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What is NetRexx?
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language, for writing classes for the JVM
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= Fully exploits the Java object model,

exceptions, and binary arithmetic

! ection & declaration




NetRexx programs

hello.nrx

/* The classic greeting. */

say “"Hello World!*"




Another simple program

/> cubit.nrx */

loop label prompt forever

reply=ask
select

when reply.datatype("n®") then say reply**3
when reply="Quit" then leave prompt

otherwise say "eh?”
end

end prompt

say "Done.”




Using other Java classes

method update(g=Graphics)

shadow=createlmage(getSize.width, -
getSize.height) -- make new Image

d=shadow.getGraphics -- graphics context

maxx=getSize.width-1

maxy=getSize.height-1
loop y=0 to maxy

col=Color.getHSBColor(y/maxy, 1, 1)
d.setColor(col)

d.drawLine(0, y, maxx, Y)
end y
paint(g) —-— paint to screen




NetRexx Java implementation
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NetRexx to accessible Java source, or

interprets it directly (or both)

— = Runs on ¢ LIC

= Any class written in Java can be used

- GUI, TCP/IP, I/0O, DataBase, etc.

= Anything you could write in Java can be
written in NetRexx




Demonstration ...




So how does it work?

m Parsing Is identical for translation to Java or for

direct interpretation, with full error checking at the
point of parsing; allows multi-syntax




Overall translator organization

Translator

Y

Program

\

Parse

control

Y

Classer

— Tokenizer

#

Streamer

Babelizer

Clause
parsers

Term parser

Converter

EXxpressions

Variables




Overall translator organization

Y

Program

\

Parse

control

Y

Translator —

Classer

— Tokenizer

_>

Streamer

Babelizer

Clause
parsers

Term parser

Converter

EXxpressions

Variables




Translator

= Manages compilation using javac

= Manages interpretation

= Top-level error handling
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Classer

_ ifficul f ation. d |

In Java core over time

= |n general 'owns' the external namespace

= Manages class path, ambiguous classes, etc.

= | ocates, reads, and parses class images

= | ocates methods and properties, based on
costing algorithm
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Tokenizer

~_mQOne of several shared resources
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stream or array of character arrays

= Other shared resources include:
— error message editor
— base internal types (Tokens, Flags, Types, etc.)
— trace code generator
— Interfaces (ClauseParser, ProgramSource, etc.)
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Program
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m Represents exactly one of the programs being

translated

= Each program may beina dlfferent Ianguage
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the statement Ievel)

= Holds program-level objects (streamer, package

Information, imports, options, etc.)
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Streamer and Babelizer

= Streamer handles input and output streams
— |ocates input files
= pames and creates output files
— checks for conflicts
. =readsfilesondemand ........./”°"

= Babeli . | .
viewable strings, depending on the language
_ . . . e
— arraysshownas|[][]or[,]or(,)

— attributes spelled as appropriate for the language,;
e.g., shared or Friend
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Parse control

= State machine for static parsing

-~ mLanguage-dependent (hence one instance per

program)

= Three levels of parsing, deferred where possible:
— parseProgram
— parseClassBody
— parseMethodBody

= Parsing-related utilities (pushLevel, poplLevel, etc.)
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Clause parsers

= Each knows about a single clause in one

language (Do, Catch, End, Nop, Say, etc.)

= Each has a scan method (lexical parse)

= Each has a generate method, for Java code

= Each has an interpret method

= generate and interpret share information gleaned
during scan (which may have been multi-pass)
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Term and Expression parsers

= Recursively call each other to parse terms and

expressions. For example:

(Rexx vector.get('key')).substr(i+l, j)

= Term parser Is more complicated than Expression
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translator (100K characters, including comments)

= |_ike clause parsers, both can emit Java code or
execute (interpret) the term or expression
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Converter and Variable manager

= Converter understands type inferences
— costs conversions (used for method finding and error
checking)

— effects conversions (emits Java code or interprets)

= VVariable manager handles both class (static and

-~ Instance) and method variables

— all properties and local variables during scan passes

— only static (Class) properties and local variables are
handled during interpretation - instance properties are
held in a real object
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General principle

m F|rst, programs are parsed (to determine classes,
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properties, and methods W|th thelr |gnatures)

= For each class, a proxy (stub) class Is created

= this has a the nmnprnpc IIIQT as Ih a I"DQ class
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— for each method, It has only the definition and return
— when a method is invoked through Java reflection, it
Immediately calls the interpreter, which interprets the

-~ code inthe methodbody

= Real Instances are created, so interpreted
classes are visible to the JVM for callbacks, etc.




Interpretation
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Interpreter

e Primary task is interpreti hod bodies, by
finding each clause in turn and invoking its

-~ Interpret methoda

— m\When aclass is first used or an instance Is

constructed, interprets Initialization code
(properties, numeric context, etc.)

= Handles Java reflection (access to real properties,
Instances of objects, arrays, etc.)




Interpreter complications

= Sjgnals -- have to be wrapped, and ¢
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passed through a reflection call

= Constructors -- arguments to super(x, y) call must

e Interpre ed, then the super(x, y) call must be
made by the proxy class, and only then can the

constructor method body be interpreted

= Protected (synchronized) blocks of code must
truly be protected to be thread-safe
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Proxy class
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= Builds a binary class image (inab or a
class that is to be interpreted

= Tedious but relatively straightforward - the code

faor eviarys moethond ic accanfiallvys the camae
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— collect arguments (wrapped if necessary) into an Object
array

— Invoke the interpreter to interpret the method body

— get the returned Object; unwrap or cast it as required,
and return it to caller




Interpretation
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Proxy class Loader

class |nto the JVI\/I

= |f the built-in one were used then a class could
~_Nnevernerege mpr classes are on \I unioadeg

T VW W1

when the object that loaded them Is unloaded

= Complication: we also have to load any external
(compiled) private classes, as otherwise they
appear to be in a different package and hence
would not be accessible when they should be




Summary

languages can be done

= The primary benefit is development
productivity
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application development is a reality




Questions?

... Please fill in your evaluation form!




http://www2.hursley.lbm.com/netrexx/

NetRexx
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Strong typing doesn’t need extra typing



