NetRexx User’'s Guide

31st August 2000

Mike Cowlishaw

mfc@uk.ibm.com
IBM UK Laboratories

Version 2.00

Table of Contents

Introduction 1

Installation 2
Unpacking the NetRexx package 3
Installing the NetRexx translator 5
Installing for Java 1.1 6
Installing for Java 1.2+ 8
Testing the NetRexx installation 10
Installing on an EBCDIC system 11
Installation on a Linux or Unix system 12
Installing for Visual J++ 13
Installing just the NetRexx runtime 15
Setting the CLASSPATH 16
Documentation packages 17
Installation Problems? 18

Using the translator 20
Using the translator as a Compiler 21
Using the prompt option 26
Using the translator as an Interpreter 27
Using the NetRexxA APl 30
Using NetRexx for Web applets 33

Appendix: Current restrictions 34

Index 37

Version 2.00

Introduction

This document is the User's Guide for the reference implementation of NetRexx.
NetRexx is a human-oriented programming language which makes writing and using
Java' classes quicker and easier than writing in Java.

In this Guide, you'll find information on:

< Installing NetRexx
= Using the NetRexx translator as a compiler, interpreter, or syntax checker
= Current restrictions.

The NetRexx documentation and software are distributed free of charge under the con-
ditions of the IBM Employee Written Software program. If you download or use a
NetRexx package you agree to the terms in the IBM License Agreement included in the
package as the file I i cense. t xt .

For details of the NetRexx language, and the latest news, downloads, etc., please see the
NetRexx documentation included with the package or available on the World Wide Web,
for example at: htt p: // ww2. hur sl ey. i bm conf net r exx/

1 Java is a trademark of Sun Microsystems Inc.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 1

Installation

This section of the document tells you how to unpack, install, and test the NetRexx
translator package. This will install documentation, samples, and executables.

Note that to run any of the samples, or use the NetRexx translator, you must have
already installed the Java runtime (and toolkit, if you want to compile NetRexx programs
using the default compiler).

The NetRexx samples and translator will run on Java version 1.1.2% or later. Java 1.2
or later is recommended, and is required if you want to use the interpreter feature of the
translator. You can test whether Java is installed, and its version, by trying the following
command at a command prompt:

java —version
which should display a response similar to this:

java version "1.2"
Cassic VM (build JDK-1.2-V, native threads)

For more information on Java installation:

< For 0OS/2, AlX, and other IBM operating systems, Java is probably already installed
with your operating system. IBM Developer Kits for Java are also available sepa-
rately for AIX, Linux, AS/400, OS/2, OS/390, VM/ESA, and Windows. See the IBM
Centre for Java Technology web page at htt p: // www. i bm cont j ava for details. The
full list of downloadable IBM Developer Kits can be found at
http://ww. i bm com java/j dk/ downl oad/i ndex. ht m

e For other operating systems, see the Sun Microsystems Java web page at
htt p: // ww. j avasof t . com— or other suppliers of Java toolkits.

2 1.1.2 is required as the classes in the runtime and translator are now compressed, to reduce load time.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 2

Unpacking the NetRexx package

The NetRexx package is shipped as a collection of files compressed into the file
Net Rexx. zi p.

You probably know how to handle . zi p files, but a word of caution: the packages contain
directory structures, and files with “long names” (that is, not of 8.3 maximum length
names) which are case-sensitive. Many utilities, including some Windows versions of
unzip, can lose case information, truncate names, or fail to restore directories.

Unpacking the NetRexx.zip file

The most common utilities for “unzipping” are Info-ZIP, WinZip, and PKZIP. An unzip
command is also included in most Linux distributions. You can also use the jar command
which comes with all Java development kits.

Choose where you want the NetRexx directory tree to reside, and unpack the zip file in
the directory which will be the parent of the NetRexx tree. Here are some tips:

< Ensure that you are unzipping to a disk that supports long file names (for example,
an HPFS disk or equivalent on OS/2 or Windows).

e Info-ZIP: use version 5.12 (August 1994) or later. The syntax for unzipping
NetRexx.zip is simply

unzi p Net Rexx

which should create the files and directory structure directly.
e WinZip: all versions support long file names.

e PKzIP: use a version that supports long file names. The syntax for unzipping
NetRexx.zip is

pkunzi p —d Net Rexx

which should create the files and directory structure directly. The “—d” flag indicates
that directory structure should be preserved.

e Linux unzip: use the syntax: unzip —-a NetRexx. The “-a” flag will automatically
convert text files to Unix format.

e jar: The syntax for unzipping NetRexx.zip is

jar xf NetRexx.zip

which should create the files and directory structure directly. The “x” indicates that
the contents should be extracted, and the “f” indicates that the zip file name is
specified. Note that the extension (. zi p) is required.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 3

After unpacking, the following directories should have been created:?
Net Rexx

Root of the tree, which should contain the file r ead. me. fi r st, which contains quick
installation instructions

Net Rexx\ br owse

The directory which contains documentation and sample programs and applets. To
view these, point your web browser at Net Rexx\ br owse\ net rexx. ht . You can also
go straight to this User’s Guide by browsing Net Rexx\ br owse\ nrusers. htmi .

Net Rexx\ i b
Contains the NetRexx compiler/interpreter classes (in Net RexxC. j ar).
Net Rexx\runlib

Contains the NetRexx runtime classes (in Net RexxR. j ar). These are included in the
NetRexxC.jar, so are not normally needed.

Net Rexx\ net r exx\ | ang

Contains the NetRexx runtime class files for access by a browser while running the
applet samples.

Net Rexx\ bi n

Contains sample scripts making it easier to use the compiler/interpreter. The sim-
ple test case hel | 0. nrx is also included.

3 On Unix and Linux systems, the directory separator will be “/” instead of “\”.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 4

Installing the NetRexXx translator

The NetRexx package includes the NetRexx translator — a Java application which can
be used for compiling, interpreting, or syntax-checking NetRexx programs. The proce-
dure for installation is briefly as follows (full details are given later):

1. Make the translator visible to the Java Virtual Machine (JVM):

e If you are running Java 1.2 or later, copy the file Net Rexx\| i b\ Net RexxC. j ar
to the jre\lib\ext directory in the Java installation tree. The JVM will auto-
matically find it there and make it available.

< If you are using an earlier Java version (1.1.2 through 1.1.8) instead add the
full path and filename of the Net Rexx\ i b\ Net RexxC. j ar to the CLASSPATH
environment variable for your operating system.

Note: if you have a NetRexxC.zip in your CLASSPATH from an earlier version of
Rexx, remove it (NetRexxC.jar replaces NetRexxC.zip).

2. Copy all the files in the Net Rexx\ bi n directory to a directory in your PATH (perhaps
the \ bi n directory in the Java installation tree). This is not essential, but makes
shorthand scripts and a test case available.

3. If you are running Java 1.2 or later, make the file \'li b\ t ool s. j ar (which contains
the j avac compiler) in the Java tree visible to the JVM. You can do this either by
adding its path and filename to the CLASSPATH environment variable, or by mov-
ing it to the jre\lib\ext directory in the Java tree.

4. Test the installation by making the \ bi n directory the current directory and issuing
the following two commands exactly as written:

java COM i bm netrexx. process. Net RexxC hell o
java hello

The first of these should translate the test program and then invoke the javac
compiler to generate the class file (hel | 0. cl ass) for the program. The second should
run the program and display a simple greeting.

If you have any problems or errors in the above process, please read the detailed
instructions and problem-solving tips that follow.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 5

Installing for Java 1.1

This section gives a detailed procedure for installing NetRexx using a Java 1.1 develop-
ment Kit. The steps are as follows:

1. Locate the Java home directory. The name of the Java home directory will vary
depending on the operating system you are using. Some possibilities are:

/java
\javall
c:\jdkl.1.6

It will contain directories such as “bi n” and “l i b”.

Note: if your Java home directory is on a CD-ROM, or on an unwritable shared
disk, you'll need to leave the NetRexx files elsewhere and set up CLASSPATH and
PATH environment settings to refer to them. Consult your Java toolkit and oper-
ating system documentation for details on how to do this.

2. Add the NetRexxC.jar file to the CLASSPATH. For Java to be able to find the
NetRexx classes, you must update the CLASSPATH environment variable by adding
the full path and name of the NetRexxC.jar file to the CLASSPATH setting. There
will often already be a CLASSPATH variable set, possibly including a path to the
standard Java classes.zip file. Specify or add the full path (disk, directories, and file
specification) for NetRexxC.jar, making sure that the case of every letter is exactly
right (Java is very case-sensitive). The full path might be something like:

e: \ Net Rexx\ I i b\ Net RexxC. j ar

Note: if you have a NetRexxC.zip in your CLASSPATH from an earlier version of
Rexx, remove it (NetRexxC.jar replaces NetRexxC.zip).

The procedure for setting the CLASSPATH variable depends on your operating
system (and there may be more than one way), as described in the Setting the
CLASSPATH section (see page 16).

3. Copy the executables. Copy all the files in the Net Rexx\ bi n directory to a direc-
tory which is in your search PATH (perhaps the \ bi n directory below the Java home
directory). This will allow them to be invoked simply by typing their name at a
command prompt.

The files in the bi n directory should be:

hel | 0. nrx — a sinple NetRexx programfor testing
Net RexxC. cnd — the Net Rexx conpiler conmand i n Rexx
Net RexxC. bat — sinmilar Net Rexx conpiler batch script (Wndows . bat)

Net RexxC.sh — similar NetRexx conpiler shell script for Linux and Unix
nrc.cmd — shorter nanme for Net RexxC.cnd
nrc. bat — shorter nane for Net RexxC. bat
nrc —— shorter nane for Net RexxC. sh

The . cnd files are simple Rexx scripts for making it easier to use the translator.
You don't have to use these, but they save some typing. They should require little

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 6

modification to run under the Rexx interpreter for your platform; for details of Rexx
interpreters, see: http://ww2. hur sl ey. i bm cont r exx/

Under Windows, the . bat files should serve the same purpose — they are not as
flexible as the Rexx . cnd files, but will save typing.

Similarly, under Linux or other Unix systems, the NetRexxC.sh and nrc script sim-
plify use of the translator. You may need to indicate these are executable, using (for
example) the commands: chnod 751 Net RexxC. sh and chnmod 751 nrc and (unless
you used the unzi p —a command to unpack them) you may need to run dos2unix on
both of them (this converts CRLF to LF).

As an alternative to copying the files, the Net Rexx\ bi n directory could be added to
the PATH environment setting.

NetRexx installation is now complete. Now would be a good time to check that it works,
as described in the Testing the NetRexx Installation section (see page 10).

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 7

Installing for Java 1.2+

This section gives a detailed procedure for installing NetRexx using a Java 1.2, or later,
development Kkit. The steps are as follows:

1. Locate the Java home directory. The name of the Java home directory will vary
depending on the operating system you are using. Some possibilities are:

\javal3\jre
c:\javal.2\jre
[opt/ 1 BMlava2-13/jre

It will contain directories such as “bi n” and “l i b”.

Note: if your Java home directory is on a CD-ROM, or on an unwritable shared
disk, you'll need to leave the NetRexx files elsewhere and set up CLASSPATH and
PATH environment settings to refer to them. Consult your Java toolkit and oper-
ating system documentation for details on how to do this.

2. Copy or move the NetRexxC.jar file to the Java | i b\ ext directory. For Java
to be able to find the NetRexx classes, it's simplest to just put them (that is, the
NetRexxC.jar file which contains them) in the Java extension directory. This is the
\li b\ ext directory below the Java home directory, which should already exist (if it
does not, then you probably have the wrong |i b directory — its parent should be
called jre). The JVM will then automatically find it there when it is needed.

Alternatively, you could add the NetRexxC.jar file to the CLASSPATH, as described
in the Installing for Java 1.1 section (see page 6).

Note: if you have a NetRexxC.zip in your CLASSPATH from an earlier version of
Rexx, remove it (NetRexxC.jar replaces NetRexxC.zip).

3. Copy the executables. Copy all the files in the Net Rexx\ bi n directory to a direc-
tory which is in your search PATH (perhaps the \ bi n directory below the Java home
directory). This will allow them to be invoked simply by typing their name at a
command prompt.

The files in the bi n directory should be:

hel | 0. nrx —— a sinple NetRexx program for testing

Net RexxC. cnd — the Net Rexx comnpil er conmand i n Rexx

Net RexxC. bat — simlar Net Rexx conpiler batch script (Wndows . bat)

Net RexxC.sh — sinilar Net Rexx conpiler shell script for Linux and Unix
nrc.cnd —— shorter nane for NetRexxC.cnd

nrc. bat —— shorter nane for NetRexxC. bat

nrc — shorter nane for NetRexxC. sh

The . cnd files are simple Rexx scripts for making it easier to use the translator.
You don’t have to use these, but they save some typing. They should require little
modification to run under the Rexx interpreter for your platform; for details of Rexx
interpreters, see: http://ww2. hursl ey. i bm cont r exx/

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 8

Under Windows, the . bat files should serve the same purpose — they are not as
flexible as the Rexx . cnd files, but will save typing.

Similarly, under Linux or other Unix systems, the NetRexxC.sh and nrc script sim-
plify use of the translator. You may need to indicate these are executable, using (for
example) the commands: chnod 751 Net RexxC. sh and chnod 751 nrc and (unless
you used the unzi p —a command to unpack them) you may need to run dos2unix on
both of them (this converts CRLF to LF).

Alternatively, the Net Rexx\ bi n directory could be added to the PATH environment
setting.

4. Add the Java tools.jar file to the CLASSPATH. If you would like NetRexx to
use the j avac compiler for compilations (which is the default) then you will need to
add the Sun tools collection to the classpath. This is usually found in a file called
tool s.jar in the Java li b directory. For example:

set cl asspat h=%4CLASSPATHY c:\javal. 2\l ib\tool s.jar

(with the path changed as appropriate) would add the tools.jar to the existing
classpath in an OS/2 or Windows system.

The procedure for setting the CLASSPATH variable depends on your operating
system (and there may be more than one way), as described in the Setting the
CLASSPATH section (see page 16).

Alternatively, the tools.jar file could be moved to the Java | i b\ ext directory.

5. Add the current directory to the CLASSPATH. If it is not already there, add
a reference to the current directory to the CLASSPATH, for example:

set cl asspat h=. ; UCLASSPATH%

This is needed if you cannot compile and run test programs from within a directory
other than in the Java tree.

NetRexx installation is now complete. Now would be a good time to check that it works,
as described in the Testing the NetRexx Installation section (see page 10).

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 9

Testing the NetRexx installation

After installing NetRexx, it is recommended that you test that it is working correctly.
If there are any problems, check the Installation Problems section (see page 18).

To test your installation, make the directory to which you copied the executables the
current directory, then (being very careful to get the case of letters correct):

1. Enter the command
java COM i bm netrexx. process. Net RexxC hell o

This should run the NetRexx compiler, which first translates the NetRexx program
hel | 0. nrx to the Java program hel | 0. j ava. It then invokes the default Java com-
piler (javac), to compile the file hello.java to make the binary class file
hel | 0. cl ass. The intermediate . j ava file is then deleted, unless an error occurred
or you asked for it to be kept.*

If you get errors from Java and you're running Java 1.2 or later, first re-check the
final two steps in the Installing for Java 1.2+ section (see page 8) before trying the
Installation Problems section (see page 18).

2. Enter the command
java hello

This runs (interprets the bytecodes in) the hel | o. cl ass file, which should display
a simple greeting. On some systems, you may first have to add the directory that
contains the hel | o. cl ass file to the CLASSPATH setting so Java can find it.

3. With the sample scripts provided (Net RexxC. cnd, Net RexxC. bat, or Net RexxC. sh,),
or the equivalent in the scripting language of your choice, the steps above can be
combined into a simple single command such as:

Net RexxC. sh —run hell o

This package also includes a trivial nr c. cnd, and matching nrc. bat and nr c scripts,
which simply pass on their arguments to NetRexxC; “nr ¢” is just a shorter name that
saves keystrokes, so for the last example you could type:

nrc —run hello

Note that scripts may be case-sensitive, and unless running the OS/2 Rexx script,
you will probably have to spell the name of the program exactly as it appears in the
filename. Also, to use —run, you may need to omit the . nr x extension.

You could also edit the appropriate nrc. cnd, nrc. bat, or nrc script and add your
favourite “default” NetRexxC options there. For example, you might want to add the
—pronpt flag (described later) to save reloading the translator before every compila-
tion. If you do change a script, keep a backup copy so that if you install a new ver-
sion of the NetRexx package you won’t overwrite your changes.

4 For example, by specifying the —keep or —noconpi | e flags.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 10

Installing on an EBCDIC system

(Many thanks to Mark Cathcart and John Kearney for the details in this section.)

The NetRexx binaries are identical for all operating systems; the same NetRexxC.jar
runs everywhere. However, during installation it is important to ensure that binary files
are treated as binary files, whereas text files (such as the accompanying HTML and
sample files) are translated to the local code page as required.

The simplest way to do this is to first install the package on a workstation, following the
instructions above, then copy or FTP the files you need to the EBCDIC machine. Spe-
cifically:

< The NetRexxC.jar file should be copied “as-is”, that is, use FTP or other file transfer
with the BINARY option. The CLASSPATH should be set to include this
NetRexxC.jar file.

= Other files (documentation, etc.) should be copied as Text (that is, they will be
translated from ASCII to EBCDIC).

In general, files with extension .au, .class, .gif, .jar, or .zi p are binary files; all
others are text files.

For specific hints and tips for installing on OS/390, see Mark Cathcart’'s web site at
http: //ww. s390. i bm conl corner which includes a presentation that describes OS/390
Java and NetRexx installation. Setting the classpath might look like this:

export CLASSPATH=$CLASSPATH: / u/j 390/ 1. 1.8/1i b/ Net RexxC. j ar

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 11

Installation on a Linux or Unix system

The NetRexx binaries are identical for all operating systems; the same NetRexxC.jar
runs everywhere, and the same installation process is used as on other systems. Some
changes may be needed to text files, however (especially to the shell scripts), and there
are alternatives to the “standard” installation process. Here are some tips:

e It is strongly recommended that you use the unzi p command with the -a flag, if
available. This will automatically convert text files to Unix text file format, while
leaving binaries (such as .jar, . cl ass, or . gi f files) unchanged.

< If you cannot use the unzi p —a command, you may need to take special action to use
text files, such as the documentation or shell scripts. In the NetRexx package text
files use a two-byte line end sequence (CRLF) whereas some Unix programs
(including bash, the shell interpreter) only accept the one-byte (LF) line end
sequence. Some Unix file systems convert the files automatically, but if you are
getting a No such file or syntax error message from bash you probably need to use the
dos2uni x command, to convert CRLF to LF. For example: dos2uni x Net RexxC. sh.

< File access control information is not preserved in the package. You may therefore
get a a Permission denied message when you try and run the scripts, indicating that
the files are not marked as executable. To mark them as executable, use the chnod
command, for example: chnmod 751 Net RexxC. sh.

< Instead of moving the files to specific locations, as suggested in the general instal-
lation instructions, you can instead link them symbolically. For example, something
like:

In —s /usr/local/NetRexx/bin/* [usr/l|ocal/bin/.

would link the shell scripts directory into a different bi n directory.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 12

Installing for Visual J++

(Many thanks to Bill Potvin and Bernhard Hurzeler for the details in this section.)
Here's how to install NetRexx for use with Visual J++:

1.

Copy the following file into the [java_root]\ Li b directory:
Net RexxC. j ar
For example, if [java_root] is at E: \ Java:
C.\>copy NetRexxC.jar E:\Java\lLib
Similarly, copy the nrc. bat and Net RexxC. bat files to the [java_root]\ Bi n directory.
Add the jar file explicitly to the CLASSPATH:
C.\ >set CLASSPATH=%CLASSPATHY [j ava_root]\Li b\ Net RexxC.j ar;
For example, if [java_root] is E: \ Java, your CLASSPATH might then look like this:
CLASSPATH=E: \ Javal\ Li b; E:\ Java\ Trust Li b; E: \ Java\ Li b\ Net RexxC. j ar;

Under Windows NT 4.0 and Windows 2000 this can be done using Start, Settings,
Control Panel, System, Environment tab, System Variables, and clicking on
CLASSPATH.

Using NetRexx with Visual J++

Using NetRexx with J++ is very similar to using it with other Java development Kits; the
main difference is in the command names:

1.

2.

Use the J++ j vi ew command to invoke the NetRexx translator to convert a NetRexx
program (e.g., hel | 0. nrx) into a Java program (hel | o. j ava).

Note that some versions of the jview package do not provide a cl asses. zi p file by
default, but the NetRexx compiler needs this to determine information about classes
that you use. If this is the case, you will get a class not found error for
java. | ang. Obj ect . In this case, run the command

cl spack —auto

from an MS-DOS prompt to create the cl asses. zi p file.

When running the NetRexx compiler, you must specify the —noconpi | e option to
NetRexx in order to prevent it from trying to invoke the Java toolkit compiler j avac
(which isn't in the MicroSoft J++ classes).

For example, if hel | o. nrx is in the current directory:
jview COM i bm netrexx. process. Net RexxC hel |l o —noconpil e

The result of this step should be a Java source file called hel | 0. j ava.
Use the J++ “jvc” command to compile the Java source file:

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 13

jvc hello.java

The result of this step should be a Java class file called hel | o. cl ass.
3. Execute the class file with the J++ command j vi ew.

jview hello

4. Note that some earlier versions of jview fail with an exception (an
Arrayl ndexQut Of BoundsException in RexxUtil.translate) when compiling
hel | o. nrx. This is due to a bug in the jview JIT;® the workaround is to turn the JIT
off.

Note that all the commands above probably have to be typed exactly as shown (Java is
very case-sensitive). The supplied Net RexxC. bat can be modified to work with the above
commands by using j vi ew instead of the j ava command and adding the j vc step.

5 Just In Time compiler.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 14

Installing just the NetRexx runtime

If you only want to run NetRexx programs and do not wish to compile or interpret them,
or if you would like to use the NetRexx string (Rexx) classes from other languages, you
can install just the NetRexx runtime classes.

To do this, follow the appropriate instructions for installing the compiler, but use the
NetRexxR.jar instead of NetRexxC.jar. The NetRexxR.jar file can be found in the
Net Rexx\ runl i b directory.

You do not need to use or copy the executables in the Net Rexx\ bi n directory.

The NetRexx class files can then be referred to from Java or NetRexx programs by
importing the package “netrexx.lang”. For example, a string might be of class
“netrexx. | ang. Rexx”.

For information on the netrexx. | ang. Rexx class and other classes in the runtime, see
the NetRexx Language and NetRexx Supplement documents.

Note: If you have already installed the NetRexx translator (NetRexxC.jar) then you do
not need to install NetRexxR.jar; the latter contains only the NetRexx runtime classes,
and these are already included in NetRexxC.jar.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 15

Setting the CLASSPATH

Most implementations of Java use an environment variable called CLASSPATH to indi-
cate a search path for Java classes. The Java Virtual Machine and the NetRexx trans-
lator rely on the CLASSPATH value to find directories, zip files, and jar files which may
contain Java classes.

The procedure for setting the CLASSPATH environment variable depends on your oper-
ating system (and there may be more than one way). Here are some examples:

For most Windows installations, or for OS/2, use a SET CLASSPATH= command in
AUTOEXEC.BAT (for Windows) or in CONFIG.SYS (for OS/2), and then re-boot
after changing. In both cases the command syntax is the same, and might look like
this:

set classpath=.;c:\javal. 2\|i b\ Net RexxC.|j ar

In this example, the first segment of the value (before the semicolon) lets classes in
the current directory be found, and the second segment includes the classes needed
by the NetRexx translator. Both environments normally include the standard Java
classes automatically. Under Java 1.2, you may need to add the Sun tools classes
explicitly (in tools.jar, see above).

Under Windows NT 4.0 and Windows 2000 the CLASSPATH should be set using
Start, Settings, Control Panel, System, Environment tab, System Variables, and
clicking on CLASSPATH; new command windows will then inherit the new setting
immediately.

For Linux and Unix (BASH, Korn, or Bourne shell), use:

CLASSPATH=<newdi r >: $CLASSPATH
export CLASSPATH

Changes for re-boot or opening of a new window should be placed in your
letc/profile,.login,or.profile file, as appropriate.

For Linux and Unix (C shell), use:
set env CLASSPATH <newdi r >: $CLASSPATH

Changes for re-boot or opening of a new window should be placed in your . cshrc file.

If you are unsure of how to do this, check the documentation you have for installing the
Java toolkit.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 16

Documentation packages

The NetRexx package (NetRexx.zip) contains links to the primary NetRexx documenta-
tion in HTML format, for browsing. These documents are:

The NetRexx Language Overview (Part 2 of The NetRexx Language book, updated)
The NetRexx Language Definition 1.00 (Part 3 of The NetRexx Language book)

The NetRexx Supplement (enhancements to the language since the book was pub-
lished)

The NetRexx User's Guide (this document — installation and use of the NetRexx
translator).

The Overview and User’s Guide are included in full in the package, so they will always
be accessible locally. The other two documents are held on the NetRexx web site,
http://ww2. hursl ey. i bm conf net r exx

In addition, all four documents are also available from the web site in Adobe Acrobat
(PDF) format, which are linked from the package HTML files. You can also download
all four PDF files at once in the documentation package (NetRexxD.zip). To access the
documents:

1.

Download the package from the NetRexx web site, at:
http: //ww2. hur sl ey. i bm cont net r exx/ Net RexxD. zi p

Copy or move the zip file to the root directory of your choice for documentation.

With your chosen directory as your current directory, unzip the package, following
the instructions in the Unpacking the NetRexx package section (see page 3).

This should add the directory Net RexxD to your chosen directory, containing the PDF
documentation files.

You can now view and print any of the files from the new directory that have the
extension “. pdf ” using Adobe’s Acrobat Reader program, available from Adobe’s web
site at htt p: // www. adobe. com

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 17

Installation Problems?

If the “hello” example described in the Testing the NetRexx Installation section (see page
10) doesn’'t work, one of the following problems may be the cause:

A Can't find class COM.ibm.netrexx.process.NetRexxC... message probably means that
the NetRexxC.jar file has not been specified in your CLASSPATH setting, or is
misspelled, or is in the wrong case, or (for Java 1.2 or later) is not in the Java
\lib\ext directory. Note that in the latter case there are two | i b directories in the
Java tree; the correct one is in the Java Runtime Environment directory (j r e).

The Setting the CLASSPATH section (see page 16) contains information on setting
the CLASSPATH.

A Can't find class hello... message may mean that the directory with the hello.class
file is not in your CLASSPATH (you may need to add a “.;” to the CLASSPATH,
signifying the current directory), or either the filename or name of the class (in the
source) is spelled wrong (the java command is [very] case-sensitive). Note that the
name of the class must not include the . cl ass extension.

The compiler appears to work, but towards the end fails with Exception
NoClassDefFoundError: sun/tools/javac/Main. This indicates that you are running Java
1.2 or later but did not add the Java tools to your CLASSPATH (hence Java could
not find the javac compiler). See the Installing for Java 1.2+ section (see page 8) for
more details, and an alternative action.

Alternatively, you may be trying to use NetRexx under Visual J++, which needs a
different procedure (see page 13). You can check whether j avac is available and
working by issuing the j avac command at a command prompt; it should respond
with usage instructions.

You have an extra blank or two in the CLASSPATH. Blanks should only occur in
the middle of directory names (and even then, you probably need some double quotes
around the SET command or the CLASSPATH segment with the blank). The JVM
is sensitive about this.

You are trying the Net RexxC. sh or nrc scripts under Linux or other Unix system,
and are getting a Permission denied message. This probably means that you have
not marked the scripts as being executable. To do this, use the chnod command, for
example: chnod 751 Net RexxC. sh.

You are trying the Net RexxC. sh or nrc scripts under Linux or other Unix system,
and are getting a No such file or syntax error message from bash. This probably
means that you did not use the unzi p —a command to unpack the NetRexx package,
so CRLF sequences in the scripts were not converted to LF.

You didn't install on a file system that supports long file names (for example, on
0OS/2 or Windows you should use an HPFS or FAT32 disk or equivalent). Like most
Java applications, NetRexx uses long file names.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 18

< You have a down-level unzip utility, or changed the name of the Net RexxC. j ar file
so that it does not match the spelling in the classpath. For example, check that the
name of the file “Net RexxC. j ar ” is exactly that, with just three capital letters.

e You have only the Java runtime installed, and not the toolkit. If the toolkit is
installed, you should have a program called j avac on your computer. You can check
whether j avac is available and working by issuing the j avac command at a com-
mand prompt; it should respond with usage information.

e An Out of environment space message when trying to set CLASSPATH under
Win9x-DOS can be remedied by adding /e: 4000 to the “Cmd line” entry for the
MS-DOS prompt properties (try command /? for more information).

< An exception, apparently in the RexxUti | . transl at e method, when compiling with
Microsoft Java SDK 3.1 (and possibly later SDKSs) is caused by a bug in the Just In
Time compiler (JIT) in that SDK. Turn off the JIT using Start -> Settings -> Control
Panel -> Internet to get to the Internet Properties dialog, then select Advanced,
scroll to the Java VM section, and uncheck “Java JIT compiler enabled”. Alterna-
tively, turn of the JIT by setting the environment variable:

SET MSJAVA _ENABLE_JI T=0

(this can be placed in a batch file which invokes NetRexxC, if desired).

e A javalang.OutOfMemoryError when running the compiler probably means that the
maximum heap size is not sufficient. The initial size depends on your Java virtual
machine; you can change it to (say) 24 MegaBytes by setting the environment vari-
able:

SET NETREXX_JAVA=—nx24M
In Java 1.2.2 or later, use:
SET NETREXX_JAVA=—Xnx24M

The Net RexxC. cnd and . bat files add the value of this environment variable to the
options passed to j ava. exe. If you're not using these, modify your j ava command
or script appropriately.

= You have a down-level version of Java installed. NetRexxC will run only on Java
version 1.1.2 (and later versions). You can check the version of Java you have
installed using the command “j ava —versi on”.

e Included in the documentation collection are a number of examples and samples
(Hello, HelloApplet, etc.). To run any of these, you must have Java installed.

Further, some of the samples must be viewed using the Java toolkit applet-viewer
or a Java-enabled browser. Please see the hypertext pages describing these for
detailed instructions. In general, if you see a message from Java saying:

void main(String argv[]) is not defined

this means that the class cannot be run using just the “java” command; it must be
run from another Java program, probably as an applet.

Do you have any NetRexx problem-solving tips not covered above? If so, please let me
know, at mai | t o: nf c@k. i bm com

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 19

Using the translator

This section of the document tells you how to use the translator package. It assumes you
have successfully installed Java and NetRexx, and have tested that the hello. nrx
testcase can be compiled and run, as described in the Testing the NetRexx Installation
section (see page 10).

The NetRexx translator may be used as a compiler or as an interpreter (or it can do both
in a single run, so parsing and syntax checking are only carried out once). It can also
be used as simply a syntax checker.

When used as a compiler, the intermediate Java source code may be retained, if desired.
Automatic formatting, and the inclusion of comments from the NetRexx source code are
also options.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 20

Using the translator as a Compiler

The installation instructions for the NetRexx translator describe how to use the package
to compile and run a simple NetRexx program (hel | 0. nrx). When using the translator
in this way (as a compiler), the translator parses and checks the NetRexx source code,
and if no errors were found then generates Java source code. This Java code (which is
known to be correct) is then compiled into bytecodes (. cl ass files) using a Java compiler.
By default, the j avac compiler in the Java toolkit is used.

This section explains more of the options available to you when using the translator as
a compiler.

The translator command

The translator is invoked by running a Java program (class) which is called
COM i bm net r exx. process. Net RexxC (“Net RexxC’, for short). This can be run by using
the Java interpreter, for example, by the command:

java COM i bm netrexx. process. Net RexxC

or by using a system-specific script (such as Net RexxC. cnd. or nrc. bat). In either case,
the compiler invocation is followed by one or more file specifications (these are the names
of the files containing the NetRexx source code for the programs to be compiled).

File specifications may include a path; if no path is given then NetRexxC will look in the
current (working) directory for the file. NetRexxC will add the extension . nrx to input
program names (file specifications) if no extension was given.

So, for example, to compile hel | 0. nrx in the current directory, you could use any of:

java COM i bm netrexx. process. Net RexxC hell o
java COM i bm netrexx. process. Net RexxC hel | 0. nrx
Net RexxC hel | 0. nrx

nrc hello

(the first two should always work, the last two require that the system-specific script be
available). The resulting . cl ass file is placed in the current directory, and the . cr ossr ef
(cross-reference) file is placed in the same directory as the source file (if there are any
variables and the compilation has no errors).

Here’s an example of compiling two programs, one of which is in the directory
D: \ nypr ogr ans:

nrc hello d:\nyprograns\test2.nrx

In this case, again, the . cl ass file for each program is placed in the current directory.

Note that when more than one program is specified, they are all compiled within the
same class context. That is, they can “see” the classes, properties, and methods of the
other programs being compiled, much as though they were all in one file.® This allows

6 The programs do, however, maintain their independence (that is, they may have different options,
import, and package instructions).

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 21

mutually interdependent programs and classes to be compiled in a single operation. Note
that if you use the package instruction you should also read the more detailed Compiling
multiple programs section (see page 23).

On completion, the NetRexxC class will exit with one of three return values: 0 if the
compilation of all programs was successful, 1 if there were one or more Warnings, but
no errors, and 2 if there were one or more Errors.

As well as file names, you can also specify various option words, which are distinguished
by the word being prefixed with “~”. These flagged words (or “flags”) may be any of the
option words allowed on the NetRexx options instruction (see the NetRexx language
documentation). These options words can be freely mixed with file specifications. To see
a full list of options, execute the NetRexxC command without specifying any files.

The translator also implements some additional option words, which control compilation
features. These cannot be used on the options instruction, and are:

-keep

keep the intermediate . j ava file for each program. It is kept in the same directory
as the NetRexx source file as xxx. j ava. keep, where xxx is the source file name.
The file will also be kept automatically if the j avac compilation fails for any reason.

-noconpi l e

do not compile (just translate). Use this option when you want to use a different
Java compiler. The . ava file for each program is kept in the same directory as the
NetRexx source file, as the file xxx. j ava. keep (where xxx is the source file name).

-noconsol e

do not display compiler messages on the console (command display screen). This is
usually used with the savel og option.

-savel og

write compiler messages to the file Net RexxC. | og, in the current directory. This is
often used with the noconsol e option.

-tine
display translation, j avac compile, and total times (for the sum of all programs
processed).

-run

run the resulting Java class as a stand-alone application, provided that the compi-
lation had no errors. (See note below.)

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 22

Here are some examples:

java COM i bm netrexx. process. Net RexxC hell o —keep —strictargs
java COM i bm netrexx. process. Net RexxC —keep hel | o wordcl ock

java COM i bm netrexx. process. Net RexxC hel | o wordcl ock —nocompil e
nrc hello

nrc hello.nrx

nrc —run hello

nrc —run Spectrum —keep

nrc hello —binary —verbosel

nrc hell o —noconsol e —savel og —fornmat —keep

Option words may be specified in lowercase, mixed case, or uppercase. File specifications
are platform-dependent and may be case sensitive, though NetRexxC will always prefer
an exact case match over a mismatch.

Note: The —run option is implemented by a script (such as nrc. bat or Net RexxC. cnd),
not by the translator; some scripts (such as the . bat scripts) may require that the —run
be the first word of the command arguments, and/or be in lowercase. They may also
require that only the name of the file be given if the —run option is used. Check the
commentary at the beginning of the script for details.

Compiling multiple programs and using packages

When you specify more than one program for NetRexxC to compile, they are all compiled
within the same class context: that is, they can “see” the classes, properties, and methods
of the other programs being compiled, much as though they were all in one file.

This allows mutually interdependent programs and classes to be compiled in a single
operation. For example, consider the following two programs (assumed to be in your
current directory, as the files X. nrx and Y. nr x):

[* Xonrx */
class X
why=Y nul |

[* Y.nrx */
class Y
exe=X nul

Each contains a reference to the other, so neither can be compiled in isolation. However,
if you compile them together, using the command:

nrc XY

then the cross-references will be resolved correctly.

The total elapsed time will be significantly less, too, as the classes on the CLASSPATH
need to be located only once, and the class files used by the NetRexxC compiler or the
programs themselves will also only be loaded (and JIT-compiled) once.

This example works as you would expect for programs that are not in packages. There’s
a restriction, though, if the classes you are compiling are in packages (that is, they
include a package instruction). Currently, NetRexxC uses the j avac compiler to generate
the . cl ass files, and for mutually-dependent files like these, j avac requires that the

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 23

source files be in the Java CLASSPATH, in the sub-directory described by the package
instruction.

So, for example, if your project is based on the tree:
D: \ mypr oj ect
then if the two programs above specified a package, thus:

[* Xonrx */
package foo. bar
class X

why=Y nul |

[* Y.nrx */
package foo. bar
class Y

exe=X nul

then:
1. You should put these source files in the directory: D: \ nypr oj ect\ f oo\ bar

2. The directory D: \ nypr oj ect should appear in your CLASSPATH setting (if you don't
do this, j avac will complain that it cannot find one or other of the classes).

3. You should then make the current directory be D:\ nyproj ect\foo\bar and then
compile the programs using the command “nrc X Y”, as above.

With this procedure, you should end up with the . cl ass files in the same directory as the
.nrx (source) files, and therefore also on the CLASSPATH and immediately usable by
other packages. In general, this arrangement is recommended whenever you are writing
programs that reside in packages.

Notes:

1. Whenjavac is used to generate the . cl ass files, no new . cl ass files will be created
if any of the programs being compiled together had errors — this avoids accidentally
generating mixtures of new and old . cl ass files that cannot work with each other.

2. If aclass is abstract or is an adapter class then it should be placed in the list before
any classes that extend it (as otherwise any automatically generated methods will
not be visible to the subclasses).

Compiling from another program

The translator may be called from a NetRexx or Java program directly, by invoking the
mai n method in the COM i bm net r exx. process. Net RexxC class described as follows:

nmet hod mai n(arg=Rexx, log=PrintWiter null) static returns int

The Rexx string passed to the method can be any combination of program names and
options (except —r un), as described above. Program names may optionally be enclosed in
double-quote characters (and must be if the name includes any blanks in its specifica-
tion).

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 24

A sample NetRexx program that invokes the NetRexx compiler to compile a program
called t est is:

/* conpiletest.nrx */
s='test —-keep -verbose4 -utf8'
say COM i bm netrexx. process. Net RexxC. mai n('s)

Alternatively, the compiler may be called using the method:
nmet hod mai n2(arg=String[], log=PrintWiter null) static returns int

in which case each element of the arg array must contain either a name or an option
(except —run, as before). In this case, names must not be enclosed in double-quote char-
acters, and may contain blanks.

For both methods, the returned i nt value will be one of the return values described
above, and the second argument to the method is an optional Pri nt Wit er stream. If the
PrintWiter stream is provided, translator messages will be written to that stream (in
addition to displaying them on the console, unless —noconsol e is specified). It is the
responsibility of the caller to create the stream (autoflush is recommended) and to close
it after calling the compiler. The —savel og compiler option is ignored if a Print Witer
is provided (the -savel og option normally creates a PrintWiter for the file
Net RexxC. | 0g).

Note: NetRexxC is thread-safe (the only static properties are constants), but it is not
known whether javac is thread-safe. Hence the invocation of multiple instances of
NetRexxC on different threads should probably specify —noconpi | e, for safety.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 25

Using the prompt option

The prompt option may be be used for interactive invocation of the translator. This
requests that the processor not be ended after a file (or set of files) has been processed.
Instead, you will be prompted to enter a new request. This can either repeat the process
(perhaps if you have altered the source in the meantime), specify a new set of files, or
alter the processing options.

On the second and subsequent runs, the processor will re-use class information loaded
on the first run. Also, the classes of the processor itself (and the j avac compiler, if used)
will not need to be verified and JIT-compiled again. These savings allow extremely fast
processing, as much as fifty times faster than the first run for small programs.

When you specify —pr onmpt on a NetRexxC command, the NetRexx program (or programs)
will initially be processed as usual, according to the other flags specified. Once processing
is complete, you will be prompted thus:

Enter new files and additional options, '=" to repeat, 'exit' to end:

At this point, you may enter:

e One or more file names (with or without additional flags): the previous process,
modified by any new flags, is repeated using the source file or files specified. Files
named previously are not included in the process (unless they are named again in
the new list of names).

= Additional flags (without any new files): the previous process, modified by the new
flags, is repeated, on the same files as before. Note that flags are accumulated; that
is, flags are not reset to defaults between prompts.

< The character “=": this simply repeats the previous process, on the same file or files
(which may have had their contents changed since the last process) and using the
same flags. This is especially useful when you simply wish to re-compile (or re-
interpret, see below) the same file or files after editing.

e The word “exit”, which causes NetRexxC to cease execution without any more
prompts.

< Nothing (just press Enter or the equivalent) — usage hints, including the full list of
possible options, etc., are displayed and you are then prompted again.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 26

Using the translator as an Interpreter

In addition to being used as a compiler, the translator also includes a true NetRexx
interpreter, allowing NetRexx programs to be run on the Java 2 (1.2) platform without
needing a compiler or generating .class files.

The startup time for running programs can therefore be significantly reduced as no Java
source code or compilation is needed, and also the interpreter can give better runtime
support (for example, exception tracebacks are localized to the programs being inter-
preted, and the location of an exception will be identified often to the nearest token in a
term or expression).

Further, in a single run, a NetRexx program can be both interpreted and then compiled.
This shares the parsing between the two processes, so the . cl ass file is produced without
the overhead of re-translating and re-checking the source.

Interpreting programs

The NetRexx interpreter is currently designed to be fully compatible with NetRexx pro-
grams compiled conventionally. There are some minor restrictions (see page 35), but in
general any program that NetRexxC can compile without error should run. In particular,
multiple programs, threads, event listeners, callbacks, and Minor (inner) classes are fully
supported.

To use the interpreter, use the NetRexxC command as usual and specify either of the
following command options (flags):

- exec

after parsing, execute (interpret) the program or programs by calling the static
mai n(String[]) method on the first class, with an empty array of strings as the
argument. (If there is no suitable mai n method an error will be reported.)

-arg words. ..

as for —exec, except that the remainder of the command argument string passed to
NetRexxC will be passed on to the main method as the array of argument strings,
instead of being treated as file specifications or flags. Specifying —noar g is equiv-
alent to specifying —exec; that is, an empty array of argument strings will be passed
to the main method (and any remaining words in the command argument string are
processed normally).

When any of —exec, —ar g, or —noar g is specified, NetRexxC will first parse and check the
programs listed on the command. If no error was found, it will then run them by invoking
the main method of the first class interpretively.

Before the run starts, a line similar to:
===== Exec: hell o =====

will be displayed (you can stop this and other progress indicators being displayed by
using the —ver bose0 flag, as usual).

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 27

Finally, after interpretation is complete, the programs are compiled in the usual way,
unless —noj ava’ or —noconpi | e was specified.

For example, to interpret the “hello world” program without compilation, the command:

nrc hell o —exec —noj ava

can be used. If you are likely to want to re-interpret the program (for example, after
changing the source file) then also specify the —pr onpt flag, as described above. This will
give very much better performance on the second and subsequent interpretations.

Similarly, the command:

nrc hello —nojava —-arg H Fred!

would invoke the program, passing the words “Hi Fr ed! ” as the argument to the program
(you might want to add the line “say ar g” to the program to demonstrate this).

You can also invoke the interpreter directly from another NetRexx or Java program, as
described in the Using the NetRexxA API section (see page 30).

Interpreting — Hints and Tips
When using the translator as an interpreter, you may find these hints useful:

< If you can, use the —prompt command line option (see above). This will allow very
rapid re-interpretation of programs after changing their source.

< If you don't want the programs to be compiled after interpretation, specify the
—noj ava option, unless you want the Java source code to be generated in any case
(in which case specify —noconpi | e, which implies —keep).

e By default, NetRexxC runs fairly “noisily” (with a banner and logo display, and
progress of parsing being shown). To turn off these messages during parsing (except
error reports and warnings) use the —ver bose0 flag.

< If you are watching NetRexx trace output while interpreting, it is often a good idea
to use the —tracel flag. This directs trace output to the standard output stream,
which will ensure that trace output and other output (for example, from say
instructions) are synchronized.

e Use the NetRexx exit instruction (rather than the Syst em exi t () method call) to end
windowing (AWT) applications which are to be interpreted. This will allow the
interpreter to correctly determine when the application has ended. This is discussed
further in the Interpreter restrictions section (see page 35).

7 The —noj ava flag stops any Java source being produced, so prevents compilation. This flag may be used
to force syntax-checking of a program while preventing compilation, and with optional interpretation.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 28

Interpreting — Performance

The initial release of the interpreter, in the NetRexx 2.0 reference implementation,
directly and efficiently interprets NetRexx instructions. However, to assure the stability
of the code, terms and expressions within instructions are currently fully re-parsed and
checked each time they are executed. This has the effect of slowing the execution of
terms and expressions significantly; performance measurements on the initial release are
therefore unlikely to be representative of later versions that might be released in the
future.

For example, at present a loop controlled using “l oop for 1000” will be interpreted
around 50 times faster than a loop controlled by “l oop i=1 to 1000”, even in a binary
method, because the latter requires an expression evaluation each time around the loop.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 29

Using the NetRexxA API

As described elsewhere, the simplest way to use the NetRexx interpreter is to use the
command interface (NetRexxC) with the —exec or —arg flags. There is a also a more
direct way to use the interpreter when calling it from another NetRexx (or Java) program,
as described here. This way is called the NetRexxA Application Programming Interface
(API).

The NetRexxA class is in the same package as the translator (that is,
COM i bm net r exx. process), and comprises a constructor and two methods. To interpret
a NetRexx program (or, in general, call arbitrary methods on interpreted classes), the
following steps are necessary:

1. Construct the interpreter object by invoking the constructor Net RexxA(). At this
point, the environment’s classpath is inspected and known compiled packages and
extensions are identified.

2. Decide on the program(s) which are to be interpreted, and invoke the NetRexxA
par se method to parse the programs. This parsing carries out syntax and other
static checks on the programs specified, and prepares them for interpretation. A
“stub” class is created and loaded for each class parsed, which allows access to the
classes through the JVM reflection mechanisms.

3. At this point, the classes in the programs are ready for use. To invoke a method on
one, or construct an instance of a class, or array, etc., the Java reflection API (in
java.lang and j ava. | ang. refl ect) is used in the usual way, working on the d ass
objects created by the interpreter. To locate these d ass objects, the API’s
get Cl assObj ect method must be used.

Once step 2 has been completed, any combination or repetition of using the classes is
allowed. At any time (provided that all methods invoked in step 3 have returned) a new
or edited set of source files can be parsed as described in step 2, and after that, the new
set of class objects can be located and used. Note that operation is undefined if any
attempt is made to use a class object that was located before the most recent call to the
par se method.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 30

Here's a simple example, a program that invokes the mai n method of the hel |l 0. nrx
program’s class:

— Try the Net RexxA interface
options binary
i mport COM i bm netrexx. process. Net RexxA

i nt erpreter=Net RexxA() — nake interpreter

files=["hello.nrx"] — a file to interpret

flags=[' nocrossref', 'verboseO'] — flags, for exanple
interpreter.parse(files, flags) — parse the file(s), using the flags
hel | oCl ass=i nterpreter.getC assChject(null, "hello') — find the hello d ass

— find the "main' nethod; it takes an array of Strings as its argunent
classes=[interpreter.getC assCbject('java.lang', "String', 1)]
mai nMet hod=hel | oCl ass. get Met hod(' mai n', cl asses)

— now invoke it, with a null instance (it's static) and an enpty String array
val ues=[Gbj ect String[0]]

| oop for 10 — let's call it ten tinmes, for fun...
mai nMet hod. i nvoke(nul I, val ues)
end
Compiling and running (or interpreting!) this example program will illustrate some

important points, especially if a trace all instruction is added near the top. First, the
performance of the interpreter (or indeed the compiler) is dominated by JVM and other
start-up costs; constructing the interpreter is expensive as the classpath has to be
searched for duplicate classes, etc. Similarly, the first call to the parse method is slow
because of the time taken to load, verify, and JIT-compile the classes that comprise the
interpreter. After that point, however, only newly-referenced classes require loading, and
execution will be very much faster.

The remainder of this section describes the constructor and the two methods of the
NetRexxA class in more detail.

The NetRexxA constructor
Syntax:
Net RexxA()

This constructor takes no arguments and builds an interpeter object. This process
includes checking the classpath and other libraries known to the JVM and identifying
classes and packages which are available.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 31

The parse method
Syntax:

parse(files=String[], flags=String[]) returns bool ean

The parse method takes two arrays of Strings. The first array contains a list of one or
more file specifications, one in each element of the array; these specify the files that are
to be parsed and made ready for interpretation.

The second array is a list of zero or more option words; these may be any option words
understood by the interpreter (but excluding those known only to the NetRexxC com-
mand interface, such as ti ne).? The parse method prefixes the noj ava flag automatically,
to prevent . j ava files being created inadvertently. In the example, nocrossref is sup-
plied to stop a cross-reference file being written, and ver bose0 is added to prevent the
logo and other progress displays appearing.

The par se method returns a boolean value; this will be 1 (true) if the parsing completed
without errors, or O (false) otherwise. Normally a program using the API should test this
result an take appropriate action; it will not be possible to interpret a program or class
whose parsing failed with an error.

The getClassObject method
Syntax:

get O asshj ect (package=String, nane=String [, dinension=int]) returns d ass

This method lets you obtain a Class object (an object of type j ava. | ang. C ass) repres-
enting a class (or array) known to the interpreter, including those newly parsed by a
parse instruction.

The first argument, package, specifies the package name (for example, “com i bm mat h”).
For a class which is not in a package, nul | should be used (not the empty string, ' ').

The second argument, nane, specifies the class name (for example, “Bi gDeci mal 7). For a
minor (inner) class, this may have more than one part, separated by dots.

The third, optional, argument, specifies the number of dimensions of the requested class
object. If greater than zero, the returned class object will describe an array with the
specified number of dimensions. This argument defaults to the value 0.

An example of using the dinension argument is shown above where the
java.lang. String[] array Class object is requested.

Once a Class object has been retrieved from the interpreter it may be used with the Java
reflection API as usual. The Class objects returned are only valid until the parse method
is next invoked.

8 Note that the option words are not prefixed with a “—".

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 32

Using NetRexx for Web applets

Web applets can be written one of two styles:

< ‘“Lean and mean”, where binary arithmetic is used, and only core Java classes (such
as j ava. | ang. String) are used. This is recommended for World Wide Web pages,
which may be accessed by people using a slow dial-up connection. Several examples
using this style are included in the NetRexx package (e.g., Ner vousTexxt.nrx or
Ar chText . nrx).

= “Full-function”, where decimal arithmetic is used, and advantage is taken of the full
power of the NetRexx runtime (Rexx) class. This is appropriate for intranets, where
most users will have fast connections to servers. An example using this style is
included in the NetRexx package (Wor dd ock. nr x).

If you write applets which use the NetRexx runtime (or any other Java classes that might
not be on the client browser), the rest of this section may help in setting up your Web
server.

A good way of setting up an HTTP (Web) server for this is to keep all your applets in one
subdirectory. You can then make the NetRexx runtime classes (that is, the classes in the
package known to the Java Virtual Machine as net r exx. | ang) available to all the applets
by unzipping NetRexxR.jar into a subdirectory netrexx/ | ang below your applets direc-
tory.

For example, if the root of your server data tree is
D: / mydat a

then you might put your applets into
D: / mydat a/ appl et s

and then the NetRexx classes (unzipped from NetRexxR.jar) should be in the directory
D: / nydat a/ appl et s/ net rexx/ | ang

The same principle is applied if you have any other non-core Java packages that you want
to make available to your applets: the classes in a package callediris. sort. qui cksorts
would go in a subdirectory below appl et s called i ri s/ sort/ qui cksorts, for example.

Note that with Java 1.1 or later it should be possible to use the classes direct from the
NetRexxR.jar file providing that the browser being used is at a Java 1.1 level. This may
also depend on your server being set up correctly. Please see the Java documentation for
details.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 33

Appendix: Current restrictions

The NetRexx translator is now functionally complete, though work continues on usability
and performance improvements. As of this version there are still a number of
restrictions, listed below.

Please note that the presence of an item in this section is not a commitment to remove
a restriction in some future update; NetRexx enhancements are dependent on on-going
research, your feedback, and available resources. You should treat this list as a
“wish-list” (and please send in your wishes).

General restrictions

= The translator requires that Java 1.1.2 or later be installed. To use the interpreter
functions, Java 1.2 (Java 2) is required.

= Certain forward references (in particular, references to methods later in a program
from the argument list of an earlier method) are not handled by the translator. For
these, try reordering the methods.

Compiler restrictions

The following restrictions are due to the use of a translator for compiling, and would
probably only be lifted if a direct-to-bytecodes NetRexx compiler were built.

= Externally-visible names (property, method, and class names) cannot be Java
reserved words (you probably want to avoid these anyway, as people who have to
write in Java cannot refer to them), and cannot start with “$0”.

e There are various restrictions on naming and the contents of programs (the first
class name must match the program name, etc.), required to meet Java rules.

e The javac compiler requires that mutually-dependent source files be on the
CLASSPATH, so it can find the source files. NetRexxC does not have this
restriction, but when using j avac for the final compilation you will need to follow
the convention described in the Compiling multiple programs and using packages
section (see page 23).

e The synbol s option (which requests that debugging information be added to gener-
ated . cl ass files) applies to all programs compiled together if any of them specify
that option.

e Some binary floating point underflows may be treated as zero instead of being
trapped as errors.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 34

< When trace is used, side-effects of calls to t hi s() and super () in constructors may
be seen before the method and method call instructions are traced — this is because
the Java language does not permit tracing instructions to be added before the call
tothis() or super().

e The results of expressions consisting of the single term “nul | ” are not traced.

< When a minor (inner) class is explicitly imported, its parent class or classes must
also be explicitly imported, or j avac will report that the class cannot be found.

< If you have a loop construct with a large number (perhaps hundreds) of instructions
inside it, running the compiled class may fail with an illegal target of jump or branch
verification error (or, under Java 1.1, simply terminate execution after one iteration
of the loop). This is due to a bug in j avac;® one workaround is to move some of the
code out of the loop, perhaps into a private method.

e (The following problem may occur in larger methods, with Java 1.1.2; it seems to
have been fixed in later versions of Java): NetRexxC does not restrict the number
of local variables used or generated. However, the 1.1.2 j avac compiler fails with
unrelated error messages (such as statement unreachable or variable may be uninitial-
ized) if asked to handle more than 63 local variables.

Interpreter restrictions

Interpreting Java-based programs is complex, and is constrained by various security
issues and the architecture of the Java Virtual Machine. As a result, the following
restrictions apply; these will not affect most uses of the interpreter.

< For interpretation to proceed, when any of —exec, —ar g, or —noar g is specified, you
must be running a Java 2 JVM (Java Virtual Machine). That is, the command “j ava
—ver si on” should report a version of 1.2 or later. Parsing and compilation, however,
only require Java 1.1.2.

e Certain “built-in” Java classes (notably j ava. | ang. Obj ect, j ava. | ang. Stri ng, and
j ava. |l ang. Thr owabl e) are constrained by the JVM in that they are assumed to be
pre-loaded. An attempt to interpret them is allowed, but will cause the later loading
of any other classes to fail with a class cast exception.

e Interpreted classes have a stub which is loaded by a private class loader. This
means that they will usually not be visible to external (non-interpreted) classes
which attempt to find them explicitly using reflection, d ass. forNanme(), etc.
Instead, these calls may find compiled versions of the classes from the classpath.
Therefore, to find the “live” classes being interpreted, use the NetRexxA interpreter
API interface (described below).

< An interpreter cannot completely emulate the actions taken by the Java Virtual
Machine as it closes down. Therefore, special rules are followed to determine when
an application is assumed to have ended when interpreting (that is, when any of
—exec, —ar g, or —noar g is specified):

e If the application being interpreted invokes the exit method of the
j ava. | ang. Syst emclass, the run ends immediately (even if —pr onpt was speci-

9 A got o bytecode instruction is being generated instead of a got o_w instruction.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 35

fied). The call cannot be intercepted by the interpreter, and is assumed to be
an explicit request by the application to terminate the process and release all
resources.

In other cases, NetRexxC has to decide when the application ends and hence when
to leave NetRexxC (or display the prompt, if —pr onpt was specified). The following
rules apply:

< If any of the programs being interpreted contains the NetRexx exit instruction
and the application leaves extra user threads active after the mai n method ends
then NetRexxC will wait for an exit instruction to be executed before assuming
the application has ended and exiting (or re-prompting).

< Otherwise (that is, there are no extra threads, or no exit instruction was seen)
the application is assumed to have ended as soon as the mai n method returns
and in this case the run ends (or the prompt is shown) immediately. This rule
allows a program such as “hello world” to be run after a windowing application
(which leaves threads active) without a deadlocked wait.

These rules normally “do the right thing”. Applications which create windows may,
however, appear to exit prematurely unless they use the NetRexx exit instruction to
end their execution, because of the last rule.

Applications which include both thread creation and an exit instruction which is
never executed will wait indefinitely and will need to be interrupted by an external
“break” request, or equivalent, just as they would if run from compiled classes.

< Interpreting programs which set up their own security managers may prevent cor-
rect operation of the interpreter.

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 36

Index

A

Acrobat documents 17
AIlIX Java Developer Kit 2
API
See application programming interface
applets for the Web, writing 33
application programming interface, for
interpreting 30
ArchText example 33
arg option 27
AS/400 Java Developer Kit 2

B

binary arithmetic, used for Web
applets 33

C

capturing translator output 25
class files

runtime 4

translator 4
class loaders, used in interpreting 35
CLASSPATH, setting 16
command

for compiling 21
compiling

from another program 24

interactive 26

multiple programs 23

Version 2.00

Copyright (c) IBM Corporation 1996, 2000. All rights reserved.

NetRexx programs 21

packages 23
completion codes, from translator 22, 25
constructor, in NetRexxA APl 31

D

documentation
HTML 17
printable 17

E

EBCDIC installations 11

exec option 27

exit
from windowing applications 35
method of java.lang.System 35
NetRexx instruction 35

F

file specifications 21
flag
arg 27
exec 27
keep 22
nocompile 22, 28
noconsole 22
nojava 28
prompt 26

37

run 22
savelog 22
time 22
tracel 28
verbose 27
flags 22

G

getClassObject method, in NetRexxA
APl 32

H

HTML documentation 17
HTTP server setup 33

IBM Java Developer Kits 2
illegal target of jump or branch 35
Info-ZIP utility 3
installation 2

EBCDIC systems 11

J++ 13

Javall 6

Java 1.2 8

Linux systems 12

of translator 5

problems 18

quick 5

runtime only 15

testing of 10

Unix systems 12
interactive translation 26

exiting 26

repeating 26
interpreting

APl 30

APl example 31

hints and tipes 28

NetRexx programs 27

performance 29

restrictions 35

Version 2.00

security managers 36
using the NetRexxA APl 30
introduction 1

J

J++ installation 13
jar command, used for unzipping 3
Java
Developer Kits 2
installation 2
Javall 6
Javal2 8
version required 2
Java version
required for interpreting 35
javac
problems with 34
jump or branch, illegal target of 35

K

keep option 22

L

Linux
installations 12
Java Developer Kit 2

N

names

$0... 34

restrictions 34
NervousTexxt example 33
NetRexx package 3

quick installation 5
NetRexxA

APl 30

class 30

constructor 31

Copyright (c) IBM Corporation 1996, 2000. All rights reserved.

38

NetRexxC

class 21

scripts 21
NetRexxD package 17
NetRexxR runtime classes 15
nocompile option 22, 28
noconsole option 22
nojava option 28
nrc scripts 21

O

option
arg 27
exec 27
keep 22
nocompile 22, 28
noconsole 22
nojava 28
prompt 26
run 22
savelog 22
symbols 34
time 22
tracel 28
verbose 27
option words 22
0S/2 Java Developer Kit 2
0S/390 Java Developer Kit 2

P

package

NetRexx 3,5

NetRexxD 17
packages, compiling 23
parse method, in NetRexxA APl 32
PDF documents 17
performance, while interpreting 29
PKZIP utility 3
printable documentation 17
PrintWriter stream for capturing transla-
tor output 25
problems

installation 18

javac 34

Version 2.00

projects, compiling 23
prompt option 26

R

restrictions 34
compiler 34
general 34
interpreter 35
translator 34
return codes, from translator 22, 25
run option 22
runtime
class files 4
installation 15
web server setup 33

S

savelog option 22
scripts

NetRexxC 21

nrc 21
security managers, interpreting 36
setting CLASSPATH 16
statement unreachable 35
symbols option, restriction 34

T

testing, NetRexx installation 10
time option 22
tracel option 28
translator
class files 4

U

underflow, binary 34
uninitialized, variable 35
Unix

installations 12

Copyright (c) IBM Corporation 1996, 2000. All rights reserved. 39

unpacking 3 Y,
using the translator 20
as a Compiler 21
as an Interpreter 27 Web applets, writing 33
Web server setup 33
windowing applications, exit from 35
vV Windows Java Developer Kit 2
WordClock example 33

variable may be uninitialized 35 7

verbose option 27

Visual J++ installation 13

VM/ESA Java Developer Kit 2 zip files, unpacking 3

Version 2.00 Copyright (c) IBM Corporation 1996, 2000. All rights reserved.

40

