 'Label 3’

cal CalBSF ' cadlFunction’, "Window’, "add’, 'O’, ' Surname’

cal CalBSF ' cdlFunction’, "Window’, 'add’, 'O’, "OK’

cal CalBSF ' cadlFunction’, "Window’, 'add’, 'O’, ' Cancel’

call CallBSF 'callFunction’, 'Window’, 'setSize', 'l’, 200", 'l", ' 200’
call CalBSF’callFunction’, *Window’, ' setBackground', 'O’ , ' Background’
call CalBSF ’callFunction’, *Window’, ’ pack’

call CalBSF ' cdlFunction’, "Window’, ’ show’

cal CalBSF ' cadlFunction’, "Window’, ’toFront’

return

Greetings:

call CalBSF 'registerBean’, 'Window?2', ’'java.awt.Frame

cal CdlBSF ’addEventListener’, ’'Window?2', ’window’, ’windowClosing,
'CallBSF(exit’)’

call CalBSF 'registerBean’, ' Greet’, 'java.awt.Label’

call CalBSF 'registerBean’, 'Bye', ’java.awt.Button’, ’'S', 'Byel’

call CalBSF’addEventListener’, 'Bye’, "action’, *’, ' CalIBSF(’ exit’)’

call CalBSF’callFunction’, "Window?2', 'add’, 'S, 'North', 'O, ' Greet’
call CalBSF’callFunction’, "Window?2', 'add’, 'S, * South’, 'O’, 'By€
call CalBSF’callFunction’, "Window?2', ' pack’

28

Peter Kalender

10.12.2000

A concept for and an implementation of the BSF for Rexx

parse var Result Textl
parse var Result Text2
parse var Result Text3

Text3:

return

call CallBSF 'callFunction’, 'Window?2', ' show’
call CallBSF 'callFunction’, 'Window?2', ' toFront’

call CalBSF’callFunction’, 'Name', ' getText’

call CalBSF’callFunction’, ’ Surname’, ' getText’

call CallBSF ’callFunction’, ' DropDown’, ' getSel ecteditem’

if Textl=="male" then call CalBSF ’'callFunction’, 'Greet’, 'satText’,’'S’, "Hello Mr." Text2

elsecal CalBSF 'calFunction’, 'Greet’, 'satText’, 'S, "Hello Mrs." Text2 Text3;

The ouput of this program can be seen in figure 7.

Eﬁf’,ﬂ‘ﬁreetings!
Gender;
First Mame:

Surname:;

=] B3

|
ale TI EE-E

Peter

I =] E3

Hello mMr. Peter Kalender

kalender

Cancel

Byel

Figure 7: The Greetings program

29

