
ORX_ANALYZE.CMD - A PROGRAM FOR
ANALYZING DIRECTIVES AND SIGNATURES

OF OBJECT REXX PROGRAMS

Rony G. Flatscher

Department of Management and Information Systems

Vienna University of Economics and Business Administration

„7th International Rexx Symposium“, Austin/Texas, May 13th-15th, 1996

ABSTRACT

Once one gets accustomed to Object Rexx, large projects (applications) are very

feasible to be coded in Object Rexx, which gains tremendeous additional power by the

object oriented features and the various scopes defined for it.

The more classes and methods get defined, the more the handy „REQUIRES“

directive gets used, the more it becomes important to have an overview of the

implemented classes, methods and routines.

In the case of nested „REQUIRES“-directives, which allow one to merge code from

other programs by incorporating it into the „local environment“, it is possible for

programmers of large projects to loose the overview about the scopes.

ORX_ANALYZE.CMD is an Object Rexx program which analyzes Object Rexx

programs.

As the main emphasis lies in the structure of the analyzed programs, all relevant

information of procedures, routines, classes and methods is gathered and stored with

objects available for further use. As ORX_ANALYZE.CMD resolves „REQUIRES“ directives

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 1-19 (rgf)

too, it becomes possible to further analyze the gathered data with respect to programs the

analyzed program depends on. Resolution of „REQUIRES“ directives occurs recursively.

The classification tree for storing the found data as well as some additional data

structures used to interrelate the gathered objects will be explained.

1 INTRODUCTION

Writing Object Rexx programs is simple. A few line of codes may constitute a

powerful script due to the features available thru Object Rexx. After the programmer got

accustomed to the object oriented paradigma, taking advantage of it usually means that

full-fledged programs get written in Object Rexx, exploiting features like the „::REQUIRES “

directive to have other Object Rexx programs loaded into the local environment and using

classes and routines defined there.

If there are several Object Rexx programs involved in a project which in turn may be

dependent on another set of Object Rexx programs the danger arises that one looses the

overview of all parts working together. This is more so true if code has to be maintained

after a couple of months at a time where the overview for an older project might have been

faded or forgotten altogether. This may lead to the undesirable situation that a lot of effort

(time and money) has to be invested in order to reclaim lost overview or to get acquainted

with programs written by someone else, e.g. knowing which classes and routines are

available from which Object Rexx programs in the program to be maintained.

A program which was able to analyze Object Rexx programs and capable of

analyzing those programs loaded into the local environment via „::REQUIRES “ directives

would help alleviate the aforementioned problem by effectively allowing a programmer to

format and dump the relevant data in a form he or she wishes.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 2-19 (final)

2 „ ORX_ANALYZE“ OBJECTS

„ORX_ANALYZE.CMD“ was written for analyzing Object Rexx programs. It is basically

an Object Rexx parser which collects information on certain key aspects and stores them

in collections of Object Rexx objects and in the local environment for further processing.

In the case that an Object Rexx program uses the „::REQUIRES “ directive the

appropriate files are recursively loaded and analyzed the very same way, taking care in

the process that no circularity phenomenon occurs (a program requiring an already

analyzed program). In any case all classes available via the present Object Rexx

classification tree, starting with the class object „.object “ are analyzed too.

def
 def_class
 def_file
 def_method
 def_procedure
 def_label
 def_requires
 def_routine

Figure 1: Classification tree for classes defined in ORX_ANALYZE

„ORX_ANALYZE“ defines a classification tree as depicted in figure 1. With the help of

this classification all the relevant information for Object Rexx programs are stored.

In this section every single class is described alphabetically and its methods and

object variables are explained. Please note that in most cases the instance and class

object variables are made directly accessible by defining attribute methods for them.

Attribute methods represent in effect object variables.

Class „ DEF“

This class serves as the root and defines those methods and object variables which

are common to most of its subclasses. Figure 2 shows the structure of this class.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 3-19 (rgf)

The following class methods and class object variables are defined:

„max_name_length “ - contains the maximum length of the names of the DEF-object

found in the analyzed program which gets stored.

„total_objects “ - contains the total number of DEF-objects.

„User_Slot “ - a directory which is not used by ORX_ANALYZE. It is intended for

allowing programmers to store (e.g. statistical) data about all the DEF-objects

stored.

These class definitions get inherited by all subclasses, so they are available in every

subclassed class object.

 The following instance methods and instance object variables are defined:

„DumpAttributes “ - returns an empty string, is implemented in some subclasses

and returns a string describing the found attributes.

„Errors “ - a list of errors found during parsing.

„Exits “ - a directory containing all of the found EXIT -statements.

„IsFunction “ - a boolean indicating whether program, label or routine returns a

value and if so is set to .true .

„IsProcedure “ - a boolean indicating whether a program, a label or a routine is used

as a procedure (set if arguments are PARSEd or USEd).

„LineNr “ - contains .nil if referring to data gathered from .environment , the line

number in the source file otherwise.

„Local_Labels “ - a directory of labels found in a program, a procedure, a routine or

a method.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 4-19 (final)

„Local_Procedures “ - a directory of procedures found in a program, a routine or a

method.

„Name“ - name of the object in question.

„Returns “ - a directory of EXIT , RAISE, RETURN or SIGNAL statements found in a

program, a procedure (function), a routine or a method.

„Signatures “ - a directory of statements which try to use or parse arguments found

in a program, a procedure (function), a routine or a method.

„Type “ - returns a string indicating the type of the DEF-object; return values are

implemented in subclasses.

„User_Slot “ - a directory which is not used by ORX_ANALYZE. It is intended for

allowing programmers to store data about an individual DEF-object.

[::CLASS [def]]

The following object variable(s) was (were) found at CLASS scope:
 1 [max_name_length]
 2 [total_objects]
 3 [User_Slot]

CLASS METHOD(s):

 1 [::METHOD [INIT] class]
 2 [::METHOD [max_name_length] class attribute]
 3 [::METHOD [total_objects] class attribute]
 4 [::METHOD [User_Slot] class attribute]

The following object variable(s) was (were) found at INSTANCE scope:

 1 [Errors]
 2 [Exits]
 3 [IsFunction]
 4 [IsProcedure]
 5 [LineNr]
 6 [Local_Labels]
 7 [Local_Procedures]
 8 [Name]
 9 [Returns]
 10 [Signatures]
 11 [User_Slot]

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 5-19 (rgf)

INSTANCE METHOD(s):

 1 [::METHOD [DumpAttributes]]
 2 [::METHOD [Errors] attribute]
 3 [::METHOD [Exits] attribute]
 4 [::METHOD [INIT]]
 5 [::METHOD [IsFunction] attribute]
 6 [::METHOD [IsProcedure] attribute]
 7 [::METHOD [LineNr] attribute]
 8 [::METHOD [Local_Labels] attribute]
 9 [::METHOD [Local_Procedures] attribute]
 10 [::METHOD [Name] attribute]
 11 [::METHOD [Returns] attribute]
 12 [::METHOD [Signatures] attribute]
 13 [::METHOD [Type]]
 14 [::METHOD [User_Slot] attribute]

Figure 2: The root class named "DEF"

Class „ DEF_CLASS“

„DEF_CLASS“ is a subclass of „DEF“. Instances of this class store all relevant class

information. Figure 3 shows the structure of this class, which merely defines methods for

its own purpose.

ORX_ANALYZE creates a sentinel object from this class, accessible via the

environment symbol „.missing.class “ to indicate that while analyzing a program for

some reasons a target class was not found. This may happen e.g. if ORX_ANALYZE is run

with the option of not resolving requires-directive (see below).

The following instance methods and instance object variables are defined:

„dumpAttributes “ - overrides parent’s method and returns a string containing all

attributes found with the stored class.

„ExposeClass “ - a directory containing all class object variables.

„ExposeInstance “ - a directory containing all instance object variables.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 6-19 (final)

„External “ - .nil or the string going with the „EXTERNAL“ attribute of a

class-directive.

„Inherit “ - .nil or a string containing the list of additional superclasses to inherit

from (multiple inheritance).

„IsMetaClass “ - .true if class is a metaclass, .false else.

„IsUsedAsSuper “ - .true if class is subclassed, .false else, indicating a leaf class.

„ListOfSuperClasses “ - a list of DEF_CLASS objects being used as superclasses

for this class.

„Local_Class_Methods “ - a directory of the class DEF_METHOD objects found.

„Local_Instance_Methods “ - a directory of the instance DEF_METHOD objects

found.

„MetaClass “ - .nil or a string with the metaclass class-id.

„MetaClassObject “ - a DEF_CLASS object representing this class’ metaclass.

„MetaUsedBySet “ - a set containing all DEF_CLASS objects using this class as their

metaclass.

„MixinClass “ - .nil or a string containing the superclass class-id.

„Public “ - .true if the PUBLIC attribute is set, .false else.

„SetOfSubclasses “ - a set containing all DEF_CLASS objects using this class as their

superclass.

„SubClass “ - .nil or a string containing the superclass class-id.

„SuperClassObject “ - .nil if no superclass or a DEF_CLASS object representing

this class’ superclass.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 7-19 (rgf)

„Type “ - returns the string „::CLASS “

[::CLASS [def_class] subclass [def]]

The following object variable(s) was (were) found at INSTANCE scope:

 1 [ExposeClass]
 2 [ExposeInstance]
 3 [External]
 4 [Inherit]
 5 [IsMetaClass]
 6 [IsUsedAsSuper]
 7 [ListOfSuperClasses]
 8 [Local_Class_Methods]
 9 [Local_Instance_Methods]
 10 [MetaClass]
 11 [MetaClassObject]
 12 [MetaUsedBySet]
 13 [MixinClass]
 14 [Public]
 15 [SetOfSubclasses]
 16 [SubClass]
 17 [SuperClassObject]

INSTANCE METHOD(s):

 1 [::METHOD [dumpAttributes]]
 2 [::METHOD [ExposeClass] attribute]
 3 [::METHOD [ExposeInstance] attribute]
 4 [::METHOD [External] attribute]
 5 [::METHOD [Inherit] attribute]
 6 [::METHOD [INIT]]
 7 [::METHOD [IsMetaClass] attribute]
 8 [::METHOD [IsUsedAsSuper] attribute]
 9 [::METHOD [ListOfSuperClasses] attribute]
 10 [::METHOD [Local_Class_Methods] attribute]
 11 [::METHOD [Local_Instance_Method attribute]
 12 [::METHOD [MetaClass] attribute]
 13 [::METHOD [MetaClassObject] attribute]
 14 [::METHOD [MetaUsedBySet] attribute]
 15 [::METHOD [MixinClass] attribute]
 16 [::METHOD [Public] attribute]
 17 [::METHOD [SetOfSubclasses] attribute]
 18 [::METHOD [SubClass] attribute]
 19 [::METHOD [SuperClassObject] attribute]
 20 [::METHOD [Type]]

Figure 3: Class "DEF_CLASS" for storing class related information

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 8-19 (final)

Class „ DEF_FILE “

„DEF_FILE “ is a subclass of „DEF“. Instances of this class store all relevant file

information. Figure 4 shows the structure of this class, which merely defines methods for

its own purpose.

Instances of this class carry all the information gathered from analyzing a specific file

and therefore serve as a central repository for undertaking further analysis. For the

classes found in the Object Rexx environment a pseudo DEF_FILE object is created,

named „.environment “.

The following instance methods and instance object variables are defined:

 „LOC“ - number of lines found in the program. Note, this number represents the true

amount of lines of code, i.e. empty lines are removed from the count, lines

concatenated with a semicolon (;) are split and lines split over multiple lines with

a comma (,) are rejoined.

„Local_Classes “ - a directory containing all DEF_CLASS objects representing the

classes defined in the file.

„Local_Leaf_Classes “ - a set containing all DEF_CLASS objects which have no

subclasses defined in the file.

„Local_Metaclasses “ - a directory containing all DEF_CLASS objects representing

metclasses defined in the file.

„Local_Methods “ - a directory containing all DEF_METHOD objects representing the

„floating“ methods defined in the file.

„Local_Root_Classes “ - a set of DEF_CLASS objects which have no superclass

other than the Object Rexx class „Object “ defined in the file.

„Local_Routines “ - a directory of DEF_ROUTINE objects defined in the file.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 9-19 (rgf)

„Required_by “ - a list of DEF_FILE objects referring to the files requiring this file.

„Requires_files “ - a list of DEF_FILE objects referring to the files this file requires.

„ShortName “ - a string containing the filename only, i.e. a possible drive letter and

the path is removed from the given name.

„Total_loc “ - number of lines as is, including empty lines and the like.

„type “ - returns the string „FILE “.

„Visible_Classes “ - a directory containing DEF_CLASS objects for all public classes

defined in files loaded via the require-directive.

„Visible_Routines “ - a directory containing DEF_CLASS objects for all public

routines defined in files loaded via the require-directive.

[::CLASS [def_file] subclass [def]]

The following object variable(s) was (were) found at INSTANCE scope:

 1 [LOC]
 2 [Local_Classes]
 3 [Local_Leaf_Classes]
 4 [Local_Metaclasses]
 5 [Local_Methods]
 6 [Local_Root_Classes]
 7 [Local_Routines]
 8 [Required_by]
 9 [Requires_files]
 10 [ShortName]
 11 [Total_loc]
 12 [Visible_Classes]
 13 [Visible_Routines]

INSTANCE METHOD(s):

 1 [::METHOD [INIT]]
 2 [::METHOD [LOC] attribute]
 3 [::METHOD [Local_Classes] attribute]
 4 [::METHOD [Local_Leaf_Classes] attribute]
 5 [::METHOD [Local_Metaclasses] attribute]
 6 [::METHOD [Local_Methods] attribute]
 7 [::METHOD [Local_Root_Classes] attribute]
 8 [::METHOD [Local_Routines] attribute]
 9 [::METHOD [Required_by] attribute]
 10 [::METHOD [Requires_files] attribute]
 11 [::METHOD [ShortName] attribute]

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 10-19 (final)

 12 [::METHOD [Total_loc] attribute]
 13 [::METHOD [type]]
 14 [::METHOD [Visible_Classes] attribute]
 15 [::METHOD [Visible_Routines] attribute]

Figure 4: Class "DEF_FILE " for storing file related information

Class „ DEF_LABEL“

„DEF_LABEL“ is a subclass of „DEF_PROCEDURE“. Instances of this class store all

relevant label information. A label in the context of ORX_ANALYZE is not followed by any

statements trying to retrieve arguments. The only method it defines is „type “ which

returns the string „LABEL“.

Class „ DEF_METHOD“

„DEF_METHOD“ is a subclass of „DEF“. Instances of this class store all relevant method

information. Figure 5 shows the structure of this class, which merely defines methods for

its own purpose.

The following instance methods and instance object variables are defined:

„Attribute “ - .true if an attribute method, .false else.

„Class_method “ - .nil if a „floating“ method, .true if a class method, .false if an

instance method.

„dumpAttributes “ - returns a string containing all attributes found with the analyzed

method.

„Expose “ - a directory containing the object variables defined or used with this

method.

„ExposeAsString “ - returns a string representation of all of the object variables.

„Private “ - .true if a private method, .false else.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 11-19 (rgf)

„Protected “ - .true if a protected method, .false else.

„type “ - returns the string „::METHOD“.

„Unguarded “ - .true if an unguarded method, .false else.

[::CLASS [def_method] subclass [def]]

The following object variable(s) was (were) found at INSTANCE scope:

 1 [Attribute]
 2 [Class_method]
 3 [expose]
 4 [Private]
 5 [Protected]
 6 [Unguarded]

INSTANCE METHOD(s):

 1 [::METHOD [Attribute] attribute]
 2 [::METHOD [Class_method] attribute]
 3 [::METHOD [dumpAttributes]]
 4 [::METHOD [Expose] attribute]
 5 [::METHOD [ExposeAsString]]
 6 [::METHOD [INIT]]
 7 [::METHOD [Private] attribute]
 8 [::METHOD [Protected] attribute]
 9 [::METHOD [type]]
 10 [::METHOD [Unguarded] attribute]

 Figure 5: Class "DEF_METHOD" for storing method related information

Class „ DEF_PROCEDURE“

„DEF_PROCEDURE“ is a subclass of „DEF“. Instances of this class store all relevant

procedure information. Figure 6 shows the structure of this class, which merely defines

methods for its own purpose.

The following instance methods and instance object variables are defined:

„dumpAttributes “ - returns a string containing all exposed variables found with the

keyword instruction „PROCEDURE“.

„Expose “ - a directory containing the variables exposed to the procedure.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 12-19 (final)

„Type “ - returns the string „PROCEDURE“.

[::CLASS [def_procedure] subclass [def]]

The following object variable(s) was (were) found at INSTANCE scope:

 1 [expose]
 2 [procedure]

INSTANCE METHOD(s):

 1 [::METHOD [dumpAttributes]]
 2 [::METHOD [Expose] attribute]
 3 [::METHOD [INIT]]
 4 [::METHOD [Type]]

Figure 6: Class "DEF_PROCEDURE" for storing procedure related information

Class „ DEF_REQUIRES“

„DEF_REQUIRES“ is a subclass of „DEF“. Instances of this class store the name of the

file which is required. DEF_REQUIRES is a subclass of DEF and the only method it defines

is „type “ which returns the string „::REQUIRES “.

Class „ DEF_ROUTINE“

„DEF_ROUTINE“ is a subclass of „DEF“. Instances of this class store all relevant

routine information. Figure 7 shows the structure of this class, which merely defines

methods for its own purpose.

The following instance methods and instance object variables are defined:

„dumpAttributes “ - returns either a null string or a string containing „PUBLIC“, if this

routine was defined to be public.

„public “ - .true if a public routine, .false else.

„type “ - returns the string „::ROUTINE “.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 13-19 (rgf)

[::CLASS [def_routine] subclass [def]]

The following object variable(s) was (were) found at INSTANCE scope:

 1 [public]

INSTANCE METHOD(s):

 1 [::METHOD [dumpAttributes]]
 2 [::METHOD [INIT]]
 3 [::METHOD [public] attribute]
 4 [::METHOD [type]]

Figure 7: Class "DEF_ROUTINE" for storing routine related information

2.1 Relating the DEF Objects with Each Other

So far we have seen what kind of information is stored for which type of analyzed

token. DEF_FILE objects are certainly a central point of reference with respect to the

Object Rexx related tokens stored there.

In addition ORX_ANALYZE defines a stem variable, which contains indices with

various objects determining which relationships exist between the various DEF-objects, like

which methods belong to which class. Some variables which might be useful for other

programs are made available via entries into this stem.

The stem variable is the return value of ORX_ANALYZE after parsing the Object Rexx

programs. If the stem is named „ctl. “ then the various indices allow for accessing:

ctl.eEnvClassSet - a set containing all DEF_CLASS objects representing the

classes which are available in the Object Rexx environment.

ctl.eFileStart - the DEF_FILE object representing the file for which the analysis

was started.

ctl.eFilesSeq - a list of DEF_FILE objects in the order they got analyzed as

imposed by require-directives.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 14-19 (final)

ctl.eFiles - a directory relating the filenames to the DEF_FILE objects.

ctl.eFileEnvironment - the DEF_FILE object representing the Object Rexx

environment classes.

ctl.eMissingClass - the DEF_CLASS object (a sentinel) representing a missing

class, e.g. if ORX_ANALYZE is to ignore requires-directives while parsing, classes

may be missing which are defined in required programs.

ctl.eRootObject - the DEF_CLASS object representing the class object of the

Object Rexx root class „Object “.

ctl.eRootClass - the DEF_CLASS object representing the class object of the Object

Rexx metaclass „Class “.

The indices for the following relations are named such that the index into a relation is

the DEF-object type following the „2“. E.g. for the relation „ctl.eClasses2Files “ the

index would be of type DEF_FILE object, so given that the variable „aFile “ contains a

DEF_FILE object the statement „anArray = ctl.eClasses2Files ~ allat(aFile) “

would return all DEF_CLASS objects defined with the DEF_FILE object stored in the variable

„aFile “. So in a sense the following relations constitute little databases about the facts

stored about the analyzed files:

ctl.eClasses2Files - relates DEF_CLASS objects to DEF_FILE objects.

ctl.eLabels2Files - relates DEF_LABEL objects to DEF_FILE objects.

ctl.eLabels2Objects - relates DEF_LABEL objects to DEF_FILE , DEF_PROCEDURE,

DEF_METHOD or DEF_ROUTINE objects.

ctl.eMethods2Files - relates DEF_METHOD objects to DEF_FILE objects.

ctl.eProcedures2Files ~ relates DEF_PROCEDURE objects to DEF_FILE objects.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 15-19 (rgf)

ctl.eProcedures2Objects - relates DEF_PROCEDURE objects to DEF_FILE ,

DEF_METHOD or DEF_ROUTINE objects.

ctl.eRequires2Files - relates DEF_REQUIRES objects to DEF_FILE objects.

ctl.eRoutines2Files - relates DEF_ROUTINE objects to DEF_FILE objects.

ctl.eToken2Files - relates objects of type DEF_CLASS, DEF_LABEL, DEF_METHOD,

DEF_PROCEDURE, DEF_REQUIRES, DEF_ROUTINE to DEF_FILE objects.

ctl.eMethods2Class - relates a DEF_METHOD object to a DEF_CLASS object,

irrespectible whether it represents a class or instance method.

ctl.eClassMethods2Class - relates a class method DEF_METHOD object to a

DEF_CLASS object.

ctl.eInstanceMethods2Class - relates an instance method DEF_METHOD object to

a DEF_CLASS object.

2.2 Defined Environment Symbols in the Local Environment

ORX_ANALYZE defines a couple of environment symbols in the Object Rexx supplied

directory accessible via the environment symbol „.local “ to refer to objects which are

heavily used by ORX_ANALYZE or programs which utilize the resulting DEF-objects. This

way every Rexx program in the local environment is able to access the objects these

environment symbols represent.

.bQueryEnvClassMethods - by default .true , causing ORX_ANALYZE to retrieve the

methods defined with the object classes found in Object Rexx environment. The

programmer may set the value for this variable before ORX_ANALYZE is called, e.g. with

the statement „.local ~ bQueryEnvClassMethods = .false “.

The following environment symbols are defined for the programmer's convenience:

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 16-19 (final)

.Env.Object - the DEF_CLASS object representing the class object of the Object

Rexx root class „Object “ (same as ctl.eRootObject).

.Env.Class - the DEF_CLASS object representing the class object of the Object Rexx

metaclass „Class “ (same as ctl.eRootClass).

.Env.FileObj - the DEF_FILE object representing the Object Rexx environment

(same as ctl.eFileEnvironment).

.missing.class - returns the DEF_CLASS object (a sentinel) representing a missing

class, e.g. if ORX_ANALYZE is to ignore requires-directives while parsing,

classes may be missing which are defined in required programs (same as

ctl.eMissingClass).

3 INVOKING ORX_ANALYZE

For invoking ORX_ANALYZE the following syntax is used:

 ORX_ANALYZE rexx_program[, switch]

By default ORX_ANALYZE parses the given Rexx program and resolves any

requires-directives. It will return the stem variable containing the results.

If the second (optional) argument „switch“ has a value of „1“ ORX_ANALYZE will not

resolve requires-directives. This may cause some errors in the result for classes which are

referred but are defined in the required programs. In such a case, missing classes are

indicated by the usage of the .missing.class object in place of the missing classes. Still,

it will return the stem variable containing all the above described objects.

A value of „2“ for the second argument merely returns an array containing a

„stripped“ version of the Object Rexx program, each array item representing a different

line of code. The „stripped“ version does not contain any comments, nor blank lines, in

addition multiple statements on a line delimited by a semi-colon are split into separate

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 17-19 (rgf)

lines. If statements span multiple lines (indicated with a trailing comma at the end of a line

of code) they are put back into one line.

4 CONCLUSIONS

By reading this paper it should have become clear what type of information is

relevant if attempting to analyze the structure of Object Rexx programs. The results of the

parsing, which may lead to analyzing additional Object Rexx programs if

requires-directives are used, are stored in a class hierarchy developed for this purpose

only and starting with the string „DEF“. All DEF objects are collected and put into different

Object Rexx collection objects, mostly into relationship objects. The relationship objects

allow for researching and manipulating all the found information and thereby allowing for

analyzing the collected data even further.

The author wrote an additional program, ORX_ANALYZE_ASCII.CMD (with the name

of the file to be analyzed as the only argument), which uses the gathered data for creating

various statistics and reports, allowing for seeing at a glance which Object Rexx programs

have which program scopes. Classes and routines are depicted with the files they are

defined in, so it becomes easy to track down the places (programs) where they are

defined and where they are used. The figures in this book are based on the output of that

program, which merely worked on the data ORX_ANALYZE.CMD generated while analyzing

itself. ORX_ANALYZE_ASCII.CMD will be made available with source on the internet as an

example how to use the results of running ORX_ANALYZE.CMD.

5 REFERENCES

Online documentations of various beta versions of Object Rexx (the version used for

this paper stems from February 16th, 1996).

Various postings on the internet newsgroup „comp.lang.rexx “, 1995-1996.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 18-19 (final)

Flatscher, R.G.: „Local Environment and Scopes in Object Rexx“, in: Proceedings of

the "7th International REXX Symposium, May 12-15, Texas/Austin 1996", The Rexx

Language Association, Raleigh N.C. 1996.

Flatscher, R.G.: „Object Classes, Meta Classes and Method Resolutions in Object

Rexx“, in: Proceedings of the "7th International REXX Symposium, May 12-15,

Texas/Austin 1996", The Rexx Language Association, Raleigh N.C. 1996. .

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures ..., page 19-19 (rgf)

Date of Article: 1996-06-02.

Published in: Proceedings of the "7th International REXX Symposium", Texas/Austin,

May 12th-15th, 1996, The Rexx Language Association, Raleigh N.C. 1996.

Presented at: "7th International REXX Symposium", Texas/Austin, May 12th-15th,

1996, The Rexx Language Association.

ORX_ANALYZE.CMD - A Program for Analyzing Directives and Signatures, page 20-19 (final)

