
netrexxi

Mike Cowlishaw

Interpreting Languages
for the Java Platform

http://www2.hursley.ibm.com/netrexx/

IBM Fellow
mfc@uk.ibm.com

Overview

A (very) brief introduction to NetRexx

Demonstration -- compiling and
interpreting NetRexx programs

The compiler/interpreter implementation

Questions?

What is NetRexx?

A complete alternative to the Java
language, for writing classes for the JVM
Based on the simple syntax of Rexx, with
Rexx decimal arithmetic
Fully exploits the Java object model,
exceptions, and binary arithmetic
Automates type selection & declaration

Java is a trademark of Sun Microsystems Inc.

NetRexx programs

hello.nrx

/* The classic greeting. */
say 'Hello World!'

Another simple program

/* cubit.nrx */

loop label prompt forever
 reply=ask
 select
 when reply.datatype('n') then say reply**3
 when reply='Quit' then leave prompt
 otherwise say 'eh?'
 end
 end prompt

say 'Done.'

Using other Java classes

 method update(g=Graphics)
 shadow=createImage(getSize.width,-
 getSize.height) -- make new image
 d=shadow.getGraphics -- graphics context
 maxx=getSize.width-1
 maxy=getSize.height-1
 loop y=0 to maxy
 col=Color.getHSBColor(y/maxy, 1, 1)
 d.setColor(col)
 d.drawLine(0, y, maxx, y)
 end y
 paint(g) -- paint to screen

Current implementation first translates
NetRexx to accessible Java source, or
interprets it directly (or both)
Runs on any Java platform
Any class written in Java can be used

GUI, TCP/IP, I/O, DataBase, etc.
Anything you could write in Java can be
written in NetRexx
 . . . and it's free.

NetRexx Java implementation

Demonstration ...

So how does it work?

Unconventional organization

Structured like an interpreter, not like a compiler

Parsing is not carried out 'up front', but on
demand

Parsing is identical for translation to Java or for
direct interpretation, with full error checking at the
point of parsing; allows multi-syntax

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Translator

Internal API for NetRexxC to use

Factory, language, and programs setup

Cross-program pass control (3 main passes)

Manages compilation using javac

Manages interpretation

Top-level error handling

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Classer

Most difficult area of translation, due to changes
in Java core over time

In general 'owns' the external namespace

Manages class path, ambiguous classes, etc.

Locates, reads, and parses class images

Locates methods and properties, based on
costing algorithm

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Tokenizer

One of several shared resources

Language-independent tokenizing of an input
stream or array of character arrays

Other shared resources include:
 error message editor
 base internal types (Tokens, Flags, Types, etc.)
 trace code generator
 interfaces (ClauseParser, ProgramSource, etc.)

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Program

Represents exactly one of the programs being
translated

Each program may be in a different language,
with different syntax (and different semantics at
the statement level)

Holds program-level objects (streamer, package
information, imports, options, etc.)

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Streamer and Babelizer

Streamer handles input and output streams
 locates input files
 names and creates output files
 checks for conflicts
 reads files on demand

Babelizer converts internal representations to
viewable strings, depending on the language

 associates file extensions with languages
 arrays shown as [][] or [,] or (,)
 attributes spelled as appropriate for the language;
 e.g., shared or Friend

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Parse control

State machine for static parsing

Language-dependent (hence one instance per
program)

Three levels of parsing, deferred where possible:
 parseProgram
 parseClassBody
 parseMethodBody

Parsing-related utilities (pushLevel, popLevel, etc.)

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Clause parsers

Each knows about a single clause in one
language (Do, Catch, End, Nop, Say, etc.)

Each has a scan method (lexical parse)

Each has a generate method, for Java code

Each has an interpret method

generate and interpret share information gleaned
during scan (which may have been multi-pass)

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Term and Expression parsers

Recursively call each other to parse terms and
expressions. For example:

(Rexx vector.get('key')).substr(i+1, j)

Term parser is more complicated than Expression
parser, and is easily the largest class in the
translator (100K characters, including comments)

Like clause parsers, both can emit Java code or
execute (interpret) the term or expression

Overall translator organization

Translator

Program

Classer

Parse
control

Tokenizer

Program
Program

Babelizer

Clause
parsers

Clause
parsers

Clause
parsers

Converter

Term parser Expressions

Variables

Streamer

Converter and Variable manager

Converter understands type inferences
 costs conversions (used for method finding and error
 checking)
 effects conversions (emits Java code or interprets)

Variable manager handles both class (static and
instance) and method variables

 all properties and local variables during scan passes
 only static (Class) properties and local variables are
 handled during interpretation - instance properties are
 held in a real object

Interpretation

Translator

Program

Parse
control

Program
Program

Clause
parsers

Clause
parsers

Clause
parsers

Interpreter Loader

Proxy

General principle

First, programs are parsed (to determine classes,
properties, and methods with their signatures)

For each class, a proxy (stub) class is created
 this has all the properties just as in a 'real' class
 for each method, it has only the definition and return
 when a method is invoked through Java reflection, it
 immediately calls the interpreter, which interprets the
 code in the method body

Real instances are created, so interpreted
classes are visible to the JVM for callbacks, etc.

Interpretation

Translator

Program

Parse
control

Program
Program

Clause
parsers

Clause
parsers

Clause
parsers

Interpreter Loader

Proxy

Interpreter

Primary task is interpreting method bodies, by
finding each clause in turn and invoking its
interpret method

When a class is first used or an instance is
constructed, interprets initialization code
(properties, numeric context, etc.)

Handles Java reflection (access to real properties,
instances of objects, arrays, etc.)

Interpreter complications

Signals -- have to be wrapped, and cannot be
passed through a reflection call

Constructors -- arguments to super(x, y) call must
be interpreted, then the super(x, y) call must be
made by the proxy class, and only then can the
constructor method body be interpreted

Protected (synchronized) blocks of code must
truly be protected to be thread-safe

Interpretation

Translator

Program

Parse
control

Program
Program

Clause
parsers

Clause
parsers

Clause
parsers

Interpreter Loader

Proxy

Proxy class

Builds a binary class image (in a byte array) for a
class that is to be interpreted

Tedious but relatively straightforward - the code
for every method is essentially the same

 collect arguments (wrapped if necessary) into an Object
 array
 invoke the interpreter to interpret the method body
 get the returned Object; unwrap or cast it as required,
 and return it to caller

Interpretation

Translator

Program

Parse
control

Program
Program

Clause
parsers

Clause
parsers

Clause
parsers

Interpreter Loader

Proxy

Proxy class Loader

A Java classloader is needed to actually load a
class into the JVM

If the built-in one were used then a class could
never be redefined; classes are only unloaded
when the object that loaded them is unloaded

Complication: we also have to load any external
(compiled) private classes, as otherwise they
appear to be in a different package and hence
would not be accessible when they should be

Summary

True interpretation of JVM-based
languages can be done

The primary benefit is development
productivity

Using a single language for scripting and
application development is a reality

Questions?

... Please fill in your evaluation form!

http://www2.hursley.ibm.com/netrexx/

NetRexxNetRexx

Rexx + Java

Strong typing doesn’t need extra typing

