
NetRexx Language Supplement

23rd August 2000

Mike Cowlishaw

mfc@uk.ibm.com
IBM UK Laboratories

Version 2.00

Contents

Part 1: NetRexx Language Supplement 1
Section 1: Minor and Dependent classes 2

Minor classes 2
Dependent classes 3
Restrictions 5

Section 2: Other language enhancements 6
Adapter classes 6
Array initializers 6
Array partial terms 7
Binary methods 8
copyIndexed(source) 8
Deprecation 9
Dollar sign in symbols 9
Euro currency character 10
Hexadecimal and binary numeric symbols 10
If and when enhancements 11
Imports, automatic (clarification) 12
Imports, explicit 12
Numeric enhancement 13
Private and shared interfaces 13
Properties enhancements 13
Select case 14
Shared classes, properties, and methods 15
Special names 16
Trace enhancements 16
Trace Var 17

Version 2.00 ii

 Contents iii

Type operation enhancement 18
Section 3: New and enhanced options 19
Section 4: Experimental enhancements 22

JavaBean properties 22
Indirect properties 22

Part 2: The netrexx.lang package 27
Section 1: Exception classes 28
Section 2: The Rexx class 29

Rexx constructors 29
Rexx arithmetic methods 31
Rexx miscellaneous methods 34

Section 3: The RexxOperators interface class 37
Section 4: The RexxSet class 38

Public properties 38
Constructors 39
Methods 39

Index 41

Version 2.00

Part 1

NetRexx Language
Supplement

This document is the supplement to The NetRexx Language.1 Please see that
book for background information about the language, collected syntax dia-
grams, etc. Page numbers in this supplement shown like [NRL 78] refer to
page numbers in the book.

The supplement is in two parts:

1. New and experimental language features

2. The Rexx class and other classes in the netrexx.lang package (see
page 27).

The descriptions here assume that you have used NetRexx or have read an
overview of the language; they also assume, and should be read in the context
of, the NetRexx language definition.

This document may be found at the NetRexx World Wide Web site

http://www2.hursley.ibm.com/netrexx

along with other NetRexx documentation and useful information.

1 M. F. Cowlishaw, ISBN 0-13-806332-x, 197pp, Prentice-Hall, 1997

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved. 1

2 NetRexx Language Supplement Part 1

SECTION 1: MINOR AND DEPENDENT CLASSES

This section describes minor classes and dependent classes – features sup-
ported by the NetRexx reference implementation which are expected to be
included in some future NetRexx language definition, should there be an
updated definition.

Minor classes

A minor class in NetRexx is a class whose name is qualified by the name of
another class, called its parent. This qualification is indicated by the form of
the name of the class: the short name of the minor class is prefixed by the
name of its parent class (separated by a period). For example, if the parent
is called Foo then the full name of a minor class Bar would be written
Foo.Bar. The short name, Bar, is used for the name of any constructor
method for the class; outside the class it can only be used to identify the class
in the context of the parent class (or from children of the minor class, see
below).

The names of minor classes may be used in exactly the same way as other
class names (types) in programs. For example, a property might be declared
and initialized thus:

abar=Foo.Bar null –– this has type Foo.Bar

or, if the class has a constructor, perhaps:

abar=Foo.Bar() –– constructs a Foo.Bar object

Minor classes must be in the same program (and hence in the same package)
as their parent. They are introduced by a class instruction that specifies their
full name, for example:

class Foo.Bar extends SomeClass

Minor classes must immediately follow their parent class.2

Minor classes may have a parent which is itself a minor class, to any depth;
the name and the positioning rules are extended as necessary. For example,
the following classes might exist in a program:

class Foo
 class Foo.Bar

 class Foo.Bar.Nod
 class Foo.Bar.Pod

 class Foo.Car

2 This allows compilers that generate Java source code to preserve line numbering.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 1 Minor and Dependent classes 3

As before, the children of Foo.Bar immediately follow their parent. The list
of children of Foo can be continued after the children of Foo.Bar have all
been specified.

Note that the short name (last part of the name) of a minor class may not be
the same as the short name of any of its parents (a class Foo.Bar.Foo or a
class Foo.Bar.Bar would be in error, for example). This allows minor clas-
ses to refer to their parent classes by their short name without ambiguity.

Constructing objects in minor classes

A parent class can construct an object of a child class in the usual manner,
by simply specifying its constructor (identified by its short name, full name,
or qualified name). For example, a method in the Foo.Bar class above could
construct an object of type Foo.Bar.Nod using:

anod=Nod()

(assuming the Foo.Bar.Nod class has a constructor that takes no argu-
ments).

Similarly, minor classes can refer to the types and constructors of any of its
parents by simply using their short names. Hence, the Foo.Bar.Nod class
could construct objects of its parents’ types thus:

abar=Bar()
afoo=Foo()

(again assuming the parent classes have constructors that take no argu-
ments).

Classes other than the parent or an immediate child must use the full name
(if necessary, qualified by the package name) to refer to a minor class or its
constructor.

Dependent classes

As described in the last section, minor classes provide an enhanced packaging
(naming) mechanism for classes, allowing classes to be structured within
packages. A stronger link between a child class and its parent is indicated
by the modifier keyword dependent on the child class, which indicates that the
child is a dependent class. For example:

class Foo.Dep dependent extends SomeClass
method Dep –– this is the constructor

An object constructed from a dependent class (a dependent object) is linked to
the context of an object of its parent type (its parent object). The linkage thus
provided allows the child object simplified access to the parent object and its
properties.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

4 NetRexx Language Supplement Part 1

In the example, an object of type Foo.Dep can only be constructed in the
context of a parent object, which must be of type Foo.

Constructing dependent objects

A parent class can construct a dependent object in the same way as when
constructing objects of other child types; that is, by simply specifying its
constructor. In this case, however, the current object (this) becomes the
parent object of the newly constructed object. For example, a method in the
Foo class above could construct a dependent object of type Foo.Dep using:

adep=Dep()

(assuming the Dep class has a constructor that takes no arguments).

In general, for a class to construct an object from a dependent class, it must
have a reference to an object of the parent class (which will become the parent
of the new object), and the constructor must be called (by its short name) in
the context of that parent object. For example:

parentObject=Foo()
adep=parentObject.Dep()

(In the same way, the first example could have been written:

adep=this.Dep()

within the parent class the this. is implied.)

In order to subclass a dependent class, the constructor of the dependent class
must be invoked by the subclass constructor in a similar manner. In this
case, a qualified call to the usual special constructor super is used, for
example:

class ASub extends Foo.Dep
 method Asub(afoo=Foo)

 afoo.super()

The qualifier (afoo in the example) must be either the name of an argument
to the constructor, or the special word parent (if the classes share a common
parent class), or the short name of a parent class followed by .this (see
below). The call to super must be the first instruction in the method, as
usual, and it must be present (it will not be generated automatically by the
compiler).

Access to parent objects and their properties

Dependent classes have simplified access to their parent objects and their
properties. In particular:

• The special word parent may be used to refer to the parent object of the
current object. It may appear alone in a term, or at the start of a com-

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 1 Minor and Dependent classes 5

pound term. It can only be used in non-static contexts in a dependent
class.

• In general, any of the objects in the chain of parents of a dependent
object may be referred to by qualifying the special word this with the
short name of the parent class. For example, extending the previous
example, if the class Foo.Dep.Ent was a dependent class it could con-
tain references to Foo.this (the parent of its parent) or Dep.this (the
latter being the same as specifying parent). If preferred, the full name
or the fully qualified name of the parent class may be used instead of
the short name.

Like parent, this construct can only be used at the start of a term in
non-static contexts in a dependent class.

• As usual, properties external to the current class must always be qual-
ified in some way (for example, the prefix parent. can be used in a
term such as parent.aprop).

Restrictions

Minor classes may have any of the attributes (public, interface, etc.) of other
classes, and behave in every way like other classes, with the following
restrictions:

• If a class is a static class (that is, it contains only static or constant
properties and methods) then any children cannot be dependent classes
(because no object of the parent class can be constructed). Similarly,
interface classes and abstract classes cannot have dependent classes.

• Dependent classes may not be interfaces.

• Dependent classes may not contain static or constant properties (or
methods).3 These must be placed in a parent which is not a dependent
class.

• Minor classes may be public only if their parent is also public. (Note
that this is the only case where more than one public class is permitted
in a program.) In general: a minor class cannot be more visible than its
parent.

3 This restriction allows compilation for the Java platform.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

6 NetRexx Language Supplement Part 1

SECTION 2: OTHER LANGUAGE ENHANCEMENTS

This section describes additional features supported by the NetRexx reference
implementation that are expected to be included in some future NetRexx
language definition, should there be an updated definition.

Adapter classes

The class instruction [NRL 74] is used to introduce a class. In NetRexx 1.0,
this instruction could specify a modifier to indicate that it is abstract, final,
or an interface. An alternative keyword is supported in NetRexx 1.1, adapter,
which indicates that the class is an adapter class. For example:

class Macavity adapter implements MouseListener

An adapter class is a class that is guaranteed to implement all unimplemented
abstract methods of its superclasses and interface classes that it inherits or
lists as implemented on the class instruction.

If any unimplemented methods are found, they will be automatically gener-
ated by the language processor. Methods generated in this way will have the
same visibility and signature as the abstract method they implement, and if
a return value is expected then a default value is returned (as for the initial
value of variables of the same type: that is, null or, for values of primitive
type, an implementation-defined value, typically 0). Other than possibly
returning a value, these methods are empty; that is, they have no side-effects.

An adapter class provides a concrete representation of its superclasses and
the interface classes it implements. As such, it is especially useful for
implementing event handlers and the like, where only a small number of
event-handling methods are needed but many more might be specified in the
interface class that describes the event model.4

An adapter class cannot be an interface or an abstract class (or have any
abstract methods), and cannot be a final class.

Array initializers

A new form of simple term [NRL 41] is defined: the array initializer. The array
initializer is recognized if it does not immediately follow (abut) a symbol, and
has the form5

'[' expression

, expression ... ']'

4 For example, see the “Scribble” sample in the NetRexx package.
5 The notations '[' and ']' indicate square brackets appearing in the NetRexx program.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 Other language enhancements 7

An array initializer therefore comprises a list of one or more expressions,
separated by commas, within brackets. When an array initializer is evalu-
ated, the expressions are evaluated in turn from left to right, and all must
result in a value. An array [NRL 71] is then constructed, with a number of
elements equal to the number of expressions in the list, with each element
initialized by being assigned the result of the corresponding expression.

The type of the array is derived by adding one dimension to the type of the
result of the first expression in the list, where the type of that expression is
determined using the same rules as are used to select the type of a variable
when it is first assigned a value [NRL 65]. All the other expressions in the
list must have types that could be assigned to the chosen type without error.

For example, in

var1=['aa', 'bb', 'cc']
var2=[char 'a', 'b', 'c']
var3=[String 'a', 'bb', 'c']
var4=[1, 2, 3, 4, 5, 6]
var5=[[1,2], [3,4]]

the types of the variables would be Rexx[], char[], String[], Rexx[], and
Rexx[,] respectively. In a binary class in the reference implementation, the
types would be String[], char[], String[], int[], and int[,].

Array initializers are most useful for initializing properties and variables, but
like other simple terms, they may start a compound term. So, for example

say [1,1,1,1].length

would display 4.

Notes:

1. An array of length zero cannot be constructed with an array initializer,
as its type would be undefined. An explicitly typed array constructor
(for example, int[0]) must be used.

2. Array initializers require Java 1.1.

Array partial terms

If a partial term results in a dimensioned array, its type is treated as type
Object so that evaluation of the term can continue [NRL 46]. For example,
in

ca=char[] "tosh"
say ca.toString()

the variable ca is an array of characters; in the expression on the second line
the method toString() of the class Object will be found. (In the reference
implementation, this would return an identifier for the object.)

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

8 NetRexx Language Supplement Part 1

Binary methods

The method instruction [NRL 93] is used to introduce a method. The binary
keyword may be added to the instruction to indicate that the method is a
binary method.

In binary methods, literal strings and numeric symbols are assigned native
string or binary (primitive) types, rather than NetRexx types, and native
binary operations are used to implement operators where possible. When
binary is not in effect (the default), terms in expressions are converted to
NetRexx types before use by operators. The section Binary values and oper-
ations [NRL 142] describes the implications of binary methods and classes in
detail.

Notes:

1. Only the instructions inside the body of the method are affected by the
binary keyword; any arguments and expressions on the method instruc-
tion are not affected (this ensures that a single rule applies to all the
method signatures in a class).

2. All methods in a binary class are binary methods; the binary keyword
on methods is provided for classes in which only the occasional method
needs to be binary (perhaps for performance reasons). It is not an error
to specify binary on a method in a binary class.

copyIndexed(source)

copies the collection of indexed sub-values [NRL 70] of source into the col-
lection associated with string, and returns the modified string. The resulting
collection is the union of the two collections (that is, it contains the indexes
and their values from both collections). If a given index exists in both col-
lections then the sub-value of string for that index is replaced by the sub-
value from source.

The non-indexed value of string is not affected.

Example:

Following the instructions:

foo='def'
foo['a']=1
foo['b']=2
bar='ghi'
bar['b']='B'
bar['c']='C'
merged=foo.copyIndexed(bar)

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 Other language enhancements 9

then:

merged['a'] == '1'
merged['b'] == 'B'
merged['c'] == 'C'
merged['d'] == 'def'

Deprecation

Classes, methods, and properties may be designated as deprecated, which
implies that a better alternative is available and documented. A compiler can
use this information to warn of out-of-date or other use that is not recom-
mended.

The class instruction [NRL 74] is used to introduce a class. The deprecated
keyword may be added to the instruction to indicate that the class (and all
its methods and properties) is deprecated. For example:

class action deprecated

The method instruction [NRL 93] is used to introduce a method. The depre-
cated keyword may be added to the instruction to indicate that the method
is deprecated. For example:

method madness deprecated

Note that individual methods in interface classes cannot be deprecated; the
whole class should be deprecated in this case.

The properties instruction [NRL 105] is used to define the attributes of fol-
lowing property variables. The deprecated keyword may be added to the
instruction to indicate that the following properties are deprecated. For
example:

properties public deprecated
 gaol=Months 11
 jail=Days 12

Note: In the reference implementation, the intermediate .java file must
be compiled with a Java 1.1 compiler for the information about deprecation
to be reflected in the resulting .class file.

Dollar sign in symbols

The dollar sign character (“$”) may now be used in symbols (for instance,
variable names). It is recommended that it only be used in mechanically
generated programs or where otherwise essential.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

10 NetRexx Language Supplement Part 1

Euro currency character

The euro character ('\u20ac') is now treated in the same way as the dollar
character (that is, it may be used in the names of variables and other iden-
tifiers). It is recommended that it only be used in mechanically generated
programs or where otherwise essential.

Note that only UTF8-encoded source files can currently use the euro charac-
ter, and a 1.1.7 (or later) version of a Java compiler is needed to generate the
class files.

Hexadecimal and binary numeric symbols

Numeric symbols (symbols in a NetRexx source program that start with a
digit, [NRL 35]) may now be expressed in a hexadecimal or binary notation.

A hexadecimal numeric symbol describes a whole number, and is of the form
nXstring. Here, n is a simple number with no decimal part (and optional
leading insignificant zeros) which describes the effective length of the hexa-
decimal string, the X (which may be in lowercase) indicates that the notation
is hexadecimal, and string is a string of one or more hexadecimal characters
(characters from the ranges “a-f”, “A-F”, and the digits “0-9”).

The string is taken as a signed number expressed in n hexadecimal charac-
ters. If necessary, string is padded on the left with '0' characters (note, not
“sign-extended”) to length n characters.

If the most significant (left-most) bit of the resulting string is zero then the
number is positive; otherwise it is a negative number in twos-complement
form. In both cases it is converted to a NetRexx number which may, there-
fore, be negative. The result of the conversion is a number comprised of the
Arabic digits 0-9, with no insignificant leading zeros but possibly with a
leading '–'.

The value n may not be less than the number of characters in string, with the
single exception that it may be zero, which indicates that the number is
always positive (as though n were greater than the the length of string).

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 Other language enhancements 11

Examples:

 1x8 == –8
 2x8 == 8

2x08 == 8
0x08 == 8
0x10 == 16
0x81 == 129
2x81 == –127
3x81 == 129
4x81 == 129
04x81 == 129
16x81 == 129
4xF081 == –3967
8xF081 == 61569
0Xf081 == 61569

A binary numeric symbol describes a whole number using the same rules, except
that the identifying character is B or b, and the digits of string must be either
0 or 1, each representing a single bit.

Examples:

 1b0 == 0
 1b1 == –1

0b10 == 2
0b100 == 4
4b1000 == –8
8B1000 == 8

Note: Hexadecimal and binary numeric symbols are a purely syntactic device
for representing decimal whole numbers. That is, they are recognized only
within the source of a NetRexx program, and are not equivalent to a literal
string with the same characters within quotes.

If and when enhancements

The if clause in the if instruction [NRL 80] and the when clause in the select
instruction [NRL 108] both have the same form and serve the same purpose,
which is to test a value either for being 1 or (for a when clause in a select case
construct) being equal to the case expression.

In both if and when clauses multiple expressions may now be specified, sepa-
rated by commas. These are evaluated in turn from left to right, and if the
result of any evaluation is 1 (or equals the case expression) then the test has
succeeded and the instruction following the associated then clause is executed.

Note that once an expression evaluation has resulted in a successful test, no
further expressions in the clause are evaluated. So, for example, in:

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

12 NetRexx Language Supplement Part 1

–– assume 'name' is a string
if name=null, name='' then say 'Empty'

then if name does not refer to an object it will compare equal to null and the
say instruction will be executed without evaluating the second expression in
the if clause.

Imports, automatic (clarification)

In the reference implementation, the fundamental NetRexx and Java package
hierarchies are imported by default [NRL 82], as though the instructions:

import netrexx.lang.
import java.lang.
import java.io.
import java.util.
import java.net.
import java.awt.
import java.applet.

had been executed before the program begins.

In addition, classes in the current (working) directory are imported if no
package instruction is specified. If a package instruction is specified then all
classes in that package are imported.

[The Java packages are now listed explicitly, because new packages added in
Java 1.1 or Java 1.2 are not included in the automatic import list.]

Imports, explicit

When a class is imported explicitly, for example, using

import java.awt.List

this indicates that the short name of the class (List, in this example) may
be used to refer to the class unambiguously. That is, using this short name
will not report an ambiguous reference warning (as it would without the
import instruction, because a java.util.List class has been added in Java
1.2).

It follows that:

• Two classes imported explicitly cannot have the same short name.

• No class in a program being compiled can have the same short name as
a class that is imported explicitly.

because in either of these situations a use of the short name would be
ambiguous.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 Other language enhancements 13

Note also that an explicit import does not import the minor or dependent
classes associated with a name; they each require their own explicit import
(unless the entire package is imported).

Numeric enhancement

The numeric instruction [NRL 98] is used to change the way in which arith-
metic operations are carried out by a program.

One or more numeric instructions may now be placed before the first class
instruction in a program; they no longer imply the start of a class. The set-
tings they make then apply to all classes in the program (except interface
classes), as though the numeric instructions were placed immediately follow-
ing the class instruction in each class.

Private and shared interfaces

The class instruction [NRL 74] is used to define interface classes. The
restriction that interface classes cannot be private [NRL 75] has now been
removed; they may be also be shared, which means the same as private for
classes.

Properties enhancements
The properties instruction [NRL 105] is used to define the attributes of fol-
lowing property variables. There are two enhancements to the instruction:

• The modifier for properties may include a new alternative: transient.
Properties with this modifier are known as transient properties. For
example:

properties public transient
 wayfarer=int 7

Transient properties are properties which should not be saved when an
instance of the class is saved (made persistent).

• The unused keyword may be added to the instruction in addition to a
visibility keyword (which must be private) and any modifier. It may be
at any position within the instruction.

For example:

properties private constant unused
–– Serialization version

 serialVersionUID=long 8245355804974198832

The unused keyword indicates that the private properties which follow
are not referenced explicitly in the code for the class, and so a language
processor should not warn that they exist but have not been used.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

14 NetRexx Language Supplement Part 1

Select case

The select instruction [NRL 108] is used to conditionally execute one of
several alternatives.

A new keyword, case, has been added to the select instruction; it must follow
any label or protect phrase, and must be followed by an expression.

When case is used, the expression following it is evaluated at the start of the
select construct. The result of the expression is then compared, using the
strict equality operator (==), to the result of evaluating the expression in each
of the when clauses in turn until a match is found. As usual, if no match is
found then control will pass to the instruction list (if any) following
otherwise, and in this situation the absense of an otherwise is a run-time error.

For example, in:

select case i+1
when 1 then say 'one'
when 1+1 then say 'two'
when 3, 4, 5 then say 'many'

end

then if i had the value 1 then the message displayed would be “two”.

The third when clause in the example demonstrates the use of the when clause
enhancement (see page 11) in this context. Multiple expressions are allowed,
separated by commas, each of which is evaluated in turn from left to right.
As soon as one matches the case expression, execution of the when clause
stops and the instruction following the associated then clause is executed.

Notes:

1. When case is used, the result of evaluating the expression following each
when no longer has to be 0 or 1. Instead, it must be possible to compare
each result to the result of the case expression.

2. The case expression is evaluated only on entry to the select construct;
it is not re-evaluated for each when clause.

3. An exception raised during evaluation of the case expression will be
caught by a suitable catch clause in the construct, if one is present.
Similarly, evaluation of the case expression is protected by the protect
phrase, if one is present.

4. In the reference implementation, a select case construct will be trans-
lated into a Java switch construct provided that it meets the following
criteria:

• The type of the case expression is byte, char, int, or short.

• The value of all the expressions on the when clauses are primitive
constants (that is, they consist of only constants of primitive types

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 Other language enhancements 15

and operators valid for them and so may be evaluated at compile
time).

• No two expressions on the when clauses evaluate to the same value.

• It is not subject to tracing.

Under these conditions the semantics of the switch construct match
those defined for select. The example shown above would be translated
to a switch construct if i had type int and options binary were in effect.

Shared classes, properties, and methods

Classes, properties, and methods have a specified visibility. A new form of
visibility, known as shared, is available in NetRexx. A shared class, property,
or method is one that is visible within the current package but is not visible
outside the package. Shared properties and methods cannot be inherited by
classes outside the package.

The properties instruction [NRL 105] is used to define the attributes of fol-
lowing property variables. The visibility for properties may include a new
alternative, shared, which indicates that the following properties are shared
and therefore cannot be inherited by classes outside the package. For
example:

properties shared constant
 hours=int 24
 minutes=int 60

The method instruction [NRL 93] is used to introduce a method. The visibility
for methods may include a new alternative, shared, which indicates that the
method is shared and therefore cannot be inherited by classes outside the
package. For example:

–– This method is only visible to the current package
method inpackage shared

The class instruction [NRL 74] is used to introduce a class. The shared key-
word on the class instruction means exactly the same as the keyword
private, and is accepted for consistency with the other meanings of shared.
For clarity, it is recommended that, if required, shared be specified rather
than private.

Note that interface classes (see page 13) may now be shared.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

16 NetRexx Language Supplement Part 1

Special names

The following special names are added to the list [NRL 118]:

class

The object of type Class that describes a specific type. This word
is only recognized as the second part of a compound term, where the
evaluation of the first part of the term resulted in a type or qualified
type.

Example:

obj=String.class
say obj.isInterface /* would say '0' */

Note that this special name requires Java 1.1.

sourceline

The line number of the first token [NRL 33] of the current clause in
the NetRexx program, returned as a string of type Rexx. This will
be one or more Arabic numerals, with no leading blanks, zeros, or
sign, and no trailing blanks or exponent.

sourceline can only appear alone, or at the start of a compound
term.

Trace enhancements

The trace instruction [NRL 111] is used to control the tracing of the execution
of NetRexx methods. Three enhancements have been made to tracing:

1. The trace instruction has a new option, var, which allows variables to be
traced selectively. This option is described in detail in the next section.
Note that the trace special word can now have the value “var”.

2. One or more trace instructions may now be placed before the first class
instruction in a program; they no longer imply the start of a class. The
settings they make (both overall and trace var selections) then apply to
all classes in the program (except interface classes), as though the trace
instructions were placed immediately following the class instruction in
each class.

3. If a trace line is produced in a different context (program or thread) from
the preceding trace line (if any) then a trace context line is shown. This
shows the name of the program that produced the trace line, and also
the name of the thread (and thread group) of the context.

The thread group name is not shown if it is main, and in this case the
thread name is then also suppressed if its name is main.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 Other language enhancements 17

Trace Var

The trace instruction [NRL 111] is used to control the tracing of the execution
of NetRexx methods. A new option, var, is now available.

The trace var instruction adds names to a list of monitored variables; it can
also remove names from the list. If the name of a variable in the current class
or method is in the list, then trace results is turned on for any assignment,
loop, or parse instruction that assigns a new value to the named variable.

Variable names are specified by listing them after the var keyword. Each
name may be optionally prefixed by a + or a – sign. A + sign indicates that
the variable is to be added to the list of monitored variables (the default), and
a – sign indicates that the variable is to be removed from the list. Blanks
may be added before and after variable names and signs to separate the
tokens and to improve readability.

For example:

trace var a b c
–– now variables a, b, and c will be traced
trace var –b –c d
–– now variables a and d will be traced

Notes:

1. Names in the list following the var keyword are simple symbols that
name variables in the current class or current method. The variables
may be properties, method arguments, or local variables, and may be
of any type, including arrays. The names are not case-sensitive; any
variables whose names match, independent of case, will be monitored.

2. No variable name can appear more than once in the list on one trace var
instruction. However, it is not an error to add the name of a variable
which does not exist or is not then assigned a value. Similarly, it is not
an error to remove a name which is not currently being monitored.

3. One or more trace var instructions (along with one other trace instruc-
tion) are allowed before the first method in a class. They all modify an
initial list of monitored variables which is then used for all methods in
the class. Similarly, trace var instructions are allowed before the first
class in a program, in which case they apply to all classes (except
interface classes).

4. Other trace instructions do not affect the list of monitored variables.
The trace off instruction may be used to turn off tracing completely; in
this case trace var (with or without any variable names) will then turn
the tracing of variables back on, using the current (or modified) variable
list.

5. For a parse instruction, only monitored variables have their assignments
traced (unless trace results is in effect).

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

18 NetRexx Language Supplement Part 1

Type operation enhancement

A type on the left hand side of an operator that could be a prefix operator
(+, –, or \) is now assumed to imply a cast (type concatentation) after the
prefix operator is applied to the right-hand operand, rather than being an
error.

For example:

x=int –y

now means that –y is evaluated, and then the result is cast to int before
being assigned to x. It would previously need to have been written x=int
(–y) to avoid being treated as subtracting y from the type int (which is not
possible).

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 3 New and enhanced options 19

SECTION 3: NEW AND ENHANCED OPTIONS

The options instruction is used to pass special requests to the language pro-
cessor (for example, an interpreter or compiler). See [NRL 100].

This section describes new or enhanced option words supported by the NetRexx
reference implementation. Unless stated otherwise, these may be used either
with an options instruction or as “flags” passed to the implementation with
a leading “–”.

comments

Comments from the NetRexx source program will be passed through to
the the Java output file (which may be saved with a .java.keep
extension by using the –keep command option).

Line comments become Java line comments (introduced by “//”). Block
comments become Java block comments (delimited by “/*” and “*/”),
with nested block comments having their delimiters changed to “(–” and
“–)”).

compact

Requests that warnings and error messages be displayed in compact
form. This format is more easily parsed than the default format, and is
intended for use by editing environments.

Each error message is presented as a single line, prefixed with the error
token identification enclosed in square brackets. The error token iden-
tification comprises three words, with one blank separating the words.
The words are: the source file specification, the line number of the error
token, the column in which it starts, and its length. For example (all
on one line):

[D:\test\test.nrx 3 8 5] Error: The external name
'class' is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null ('\0') char-
acter. Additional words could be added to the error token identification
later.

console

Requests that compiler messages be written to console (the default).
Use –noconsole to prevent messages being written to the console.

This option must be used only as a compiler option, and applies to all
programs being compiled.

decimal

Decimal arithmetic may be used in the program. If nodecimal is speci-
fied, the language processor will report operations that use (or, like

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

20 NetRexx Language Supplement Part 1

normal string comparison, might use) decimal arithmetic as an error.
This option is intended for performance-critical programs where the
overhead of inadvertent use of decimal arithmetic is unacceptable.

explicit

Requires that all local variables must be explicitly declared (by assigning
them a type but no value) before assigning any value to them. This
option is intended to permit the enforcement of “house styles” (but note
that the NetRexx compiler always checks for variables which are refer-
enced before their first assignment, and warns of variables which are set
but not used).

java

Requests that Java source code be produced by the translator. If nojava
is specified, no Java source code will be produced; this can be used to
save a little time when checking of a program is required without any
compilation or Java code resulting.

savelog

Requests that compiler messages be written to the file NetRexxC.log in
the current directory. The messages are also displayed on the console,
unless –noconsole is specified.

This option must be used only as a compiler option, and applies to all
programs being compiled.

sourcedir

Requests that all .class files be placed in the same directory as the
source file from which they are compiled. Other output files are already
placed in that directory. Note that using this option will prevent the
–run command option from working unless the source directory is the
current directory.

strictargs

Requires that method invocations always specify parentheses, even
when no arguments are supplied. Also, if strictargs is in effect, method
arguments are checked for usage – a warning is given if no reference to
the argument is made in the method.

strictimport

Requires that all imported packages and classes be imported explicitly
using import instructions. That is, if in effect, there will be no automatic
imports (see page 12), except those related to the package instruction.

This option must be used only as a compiler option, and applies to all
programs being compiled.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 3 New and enhanced options 21

strictprops

Requires that all properties, including those local to the current class,
be qualified in references. That is, if in effect, local properties cannot
appear as simple names but must be qualified by this. (or equivalent)
or the class name (for static properties).

symbols

Symbol table information (names of local variables, etc.) will be included
in any generated .class file. This option is provided to aid the pro-
duction of classes that are easy to analyse with tools that can under-
stand the symbol table information. The use of this option increases the
size of .class files.

trace, traceX

If given as trace, trace1, or trace2, then trace instructions are accepted.
The trace output is directed according to the option word: trace1 requests
that trace output is written to the standard output stream, trace or trace2
imply that the output should be written to the standard error stream
(the default).

If notrace is given, then trace instructions are ignored. The latter can
be useful to prevent tracing overheads while leaving trace instructions
in a program.

utf8

As of NetRexx 1.1 (July 1997), this option must be used as a compiler
option, and applies to all programs being compiled. If present on an
options instruction, it is checked and must match the compiler option
(this allows processing with or without the utf8 option to be enforced).

Prefixing any of the above with “no” turns the selected option off.

The default settings of these options are:

nocomments nocompact console decimal noexplicit java
nosavelog nosourcedir nostrictargs nostrictimport
nostrictprops nosymbols trace2 noutf8

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

22 NetRexx Language Supplement Part 1

SECTION 4: EXPERIMENTAL ENHANCEMENTS

This section describes features supported by the NetRexx reference imple-
mentation that are experimental. That is, they will not necessarily be
included in a future NetRexx language definition, should there be an updated
definition.

JavaBean properties

Almost all JavaBeans will have properties, which are data items that a user
of a JavaBean is expected to be able to customize (for example, the text on a
pushbutton). The names and types of the properties of a JavaBean are
inferred from “design patterns” (in this context, conventions for naming
methods) or from PropertyDescriptor objects associated with the JavaBean.
The JavaBean properties do not necessarily correspond to instance variables
in the class – though very often they do. The JavaBean specification does
not guarantee that JavaBean properties that can be set can also be inspected,
nor does it describe how ambiguities of naming and method signatures are
to be handled.

The NetRexxC compiler (as of 15 Feb 1997) allows a more rigorous treatment
of JavaBean properties, by allowing an optional attribute of properties in a
class that declares them to be indirect properties. Indirect properties are prop-
erties of a known type that are private to the class, but which are expected
to be publicly accessible indirectly, though certain conventional method calls.

Declaring properties to be indirect offers the following advantages:

• For many simple cases, the access methods for the properties can be
generated automatically; there is no need to explicitly code them in the
source file for the class. This is especially helpful for Indexed Properties
(where four methods are needed, in general).

• Where access methods are explicitly provided in the class, they can be
checked for correct form, signature and accessibility. This detects errors
at compile time that otherwise would only be determined by testing.

• Similarly, attention can be drawn to the presence of methods that may
be intended to be an access method for an indirect property, but will not
be recognized as such by builders.

The next section describes the use of indirect properties in more detail.

Indirect properties

The properties instruction [NRL 105] is used to define the attributes of fol-
lowing property variables. The visibility of properties may include a new
alternative: indirect. Properties with this form of visibility are known as
indirect properties. These are properties of a known type that are private to the

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

 Section 4 Experimental enhancements 23

class, but which are expected to be publicly accessible indirectly, though cer-
tain conventional method calls.

For example, consider the simple program:

class Sandwich extends Canvas implements Serializable
 properties indirect

 slices=Color.gray
 filling=Color.red

 method Sandwich
 resize(100,30)

 method paint(g=Graphics)
 g.setColor(slices)

g.fillRect(0, 0, size.width, size.height)
 g.setColor(filling)

g.fillRect(12, 12, size.width–12, size.height–12)

This declares the Sandwich class as having two indirect properties, called
slices and filling, both being of type java.awt.Color.

In the example, no access methods are provided for the properties, so the
compiler will add them. By implementation-dependent convention, the
names are prefixed with verbs such as get and set, etc., and have the first
character of their name uppercased to form the method names. Hence, in this
Java-based example, the following four methods are added:

method getSlices returns java.awt.Color
 return slices
method getFilling returns java.awt.Color
 return filling
method setSlices($1=java.awt.Color)
 slices=$1
method setFilling($2=java.awt.Color)
 filling=$2

(where $1 and $2 are “hidden” names used for accessing the method argu-
ments).

Note that the indirect attribute for a property is an alternative to the public,
private, and inheritable attributes. Like private properties, indirect properties
can only be accessed directly by name from within the class in which they
occur; other classes can only access them using the access methods (or other
methods that may use, or have a side-effect on, the properties).

Indirect properties may be constant (implying that only a get method is
generated or allowed, though the private property may be changed by meth-
ods within the class) or transient (see page &refstrans.). They may not be
static or volatile.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

24 NetRexx Language Supplement Part 1

In detail, the rules used for generating automatic methods for a property
whose name is xxxx are as follows:

1. A method called getXxxx which returns the value of the property is
generated. The returned value will have the same type as xxxx.

2. If the type of xxxx is boolean then the generated method will be called
isXxxx instead of getXxxx.

3. If the property is not constant then a method for setting the property
will also be generated. This will be called setXxxx, and take a single
argument of the same type as xxxx. This assigns the argument to the
property and returns no value.

If the property has an array type (for example, char[]), then it must only
have a single dimension. Two further methods may then be generated,
according to the rules:

1. A method called getXxxx which takes a single int as an argument and
which returns an item from the property array is generated. The
returned value will have the same type as xxxx, without the []. The
integer argument is used to index into the array.

2. As before, if the result type of the method would be boolean then the
name of the method will be isXxxx instead of getXxxx.

3. If the property is not constant then a method for setting an item in the
property array will also be generated. This will be called setXxxx, and
take two arguments: the first is an int that is used to select the item
to be changed, and the second is an undimensioned argument of the
same type as xxxx. It assigns the second argument to the item in the
property array indexed by the first argument, and returns no value.

For example, for an indirect property declared thus:

properties indirect
 fred=foo.Bar[]

the four methods generated would be:

method getFred returns foo.Bar[]; return fred
method getFred($1=int) returns foo.Bar; return fred[$1]
method setFred($2=foo.Bar[]); fred=$2
method setFred($3=int, $4=foo.Bar); fred[$3]=$4

Note that in all cases a method will only be generated if it would not exactly
match a method explicitly coded in the current class.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

 Section 4 Experimental enhancements 25

Explicit provision of access methods

Often, for example when an indirect property has an on-screen represen-
tation, it is desirable to redraw the property when the property is changed
(and in more complicated cases, there may be interactions between proper-
ties). These and other actions will require extra processing which will not
be carried out by automatically generated methods. To add this processing
the access methods will have to be coded explicitly. In the “Sandwich”
example, we only need to supply the set methods, perhaps by adding the
following to the example class above:

method setSlices(col=Color)
slices=col –– update the property
this.repaint –– redraw the component

method setFilling(col=Color)
 filling=col
 this.repaint

If we add these two methods, they will no longer be added automatically (the
two get methods will continue to be provided automatically, however). Fur-
ther, since the names match possible access methods for properties that are
declared to be indirect, the compiler will check the method declaration: the
method signatures and return type (if any) must be correct, for example.
Also, since the names of access methods are case-sensitive (in a Java envi-
ronment), you will be warned if a method appears to be intended to be an
access method but the case of one or more letters is wrong.

Specifically, the checks carried out are as follows:

1. For methods whose names exactly match a potential access method for
an indirect property (that is, start with is, get, or set, which is then
followed by the name of an indirect property with the first character of
the name uppercased):

• The argument list for (signature of) the method must match one
of those that could possibly be automatically generated for the
property.

• The returns type (if any) must match the expected returns type for
that method.

• If the returns type is simply boolean, then the method name must
start with is. Conversely, if the method name starts with is then
the returns type must be just boolean.

• If the property is constant then the name of the method cannot
start with set.

• A warning is given if the method is not public (the default).

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

26 NetRexx Language Supplement Part 1

2. For methods whose names match a potential access method, as above,
except in case:

• A warning is given that the method in question may be intended
to be an indirect property access method, but will not be recognized
as such by builders.

These checks detect a wide variety of errors at compile time, hence speeding
the development of classes that use indirect properties.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Part 2

The netrexx.lang package

This part of the supplement documents the netrexx.lang package, which
includes the classes used for creating string objects of type Rexx along with
several classes that are often used while running NetRexx programs.

This section describes the public methods and properties of these classes, as
implemented by the reference implementation. It does not document those
“built-in” methods of the Rexx class that form part of the NetRexx language
[NRL 148], or those classes and methods that are internal “helper” compo-
nents (which, for example, are used as repositories for rarely-executed code).

The classes in the netrexx.lang package are:

• The Exception classes (see page 28)

• Rexx (see page 29)

• RexxIO (helper class, for say and ask)

• RexxNode (helper class, for indexed strings)

• RexxOperators interface (see page 37)

• RexxParse (helper class, for parse)

• RexxSet (see page 38)

• RexxTrace (helper class, for trace)

• RexxUtil (helper class, for the Rexx class)

• RexxWords (helper class, for the Rexx class)

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved. 27

28 The netrexx.lang package Part 2

SECTION 1: EXCEPTION CLASSES

The classes provided for exceptions in the netrexx.lang package are all
subclasses of java.lang.RuntimeException and all have the same con-
tent. Each has two constructors: one taking no argument and the other tak-
ing a string of type java.lang.String, which is used for additional detail
describing the exception.

The Exceptions are signalled as follows.

BadArgumentException

signalled when an argument to a method is incorrect.

BadColumnException

signalled when a column number in a parsing template is not valid (for
example, not a number).

BadNumericException

signalled when a numeric digits instruction tries to set a value that is
not a whole number, or is not positive, or is more than nine digits.

DivideException

signalled when an error occurs during a division. This may be due to
an attempt to divide by zero, or when the intermediate result of an
integer divide or remainder operation is not valid.

ExponentOverflowException

signalled when the exponent resulting from an operation would require
more than nine digits.

NoOtherwiseException

signalled when a select construct does not supply an otherwise clause
and none of expressions on the when clauses resulted in '1'.

NotCharacterException

signalled when a conversion from a string to a single character was
attempted but the string was not exactly one character long.

NotLogicException

signalled when a conversion from a string to a boolean was attempted
but the string was neither the string '0' nor the string '1'.

Other exceptions, from the java.lang package, may also be signalled, for
example NumberFormatException or NullPointerException.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 The Rexx class 29

SECTION 2: THE REXX CLASS

The class netrexx.lang.Rexx implements the NetRexx string class, and
includes the “built-in” methods (described in [NRL 148]). Described here are
the platform-dependent methods as provided in the reference implementa-
tion: constructors (this page) for the class, the methods for arithmetic oper-
ations (see page 31), and miscellaneous methods (see page 34) intended for
general use.

The class netrexx.lang.Rexx is serializable.

Rexx constructors

These constructors all create a string of type netrexx.lang.Rexx.

Rexx(arg=boolean)

Constructs a string which will have the value '1' if arg is 1 (true) or the
value '0' if arg is 0 (false).

Rexx(arg=byte)

Constructs a string which is the decimal representation of the 8-bit
signed binary integer arg. The string will contain only decimal digits,
prefixed with a leading minus sign (hyphen) if arg is negative. A leading
zero will be present only if arg is zero.

Rexx(arg=char)

Constructs a string of length 1 whose first and only character is a copy
of arg.

Rexx(arg=char[])

Constructs a string by copying the characters of the character array arg
in sequence. The length of the string is the number of elements in the
character array (that is, arg.length).

Rexx(arg=int)

Constructs a string which is the decimal representation of the 32-bit
signed binary integer arg. The string will contain only decimal digits,
prefixed with a leading minus sign (hyphen) if arg is negative. A leading
zero will be present only if arg is zero.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

30 The netrexx.lang package Part 2

Rexx(arg=double)

Constructs a string which is the decimal representation of the 64-bit
signed binary floating point number arg.

(The precise format of the result may change and will be defined later.)

Rexx(arg=float)

Constructs a string which is the decimal representation of the 32-bit
signed binary floating point number arg.

(The precise format of the result may change and will be defined later.)

Rexx(arg=long)

Constructs a string which is the decimal representation of the 64-bit
signed binary integer arg. The string will contain only decimal digits,
prefixed with a leading minus sign (hyphen) if arg is negative. A leading
zero will be present only if arg is zero.

Rexx(arg=Rexx)

Constructs a string which is copy of arg, which is of type
netrexx.lang.Rexx. arg must not be null. Any sub-values [NRL
70] are ignored (that is, they are not present in the object returned by
the constructor).

Rexx(arg=short)

Constructs a string which is the decimal representation of the 16-bit
signed binary integer arg. The string will contain only decimal digits,
prefixed with a leading minus sign (hyphen) if arg is negative. A leading
zero will be present only if arg is zero.

Rexx(arg=String)

Constructs a NetRexx string by copying the characters of arg, which is
of type java.lang.String, in sequence. The length of the string is
same as the length of arg (that is, arg.length()). arg must not be
null.

Rexx(arg=String[])

Constructs a NetRexx string by concatenating the elements of the
java.lang.String array arg together in sequence with a blank
between each pair of elements. This may be used for converting the
argument word array passed to the main method of a Java application
into a single string.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 The Rexx class 31

If the number of elements of arg is zero then an empty string (of length
0) is returned. Otherwise, the length of the string is the sum of the
lengths of the elements of arg, plus the number of elements of arg, less
one.

arg must not be null.

Rexx arithmetic methods

These methods implement the NetRexx arithmetic operators, as described in
[NRL 130]. Each corresponds to and implements a method in the RexxOp-
erators interface class (see page 37).

Each of the methods here takes a RexxSet (see page 38) object as an argu-
ment. This argument provides the numeric settings for the operation; if null
is provided for the argument then the default settings are used (digits=9,
form=scientific).

For monadic operators, only the RexxSet argument is present; the operation
acts upon the current object. For dyadic operators, the RexxSet argument
and a Rexx argument are present; the operation acts with the current object
being the left-hand operand and the second argument being the right-hand
operand. For example, under default numeric settings, the expression:

award+extra

(where award and extra are references to objects of type Rexx) could be
written as:

award.OpAdd(null, extra)

which would return the result of adding award and extra under the default
numeric settings.

OpAdd(set=RexxSet, rhs=Rexx)

Implements the NetRexx + (Add) operator [NRL 57], and returns the
result as a string of type Rexx.

OpAnd(set=RexxSet, rhs=Rexx)

Implements the NetRexx & (And) operator [NRL 59], and returns a
result (0 or 1) of type boolean.

OpCc(set=RexxSet, rhs=Rexx)

Implements the NetRexx || or abuttal (Concatenate without blank)
operator [NRL 57], and returns the result as a string of type Rexx.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

32 The netrexx.lang package Part 2

OpCcblank(set=RexxSet, rhs=Rexx)

Implements the NetRexx blank (Concatenate with blank) operator
[NRL 57], and returns the result as a string of type Rexx.

OpDiv(set=RexxSet, rhs=Rexx)

Implements the NetRexx / (Divide) operator [NRL 57], and returns the
result as a string of type Rexx.

OpDivI(set=RexxSet, rhs=Rexx)

Implements the NetRexx % (Integer divide) operator [NRL 57], and
returns the result as a string of type Rexx.

OpEq(set=RexxSet, rhs=Rexx)

Implements the NetRexx = (Equal) operator [NRL 58], and returns a
result (0 or 1) of type boolean.

OpEqS(set=RexxSet, rhs=Rexx)

Implements the NetRexx == (Strictly equal) operator [NRL 59], and
returns a result (0 or 1) of type boolean.

OpGt(set=RexxSet, rhs=Rexx)

Implements the NetRexx > (Greater than) operator [NRL 58], and
returns a result (0 or 1) of type boolean.

OpGtEq(set=RexxSet, rhs=Rexx)

Implements the NetRexx >= (Greater than or equal) operator [NRL
59], and returns a result (0 or 1) of type boolean.

OpGtEqS(set=RexxSet, rhs=Rexx)

Implements the NetRexx >>= (Strictly greater than or equal) operator
[NRL 59], and returns a result (0 or 1) of type boolean.

OpGtS(set=RexxSet, rhs=Rexx)

Implements the NetRexx >> (Strictly greater than) operator [NRL 59],
and returns a result (0 or 1) of type boolean.

OpLt(set=RexxSet, rhs=Rexx)

Implements the NetRexx < (Less than) operator [NRL 59], and returns
a result (0 or 1) of type boolean.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 The Rexx class 33

OpLtEq(set=RexxSet, rhs=Rexx)

Implements the NetRexx <= (Less than or equal) operator [NRL 59], and
returns a result (0 or 1) of type boolean.

OpLtEqS(set=RexxSet, rhs=Rexx)

Implements the NetRexx <<= (Strictly less than or equal) operator
[NRL 59], and returns a result (0 or 1) of type boolean.

OpLtS(set=RexxSet, rhs=Rexx)

Implements the NetRexx << (Strictly less than) operator [NRL 59], and
returns a result (0 or 1) of type boolean.

OpMinus(set=RexxSet)

Implements the NetRexx Prefix – (Minus) operator [NRL 57], and
returns the result as a string of type Rexx.

OpMult(set=RexxSet, rhs=Rexx)

Implements the NetRexx * (Multiply) operator [NRL 57], and returns
the result as a string of type Rexx.

OpNot(set=RexxSet)

Implements the NetRexx Prefix \ (Not) operator [NRL 60], and
returns a result (0 or 1) of type boolean.

OpNotEq(set=RexxSet, rhs=Rexx)

Implements the NetRexx \= (Not equal) operator [NRL 58], and returns
a result (0 or 1) of type boolean.

OpNotEqS(set=RexxSet, rhs=Rexx)

Implements the NetRexx \== (Strictly not equal) operator [NRL 59], and
returns a result (0 or 1) of type boolean.

OpOr(set=RexxSet, rhs=Rexx)

Implements the NetRexx | (Inclusive or) operator [NRL 59], and returns
a result (0 or 1) of type boolean.

OpPlus(set=RexxSet)

Implements the NetRexx Prefix + (Plus) operator [NRL 57], and
returns the result as a string of type Rexx.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

34 The netrexx.lang package Part 2

OpPow(set=RexxSet, rhs=Rexx)

Implements the NetRexx ** (Power) operator [NRL 57], and returns the
result as a string of type Rexx.

OpRem(set=RexxSet, rhs=Rexx)

Implements the NetRexx // (Remainder) operator [NRL 57], and
returns the result as a string of type Rexx.

OpSub(set=RexxSet, rhs=Rexx)

Implements the NetRexx – (Subtract) operator [NRL 57], and returns
the result as a string of type Rexx.

OpXor(set=RexxSet, rhs=Rexx)

Implements the NetRexx && (Exclusive or) operator [NRL 60], and
returns a result (0 or 1) of type boolean.

Rexx miscellaneous methods

These methods provide standard Java methods for the class, together with
various conversions.

charAt(offset=int)

Returns the character from the string at offset (that is, if offset is 0 then
the first character is returned, etc.). The character is returned as type
char.

If offset is negative, or is greater than or equal to the length of the str-
ing, an exception is signalled.

equals(item=Object)

Compares the string with the value of item, using a strict character-by-
character comparison, and returns a result of type boolean.

If item is null or is not an instance of one of the types Rexx,
java.lang.String, or char[], then 0 is returned. Otherwise, item is
converted to type Rexx and the OpEqS (see page 32) method (or equiv-
alent) is used to compare the current string with the converted string,
and its result is returned.

hashCode()

Returns a hashcode of type int for the string. This hashcode is suitable
for use by the java.util.Hashtable class.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 2 The Rexx class 35

toboolean()

Converts the string to type boolean. If the string is neither “0” nor
“1” then a NotLogicException (see page 28) is signalled.

tobyte()

Converts the string to type byte. If the string is not a number, has a
non-zero decimal part, or is out of the possible range for a byte (8-bit
signed integer) result then a NumberFormatException is signalled.

tochar()

Converts the string to type char. If the string is not exactly one char-
acter in length then a NotCharacterException (see page 28) is sig-
nalled.

toCharArray()

Converts the string to type char[]. A character array object of the
same length as the string is created, and the characters of the string are
copied to the array in sequence. The character array is then returned.

todouble()

Converts the string to type double. If the string is not a number, or is
out of the possible range for a double (64-bit signed floating point)
result then a NumberFormatException is signalled.

tofloat()

Converts the string to type float. If the string is not a number, or is
out of the possible range for a float (32-bit signed floating point) result
then a NumberFormatException is signalled.

toint()

Converts the string to type int. If the string is not a number, has a
non-zero decimal part, or is out of the possible range for an int (32-bit
signed integer) result then a NumberFormatException is signalled.

tolong()

Converts the string to type long. If the string is not a number, has a
non-zero decimal part, or is out of the possible range for a long (64-bit
signed integer) result then a NumberFormatException is signalled.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

36 The netrexx.lang package Part 2

toshort()

Converts the string to type short. If the string is not a number, has a
non-zero decimal part, or is out of the possible range for a short (16-bit
signed) result then a NumberFormatException is signalled.

toString()

Converts the string to type java.lang.String. A String object of the
same length as the string is created, and the characters of the string are
copied to the new string in sequence. The String is then returned.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 3 The RexxOperators interface class 37

SECTION 3: THE REXXOPERATORS INTERFACE CLASS

The RexxOperators interface class defines the signatures of the methods
that implement the NetRexx (and Rexx) operators. These methods are
described in the section Rexx arithmetic methods (see page 31) .

In the future this interface may be used to allow the overloading of operators
for objects of types other than Rexx. The current NetRexx language defi-
nition does not permit operator overloading.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

38 The netrexx.lang package Part 2

SECTION 4: THE REXXSET CLASS

The RexxSet class is used to provide the numeric settings for the methods
described in the section Rexx arithmetic methods (see page 31) . When pro-
vided, a RexxSet Object supplies the numeric settings for the operation; when
null is provided then the default settings are used (digits=9,
form=SCIENTIFIC).

Public properties

These properties supply the numeric settings and certain values they may
take. After construction, the digits and form values should only be changed
by using the setDigits and setForm methods.

DEFAULT_DIGITS

A constant of type int that describes the default number of digits for a
numeric operation (9).

DEFAULT_FORM

A constant of type byte that describes the default exponential format
for a numeric operation (SCIENTIFIC).

digits

A value of type int that describes the numeric digits to be used for a
numeric operation. The Rexx arithmetic methods (see page 31) use this
value to determine the significance of results. digits must always be
greater than zero.

ENGINEERING

A constant of type byte that signifies that engineering exponential for-
matting should be used for a numeric operation.

form

A value of type byte that describes the exponential format to be used
for a numeric operation. The Rexx arithmetic methods (see page 31) use
this value to determine the formatting of results that require an expo-
nent. form must be either ENGINEERING or SCIENTIFIC.

SCIENTIFIC

A constant of type byte that signifies that scientific exponential for-
matting should be used for a numeric operation.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

Section 4 The RexxSet class 39

Constructors

These constructors are used to set the initial values of a RexxSet object.

RexxSet()

Constructs a RexxSet object which has default digits and form properties.

RexxSet(newdigits=int)

Constructs a RexxSet object which has its digits property set to newdig-
its and its form property set to DEFAULT_DIGITS.

RexxSet(newdigits=int, newform=byte)

Constructs a RexxSet object which has its digits property set to newdig-
its and its form property set to newform.

RexxSet(arg=RexxSet)

Constructs a RexxSet object which is copy of arg, which is of type
netrexx.lang.RexxSet. arg must not be null.

Methods

The RexxSet class has the following additional methods:

formword()

Returns a string of type netrexx.lang.Rexx that describes the form
property. This will either be the string 'engineering' or the string
'scientific', corresponding to the form value ENGINEERING or SCI-
ENTIFIC, respectively.

setDigits(newdigits=Rexx)

Sets the digits value for the RexxSet object, from newdigits, after
rounding and checking as defined for the numeric instruction; newdigits
must be a positive whole number with no more than nine digits. No
value is returned.

setForm(newformword=Rexx)

Sets the form value for the RexxSet object, from newformword. This
must equal either the string 'engineering' or the string 'scien-
tific', corresponding to the form value ENGINEERING or SCIENTIFIC,
respectively. No value is returned.

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

40 The netrexx.lang package Part 2

Copyright (c) IBM Corporation 1997, 2000. All rights reserved. Version 2.00

Index

Special Characters

$ dollar sign
in symbols 9

A

ADAPTER
on CLASS instruction 6

Adapter classes 6
Array initializer

in terms 6
Arrays

in partial terms 7
initializing 6

B

BadArgumentException 28
BadColumnException 28
BadNumericException 28
BINARY

on METHOD instruction 8
Binary classes

binary methods 8
Binary numeric symbols 11

Brackets
in array initializers 6

C

CASE
on SELECT instruction 14

charAt method 34
CLASS

special word 16
CLASS instruction 6, 9, 13, 15
Classes

adapter 6
dependent 3
deprecated 9
minor 2
parent 2
shared 15

COMMENTS option 19
COMPACT option 19
Compiler options 19
CONSOLE option 19
Constructor

Rexx(boolean) 29
Rexx(byte) 29
Rexx(char[]) 29
Rexx(char) 29

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved. 41

 42 Index

Rexx(double) 30
Rexx(float) 30
Rexx(int) 29
Rexx(long) 30
Rexx(Rexx) 30
Rexx(short) 30
Rexx(String[]) 30
Rexx(String) 30
RexxSet() 39
RexxSet(int) 39
RexxSet(int,byte) 39
RexxSet(RexxSet) 39

Constructors
in minor classes 2
of dependent objects 4
of minor classes 3
qualified 4

COPYINDEXED method 8
Copying indexed variables 8

D

DECIMAL option 19
DEFAULT_DIGITS property 38
DEFAULT_FORM property 38
DEPENDENT

on CLASS instruction 3
Dependent classes 3-5

See also Minor classes
restrictions 5

Dependent object 3
constructing 4

DEPRECATED
on CLASS instruction 9
on METHOD instruction 9
on PROPERTIES instruction 9

Deprecation 9
digits property 38
DivideException 28
Dollar sign

in symbols 9

E

ENGINEERING property 38
Enhancements

supplement 2, 6
equals method 34
Euro character 10

in symbols 10
Exception

BadArgumentException 28
BadColumnException 28
BadNumericException 28
DivideException 28
ExponentOverflowException 28
NoOtherwiseException 28
NotCharacterException 28
NotLogicException 28
NullPointerException 28
NumberFormatException 28

Experimental enhancements
supplement 22

EXPLICIT option 20
ExponentOverflowException 28

F

form property 38
formword() method 39
Full name

of classes 2

H

hashCode method 34
Hexadecimal numeric symbols 10

I

IF instruction 11
Imports

automatic 12
explicit 12

Indexed strings
copying 8
merging 8

Indirect properties 22
Initializing arrays 6
Inner classes

See Minor classes
Instructions

CLASS 6, 9, 13, 15
IF 11
METHOD 8, 9, 15
NUMERIC 13
PROPERTIES 9, 13, 15, 22
SELECT 11, 14
TRACE 16, 17

Interpreter options 19

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

 Index 43

J

JAVA option 20
JavaBean properties 22

L

Language processor options 19

M

Member classes
See Dependent classes

Merging indexed variables 8
Method

charAt 34
equals 34
formword() 39
hashCode 34
NotEq 33
NotEqS 33
OpAdd 31
OpAnd 31
OpCc 31
OpCcblank 32
OpDiv 32
OpDivI 32
OpEq 32
OpEqS 32
OpGt 32
OpGtEq 32
OpGtEqS 32
OpGtS 32
OpLt 32
OpLtEq 33
OpLtEqS 33
OpLtS 33
OpMinus 33
OpMult 33
OpNot 33
OpOr 33
OpPlus 33
OpPow 34
OpRem 34
OpSub 34
OpXor 34
setDigits(Rexx) 39
setForm(Rexx) 39
toboolean 35
tobyte 35
tochar 35

todouble 35
tofloat 35
toint 35
tolong 35
toshort 36
toString 36

Method, built-in
COPYINDEXED 8

METHOD instruction 8, 9, 15
Methods

binary 8
deprecated 9
shared 15

Minor classes 2-5
See also Dependent classes
constructing 3
naming of 2
nesting of 2
restrictions 5

N

Names
special

class 16
sourceline 16

Nested classes
See Minor classes

NetRexx Language
supplement 1

netrexx.lang
Exceptions 28
Rexx arithmetic methods 31
Rexx class 29
Rexx constructors 29
Rexx miscellaneous methods 34
RexxOperators class 37
RexxSet class 38
RexxSet constructors 39
RexxSet methods 39
RexxSet properties 38

netrexx.lang package 27
NOCOMMENTS option 19
NOCOMPACT option 19
NOCONSOLE option 19
NODECIMAL option 19
NOEXPLICIT option 20
NOJAVA option 20
NoOtherwiseException 28
NOSAVELOG option 20
NOSOURCEDIR option 20
NOSTRICTARGS option 20

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

 44 Index

NOSTRICTIMPORT option 20
NOSTRICTPROPS option 21
NOSYMBOLS option 21
NotCharacterException 28
NotEq method 33
NotEqS method 33
NotLogicException 28
NOTRACE option 21
NOUTF8 option 21
NullPointerException 28
NumberFormatException 28
NUMERIC instruction 13
Numeric symbols

binary 11
hexadecimal 10

O

OpAdd method 31
OpAnd method 31
OpCc method 31
OpCcblank method 32
OpDiv method 32
OpDivI method 32
OpEq method 32
OpEqS method 32
Operators

type 18
OpGt method 32
OpGtEq method 32
OpGtEqS method 32
OpGtS method 32
OpLt method 32
OpLtEq method 33
OpLtEqS method 33
OpLtS method 33
OpMinus method 33
OpMult method 33
OpNot method 33
OpOr method 33
OpPlus method 33
OpPow method 34
OpRem method 34
OpSub method 34
Option words 19
Options

supplement 19
OpXor method 34

P

Package
netrexx.lang 27

Parent
of dependent object 4
special word 4

Parent class 2
Parent object 3
Properties

deprecated 9
for JavaBeans 22
in dependent classes 5
in minor classes 5
indirect 22
shared 15
transient 13
unused 13

PROPERTIES instruction 9, 13, 15, 22
Property

DEFAULT_DIGITS 38
DEFAULT_FORM 38
digits 38
ENGINEERING 38
form 38
SCIENTIFIC 38

R

Rexx(boolean) constructor 29
Rexx(byte) constructor 29
Rexx(char[]) constructor 29
Rexx(char) constructor 29
Rexx(double) constructor 30
Rexx(float) constructor 30
Rexx(int) constructor 29
Rexx(long) constructor 30
Rexx(Rexx) constructor 30
Rexx(short) constructor 30
Rexx(String[]) constructor 30
Rexx(String) constructor 30
RexxSet() constructor 39
RexxSet(int) constructor 39
RexxSet(int,byte) constructor 39
RexxSet(RexxSet) constructor 39

S

SAVELOG option 20
SCIENTIFIC property 38
SELECT instruction 11, 14

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

 Index 45

setDigits(Rexx) method 39
setForm(Rexx) method 39
SHARED

on CLASS instruction 15
on METHOD instruction 15
on PROPERTIES instruction 15

Shared classes 15
Shared methods 15
Shared properties 15
Short name

of classes 2
SOURCEDIR option 20
SOURCELINE

special word 16
Special methods

super 4
Special words

class 16
parent 4
sourceline 16
this 5

Square brackets
in array initializers 6

STRICTARGS option 20
STRICTIMPORT option 20
STRICTPROPS option 21
SUPER

special method 4
Supplement

enhancements 2, 6
experimental enhancements 22
NetRexx Language 1
netrexx.lang package 27
options 19

SYMBOLS option 21
System-dependent options 19

T

THIS
special word 5

toboolean method 35
tobyte method 35
tochar method 35
todouble method 35
tofloat method 35
toint method 35
tolong method 35
toshort method 36
toString method 36
TRACE

option 21
TRACE instruction 16, 17
TRANSIENT

on PROPERTIES instruction 13
Types

operations on 18

U

UNUSED
on PROPERTIES instruction 13

UTF8 option 21

V

VAR
option of TRACE instruction 17

W

WHEN clause 11, 14
Words

special
class 16
sourceline 16

Version 2.00 Copyright (c) IBM Corporation 1997, 2000. All rights reserved.

