Interpreting Languages

for the Java Platform

| | +TET¢-T}I
IBM Fellow %ﬁiﬁ%jf
mfc@uk.ibm.com 4" 31

netrexxi

Overview

(v7/aaryz) h’”

rlu inN it Nt
OauCtion to !mBﬁﬂ—

35
:)

D

= Demonstration -- compiling and

atda)
(w7

t na NAot NraAy)

18 p Ng IN€Et programs

= The compiler/interpreter implementation

m Questions?

What is NetRexx?

I'arrﬂ'

—-A COl nla'a lo
\\\\\ | w 1

7o 'ha IQ\IQ
O avda

I|Iﬂ
'A’A v

language, for writing classes for the JVM

m Based on the si

Ao

mple syntax of Rexx, with

rith

QTN

UCUII

Picl il

o

LIV

= Fully exploits the Java object model,

exceptions, and binary arithmetic

! ection & declaration

NetRexx programs

hello.nrx

/* The classic greeting. */

say “"Hello World!*"

Another simple program

/> cubit.nrx */

loop label prompt forever

reply=ask
select

when reply.datatype("n®") then say reply**3
when reply="Quit" then leave prompt

otherwise say "eh?”
end

end prompt

say "Done.”

Using other Java classes

method update(g=Graphics)

shadow=createlmage(getSize.width, -
getSize.height) -- make new Image

d=shadow.getGraphics -- graphics context

maxx=getSize.width-1

maxy=getSize.height-1
loop y=0 to maxy

col=Color.getHSBColor(y/maxy, 1, 1)
d.setColor(col)

d.drawLine(0, y, maxx, Y)
end y
paint(g) —-— paint to screen

NetRexx Java implementation

m ﬁdrrnn- iu nlAa r\n-g- r\n -F ro- m
|v.v.
NetRexx to accessible Java source, or

interprets it directly (or both)

— = Runs on ¢ LIC

= Any class written in Java can be used

- GUI, TCP/IP, I/0O, DataBase, etc.

= Anything you could write in Java can be
written in NetRexx

Demonstration ...

So how does it work?

m Parsing Is identical for translation to Java or for

direct interpretation, with full error checking at the
point of parsing; allows multi-syntax

Overall translator organization

Translator

Y

Program

\

Parse

control

Y

Classer

— Tokenizer

#

Streamer

Babelizer

Clause
parsers

Term parser

Converter

EXxpressions

Variables

Overall translator organization

Y

Program

\

Parse

control

Y

Translator —

Classer

— Tokenizer

_>

Streamer

Babelizer

Clause
parsers

Term parser

Converter

EXxpressions

Variables

Translator

= Manages compilation using javac

= Manages interpretation

= Top-level error handling

Overall translator organization

Translator E— Classer Tokenizer

Y

Program
— Streamer Babelizer

\

Parse

control

Y -

Clause Term parser EXxpressions
parsers

Converter Variables

Classer

_ ifficul f ation. d |

In Java core over time

= |n general 'owns' the external namespace

= Manages class path, ambiguous classes, etc.

= | ocates, reads, and parses class images

= | ocates methods and properties, based on
costing algorithm

Overall translator organization

Translator

Y

Program

\

Parse

control

Y

Classer

Tokenizer

Streamer

Babelizer

Clause
parsers

Term parser

Converter

EXxpressions

Variables

Tokenizer

~_mQOne of several shared resources

. I i of A

stream or array of character arrays

= Other shared resources include:
— error message editor
— base internal types (Tokens, Flags, Types, etc.)
— trace code generator
— Interfaces (ClauseParser, ProgramSource, etc.)

Overall translator organization

Translator E— Classer

Y

— Tokenizer

Program

Streamer

Babelizer

\

Parse

control

Y

Clause Term parser
parsers

Converter

EXxpressions

Variables

Program

*
:T

m Represents exactly one of the programs being

translated

= Each program may beina dlfferent Ianguage

WI_’\ PI prpn_ Q\/n rharsiale P! prpn sSeman !(‘Q al

the statement Ievel)

= Holds program-level objects (streamer, package

Information, imports, options, etc.)

Overall translator organization

Translator — Classer — Tokenizer

Y

Program

Streamer Babelizer

\

Parse

control

Y -

Clause Term parser EXxpressions
parsers

Converter Variables

Streamer and Babelizer

= Streamer handles input and output streams
— |ocates input files
= pames and creates output files
— checks for conflicts
. =readsfilesondemand/”°"

= Babeli . | .
viewable strings, depending on the language
_ . . . e
— arraysshownas|[][]or[,]or(,)

— attributes spelled as appropriate for the language,;
e.g., shared or Friend

Overall translator organization

Translator — Classer ~— Tokenizer
\
Program
Streamer Babelizer

#

Parse

control

Y

Clause Term parser EXxpressions
parsers

Converter Variables

Parse control

= State machine for static parsing

-~ mLanguage-dependent (hence one instance per

program)

= Three levels of parsing, deferred where possible:
— parseProgram
— parseClassBody
— parseMethodBody

= Parsing-related utilities (pushLevel, poplLevel, etc.)

Overall translator organization

Translator — Classer — Tokenizer
Program

— Streamer Babelizer
Parse
control

Clause Term parser EXxpressions

parsers

Converter Variables

Clause parsers

= Each knows about a single clause in one

language (Do, Catch, End, Nop, Say, etc.)

= Each has a scan method (lexical parse)

= Each has a generate method, for Java code

= Each has an interpret method

= generate and interpret share information gleaned
during scan (which may have been multi-pass)

Overall translator organization

Translator — Classer - Tokenizer
Program
— > Streamer Babelizer
Parse
control
Y
Clause Term parser Expressions
parsers
1

Converter Variables

Term and Expression parsers

= Recursively call each other to parse terms and

expressions. For example:

(Rexx vector.get('key')).substr(i+l, j)

= Term parser Is more complicated than Expression

a - a¥a) a¥Ya ala a a¥a
\J C/ @ U @, \/ CAT U

translator (100K characters, including comments)

= |_ike clause parsers, both can emit Java code or
execute (interpret) the term or expression

Overall translator organization

Translator — Classer — Tokenizer

Y

Program
— Streamer Babelizer

\

Parse

control

Y -

Clause Term parser EXxpressions

parsers
Converter Variables

_>

Converter and Variable manager

= Converter understands type inferences
— costs conversions (used for method finding and error
checking)

— effects conversions (emits Java code or interprets)

= VVariable manager handles both class (static and

-~ Instance) and method variables

— all properties and local variables during scan passes

— only static (Class) properties and local variables are
handled during interpretation - instance properties are
held in a real object

Interpretation

Translator

Y

Program

\

Parse

control

Y

/

Interpreter

AN

——

Loader

/

/

RN

/

Proxy

/

Clause
parsers

General principle

m F|rst, programs are parsed (to determine classes,

AT W W A ll TWAW W I

properties, and methods W|th thelr |gnatures)

= For each class, a proxy (stub) class Is created

= this has a the nmnprnpc IIIQT as Ih a I"DQ class

L 5] LILE 4 TWAW WA L5 T AW I

— for each method, It has only the definition and return
— when a method is invoked through Java reflection, it
Immediately calls the interpreter, which interprets the

-~ code inthe methodbody

= Real Instances are created, so interpreted
classes are visible to the JVM for callbacks, etc.

Interpretation

Translator — Interpreter Loader e

Y /N A

Program / \ /
Proxy

/

v/

Parse
control
Y

Clause
parsers

Interpreter

e Primary task is interpreti hod bodies, by
finding each clause in turn and invoking its

-~ Interpret methoda

— m\When aclass is first used or an instance Is

constructed, interprets Initialization code
(properties, numeric context, etc.)

= Handles Java reflection (access to real properties,
Instances of objects, arrays, etc.)

Interpreter complications

= Sjgnals -- have to be wrapped, and ¢

r—l-
O
@D

passed through a reflection call

= Constructors -- arguments to super(x, y) call must

e Interpre ed, then the super(x, y) call must be
made by the proxy class, and only then can the

constructor method body be interpreted

= Protected (synchronized) blocks of code must
truly be protected to be thread-safe

Interpretation

Translator

Y

Program

\

Parse

control

Y

Interpreter —

Loader

/

. A
Y /
<>

/

/

Clause
parsers

Proxy class

vvia arrav) f

= Builds a binary class image (inab or a
class that is to be interpreted

= Tedious but relatively straightforward - the code

faor eviarys moethond ic accanfiallvys the camae

Ul \/V\.:I_y ImICeuliIv IV ULOUOJDLUITILTICA)’ I1IC OCQUIITIC
— collect arguments (wrapped if necessary) into an Object
array

— Invoke the interpreter to interpret the method body

— get the returned Object; unwrap or cast it as required,
and return it to caller

Interpretation

' /N «

Program / \ /
Proxy

/

——

Parse
control
Y

Clause
parsers

Proxy class Loader

class |nto the JVI\/I

= |f the built-in one were used then a class could
~_Nnevernerege mpr classes are on \I unioadeg

T VW W1

when the object that loaded them Is unloaded

= Complication: we also have to load any external
(compiled) private classes, as otherwise they
appear to be in a different package and hence
would not be accessible when they should be

Summary

languages can be done

= The primary benefit is development
productivity

. Us ol | [- I

application development is a reality

Questions?

... Please fill in your evaluation form!

http://www2.hursley.lbm.com/netrexx/

NetRexx

+

Strong typing doesn’t need extra typing

