
The ooRexx Package "rgf_util2.rex"
Rony G. Flatscher (Rony.Flatscher@wu.ac.at), WU Vienna

“The 2009 International Rexx Symposium”, Chilworth, England, Great Britain
May 18th – May 21st 2009.

Abstract: ooRexx makes it very easy to define public routines and public classes
stored in a single file ("package"). This article devises extensions to the
functionality of the string related built-in-functions (BIFs) and additional routines
and accompanying classes to parse strings easily into words, even for non-English
languages. Additionally, routines get defined that should ease the exploitation of
the new sorting capabilities in the array class, as well as routines for easing the
debugging of collection objects. The implementation has been tested with ooRexx
3.2 and ooRexx 4.0.

1 Introduction

rgf_util2.rex is a package (a Rexx module/program) that defines a number of public
routines and classes that are aimed at easing programming using ooRexx 3.2 and
higher.

Since IBM's Object REXX was handed over to the non-profit special interest group
(SIG) "Rexx Language Association (RexxLA)" [W3RexxLA] in 2004 a number of
significant improvements and extensions to the easy to use scripting language have
been added. Many of these additions have been implemented as object-oriented
(OO) classes resp. their methods, like being able to ignore case in some string
related methods (e.g., all .String methods that start with the word "caseless") and
the new ability to sort collections of type .Array using the methods sort and
stableSort for that purpose.1

Classic Rexx programmers who use ooRexx to develop and run non-OO-Rexx
programs and wish to take advantage of these new functions face the problem, that
they need to use the OO-means of ooRexx to do so. It seems that for quite a few
classic Rexx programmers switching to OO-style programming is a stumbling block
(e.g., quite a few members of RexxLA). Therefore it may help this group of Rexx
programmers, if the aforementioned new functionality is offered also in form of
public routines that resemble the Rexx "built-in functions (BIFs)". Sections 3, New
Routines for String Related BIFs, and 4, Making Sorting Easier (More "Rexxish"),
1 Unfortunately, ooRexx does not correctly compare non-English characters caselessly, hence a German word like "ärger"

and "ÄRGER" would be considered to be different, although ignoring case they would be the same! Missing support for non-
English languages can also be seen in the keyword statements "PARSE UPPER" or "PARSE LOWER", as well as for the BIFs
upper() and lower(). Also, ooRexx does not allow non-English characters to be used as index values e.g. for stems or as
message names (e.g. used for addressing collected objects in directories).
To match other modern scripting languages in their internationalization support, ooRexx could take advantage of [W3ICU].

Rony G. Flatscher 1 The ooRexx Package "rgf_util2.rex"

attempt to do so by devising appropriate public routines (including new comparator
classes for sorting to support all of the new sort facilities aimed at simplifying
sorting even further).

The Rexx implemented word-related BIFs define words to be any sequence of
characters other than the white-blank character (the blank character by default, in
ooRexx in addition the horizontal tabulator character).2 Section 5, Parsing a String
Into Words, therefore devises an easy to use public routine, parseWords2(...) backed
by a new public class, .StringOfWords, for allowing to easily parse words according
to reference characters that either define the delimiter characters for words or the
characters that constitute a word. The reference characters may be built of any non-
English letters as well allowing definitions for languages like French, German,
Italian, Spanish, Swedish and the like, devising all word-related BIFs as methods for
this class.

Finally, section 6, Useful Routines for Debug Output, introduces a set of
"miscellaneous" public routines aimed at simplifying debugging Rexx. Little code
examples should demonstrate their effect and allow for judging ourselves whether
the intended simplifications take place.

Quite a few routines and methods in the package rgf_util2.rex would have a need
for values like strings that denote letters or numbers. These values should get
defined once and made available via the .local environment directory. Section 2,
Entries Added to the ".local" Directory, defines the values and their environment
names.

The article concludes with section 7, Roundup and Outlook.

2 Entries Added to the ".local" Directory

For some of the routines and classes introduced in the package rgf_util2.rex the
definition of the following values and their storage in the .local environment
directory takes place in the prologue code3:

• environment symbol: .rgf.alpha
the ASCII English characters defined as: .rgf.alpha.low || .rgf.alpha.upper

• environment symbol: .rgf.alphanumeric
the ASCII characters defined as: .rgf.alpha || .rgf.digits

2 Therefore the result of word("Gandhi, Mahatma", 1) would return "Gandhi," instead of "Gandhi" (without comma).
3 The "prolog code" are the Rexx statements at the beginning of the 'required' program up to but not including the first

directive. The first time this package gets required all directives (led in by two consecutive colons "::") get processed by the
interpreter and then the prologue code gets executed. Starting with ooRexx 4.0 this sequence of processing is done only
once, successive “REQUIRE” -directives for the package rgf_util2.rex would only bring the public routines and public
classes into the scope of the requiring program.

Rony G. Flatscher 2 The ooRexx Package "rgf_util2.rex"

• environment symbol: .rgf.alpha.low
the lowercase ASCII English characters "abcdefghijklmnopqrstuvwxyz"

• environment symbol: .rgf.alpha.upper
the uppercase ASCII English characters defined as: .rgf.alpha.low~upper

• environment symbol: .rgf.non.printable
the non-printing ASCII characters, defined as: xrange("00"x,"1F"x) || "FF"x

• environment symbol: .rgf.digits
the ASCII characters defined as: "0123456789"

• environment symbol: .rgf.symbol.chars
the ASCII characters that may start a Rexx symbol defined as: ".!_?"

These values are available through their environment symbol names to all Rexx
programs after the package rgf_util2.rex got required.

3 New Routines for String Related BIFs

The Rexx Language [Cow90, W3ooRexxRef, INCITS274] defines a number of "built-
in functions (BIFs)" that allow manipulating strings.

3.1 Ignoring the Case of English Letters
The BIFs abbrev(), changeStr(), compare(), countStr(), lastPos(), pos(), and wordPos()
carry out comparisons strictly case dependent. Unfortunately, these BIFs have no
argument that would allow to indicate that the case of English4 letters should be
ignored.

Therefore, new public routines need to be defined, that allow for ignoring the case
of English letters in strings. In order to make it easy to remember these they should
carry the name of the BIFs they are intended to replace, adding the letter "2" to the
name to distinguish them. All these new public routines will have the same
arguments as their corresponding BIFs, but accept an optional additional argument
(placed as the last argument) having either a value of "I" (ignore case) or of "C"
(respect case, the default).

To make it easy to use the new routines in place of the BIFs, if caseless comparisons
should be carried out, their default behavior should be to ignore the case of the
English letters! This way Rexx programmers who wish to take advantage of the
default caseless comparisons would merely use the new public routines of the
4 The Rexx language got defined upon the English alphabet and characters common in the English language 30 years ago.

At the time of this writing only the Java-based NetRexx language [Cow97] is able of using Unicode strings natively, however
its matching BIFs do not allow for specifying that comparisons should be carried out ignoring the characters' case.

Rony G. Flatscher 3 The ooRexx Package "rgf_util2.rex"

rgf_util2.rex package instead of the Rexx BIFs.

The name and the syntax of the new public routines should be:5

• abbrev2(information, info [,[n-length] [,"I"|"C"]]): returns 1 (.true) if
information starts with info, 0 (.false) else.

• changeStr2(needle, haystack, newNeedle [,[n-count] [,"I"|"C"]]): returns a
string in which all occurrences of needle are changed to newNeedle in the
supplied haystack.

• compare2(string1, string2 [,[pad] [,"I"|"C"]]): compares string1 and
string2 character by character, returning 0 if they are equal or the first

5 Square brackets enclose optional arguments, bold indicates the default value. Cf. original BIFs [W3ooRexxRef, section 7.4].

Rony G. Flatscher 4 The ooRexx Package "rgf_util2.rex"

abbrev2("Print", "Pri") → [1]
abbrev2("PRINT", "Pri", 1) → [1]
abbrev2("Print", "PRI", , "I") → [1]
abbrev2("PRINT", "Pri", , "C") → [0]
changeStr2("I", "I0II00", "X") → [X0XX00]
changeStr2("I", "I0II00", "X", 1) → [X0II00]
changeStr2("ab", "AB0ABBAAB0AB", "--", 2) → [--0--BAAB0AB]
changeStr2("i", "I0II00", "X", , "C") . → [I0II00]
changeStr2("i", "I0II00", "X", 1, "I") . → [X0II00]
compare2("abc", "abc") → [0]
compare2("abc", "ABC") → [0]
compare2("abc", "ak") → [2]
compare2("Ab-- ", "aB", "-", "I") → [5]
compare2("Ab-- ", "aB", "-", "C") → [1]
compare2("Ab-- ", "Ab", "-", "C") → [5]
countStr2("1", "101101") → [4]
countStr2("KK","J0KKK0") → [1]
countStr2("KK","J0KKKK0") → [2]
countStr2("KK","J0kkk0") → [1]
countStr2("KK","J0KKK0", "I") → [1]
countStr2("kk","J0KKKK0","I") → [2]
countStr2("KK","J0kkk0", "I") → [1]
countStr2("KK","J0kkk0", "C") → [0]
lastPos2(" ", "abc def ghi") → [8]
lastPos2(" ", "abc def ghi", 8) → [8]
lastPos2("xY", "efGXYZXYXY", 9) → [7]
lastPos2("xY", "efGXYZXYXY", 9, , "I") → [7]
lastPos2("xY", "efGXYZXYXY", 9, , "C") → [0]
pos2("day","Saturday") → [6]
pos2("Day","Saturday") → [6]
pos2("Day","Saturday", , , "I") → [6]
pos2("Day","Saturday", , , "C") → [0]
wordPos2("EINS", " eins zwei drei ") → [1]
wordPos2("eins", " EINS zwei drei ") → [1]
wordPos2("EINS", " eins zwei drei ", , "C") → [0]
wordPos2("eins", " EINS zwei drei ", , "C") → [0]
wordPos2("EINS", " eins zwei drei ", , "I") → [1]
wordPos2("eins", " EINS zwei drei ", , "I") → [1]

Figure 3.1: Employing the New Public Routines with their Results.

position which differs.

• countStr2(needle, haystack [,"I"|"C"]): returns the number of occurrences
of needle in haystack.

• lastPos2(needle, haystack [, [n-start] [,[n-length] [,"I"|"C"]]]): returns
the position of needle in haystack scanning the haystack from right to left.

• pos2(needle, haystack [, [n-start] [,[n-length] [,"I"|"C"]]]): returns the
position of needle in haystack scanning the haystack from left to right.

• wordPos2(phrase, string [,[n-start] [,"I"|"C"]]): returns the word position
where phrase starts in string.

The implementation of these public routines should take advantage of the respective
methods in the ooRexx class .String thereby taking advantage of the ooRexx
implementation and its defined semantics. Figure 3.1 gives examples of employing
these new public routines denoting the return values matching the supplied
argument values.

3.2 Introducing Negative Numeric Arguments to BIFs
The BIFs abbrev(), changeStr(), delStr(), delWord(), lastPos(), left(), lower(),
overlay(), pos(), right(), subChar(), subStr(), subWord(), upper(), word(), wordIndex(),
wordLength() and wordPos() possess numeric arguments which allow for indicating a
start position and a length (count) of characters to consider. In all cases the Rexx
language defines these numeric values to be positive whole numbers, in some cases
the length (count) argument may be 0. None of the numeric arguments are allowed
to be negative.

For the Rexx language it is proposed to introduce negative numeric arguments for
the aforementioned BIFs, with the following meanings:

• negative start position: counting of the start position starts from right to left,
where the start position -1 represents the position of the last character
(word) in the string. If the string is smaller than the absolute value of start
position, the string is left appended with blanks; in the case of a word BIF no
such automatic extension is necessary.

• Negative length/count: a negative length/count indicates that counting should
carried out from right to left, starting at the start position.

New public routines shall to be defined, that allow for processing negative numeric
arguments accordingly. In order to make it easy to remember these they should
carry the name of the BIFs they are intended to replace, adding the letter "2" to the

Rony G. Flatscher 5 The ooRexx Package "rgf_util2.rex"

name to distinguish them.

The name and the syntax of the new public routines should be:6

• abbrev2(information, info [,[n-length] [,"I"|"C"]]): returns 1 (.true) if
information starts with info, 0 (.false) else.

• changeStr2(needle, haystack, newNeedle [,[n-count] [,"I"|"C"]]): returns a
string in which all occurrences of needle are changed to newNeedle in the
supplied haystack.

• delStr2(string, n-start [,n-length]): returns a string in which all
characters starting with n-start for n-length occurrences are deleted.

6 Square brackets enclose optional arguments, bold indicates the default value, numeric arguments that may be negative are
denoted with the prefix "n-". Cf. original BIFs [W3ooRexxRef, section 7.4].

Rony G. Flatscher 6 The ooRexx Package "rgf_util2.rex"

abbrev2("PRINT", "Pri", 1) → [1]
abbrev2("Print", "Pri", -1) → [1]
abbrev2("PRINT", "Pri", 1) → [1]
changeStr2("I", "I0II00", "X", 1) → [X0II00]
changeStr2("I", "I0II00", "X", -1) → [I0IX00]
changeStr2("I", "I0II00", "X", -2) → [I0XX00]
changeStr2("AB", "AB0ABBAAB0AB", "--", 2) → [--0--BAAB0AB]
changeStr2("AB", "AB0ABBAAB0AB", "--", -2) → [AB0ABBA--0--]
delStr2("abcd", 3) → [ab]
delStr2("abcde", 3, 2) → [abe]
delStr2("abcde", 6) → [abcde]
delStr2("abcd", -3) → [a]
delStr2("abcde", -3, -2) → [ade]
delStr2("abc", 1) → []
delStr2("abc", -1) → [ab]
delStr2("abc", 3) → [ab]
delStr2("abc", -3) → []
delWord2(" eins zwei drei ",-1) → [eins zwei]
delWord2(" eins zwei drei ", 2) → [eins]
delWord2(" eins zwei drei ", 2, 1) → [eins drei]
delWord2(" eins zwei drei ", 2,-2) → [drei]
delWord2(" eins zwei drei ",-2) → [eins]
delWord2(" eins zwei drei ",-2, 1) → [eins drei]
delWord2(" eins zwei drei ",-2,-1) → [eins drei]
delWord2(" eins zwei drei ",-2,-2) → [drei]
delWord2(" eins zwei drei ",-2, 2) → [eins]
lastPos2(" ", "abc def ghi", 8) → [8]
lastPos2(" ", "abc def ghi", -1) → [8]
lastPos2(" ", "abc def ghi", -8) → [4]
left2("abc d" , 8) → [abc d]
left2("abc d" , -8) → [abc d]
left2("abc d" , 8, ".") → [abc d...]
left2("abc d" , -8, ".") → [...abc d]
lower2("ABCDEF", 4) → [ABCdef]
lower2("ABCDEF", -4) → [ABcdef]
lower2("ABCDEF", 3, 2) → [ABcdEF]
lower2("ABCDEF", -3, -2) → [AbcdEF]

Figure 3.2: Employing the New Public Routines Using Numeric Arguments with their Results.

• delWord2(string, n-start [,n-length]): returns a string in which all words
starting with the n-startth word for n-length words are deleted.

• lastPos2(needle, haystack [, [n-start] [,[n-length] [,"I"|"C"]]]): returns
the position of needle in haystack scanning the haystack from right to left.

• left2(string, n-length [, pad]): returns a new string that copies the n-
Rony G. Flatscher 7 The ooRexx Package "rgf_util2.rex"

overlay2("12", "abc", 2) → [a12]
overlay2("12", "abc", 2, 1) → [a1c]
overlay2("12", "abc", 2, 2) → [a12]
overlay2("12", "abc", 2, 3) → [a12]
overlay2("12", "abc", 2, 4) → [a12]
overlay2("12", "abc", 2, -1) → [a2c]
overlay2("12", "abc", 2, -2) → [a12]
overlay2("12", "abc", 2, -3) → [a 12]
overlay2("12", "abc", 2, -4) → [a 12]
overlay2("12", "abc", 2, -3, ".") → [a.12]
overlay2("12", "abc", 2, -4, ".") → [a..12]
overlay2("12", "abc", -4, -1) → [2abc]
overlay2("12", "abc", -4, -2) → [12bc]
overlay2("12", "abc", -4, -3) → [12c]
overlay2("12", "abc", -4, -4) → [12]
overlay2("12", "abc", -4, -5) → [12]
right2("abc d" , 8) → [abc d]
right2("abc d" , -8) → [abc d]
right2("abc d" , 8, ".") → [...abc d]
right2("abc d" , -8, ".") → [abc d...]
right2("12" , 5, "0") → [00012]
right2("12" , -5, "0") → [12000]
subChar2("abc", 3) → [c]
subChar2("abc", -3) → [a]
subChar2("abc", 4) → []
subChar2("abc", -4) → []
subStr2('ab', -1, -3, ".") → [.ab]
subStr2("abc", -2) → [bc]
subStr2("abc", -2, -4) → [ab]
subStr2("abc", -2, -6, ".") → [....ab]
subStr2("abc", -4) → [abc]
subStr2("abc", -4, , ".") → [.abc]
subStr2("abc", -4, 1, ".") → [.]
subStr2("abc", -4, -1, ".") → [.]
subWord2(" eins zwei drei ", 2)............... → [zwei drei]
subWord2(" eins zwei drei ", 3) → [drei]
subWord2(" eins zwei drei ", 2, 1) → [zwei]
subWord2(" eins zwei drei ", 2, 2) → [zwei drei]
subWord2(" eins zwei drei ",-2) → [zwei drei]
subWord2(" eins zwei drei ",-3) → [eins zwei drei]
subWord2(" eins zwei drei ", 2,-1) → [zwei]
subWord2(" eins zwei drei ",-2, 1) → [zwei]
subWord2(" eins zwei drei ",-2,-2) → [eins zwei]
subWord2(" eins zwei drei ", 2,-2) → [eins zwei]
subWord2(" eins zwei drei ",-2, 2) → [zwei drei]
upper2("abcdef", 3, 2) → [abCDef]
upper2("abcdef", -3, -2) → [abCDef]
upper2("abcdef", 4) → [abcDEF]
upper2("abcdef", -4) → [abCDEF]

Figure 3.3: Employing the New Public Routines Using Numeric Arguments with their Results. (Cont'd.)

length characters from left to right (if negative: from right to left). If n-length
is larger than the length of the string, the string is appended (if negative:
prepended) with the pad character (default: the blank character) to match n-
length.

• lower2(string [, [n-start] [,[n-length]]]): returns a new string in which
the English letters in string starting at n-start are lowercased for n-length
characters.

• overlay2(new, target [, [n-start] [,[n-length] [, pad]]]): returns a copy
of target overlayed with new starting at n-start with a width of n-length
characters. If new is smaller than n-length, then the new string is appended (if
negative: prepended) with the the pad character (default: the blank character)
to match n-length.

• pos2(needle, haystack [, [n-start] [,[n-length] [,"I"|"C"]]]): returns the
position of needle in haystack scanning the haystack from left to right.

• right2(string, n-length [, pad]): returns a new string that copies the n-
length characters from right to left (if negative: from left to right). If n-length
is larger than the length of the string, the string is prepended (if negative:
appended) with the pad character (default: the blank character) to match n-
length.

• subChar2(string [, [n-position]): returns the character at the n-position
from string.

• subStr2(string, n-start [,[n-length] [,pad]]): returns a new string
extracted from string, starting at n-start for n-length. If n-length is larger
than the resulting string than, then the new string is appended (if negative:
prepended) with the the pad character (default: the blank character) to match
n-length.

Rony G. Flatscher 8 The ooRexx Package "rgf_util2.rex"

word2(" eins zwei drei ", 2) → [zwei]
word2(" eins zwei drei ",-2) → [zwei]
word2(" eins zwei drei ", 3) → [drei]
word2(" eins zwei drei ",-3) → [eins]
wordIndex2(" eins zwei drei ", 2) → [9]
wordIndex2(" eins zwei drei ",-2) → [9]
wordIndex2(" eins zwei drei ", 3) → [14]
wordIndex2(" eins zwei drei ",-3) → [4]
wordLength2(" eins zwei three", 1) → [4]
wordLength2(" eins zwei three", -1) → [5]
wordPos2(" eins ", " eins zwei drei ", -1) → [0]
wordPos2(" eins ", " eins zwei drei ", -4) → [1]

Figure 3.4: Employing the New Public Routines Using Numeric Arguments with their Results. (Cont'd.)

• subWord2(string, n-start [,n-count]): returns a new string of words
extracted from string, starting at word position n-start for n-count words.

• upper2(string [, [n-start] [,[n-length]]]): returns a new string in which
the English letters in string starting at n-start are uppercased for n-length
characters.

• word(string, n-position): returns a new string containing the n-positionth

word in string.

• wordIndex(string, n-position): returns the starting column of the n-
positionth word in string.

• wordLength(string, n-position): returns the length of the n-positionth word in
string.

• wordPos2(phrase, string [, [n-start] [,"I"|"C"]]): returns the word
position where phrase starts in string.

The implementation of these public routines should take advantage of the respective
methods in the ooRexx class .String thereby taking advantage of the ooRexx
implementation and its defined semantics. Figures 3.2, 3.3 and 3.4 give examples of
employing these new public routines using negative values for numeric arguments.

4 Making Sorting Easier (More "Rexxish")

In 2007, ooRexx 3.2 introduced the ability to sort arrays in place by supplying the
methods sort(), sortWith(), stableSort(), and stableSortWith() in the .Array class.
The methods named stableSort and stableSortWith retain the original order in the
array among the groups of duplicates.

The sorting framework follows Java in that the objects to sort supply a method
compareTo(other), returning -1, 0, 1, if the object is smaller than, equal to, or bigger
than the argument other. The ooRexx class .Comparable defines this single method
and is used to mark those ooRexx classes that define a compareTo() method. Since
ooRexx 3.2 arrays with objects of type .DateTime, .String, and .TimeSpan can
therefore be sorted with the methods sort() or stableSort().

The .Array's sorting methods sortWith() and stableSortWith() mandate a single
argument, which must be an object of type .Comparator. Such a class must
implement a method named compare which accepts two arguments, the two objects
that must be compared to each other. This method will return -1 if the first
argument value is smaller than the second argument value, 0 if equal, and 1 if the
second argument value is larger. Since ooRexx 3.2 the following comparator classes
Rony G. Flatscher 9 The ooRexx Package "rgf_util2.rex"

are defined:

• .CaselessColumnComparator: this comparator allows for caseless comparison of
two string objects. When creating an instance of this class one must supply
two arguments, the starting position and the length to be used for
comparisons.

• .CaselessComparator: this comparator compares two strings caselessly.

• .CaselessDescendingComparator: this comparator compares two strings
caselessly in descending order.

Rony G. Flatscher 10 The ooRexx Package "rgf_util2.rex"

 /* define an array */
a=.array~of("a9", "A3", "C9", "B1E5", "b+3", "c-1")
say pp(a) /* "(a9, A3, C9, B1E5, b+3, c-1)" */

 /* sort a copy of the array, show results */
say pp(a~copy~sort) /* "(A3, B1E5, C9, a9, b+3, c-1)" */
say pp(a~copy~stableSort) /* "(A3, B1E5, C9, a9, b+3, c-1)" */

 /* sort a copy of the array descendingly, show results */
c=.DescendingComparator~new /* create a caseless comparator */
say pp(a~copy~sortWith(c)) /* "(c-1, b+3, a9, C9, B1E5, A3)" */
say pp(a~copy~stableSortWith(c)) /* "(c-1, b+3, a9, C9, B1E5, A3)" */

 /* sort caselessly */
c=.CaselessComparator~new /* create a caseless comparator */
say pp(a~copy~sortWith(c)) /* "(A3, a9, b+3, B1E5, c-1, C9)" */
say pp(a~copy~stableSortWith(c)) /* "(A3, a9, b+3, B1E5, c-1, C9)" */

 /* sort caselessly in descending (inverting) order */
c=.InvertingComparator~new(.CaselessComparator~new)
say pp(a~copy~sortWith(c)) /* "(C9, c-1, B1E5, b+3, a9, A3)" */
say pp(a~copy~stableSortWith(c)) /* "(C9, c-1, B1E5, b+3, a9, A3)" */

 /* sort by column 1 for 1 char */
c=.ColumnComparator~new(1,1) /* create a column comparator */
say pp(a~copy~sortWith(c)) /* "(A3, B1E5, C9, a9, b+3, c-1)" */
say pp(a~copy~stableSortWith(c)) /* "(A3, B1E5, C9, a9, b+3, c-1)" */

 /* sort by column 1 for 1 char, caselessly */
c=.CaselessColumnComparator~new(1,1) /* create comparator */
say pp(a~copy~sortWith(c)) /* "(a9, A3, b+3, B1E5, C9, c-1)" */
say pp(a~copy~stableSortWith(c)) /* "(a9, A3, B1E5, b+3, C9, c-1)" */

 /* sort by column 2 for 5 char (numeric value) */
c=.ColumnComparator~new(2,5) /* create a column comparator */
say pp(a~copy~sortWith(c)) /* "(b+3, c-1, B1E5, A3, C9, a9)" */
say pp(a~copy~stableSortWith(c)) /* "(b+3, c-1, B1E5, A3, a9, C9)" */

::routine pp
 use arg arr
 return "(" || arr~toString("L", ", ") || ")"

Figure 4.1: Sorting an Array of Strings Using the .Array's Sorting Methods.

• .ColumnComparator: this comparator allows for comparing two string objects.
When creating an instance of this class one must supply two arguments, the
starting position and the length to be used for comparisons.

• .DescendingComparator: this comparator compares two objects in descending
order.

• .InvertingComparator: this comparator expects another comparator object at
creation time and will invert the resulting comparison value7, thereby
allowing for inverting the sorting order of any comparator object. This
comparator is, e.g., needed for inverting the sort order of the ooRexx built-in
comparators .ColumnComparator and the .CaselessColumnComparator.

Figure 4.18 depicts a program that sorts an array of strings in various ways,
employing all built-in comparators, with the resulting order being indicated in the
comment next to the sort messages.

Some observations about the sorting framework in ooRexx
The implemented sorting framework is copied 1:1 from Java9, a strictly typed
language which employs signatures, such that multiple methods may exist with the
same name but differ in their argument types. This is a concept that is totally
missing in the dynamically typed, interpreted language ooRexx and therefore "alien"
to Rexx programmers. In the implemented ooRexx sorting framework however, it
seems that this Java concept has been attempted to be used, causing the need to
distinguish between the usage of the methods sort and stableSort with and without
an argument, causing the "unRexxish" addition of sortWith and stableSortWith in the
.Array class which mandate one argument of type .Comparator.

In the Rexx language it is an established standard – explicitly supported by the Rexx
ARG()-BIF – to distinguish between an invocation with and without arguments, such
that there is really no need at all for the With-versions of the sort methods in ooRexx,
which in the worst case may even distract Rexx programmers!

In strictly typed languages like Java or C++ some programmers exploit the concept
of signatures such that they define multiple methods for no arguments or differing
arguments trying to simplify the coding needs for each such method. By contrast in
Rexx the underpinning philosophy, that can be drawn from the design of its built-in

7 The comparator's result value 1 will be negated to -1, the result value -1 will be negated to 1. thereby effectively inverting
the sorting order.

8 All of the sorting code samples in this section will always sort a copy of the original array, such that the collected objects in
the original array are in the same order at the beginning of all sort operations. This original sequence of the collected
objects is significant for the stable sort algorithm. E.g. in the case that multiple strings are regarded to be of the same value
like in the case where string values are compared caselessly, i.e., independentt of their case, then this sequence is reflected
in the sorted array that gets returned.

9 The Java interfaces Comparable and Comparator got implemented as Rexx classes .Comparable and .Comparator.

Rony G. Flatscher 11 The ooRexx Package "rgf_util2.rex"

functions (BIFs), which also makes using Rexx easy, can be characterized as follows:

• define as few functions as possible,

• if a function can be invoked with different sets of arguments (including no
arguments at all) cater for these differences in the implementation itself, do
not create differently named variants of the same function10.

◦ Try to ease the usage of a function by devising its arguments and
argument orders carefully such, that optional arguments are trailing in
the argument list so that they can be easily left out.

◦ Try to determine which invocation usages of the function are used the
most and try to design the arguments to be optional for that case, defining
sensible default values that are put in place, if the Rexx programmer
leaves out those arguments, thereby easing their programming task
considerably.

The concept of a .Comparator class that can be used in sorting methods is interesting
and powerful because it allows to extend the sorting abilities with custom
programmed comparators. One possible need for that can be deduced already, if
analyzing the built-in comparator classes .ColumnComparator and .CaselessColumn
Comparator: both comparators force the length argument to be submitted (Rexx BIFs
would assume, if that argument is left out, then the remainder of the string is to be
used) and in addition do not allow for indicating multiple columns that should be
considered for comparing. It is fairly easy to create one owns comparator class that
removes these perceived shortcomings and use it for sorting instead.

4.1 New Public Routines (SORT2, STABLESORT2)
As classic Rexx programmers are used to BIFs one possibility to make it easier for
them to use the ooRexx sorting infrastructure may be the creation of two public
routines, named sort2() and stableSort2(). These routines should be created in a
"Rexx'ish" manner, i.e.:

• the first argument is mandatory and denotes either an array object or an
object that possesses a makeArray method, such that an array can be
dynamically requested from it,

• assume that the standard sort just uses the compareTo method of the objects
to sort, hence no other arguments need to be given.

10 Having alternate names for a function makes it difficult for programmers to memorize them and map different arguments to
those different names of that particular function. The new public routines in the rgf_util2.rex package append "2" to the
name to allow them to be distinguished from the Rexx BIFs, as they behave differently when comparing English letters in a
string, because they ignore their case.

Rony G. Flatscher 12 The ooRexx Package "rgf_util2.rex"

The public routines will sort the supplied array object in place, but also return that
sorted array object. This way the public sort routines can be invoked as arguments
for functions or methods that get evaluated (to the returned sorted array value).

In order to allow exploiting the built-in comparators in a simpler way, the following
syntax for these two public routines gets defined:11

sort2(array [, [A|D] [,[I|C]]])

11 Square brackets enclose optional arguments, bold indicates the default value.

Rony G. Flatscher 13 The ooRexx Package "rgf_util2.rex"

 /* define an array */
a=.array~of("a9", "A3", "C9", "B1E5", "b+3", "c-1")
say pp(a) /* "(a9, A3, C9, B1E5, b+3, c-1)" */

 /* sort a copy of the array, show results (ascending, caselessly*/
say pp(sort2(a~copy)) /* "(A3, a9, b+3, B1E5, c-1, C9)" */
say pp(stableSort2(a~copy)) /* "(A3, a9, b+3, B1E5, c-1, C9)" */

 /* sort a copy of the array caselessly in descending order */
say pp(sort2(a~copy, "D")) /* "(C9, c-1, B1E5, b+3, a9, A3)" */
say pp(stableSort2(a~copy, "D")) /* "(C9, c-1, B1E5, b+3, a9, A3)" */

 /* sort ascendingly, respecting the case of English letters */
say pp(sort2(a~copy, "A", "C")) /* "(A3, B1E5, C9, a9, b+3, c-1)" */
say pp(stableSort2(a~copy, "A", "C")) /* "(A3, B1E5, C9, a9, b+3, c-1)" */

 /* sort descendingly, respecting the case of English letters */
say pp(sort2(a~copy, "D", "C")) /* "(c-1, b+3, a9, C9, B1E5, A3)" */
say pp(stableSort2(a~copy, "D", "C")) /* "(c-1, b+3, a9, C9, B1E5, A3)" */

 /* sort by column 1 for 1 char, ascendingly */
c=.ColumnComparator~new(1,1) /* create a column comparator */
say pp(sort2(a~copy, c)) /* "(A3, B1E5, C9, a9, b+3, c-1)" */
say pp(stableSort2(a~copy, c)) /* "(A3, B1E5, C9, a9, b+3, c-1)" */

 /* sort by column 1 for 1 char, descendingly */
say pp(sort2(a~copy, c, "D")) /* "(c-1, b+3, a9, C9, B1E5, A3)" */
say pp(stableSort2(a~copy, c, "D")) /* "(c-1, b+3, a9, C9, B1E5, A3)" */

 /* sort by column 1 for 1 char, caselessly in ascending order */
c=.CaselessColumnComparator~new(1,1) /* create a column comparator */
say pp(sort2(a~copy, c)) /* "(a9, A3, b+3, B1E5, C9, c-1)" */
say pp(stableSort2(a~copy, c)) /* "(a9, A3, B1E5, b+3, C9, c-1)" */

 /* sort by column 1 for 1 char, caselessly in descending order */
say pp(sort2(a~copy, c, "D")) /* "(c-1, C9, b+3, B1E5, A3, a9)" */
say pp(stableSort2(a~copy, c, "D")) /* "(C9, c-1, B1E5, b+3, a9, A3)" */

::requires "rgf_util2.rex" /* get access to public routines and classes */

::routine pp
 use arg arr
 return "(" || arr~toString("L", ", ") || ")"

Figure 4.2: Sorting an Array of Strings Using the Public Routines [stable]Sort2().

stableSort2(array [, [A|D] [,[I|C]]])

The first argument is an array object or an object with a makeArray method that
returns an array object to sort. The second optional argument allows to determine
whether the sorting should be ascending (default) or descending. The third optional
argument allows to indicate that the comparisons of string objects should be carried
out ignoring the case of English letters (default) or to respect the case. The routines
return the sorted array object.

An additional syntax allows for using comparator objects as well, simplifying the
inverse (descending) ordering:

sort2(array [, comparator [,A|D]])
stableSort2(array [, comparator [,A|D]])

Here the second argument must be of type (a subclass of) .Comparator.

Figure 4.2 shows how these two public routines can be used to simplify most of the
sorting examples of figure 4.1 above.

4.2 Creating Additional Comparator Classes for Sorting
The following subsections introduce four new comparators that are aimed at easing
sorting considerably for the Rexx programmer. Each new comparator's features are
made available via the new public routines sort2() and stableSort2(), by defining
additional appropriate syntax.

4.2.1 The "NumberComparator" Class
The existing comparators working with string objects do not correctly compare Rexx
numbers, e.g., "+1" is regarded to be smaller than "-1", as well as "1E5" (the numeric
value 100000 in exponential notation) being smaller than "2". This problem can be
solved by defining an appropriate "NumberComparator" which compares Rexx numbers
numerically such that the aforementioned values would be ordered ascendingly like:
"-1", "+1", "2", "1E5".

In the implementation of such a comparator it should be made possible to intermix
non-numeric string values with numeric string values by default such, that the Rexx
numbers get sorted correctly in the overall sorted array.

The syntax for the .NumberComparator constructor12 is::13

init([.true|.false] [, [A|D] [,[IC][N]]])

12 The constructor method defines the arguments that one may supply when creating an instance of a class by sending the
new-message to the class object.

13 Square brackets enclose optional arguments, bold indicates the default value, if the argument is omitted .

Rony G. Flatscher 14 The ooRexx Package "rgf_util2.rex"

The first argument determines whether non-numeric string objects are allowed
(value: .true, default) or not (argument value: .false), which will cause a syntax
error, in case non-numeric string objects are encountered. The second optional
argument allows to determine whether the sorting should be ascending (default) or
descending. The third optional argument allows to indicate that the comparisons of
string objects should be carried out ignoring the case of English letters (default) or
to respect the case, and in addition whether numeric values should be compared as
numbers (default). If the third argument is omitted, then the default value will be
"IN" (ignore case, numeric comparisons).

The numeric comparisons are carried out under a setting of "NUMERIC DIGITS 40",
which allows for correctly comparing numeric values in the range of -2**128 and
+2**128.14

Figure 4.3 depicts a Rexx program that employs the .NumberComparator directly. The
comment next to the sort statements shows the resulting order.

The syntax for the sort2() and stableSort2()BIFs for using the .NumberComparator
remain simple as only another option ("N") is added to the third argument, if sorting
string objects:15

sort2(array [, [A|D] [,[I|C][N]])
stableSort2(array [, [A|D] [,[I|C][N]])

The first argument is an array object or an object with a makeArray method that
returns an array object to sort. The second optional argument allows to determine
whether the sorting should be ascending (default) or descending. The third optional

14 This setting should allow the NumberComparator to be used even in the future when 128-Bit processors become standard
(therefore allowing integer numbers of that size by default).

15 Square brackets enclose optional arguments, bold indicates the default value.

Rony G. Flatscher 15 The ooRexx Package "rgf_util2.rex"

a=.array~of("+1", "-1", 0, 1e5, 2, -2, 1, "c", "A", "Z")
say pp(a) /* "(+1, -1, 0, 1E5, 2, -2, 1, c, A, Z)" */

 /* create explicitly a comparator */
c=.NumberComparator~new
say pp(a~copy~sortWith(c)) /* "(-2, -1, 0, +1, 1, 2, 1E5, A, c, Z)" */

 /* create explicitly a comparator for sorting descendingly */
i=.InvertingComparator~new(.NumberComparator~new)
say pp(a~copy~sortWith(i)) /* "(Z, c, A, 1E5, 2, +1, 1, 0, -1, -2)" */

::requires "rgf_util2.rex" /* get access to public routines and classes */

::routine pp
 use arg arr
 return "(" || arr~toString("L", ", ") || ")"

Figure 4.3: Sorting an Array of Strings Employing the .NumberComparator Directly.

argument allows to indicate that the comparisons of string objects should be carried
out ignoring the case of English letters (value: "I" default) or to respect the case
(value: "C"), alternatively, the string objects may contain Rexx numbers which
should be compared with the defined Rexx rules. The routines return the sorted
array object.

Figure 4.4 depicts a Rexx program that employs the number comparator indirectly
via the public routines sort2() and stableSort2(). The comment next to the sort
statements shows the resulting order.

4.2.2 The "StringComparator" Class
The ooRexx class .String defines the .Comparable method compareTo, such that the
.Array's methods sort and stableSort are able to sort collected string objects
ascendingly. In the case that one needs to sort string objects descendingly, then one
is forced to create an instance of the class .DescendingComparator and use the
.Array's methods sortWith and stableSortWith instead, supplying the descending
comparator object as the single argument.

If a need arises to sort string objects ignoring the case of English letters, then one
needs to create an instance of .CaselessComparator or .CaselessDescendingComparator
and supply it as an argument to the .Array's methods sortWith or stableSortWith.

Figure 4.5 applies the ooRexx defined infrastructures to sort arrays of objects. As
one can see in three of the four sorting cases it is necessary to employ explicitly
three different comparators, where typing the names of the comparators gets quite
cumbersome due to the length of their names.

Rony G. Flatscher 16 The ooRexx Package "rgf_util2.rex"

a=.array~of("+1", "-1", 0, 1e5, 2, -2, 1, "c", "A", "Z")
say pp(a) /* "(+1, -1, 0, 1E5, 2, -2, 1, c, A, Z)" */

say pp(sort2(a~copy, "A", "CN")) /* "(-2, -1, 0, +1, 1, 2, 1E5, A, Z, c)" */
say pp(sort2(a~copy, "D", "CN")) /* "(c, Z, A, 1E5, 2, +1, 1, 0, -1, -2)" */

say pp(sort2(a~copy)) /* "(-2, -1, 0, +1, 1, 2, 1E5, A, c, Z)" */
say pp(sort2(a~copy, "A")) /* "(-2, -1, 0, +1, 1, 2, 1E5, A, c, Z)" */
say pp(sort2(a~copy, "A", "IN")) /* "(-2, -1, 0, +1, 1, 2, 1E5, A, c, Z)" */
say pp(sort2(a~copy, "D", "IN")) /* "(Z, c, A, 1E5, 2, +1, 1, 0, -1, -2)" */

::requires "rgf_util2.rex" /* get access to public routines and classes */

::routine pp
 use arg arr
 return "(" || arr~toString("L", ", ") || ")"

Figure 4.4: Sorting an Array of Strings Employing the .NumberComparator Indirectly Via the Public
Routines [stable]Sort2().

One possible improvement vis-à-vis the ooRexx implementation would be the
creation of a single string specific comparator which allows for denoting all four
sorting possibilities with strings ooRexx allows for. In addition, in the
implementation of such a comparator it should be made possible to intermix non-
numeric string values with numeric string values by default such that the Rexx
numbers get sorted together correctly in the overall sorted array.

The syntax for the .StringComparator constructor16 is:17

init([A|D] [,[IC][N]])

The first optional argument allows to determine whether the sorting should be
ascending (default) or descending. The second optional argument allows to indicate
that the comparisons of string objects should be carried out ignoring the case of
English letters (default) or to respect the case, and in addition whether numeric
values should be compared as numbers (default). If the second argument is omitted,
then the default value will be "IN" (ignore case, numeric comparisons).

The syntaxes for the sort2()- and stableSort2()-BIFs for using the .StringComparator
are defined to be:18

sort2(array [,[A|D] [,[I|C][N]]])

16 The constructor method defines the arguments that one may supply when creating an instance of a class by sending the
new-message to the class object.

17 Square brackets enclose optional arguments, bold indicates the default value, if the argument is omitted .
18 Square brackets enclose optional arguments, bold indicates the default value, if the argument is omitted.

Rony G. Flatscher 17 The ooRexx Package "rgf_util2.rex"

a=.array~of("c", "A", "Z")
say pp(a) /* "(c, A, Z)" */

 /* sort ascendingly */
say pp(a~copy~sort) /* "(A, Z, c)" */

 /* create a descending comparator */
c=.DescendingComparator~new
say pp(a~copy~sortWith(c)) /* "(c, Z, A)" */

 /* create a caseless comparator */
c=.CaselessComparator~new
say pp(a~copy~sortWith(c)) /* "(A, c, Z)" */

 /* create a descending caseless comparator */
c=.CaselessDescendingComparator~new
say pp(a~copy~sortWith(c)) /* "(Z, c, A)" */

::routine pp
 use arg arr
 return "(" || arr~toString("L", ", ") || ")"

Figure 4.5: Sorting an Array of Strings Employing the ooRexx means.

stableSort2(array [,[A|D] [,[I|C][N]]])

The first argument is an array object or an object with a makeArray method that
returns an array object to sort. The second optional argument allows to determine
whether the sorting should be ascending (default) or descending. The third optional
argument allows to indicate that the comparisons of string objects should be carried
out ignoring the case of English letters (value: "I" default) or to respect the case
(value: "C"), alternatively, the string objects may contain Rexx numbers which
should be compared with the defined Rexx rules. The routines return the sorted
array object.

Figure 4.6 depicts a Rexx program that employs the public routines to match the
program in figure 4.5 above. The comment next to the sort statements shows the
resulting order. As can be seen there is a simple, easy to remember pattern that
goes with the public sort routines sort2() and stableSort2().

4.2.3 The "StringColumnComparator" Class
In the case that an array of strings represents field-encoded data, where each field
starts at a pre-defined column ("fixed width columns") then the ability of sorting by
columns becomes an important feature. ooRexx allows sorting by a single column
with the .ColumnComparator and the .CaselessComparatorClass. These two comparators
Rony G. Flatscher 18 The ooRexx Package "rgf_util2.rex"

a=.array~of("c", "A", "Z")
say pp(a) /* "(c, A, Z)" */
say

 /* sort ascendingly */
say pp(sort2(a~copy, "A", "C")) /* "(A, Z, c)" */

 /* sort descendingly */
say pp(sort2(a~copy, "D", "C")) /* "(c, Z, A)" */

 /* sort ascendingly (ignoring case) */
say pp(sort2(a~copy)) /* "(A, c, Z)" */
say pp(sort2(a~copy, "A")) /* "(A, c, Z)" */
say pp(sort2(a~copy, "A", "I")) /* "(A, c, Z)" */

 /* sort descendingly (ignoring case) */
say pp(sort2(a~copy, "D")) /* "(Z, c, A)" */
say pp(sort2(a~copy, "D", "I")) /* "(Z, c, A)" */

::requires "rgf_util2.rex"

::routine pp
 use arg arr
 return "(" || arr~toString("L", ", ") || ")"

Figure 4.6: Sorting an Array of Strings Employing the .StringComparator Indirectly Via the Public
Routines [stable]Sort2().

expect two arguments, start (starting column) and length (number of characters to
use for comparison). For sorting descendingly one is forced to use the
.InvertingComparator class supplying either the .ColumnComparator or the
.CaselessComparatorClass comparator object.

Figure 4.7 depicts a program that uses the ooRexx means of sorting an array of
strings by a particular column. The array collects five string objects that each

Rony G. Flatscher 19 The ooRexx Package "rgf_util2.rex"

/* fixed-length columns, encoded as:
 field: from: length:
 nr 1 4
 familyName 5 15
 firstName 20 10
 income1 30 10
 income2 40
 1 2 3 4
 nr familyName firstName income1 income2
 | | | | |
 1234+6789|1234+6789|1234+6789|1234+6789|1234+6789| */
arr=.array~of("0001WithanyName Vera 10E3 10000", -
 " 2Einstein Maria 1234.56 1234.56", -
 " 003einstein Albert 12E03 12000", -
 "0004Einstein aRoN 12E03 12000", -
 "5 Gandhi Mahatma 0.00 0.00")
say pp(arr) /* "1 -> 2 -> 3 -> 4 -> 5" */

 /* sort by familyName ascendingly */
c=.ColumnComparator~new(5,15)
say pp(arr~copy~sortWith(c)) /* "4 -> 2 -> 5 -> 1 -> 3" */

 /* sort by familyName ascendingly, ignore case of English letters */
c=.CaselessColumnComparator~new(5,15)
say pp(arr~copy~sortWith(c)) /* "4 -> 2 -> 3 -> 5 -> 1" */

 /* sort by familyName descendingly */
c=.InvertingComparator~new(.ColumnComparator~new(5,15))
say pp(arr~copy~sortWith(c)) /* "3 -> 1 -> 5 -> 4 -> 2" */

 /* sort by familyName descendingly, ignore case of English letters*/
c=.InvertingComparator~new(.CaselessColumnComparator~new(5,15))
say pp(arr~copy~sortWith(c)) /* "1 -> 5 -> 3 -> 4 -> 2" */

::routine pp /* show sequence of string objects by "nr" field */
 use arg arr /* fetch array object */
 tmp=""
 do i over arr /* iterate over collected string objects */
 nr=i~left(4)+0 /* get "nr" field, force Rexx number */
 if tmp="" then tmp=nr
 else tmp=tmp "->" nr
 end
 return tmp /* return sequence string */

Figure 4.7: Sorting an Array of Strings by a Column Employing the ooRexx means.

consist of the fixed length fields "nr" (column 1 through 4, length: 4), "familyName"
(colmn 10 through 19, length: 10), "firstName" (column 20 through 29, length: 10),
"income1" (column 30 through 39, length: 10) and "income2" (columns 40 to the end
of the string, length: undetermined), where "income1" and "income2" carry the same
numeric value, just in different encodings. The sortings use the "firstName" field,
where next to each sort the comments show the resulting sequence of the string
objects indicated by their "nr" field values.

Unlike the Rexx BIFs (e.g., delStr(), overlay(), subStr()) the length argument is not
optional (default is the remainder of characters) which most likely will come as a

Rony G. Flatscher 20 The ooRexx Package "rgf_util2.rex"

/* nr familyName firstName income1 income2
 1234+6789|1234+6789|1234+6789|1234+6789|1234+6789| */
arr=.array~of("0001WithanyName Vera 10E3 10000", -
 " 2Einstein Maria 1234.56 1234.56", -
 " 003einstein Albert 12E03 12000", -
 "0004Einstein aRoN 12E03 12000", -
 "5 Gandhi Mahatma 0.00 0.00")
say pp(arr) /* "1 -> 2 -> 3 -> 4 -> 5" */

 /* sort ascendingly by familyName, firstName, ignoring case */
c=.StringColumnComparator~new(5,15,"A","I", 20,10,"A","I")
say pp(arr~copy~sortWith(c)) /* "3 -> 4 -> 2 -> 5 -> 1" */

 /* sort descendingly by familyName, firstName, ignoring case */
c=.StringColumnComparator~new(5,15,"D","I", 20,10,"D","I")
say pp(arr~copy~sortWith(c)) /* "1 -> 5 -> 2 -> 4 -> 3" */

 /* sort descendingly by income1, ascendingly (ignoring case) by
 familyName, firstName */
c=.StringColumnComparator~new(30,10,"D","N", 5,15,"A","I", 20,10,"A","I")
say pp(arr~copy~sortWith(c)) /* "3 -> 4 -> 1 -> 2 -> 5" */

 /* sort descendingly by income1, ascendingly (ignoring case) by
 familyName, firstName: sorting definitions stored in an array */
defs=.array~of(30,10,"D","N", 5,15,"A","I", 20,10,"A","I")
c=.StringColumnComparator~new(defs)
say pp(arr~copy~sortWith(c)) /* "3 -> 4 -> 1 -> 2 -> 5" */

::requires "rgf_util2.rex"

::routine pp /* show sequence of string objects by "nr" field */
 use arg arr /* fetch array object */
 tmp=""
 do i over arr /* iterate over collected string objects */
 nr=i~left(4)+0 /* get "nr" field, force Rexx number */
 if tmp="" then tmp=nr
 else tmp=tmp "->" nr
 end
 return tmp /* return sequence string */

Figure 4.8: Sorting an Array of Strings Employing the .StringColumnComparator Directly .

surprise to most Rexx programmers.

If there is a need to sort an array of strings by more than one column, then the
ooRexx supplied comparators cannot be used, as they are restricted to sorting
exactly by one column with an explicit, mandatory length only. Additionally,
comparing numeric Rexx strings as Rexx numbers is not supported either. Checking
the example string data in figure 4.7 it is conceivable that one may wish to sort e..g.,
by the fields "familyName" and "firstName", or maybe descendingly by the numeric
values of "income1" or "income2" (listing the highest income first) and then
ascendingly (ignoring case) by "familyName" and "firstName" within each group of
income values.

Rony G. Flatscher 21 The ooRexx Package "rgf_util2.rex"

/* nr familyName firstName income1 income2
 1234+6789|1234+6789|1234+6789|1234+6789|1234+6789| */
arr=.array~of("0001WithanyName Vera 10E3 10000", -
 " 2Einstein Maria 1234.56 1234.56", -
 " 003einstein Albert 12E03 12000", -
 "0004Einstein aRoN 12E03 12000", -
 "5 Gandhi Mahatma 0.00 0.00")
say pp(arr) /* "1 -> 2 -> 3 -> 4 -> 5" */

 /* sort ascendingly by familyName, firstName, ignoring case */
 /* "3 -> 4 -> 2 -> 5 -> 1" */
say pp(sort2(arr~copy, 5,15,"A","I", 20,10,"A","I"))

 /* sort descendingly by familyName, firstName, ignoring case */
 /* "1 -> 5 -> 2 -> 4 -> 3" */
say pp(sort2(arr~copy, 5,15,"D","I", 20,10,"D","I"))

 /* sort descendingly by income1, ascendingly (ignoring case) by
 familyName, firstName */
 /* "3 -> 4 -> 1 -> 2 -> 5" */
say pp(sort2(arr~copy, 30,10,"D","N", 5,15,"A","I", 20,10,"A","I"))

 /* sort descendingly by income1, ascendingly (ignoring case) by
 familyName, firstName: sorting definitions stored in an array */
defs=.array~of(30,10,"D","N", 5,15,"A","I", 20,10,"A","I")
say pp(sort2(arr~copy, defs)) /* "3 -> 4 -> 1 -> 2 -> 5" */

::requires "rgf_util2.rex"

::routine pp /* show sequence of string objects by "nr" field */
 use arg arr /* fetch array object */
 tmp=""
 do i over arr /* iterate over collected string objects */
 nr=i~left(4)+0 /* get "nr" field, force Rexx number */
 if tmp="" then tmp=nr
 else tmp=tmp "->" nr
 end
 return tmp /* return sequence string */

Figure 4.9: Sorting an Array of Strings Employing the .StringColumnComparator Indirectly via the
Public Routines [stable]Sort2().

As the ooRexx runtime does not come along with comparators that exhibit these
commonly needed features, it is necessary to create such a comparator explicitly,
named "StringColumnComparator". The syntax for the .StringColumnComparator
constructor19 is one of:20

init({pos [,length [,[A|D] [,[I|C|N]]]]}[,...])

init(orderedCollection [, [defaultAD], [defaultICN])

The former syntax allows to define multiple columns indicating for each column to
sort the starting position, the optional length, the optional sorting order (ascending,
descending) and the optional kind of comparison (ignore case, respect case,
compare as numbers).

The latter syntax allows the definition of starting column, optional length, optional
sorting order and optional comparison type collected in an ordered collection, which
is supplied as the first argument. The second optional argument allows for defining
the default sorting order for column definitions which omitted that information, the
third optional argument allows for defining the default comparison type in case this
information was omitted for a specific column definition.

To ease the usage of this added functionality the public routines sort2() and
stableSort2() allow for employing this comparator implicitly by using the following
syntax:

[stable]Sort2(array , {pos [,length [,[A|D] ,[I|C|N]]] }[,...])

[stable]Sort2(array, orderedCollection)

In the former syntax one can indicate the same arguments as documented for the
.StringColumnComparator constructor. The latter syntax allows one to supply an
ordered collection where each object contains an array defining the starting
position, the optional length, the optional sorting order and optional comparing
type, if string objects are to be sorted.

Figures 4.8 and 4.9 demonstrate the usage of the .StringColumnComparator with the
public routines sort2() and stableSort2(), respectively.

4.2.4 The "MessageComparator" Class
In an object-oriented language like ooRexx it is quite common that classes get
defined with attributes that are premiere candidates to be sorted by. Although a

19 The constructor method defines the arguments that one may supply when creating an instance of a class by sending the
new-message to the class object.

20 Curly brackets enclose a mandatory argument that must be given. Square brackets enclose optional arguments, bold
indicates the default value, if the argument is omitted. An ellipsis (…) indicates that the preceding bracketed expression can
be repeated.

Rony G. Flatscher 22 The ooRexx Package "rgf_util2.rex"

Rony G. Flatscher 23 The ooRexx Package "rgf_util2.rex"

arr=.array~of(.person~new(0001, "WithanyName", "Vera" , 10E3), -
 .person~new(003, "einstein" , "Albert" , 12E03), -
 .person~new(0004, "Einstein" , "aRoN" , 12E03), -
 .person~new(2, "Einstein" , "Maria" , 1234.56), -
 .person~new(5 , "Gandhi" , "Mahatma", 0.00))
say pp(arr) /* "1 -> 3 -> 4 -> 2 -> 5" */

 /* sort using .Person's "compareTo" method */
say pp(arr~copy~sort) /* "1 -> 2 -> 3 -> 4 -> 5" */

 /* sort by familyName ascendingly */
c=.MessageComparator~new("familyName")
say pp(arr~copy~sortWith(c)) /* "4 -> 2 -> 5 -> 1 -> 3" */

 /* sort by familyName ascendingly, ignore case of English letters */
c=.MessageComparator~new("familyName/Ignore")
say pp(arr~copy~sortWith(c)) /* "4 -> 2 -> 3 -> 5 -> 1" */

 /* sort by familyName descendingly */
c=.MessageComparator~new("familyName/Desc")
say pp(arr~copy~sortWith(c)) /* "3 -> 1 -> 5 -> 4 -> 2" */

 /* sort by familyName descendingly, ignore case of English letters*/
c=.MessageComparator~new("familyName/Desc Ignore")
say pp(arr~copy~sortWith(c)) /* "1 -> 5 -> 3 -> 4 -> 2" */

::requires "rgf_util2.rex"

::routine pp /* show sequence of string objects by "nr" field */
 use arg arr /* fetch array object */
 tmp=""
 do i over arr /* iterate over collected string objects */
 nr=i~nr+0 /* get "nr" field, force Rexx number */
 if tmp="" then tmp=nr
 else tmp=tmp "->" nr
 end
 return tmp /* return sequence string */

 /* Class (structure) to represent a person */
::class person inherit Comparable
::method init /* constructor */
 expose nr familyName firstName income
 use arg nr, familyName, firstName, income

::attribute nr /* person's nr (id) */
::attribute familyName /* person's family name */
::attribute firstName /* person's first name */
::attribute income /* person's income */

::method compareTo /* comparing method: use by default "nr" */
 expose nr /* establish direct access to attribute */
 use arg other /* fetch other person to compare to */
 return sign(nr-other~nr) /* return -1, 0, 1, if smaller, equal, greater */

Figure 4.10: Sorting an Array of Person Objects Employing the .MessageComparator.

Rony G. Flatscher 24 The ooRexx Package "rgf_util2.rex"

arr=.array~of(.person~new(0001, "WithanyName", "Vera" , 10E3), -
 .person~new(0004, "Einstein" , "aRoN" , 12E03), -
 .person~new(2, "Einstein" , "Maria" , 1234.56), -
 .person~new(003, "einstein" , "Albert" , 12E03), -
 .person~new(5 , "Gandhi" , "Mahatma", 0.00))
say pp(arr) /* "1 -> 4 -> 2 -> 3 -> 5" */

 /* sort using .Person's "compareTo" method */
say pp(arr~copy~sort) /* "1 -> 2 -> 3 -> 4 -> 5" */

 /* sort by familyName ascendingly */
say pp(sort2(arr~copy, "M", "familyName"))/* "2 -> 4 -> 5 -> 1 -> 3" */

msgObj=.message~new(.nil, "familyName") /* create a message object */
say pp(sort2(arr~copy, "M", msgObj)) /* "2 -> 4 -> 5 -> 1 -> 3" */

 /* sort by familyName ascendingly, ignore case of English letters */
say pp(sort2(arr~copy,"M","familyName/Ignore"))/* "3 -> 4 -> 2 -> 5 -> 1" */

 /* sort by familyName descendingly */
say pp(sort2(arr~copy, "M", "familyName/Desc"))/* "3 -> 1 -> 5 -> 4 -> 2" */

 /* sort by familyName descendingly, ignore case of English letters*/
 /* "1 -> 5 -> 2 -> 3 -> 4" */
say pp(sort2(arr~copy, "M", "familyName/Desc Ignore"))

::requires "rgf_util2.rex"

::routine pp /* show sequence of string objects by "nr" field */
 use arg arr /* fetch array object */
 tmp=""
 do i over arr /* iterate over collected string objects */
 nr=i~nr+0 /* get "nr" field, force Rexx number */
 if tmp="" then tmp=nr
 else tmp=tmp "->" nr
 end
 return tmp /* return sequence string */

 /* Class (structure) to represent a person */
::class person inherit Comparable
::method init /* constructor */
 expose nr familyName firstName income
 use arg nr, familyName, firstName, income

::attribute nr /* person's nr (id) */
::attribute familyName /* person's family name */
::attribute firstName /* person's first name */
::attribute income /* person's income */

::method compareTo /* comparing method: use by default "nr" */
 expose nr /* establish direct access to attribute */
 use arg other /* fetch other person to compare to */
 return sign(nr-other~nr) /* return -1, 0, 1, if smaller, equal, greater */

Figure 4.11: Sorting an Array of Person Objects Employing the .MessageComparator Indirectly via
the Public Routines [stable]Sort2().

default sorting order can be implemented in such classes by implementing the
.Comparable method compareTo, this might not suffice, especially if such classes have
many attributes defined for them.

Values of attributes defined in ooRexx classes are easily retrieved by sending the
name of the attribute to an object of such a class. Unfortunately, ooRexx does not
supply a comparator that would be able to take advantage of the message
mechanism for sorting purposes. Therefore a comparator class named
"MessageComparator" is devised with the following syntax for its constructor:21

init(messageName|messageObject [, bCached=.false])

init(orderedCollection)

The former syntax allows a single messageName (a string) or single messageObject to be
sent to the collected objects in the array and must return an .Comparable value. A
messageName may be appended with a slash ("/") followed by a blank delimited list of
options: "a[scending]" (default) or "d[escending]", optionally followed by "n[umeric]",
"i[gnoreCase]" or "c[aseDependent]", if the returned value is of type .String. The
optional second argument "bCached" determines whether the values returned by the
messages are cached (value: .true) or not (value: .false, default).

The latter syntax allows the definition of multiple messageNames and/or
messageObjects which should be sent to the object for determining the sort
position. A messageName may be appended with a slash ("/") followed by a blank
delimited list of options: "a[scending]" (default) or "d[escending]", optionally
followed by "n[umeric]", "i[gnoreCase]" or "c[aseDependent]", if the returned value is
of type .String.

Figure 4.10 depicts a program which defines a class .Person with attributes
maintaining information about each person. As a method compareTo is defined, which
sorts persons by their "nr" attribute the class is marked to be of type .Comparable by
inheriting that class. In any case, because of the presence of the compareTo method
in the .Person class one can use the sort and/or stableSort method of the .Array
class to sort persons (person objects) collected in an array.

To ease the usage of this added functionality the public routines sort2() and
stableSort2() allow for employing this comparator indirectly by using the following
syntax:22

[stable]Sort2(array, "M", messageName|messageObject[, …])

21 The constructor method defines the arguments that one may supply when creating an instance of a class by sending the
new-message to the class object.

22 The ellipsis (…) indicates that the previous expression may be repeated.

Rony G. Flatscher 25 The ooRexx Package "rgf_util2.rex"

[stable]Sort2(array, "M", orderedCollection)

The first argument is the array of collected objects that needs to be sorted, the
second argument must be the character "M" to indicate that this invocation of the
routine applies messages. The third argument is either a messageName, a

Rony G. Flatscher 26 The ooRexx Package "rgf_util2.rex"

arr=.array~of(.person~new(0001, "WithanyName", "Vera" , 10E3), -
 .person~new(0004, "Einstein" , "aRoN" , 12E03), -
 .person~new(003, "einstein" , "Albert" , 12E03), -
 .person~new(2, "Einstein" , "Maria" , 1234.56), -
 .person~new(5 , "Gandhi" , "Mahatma", 0.00))
say pp(arr) /* "1 -> 4 -> 3 -> 2 -> 5" */

 /* sort using .Person's "compareTo" method */
say pp(arr~copy~sort) /* "1 -> 2 -> 3 -> 4 -> 5" */

 /* sort by familyName, firstName ascendingly, ignoring case */
sortBy1=.array~of("familyName/ignoreCase", "firstName/ignoreCase")
c=.MessageComparator~new(sortBy1) /* array of messages */
say pp(arr~copy~sortWith(c)) /* "3 -> 4 -> 2 -> 5 -> 1" */

 /* sort by income descendingly, familyName, firstName ascendingly */
sortBy2=.array~of("income/D", "familyName/I", "firstName/I")
c=.MessageComparator~new(sortBy2) /* array of messages */
say pp(arr~copy~sortWith(c)) /* "3 -> 4 -> 2 -> 1 -> 5" */

::requires "rgf_util2.rex"

::routine pp /* show sequence of string objects by "nr" field */
 use arg arr /* fetch array object */
 tmp=""
 do i over arr /* iterate over collected string objects */
 nr=i~nr+0 /* get "nr" field, force Rexx number */
 if tmp="" then tmp=nr
 else tmp=tmp "->" nr
 end
 return tmp /* return sequence string */

 /* Class (structure) to represent a person */
::class person inherit Comparable
::method init /* constructor */
 expose nr familyName firstName income
 use arg nr, familyName, firstName, income

::attribute nr /* person's nr (id) */
::attribute familyName /* person's family name */
::attribute firstName /* person's first name */
::attribute income /* person's income */

::method compareTo /* comparing method: use by default "nr" */
 expose nr /* establish direct access to attribute */
 use arg other /* fetch other person to compare to */
 return sign(nr-other~nr) /* return -1, 0, 1, if smaller, equal, greater */

Figure 4.12: Sorting an Array of Person Objects Employing the .MessageComparator or Via the
Public Routines sort2() and stableSort2() Indirectly.

Rony G. Flatscher 27 The ooRexx Package "rgf_util2.rex"

arr=.array~of(.person~new(0001, "WithanyName", "Vera" , 10E3), -
 .person~new(0004, "Einstein" , "aRoN" , 12E03), -
 .person~new(003, "einstein" , "Albert" , 12E03), -
 .person~new(2, "Einstein" , "Maria" , 1234.56), -
 .person~new(5 , "Gandhi" , "Mahatma", 0.00))
say pp(arr) /* "1 -> 4 -> 3 -> 2 -> 5" */

 /* sort using .Person's "compareTo" method */
say pp(arr~copy~sort) /* "1 -> 2 -> 3 -> 4 -> 5" */

 /* sort by familyName, firstName ascendingly, ignoring case */
sortBy1=.array~of("familyName/ignoreCase", "firstName/ignoreCase")
say pp(sort2(arr~copy, "M", sortBy1)) /* "3 -> 4 -> 2 -> 5 -> 1" */
 /* "3 -> 4 -> 2 -> 5 -> 1" */
say pp(sort2(arr~copy, "M", "familyName/i", "firstName/i"))

 /* sort by income descendingly, familyName, firstName ascendingly */
sortBy2=.array~of("income/D", "familyName/I", "firstName/I")
say pp(sort2(arr~copy, "M", sortBy2)) /* "3 -> 4 -> 2 -> 1 -> 5" */
 /* "3 -> 4 -> 2 -> 1 -> 5" */
say pp(sort2(arr~copy, "M", "income/D", "familyName/I", "firstName/I"))

::requires "rgf_util2.rex"

::routine pp /* show sequence of string objects by "nr" field */
 use arg arr /* fetch array object */
 tmp=""
 do i over arr /* iterate over collected string objects */
 nr=i~nr+0 /* get "nr" field, force Rexx number */
 if tmp="" then tmp=nr
 else tmp=tmp "->" nr
 end
 return tmp /* return sequence string */

 /* Class (structure) to represent a person */
::class person inherit Comparable
::method init /* constructor */
 expose nr familyName firstName income
 use arg nr, familyName, firstName, income

::attribute nr /* person's nr (id) */
::attribute familyName /* person's family name */
::attribute firstName /* person's first name */
::attribute income /* person's income */

::method compareTo /* comparing method: use by default "nr" */
 expose nr /* establish direct access to attribute */
 use arg other /* fetch other person to compare to */
 return sign(nr-other~nr) /* return -1, 0, 1, if smaller, equal, greater */

Figure 4.13: Sorting an Array of Person Objects Employing the .MessageComparator Indirectly via
the Public Routines [stable]Sort2().

messageObject or an ordered collection of messageNames and/or messageObjects.

Figure 4.11 demonstrates how the sorting routines can be employed to achieve the
same sortings as in figure 4.10. Figures 4.12 and 4.13 give additional examples,
stressing the possibilities going with sorting with the help of a collection of
messages.

5 Parsing a String Into Words

The Rexx language simply defines a word to consist of non-white characters. By
default, white-characters serve as delimiters for words. This simple rule has been
implemented in all word-related Rexx BIFs (e.g. subWord(), words()).

Sometimes the need may arise for defining what constitutes a word explicitly and
using such definitions for parsing a string into words. This would also allow for
defining characters that may be part of non-English words and having Rexx parse
any string according to such definitions.

5.1 The Public Routine "parseWords2"
To allow for the aforementioned functionality the public routine parseWords2() gets
defined with the following syntax:23

parseWords2(string [,[ref=" "||"09"x] [,[kind="D"|"W"] [,returns="W"|"P"]])

string gets parsed into words, where the optional argument ref[erence] (default
value: the white characters blank, "20"x, and tabulator, "09"x) defines the
characters that either serve as delimiters (optional argument with a value of "D",
default) or as the characters a word may consist of (kind with a value of "W"). By
default an array of the parsed words is returned (returns with a value of "W" for
"words", default), otherwise (returns with a value of "P" for "positions") a two
dimensional array is returned, where the first dimension denotes the ith word
position and the second dimension denotes the start position ("[i,1]") and the
length ("[i,2]") of the ith parsed word.

Figure 5.1 gives some examples of using the public routine parseWords2() to parse
words according to any arbitraryly given reference. This way it becomes in principle
possible to parse non-English words from a string, as long as the characters of the
language in question can be represented in one of the many 8-Bit-ASCII character
code pages.

23 The constructor method defines the arguments that one may supply when creating an instance of a class by sending the
new-message to the class object.

Rony G. Flatscher 28 The ooRexx Package "rgf_util2.rex"

5.2 The "StringOfWords" Class
Defining a public class "StringOfWords" would allow for parsing a string into words
as described for the public routine parseWords2(), but in addition make all the word
related BIFs available as methods. However, the methods of this class work on
words as defined according to the passed ref(erence) characters and how to
interpret them (characters delimiting words or characters constituting a word). All
numeric arguments in the methods can be given with negative values, and if so,
follow the definitions as set forth in chapter 3.2, Introducing Negative Numeric
Arguments to BIFs, above.

The following methods are defined for the .StringOfWords class:24

• init(string [,[ref=(" "||"09"x)] [,[kind="D"|"W"]]])

Constructor method. The first argument is mandatory and supplies the string
to be parsed into words. The optional argument ref(erence) defines the
reference characters, by default the whitespace characters blank and tab are
used, which is also the default for ooRexx 3.2 and later when executing the
string related BIFs. The optional argument kind has either the value
"D[elimiter]" (default) or "W[ord]" and determines whether the ref characters

24 The constructor method defines the arguments that one may supply when creating an instance of a class by sending the
new-message to the class object.

Rony G. Flatscher 29 The ooRexx Package "rgf_util2.rex"

string="this: is-it, isn't it?"
ref=": -?," /* delimiter characters */
pw=parseWords2(string, ref) /* ref-chars are delimiters */
 /* the following yields: "pw~items: 5. pw[4]=isn't, pw[5]=it." */
say "pw~items:" pw~items". pw[4]="pw[4]", pw[5]="pw[5]"."

 -- 1 2 3 4
 -- 1234+6789|1234+6789|1234+6789|1234+6789|
string="Ol' McDonald's farm: so huge!"
ref=.rgf.alpha || "'" /* all alpha chars plus apostroph */
 /* ref-chars define words */
say parseWords2(string, ref, "Word")[3] /* "farm" */
say parseWords2(string, ref, "Word", "Position")[3,1] /* "16" */
say parseWords2(string, ref, "Word", "Position")[3,2] /* "4" */

 -- 1 2 3 4
 -- 1234+6789|1234+6789|1234+6789|1234+6789|
string="Immer Ärger mit übergroßen Öffis!"
ref=.rgf.alpha || "ÄäÖöÜüß" /* all alpha and German umlauts and sz */
 /* ref-chars define words */
say parseWords2(string, ref, "W")[5] /* "Öffis" */
say parseWords2(string, ref, "W", "P")[5,1] /* "28" */
say parseWords2(string, ref, "W", "P")[5,2] /* "5" */

::requires "rgf_util2.rex"
Figure 5.1: Using the Public Routine parseWords2() to Parse a String into Words.

are used to delimit words or define the characters that constitute a word.

• delWord(position [,count])

Returns a new string in which the word at the given position count words and
the intervening characters get deleted from the string. If count is omitted
then all words starting at position to the end of the string get deleted. Cf. the
delWord-BIF and the routine delWord2 in chapter 3.2, , respectively.

• kind([newKind])

Attribute method. If no argument is given, the current setting of kind is
returned, which determines whether the reference characters are used as
delimiters or to build words from. If the argument newKind is supplied, it will
replace the current value and be used for the current string from this
moment on.

• makeArray25

Returns a single dimensioned array of parsed words. The presence of this
method allows one to iterate over an instance of .StringOfWords using the do-
over loop and to use it as an argument for the public sort routines introduced
in this article.

• positionArray

Returns a two-dimensional array, where the first dimension denotes the ith

word position and the second dimension denotes the start position ("[i,1]")
and the length ("[i,2]") of the ith parsed word.

• reference([newReference])

Attribute method. If no argument is given, the current string of reference
characters is returned. If the argument newReference is supplied, it will
replace the current value and be used for the current string from this
moment on.

• string([newString])

Attribute method. If no argument is given, the current string is returned. If
the argument newString is supplied, it replaces the current string. This way an
instance of .StringOfWords can be reused to process a new string of words
using the defined reference characters.

• subWord(position [,count])

Starting with the word at the given position, count words get returned from

25 Same as method wordArray below.

Rony G. Flatscher 30 The ooRexx Package "rgf_util2.rex"

the string. If count is omitted then all words starting at position to the end of
the string get returned. Cf. the subWord-BIF, the routine subWord2 in chapter
3.2, respectively.

• word(position)

The word at the given position gets returned from the string. Cf. the word-BIF
and the routine word2 in chapter 3.2, respectively.

• words

Returns the number of words in the string. Cf. the words-BIF.

• wordArray26

Returns a single dimensioned array of parsed words.

26 Same as method makeArray above.

Rony G. Flatscher 31 The ooRexx Package "rgf_util2.rex"

string="this: is-it, isn't it?"
ref=": -?," /* delimiter characters */
sw=.StringOfWords~new(string,ref)/* ref-chars are delimiters */
 /* the following yields: "sw~words: 5. sw~word(4)=isn't, sw~word(5)=it."
*/
say "sw~words:" sw~words". sw~word(4)="sw~word(4)",
sw~word(5)="sw~word(5)"."

 -- 1 2 3 4
 -- 1234+6789|1234+6789|1234+6789|1234+6789|
string="Ol' McDonald's farm: so huge!"
ref=.rgf.alpha || "'" /* all alpha chars plus apostroph */
 /* ref-chars define words */
sw=.StringOfWords~new(string,ref, "W")
say sw~word(3) /* "farm" */
say sw~positionArray[3,1] /* "16" */
say sw~positionArray[3,2] /* "4" */

say sw /* "Ol' McDonald's farm: so huge!" */
say sw~subWord(3,2) /* "farm: so" */
say sw~delWord(3,1) /* "Ol' McDonald's so huge!" */
say sw~delWord(3,2) /* "Ol' McDonald's huge!" */

 -- 1 2 3 4
 -- 1234+6789|1234+6789|1234+6789|1234+6789|
string="Immer Ärger mit übergroßen Öffis!"
ref=.rgf.alpha || "ÄäÖöÜüß" /* all alpha and German umlauts and sz */
 /* ref-chars define words */
sw=.StringOfWords~new(string,ref, "W")
say sw~word(5) /* "Öffis" */
say sw~positionArray[5,1] /* "28" */
say sw~positionArray[5,2] /* "5" */

::requires "rgf_util2.rex"
Figure 5.2: Using the Class .StringOfWords.

wordIndex(n)

Returns the start position of the nth word in the string. Cf. the wordIndex-BIF,
the routine wordIndex2 in chapter 3.2, respectively.

wordLength(n)

Returns the length of the nth word in the string. Cf. the wordLength-BIF, the
routine wordLength2 in chapter 3.2, respectively.

wordPos(phrase [, [start] [, C|I]])

Searches phrase in string, returning the position, if found, zero (0) else. If the
optional argument start position is given, then searching will start from
there. The optional third argument determines how the comparisons should
be carried out "I[gnoring]" case or respecting "C[ase]". Cf. the wordPos-BIF,
the routine wordPos2 in chapter 3.2, respectively.

Figure 5.2 demonstrates the use of the .StringOfWords class.

6 Useful Routines for Debug Output

Sometimes string values may contain unprintable characters like newline, tab,
which for debugging purposes should be made explicitly visible (section 6.1 below,
"Routines for Creating Easier Legible Strings"). Also, the default string values of
some Rexx objects may not carry sufficient information about the object for
debugging purposes, like the (string) values of collection objects (section 6.2 below,
"Routines to Ease the Dumping of Collections").

6.1 Routines for Creating Easier Legible Strings
The following public routines are aimed at making strings easier legible and/or
creating strings representing objects more informative than the ooRexx default
string value:

• routine enquote2(string [, quote='"'])

This routine returns the string enclosed by quotes (with the value of the
optional argument quote (default a double quote: ")). If string contains quote
than each such occurrence is doubled to create at a valid Rexx string.

• routine escape2(string)

This routine escapes all .rgf.non.printable characters in string as
hexadecimal literals and concatenates them with the enquoted printable
parts of string, returning a valid Rexx string.

Rony G. Flatscher 32 The ooRexx Package "rgf_util2.rex"

• Routine pp2(object)

This routine returns the string value of object and its identityHash (method in
.Object) value prepended with the string "id#_" enclosed in square brackets.
If object is a collection then the string value is followed by a round
parenthesis enclosed string value giving the number of collected objects
followed by a blank and the string " items".

However, if object is a string (an instance of the class .String) then the
escaped string value (using the routine escape2()) enclosed in square
brackets gets returned.

• Routine ppIndex2(object)

This routine expects an object (some value) that is used as an index in some
collection. If it is not a single dimensioned array, then the result of
pp2(object) is returned.

If the argument object is a single dimensioned array then it is assumed that it
represents the string subscripts of a multidimensional array. Up to five,
comma-delimited subscripts get created; in the case that there are more than
five subscripts the string ", ..." is appended to the string to indicate that not
all subscripts are shown. The created string will get enclosed in square
brackets and then returned.

• Routine ppMethod2(methodObject [, indent="")
Rony G. Flatscher 33 The ooRexx Package "rgf_util2.rex"

s1="some 'nice' String"
say enquote2(s1) /* yields: "some 'nice' String" */
say enquote2(s1, "'") /* yields: 'some ''nice'' String' */
say pp2(s1) /* yields: [some 'nice' String] */

s2="string" || "072a3b4dff"x
say escape2(s2) /* yields: "string" || "07"x || "*;M" || "FF"x */
say pp2(s2) /* yields: ["string" || "07"x || "*;M" || "FF"x] */

o=.Object~new /* create some object (just for demonstration) */
say pp2(o) /* yields: [an Object id#_266381878] */

a=.array~of("a", "b", "c")
say pp2(a) /* yields: [an Array (3 items) id#_266382096] */

m1=.methods~meth1 /* get floating method named "meth1" */
say ppMethod2(m1) /* yields: say "floating method 'meth1' !" */

::requires "rgf_util2.rex"

::method meth1 /* a floating method (not attached to a class) */
 say "floating method 'meth1' !"

Figure 6.1: Using Some of the Public Routines to Make Strings More Legible.

This routine returns the Rexx code of the supplied methodObject, where
multiple lines are delimited with the character(s) from .endOfLine. If the
optional argument indent (default value: empty string "") is given, it gets
prepended to each line of the Rexx code.

Figure 6.1 demonstrates how these routines can be applied.

6.2 Routines to Ease the Dumping of Collections
For debugging collections it would be handy to have a simple to use routine that
would be able to dump the collected objects of a collection object. If the collection is
not an ordered collection and can be sorted, then such a routine should dump the
index and collected object in sorted order.

• Routine dump2(collection [,[title] [,comparator]])

The argument collection gets dumped displaying the index and collected
object. If the optional title is not supplied, then the title string '"type: The"
coll~class~id "class' gets created to display the type of the collection to
dump.

In the case that collection is not an ordered collection it gets sorted, before
dumping its content. If the optional argument comparator is given, then it
would be used for sorting.

Figure 6.2 shows an example of dumping collection objects and depicts the output
dump2() creates for it in the bottom comment field.

Sometimes it may be helpful to be able to create a relation from the objects in a
collection and then dump that relation instead.

• Routine makeRelation2(collection [, messageName|messageObject])

This routine creates and returns a new relation object from the argument
collection. If the optional argument messageName or messageObject is not given,
then the relation is created off the collection's supplier object, which gets
returned by sending the message supplier to the argument collection. This
way actually any collection object, including supplier objects, can be turned
into a relation.

If the optional argument messageName or messageObject is supplied, then this
routine will create the relation object by iterating over collection using a
"do obj over collection"-loop, sending obj the supplied message and using its
result as the index object and obj as its associated, collected object.

Figure 7.1 shows an example of using makeRelation2() and then dumping the
Rony G. Flatscher 34 The ooRexx Package "rgf_util2.rex"

resulting relation using the routine dump2(), depicting the output dump2() creates for
it in the bottom comment field.

Rony G. Flatscher 35 The ooRexx Package "rgf_util2.rex"

a=.array~of("xaver","berta","moritz")
call dump2 a

b=.bag~of("xaver","berta","moritz")
call dump2 b,"A bag's index and item are always the same object!"

r=.relation~new
idx1=.object~new
r[idx1]="xaver"
r[idx1]="berta"
r[.object~new]="moritz"
call dump2 r
call dump2 r~allItems~sort,"Dumping all relation's items (sorted)"

::requires "rgf_util2.rex"

/*
type: The Array class: (3 items)

1: index=[1] -> item=[xaver]
2: index=[2] -> item=[berta]
3: index=[3] -> item=[moritz]
--
A bag's index and item are always the same object!: (3 items)

1: index=[berta]-> item=[berta]
2: index=[moritz] -> item=[moritz]
3: index=[xaver]-> item=[xaver]
--
type: The Relation class: (3 items)

1: index=[an Object id#_266385022] -> item=[an Array (2 items)
id#_266386529]
2: index=[an Object id#_266385025] -> item=[moritz]
--
Dumping all relation's items (sorted): (3 items)

1: index=[1] -> item=[berta]
2: index=[2] -> item=[moritz]
3: index=[3] -> item=[xaver]
--
*/

Figure 6.2: Examples for Using the Public Routine dump2().

Rony G. Flatscher 36 The ooRexx Package "rgf_util2.rex"

b=.bag~of(.person~new(003, "Einstein" , "Albert" , 12E03), -
 .person~new(0001, "WithanyName", "Vera" , 10E3), -
 .person~new(5 , "Gandhi" , "Mahatma", 0.00))

call dump2 b
r=makeRelation2(b, "firstName")
call dump2 r, "Dumping result of 'makeRelation2(b)' by 'firstName'"

r=makeRelation2(b, "toString")
call dump2 r, "Dumping result of 'makeRelation2(b)' by 'toString'"

::requires "rgf_util2.rex"

 /* Class (structure) to represent a person */
::class person inherit Comparable
::method init /* constructor */
 expose nr familyName firstName income
 use arg nr, familyName, firstName, income

::method toString
 expose nr familyName firstName income
 return "#" (nr+0)~right(4) familyName"," firstName":" income

::attribute nr /* person's nr (id) */
::attribute familyName /* person's family name */
::attribute firstName /* person's first name */
::attribute income /* person's income */

::method compareTo /* comparing method: use by default "nr" */
 expose nr /* establish direct access to attribute */
 use arg other /* fetch other person to compare to */
 return sign(nr-other~nr) /* return -1, 0, 1, if smaller, equal, greater */

/*
type: The Bag class: (3 items)

 # 1: index=[a PERSON id#_266384239] -> item=[a PERSON id#_266384239]
 # 2: index=[a PERSON id#_266384151] -> item=[a PERSON id#_266384151]
 # 3: index=[a PERSON id#_266384327] -> item=[a PERSON id#_266384327]
--
Dumping by 'firstName': (3 items)

 # 1: index=[Albert] -> item=[a PERSON id#_266384151]
 # 2: index=[Mahatma] -> item=[a PERSON id#_266384327]
 # 3: index=[Vera] -> item=[a PERSON id#_266384239]
--
Dumping by 'toString': (3 items)

 # 1: index=[# 1 WithanyName, Vera: 10E3] -> item=[a PERSON id#_266384239]
 # 2: index=[# 3 Einstein, Albert: 12E03] -> item=[a PERSON id#_266384151]
 # 3: index=[# 5 Gandhi, Mahatma: 0.00] -> item=[a PERSON id#_266384327]
--
*/

Figure 7.1: Examples for Using the Public Routine dump2().

7 Roundup and Outlook

This article introduced the public routines and public classes defined in the package
"rgf_util2.rex", aimed at easing many of the new features that ooRexx 3.2 and
ooRexx 4.0 introduced into the ooRexx language. The suggested extensions to the
BIFs, caseless comparisons of strings and allowing negative numeric arguments
could be implemented in other Rexx interpreters. The same goes for the suggested
public routine parseWords2().

The implementation of some of the functonality has been carried out by applying
metaprogramming [W3MP] taking advantage of ooRexx reflection capabilities. Some
of the new comparator classes have all possible compareTo methods pregrogrammed
and when creating an instance, the appropriate compareTo method will be set to the
comparator instance in its constructor method. In the case of the .MessageComparator
class the code for the compareTo method is generated at instance creation time, such
that executing the resulting method code will be as fast as posssible.

Future enhancements to the package rgf_util2.rex may encompass folding the
introduced public routines sort2() and stableSort2(), as well as adding more public
classes to ease the usage of the .DateTime class and supply a much more powerful
concept to use constant values for ooRexx programmers by employing concepts like
constant groups in the UNO IDL type system of OpenOffice.org [W3OOo]. The
realization of such possible enhancements depends very much on a perceived need
among the community of Rexx programmers using ooRexx.

Acknowledgements. The author wishes to thank Dipl.-Ing. Walter Pachl for his
valuable feedback and proof-reading.

8 References

[Cow90] Cowlishaw, M.F.: "The REXX Language", Prentice-Hall (Second edition),
1990.

[Cow97] Cowlishaw, M.F.: "The NetRexx Language", Prentice-Hall , 1997.

[Flat97a] Flatscher R.G.: "Utility Routines and Utility Classes for Object Rexx", in:
Proceedings of the „8th International Rexx Symposium“, Heidelberg,
Germany, April 22nd – April 24th, 1997. WWW (as of 2009-10-31):
http://wi.wu.ac.at/rgf/rexx/orx08/Part1.pdf

[Flat97b] Flatscher R.G.: "Utility Routines and Utility Classes for Object Rexx, Part
II", in: Proceedings of the „8th International Rexx Symposium“, Heidelberg,

Rony G. Flatscher 37 The ooRexx Package "rgf_util2.rex"

Germany, April 22nd – April 24th, 1997. WWW (as of 2009-10-31):
http://wi.wu.ac.at/rgf/rexx/orx08/Part2.pdf

[Fos05] Fosdick H.: "Rexx Programmer’s Reference", John Wiley & Sons, ISBN: 0-
7645-7996-7, URL (as of 2009-10-31):
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764579967.html

[INCITS274] The Rexx programming language standards "INCITS 274" and
"INCITS 274/AM1", International Committee for Information Technology
Standards (INCITS), reconfirmed in 2007.

[VeTrUr] Veneskey G.L., Trosky W., Urbaniak J.J.: "Object Rexx by Example", Aviar.
URL (as of 2007-10-31): http://www.oops-web.com/orxbyex/

[W3OOo] Homepage of the OpenOffice.org (OOo) Developer's guide, URL (as of
2009-10-31):
http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/OpenOffice.org_Developers_Guide

[W3ooRexx] Homepage of Open Object Rexx (ooRexx), URL (as of 2009-10-31):
http://www.ooRexx.org

[W3ooRexxRef] Open Object Rexx (ooRexx) Language Reference, rexxref.pdf from
the archive at the following download URL (as of 2009-10-31):
http://sourceforge.net/projects/oorexx/files/oorexx-docs/4.0.0/ooRexx-docs.4.0.0.pdf.zip/download

[W3Rexx] Hessling M.: Homepage about Rexx, URL (as of 2009-10-31):
http://www.Rexx.org

[W3RexxInfo] Fosdick H.: Homepage about Rexx, URL (as of 2009-10-31):
http://www.RexxInfo.org

[W3RexxLA] Homepage of the Rexx Language Association (RexxLA), URL (as of
2009-10-31): http://www.RexxLA.org

[W3ICU] "International Components for Unicode (ICU), URL (as of 2010-01-17):
http://en.wikipedia.org/w/index.php?title=International_Components_for_Unicode&oldid=335900720.

[W3MP] "Metaprogramming", URL (as of 2010-01-12): http://en.wikipedia.org/w/index.php?

title=Metaprogramming&oldid=332222522.

Rony G. Flatscher 38 The ooRexx Package "rgf_util2.rex"

http://www.ooRexx.org/
http://en.wikipedia.org/w/index.php?title=International_Components_for_Unicode&oldid=335900720
http://www.RexxLA.org/
http://www.ooRexx.org/
http://www.ooRexx.org/

Date of Article: 2010-01-20

Published in: Proceedings of the „The 2009 International Rexx Symposium“,
Chilworth Manor, Winchester, UK, May 18th - May 21st, 2009. The Rexx Language
Association, Raleigh N.C. 2009.

Presented at: „The 2009 International Rexx Symposium“, Chilworth Manor,
Winchester, United Kingdom, May 18th, 2009.

Rony G. Flatscher 39 The ooRexx Package "rgf_util2.rex"

	1 Introduction
	2 Entries Added to the ".local" Directory
	3 New Routines for String Related BIFs
	3.1 Ignoring the Case of English Letters
	3.2 Introducing Negative Numeric Arguments to BIFs

	4 Making Sorting Easier (More "Rexxish")
	4.1 New Public Routines (SORT2, STABLESORT2)
	4.2 Creating Additional Comparator Classes for Sorting
	4.2.1 The "NumberComparator" Class
	4.2.2 The "StringComparator" Class
	4.2.3 The "StringColumnComparator" Class
	4.2.4 The "MessageComparator" Class

	5 Parsing a String Into Words
	5.1 The Public Routine "parseWords2"
	5.2 The "StringOfWords" Class

	6 Useful Routines for Debug Output
	6.1 Routines for Creating Easier Legible Strings
	6.2 Routines to Ease the Dumping of Collections

	7 Roundup and Outlook
	8 References

