oOReXxX
Documentation 5.1.0

Open Object Rexx

Application Programming Interfaces

R

ooRexx Documentation 5.1.0 Open Object Rexx
Application Programming Interfaces
Edition 2025.05.02 (last revised on 2025-05-01 with r12966)

Author W. David Ashley
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Erich Steinbdck
Author Jon Wolfers

Copyright © 2005-2025 Rexx Language Association. All rights reserved.
Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: https://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

https://www.oorexx.org/license.html

Preface iX
I B o Tox 0 g 1= o | @0 o V7= o1 i o o F- PP iX
1.1. TypographiC CONVENTIONSccuuuueiiiii ettt et e e e et eaebaes (¢

2 N o) (<SR- U (o BT Vg 1 o 1 iX

2. How to Read the SyntaxX DIagramsccccuuiiiiiiiiiiiee e e e e e e e e e e e e e e eeeaes X
3. Getting Help and Submitting FEedbAacKooiuiiiiiii e Xi
3.1. The Open Object Rexx SOUICEFOrge Sitlcc.uiiiiiiiiiiiiiiiieeei e Xi

3.2. The Rexx Language Association Mailing LiStcooooiiiiiiiiiiiniii e Xii

4. Related INfOrMAatioNoiiiiii e e e e e e e eans Xii
1. Rexx C++ Application Programming Interfaces 1
1.1, ReXX INtEIPIEter AP .. et et eans 1
1.1.1. ReXXCreatelINterPreteriiei ittt e 3
1.1.2. Interpreter INStANCe OPLIONSiiiiueieiiii e 3

1.2. Data TYPES USEA N APIS ..ottt et e e e e e e et e e e eanees 7
R = L= o @ o] 1= Tod N Y/ o 1= 7
1.2.2. REXX NUMETIC TYPES ..ttt ettt ettt e e et e et e et e e et e e e eanaaes 8

1.3. INtroduction t0 AP VECIOISieiiiiiie et e e et e e e eane e 9
1.4. Threading CONSIAEIALIONSciiiiiii ittt e e et e e et e e enba e eees 11
1.5. Garbage Collection CONSIAEIAtiONSoviiiiiiieiiiiiie et 11
1.6. Rexx Interpreter INStance INterfacecoouivvii i e 12
1.7. Rexx Thread Context INTEIfACEccoouuiiiiiiii e 12
1.8. Rexx Method Context INtEITACEccuuiiiiiiii e 13
1.9. Rexx Call Context INTEITACEcoeuiiiie e e e e 13
1.10. Rexx EXit Context INTEIrfaceco.uiiiiiiii e 13
1.11. Rexx /O Redirector Context INterfaceccoviieiiiiiiieii e 14
1.12. Building an External Native LIDraryccooveioiiiiiiiin e e ee e e e e e e 14
1.13. Defining Library ROULINESoiiiiiiiii e e e e e e e e e e e eees 16
1.13.1. RoULINE DECIAratiONScieeiiiiieiet e e 17
1.13.2. RoUtiNE ArgUMENT TYPES ..eeuiiiieiii ettt e et et e et e et e e e et e e et e aeaaeennns 18
1.14. Defining Library Methodsuiiiiiiiiii e e e e 20
1.14.1. Method DeCIarationSc...oeiueioiiiieii et e e e e e e ean s 21
1.14.2. Method ArgumMENT TYPES ..ccuueiie it e e e e e e e e e e e e e e e et s e et e e e e e e e eanaeeenas 22
1.14.3. Pointer, Buffer, and CSELFcooiiiiiiiiii e 25
1.15. ReXX EXItS INTEITACEccuniiiieiii et 29
1.15.1. Writing Context Exit HANAIEISoiiiii e 29
1.15.2. Context EXit DEfiNItIONSc.uiiiiniii e 31
1.16. Command Handler INtErfaCeoviiiiiiii e e e 43
1.17. Rexx Interface Methods LiStiNGocvveiiiiiiiii e e e e e s 45
1.17.1. AddCommMAaNdENVIFONMENTuiiiiiiieeiiie et e ettt e e e e e e e e e e eeeens 45
1.17.2. AlloCaAtEODJECIMEIMOIYoviiii i e e r e e e e ans 46
1.17.3. AreOutputANAEIrOrSAMETAIGELccuu ittt eaa s 46

L L7 4, ATTAY et e 47
1.27.5. ArTAQYAPPENA .ooeieii et 47
O A G TN = 172N o] o 1T T 1] 1 o R 48
O R X - | S PP 48

I B T AN = Y7 T . 1= £ T o S 48
L1.17.9. AITAYIIEIMS oottt et et e e et e et e et e ea e e e e e 49
1.27.10. AITAYOTFOUL ...ttt e et e e et e e e e et e e e eabe e eeeees 49
L1.27.11. Arr@YOFONE .ttt 50
O 7 N = 1Y@ L 1 (- = 50

O 0 e TR\ ¢ = 1Y@ 171 T 50
O N ¢ = Y U | PP 51
LLL7.05. AITAYSIZE ottt et et e e e et e aaa e 51

1.17.16.
1.17.17.
1.17.18.
1.17.19.
1.17.20.
1.17.21.
1.17.22.
1.17.23.
1.17.24.
1.17.25.
1.17.26.
1.17.27.
1.17.28.
1.17.29.
1.17.30.
1.17.31.
1.17.32.
1.17.33.
1.17.34.
1.17.35.
1.17.36.
1.17.37.
1.17.38.
1.17.39.
1.17.40.
1.17.41.
1.17.42.
1.17.43.
1.17.44.
1.17.45.
1.17.46.
1.17.47.
1.17.48.
1.17.49.
1.17.50.
1.17.51.
1.17.52.
1.17.583.
1.17.54.
1.17.55.
1.17.56.
1.17.57.
1.17.58.
1.17.59.
1.17.60.
1.17.61.
1.17.62.
1.17.63.
1.17.64.
1.17.65.
1.17.66.
1.17.67.
1.17.68.
1.17.69.

ABCNTRIEAA ... e e e a e 52
BUFFEIDALA . .eeiiiiie e e 52
BUFFEILENGLN ..ooeee e 52
BUFfErSIIINGDAtaivveieiiiici e e e 53
BUfferStringLENGth ..o 53
(O] | = (0o = o ¢ 1P 54
(0= 1112 {01 U1 1] = PPN 54
CheCKCONItION ... e ea e 55
(4 1= = T @o T o [1 17 o TP 55
L3 {1 o 55
DecodeConditioNINfOiiiiiii e 56
DetaChTRIEAMcooueiiiiei e 56
(D[=Tex (o] Y/ AU 57
DIFECLONYPUL ...ttt et e e eaaas 57
DIrECIONYREMOVE ..ottt et e et e e 58
D153 o] F= Y@ o o 111 o I 58
DOUDBIE . e 58
D010 o] L= Ko 1@ o [T o N 59
DoubleToODbjeCtWIthPreCiSIONcoeuiiiiii e 59
DropContextVariableo 60
DropObjectVariable ... 60
DropStemMAITAYEIEMENTciie e e e 60
DropSteMEIEMENLieie e 61
S . e 61
FINACIASS e e 62
FINACONIEXTICIASS .. evtnieei et e et e e e e e e ean e 62
FINAPACKAGECIASS ciiiiiiiiiiii e 62
T TS a1 S0 1T 6 1 1 o S 63
FOrWArAMESSATE . .evuiiieieiiiieei et e e e e e e e e e e e e e e et e e et e e eanaeeees 63
[(=110 o] =Tox 11711 o T o P 64
GetAllCONEXIVANADIES 64
GEetAIISTEMEIEMENTS ...t 65
GetAPPlICAtIONDALAcevuiiiiiiiee e 65
LT N o 11 =] o | 65
(7] 7N o 18T 1T o £ 66
GetCallErCONTEXE ...eeeei ittt e e e e 66
GetCoNditiONINTO ... e 66
GetCONEXIDIGILS ...ceeiiiieiiii ettt 67
(71 (@] 0] 1= a1 o] 1 1 o I 67
GEICONIEXIFUZZ ... et 68
GetCoNteEXIVANIADIE ... 68
GetContextVariableReferencecooviiiiiiiiiii e 68
L S I et 69
GetGlobalENVIFONMENTiii e e e e e eenas 69
GetINterpreterINSIANCE e 70
GetLOCAIENVIFONMENT ...ooviiiiiiii e 70
GEetMESSAGENGAMIE . .ouiiiii e e e e e e 70
GEetMENOA ... 71
GetMethodPackagec..ooiiiiiii 71
GetODbJeCtVAriable ..o 71
GetObjectVariableReferenCeccouuii it 72
GEtPaCKAGECIASSES ..uuiiviiiiii ittt e 72
GetPackageMeEthodSiviiieiie e 73
GetPackagePUubliCCIasSESivviiiii e 73

1.17.70. GetPackagePubliCROULINESccouuiiiiii e 73
1.17.71. GetPackageROULINESuiiiiiiiiieiiii et 74
O 7 1 1 o 0] = 74
1.17.73. GEtROULINENGIME .. oot e e e eeaens 75
1.17.74. GEtROULINEPACKAGE ... cevuiiiii ittt e e e e e e e e e e et e e e eees 75
i A £ ST 1] T oo o[TP PTPPRP 75
L0776, GEES I ot e 76
1.17.77. GetStemMAITAYEIEMENTiiii e 76
1.17.78. GetStEMEIEMENT ...t e e e e e e e 77
1.17.79. GetSEMVAIUEiiiii et eaaaas 77
R 0 T = W o= 77
S 3 - | PP 78
S 2 o - | I 1 £ Lo PP 78
1.17.83. HASMELNOAieeiiiiii e e e e e e e e 78
N 7 S [1 79
N 1T 1) 7728 o [=T o 79
LLA7.86. INBA ..ot 80
1.17.87. INtBATOODJECT ...eeiiiiieee et e e e e e et e e b 80
1.17.88. INtErPreterVErSIONcoeu it e et e et e e e eaa s 81
51 TR [11 o PSP 81
1.17.90. INtPIFTOODIECT .eveniiiiii et eaaans 82
1.17.91. INVAIIAROULINGiiiiiiiiiii et e e e e 82
e N 1= N - 82
1.07.93. ISBUITEI e 83
e 7 S 1] B (= Tod (o] VPP 83
1.17.95. ISEMrOrREIrECIEAuiiiiiieii e e 84
1.17.96. ISINPUIREINECTE ...cooviiiiiii e e 84
1.17.97. ISINSTANCEO ...t e e e 84
e £V = i o T Yo I PP 85
1.17.99. ISMULADIEBUITET ...t 85
0 0L TR =@ i Y o = PP 86
1.17.101. ISOULPUIREIFECTEAcevuieiiiiiiei et 86
0 0 17] = = P 87
1.17.103. ISRedireCtioNREQUESTIEAiiii e e e e e 87
L1.17.104. ISROULINE .etuiiiiiii ettt ettt e e e ettt s e e e ettt e e e ettneeeeatnneeeeatnaeaeens 87
O 0L T =3 = 0 o PSPPSR 88
A KO [T 535 1] o [SRR 88
1.17.107. ISSHNGTADIE ...t et 89
1.17.108. 1SVariableREfEIENCEiiiiei e 89
1.17.209. LanQUAGELEVELccouiiiiii i 89
O e I T o = o N] = 2 90
I B I T I T Vo | = o = Vo T 90
1.17.112. LoadPackageFrOmMDALAcccuuiiiuuiiiiiaiii e e e e e 91
O e R o T o= | U PO PTTR 91
1.17.114. LOQICAITOODJECE ...ttt ettt e e et e e eaa e eees 92
1.17.115. MutableBUfferCapacitycieiuiiiiiiieie e 92
1.17.116. MUtableBUfErDALAiiiiiiiiieiiiii et e 92
1.17.117. MutableBUfferLengthccooiiiiii e 93
L.17.008. NEWAITAY . .eeneieeee ettt ettt ettt et et ettt et e e e e e et t e et e e en e e e e et e et e et eenaenns 93
1.17.209. NEWBUFEE «.eee e et eens 94
1.17.120. NEWBUFTEISIIING ...cieiiiieieiii et e eeees 94
O T O LoV T =T o] YN 94
1.17.122. NEWMELNOM .. .ceiiiiieiiii et et e e e eeeae e e eees 95
1.17.123. NeWMULabIEBUTTEE 95

1.17.124.
1.17.125.
1.17.126.
1.17.127.
1.17.128.
1.17.129.
1.17.130.
1.17.131.
1.17.132.
1.17.133.
1.17.134.
1.17.135.
1.17.136.
1.17.137.
1.17.138.
1.17.139.
1.17.140.
1.17.141.
1.17.142.
1.17.143.
1.17.144.
1.17.145.
1.17.146.
1.17.147.
1.17.148.
1.17.149.
1.17.150.
1.17.151.
1.17.152.
1.17.153.
1.17.154.
1.17.155.
1.17.156.
1.17.157.
1.17.158.
1.17.159.
1.17.160.
1.17.161.
1.17.162.
1.17.163.
1.17.164.
1.17.165.
1.17.166.
1.17.167.
1.17.168.
1.17.169.
1.17.170.
1.17.171.
1.17.172.
1.17.173.
1.17.174.
1.17.175.
1.17.176.
1.17.177.

NV =01] (=] 96

NEWROULINE ...t e et e e e e e e et e e et e e een e eeees 96
LS S (=] o PPN 96
AN TS YA 1T T 97
NEWSHINGFTOMASCIZ ..uiiveeiii e e e e e e eaen 97
NEWSHINGTADIEieeiiii e e e e 98
NEWSUPPHET <. e et e e e e eeans 98
PSPPSR 98
NUISEIING et e et et e et e e e s 99
(0 o] 1= o 15T -1 | 99
(@] o] 1T i o LT o] - 100
(O] o] = Tox i o] 1 1] £ 722 100
(O] o] [=Tot i o] 1 (o PP 101
(0] [=Toim Fo] 1111 o] | TP U TUPPTTR 101
(@] o] =Tod [Moo | or= | H PP 101
(0] o] 1= o 15 1 T o 102
(0] o] 1=To1 [0S 1T 1S v = TP 102
ODbJeCtTOSINNGVAIUE ..o e 103
(0] o] [=Tet A Lo 10 110 i o] | SR PP 103
ODbjectToUNSIgNEINI32 ittt 103
ODbjectToUNSIGNEINIBA i 104
(0 01T i o) = 1 S 104
ObjectTOWhOIENUMDET ... e 105
POINTEIVAIUE ... e 105
RAISECONAITION ...cuiiiiieee et e e eees 106
RAISEEXCEPLION/O/ILI2 ..o 106
REAAINPUL ... et e e eneas 107
ReadINPUIBUTTEEiieii e 107
ReallocateObjECIMEMOIY ... e e e s 108
REQISIEILIDIAIY ...cveiii e 108
ReleaseGIobalREfEIreNCEeooiuuiiiiiii e 109
ReleaseLoCalREefEreNCEoviiuiiiii e 109
RequestGIlobalREfEreNCeiiiiiiii e 110
ReSOIVESIEMVANADIEuuiiiii 110
SeNAMESSAGE/IO/ILI2ovnee e 110
SENAMESSAGESCOPEA ...eniiiiiiii et 111
SetContextVariableo 112
SetGUArdO ... 112
SetGuardOffWhenUpdatedooooiuiiiiiiiiii e 112
1= (G U= 1 [o PP 113
SetGuardOnNWhenUpdatedcooviiiiiiiiiii e e 113
SetMutableBufferCapacitycoouoiiiiiiiiii e 114
SetMutableBufferLengtho. o 114
SetODbJeCtVariable ..o 115
SetStEMAITAYEIEMENT ..ot e 115
SEtSIEMEIEMENT ...eeiiiii e e 116
SEITRIEAATIACE ...ievviieiiii e et e e e et e eeee 116
SOETTACE .eeiiit ettt 116
SetVariableReferenCceValue ... 117
111 0o TSSO SPPPTR 117
SEINGDALA ...t 118
S 1T [T P 118
SHINGLENGLN oo 119
S 1] o I 1= 119

L1.17.178. SHINGSIZE ...ttt e et e e e e e e e e e een 119

1.17.179. StriNgSIZETOODJECTciieiiieiiii et 120
1.17.180. StrNGTADIEAL ...coveiii e 120
1.17.181. StringTabIEPUL ... ccoiiie e e 121
1.17.182. StringTabIEREMOVEiiiiiiiii e e e e e e eanes 121
1.17.183. SEINQUPPET <.ttt et ettt et e e e e e e ea e eaes 122
1.17.184. SupplierAvailable ... 122
1.17.185. SUPPHIEIINAEX ..o 122
1.17.186. SUPPLIEIITEIM .ot et 123
0 A W o o 11T = 123
O R 1 T 1= 011 0= L= PP 124
1.17.189. TRroWCONAITION ...cueeiieei et e e e 124
1.17.190. ThrowWEXCEPHON/O/LI2cceveiiiieee et 124
0 O I 1 = TS 125
O R 1 O 11 o] | S TSP UPPPTRPPPIN 125
N R 1 TR 11 o g 101 @] o] =X 126
A e 7 B | = o T T= o | g 5 126
1.17.195. UnsignedInt32TOODJECTcvuiiiie e e 127
1.17.196. UNSIGNEAINIBAuiiiii e e e e e et e e e et eeeara e 127
1.17.197. UnsSignedINtBATOODJECTuuiiiiiiii it 128
1.17.198. ValUESTOODJECTuuiiiiii ettt 128
A Ko Lo TR /= 10T o1 @ o] = o AN 128
1.17.200. VariableReferenNCeNAMEooiviiiiiiiiiii e 129
1.17.201. VariableReferenceValuecooooiiiiiiiiiii e 129
1.17.202. WHOIENUMDET ...ttt e e et e e e s e e aaeans 130
1.17.203. WholeNUMDEITOODJECTcccuuiiiiiiiie et 130
2 7 Y41 =Y = (o 131
1.17.205. WHEEEITOrBUTTEE ...ceeveiiieei e 131

O 2 T T Y41 (=T T o 132
1.17.207. WriteOULPUIBUITEIeieei e 132

2. Classic Rexx Application Programming Interfaces 134
2.1, Handler CharaCteriStICScuuuieieeriietiiiie ettt e et e et e et e e et eeeaaan s 134
2.2, RXSTRINGS ..uiiiiiiiietiii ettt e e et e et et e et et r e e e et e e e e et e e e e et 135
2.3. Calling the ReXX INTEIPIELEI ... e e 136
2.3.1. From the Operating SYSEMoiiiiii i 136
2.3.2. From within an APPICALIONcc.uuiiiiiiieii e 136
2.3.3. The RexXStart FUNCLIONiiiiiei e e e e e e e e eanaees 136
2.3.4. The RexxWaitForTermination Function (Deprecated)cocevvvvveiiiiiievinnennnnn. 140
2.3.5. The RexxDidRexxTerminate Function (Deprecated)ccoevevvieiiieiiinneennennnn, 140

2.4, SUbcommMAaNd INEITACE i e 140
2.4.1. Registering Subcommand Handlersoooiiiiiiii e 140
2.4.2. Subcommand Interface FUNCLONScc.uiiiiiiiiiiiii e 142

2.5. External FUNCLioN INEITACEovieiiiii e e 147
2.5.1. Registering External FUNCLIONSccuiiiiiiiiii e 147
2.5.2. Calling External FUNCLIONScccuuiiiiiiiii e e e e 148
2.5.3. External Function Interface FUNCLIONScc.oiiiiiiiiiii e 149

2.6. Registered System EXit INtErfaceoooouiiiiiiii e 152
2.6.1. Writing System EXit HANAIEISiiiiiiiiiii e 152
2.6.2. System EXit DefiNitiONScooouiiiiiiii e 155
2.6.3. System EXit Interface FUNCHONSouiiiiiiiii e 163

2.7. Variable POOl INTEITACEuuiiiiiii e 167
2.7. 1. INEEITACE TYPES ittt ettt et et 167
2.7.2. RexxVariablePool ReSIICHONSccouuiiiiiiiiie e 168

Vii

2.7.3. RexxVariablePool Interface FUNCLIONouieiniiiiiee e 168

2.8. Dynamically Allocating and De-allocating MemOryovviiiiiiiiiiiiiineiiiieeeeii e 172
2.8.1. The RexxAllocateMemory() FUNCLIONcoooiiiiiiiiiii e 172

2.8.2. The RexxFreeMemory() FUNCHONocouniiiiiii e 172

2.9. QUEUE INLEITACE ..u.iviiiiiii i eii e e e e e e e e e e e e e e et e e e e e e eeaanas 173
2.9.1. Queue Interface FUNCLONScouiiiiiiiiei e 173

2.10. Halt and Trace INTEITACEiiieiiiii et 178
2.10.1. Halt and Trace Interface FUNCLONSc..iiiiiiiiiiiiiiie e 179

2.11. MACIOSPACE INLEITACE ...t et 180
2.11.0. SEAICH OFUEI ..ttt e e et e e et e e e aes 181

2.11.2. Storage of Macrospace Librariesccoovvviiiiiiiiii e 181

2.11.3. Macrospace Interface FUNCLONSooiuiiiiiiiiiie e 181

A. Notices 186
y N = o (=0 =T PP 186

A.2. Source Code FOr ThiS DOCUMENTiiiiiiii et e e e e et e e e eanaeees 187

B. Common Public License Version 1.0 188
270 I I T {01 (o LSRN 188

B.2. Grant Of RIGNTS ... 188

B.3. REQUITBIMENES ...eii ittt et e e et e et e e et e e ea e eeannas 189

B.4. Commercial DiStrDULIONiiiiiiiiiiei e e e 189

B.5. NO WaAITANLY ..oeeeiii e e e 190

B.6. Disclaimer oOf Liabilityccuioiiiiiiiii e e e e 190

T 1= T - | UUPRN 190

C. Revision History 192
Index 193

viii

Preface

This book describes how to interface applications to Open Object Rexx or extend the Rexx language
by using Rexx C++ or classic application programming interfaces (APIs). As used here, the term
application refers to programs written in languages other than Rexx, usually in the C or C++ language.

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions

Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return . true or . false, the result of
performing the comparison operation.

This method is exactly equivalent to subwWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any hasentry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters
added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

@e

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

How to Read the Syntax Diagrams

M

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

» Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The »— symbol indicates the beginning of a statement.
The —- symbol indicates that the statement syntax is continued on the next line.
The --— symbol indicates that a statement is continued from the previous line.

The —»< symbol indicates the end of a statement.

* Required items appear on the horizontal line (the main path).

»—(STATEMENT required_item |

» Optional items appear below the main path.

STATEMENT

optional _item

« If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

bb—(STATEMENT required_choicel

required_choice2

« If choosing one of the items is optional, the entire stack appears below the main path.

»>—{ STATEMENT } —
J

optional_choicel

optional_choice2

« If one of the items is the default, it is usually the topmost item of the stack of items below the main
path.

Getting Help and Submitting Feedback

»»—{ STATEMENT } >
J

default_choice

optional _choice

optional _choice

A path returning to the left above the main line indicates an item that can be repeated.

repeatable_item

PP—(STATEMENT

A repeat path above a stack indicates that you can repeat the items in the stack.

» A pointed rectangle around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>—(STATEMENT)—< DETAIL - fragment)—N

» Keywords appear in uppercase (for example, SIGNAL). They must be spelled exactly as shown
but you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, index). They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

»—(MAX(number

3. Getting Help and Submitting Feedback

The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

3.1. The Open Object Rexx SourceForge Site

Open Object Rexx utilizes SourceForge to house its source repositories, mailing lists and other project
features at https://sourceforge.net/projects/oorexx. 00Rexx uses the Developer and User mailing lists
at https://sourceforge.net/p/oorexx/mailman for discussions concerning ooRexx. The ooRexx user is
most likely to get timely replies from one of these mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
Subscribe to the oorexx-devel mailing list at https.//sourceforge.net/projects/oorexx/lists/oorexx-
devel to discuss ooRexx project development activities and future interpreter enhancements. You
can find its archive of past messages at https://sourceforge.net/p/oorexx/mailman/oorexx-devel.

Xi

https://sourceforge.net/projects/oorexx
https://sourceforge.net/p/oorexx/mailman
https://sourceforge.net/projects/oorexx/lists/oorexx-devel
https://sourceforge.net/projects/oorexx/lists/oorexx-devel
https://sourceforge.net/p/oorexx/mailman/oorexx-devel

The Rexx Language Association Mailing List

The Users Mailing List
Subscribe to the oorexx-users mailing list at https:/sourceforge.net/projects/oorexx/lists/oorexx-
users to discuss how to use ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
Subscribe to the oorexx-announce mailing list at https:/sourceforge.net/projects/oorexx/lists/
oorexx-announce to receive announcements of significant ooRexx project events.

The Bug Maliling List
Subscribe to the oorexx-bugs mailing list at https:/sourceforge.net/projects/oorexx/lists/oorexx-
bugs to monitor changes in the ooRexx bug tracking system.

Bug Reports
You can view 00Rexx bug reports at https://sourceforge.net/p/oorexx/bugs. To be able to create
new bug reports, you will need to first register for a SourceForge userid at https.//sourceforge.net/
user/registration. When reporting a bug, please try to provide as much information as possible to
help developers determine the cause of the issue. Sample program code that can reproduce your
problem will make it easier to debug reported problems.

Documentation Feedback

You can submit feedback for, or report errors in, the documentation at https://sourceforge.net/p/
oorexx/documentation. Please try to provide as much information in a documentation report as
possible. In addition to listing the document and section the report concerns, direct quotes of the
text will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement

You can suggest new ooRexx features or enhancements at https://sourceforge.net/p/oorexx/
feature-requests.

Patch Reports
If you create an enhancement patch for ooRexx please post the patch at https:/sourceforge.net/
p/oorexx/patches. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report at https:/
sourceforge.net/p/oorexx/bugs and attach the patch to it.

The ooRexx Forums

The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located at https.//sourceforge.net/p/oorexx/discussion. There are currently three forums available:
Help, Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association maintains a forum at https:/groups.io/g/rexxla-members/topics.

4. Related Information

See also: Open Object Rexx: Reference

Xii

https://sourceforge.net/projects/oorexx/lists/oorexx-users
https://sourceforge.net/projects/oorexx/lists/oorexx-users
https://sourceforge.net/projects/oorexx/lists/oorexx-announce
https://sourceforge.net/projects/oorexx/lists/oorexx-announce
https://sourceforge.net/projects/oorexx/lists/oorexx-bugs
https://sourceforge.net/projects/oorexx/lists/oorexx-bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/user/registration
https://sourceforge.net/user/registration
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/discussion
https://groups.io/g/rexxla-members/topics

Chapter 1.

Rexx C++ Application Programming
Interfaces

This chapter describes how to interface applications to Rexx or extend the Rexx language by using
Rexx C++ application programming interfaces (APIs). As used here, the term application refers to
programs written in C++.

The features described here let a C++ application extend many parts of the Rexx language or extend
an application with Rexx. This includes creating handlers for Rexx methods, external functions, and
system exits.

Rexx methods
are methods for Rexx classes written in C++. The methods reside in dynamically loaded external
shared libraries.

Functions
are function extensions of the Rexx language written in C++. Like the native methods, functions
are packaged in external libraries. Functions can be general-purpose extensions or specific to an
application.

Command Handlers
are programmer-defined handlers for named command environments. The application
programmer can tailor the Rexx interpreter behavior by creating named command environments to
interfacing with application environments.

System exits
are programmer-defined variations of the interpreter. The application programmer can tailor the
Rexx interpreter behavior by using the defined exit points to control Rexx resources.

Methods, functions, system exit handlers, and command handlers have similar coding, compilation,
and packaging characteristics.

In addition, applications can call methods defined of Rexx objects and execute them from externally
defined methods and functions.

1.1. Rexx Interpreter API

Rexx programs run in an environment controlled by an interpreter instance. An interpreter instance
environment is created with an enable set of exit handlers and a customized environment. An instance
may have multiple active threads and each interpreter instance has a unique version of the .local
environment directory, allowing programs to run with some degree of isolation.

If you use the older RexxStart (Section 2.3.3, “The RexxStart Function”) API to run a Rexx program,
the Rexx environment initializes, runs a single program, and the environment is terminated. With the
RexxCreatelnterpreter() API, you have fine grain control over how the environment is used. You are
able to create a tailored environment, perform multiple operations (potentially, on multiple threads),
create objects that persist for longer than the life of a single program, etc. An application can create an
interpreter instance once, and reuse it to run multiple programs.

Interpreter environments are created using the RexxCreatelnterpreter API:

Example 1.1. APl — Rexx Createlnterpreter

RexxInstance *instance;

Rexx Interpreter API

RexxThreadContext *threadContext;
RexxOption options[25];

if (RexxCreateInterpreter(&instance, &threadContext, options)) {

5

Once you've created an interpreter instance, you can use the APIs provided by the RexxInstance or
RexxThreadContext interface to perform operations like running programs, loading class packages,
etc. For example, the following code will run a program using a created instance, checking for syntax
errors upon completion:

Example 1.2. APl — RexxInstance and RexxThreadContext

// create an Array object to hold the program arguments

RexxArrayObject args = threadContext->NewArray(instanceInfo->argCount);
// we're passing a variable number of arguments, so we need to create
// String objects and insert them into the array

for (size_t i = 0; i < argCount; i++)

{
if (arguments[i] != NULL)
{
// add the argument to the array, if specified. Note that ArrayPut() requires
an
// index that is origin-1, unlike C arrays which are origin-0.
threadContext->ArrayPut(args, threadContext->String(arguments[i]), i + 1);
}
}

// call our program, using the provided arguments.

Rexx0ObjectPtr result = threadContext->CallProgram("myprogram.rex", args);
// if an error occurred, get the decoded exception information

if (threadContext->CheckCondition())

{

RexxCondition condition;

// retrieve the error information and get it into a decoded form
RexxDirectoryObject cond = threadContext->GetConditionInfo();
threadContext->DecodeConditionInfo(cond, &condition);
// display the errors
printf("error %d: %s\n%s\n", condition.code, threadContext-
>CString(condition.errortext),
threadContext->CString(condition.message));

3
else
{
// Copy any return value as a string
if (result != NULLOBJECT)
{
CSTRING resultString = threadContext->CString(result);
strncpy(returnResult, resultString, sizeof(returnResult));
¥
3

// make sure we terminate this first
instance->Terminate();

The example above creates a Rexx String object for each program argument stores them in a Rexx
array. It then uses CallProgram to call "myprogram.rex", passing the array object as the program
arguments. On return, if the program terminated with a Rexx SYNTAX error, it displays the error
message to the console. Finally, if the program exited normally and returned a value, the ASCII-Z

RexxCreatelnterpreter

value of that result is copied to a buffer. As a final step, the interpreter instance is destroyed once
we're finished using it.

1.1.1. RexxCreatelnterpreter

RexxCreatelnterpreter creates an interpreter instance and an associated thread context interface for
the current thread.

Example 1.3. APl — RexxInstance and RexxThreadContext

RexxInstance *instance;
RexxThreadContext *threadContext;
RexxOption options[25];

if (RexxCreateInterpreter(&instance, &threadContext, options)) {

Arguments

instance The returned RexxInstance interface vector. The interface vector provides access
to APIs that apply to the global interpreter environment.

threadContext The returned RexxThreadContext interface vector for the thread that creates the
interpreter instance. The thread context vector provides access to thread-specific
services.

options An array of RexxOption structures that control the interpreter instance initialization.
See Section 1.1.2, “Interpreter Instance Options” for details on the available
options.

Returns

1 (TRUE) if the interpreter instance was successfully created, 0 (FALSE) for any failure to create the
interpreter.

1.1.2. Interpreter Instance Options

The third argument to RexxCreatelnterpreter is an options array that sets characteristics of the
interpreter instance. The options argument points to an array of RexxOption structures, and can be
NULL if no options are required. Each RexxOption instance contains information for named options
that can be specified in any order and even multiple times. The oorexxapi.h include file contains a
#define for each option name. The information required by an option varies with each option type,
and is specified using a ValueDescriptor struct to handle a variety of data types. An entry with a NULL
option name terminates the option list. The available interpreter options are:

INITIAL_ADDRESS_ENVIRONMENT

Contains the ASCII-Z name of the initial address environment that will be used for all Rexx
programs run under this instance.

Example 1.4. APl — RexxOption INITIAL_ADDRESS_ENVIRONMENT

RexxOption options[2];

options[@].optionName = INITIAL_ADDRESS_ENVIRONMENT;
options[@].option = "EDITOR";

Interpreter Instance Options

options[1].optionName = NULL;

APPLICATION_DATA
Contains a void * value that will be stored with the interpreter instance. The application data can
be retrieved using the GetApplicationData API. The application data pointer allows methods,
functions, exits, and command handlers to recover access to globally defined application data.

Example 1.5. APl — RexxOption APPLICATION_DATA

RexxOption options[2];

options[0@].optionName = APPLICATION_DATA;
options[@].option = (void *)editorInfo;
options[1].optionName = NULL;

EXTERNAL_CALL_PATH
Contains an ASCII-Z string defining an additional search path that is used when searching
for Rexx program files. The call path string uses the format appropriate for the host platform
environment. On Windows, the path elements are separated by semicolons (;). On Unix-based

systems, a colon (%) is used.
Example 1.6. APl — RexxOption EXTERNAL_CALL_PATH

RexxOption options[2];

options[0@].optionName = EXTERNAL_CALL_PATH;
options[@].option = myCallPath;
options[1].optionName = NULL;

EXTERNAL_CALL_EXTENSIONS
Contains an ASCII-Z string defining a list of extensions that will be used when searching for Rexx
program files. The specified extensions must include the extension ".". Multiple extensions are

separated by a comma (,).

Example 1.7. APl — RexxOption EXTERNAL_CALL_EXTENSIONS

RexxOption options[2];

options[0@].optionName = EXTERNAL_CALL_EXTENSIONS;
options[@].option = ".ed,.mac"; // add ".ed" and ".mac" to search path.
options[1].optionName = NULL;

LOAD_REQUIRED_LIBRARY
Specifies the name of an external native library that will be loaded once the interpreter instance
is created. The library name is an ASCII-Z string with the library name in the same format used
for ::REQUIRES LIBRARY. Multiple libraries can be loaded by specifying this option multiple times.

Example 1.8. APl — RexxOption LOAD_REQUIRED_ LIBRARY

RexxOption options[2];

options[@].optionName = LOAD_REQUIRED_LIBRARY;

4

Interpreter Instance Options

options[@].option = "rxmath";
options[1].optionName = NULL;

REGISTER_LIBRARY
Specifies a package that will be registered with the Rexx environment without loading an external
library. The library is specified with a RexxLibraryPackage structure that gives the library name
and a pointer to the associated RexxPackageEntry (Section 1.12, “Building an External Native
Library”) table that describes the package contents. The library name is an ASCII-Z string with
the library name in the same format used for ::REQUIRES LIBRARY. Multiple libraries can be
registered by specifying this option multiple times.

Example 1.9. APl — RexxOption REGISTER_LIBRARY

RexxOption options[2];
RexxLibraryPackage package;

package.registeredName = "mypackage";
package.table = packageTable;

options[0@].optionName = REGISTER_LIBRARY;
options[@].option = (void *)&package;
options[1].optionName = NULL;

DIRECT_EXITS
Specifies a list of system exits that will be used with this interpreter instance. The exits are a list
of RexxContextExit structs. Each enabled exit is specified in a single RexxContextExit struct that
identifies exit type and handler entry point. The list is terminated by an instance using an exit type
of 0. The direct exits are called using the RexxExitContext calling convention. See Section 1.15,
“Rexx Exits Interface” for details.

Example 1.10. APl — RexxOption DIRECT_EXITS

RexxContextExit exits[2];
RexxOption options[2];

exits[@].handler = functionExit;
exits[0].sysexit_code = RXOFNC;
exits[1].sysexit_code = 0;

options[Q].optionName = DIRECT_EXITS;
options[@].option = (void *)exits;
options[1].optionName = NULL;

DIRECT_ENVIRONMENTS
Registers one or more direct subcommand handler environments with the interpreter instance.
The handlers are a list of RexxContextEnvironment structs. Each enabled handler is specified in
a single RexxContextEnvironment struct identifying the handler name and entry point. The list is
terminated by an instance using a handler entry point of NULL or a handler name of NULL. The
direct environment handlers are called using the calling convention described in Section 1.16,
“Command Handler Interface”.

Interpreter Instance Options

Example 1.11. APl — RexxOption DIRECT_ENVIRONMENTS

RexxContextEnvironment environments[2];
RexxOption options[2];

environments[@].handler = editorHandler;
environments[Q].name = "EDITOR";
environments[1].handler = NULL;
environments[1].name = NULL;

options[@].optionName = DIRECT_ENVIRONMENTS;
options[0@].option = (void *)environments;
options[1].optionName = NULL;

REDIRECTING_ENVIRONMENTS
Registers one or more redirecting subcommand handler environments with the interpreter
instance. The handlers are a list of RexxRedirectingEnvironment structs. Each enabled handler
is specified in a single RexxRedirectingEnvironment struct identifying the handler name and entry
point. The list is terminated by an instance using a handler entry point of NULL or a handler name
of NULL. The redirecting environment handlers are called using the calling convention described
in Section 1.16, “Command Handler Interface”.

Example 1.12. APl — RexxOption REDIRECTING_ENVIRONMENTS

RexxRedirectingEnvironment environments[2];
RexxOption options[2];

environments[Q].handler = redirectingCommandHandler;
environments[Q@].name = "SYSTEM";
environments[1].handler = NULL;

environments[1].name = NULL;

options[0@].optionName = REDIRECTING_ENVIRONMENTS;
options[@].option = (void *)environments;
options[1].optionName = NULL;

REGISTERED_EXITS
Specifies a list of system exits that will be used with this interpreter instance. The exits are a list
of RexxContextExit structs. Each enabled exit is specified in a single RexxContextExit struct
identifying the type of the exit and the name of the registered exit handler. The list is terminated
by an instance using an exit type of 0. The registered exits are called using the RexxExitHandler
calling convention. See Section 2.6, “Registered System Exit Interface” for detalils.

Example 1.13. APl — RexxOption REGISTERED_EXITS

RXSYSEXIT exits[2];
RexxOption options[2];

exits[0].sysexit_name
exits[0].sysexit_code
exits[1].sysexit_code

"MyFunctionExit";
RXOFNC;
0;

options[@].optionName = REGISTERED_EXITS;
options[@].option = (void *)exits;

Data Types Used in APIs

options[1].optionName = NULL;

REGISTERED_ENVIRONMENTS
Registers one or more subcommand handler environments with the interpreter instance. The
handlers are a list of RexxRegisteredEnvironment structs. Each enabled handler is specified
in a single RexxRegisteredEnvironment struct identifying the name of the environment and the
registered subcom handler name. The list is terminated by an instance using a handler name
of NULL. The direct environment handlers are called using the calling convention described in
Section 2.4, “Subcommand Interface”.

Example 1.14. APl — RexxOption REGISTERED_ENVIRONMENTS

RexxRegisteredEnvironment environments[2];
RexxOption options[2];

environments[0].registeredName = "MyEditorName";
environments[@].name = "EDITOR";
environments[1].name = NULL;

options[0].optionName = REGISTERED_ENVIRONMENTS;
options[0@].option = (void *)environments;
options[1].optionName = NULL;

1.2. Data Types Used in APIs

The ooRexx APIs rely on a variety of special C++ types for interfacing with the interpreter. Some

of these types are specific to the Rexx language, while others are standard types defined by C++.
Many of the APIs involve conversion between types, while others require values of a specific type as
arguments. This section explains the different types and the rules for using these types.

1.2.1. Rexx Object Types

Open Object Rexx is fundamentally an object-oriented language. All data in the language (including
strings and numbers) are represented by object instances. The ooRexx APIs use a number of opaque
types that represent instances of Rexx built-in objects. The defined object types are:

RexxObjectPtr

RexxStringObject

RexxBufferStringObject

RexxArrayObject

RexxDirectoryObject

RexxStringTableObject

a reference to a Rexx object instance. This is the root of object hierarchy
and can represent any type of object.

an instance of the Rexx String class. The API set allows String objects to
be created and manipulated.

an instance of the Rexx String class that can be written into. Buffer strings
are used for constructing String objects "in-place" to avoid needing to
create a String from a separate buffer. RexxBufferStringObject instances
must be finalized to be converted into a usable Rexx String object.

An instance of a Rexx single-dimensional Array. Arrays are used in many
places, and there are interfaces provided for direct array manipulation.

An instance of Rexx Directory class. Like arrays, there are APIs provided
for access and manipulating data stored in a directory.

An instance of Rexx StringTable class. Like for directories, there are APIs
provided for access and manipulating data stored in a StringTable.

Rexx Numeric Types

RexxStemObject An instance of the Rexx Stem class. The APIs include a number of utility
routines for accessing and manipulating data in Stem objects.

RexxSupplierObject An instance of the Rexx Supplier class.

RexxClassObject An instance of the Rexx Class class.

RexxPackageObject An instance of the Rexx Package class.
RexxMethodObject An instance of the Rexx Method class.

RexxRoutineObject An instance of the Rexx Routine class. Routine objects can be invoked
directly from C++ code.

RexxPointerObject A wrapper around a pointer value. Pointer objects are designed for
constructing Rexx classes that interface with native code subsystems.

RexxBufferObject An allocatable storage object that can be used for storing native C++ data.
Buffer objects and the contained data are managed using the Rexx object
garbage collector.

RexxMutableBufferObjectAn instance of the Rexx MutableBuffer class.

1.2.2. Rexx Numeric Types

The Routine and Method interfaces support a very complete set of C numeric types as arguments
and return values. In addition, there are also APIs provided for converting between Rexx Objects and
numeric types (and the reverse transformation as well). It is recommended that you allow the Rexx
runtime and APIs to handle conversions between Rexx strings and numeric types to give behavior
consistent with the Rexx built-in methods and functions.

In addition to a full set of standard numeric types, there are special types provided that implement the
standard Rexx rules for numbers used internally by Rexx. These types are:

wholenumber_t conversions involving the wholenumber_t conform to the Rexx
whole number rules. Values are converted using the same internal
digits value used by the built-in functions. For 32-bit versions, this
is numeric digits 9, giving a range of 999,999,999 to -999,999,999.
On 64-bit systems, numeric digits 18 is used, giving a range of
999,999,999,999,999,999 to -999,999,999,999,999,999.

positive_wholenumber_t very similar to above wholenumber _t, but with the added
restriction that the value must be equal to or larger than one. For
32-bit versions, this gives a range of 999,999,999 to 1. On 64-bit
systems, the range is 999,999,999,999,999,999 to 1.

nonnegative_wholenumber_t very similar to above wholenumber_t, but with the added
restriction that the value must be equal to or larger than zero. For
32-bit versions, this gives a range of 999,999,999 to 0. On 64-bit
systems, the range is 999,999,999,999,999,999 to 0.

stringsize t stringsize_t conversions also conform to the Rexx whole number
rules, with the added restriction that the value must be a non-
negative whole number value. The stringsize_t type is useful for
arguments such as string lengths where only a non-negative value
is allowed. The range for 32-bit versions is 999,999,999 to 0, and
999,999,999,999,999,999 to 0 on 64-bit platforms.

logical_t a Rexx logical value. On conversion from a string value, this must
be either '1' (true) or '0' (false). On conversion back to a string
value, a non-zero binary value will be converted to '1' (true) and
zero will become '0' (false).

8

Introduction to API Vectors

A subset of the integer numeric types are of differing sizes depending on the addressing mode of the
system you are compiling on. These types will be either 32-bits or 64-bits. The variable size types are:

size t An unsigned "size" value. This is the value type returned by pointer subtraction.

ssize t The signed equivalent to size t.

uintptr_t An unsigned integer value that's guaranteed to be the same size as a pointer
value. Use an uintptr_t type if you wish to return a pointer value as a Rexx
number.

intptr_t A signed equivalent to uintptr_t.

The remainder of the numeric types have fixed sizes regardless of the addressing mode.

int A 32-bit signed integer.

int32_t A 32-bit signed integer. This is equivalent to int.

uint32_t An unsigned 32-bit integer.

int64_t A signed 64-bit integer.

uinté4_t An unsigned 64-bit integer.

intl6 t A signed 16-bit integer.

uintl6_t An unsigned 16-bit integer.

int8_t A signed 8-bit integer.

uint8_t An unsigned 8-bit integer.

float A 32-bit floating point number. When used as an argument to a routine or

method, the strings "nan”, "+infinity", and "-infinity" will be converted into
the appropriate floating-point values. The reverse conversion is used when
converting floating-point values back into Rexx objects.

double A 64-bit floating point number. The Rexx runtime applies the same special
processing for nan, +infinity, and -infinity values as float types.

1.3. Introduction to API Vectors

The Rexx APIs operate through a set of interface vectors that define a set of interpreter services that
are available. There are different interface vectors used for different contexts, but they use very similar
calling concepts.

The first interface vector you'll encounter with the programming interfaces is the RexxInstance value
returned by RexxCreatelnterpreter. The RexxInstance type is defined as a struct when compiled for C
code, or a C++ class when compiled for ++. The struct version looks like this:

Example 1.15. APl — RexxInstance

struct RexxInstance_

{

RexxInstancelInterface *functions; // the interface function vector
void *applicationData; // creator defined data pointer

}i

The field applicationData contains any value that was specified via the APPLICATION_DATA option
on the RexxCreatelnterpreter call. This provides easy access to any application-specific data needed
to interact with the interpreter. All other interface contexts will include a pointer to the RexxInstance
structure, so it is always possible to recover this data pointer.

9

Introduction to API Vectors

The functions field is a pointer to a second structure that defines the Rexxlnstance programming
interfaces. The RexxInstance services are ones that may be called from any thread and in any
context. The services are called using C function pointer fields in the interface structure. The
RexxlInstancelnterface looks like this:

Example 1.16. APl — RexxInstancelnterface

typedef struct

{
wholenumber_t interfaceVersion; // The interface version identifier
void (RexxEntry *Terminate)(RexxInstance *);
logical t (RexxEntry *AttachThread)(RexxInstance *, RexxThreadContext **);
size_t (RexxEntry *InterpreterVersion)(RexxInstance *);
size_t (RexxEntry *LanguagelLevel) (RexxInstance *);
void (RexxEntry *Halt)(RexxInstance *);
void (RexxEntry *SetTrace)(RexxInstance *, logical_t);

} RexxInstancelInterface;

The first thing to note is the interface struct contains a field named interfaceVersion. The
interfaceVersion field is a version marker that defines the services the interpreter version supports.
This interface version is incremented any time new functions are added to the interface. Using

the interface version allows application code to reliably check that required interface functions are
available.

The remainder of the fields are functions that can be called to perform RexxInstance operations. Note
that the first argument to all of the functions is a pointer to a RexxInstance structure. A call to the
InterpreterVersion API from C code would look like this:

size_t version = context->functions->InterpreterVersion(context);

When using C++ code, the RexxThreadContext struct has convenience methods that simplify calling
these functions:

size_t version = context->InterpreterVersion();

Note that in the C++ call, it is no longer necessary to pass the RexxInstance as the first object. That's
handled automatically by the C++ method.

The RexxThreadContext pointer returned from RexxCreatelnterpreter() functions the same way.
RexxThreadContext looks like this:

Example 1.17. APl — RexxThreadContext

struct RexxThreadContext_

{
RexxInstance *instance; // the owning instance
RexxThreadInterface *functions; // the interface function vector

The RexxThreadContext struct contains an embedded RexxInstance pointer for the associated
interpreter instance. It also contains an interface vector for the functions available with a
RexxThreadContext. The RexxThreadInterface vector has its own version identifier and
function pointer for each of the defined services. The RexxThreadContext functions all require a

10

Threading Considerations

RexxThreadContext pointer as the first argument. The RexxThreadContext class also defines C+
+ convenience methods for accessing its own functions and the functions for the RexxInstance as
well. For example, to call the InterpreterVersion APl using a RexxThreadContext from C code, it is
necessary to code

size_t version = context->instance->functions->InterpreterVersion(context->instance);
The C++ version is simply

// context is a RexxThreadContext *
size_t version = context->InterpreterVersion();

When the Rexx interpreter makes calls to native code routines and methods, or invokes exit
handlers, the calls use context structures specific to the call context. These are the RexxCallContext,
RexxMethodContext, and RexxExitContext structures. Each structure contains a pointer

to a RexxThreadContext instance that's valid until the call returns. Through the embedded
RexxThreadContext, each call may use any of the RexxThreadContext or RexxInstance functions

in addition to the context-specific functions. Each context defines C++ methods for the embedded
RexxInstance and RexxThreadContext functions.

Note that the RexxInstance interface can be used at any time and on any thread. The
RexxThreadContext returned by RexxCreatelnterpreter() can only be used on the same thread as
the RexxCreatelnterpreter() call, but is not valid for use in the context of a method, routine, or exit
call-out. In those contexts, the RexxThreadContext instance passed to the call-out must be used. A
RexxThreadContext instance created for a call-out is only valid until the call returns to the interpreter.

1.4. Threading Considerations

When using RexxCreatelnterpreter to create a new interpreter instances, a RexxThreadContext
pointer is returned with the interpreter instance. The thread context vector allows you to
perform operations such as running Rexx programs while in the same thread context as the
RexxCreatelnterpreter() call.

A given interpreter instance can process calls from multiple threads, but a RexxThreadContext
instance must be obtained for each additional thread you wish to use. A new thread context

is obtained by calling AttachThread() using the RexxInstance API vector returned from
RexxCreatelnterpreter(). Once a valid RexxThreadContext interface has been created for the thread,
any of the thread context operations may be used from that thread. Before the thread terminates, the
DetachThread API must be called to remove the attached thread from the interpreter instance.

The interpreter is capable of asynchronous calls to interpreter APIs from signal or event handlers.
When called in this manner, it is possible that AttachThread will be called while running on a thread
that is already attached to the interpreter instance. When a nested AttachThread call is made, the
previous thread context is suspended and the newly created thread context is the active context for
the source thread. It is very important that DetachThread() be called to restore the original thread
context before you return from the signal handler.

1.5. Garbage Collection Considerations

When any context API has a return result that is a Rexx object instance, the source API context
will protect that object instance from garbage collection for as long as the context is valid. Once
the API context is destroyed, the accessed objects might become eligible for garbage collection
and be reclaimed by the interpreter runtime. These object references are only valid until the current

11

Rexx Interpreter Instance Interface

context is destroyed. They cannot be stored in native code control blocks and be used in other thread
contexts. If you wish to store object references so that they can be accessed by other thread contexts,
you can create a globally valid object reference using the RequestGlobalReference API. A global
reference will protect the object from the garbage collector until the interpreter instance is terminated.
Protecting the object will also protect any objects referenced by the protected object. For example,
using RequestGlobalReference() to protect a Directory object will also protect all of the directory keys
and values. The global reference can be used with any API context valid for the same interpreter
instance. Once you are finished with a locked object, ReleaseGlobalReference removes the object
lock and makes the object eligible for garbage collection.

On the flip side of this, sometimes it is desirable to remove the local API context protection from

an object. For example, if you use the ArrayAt() API to iterate through all of the elements of an

Array, each object ArrayAt() returns will be added to the API context's protection table. There is a
small overhead associated with each protected reference, so iterating through a large array would
accumulate that overhead for each array element. Using ReleaselLocalReference on an object
reference you no longer require will remove the local lock, and thus limit the overhead associated with
tracking the object references.

1.6. Rexx Interpreter Instance Interface

The Interpreter Instance API is defined by the RexxInstance interface vector. The RexxInstance
defines methods that affect the global state of the interpreter instance. Most of the instance APIs can
be called from any thread without requiring any extra steps to access the instance. The two most
important instance operations are AttachThread and Terminate. AttachThread() allows additional
externally identified threads to be included in the interpreter instance threadpool. AttachThread returns
a RexxThreadContext interface vector that enables a wider range of capability for the attached thread.
The Terminate() API shuts down an interpreter instance when it is no longer needed.

1.7. Rexx Thread Context Interface

The RexxThreadContext interface vector provides a very wide range of functions to your application
code. There are more than 170 functions defined on a RexxThreadContext. Among the services
provided are:

* Running Rexx programs

» Loading Rexx packages

 Invoking methods of Rexx objects

« Converting between objects and various C++ types

« Creating and manipulating common Rexx object types
» Raising/handling Rexx syntax errors

The C++ methods defined on a RexxThreadContext C++ object include the methods defined by the
RexxlInstance class, so the single context vector is used to access both thread context and interpreter
instance APlIs.

A RexxThreadContext instance is returned with the original RexxCreatelnterpreter call that created
the interpreter instance. The AttachThread method will create a RexxThreadContext instance for
additional threads that you add to an interpreter instance. Additionally, the RexxMethodContext,
RexxCallContext, and RexxExitContext objects embed a RexxThreadContext object the same way
that a RexxThreadContext object embeds a RexxInstance object.

12

Rexx Method Context Interface

1.8. Rexx Method Context Interface

A RexxMethodContext object is included as an argument to any native C++ method (Section 1.14,
“Defining Library Methods”) defined in external libraries. The method context provides services that
are specific to a method call, including:

» Accessing method-specific values such as SELF, SUPER, etc.
» Manipulating object instance variables

» Forwarding messages

Manipulating GUARD state

Locating classes defined in the method's package scope

In addition to the method-specific functions, the RexxMethodContext object has an embedded
RexxThreadContext object created specifically for this environment. The RexxThreadContext provides
a large number of additional methods to the method environment.

API calls made using the RexxMethodContext APIs may cause Rexx syntax errors or other conditions
to be raised. These calls are invoked as if the current context is operating with SIGNAL ON ANY
enabled. Any conditions will be trapped and held in a pending condition until the current context
returns. At the return, if a condition is still pending, the appropriate condition is reraised in the caller's
context. These errors can be checked using the CheckCondition API, and pending conditions can be
cancelled using ClearCondition.

1.9. Rexx Call Context Interface

A RexxCallContext object is included as an argument to any native C++ routine (Section 1.13,
“Defining Library Routines”) defined in external libraries. The call context provides services that are
specific to a routine call, including:

» Accessing caller context specific values such as the current numeric settings
e Manipulating variables in the caller's variable context
 Locating classes defined in the routine's package scope

In addition to the call-specific functions, the RexxCallContext object has an embedded
RexxThreadContext object created specifically for this environment. The RexxThreadContext provides
a large number of additional methods to the call environment.

API calls made using the RexxCallContext APIs may cause Rexx syntax errors or other conditions
to be raised. These calls are invoked as if the current context is operating with SIGNAL ON ANY
enabled. Any conditions will be trapped and held in a pending condition until the current context
returns. At the return, if a condition is still pending, the appropriate condition is reraised in the caller's
context. These errors can be checked using the CheckCondition API, and pending conditions can be
cancelled using ClearCondition.

1.10. Rexx Exit Context Interface

A RexxExitContext object is included as an argument to any system exit or command handler. The exit
context provides services that are specific to an exit call, including:

» Accessing caller context specific values such as the current numeric settings

* Manipulating variables in the caller's variable context

13

Rexx 1/0 Redirector Context Interface

In addition to the exit-specific functions, the RexxExitContext object has an embedded
RexxThreadContext object created specifically for this environment. The RexxThreadContext provides
a large number of additional methods to the exit environment.

API calls made using the RexxExitContext APls may cause Rexx syntax errors or other conditions
to be raised. These calls are invoked as if the current context is operating with SIGNAL ON ANY
enabled. Any conditions will be trapped and held in a pending condition until the current context
returns. At the return, if a condition is still pending, the appropriate condition is reraised in the caller's
context. These errors can be checked using the CheckCondition API, and pending conditions can be
cancelled using ClearCondition.

1.11. Rexx 1/0 Redirector Context Interface

A RexxlORedirectorContext object is included as the last argument to any redirecting command
handler. The 1/0 Redirector context provides services that are specific to the redirection of STDIN,
STDOUT, and STDERR of external commands, including:

« Providing information whether redirection was requested, and for which standard stream
 Retrieving input data for STDIN redirection
» Returning output data from STDOUT and STDERR redirection

API calls made using the RexxlORedirectorContext APIs may cause Rexx syntax errors or other
conditions to be raised. These calls are invoked as if the current context is operating with SIGNAL ON
ANY enabled. Any conditions will be trapped and held in a pending condition until the current context
returns. At the return, if a condition is still pending, the appropriate condition is reraised in the caller's
context. These errors can be checked using the CheckCondition API, and pending conditions can be
cancelled using ClearCondition.

1.12. Building an External Native Library

External libraries written in compiled languages (typically C or C++) provide a means to interface Rexx
programs with other subsystems intended for compiled languages. These libraries are packaged as
Dynamic Link Libraries on Windows or shared libraries on Unix-based systems. A named library can
be loaded using the ::REQUIRES directive, the loadLibrary() method on the Package class, or by
using the EXTERNAL keyword on a ::ROUTINE, ::METHOD, or ::ATTRIBUTE directive.

When the library is loaded, the interpreter searches for an entry point in the library named
RexxGetPackage(). An external library package is required to provide a RexxGetPackage() function
that returns a pointer to the descriptor structure defining the methods and routines contained within
the library. The RexxGetPackage() routine takes no arguments and has a RexxPackageEntry
*return value. This is normally created using the OOREXX_GET_PACKAGE() macro defined in the
oorexxapi.h include file.

// package loading stub.
OOREXX_GET_PACKAGE (package);

Where package is the name of the RexxPackageEntry table for this library. The package entry

table is a descriptor contained within the library. Note that on Windows, it is necessary to explicitly
export the RexxPackageEntry() function when the library is linked. This is the only name you are
required to export. Calls are made to the library routines and methods using addresses stored in the
RexxPackageEntry table.

The RexxPackageEntry structure contains information about the package and descriptors of any
methods and/or routines defined within the package. The structure looks like this:

14

Building an External Native Library

Example 1.18. APl — RexxPackageEntry

typedef struct _RexxPackageEntry

{
int size; // size of the structure...helps compatibility
int apiVersion; // version this was compiled with
int requiredVersion; // minimum required interpreter version (@ means any)
const char *packageName; // package identifier
const char *packageVersion; // package version #
RexxPackagelLoader loader; // the package loader

RexxPackageUnloader unloader; // the package unloader

struct _RexxRoutineEntry *routines; // routines contained in this package

struct _RexxMethodEntry *methods; // methods contained in this package
} RexxPackageEntry;

The fields in the RexxPackageEntry have the following functions:

size and apiVersion
these fields give the size of the received table and identify the interpreter level this library has
been compiled against. These indicators will allow additional information to be added to the
RexxPackageEntry in the future without causing compatibility issues for older libraries. Normally,
these two fields are defined using the STANDARD_PACKAGE_HEADER macro, which sets both
values.

requiredVersion
a library can specify the minimum interpreter level it requires. The interpreter will only
load libraries that match the minimum compatibility requirement of the library package.
A zero value in this field indicates there is no minimum level requirement. The macro
REXX_CURRENT_INTERPRETER_VERSION will set the level of interpreter you are compiling
against. If REXX_CURRENT_INTERPRETER_VERSION is specified, then the library package will
not load with older releases. The API header files will be updated with a macro for each interpreter
version. The version macros are of the form REXX_INTERPRETER_version_level_revision,
where version, level, and revision refer to the corresponding values in an interpreter release
number. For example, REXX_INTERPRETER_4_0_0 would indicate that the 4.0.0 interpreter level
is the minimum this library requires.

packageName
a descriptive name for this library package.

packageVersion
a version string for this package. The version can be in whatever form is appropriate for the
package.

packagelLoader
a function that will be called when the library package is first loaded by the interpreter. The
package loader function is passed a RexxThreadContext pointer, which will give the package
access to Rexx interpreter services at initialization time. The package loader is optional and is
indicated by a NULL value in the descriptor.

packageUnloader
a function that will be called when the library package is unloaded by the interpreter. The
unloading process happens when the last interpreter instance is destroyed during the last cleanup
stages. This gives the loaded library an opportunity to clean up any global resources such as
cached Rexx object references. The package loader is optional and is indicated by a NULL value
in the descriptor.

15

Defining Library Routines

routines

a pointer to an array of RexxRoutineEntry structures that define the routines provided by this
package. If there are no routines, this field should be NULL. See Section 1.13, “Defining Library
Routines” for details on creating the exported routine table.

method
a pointer to an array of RexxMethodEntry structures that define the methods provided by this
package. If there are no methods, this field should be NULL. See Section 1.14, “Defining Library
Methods” for details on creating the exported method table.

Here is an example of a RexxPackageEntry table taken from the rxmath library package:
Example 1.19. APl — RexxPackageEntry and RexxRoutineEntry

// now build the actual entry list
RexxRoutineEntry rxmath_functions[] =

{
REXX_TYPED_ROUTINE(MathLoadFuncs, MathLoadFuncs),
REXX_TYPED_ROUTINE(MathDropFuncs, MathDropFuncs),
REXX_TYPED_ROUTINE(RxCalcPi, RxCalcPi),
REXX_TYPED_ROUTINE(RxCalcSqrt, RxCalcSqrt),
REXX_TYPED_ROUTINE(RxCalcExp, RxCalcExp),
REXX_TYPED_ROUTINE(RxCalcLog, RxCalclLog),
REXX_TYPED_ROUTINE(RxCalcLog10, RxCalclLogl10),
REXX_TYPED_ROUTINE(RxCalcSinH, RxCalcSinH),
REXX_TYPED_ROUTINE(RxCalcCosH, RxCalcCosH),
REXX_TYPED_ROUTINE(RxCalcTanH, RxCalcTanH),
REXX_TYPED_ROUTINE(RxCalcPower, RxCalcPower),
REXX_TYPED_ROUTINE(RxCalcSin, RxCalcSin),
REXX_TYPED_ROUTINE(RxCalcCos, RxCalcCos),
REXX_TYPED_ROUTINE(RxCalcTan, RxCalcTan),
REXX_TYPED_ROUTINE(RxCalcCotan, RxCalcCotan),
REXX_TYPED_ROUTINE(RxCalcArcSin, RxCalcArcSin),
REXX_TYPED_ROUTINE(RxCalcArcCos, RxCalcArcCos),
REXX_TYPED_ROUTINE(RxCalcArcTan, RxCalcArcTan),
REXX_LAST_ROUTINE()

Y

RexxPackageEntry rxmath_package_entry =

{
STANDARD_PACKAGE_HEADER
REXX_INTERPRETER_4_0_0, // anything after 4.0.0 will work
"RXMATH", // name of the package
"4.0", // package information
NULL, // no load/unload functions
NULL,
rxmath_functions, // the exported functions
NULL // no methods in rxmath.

Y

// package loading stub.
OOREXX_GET_PACKAGE (rxmath);

1.13. Defining Library Routines

The RexxRoutineEntry table defines routines that are exported by a library package. This table is an
array of RexxRoutineEntry structures, terminated by an entry that contains nothing but zero values in
the fields. The REXX_LAST_ROUTINE() macro will generate a suitable table terminator entry.

The remainder of the table will be entries generated via either the REXX_CLASSIC_ROUTINE() or
REXX_TYPED_ROUTINE() macros. REXX_CLASSIC_ROUTINE() entries are for routines created

16

Routine Declarations

using the older string-oriented function style. The classic routines allow packages to be migrated to
the new package loading system without requiring a rewrite of all of the contained functions. See
Section 2.5, “External Function Interface” for details on creating the functions in the classic style.

Routine table entries defined using REXX_TYPED_ROUTINE() use the new object-oriented interfaces
for creating routines. These routines can use the interpreter runtime to convert call arguments from
Rexx objects into primitive types and return values converted from primitive types back into Rexx
objects. These routines are also given access to a rich set of services through the RexxCallContext
interface vector.

The REXX_CLASSIC_ROUTINE() and REXX_TYPED_ROUTINE() macros take two arguments. The
first entry is the package table name for this routine. The second argument is the entry point name of
the real native code routine that implements the function. These names are frequently the same, but

need not be. The package table name is the name this routine will be called with from Rexx code.

Smaller function packages frequently place all of the contained functions and the package definition
tables in the same file, with the package tables placed near the end of the source file so all of the
functions are visible. For larger packages, it may be desirable to place the functions in more than

one source file. For functions packaged as multiple source files, it is necessary to create prototype
declarations so the routine entry table can be generated. The oorexxapi.h header file includes
REXX_CLASSIC_ROUTINE_PROTOTYPE() and REXX_TYPED_ROUTINE_PROTOTYPE() macros
to generate the appropriate declarations. For example,

Example 1.20. APl — REXX_TYPED_ROUTINE_PROTOTYPE

// create function declarations for the linker
REXX_TYPED_ROUTINE_PROTOTYPE(RxCalcPi);
REXX_TYPED_ROUTINE_PROTOTYPE(RxCalcSqrt);

// now build the actual entry list
RexxRoutineEntry rxmath_functions[] =

{
REXX_TYPED_ROUTINE(RxCalcPi, RxCalcPi),
REXX_TYPED_ROUTINE(RxCalcSqrt, RxCalcSqrt),
REXX_LAST_ROUTINE()

Y

1.13.1. Routine Declarations

Library routines are created using a series of macros that create the body of the function. These
macros define the routine arguments and return value in a form that allows the Rexx runtime to
perform argument checking and conversions before calling the target routine. These macros are
named "RexxRoutinen, where n is the number of arguments passed to your routine. For example,

Example 1.21. APl — RexxRoutine2

RexxRoutine2(int, beep, wholenumber_t, frequency, wholenumber_t, duration)

{
3

return Beep(frequency, duration); /* sound beep */

defines a beep routine that will be passed two wholenumber_t arguments (frequency and duration).
The return value is an int value.

An argument can be made optional by prefixing the type with "OPTIONAL_". For example,

17

Routine Argument Types

Example 1.22. APl — RexxRoutine2

RexxRoutine2(int, beep, wholenumber_t, frequency, OPTIONAL_wholenumber_t, duration)

{
3

return Beep(frequency, duration); /* sound beep */

would define a routine that takes two arguments. The first argument is required, but the second

is optional. Any optional arguments, when omitted on a call, will be passed using a zero value
appropriate to the type. The macros argumentExists(n) or argumentOmitted(n) can reliably test if an
argument was passed. For example, argumentExists(2) tests if the duration argument was specified
when beep() was called. The n value is origin 1.

In addition to the arguments passed by the caller, there are some special argument types that
provide your routine with additional information. These special types will add additional arguments
to your native routine implementation. The argument value specified with argumentExists() or
argumentOmitted() maps to the arguments passed to your C++ routine rather than the arguments
in the originating Rexx call. See Section 1.13.2, “Routine Argument Types” for details on the special
argument types.

All routine declarations have an undeclared special argument passed to the routine. This special
argument is named context. The context is a pointer to a RexxCallContext value and provides access
to all API functions valid from a routine context.

void is not a valid return type for a routine. There must be a real return type specified on the
routine declaration. If you wish to have a routine without a return value, declare the routine with
a return type of RexxObjectPtr and return the value NULLOBJECT. Routines that do not return a
real value may not be invoked as functions. Only the CALL instruction allows a return without a
value.

1.13.2. Routine Argument Types

A routine argument or return value may be a numeric type (Section 1.2.2, “Rexx Numeric Types”)

or an object type (Section 1.2.1, “Rexx Object Types”). For numeric types, the call arguments must
be convertible from a Rexx object equivalent into the primitive value or an error will be raised. For
optional numeric arguments, a zero value is passed for omitted values. When used as a return type,
the numeric values are translated into an appropriate Rexx object value.

If an argument is an object type, some additional validation is performed on the arguments being

passed. If an argument does not meet the requirements for a given object type, an error will be raised.
If an object-type argument is optional and a value is not specified on the call, the value NULLOBJECT
is passed to your routine. The supported object types and the special processing rules are as follows:

RexxObjectPtr
a reference to any Rexx object instance. Any arbitrary object type may be passed for a
RexxObjectPtr argument.

18

Routine Argument Types

RexxStringObject
an instance of the Rexx String class. The argument value must be a Rexx String value or
convertible to a Rexx String value using the request(‘'String’) mechanism.

RexxArrayObject
An instance of a Rexx single-dimensional Array.

RexxClassObject
An instance of Rexx Class class.

RexxMutableBufferObject
An instance of Rexx MutableBuffer class.

RexxStemObiject
An instance of the Rexx Stem class. For routine calls, a stem argument may be specified either
using the stem variable name directly or giving the stem variable name as a quoted string. For
example, for a routine defined using

RexxRoutinel(int, MyRoutine, RexxStemObject, stem)
the following calls are equivalent:

MyRoutine(a.)
MyRoutine('a.')

This special processing allows routines that currently access stem variables using the
RexxVariablePool API to be more easily converted to the newer API set.

In addition to the numeric and object types, there are additional special types that provide additional
information to the calling routine or perform common special conversions on argument values. The
special types available to routines are:

CSTRING
The argument is passed as an ASCII-Z string. The source argument must be one that is valid as
a RexxStringObject value. The RexxStringObject is converted into a pointer to an ASCII-Z string.
This is equivalent to the value returned from the ObjectToStringValue API from a RexxStringObject
value. For an optional CSTRING argument, a NULL pointer is provided when the argument is
omitted.

When CSTRING is used as a return value, the ASCII-Z string value will be converted into a Rexx
String object. The Rexx runtime does not free any memory associated with a CSTRING return
value, so care must be taken to avoid memory leaks. Also, locally declared character buffers
cannot be returned as the storage associated with buffer is no longer valid once your routine
returns to the Rexx interpreter. CSTRING return values are best confined to returning C literal
values. For example, the following is not valid:

Example 1.23. APl — CString

RexxRoutine®(CSTRING, MyRoutine)

{

char buffer[32];

sprintf(buffer, "%d:%d", major, minor);

return buffer; // buffer is not valid once return executes
}

19

Defining Library Methods

A RexxStringObject return value and the String API is more appropriate in this situation.
Example 1.24. APl — RexxStringObject

RexxRoutine®(RexxStringObject, MyRoutine)

{
char buffer[32];
sprintf(buffer, "%d:%d", major, minor);
return context->String(buffer); // creates a string object and returns it.
}
POINTER

an "unwrapped" Pointer or Buffer string object. If the argument is a Pointer object, the wrapped
pointer value is returned as a void * value.. If the argument is a Buffer object, then a pointer to the
buffer's data area is returned. A NULL pointer is returned for an omitted OPTIONAL_POINTER
argument.

When POINTER is used as a routine return value, any pointer value can be returned. The Rexx
runtime will wrap the pointer value in a Rexx Pointer object.

POINTERSTRING
a pointer value that has been encoded in string form. The string value must be in the format
"Oxnnnnnnnn", where the digits are valid hexadecimal digits. On 64-bit platforms, the pointer
value must be 16 digits long. The string value is converted into a void * value. A NULL pointer is
returned for an omitted optional POINTERSTRING argument.

When POINTERSTRING is used as a routine return value, any pointer value can be returned. The
Rexx runtime will convert the pointer value back into an encoded string value.

NAME
The name of the invoked routine, passed as a CSTRING. NAME is not valid as a return value.

ARGLIST
A RexxArrayObiject containing all arguments passed to the routine. This is equivalent to using
Arg(1, 'A") from Rexx code. The returned array contains all of the routine arguments that were
specified in the original call. Omitted arguments are empty slots in the returned array. In addition,
if a routine has an ARGLIST argument specified, the normal check for the maximum number of
arguments is bypassed. This makes possible routines with an open-ended number of arguments.
ARGLIST is not valid as a return value.

1.14. Defining Library Methods

The RexxMethodEntry table defines method that are exported by a library package. This table is an
array of RexxMethodEntry structures, terminated by an entry that contains nothing but zero values in
the fields. The REXX_LAST_METHOD() macro will generate a suitable table terminator entry.

The remainder of the table will be entries generated via the REXX_METHOD() macro. Routine table
entries defined using REXX_METHOD() use the object-oriented interfaces for creating methods

that can be defined on Rexx classes. These methods can use the interpreter runtime to convert call
arguments from Rexx objects into primitive types and return values from primitive types back into Rexx
objects. Native methods are also given access to a rich set of services via the RexxMethodContext
interface vector.

20

Method Declarations

The REXX_METHOD() macro take two arguments. The first entry is the package table name for this
method. The second argument is the entry point name of the real native code method that implements
the function. These names are frequently the same, but need not be.

Smaller function packages frequently place all of the contained functions and the package definition
tables in the same file, with the package tables placed near the end of the source file so all of the
methods are visible. For larger packages, it may be desirable to place the methods in more than
one source file. For libraries packaged as multiple source files, it is necessary to create a prototype
declarations so the method entry table can be generated. The oorexxapi.h header file includes a
REXX_METHOD_PROTOTYPE() macro to generate the appropriate declarations. For example,

Example 1.25. APl — REXX_METHOD_PROTOTYPE

// create function declarations for the linker
REXX_METHOD_PROTOTYPE(point_init);
REXX_METHOD_PROTOTYPE (point_add);

// now build the actual entry list
RexxMethodEntry point_methods[] =

{
REXX_METHOD(point_init, point_init),
REXX_METHOD(point_add, point_add),
REXX_LAST_METHOD ()

Y

1.14.1. Method Declarations

Library methods are created using a series of macros that create the body of the method. These
macros define the method arguments and return value in a form that allows the Rexx runtime to
perform argument checking and conversions before calling the target method. These macros are
named "RexxMethodn, where n is the number of arguments you wish to be passed to your method.
For example,

Example 1.26. APl — RexxMethod?2

RexxMethod2(int, beep, wholenumber_t, frequency, wholenumber_t, duration)

{

return Beep(frequency, duration); /* sound beep */

3

defines a beep method that will be passed two wholenumber_t arguments (frequency and duration).
The return value is an int value.

An argument can be made optional by prefixing the type with "OPTIONAL_". For example,

Example 1.27. APl — RexxMethod?2

RexxMethod2(int, beep, wholenumber_t, frequency, OPTIONAL_wholenumber_t, duration)
{

}

return Beep(frequency, duration); /* sound beep */

would define a method that takes two arguments. The first argument is required, but the second is
optional. Any omitted optional arguments will be passed using a zero value appropriate for the type.
The macros argumentExists(n) or argumentOmitted(n) can reliably test if an argument was passed.

21

Method Argument Types

For example, argumentExists(2) tests if the duration argument was specified when calling the beep()
method. The n value is origin 1.

In addition to the arguments passed by the caller, there are some special argument types that
provide your routine with additional information. These special types will add additional arguments
to your native routine implementation. The argument position specified with argumentExists() or
argumentOmitted() maps to the arguments passed to your C++ routine rather than the arguments in
the originating Rexx call. See below for details on the special argument types.

All method declarations have an undeclared special argument passed to the routine. This special
argument is named context. The context is a pointer to a RexxMethodContext value and provides
access to all APIs valid from a method context.

@e

void is not a valid return type for a method. There must be a real return type specified on the
method declaration. If you wish to have a method without a return value, declare the method with
a return type of RexxObjectPtr and return the value NULLOBJECT. Methods that do not return

a real value may not be invoked within expressions, but may be used as stand-alone message
instructions.

1.14.2. Method Argument Types

A method argument or return value may be a numeric type (Section 1.2.2, “Rexx Numeric Types”)

or an object type (Section 1.2.1, “Rexx Object Types”). For numeric types, the arguments must be
convertible from a Rexx object equivalent into the primitive value or an error will be raised. For optional
numeric arguments, a zero value is passed for omitted values. When used as a return type, the
numeric values are translated into an appropriate Rexx object value.

If an argument is an object type, some additional validation is performed on the arguments being

passed. If an argument does not meet the requirements for a given object type, an error will be raised.
If an object-type argument is optional and a value is not specified on the call, the value NULLOBJECT
is passed to your routine. The supported object types and the special processing rules are as follows:

RexxObjectPtr
a reference to any Rexx object instance. Any arbitrary object type may be passed for a
RexxObjectPtr argument.

RexxStringObject
an instance of the Rexx String class. The argument value must be a Rexx String value or
convertible to a Rexx String value using the request('String’) mechanism.

RexxArrayObject
An instance of a Rexx single-dimensional Array.

RexxClassObject
An instance of Rexx Class class.

RexxMutableBufferObject
An instance of Rexx MutableBuffer class.

22

Method Argument Types

RexxStemObject

An instance of Rexx Stem class. To pass a Stem to a method, a stem argument must be specified
using a stem variable name directly. For example, for a method defined using

RexxMethodl(int, MyMethod, RexxStemObject, stem)
the following call passes a stem object associated with a stem variable to the method:

X = o~myMethod(a.)

In addition to the numeric and object types, there are additional special types that provide additional
information to the calling routine or perform common special conversions on argument values. The
special types available to routines are:

CSTRING

The argument is passed as an ASCII-Z string. The source argument must be one that is valid as

a RexxStringObject value. The RexxStringObject is converted into a pointer to an ASCII-Z string.
This is equivalent to the value returned from the ObjectToStringValue API from a RexxStringObject
value. For an optional CSTRING argument, a NULL pointer is provided when the argument is
omitted.

When CSTRING is used as a return value, the ASCII-Z string value will be converted into a Rexx
String object. CSTRING return values are best confined to returning C literal values. The Rexx
runtime does not free any memory associated with a CSTRING return value, so care must be
taken to avoid memory leaks. Also, locally declared character buffers cannot be returned as the
storage associated with buffer is no longer valid once your method returns to the Rexx interpreter.
CSTRING return values are best confined to returning C literal values. For example, the following
is not valid:

Example 1.28. APl — CString

RexxMethod®(CSTRING, MyMethod)

{

char buffer[32];

sprintf(buffer, "%d:%d", major, minor);

return buffer; // buffer is not valid once return executes
}

A RexxStringObject return value and the String API is more appropriate in this situation.

Example 1.29. APl — RexxStringObject

RexxMethod®(RexxStringObject, MyMethod)

{
char buffer[32];
sprintf(buffer, "%d:%d", major, minor);
return context->String(buffer); // creates a string object and returns it.
}
POINTER

an "unwrapped" Pointer or Buffer string object. If the argument is a Pointer object, the wrapped
pointer value is returned as a void * value.. If the argument is a Buffer object, then a pointer to

23

Method Argument Types

buffer's storage area is returned. A NULL pointer is returned for an omitted optional POINTER
argument.

When POINTER is used as a method return value, any pointer value can be returned. The Rexx
runtime will wrap the pointer value in a Rexx Pointer object.

POINTERSTRING
a pointer value that has been encoded in string form. The string value must be in the format
"Oxnnnnnnnn", where the digits are valid hexadecimal digits. On 64-bit platforms, the pointer
value must be 16 digits long. The string value is converted into a void * value. A NULL pointer is
returned for an omitted optional POINTERSTRING argument.

When POINTERSTRING is used as a method return value, any pointer value can be returned.
The Rexx runtime will convert the pointer value back into an encoded string value.

NAME
The name of the invoked method, passed as a CSTRING. This is the message name that was
used to invoke the method. NAME is not valid as a return value.

ARGLIST
A RexxArrayObject containing all arguments passed to the method. This is equivalent to using
Arg(1, 'A") from Rexx code. The returned array contains all of the method arguments that were
specified in the original call. Omitted arguments are empty slots in the returned array. In addition,
if a method has an ARGLIST argument specified, the normal check for the maximum number of
arguments is bypassed. This makes possible methods with an open-ended number of arguments.
ARGLIST is not valid as a return value.

OSELF
A RexxObjectPtr containing a reference to the object that was the message target for the current
method. This is equivalent to the SELF variable that is available in Rexx method code. OSELF is
not valid as a return value.

SUPER
A RexxClassObiject containing a reference to the super scope object for the current method. This
is equivalent to the SUPER variable that is set in Rexx method code. SUPER is not valid as a
return value.

SCOPE
A RexxObjectPtr containing a reference to the current method's owning scope. This is hormally
the class that defined the method currently being executed. SCOPE is not valid as a return value.

CSELF
CSELF is a special argument type used for classes to store native pointers or structures inside
an object instance. When a CSELF type is encountered, the runtime will search all of the object's
variable scopes for an instance variable named CSELF. If a CSELF variable is located and the
value is an instance of either the Pointer or Buffer class, the POINTER value will be passed to
the method as a void * value. Objects that rely on CSELF values typically set the variable CSELF
inside an init method for the object. For example:

Example 1.30. APl — CSELF

RexxMethod2(Rexx0ObjectPtr, stream_init, OSELF, self, CSTRING, name)
{
// create a new stream info member
StreamInfo *stream_info = new StreamInfo(self, name);
RexxPointerObject streamPtr = context->NewPointer(stream_info);

24

Pointer, Buffer, and CSELF

context->SetObjectvVariable("CSELF", streamPtr);

return NULLOBJECT;

Then, within other methods for the object, when the CSELF variable is used as an argument to the
method, the void * is retrieved and cast to the correct type:

Example 1.31. API — CSELF

RexxMethod3(size_t, stream_charout, CSELF, streamPtr, OPTIONAL_RexxStringObject, data,
OPTIONAL_int64_t, position)
{

StreamInfo *stream_info = (StreamInfo *)streamPtr;
stream_info->setContext(context, context->False());

CSELF is not valid as a return value.

1.14.3. Pointer, Buffer, and CSELF

Methods written in C++ frequently need to acquire access to data that is associated with an object
instance. ooRexx provides two classes, Buffer and Pointer, that allow these associations to be made.
Both classes are real Rexx classes that can be passed as arguments, returned as method results, and
assigned to object instance variables. For the Rexx programmer who might encounter one of these
instances, these are opaque objects that don't appear to be of much use. To the native library writer,
the usefulness derives from what is stored inside these objects.

1.14.3.1. The Buffer class

The Buffer class allows the library writer to allocate blocks of memory from the Rexx object space.
The memory is a part of the Buffer object instance, and will be reclaimed automatically when the
Buffer object is garbage collected. This means the programmer does not need to explicitly release a
Buffer object. It does, however, require that steps be taken to protect the Buffer object from garbage
collection while it is still needed. The usual protection mechanism is to store the buffer object in an
object instance variable using SetObjectVariable. Once assigned to a variable, the Buffer is protected
from garbage collection until its associated object instance is also reclaimed. The buffer is part of the
internal state of the object.

Buffer objects are allocated using the NewBuffer function that's part of the RexxThreadContext
interface. Once created, you can access the Buffer's data area using BufferData, which returns a
pointer to the beginning of the data buffer. The data buffer area is writeable storage, into which any
data may be placed. This is frequently used to allocate a C++ struct or class instance that is the native
embodiment of the class implementation. For example

Example 1.32. APl — RexxBufferObject

RexxMethod0®(Rexx0ObjectPtr, myclass_init)

{
// create a buffer for my internal data.
RexxBufferObject data = context->NewBuffer(sizeof(MyDataClass));
// store this someplace safe
context->SetObjectVariable("MYDATA", data);

25

Pointer, Buffer, and CSELF

// get access to the data area

void *dataPtr = context->BufferData(data);

// construct a C++ object to place in the buffer
MyDataClass *myData = new (dataPtr) MyDataClass();
// initialize the data below

return NULLOBJECT;

This example allocates a Buffer object instance, creates a C++ class in its data area, and stores a
reference to the Buffer in the MYDATA object variable. Other C++ methods can access this instance
by using the C++ equivalent to the Rexx EXPOSE instruction.

Example 1.33. APl — RexxBufferObject

RexxMethod0 (Rexx0bjectPtr, myclass_dosomething)

{
// retrieve my instance buffer
RexxBufferObject data = (RexxBufferObject)context->GetObjectVariable("MYDATA");
// Get the data pointer and cast it back to my class type
MyDataClass *myData = (MyDataClass *)context->BufferData(data);
// perform the operation below
}

Since Buffer object instances are reclaimed automatically when the object is garbage collected, no
additional steps are required to cleanup that memory. However, if there are additional dynamically
allocated resources associated with the Buffer, such as pointers to system allocated resources or
dynamically allocated memory, it may be necessary to add an UNINIT method to your class to ensure
the resources are not leaked.

Example 1.34. APl — RexxBufferObject

RexxMethod®(Rexx0ObjectPtr, myclass_uninit)

{
// retrieve my instance buffer
RexxBufferObject data = context->GetObjectVariable("MYDATA");
// Get the data pointer and cast it back to my class type
MyDataClass *myData = (MyDataClass *)context->BufferData(data);
// delete any resources I've obtained (but not the MyDataClass
// instance itself
delete ((void *)myData) myData;

}

1.14.3.2. The Pointer class

The Pointer class has uses similar to the Buffer class, but Pointer instances only hold a single pointer
value to native C/C++ resources. A Pointer instance is effectively a Buffer object where the buffer
data area is a single void * pointer. Like Buffer objects, Pointers can be stored in Rexx variables and
retrieved in native methods. Pointer object instances are garbage collected just like Buffer objects, but
when a Pointer is reclaimed, whatever value referenced by the Pointer instance are not cleaned up. If
additional cleanup is required, then it will be necessary to implement an UNINIT method to handle the
cleanup. Here are the Buffer examples above reworked for the Pointer class:

26

Pointer, Buffer, and CSELF

Example 1.35. APl — RexxObjectPtr

RexxMethod® (Rexx0bjectPtr, myclass_init)

{
// construct a C++ object to associate with the object
MyDataClass *myData = new MyDataClass();
// create a Pointer to store this in the object
RexxPointerObject data = context->NewPointer(myData);
// store this someplace safe
context->SetObjectvVariable("MYDATA", data);
// initialize the data below

return NULLOBJECT;

RexxMethod0 (Rexx0bjectPtr, myclass_dosomething)

{
// retrieve my instance data
RexxPointerObject data = (RexxPointerObject)context->GetObjectVariable("MYDATA");
// Get the data pointer and cast it back to my class type
MyDataClass *myData = (MyDataClass *)context->PointerValue(data);
// perform the operation below
}

RexxMethodO@(Rexx0ObjectPtr, myclass_uninit)

{
// retrieve my instance data
RexxPointerObject data = (RexxPointerObject)context->GetObjectVariable("MYDATA");
// Get the data pointer and cast it back to my class type
MyDataClass *myData = (MyDataClass *)context->PointerValue(data);
// delete the backing instance
delete myData;
}

1.14.3.3. The POINTER method type

The Rexx runtime has some special support for Pointer and Buffer objects when they are passed as
method arguments and also when used as return values. The RexxMethod macros used to define
method instances support the POINTER special argument type. When an argument is defined as

a POINTER, then the argument value must be either a Buffer object or a Pointer object. The Rexx
runtime will automatically pass this argument to the native method as the Buffer BufferData() value
or the Pointer PointerValue() value, thus removing the need to unwrapper these in the method code.
The POINTER type is generally used for private methods of a class where the Rexx versions of the
methods pass Pointer or Buffer references to the private native code. For example, the Rexx code
might look like this:

Example 1.36. APl — RexxObjectPtr

::method setTitle
expose title prefix handle
use arg title
// set the title to the title concatenated to the prefix
self~privateSetTitle(handle, prefix title)

::method privateSetTitle PRIVATE EXTERNAL "LIBRARY mygui setTitle"

27

Pointer, Buffer, and CSELF

The corresponding C++ method would look like this:

Example 1.37. APl — RexxObjectPtr

RexxMethod2(RexxObjectPtr, setTitle, POINTER, handle, CSTRING, title)

{

// the pointer object was unwrapped for me
MyWindowHandle *myHandle = (MywWindowHandle *)handle;

// other stuff here

When POINTER is used as a method return type, the runtime will automatically create a Pointer object
instance that wrappers the returned void *value. The created Pointer instance is the result returned to
the Rexx code.

1.14.3.4. The CSELF method type

There's one additional concept using Pointer and Buffer objects supported by the C++ APIs. When a
method definition specifies the special type CSELF, the runtime will look for an object variable named
CSELF. If the variable is found, and if the variable is assigned to an instance of Pointer or Buffer, then
the corresponding data pointer is returned as the argument. The CSELF type is most useful when just
a single anchor to native C++ data is backing an object instance and the backing data is created in the
object INIT method. Here's the Pointer example above reworked to use CSELF:

Example 1.38. API — CSELF

RexxMethod@(RexxObjectPtr, myclass_init)

{

// construct a C++ object to associate with the object
MyDataClass *myData = new MyDataClass();

// create a Pointer to store this in the object
RexxPointerObject data = context->NewPointer(myData);
// assign this to the special CSELF variable
context->SetObjectVariable("CSELF", data);

// initialize the data below

return NULLOBJECT;

RexxMethodl(RexxObjectPtr, myclass_dosomething, CSELF, cself)

{

// We can just cast this to our data value
MyDataClass *myData = (MyDataClass *)cself;
// perform the operation below

RexxMethodl(RexxObjectPtr, myclass_uninit, CSELF, cself)

{

// We can just cast this to our data value
MyDataClass *myData = (MyDataClass *)cself;
// delete the backing instance

delete myData;

28

Rexx Exits Interface

Using the CSELF argument type eliminates the need to directly access the Rexx variable used to
anchor the value in every method except the INIT method. This produces generally smaller, more
reliable code, since the runtime is managing the retrieval.

There are other advantages to using the CSELF convention. The example above is equivalent to

the examples using Pointer and Buffer objects. If, however, you were to create a subclass of the
Buffer example and try to access the value stored in MYDATA from a subclass method, you'll find that
GetObjectVariable("MYDATA") will return NULLOBJECT. The GetObjectVariable method retrieves
variables from the current method's variable scope. Since the INIT method that set MYDATA originally
and the subclass method that wishes to access the data are defined at different class scopes,
GetObjectVariable() will access different variable pools and MYDATA will not be found. One solution
would be to create a private attribute method in the base class:

::attribute mydata get private
The subclass method can then access the method using SendMessage0 to access the value.

Rexx0bjectPtr self = context->GetSelf()
RexxPointerObject = context->SendMessage@(self, "MYDATA");

The CSELF type handles this detail automatically. When used as an argument, all variable scopes of

the object's class hierarchy are searched for a variable named CSELF. if one is located, it will be used
for the value passed to the method. This allows all subclasses of a class using the CSELF convention
to access the backing native data.

Frequently, one class instance might need access to the native information associated with another
object instance. The other object instance might be of the same class or another class that is designed
to interoperate with the current class. The ObjectToCSelf allows the CSELF information for an object
other than the current active object to be retrieved.

1.15. Rexx Exits Interface

The Rexx system exits let the programmer create a customized Rexx operating environment. You can
set up user-defined exit handlers to process specific Rexx activities.

Applications can create exits for:

» The administration of resources at the beginning and the end of interpretation
 Linkages to external functions and subcommand handlers

» Special language features; for example, input and output to standard resources
« Polling for halt and external trace events

Direct exit handlers are specified when the interpreter instance is created, and reside as entry points
within the application that creates the interpreter instance.

1.15.1. Writing Context Exit Handlers

The following is a sample exit handler declaration:

29

Writing Context Exit Handlers

Example 1.39. APl — Rexx_|O_Exit

int REXXENTRY Rexx_IO_exit(

RexxExitContext *context, // the exit context API vector

int exitNumber, // code defining the exit function
int subfunction, // code defining the exit subfunction
PEXIT parmBlock); // function-dependent control block

where:

context
is the RexxExitContext vector that provides access to interpreter services for this exit handler.

exitNumber
is the major function code defining the type of exit call.

subfunction
is the subfunction code defining the exit event for the call.

parmBlock
is a pointer to the exit parameter list.

The exit parameter list contains exit-specific information. See the exit descriptions following the
parameter list formats.

K

Some exit subfunctions do not have parameters. parmBlock is set to NULL for exit
subfunctions without parameters.

1.15.1.1. Exit Return Codes

Exit handlers return an integer value that signals one of the following actions:

RXEXIT_HANDLED
The exit handler processed the exit subfunction and updated the subfunction parameter list as
required. The Rexx interpreter continues with processing as usual.

RXEXIT_NOT_HANDLED
The exit handler did not process the exit subfunction. The Rexx interpreter processes the
subfunction as if the exit handler were not called.

RXEXIT_RAISE_ERROR
A fatal error occurred in the exit handler. The Rexx interpreter raises Rexx error 48 ("Failure in
system service"). Other errors can be raised using the RaiseException/0/1/2 API provided by the
exit context.

For example, if an application creates an input/output exit handler, one of the following happens:

* When the exit handler returns RXEXIT_NOT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter writes the output line to STDOUT.

30

Context Exit Definitions

* When the exit handler returns RXEXIT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter assumes the exit handler has handled all required output. The interpreter does not write
the output line to STDOUT.

* When the exit handler returns RXEXIT_RAISE_ERROR for an RXSIOSAY subfunction, the
interpreter raises Rexx error 48, "Failure in system service".

1.15.1.2. Exit Parameters

Each exit subfunction has a different parameter list. All RXSTRING exit subfunction parameters are
passed as null-terminated strings. The terminating null is not included in the length stored in the
RXSTRING structures. The string values pointed to by the RXSTRING structs may also contain null
characters.

For some exit subfunctions, the exit handler can return an RXSTRING character result in the
parameter list. The interpreter provides a default 256-byte RXSTRING for the result string. If the result
is longer than 256 bytes, a new RXSTRING can be allocated using RexxAllocateMemory(size).
The Rexx interpreter will release the allocated storage after the exit handler returns.

1.15.1.3. Identifying Exit Handlers to Rexx

System exit handlers are specified using the DIRECT_EXITS option when the interpreter instance
is created. The exits are specified using a RexxContextEXxit structure identifying which exits will be
enabled.

1.15.2. Context Exit Definitions

The Rexx interpreter supports the following system exits:

RXFNC
External function call exit.
RXFNCCAL
Call an external function. This exit is called at the beginning of the search for external
functions, allowing external functions calls to be intercepted. The RXFNCCAL converts all
function arguments to RXSTRING values and can only return RXSTRING values as a function
result. For full object access, the RXOFNC exit is also provided.

RXOFNC
Object oriented external function call exit.
RXOFNCCAL
Call an external function. This exit is called at the beginning of the search for external
functions, allowing external functions calls to be intercepted. This is an extended version of
the RXFNC exit that passes arguments as object references and allows object return values.

RXEXF
Scripting external function call exit.
RXEXFCAL
Call an external function. This exit is called at the end of the search for external functions if
no suitable call target has been found. This allows applications to extend the external function
search order. Like the RXOFNC exit, the RXEXF exit will pass function arguments and return
values as Rexx objects.

RXCMD
Subcommand call exit.

31

Context Exit Definitions

RXCMDHST
Call a subcommand handler.

RXMSQ
External data queue exit.
RXMSQPLL
Pull a line from the external data queue.

RXMSQPSH
Place a line in the external data queue.

RXMSQSIZ
Return the number of lines in the external data queue.

RXMSQNAM
Set the active external data queue name.

RXSIO

Standard input and output exit.
RXSIOSAY

Write a line to the standard output stream for the SAY instruction.

RXSIOTRC
Write a line to the standard error stream for the Rexx trace or Rexx error messages.

RXSIOTRD
Read a line from the standard input stream for PULL or PARSE PULL.

RXSIODTR
Read a line from the standard input stream for interactive debugging.

RXNOVAL
NOVALUE exit.
RXNOVALCALL
Process a variable NOVALUE condition.

RXVALUE
VALUE built-in function extension.
RXVALUECALL
Process a VALUE() built-in function call for an unknown named environment.

RXHLT
Halt processing exit.
RXHLTTST
Test for a HALT condition.

RXHLTCLR
Clear a HALT condition.

RXTRC
External trace exit.
RXTRCTST
Test for an external trace event.

32

Context Exit Definitions

RXINI
Initialization exit.
RXINIEXT
Allow additional Rexx procedure initialization.

RXTER
Termination exit.
RXTEREXT

Process Rexx procedure termination.
The following sections describe each exit subfunction, including:
e The service the subfunction provides

* When Rexx calls the exit handler

The default action when the exit is not provided or the exit handler does not process the subfunction

* The exit action

The subfunction parameter list

1.15.2.1. RXOFNC

Processes calls to external functions.

RXOFNCCAL
Processes calls to external functions.

* When called: At beginning of the search for an external routine or function.
» Default action: Call the external routine using the usual external function search order.
 Exit action: Call the external routine, if possible.

» Continuation: If necessary, raise Rexx error 40 (“Incorrect call to routine™), 43 ("Routine not
found"), or 44 ("Function or message did not return data").

* Parameter list:

Example 1.40. APl — Rexx_IO_Exit parameter list

typedef struct _RXOFNC_FLAGS { /* f1 */
unsigned rxfferr ilp /* Invalid call to routine. */
unsigned rxffnfnd : 1; /* Function not found. */
unsigned rxffsub aLp /* Called as a subroutine */

} RXOFNC_FLAGS ;

typedef struct _RXOFNCCAL_PARM { /* fnc */
RXOFNC_FLAGS rxfnc_flags ; /* function flags */
CONSTRXSTRING rxfnc_name; // the called function name
size_t rxfnc_argc; /* Number of args in list. */
Rexx0bjectPtr *rxfnc_argyv; /* Pointer to argument list. */
Rexx0bjectPtr rxfnc_retc; /* Return value. */

} RXOFNCCAL_PARM;

33

Context Exit Definitions

The name of the external function is defined by the rxfnc_name CONSTRXSTRING

(Section 2.2, "/RXSTRINGs”) value. The arguments to the function are in rxfnc_argv array and
rxfnc_argc gives the number of arguments. If you call the named external function with the Rexx
CALL instruction (rather than using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."”

The exit handler returns the external function result in the rxfnc_retc RexxObjectPtr. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

1.15.2.2. RXEXF

Processes calls to external functions.

RXEXFCAL
Processes calls to external functions.

» When called: At end of the search for an external routine or function when no suitable call target
has been located.

» Default action: Raise error 43 ("Routine not found").
 Exit action: Call the external routine, if possible.

» Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine"), 43 ("Routine not
found"), or 44 ("Function or message did not return data").

» Parameter list:

Example 1.41. APl — Rexx_IO_Exit parameter list

typedef struct _RXEXF_FLAGS { /* f1 */
unsigned rxfferr : 1; /* Invalid call to routine. */
unsigned rxffnfnd : 1; /* Function not found. */
unsigned rxffsub : 1; /* Called as a subroutine */

} RXEXF_FLAGS ;

typedef struct _RXEXFCAL_PARM { /* fnc */
RXEXF_FLAGS rxfnc_flags ; /* function flags */
CONSTRXSTRING rxfnc_name; // the called function name
size_t rxfnc_argc; /* Number of args in list. */
Rexx0bjectPtr *rxfnc_argv; /* Pointer to argument list. */
Rexx0ObjectPtr rxfnc_retc; /* Return value. */

} RXEXFCAL_PARM;

34

Context Exit Definitions

The name of the external function is defined by the rxfnc_name CONSTRXSTRING value.
The arguments to the function are in rxfnc_argv array and rxfnc_argc gives the number of
arguments. If you call the named external function with the Rexx CALL instruction (rather than
using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."

The exit handler returns the external function result in the rxfnc_retc RexxObjectPtr. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

1.15.2.3. RXFNC

Processes calls to external functions.

RXFNCCAL
Processes calls to external functions.

When called: At beginning of the search for an external routine or function.
Default action: Call the external routine using the usual external function search order.
Exit action: Call the external routine, if possible.

Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine"), 43 ("Routine not
found"), or 44 ("Function or message did not return data”).

Parameter list:

Example 1.42. APl — Rexx_IO_EXxit parameter list

typedef struct {

struct {
unsigned rxfferr : 1; /* Invalid call to routine. */
unsigned rxffnfnd : 1; /* Function not found. */
unsigned rxffsub : 1; /* Called as a subroutine if */
/* TRUE. Return values are */
/* optional for subroutines, */
/* required for functions. */
} rxfnc_flags ;
const char * rxfnc_name; /* Pointer to function name. */
unsigned short rxfnc_namel; /* Length of function name. */
const char * rxfnc_que; /* Current queue name. */
unsigned short rxfnc_quel; /* Length of queue name. */
unsigned short rxfnc_argc; /* Number of args in list. */
PCONSTRXSTRING rxfnc_argv; /* Pointer to argument list. */

/* List mimics argv list for */

35

Context Exit Definitions

/* function calls, an array of */
/* RXSTRINGS. */
RXSTRING rxfnc_retc; /* Return value. */
} RXFNCCAL_PARM;

The name of the external function is defined by rxfnc_name and rxfnc_namel. The arguments
to the function are in rxfnc_argc and rxfnc_argv. If you call the named external function with the
Rexx CALL instruction (rather than using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."”

The exit handler returns the external function result in the rxfnc_retc RXSTRING. The Rexx
interpreter raises error 44, "Function or method did not return data," when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

The RXFNC translates all call arguments to string values and only allows a string value as a

return value. To access call arguments as Rexx objects, use the RXOFNC exit.

1.15.2.4. RXCMD

Processes calls to subcommand handlers.

RXCMDHST
Calls a named subcommand handler.

* When called: When Rexx procedure issues a command.

» Default action: Call the named subcommand handler specified by the current Rexx ADDRESS
setting.

» EXxit action: Process the call to a named subcommand handler.

» Continuation: Raise the ERROR or FAILURE condition when indicated by the parameter list
flags.

» Parameter list:

Example 1.43. APl — Rexx_IO_Exit parameter list

typedef struct {

struct { /* Condition flags */
unsigned rxfcfail : 1; /* Command failed. Trap with */

/* CALL or SIGNAL on FAILURE. */

unsigned rxfcerr : 1; /* Command ERROR occurred. */

/* Trap with CALL or SIGNAL on */

/* ERROR. */

} rxcmd_flags;
const char * rxcmd_address; /* Pointer to address name. */

36

Context Exit Definitions

unsigned short rxcmd_addressl; /* Length of address name. */
const char * rxcmd_dl11; /* dl1 name for command. */
unsigned short rxcmd_dll_len; /* Length of dll name. 0 ==> */

/* executable file. */
CONSTRXSTRING rxcmd_command; /* The command string. */
RXSTRING rxcmd_retc; /* Pointer to return code */

/* buffer. User allocated. */

} RXCMDHST_PARM;

The rxemd_command field contains the issued command. rxemd_address and rxcmd_addressl
define the current ADDRESS setting. rxcmd_dll currently is always NULL and rxemd_dll_len is
always zero. rxemd_retc is an RXSTRING for the return code value assigned to Rexx special
variable RC.

The exit handler can set rxfcfail or rxfcerr to TRUE to raise an ERROR or FAILURE condition.

1.15.2.5. RXMSQ

External data queue exit.

RXMSQPLL
Pulls a line from the external data queue.

* When called: When a Rexx PULL instruction, PARSE PULL instruction, or LINEIN built-in
function reads a line from the external data queue.

» Default action: Remove a line from the current Rexx data queue.
 Exit action: Return a line from the data queue that the exit handler provided.

+ Parameter list:
Example 1.44. APl — Rexx_IO_EXxit parameter list

typedef struct {
RXSTRING rxmsg_retc; /* Pointer to dequeued entry */
/* buffer. User allocated. */

} RXMSQPLL_PARM;

The exit handler returns the queue line in the rxmsqg_retc RXSTRING.

RXMSQPSH
Places a line in the external data queue.

* When called: When a Rexx PUSH instruction, QUEUE instruction, or LINEOUT built-in function
adds a line to the data queue.

» Default action: Add the line to the current Rexx data queue.
» Exit action: Add the line to the data queue that the exit handler provided.

» Parameter list:

37

Context Exit Definitions

Example 1.45. APl — Rexx_IO_EXxit parameter list

typedef struct {

struct { /* Operation flag */
unsigned rxfmlifo : 1; /* Stack entry LIFO when TRUE, */
/* FIFO when FALSE. */

} rxmsqg_flags;
CONSTRXSTRING rxmsqg_value; /* The entry to be pushed. */
} RXMSQPSH_PARM;

The rxmsq_value RXSTRING contains the line added to the queue. It is the responsibility of
the exit handler to truncate the string if the exit handler data queue has a maximum length
restriction. Rxfmlifo is the stacking order (LIFO or FIFO).

RXMSQSIZ
Returns the number of lines in the external data queue.

* When called: When the Rexx QUEUED built-in function requests the size of the external data
queue.

» Default action: Request the size of the current Rexx data queue.
» Exit action: Return the size of the data queue that the exit handler provided.

+ Parameter list:
Example 1.46. APl — Rexx_IO_EXxit parameter list

typedef struct {
size_t rxmsqg_size; /* Number of Lines in Queue */
} RXMSQSIZ_PARM;

The exit handler returns the number of queue lines in rxmsq_size.

RXMSQNAM
Sets the name of the active external data queue.
e When called: Called by the RXQUEUE("SET", newname) built-in function.

» Default action: Change the current default queue to newname.
» Exit action: Change the default queue name for the data queue that the exit handler provided.

o Parameter list:
Example 1.47. APl — Rexx_lO_Exit parameter list

typedef struct {
RXSTRING rxmsg_name; /* RXSTRING containing */
/* queue name. */

} RXMSQNAM_PARM;

rxmsq_name contains the new queue name.

38

Context Exit Definitions

1.15.2.6. RXSIO

Standard input and output.

@voe

The PARSE LINEIN instruction and the LINEIN, LINEOUT, LINES, CHARIN, CHAROUT, and
CHARS built-in functions do not call the RXSIO exit handler.

RXSIOSAY
Writes a line to the standard output stream.

» When called: When the SAY instruction writes a line to the standard output stream.
» Default action: Write a line to the standard output stream (STDOUT).
 Exit action: Write a line to the output stream that the exit handler provided.

» Parameter list:

Example 1.48. APl — Rexx_IO_EXxit parameter list

typedef struct {
CONSTRXSTRING rxsio_string; /* String to display. */
} RXSIOSAY_PARM;

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRC
Writes trace and error message output to the standard error stream.
» When called: To output lines of trace output and Rexx error messages.

» Default action: Write a line to the standard error stream ((ERROR).
» Exit action: Write a line to the error output stream that the exit handler provided.

* Parameter list:

Example 1.49. APl — Rexx_IO_Exit parameter list

typedef struct {
CONSTRXSTRING rxsio_string; /* Trace line to display. */
} RXSIOTRC_PARM;

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRD
Reads from standard input stream.

39

Context Exit Definitions

* When called: To read from the standard input stream for the Rexx PULL and PARSE PULL
instructions.

» Default action: Read a line from the standard input stream (STDIN).
» Exit action: Return a line from the standard input stream that the exit handler provided.

» Parameter list:

Example 1.50. APl — Rexx_IO_EXxit parameter list

typedef struct {
RXSTRING rxsiotrd_retc; /* RXSTRING for input. */
} RXSIOTRD_PARM;

The input stream line is returned in the rxsiotrd_retc RXSTRING.

RXSIODTR
Interactive debug input.
* When called: To read from the debug input stream for interactive debug prompts.

» Default action: Read a line from the standard input stream (STDIN).
 Exit action: Return a line from the standard debug stream that the exit handler provided.

» Parameter list:

Example 1.51. APl — Rexx_IO_Exit parameter list

typedef struct {
RXSTRING rxsiodtr_retc; /* RXSTRING for input. */
} RXSIODTR_PARM;

The input stream line is returned in the rxsiodtr_retc RXSTRING.

1.15.2.7. RXNOVAL

Processes NOVALUE variable conditions.

RXNOVALCALL
Processes a Rexx NOVALUE condition.

* When called: Before the interpreter raises a NOVALUE condition. The exit is given the
opportunity to provide a value to the unassigned variable.

» Default action: Raise a NOVALUE condition for an unassigned variable.
« Exit action: Return an initial value for an unassigned variable.

« Continuation: If the exit provides a value for the unassigned variable, that value is assigned to
the indicated variable. The exit will not be called for the same variable on the next reference
unless the variable is dropped. If a value is not returned, a NOVALUE condition will be raised. If
SIGNAL ON NOVALUE is not enabled, the variable name will be returned as the value.

40

Context Exit Definitions

» Parameter list:
Example 1.52. APl — Rexx_IO_Exit parameter list

typedef struct _RXVARNOVALUE_PARM { /* var */
RexxStringObject variable_name; // the request variable name
Rexx0ObjectPtr value; // returned variable value

} RXVARNOVALUE_PARM;

1.15.2.8. RXVALUE

Extends the environments available to the VALUE() built-in function.

RXVALUECALL
Processes an extended call to the VALUE() built-in function.

* When called: When the VALUE() built-in function is called with an unknown environment name.
The exit is given the opportunity to provide a value for the given environment selector.

» Default action: Raise a SYNTAX error for an unknown environment name.
» Exit action: Return a value for the given name/environment pair.
« Continuation: If the exit provides a value for the VALUE() call, that value is returned as a result. .

* Parameter list:

Example 1.53. APl — Rexx_IO_Exit parameter list

typedef struct _RXVALCALL_PARM { /* val */
RexxStringObject selector; // the environment selector name
RexxStringObject variable_name; // the request variable name
Rexx0ObjectPtr value; // returned variable value

} RXVALCALL_PARM;

If the newValue argument is specified on the VALUE() built-in function, that value is assigned to
value on the call to the exit.

1.15.2.9. RXHLT

HALT condition processing.

Because the RXHLT exit handler is called after every Rexx instruction, enabling this exit slows Rexx
program execution. The RexxSetHalt() function can halt a Rexx program without between-instruction
polling.

RXHLTTST
Tests the HALT indicator.

» When called: When the interpreter polls externally raises HALT conditions. The exit will be
called after completion of every Rexx instruction.

» Default action: The interpreter uses the system facilities for trapping Cntrl-Break signals.

41

Context Exit Definitions

» Exit action: Return the current state of the HALT condition (either TRUE or FALSE).

« Continuation: Raise the Rexx HALT condition if the exit handler returns TRUE.

» Parameter list:

Example 1.54. APl — Rexx_IO_EXxit parameter list

typedef struct {
struct { /* Halt flag */
unsigned rxfhhalt : 1; /* Set if HALT occurred. */

} rxhlt_flags;

} RXHLTTST_PARM;

If the exit handler sets rxfhhalt to TRUE, the HALT condition is raised in the Rexx program.

The Rexx program can retrieve the reason string using the CONDITION("D") built-in function.

RXHLTCLR
Clears the HALT condition.
* When called: When the interpreter has recognized and raised a HALT condition, to acknowledge

processing of the HALT condition.

» Default action: The interpreter resets the Cntrl-Break signal handlers.

» Exit action: Reset exit handler HALT state to FALSE.

e Parameters: None.

1.15.2.10. RXTRC

Tests the external trace indicator.

@roe

Because the RXTRC exit is called after every Rexx instruction, enabling this exit slows Rexx
procedure execution. The SetThreadTrace method can turn on Rexx tracing without the between-
instruction polling.

RXTRCTST
Tests the external trace indicator.

When called: When the interpreter polls for an external trace event. The exit is called after
completion of every Rexx instruction.

Default action: None.
Exit action: Return the current state of external tracing (either TRUE or FALSE).

Continuation: When the exit handler switches from FALSE to TRUE, the Rexx interpreter enters
the interactive Rexx debug mode using TRACE ?R level of tracing. When the exit handler
switches from TRUE to FALSE, the Rexx interpreter exits the interactive debug mode.

42

Command Handler Interface

» Parameter list:
Example 1.55. APl — Rexx_IO_Exit parameter list

typedef struct {
struct {
unsigned rxftrace : 1; /* External trace setting */
} rxtrc_flags;
} RXTRCTST_PARM;

If the exit handler switches rxftrace to TRUE, Rexx switches on the interactive debug mode. If
the exit handler switches rxftrace to FALSE, Rexx switches off the interactive debug mode.

1.15.2.11. RXINI

Initialization processing. This exit is called as the last step of Rexx program initialization.

RXINIEXT
Initialization exit.
* When called: Before the first instruction of the Rexx procedure is interpreted.

» Default action: None.

 Exit action: The exit handler can perform additional initialization. For example:
« Use SetContextVariable API to initialize application-specific variables.

* Use SetThreadTrace API to switch on the interactive Rexx debug mode.

e Parameters: None.

1.15.2.12. RXTER

Termination processing.
The RXTER exit is called as the first step of Rexx program termination.

RXTEREXT
Termination exit.
« When called: After the last instruction of the Rexx procedure has been interpreted.

» Default action: None.

 Exit action: The exit handler can perform additional termination activities. For example, the exit
handler can use SetContextVariable to retrieve the Rexx variable values.

e Parameters: None.

1.16. Command Handler Interface

Applications can create custom command handlers that function like operating system command
shell environments. These named environments can be invoked with the Rexx ADDRESS instruction
and applications can create Rexx instances that direct commands to custom application command
handlers by default.

43

Command Handler Interface

There are two types of command handlers: in addition to standard "direct" command handlers,
"redirecting” command handlers offer optional redirection of STDIN from Rexx objects and redirection
of STDOUT and STDERR to Rexx objects. Redirection is requested by using the WITH subkeyword of
the ADDRESS instruction.

Command handlers can be registered by using interpreter instance options
DIRECT_ENVIRONMENTS or REDIRECTING_ENVIRONMENTS when the interpreter instance is
created, or through the AddCommandEnvironment API.

The command handlers are registered as a function pointer to a handler routine. When a Rexx
program issues a command to the named ADDRESS target, the handler is called with the evaluated
command string and the name of the address environment. The handler is responsible for executing
the command, returning a return code value back to the Rexx program, and, if requested, providing
redirected input to the command and capturing command output.

Handlers are called using two different function signatures, the first for direct handlers, and the second
signature for redirecting command handlers:

Rexx0ObjectPtr RexxEntry DirectCommandHandler (RexxExitContext *context,
RexxStringObject address, RexxStringObject command)

Rexx0ObjectPtr RexxEntry RedirectingCommandHandler (RexxExitContext *context,
RexxStringObject address, RexxStringObject command, RexxIORedirectorContext *ioContext)

Arguments
context A RexxExitContext interface vector for the handler call. The RexxExitContext
provides access to runtime services appropriate to a command handler. For
example, the exit context can set or get Rexx variables, invoke methods on objects,
and raise ERROR or FAILURE conditions.
address A String object containing the target command environment name.
command A String object containing the issued command string.
ioContext (For redirecting command handlers only.) A RexxIORedirectorContext
interface vector that provides access to redirection APl methods
AreQutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, IsRedirectionRequested, Readlnput, ReadlnputBuffer,
WriteError, WriteErrorBuffer, WriteOutput, and WriteOutputBuffer.
Returns

Any object that should be used as the command return code. This value will be assigned to the
variable RC upon return. If NULLOBJECT is returned, a O is used as the return code. The return code
value is traditionally a numeric value, but any value can be returned, including more complex object
return values, if desired.

For normal commands, the command is processed and a return code is given back to the Rexx
program. The interpreter recognizes two different abnormal return states for commands, ERROR
and FAILURE. An ERROR condition indicates there was some sort of error return state involved
with executing a command. These could be command syntax errors, semantic errors, etc. FAILURE
conditions are more serious conditions. One traditional FAILURE condition is the unknown command
error.

Command handlers raise ERROR and FAILURE conditions using the RaiseCondition API provided by
the RexxExitContext. For example:

44

Rexx Interface Methods Listing

Example 1.56. APl — Command handler interface

// if this was an unknown command, give our generic unknown command return code

if (errorStatus == COMMAND_FAILURE) {

// Note: The return code needs to be included with the FAILURE condition
context->RaiseCondition("FAILURE", command, NULLOBJECT, context->WholeNumber(-1));
// just return null...the RC value is picked up from the condition.

return NULLOBJECT;
}

else if (errorStatus == COMMAND_ERROR) {

// Note: The return code needs to be included with the ERROR condition
context->RaiseCondition("ERROR", command, NULLOBJECT, context->WholeNumber(rc));
// just return null...the RC value is picked up from the condition.

return NULLOBJECT;
}

// return the RC value for the command, which need not be 0

return context->WholeNumber(rc);

1.17. Rexx Interface Methods Listing

This section describes each available method and its associated context.

0oRexx 5.0.0 has introduced the following new APIs.

AddCommandEnvironment
AllocateObjectMemory
AreQutputAndErrorSameTarget
FreeObjectMemory
GetContextVariableReference
Getlnterpreterinstance
GetObjectVariableReference
IsErrorRedirected
IsInputRedirected
IsOutputRedirected
IsRedirectionRequested
IsStringTable
IsVariableReference
NewsStringTable

ReadInput

ReadlInputBuffer

ReallocateObjectMemory
SendMessageScoped
SetGuardOffWhenUpdated
SetGuardOnWhenUpdated
SetVariableReferenceValue
StringTableAt
StringTablePut
StringTableRemove
ThrowCondition
ThrowException/0/1/2
VariableReferenceName
VariableReferenceValue
WriteError

WriteErrorBuffer
WriteOutput
WriteOutputBuffer

1.17.1. AddCommandEnvironment

This API is available in contexts Instance, Thread, Method, Call, and Exit since ooRexx 5.0.

CSTRING name;
REXXPFN handler;
size_t type;

// Method Syntax Form(s)

context->AddCommandEnvironment (name,

type);

Adds a command handler to the Rexx interpreter instance. If a command handler with the specified

name already exists, it is overwritten.

Arguments

45

AllocateObjectMemory

name The ASCII-Z name of the command handler's environment name.

handler The address of the subcommand handler entry point within the application
executable code. For a description of the required handler function signature see
Command Handler Interface.

type The type of command handler to add. DIRECT_COMMAND_ENVIRONMENT
for a command handler with no support for redirection.
REDIRECTING_COMMAND_ENVIRONMENT for a command handler that
supports redirection.

Returns

Void.

1.17.2. AllocateObjectMemory

This API is available in context Method since ooRexx 5.0.

size_t bytes;
POINTER ptr;

// Method Syntax Form(s)

ptr = context->AllocateObjectMemory(bytes);

Allocates object memory similar to malloc(), where the allocated memory is garbage-collected together
with the object.

Arguments

bytes The number of bytes of memory to allocate.
Returns
A POINTER to the allocated object memory.

See also methods ReallocateObjectMemory and FreeObjectMemory.

1.17.3. AreOutputAndErrorSameTarget

This API is available in context I/O Redirector since ooRexx 5.0.

logical_t flag;
// Method Syntax Form(s)

flag = context->AreOutputAndErrorSameTarget();

Tests whether for the current command the output object and the error object specified by the WITH
subkeyword of an ADDRESS instruction are the same objects.

Arguments
None.

Returns

46

Array

1 if the output and the error object are te same, 0 otherwise.

See also methods IsErrorRedirected, IsinputRedirected, IsOutputRedirected, IsRedirectionRequested,
ReadInput, ReadInputBuffer, WriteError, WriteErrorBuffer, WriteOutput, and WriteOutputBuffer.

1.17.4. Array

This APl is available in contexts Thread, Method, Call, and EXxit.

RexxArrayObject arr;
Rexx0ObjectPtr objl, obj2, obj3, obj4;

// Method Syntax Form(s)

arr = context->Array(obj1);

arr context->Array(obj1, obj2);
arr = context->Array(obj1, obj2, obj3);

arr = context->Array(obj1, obj2, obj3, obj4);

This method has four forms. It creates a new single-dimensional Array with the specified objects.

Arguments
obj1 The first object to be added.
obj2 The second object to be added.
obj3 The third object to be added.
obj4 The fourth object to be added.
Returns

The new Array object.

1.17.5. ArrayAppend

This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
Rexx0bjectPtr obj;
size_t n;

// Method Syntax Form(s)

n = context->ArrayAppend(arr, obj);

Append an Object to the end of an Array.

Arguments

arr The target Array object.

obj The object to be appended.
Returns

47

ArrayAppendsString

The index of the appended object.

1.17.6. ArrayAppendString

This API is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
CSTRING str;
size_t n, len;

// Method Syntax Form(s)

n = context->ArrayAppendString(arr, str, len);

Append an object to the end of an Array. The appended object is a String object created from a pointer

and length.
Arguments
arr The target Array object.
str A pointer to the string data to be appended.
len The length of the string value in characters.
Returns

The Array index of the appended object.

1.17.7. ArrayAt
This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
Rexx0ObjectPtr obj;
size_t idx;

// Method Syntax Form(s)

obj = context->ArrayAt(arr, idx);

Retrieve an object from a specified Array index.

Arguments

arr The source Array object.

idx The index of the required object. This argument is 1-based.
Returns

The object at the specified index. Returns NULLOBJECT if there is no value at the specified index.

1.17.8. ArrayDimension

This APl is available in contexts Thread, Method, Call, and Exit.

48

Arrayltems

RexxArrayObject arr;
size_t sz;

// Method Syntax Form(s)

sz = context->ArrayDimension(arr);
Returns number of dimensions of an Array.
Arguments

arr The target Array object.

Returns

The number of Array dimensions.

1.17.9. Arrayltems
This API is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
size_t sz;

// Method Syntax Form(s)

sz = context->ArrayItems(arr);
Returns number of elements in an Array.
Arguments

arr The source Array object.

Returns

The number of Array elements.

1.17.10. ArrayOfFour
This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
Rexx0ObjectPtr objl, obj2, obj3, obj4;

// Method Syntax Form(s)

arr = context->ArrayOfFour(obj1, obj2, obj3, obj4);

Create a new single-dimensional Array with the specified objects.

Arguments
obj1 The first object to be added.
obj2 The second object to be added.

49

ArrayOfOne

obj3 The third object to be added.
obj4 The fourth object to be added.
Returns

The new Array object.

1.17.11. ArrayOfOne

This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
Rexx0bjectPtr obj;

// Method Syntax Form(s)

arr = context->ArrayOfOne(obj);
Create a new single-dimensional Array with the specified object.
Arguments

obj The object to be added.

Returns

The new Array object.

1.17.12. ArrayOfThree

This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
Rexx0ObjectPtr objl, obj2, obj3;

// Method Syntax Form(s)

arr = context->ArrayOfThree(obj1l, obj2, obj3);

Create a new single-dimensional Array with the specified objects.

Arguments
obj1 The first object to be added.
obj2 The second object to be added.
obj3 The third object to be added.
Returns

The new Array object.

1.17.13. ArrayOfTwo

50

ArrayPut

This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
Rexx0bjectPtr obji, obj2;

// Method Syntax Form(s)

arr = context->ArrayOfTwo(objl, obj2);

Create a new single-dimensional Array with the specified objects..

Arguments
obj1 The first object to be added.
obj2 The second object to be added.
Returns

The new Array object.

1.17.14. ArrayPut
This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject arr;
Rexx0ObjectPtr obj;
size_t idx;

// Method Syntax Form(s)

context->ArrayPut(arr, obj, idx);

Replace/add an Object to an Array.

Arguments

arr The target Array object.

obj The object to be added.

idx The index into the Array object. This argument is 1-based.
Returns
Void.

1.17.15. ArraySize

This APl is available in contexts Thread, Method, Call, and EXxit.

RexxArrayObject arr;
size_t sz;

// Method Syntax Form(s)

sz = context->ArraySize(arr);

51

AttachThread

Returns the size of an Array.
Arguments

arr The source Array object.
Returns

The Array size.

1.17.16. AttachThread

This API is available in context Instance.

RexxThreadContext *tc;
// Method Syntax Form(s)

success = context->AttachThread(&tc);

Attaches the current thread to the Rexx interpreter instance context pointer.

Arguments
tc Pointer to a RexxThreadContext pointer used to return a RexxThreadContext for
the attached thread.
Returns

Boolean value. 1 = success, 0 = failure. If the call was successful, a RexxThreadContext object valid

for the current context is returned via the tc argument.

1.17.17. BufferData

This API is available in contexts Thread, Method, Call, and Exit.

RexxBufferObject obj;
POINTER str;

// Method Syntax Form(s)

str = context->BufferData(obj);
Returns a pointer to a Buffer object's data area.
Arguments

obj The source Buffer object.

Returns

The C pointer to the Buffer object's data area.

1.17.18. BufferLength

52

BufferStringData

This APl is available in contexts Thread, Method, Call, and Exit.

RexxBufferObject obj;
size_t sz;

// Method Syntax Form(s)

sz = context->BufferLength(obj);
Return the length of a Buffer object's data area.
Arguments

obj The source Buffer object.

Returns

The length of the Buffer object's data area.

1.17.19. BufferStringData
This APl is available in contexts Thread, Method, Call, and Exit.

RexxBufferStringObject obj;
POINTER str;

// Method Syntax Form(s)

str = context->BufferStringData(obj);

Returns a pointer to a RexxBufferString object's data area.
Arguments

obj The source object.

Returns

The C pointer to the RexxBufferString's data area. This is a writable data area, but the

RexxBufferString must be finalized using FinishBufferString before it can be used in any other context.

1.17.20. BufferStringLength
This APl is available in contexts Thread, Method, Call, and Exit.

RexxBufferStringObject obj;
size_t sz;

// Method Syntax Form(s)
sz = context->BufferStringLength(obj);
Return the length of a RexxBufferStringObject instance.

Arguments

53

CallProgram

obj The source RexxBufferStringObject.

Returns

The length of the RexxBufferStringObject.

1.17.21. CallProgram

This APl is available in contexts Thread, Method, Call, and Exit.

CSTRING name;
Rexx0bjectPtr ret;
RexxArrayObject arr;

// Method Syntax Form(s)

ret = context->CallProgram(name, arr);

Returns the result object of the routine.

Arguments
name The ASCII-Z path/name of the Rexx program to call.
arr An Array of object program arguments.

Returns

Any result object returned by the program. NULLOBJECT is returned if the program does not
return a value. Any errors involved with calling the program will return a NULLOBJECT result. The
CheckCondition can be used to check if any errors occurred during the call.

1.17.22. CallRoutine

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj, ret;
RexxArrayObject arr;

// Method Syntax Form(s)

ret = context->CallRoutine(obj, arr);

Returns the result object of the routine.

Arguments

obj The routine object to call.

arr An Array of routine argument objects.
Returns

Any result object returned by the Routine. NULLOBJECT is returned if the program does not
return a value. Any errors involved with calling the program will return a NULLOBJECT result. The
CheckCondition can be used to check if any errors occurred during the call.

54

CheckCondition

1.17.23. CheckCondition

This APl is available in contexts Thread, Method, Call, and Exit.

logical_t flag;
// Method Syntax Form(s)

flag = context->CheckCondition();

Checks to see if any conditions have resulted from a call to a Rexx API. .

Arguments
None.
Returns

1 = if a condition has been raised, 0 = no condition raised.

1.17.24. ClearCondition

This APl is available in contexts Thread, Method, Call, and Exit.

// Method Syntax Form(s)

context->ClearCondition();

Clears any pending condition status.
Arguments

None.

Returns

Void.

1.17.25. CString

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
RexxStringObject ostr;
CSTRING str;

// Method Syntax Form(s)

str = context->CString(obj);

ostr = context->CString(str);

There are two forms of this method. The first converts an Object into a C ASCII-Z string. The second

converts C ASCII-Z string into a String object.

Arguments

55

DecodeConditionInfo

obj The source object for the conversion.
str The source C ASCII-Z string for the conversion.
Returns

For the first method form, a CSTRING representation of the object is returned. For the second form, a
String object is created from the ASCII-Z string data..

1.17.26. DecodeConditioninfo

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
RexxCondition cond;

// Method Syntax Form(s)

context->DecodeConditionInfo(dir, &cond);

Decodes the condition information into a RexxCondition structure, which is defined as follows:

typedef struct

{
wholenumber_t code;
wholenumber_t rc;
size_t position;
RexxStringObject conditionName;
RexxStringObject message;
RexxStringObject errortext;
RexxStringObject program;
RexxStringObject description;
RexxArrayObject additional;

} RexxCondition;

//
//
//
//
//
//
//
//
//

full condition code
return code value

line number position
name of the condition
fully filled in message
major error text
program name
description text
additional information

Arguments
dir The source Directory object containing the condition information.
cond A pointer to the RexxCondition structure.

Returns

Void. The cond structure is updated with information from dir.

1.17.27. DetachThread

This APl is available in context Thread.

// Method Syntax Form(s)

context->DetachThread();

Detaches the thread represented by the RexxThreadContext object from it's interpreter instance. Once
DetachThread() is called, the RexxThreadContext object issuing the call is no longer a valid, active

interface.

56

DirectoryAt

Arguments
None
Returns

Void.

1.17.28. DirectoryAt
This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dirobj;
Rexx0ObjectPtr obj;

CSTRING str;

// Method Syntax Form(s)

obj = context->DirectoryAt(dirobj, str);

Return the object at the specified index.

Arguments

dirobj The source Directory object.

str The index into the Directory object.
Returns

The object at the specified index. Returns NULLOBJECT if the given index does not exist.

1.17.29. DirectoryPut

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dirobj;
Rexx0bjectPtr item;

CSTRING index;

// Method Syntax Form(s)

context->DirectoryPut(dirobj, item, index);

Replace/add an Object at the specified Directory index.

Arguments
dirobj The source Directory object.
item The object instance to be stored at the index.
index The ASCII-Z string index into the Directory object.
Returns
Void.

57

DirectoryRemove

1.17.30. DirectoryRemove

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dirobj;
Rexx0bjectPtr obj;

CSTRING str;

// Method Syntax Form(s)

obj = context->DirectoryRemove(dirobj, str);

Removes and returns the object at the specified Directory index.

Arguments

dirobj The source Directory object.

str The ASCII-Z index into the Directory object.
Returns

The object removed at the specified index. Returns NULLOBJECT if the index did not exist in the
target Directory.

1.17.31. DisplayCondition

This APl is available in contexts Thread, Method, Call, and Exit.

wholenumber_t rc;
// Method Syntax Form(s)

rc = context->DisplayCondition();

If any syntax conditions are currently pending in the Rexx context, then error information will be output
to the current .error stream.

Arguments
None.
Returns

If there is syntax information to display, the return code will be the major error number for the syntax
error. Returns 0 if there is no current syntax condition.

1.17.32. Double

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
double n;
logical t flag;

// Method Syntax Form(s)

58

DoubleToObject

obj = context->Double(n);

flag = context->Double(obj, &n);

There are two forms of this method. The first form converts C double value to an Object. The second
form converts an Object to a C double value.

Arguments
n For the first method form, the double value to be converted. For the second method
form, the target of the conversion.
obj The object to be converted..
Returns

For the first method form, returns an Object version of the double value. For the second method form,
0 - success, 1 = failure. If successful, the converted value is placed in n.

1.17.33. DoubleToObject

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
double n;

// Method Syntax Form(s)

obj = context->DoubleToObject(n);
Converts C double value to an Object.
Arguments
n The double value to be converted.

Returns

An Object representation of the double value.

1.17.34. DoubleToObjectWithPrecision

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
size_t p;

double n;

// Method Syntax Form(s)

obj = context->DoubleToObject(n, p);

Converts C double value to an Object with a specific precision.

Arguments

59

DropContextVariable

n The double value to be converted.
p The precision to be used for the conversion.
Returns

An Object representation of the double value.

1.17.35. DropContextVariable

This API is available in contexts Call and Exit.

CSTRING name;
// Method Syntax Form(s)

context->DropContextVariable(name);

Drops a Rexx variable in the current routine's caller variable context.

Arguments
name The name of the Rexx variable.

Returns

Void.

1.17.36. DropObjectVariable

This API is available in context Method.

CSTRING str;
// Method Syntax Form(s)
context->DropObjectVariable(str);

Drops an instance variable in the current method's scope.

Arguments
str The name of the object variable.

Returns

Void.

1.17.37. DropStemArrayElement

This APl is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;
size_t n;

60

DropStemElement

// Method Syntax Form(s)

context->DropStemArrayElement(sobj, n);

Drops an element of the Stem object.

Arguments

sobj The target Stem object.

n The Stem object element number.
Returns
Void.

1.17.38. DropStemElement

This APl is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;
CSTRING name;

// Method Syntax Form(s)

context->DropStemElement(sobj, name);

Drops an element of the Stem object.

Arguments

sobj The target Stem object.

name The Stem object element name.
Returns
Void.

1.17.39. False

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
// Method Syntax Form(s)

obj = context->False();

This method returns the Rexx .false (0) object.
Arguments

None.

Returns

The Rexx .false object.

61

FindClass

1.17.40. FindClass

This APl is available in contexts Thread, Method, Call, and Exit.

RexxClassObject class;
CSTRING name;

// Method Syntax Form(s)

class = context->FindClass(name);

Locates a Class object in either the current Thread or Exit context, or in the current Method or Routine
Package context. The latter case is equivalent to calling FindContextClass.

Arguments
name An ASCII-Z string containing the name of the class.
Returns

The located Class object. Returns NULLOBJECT if the class is not found.

1.17.41. FindContextClass

This APl is available in contexts Method and Call.

CSTRING name;
RexxClassObject obj;

// Method Syntax Form(s)

obj = context->FindContextClass(name);

Locate a Class object in the current Method or Routine Package context.
Arguments

name The class name to be located.

Returns

The located Class object. Returns NULLOBJECT if the class is not found.

1.17.42. FindPackageClass

This APl is available in contexts Thread, Method, Call, and Exit.

RexxPackageObject pkg;
RexxClassObject class;
CSTRING name;

// Method Syntax Form(s)

class = context->FindPackageClass(pkg, name);

Locate a class object in a given Package object's context.

62

FinishBufferString

Arguments

pkg The Package object used to resolve the class.
name An ASCII-Z string containing the name of the class.
Returns

The located Class object. Returns NULLOBJECT if the class is not found.

1.17.43. FinishBufferString

This API is available in contexts Thread, Method, Call, and Exit.

RexxBufferStringObject obj;

RexxStringObject str;

size_t len;

// Method Syntax Form(s)

str = context->FinishBufferString(obj, len);

Converts a RexxBufferStringObject into a completed, immutable String object of the given length and
returns a reference to the completed String object.

Arguments
obj The working RexxBufferStringObiject.
len The final length of the constructed string.
Returns

The finalized Rexx string object.

1.17.44. ForwardMessage

This API is available in context Method.

CSTRING str;
Rexx0ObjectPtr obj, ret;
RexxClassObject sobj;
RexxArrayObject arr;

// Method Syntax Form(s)

ret = context->ForwardMessage(obj, str, cobj, arr);

Forwards a message to a different object or method. This is equivalent to using a FORWARD
CONTINUE instruction from Rexx code.

Arguments
obj The object to receive the message. If NULL, the object that is the target of the
current method call is used.
Str The message name to use. If NULL, then the name of the current method is used.

63

FreeObjectMemory

cobj The class scope used to locate the method. If NULL, this will be an unscoped
method call.
arr An array of message arguments. If NULL, the same arguments that were used on

the current method invocation will be used.

Returns

The invoked message result. NULLOBJECT will be returned if the target method does not return a
result.

1.17.45. FreeObjectMemory

This APl is available in context Method since ooRexx 5.0.

POINTER ptr;
// Method Syntax Form(s)

context->FreeObjectMemory(ptr);

Frees object memory allocated with AllocateObjectMemory. Object memory is also automatically freed
at the time the object gets garbage-collected.

Arguments

ptr A POINTER to object memory allocated with AllocateObjectMemory or reallocated
with ReallocateObjectMemory.

Returns

Void.

See also methods AllocateObjectMemory and ReallocateObjectMemory.

1.17.46. GetAllContextVariables

This APl is available in contexts Call and Exit.

RexxDirectoryObject obj;
// Method Syntax Form(s)

obj = context->GetAllContextVariables();

Returns all the Rexx variables in the current routine's caller's context as a Directory. Only simple
variables and stem variables are included in the Directory. Stem variable entries will have a Stem
object as the value. Compound variables may be accessed via the Stem object values.

Arguments
None.
Returns

A RexxDirectoryObject with the variable names and values.

64

GetAllStemElements

1.17.47. GetAllIStemElements
This APl is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;
RexxDirectoryObject obj;

// Method Syntax Form(s)

obj = context->GetAllStemElements(sobj);

Returns all elements of a Stem object as a Directory object. Each assigned Stem tail element will be
an entry in the Directory.

Arguments
sobj The source Stem object.

Returns

The Directory object containing the Stem variable values.

1.17.48. GetApplicationData
This API is available in contexts Thread, Method, Call, and Exit.

// Method Syntax Form(s)

ptr = context->GetApplicationData();

Returns the application data pointer that was set via the APPLICATION_DATA option when the
interpreter instance was created.

Arguments
None.
Returns

The application instance data set when the interpreter instance was created.

1.17.49. GetArgument
This APl is available in contexts Method and Call.

Rexx0ObjectPtr obj;
size_t n;

// Method Syntax Form(s)

obj = context->GetArgument(n);

Returns the specified argument to the method or routine. This is equivalent to calling Arg(n) from
within Rexx code.

65

GetArguments

Arguments
n The argument number (1-based).

Returns

The object corresponding to the given argument position. Returns NULLOBJECT if the argument was
not specified.

1.17.50. GetArguments

This APl is available in contexts Method and Call.

RexxArrayObject arr;
// Method Syntax Form(s)

arr = context->GetArguments();

Returns an Array object of the arguments to the method or routine. This is the same argument Array
returned by the ARGLIST argument type.

Arguments
None.
Returns

The Array object containing the method or routine arguments.

1.17.51. GetCallerContext

This APl is available in contexts Call and Exit.

Rexx0bjectPtr obj;
// Method Syntax Form(s)

obj = context->GetCallerContext();

Get the RexxContext object corresponding to the routine or exit's calling context.
Arguments

None.

Returns

The current exit or routine caller's RexxContext object.

1.17.52. GetConditioninfo

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;

66

GetContextDigits

// Method Syntax Form(s)

dir = context->GetConditionInfo();

Returns a Directory object containing the condition information. This is equivalent to calling

Condition('O") from within Rexx code.
Arguments
None.

Returns

The RexxDirectoryObject containing the condition information. If there are no pending conditions,

NULLOBJECT is returned.

1.17.53. GetContextDigits

This APl is available in context Call.

stringsize_t sz;
// Method Syntax Form(s)
sz = context->GetContextDigits();
Get the routine caller's current NUMERIC DIGITS setting.
Arguments
None.
Returns

The current NUMERIC DIGITS setting.

1.17.54. GetContextForm

This APl is available in context Call.

stringsize_t sz;
// Method Syntax Form(s)

sz = context->GetContextForm();

Get the routine caller's current NUMERIC FORM setting.
Arguments

None.

Returns

The current NUMERIC FORM setting.

67

GetContextFuzz

1.17.55. GetContextFuzz

This APl is available in context Call.

stringsize_t sz;
// Method Syntax Form(s)

sz = context->GetContextFuzz();

Get the routine caller's current NUMERIC FUZZ setting.

Arguments
None.
Returns

The current NUMERIC FUZZ setting.

1.17.56. GetContextVariable

This APl is available in contexts Call and Exit.

Rexx0bjectPtr obj;
CSTRING name;

// Method Syntax Form(s)

obj = context->GetContextVariable(name);

Gets the value of a Rexx variable in the routine or exit caller's variable context. Only simple variables
and stem variables can be retrieved with GetContextVariable(). The value returned for a stem
variable will be the corresponding Stem object. Compound variable values can be retrieved from the

corresponding Stem values.

Arguments
name The name of the Rexx variable.

Returns

The value of the named variable. Returns NULLOBJECT if the variable has not been assigned a

value.

1.17.57. GetContextVariableReference

This API is available in contexts Call and Exit since ooRexx 5.0.

CSTRING name;
RexxVariableReferenceObject obj;

// Method Syntax Form(s)

obj = context->GetContextVariableReference(name);

68

GetCSelf

Creates a VariableReference instance from a context variable name.

Arguments
name The name of a simple or a stem context variable for which a reference should be
created. A compound variable name is not allowed.
Returns

A VariableReference object referencing name.

See also methods GetObjectVariableReference, IsVariableReference, SetVariableReferenceValue,
VariableReferenceName, and VariableReferenceValue.

1.17.58. GetCSelf

This APl is available in context Method.

POINTER ptr;
// Method Syntax Form(s)

ptr = context->GetCSelf();

Returns a pointer to the CSELF value for the current object. CSELF is a special argument type used
for classes to store native pointers or structures inside an object instance. GetCSelf() will search all

of the object's variable scopes for a variable named CSELF. If a CSELF variable is located and the
value is an instance of either the Pointer or the Buffer class, the corresponding POINTER value will be
returned as a void * value. Objects that rely on CSELF values typically set the variable CSELF inside
an INIT method for the class.

Arguments

None.

Returns

The CSELF value for the current object, or NULL if no CSELF value was found.

See also method ObjectToCSelf.

1.17.59. GetGlobalEnvironment

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
// Method Syntax Form(s)

dir = context->GetGlobalEnvironment();

Returns a reference to the .environment Directory.
Arguments

None.

69

Getlnterpreterinstance

Returns

A RexxDirectoryObject pointer to the .environment Directory.

1.17.60. Getinterpreterinstance

This APl is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxInstance *instance;
// Method Syntax Form(s)

instance = context->GetInterpreterInstance();

Returns the interpreter instance context the current context is running on.
Arguments

None.

Returns

A RexxInstance pointer to the interpreter instance context.

1.17.61. GetLocalEnvironment

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
// Method Syntax Form(s)

dir = context->GetLocalEnvironment();

Returns a reference to the interpreter instance .local Directory.
Arguments

None.

Returns

A RexxDirectoryObject pointer to the .local Directory.

1.17.62. GetMessageName

This API is available in context Method.

CSTRING str;
// Method Syntax Form(s)

str = context->GetMessageName(obj);

Returns the message name used to invoke the current method.

70

GetMethod

Arguments
None.
Returns

The current method message name.

1.17.63. GetMethod

This API is available in context Method.

RexxMethodObject obj;
// Method Syntax Form(s)

obj = context->GetMethod();
Returns the Method object for the currently executing method.
Arguments
None.
Returns

The current Method object.

1.17.64. GetMethodPackage

This API is available in contexts Thread, Method, Call, and Exit.

RexxMethodObject obj;
RexxPackageObject pkg;

// Method Syntax Form(s)

pkg = context->GetMethodPackage(obj);

Returns the Package object associated with the specified Method instance.

Arguments
obj The source Method object..

Returns

The Method's defining Package object.

1.17.65. GetObjectVariable

This APl is available in context Method.

CSTRING str;

71

GetObjectVariableReference

Rexx0ObjectPtr obj;
// Method Syntax Form(s)

obj = context->GetObjectVariable(str);

Retrieves a Rexx instance variable value from the current object's method scope context. Only simple
variables and stem variables can be retrieved with GetObjectVariable(). The value returned for a stem
variable will be the corresponding Stem object. Compound variable values can be retrieved from the
corresponding Stem values.

Arguments
str The name of the object variable.

Returns

The object assigned to the named object variable. Returns NULLOBJECT if the variable has not been
assigned a value.

1.17.66. GetObjectVariableReference

This APl is available in context Method since ooRexx 5.0.

CSTRING name;
RexxVariableReferenceObject obj;

// Method Syntax Form(s)

obj = context->GetObjectVariableReference(name);

Creates a VariableReference instance from an object variable name.

Arguments
name The name of a simple or a stem object variable for which a reference should be
created. A compound variable name is not allowed.
Returns

A VariableReference object referencing name.

See also methods GetContextVariableReference, IsVariableReference, SetVariableReferenceValue,
VariableReferenceName, and VariableReferenceValue.

1.17.67. GetPackageClasses

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
RexxPackageObject pkg;

// Method Syntax Form(s)

dir = context->GetPackageClasses(pkg);

72

GetPackageMethods

Returns a Directory object containing the Package public and private classes, indexed by class name.
Arguments

obj The package object to query.

Returns

A Directory object containing the package classes.

1.17.68. GetPackageMethods

This API is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
RexxPackageObject pkg;

// Method Syntax Form(s)

dir = context->GetPackageMethods(pkg);

Returns a Directory object containing the Package unattached methods, indexed by Method name.
This is equivalent to using the .methods environment symbol from Rexx code.

Arguments
obj The package routine object to query.
Returns

A Directory object containing the Package's unattached methods.

1.17.69. GetPackagePublicClasses

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
RexxPackageObject pkg;

// Method Syntax Form(s)

dir = context->GetPackagePublicClasses(pkg);
Returns a Directory object containing the Package public classes, indexed by class name.
Arguments

obj The package object to query.
Returns

A Directory object containing the public classes.

1.17.70. GetPackagePublicRoutines

73

GetPackageRoutines

This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
RexxPackageObject pkg;

// Method Syntax Form(s)
dir = context->GetPackagePublicRoutines(pkg);
Returns a Directory object containing the Package public routines, indexed by routine name.
Arguments
obj The package object to query.
Returns

A Directory object containing the public routines.

1.17.71. GetPackageRoutines
This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject dir;
RexxPackageObject pkg;

// Method Syntax Form(s)

dir = context->GetPackageRoutines(pkg);

Returns a Directory object containing the Package public and private routines, indexed by routine
name.

Arguments
obj The package routine object to query.

Returns

A Directory object containing the routines.

1.17.72. GetRoutine

This APl is available in context Call.

RexxRoutineObject obj;
// Method Syntax Form(s)

obj = context->GetRoutine();

Returns current Routine object.
Arguments

None

74

GetRoutineName

Returns

The current Routine object.

1.17.73. GetRoutineName

This API is available in context Call.

CSTRING name;
// Method Syntax Form(s)
name = context->GetRoutineName();
Returns the name of the current routine.
Arguments
None
Returns

A pointer ASCII-Z routine name.

1.17.74. GetRoutinePackage
This APl is available in contexts Thread, Method, Call, and Exit.

RexxRoutineObject obj;
RexxPackageObject pkg;

// Method Syntax Form(s)

pkg = context->GetRoutinePackage(obj);
Returns Routine object's associated Package object.
Arguments

obj The routine object to query.

Returns

The Package object instance.

1.17.75. GetScope

This APl is available in context Method.

Rexx0bjectPtr obj;
// Method Syntax Form(s)

obj = context->GetScope();

75

GetSelf

Return the current active method's scope.
Arguments

None.

Returns

The current Method's scope.

1.17.76. GetSelf

This API is available in context Method.

Rexx0ObjectPtr obj;
// Method Syntax Form(s)

obj = context->GetSelf();

Returns the Object that is the current method's message target. This is equivalent to the SELF
variable in a Rexx method. The same value can be accessed as a method argument using the OSELF

type.
Arguments
None.
Returns

The current SELF object.

1.17.77. GetStemArrayElement

This APl is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;
Rexx0bjectPtr obj;
size_t n;

// Method Syntax Form(s)

obj = context->GetStemArrayElement(sobj, n);

Retrieves an element of a Stem object using a numeric index.

Arguments
sobj The source Stem object.
n The Stem object element number. The numeric index is translated into the
corresponding String tail.
Returns

The Object stored at the target index or NULLOBJECT if the target index has not been assigned a
value.

76

GetStemElement

1.17.78. GetStemElement
This APl is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;
Rexx0ObjectPtr obj;
CSTRING name;

// Method Syntax Form(s)

obj = context->GetStemElement(sobj, name);

Retrieves an element of a Stem object.

Arguments

sobj The source Stem object.

name The Stem object element name. This is a fully resolved tail name, taken as a
constant. No variable substitution is performed on the tail.

Returns

The object at the target index or NULLOBJECT if the target index has not been assigned a value.

1.17.79. GetStemValue
This APl is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;
Rexx0ObjectPtr obj;
CSTRING name;

// Method Syntax Form(s)

obj = context->GetStemValue(sobj);

Retrieves the base name value of a Stem object.

Arguments

sobj The source Stem object.

Returns

The Stem object's default base value.

1.17.80. GetSuper

This API is available in context Method.

Rexx0bjectPtr obj;

// Method Syntax Form(s)

77

Halt

obj = context->GetSuper();

Returns the current method's super class scope. This is equivalent to the SUPER variable used from
Rexx code. This value can also be obtained via the SUPER method argument type.

Arguments
None.
Returns

The current method's SUPER scope.

1.17.81. Halt

This APl is available in context Instance.

// Method Syntax Form(s)

context->Halt();

Raise a HALT condition on all threads associated with the interpreter instance.
Arguments

None.

Returns

Void.

1.17.82. HaltThread

This API is available in context Thread.

// Method Syntax Form(s)

context->HaltThread();

Raises a HALT condition on the thread corresponding to the current context pointer.
Arguments

None

Returns

Void.

1.17.83. HasMethod

This APl is available in contexts Thread, Method, Call, and Exit.

logical t flag;

78

Int32

Rexx0ObjectPtr obj;
CSTRING name;

// Method Syntax Form(s)

flag = context->HasMethod(obj, name);

Tests if an object supports the specified method name.

Arguments

obj The target object.

name An ASCII-Z method name.
Returns

1 = the method exists, 0 = the method does not exist.

1.17.84. Int32

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;

logical_t flag;

int32_t n;

// Method Syntax Form(s)

obj = context->Int32(n);

flag = context->Int32(obj, &n);

There a two forms of this method. The first form converts a C 32-bit integer n to an Object. The second
form converts an Object to a C 32-bit integer, returning it in n.

Arguments
n For the first form, the value to be converted. For the second form, the converted
result.
obj The object to be converted.
Returns

For the first form, n Object representation of the integer value. For the second form, returns 1 =
success, 0 = failure. If successful, the converted value is placed in n.

1.17.85. Int32ToObject

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
int32_t n;

// Method Syntax Form(s)

79

Int64

obj = context->Int32ToObject(n);

Convert a C 32-bit integer n to an Object.

Arguments

n The integer to be converted.

Returns

An Object representation of the integer value.

1.17.86. Int64

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;

logical t flag;

int64_t n;

// Method Syntax Form(s)

obj = context->Int64(n);

flag = context->Int64(obj, &n);

There a two forms of this method. The first form converts a C 64-bit integer n to an Object. The second
form converts an Object to a C 64-bit integer and returns in n.

Arguments
n For the first form, the integer to be converted. For the second form, the converted
integer.
obj The object to be converted.
Returns

For the first form, an Object representation of the integer value. For the second form, returns 1 =
success, 0 = failure. If successful, the converted value is placed in n.

1.17.87. Int64ToObject
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
int64_t n;

// Method Syntax Form(s)
obj = context->Int64ToObject(n);
Convert the C 64-bit integer n to an Object.

Arguments

80

InterpreterVersion

n The integer to be converted.

Returns

An Object representing the integer value.

1.17.88. InterpreterVersion

This APl is available in contexts Instance, Thread, Method, Call, and Exit.

size_t version;

// Method Syntax Form(s)

version = context->InterpreterVersion();
Returns the version of the interpreter. The returned version is encoded in the 3 least significant
bytes of the returned value, using 1 byte each for the interpreter version, release, and revision
values. For example, on a 32-bit platform, this value would be 0x00040000 for version 4.0.0. The

oorexxapi.h header file will have a define matching these values using the naming convention
REXX_INTERPRETER_4_0_0 and the macro REXX_CURRENT_INTERPRETER_VERSION will give

the interpreter version used to compile your code.
Arguments

None.

Returns

The interpreter version number.

1.17.89. Intptr

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;

logical t flag;

intptr_t n;

// Method Syntax Form(s)

obj = context->Intptr(&n);

flag = context->Intptr(obj, &n);

There are two forms of this method. The first form converts the C signed integer n to an Object. The
second form converts an Object to a C signed integer and returns it in n.

Arguments
n For the first form, the value to be converted. For the second form, the conversion
result.
obj The object to be converted.
Returns

81

IntptrToObject

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0 =

failure. If successful, the converted value is placed in n.

1.17.90. IntptrToObject
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
intptr_t n;

// Method Syntax Form(s)

obj = context->IntptrToObject(&n);
Convert the C signed integer n to an Object.
Arguments

n The signed integer to be converted.

Returns

An Object representing the integer value.

1.17.91. InvalidRoutine

This API is available in context Call.

RexxDirectoryObject obj;
// Method Syntax Form(s)

context->InvalidRoutine();

Raises the standard Error 40, "Incorrect call to routine" syntax error for the current routine. This error

will be raised by the Rexx runtime once the routine returns.
Arguments

None.

Returns

Void.

1.17.92. IsArray
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical t flag;

// Method Syntax Form(s)

82

IsBuffer

flag = context->IsArray(obj);

Tests if an Object is an Array. A true result indicates the RexxObjectPtr value may be safely cast to a
RexxArrayObject.

Arguments
obj The object to be tested.

Returns

1 =is an Array object, 0 = not an Array object.

1.17.93. IsBuffer

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical_t flag;

// Method Syntax Form(s)

flag = context->IsBuffer(obj);

Tests if an Object is a Buffer object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxBufferObject.

Arguments
obj The object to be tested.

Returns

1 = is a Buffer object, 0 = not a Buffer object.

1.17.94. IsDirectory

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical_t flag;

// Method Syntax Form(s)

flag = context->IsDirectory(obj);

Tests if an Object is a Directory object. A true result indicates the RexxObjectPtr value may be safely
cast to a RexxDirectoryObiject.

Arguments
obj The object to be tested.

Returns

1 =is a Directory object, 0 = not a Directory object.

83

IsErrorRedirected

1.17.95. IsErrorRedirected

This API is available in context I/O Redirector since ooRexx 5.0.

logical_t flag;
// Method Syntax Form(s)

flag = context->IsErrorRedirected();

Tests whether for the current command error output redirection was requested using the WITH
subkeyword of an ADDRESS instruction.

Arguments

None.

Returns

1 if error redirection was requested, 0 otherwise.

See also methods AreOutputAndErrorSameTarget, IsinputRedirected, IsOutputRedirected,
IsRedirectionRequested, ReadInput, ReadlnputBuffer, WriteError, WriteErrorBuffer, WriteOutput, and
WriteOutputBuffer.

1.17.96. IsinputRedirected

This APl is available in context I/O Redirector since ooRexx 5.0.

logical t flag;
// Method Syntax Form(s)

flag = context->IsInputRedirected();

Tests whether for the current command input redirection was requested using the WITH subkeyword
of an ADDRESS instruction.

Arguments

None.

Returns

1 if input redirection was requested, 0 otherwise.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsOutputRedirected,
IsRedirectionRequested, Readlnput, ReadInputBuffer, WriteError, WriteErrorBuffer, WriteOutput, and
WriteOutputBuffer.

1.17.97. IsinstanceOf

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;

84

IsMethod

RexxClassObj class;
logical_t flag;

// Method Syntax Form(s)

flag = context->IsInstanceOf(obj, class);

Tests if an Object is an instance of the specified class.

Arguments

obj The Object to be tested.

class The Class object for the instance test.
Returns

1 =is an instance, 0 = not an instance.

1.17.98. IsMethod

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical_t flag;

// Method Syntax Form(s)

flag = context->IsMethod(obj);

Tests if an Object is a Method object. A true result indicates the RexxObjectPtr value may be safely
cast to a RexxMethodObject.

Arguments
obj The object to be tested.
Returns

1 =is a Method object, 0 = not a Method object.

1.17.99. IsMutableBuffer

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
logical_ t flag;

// Method Syntax Form(s)

flag = context->IsMutableBuffer(obj);

Tests if an Object is a MutableBuffer object. A true result indicates the RexxObjectPtr value may be
safely cast to a RexxMutableBufferObject.

Arguments

85

IsOfType

obj The object to be tested.

Returns

1 =is a MutableBuffer object, 0 = not a MutableBuffer object.

1.17.100. IsOfType

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;

CSTRING class;

logical_t flag;

// Method Syntax Form(s)

flag = context->IsOfType(obj, class);

Tests an object to see if it is an instance of the named class. This method combines the operations of
the FindClass() and IsinstanceOf() methods in a single call.

Arguments
obj The object to be tested.
class An ASCII-Z string containing the name of the Rexx class. The named class will be
located in the current context and used in an IsinstanceOf() test.
Returns

1 =is an instance, 0 = not an instance or the named class cannot be located.

1.17.101. IsOutputRedirected

This API is available in context I/O Redirector since ooRexx 5.0.

logical_t flag;
// Method Syntax Form(s)

flag = context->IsOutputRedirected();

Tests whether for the current command output redirection was requested using the WITH subkeyword
of an ADDRESS instruction.

Arguments

None.

Returns

1 if output redirection was requested, 0 otherwise.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsRedirectionRequested, Readlnput, ReadlnputBuffer, WriteError, WriteErrorBuffer, WriteOutput, and
WriteOutputBuffer.

86

IsPointer

1.17.102. IsPointer

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
logical t flag;

// Method Syntax Form(s)

flag = context->IsPointer(obj);

Tests if an Object is a Pointer object. A true result indicates the RexxObjectPtr value may be safely
cast to a RexxPointerObject.

Arguments
obj The object to be tested.

Returns

1 =is a Pointer object, 0 = not a Pointer object.

1.17.103. IsRedirectionRequested

This API is available in context I/O Redirector since ooRexx 5.0.

logical t flag;
// Method Syntax Form(s)

flag = context->IsRedirectionRequested();

Tests whether for the current command any redirection was requested using the WITH subkeyword of
an ADDRESS instruction.

Arguments

None.

Returns

1 if any redirection was requested, 0 otherwise.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, Readlnput, ReadlnputBuffer, WriteError, WriteErrorBuffer, WriteOutput, and
WriteOutputBuffer.

1.17.104. IsRoutine

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical t flag;

// Method Syntax Form(s)

87

IsStem

flag = context->IsRoutine(obj);

Tests if an Object a Routine object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxPointerObject.

Arguments
obj The object to be tested.
Returns

1 =is a Routine object, 0 = not a Routine object.

1.17.105. IsStem

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical_t flag;

// Method Syntax Form(s)

flag = context->IsStem(obj);

Tests if an Object is a Stem object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxStemObiject.

Arguments
obj The object to be tested.
Returns

1 =is a Stem object, 0 = not a Stem object.

1.17.106. IsString

This APl is available in contexts Thread, Method, Call, and EXxit.

Rexx0bjectPtr obj;
logical t flag;

// Method Syntax Form(s)

flag = context->IsString(obj);

Tests if an Object is a String object. A true result indicates the RexxObjectPtr value may be safely cast
to a RexxStringObject.

Arguments
obj The object to be tested.

Returns

88

IsStringTable

1 =is a String object, 0 = not a String object.

1.17.107. IsStringTable

This API is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

Rexx0bjectPtr obj;
logical t flag;

// Method Syntax Form(s)

flag = context->IsStringTable(obj);

Tests if an Object is a StringTable object. A true result indicates the RexxObjectPtr value may be
safely cast to a RexxStringTableObject.

Arguments
obj The object to be tested.
Returns
1 =is a StringTable object, 0 = not a StringTable object.

See also methods NewStringTable, StringTableAt, String TablePut, and String TableRemove.

1.17.108. IsVariableReference

This APl is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

Rexx0ObjectPtr obj;
logical_t flag;

// Method Syntax Form(s)

flag = context->IsVariableReference(obj);

Tests if an Object is a VariableReference object. A true result indicates the RexxObjectPtr value may
be safely cast to a RexxVariableReferenceObject.

Arguments
obj The object to be tested.

Returns
1 =is a VariableReference object, 0 = not a VariableReference object.

See also methods GetContextVariableReference, GetObjectVariableReference,
SetVariableReferenceValue, VariableReferenceName, and VariableReferenceValue.

1.17.109. LanguagelLevel

This APl is available in contexts Instance, Thread, Method, Call, and Exit.

89

LoadLibrary

size_t langlevel;
// Method Syntax Form(s)

langlevel = context->LanguagelLevel();

Returns the language level of the interpreter. The returned language level is encoded in the 2 least
significant bytes of the returned value, using 1 byte each for the interpreter version, release, and
revision values. For example, on a 32-bit platform, this value would be 0x00000605 for language
level 6.05. The oorexxapi.h header file will have a define matching these values using a the naming
convention REXX_LANGUAGE_6_05 and the macro REXX_CURRENT_LANGUAGE_LEVEL will
give the interpreter version used to compile your code.

Arguments
None.
Returns

The interpreter language level number.

1.17.110. LoadLibrary
This APl is available in contexts Thread, Method, Call, and Exit.

CSTRING name;
logical t success;

// Method Syntax Form(s)

success = context->LoadLibrary(name);

Loads an external library with the given name and adds it to the global Rexx environment.

Arguments
name The ASCII-Z path/name of the library package, in format required by
the ::REQUIRES LIBRARY directive.
Returns

True if the library was successfully loaded or the library had been previously loaded. False is returned
for any errors in loading the package.

1.17.111. LoadPackage
This APl is available in contexts Thread, Method, Call, and Exit.

CSTRING name;
RexxPackageObject pkg;

// Method Syntax Form(s)

pkg = context->LoadPackage(name);

90

LoadPackageFromData

Returns the Package object loaded from the specified file path/name.
Arguments
name The ASCII-Z path/name of the Rexx package source file.

Returns

The loaded Package object. Any errors resulting from loading the package will return a NULLOBJECT
value. Information about errors can be retrieved using GetConditionInfo.

1.17.112. LoadPackageFromData

This APl is available in contexts Thread, Method, Call, and Exit.

CSTRING name, data;
size_t sz;
RexxPackageObject pkg;
// Method Syntax Form(s)

pkg = context->LoadPackageFromData(name, data, sz);

Returns the loaded package object from the specified file path/name.

Arguments
name The ASCII-Z name assigned to the package.
data Data buffer containing the package Rexx.
sz The size of the data buffer.

Returns

The loaded Package object. Any errors resulting from loading the package will return a NULLOBJECT
value. Information about errors can be retrieved using GetConditioninfo.

1.17.113. Logical

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical t flag, n;

// Method Syntax Form(s)
flag = context->Logical(obj, &n);

obj = context->Logical(n);

This method has two forms. The first form converts an Object to a C logical value (0 or 1). The second
form converts a C logical value to an Object.

Arguments

obj The object to be converted.

91

LogicalToObject

n For the first method form, a C pointer to a logical_t to receive the conversion result.
For the second form, a logical_t to be converted to an Object.

Returns

For the first method form, 1 = success and 0 = conversion error, with the converted value placed in n
For the second form, an Object version of the logical value.

1.17.114. LogicalToObject

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical t flag, n;

// Method Syntax Form(s)

obj = context->LogicalToObject(n);
Converts a C logical value to an Object.
Arguments
n The logical_t value to be converted..

Returns

Either the .false or .true object is returned.

1.17.115. MutableBufferCapacity

This API is available in contexts Thread, Method, Call, and Exit.

RexxMutableBufferObject obj;
size_t sz;

// Method Syntax Form(s)

sz = context->MutableBufferCapacity(obj);

Return the current buffer size of the MutableBuffer. The capacity is the total size of the buffer. The
length value is the amount of data currently contained in the buffer.

Arguments
obj The source MutableBuffer object.

Returns

The size of the MutableBuffer object's data area.

1.17.116. MutableBufferData

This APl is available in contexts Thread, Method, Call, and Exit.

92

MutableBufferLength

RexxMutableBufferObject obj;
POINTER str;

// Method Syntax Form(s)

str = context->MutableBufferData(obj);
Returns a pointer to a MutableBuffer object's data area.
Arguments

obj The source MutableBuffer object.
Returns

The C pointer to the MutableBuffer object's data area.

1.17.117. MutableBufferLength

This APl is available in contexts Thread, Method, Call, and Exit.

RexxMutableBufferObject obj;
size_t sz;

// Method Syntax Form(s)

sz = context->MutableBufferLength(obj);

Return the current length of the data in a MutableBuffer object's data area.

Arguments
obj The source MutableBuffer object.

Returns

The length of data in the MutableBuffer object's data area.

1.17.118. NewArray
This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObject obj;
size_t len;

// Method Syntax Form(s)

obj = context->NewArray(d);
Create an Array object of the specified size.
Arguments

d The size of the Array.

Returns

93

NewBuffer

The new Array object.

1.17.119. NewBuffer
This API is available in contexts Thread, Method, Call, and Exit.

RexxBufferObject obj;
size_t len;

// Method Syntax Form(s)

obj = context->NewBuffer(len);
Create a Buffer object with a specific data size.
Arguments

len The maximum length of the buffer.

Returns

The new Buffer object.

1.17.120. NewBufferString
This APl is available in contexts Thread, Method, Call, and Exit.

RexxBufferStringObject obj;
size_t len;

// Method Syntax Form(s)

obj = context->NewBufferString(len);

Create a RexxBufferString with the indicated buffer size. A RexxBufferString is a mutable String object
that can be used to construct return values. You must use FinishBufferString to transform this into a
completed String object.

Arguments

len The maximum length of the final String object.

Returns

A new RexxBufferString value.

1.17.121. NewDirectory
This APl is available in contexts Thread, Method, Call, and Exit.

RexxDirectoryObject obj;

// Method Syntax Form(s)

94

NewMethod

obj = context->NewDirectory();

Create a Directory object.
Arguments

None

Returns

The new Directory object.

1.17.122. NewMethod

This API is available in contexts Thread, Method, Call, and Exit.

RexxMethodObject obj;
CSTRING name, code;
size_t sz;

// Method Syntax Form(s)

obj = context->NewMethod(name, code, sz);

Create a new Method object from an in-memory buffer.

Arguments
name ASCII-Z name of the method.
code A data buffer containing the new method's Rexx code.
sz Size of the code buffer.

Returns

The created Method object. Any errors resulting from creating the method will return a NULLOBJECT
value. Information about any error can be retrieved using GetConditioninfo.

1.17.123. NewMutableBuffer

This APl is available in contexts Thread, Method, Call, and Exit.

RexxMutableBufferObject obj;
size_t len;

// Method Syntax Form(s)

obj = context->NewMutableBuffer(len);

Create a MutableBuffer object with a specific initial capacity. The new buffer will have an initial length
of 0.

Arguments

len The initial capacity of the buffer.

95

NewPointer

Returns

The new MutableBuffer object.

1.17.124. NewPointer

This APl is available in contexts Thread, Method, Call, and Exit.

RexxPointerObject obj;
POINTER p;

// Method Syntax Form(s)

obj = context->NewPointer(p);
Create a new Pointer object from a C pointer.
Arguments

p The source C pointer.
Returns

The created Pointer object.

1.17.125. NewRoutine

This API is available in contexts Thread, Method, Call, and Exit.

RexxRoutineObject obj;
CSTRING name, code;
size_t sz;

// Method Syntax Form(s)

obj = context->NewRoutine(name, code, sz);

Create a new Routine object from an in-memory buffer.

Arguments

name ASCII-Z name of the routine.

code Buffer containing the routine Rexx code.
sz Size of the code buffer.

Returns

The new Routine object. Any errors resulting from creating the routine will return a NULLOBJECT
value. Information about errors can be retrieved using GetConditioninfo.

1.17.126. NewStem

This APl is available in contexts Thread, Method, Call, and Exit.

96

NewsString

RexxStemObject obj;
CSTRING str;

// Method Syntax Form(s)

obj = context->NewStem(str);
Create an new Stem object with the specified base name.
Arguments

str The base name for the new Stem object.

Returns

The new Stem object.

1.17.127. NewString

This APl is available in contexts Thread, Method, Call, and Exit.

RexxString0Object obj;
CSTRING str;
size_t len;

// Method Syntax Form(s)

obj = context->NewString(str, len);

Create a new String object from program data.

Arguments

str A pointer to a data buffer containing the string data.
len Length of the str data buffer.

Returns

The new String object.

1.17.128. NewStringFromAsciiz

This APl is available in contexts Thread, Method, Call, and Exit.

RexxString0Object obj;
CSTRING str;

// Method Syntax Form(s)
obj = context->NewStringFromAsciiz(str);
Create a new String object from a C string.

Arguments

str A pointer to a null-terminated ASCII-Z string.

97

NewsStringTable

Returns

The new String object.

1.17.129. NewStringTable
This APl is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxStringTableObject obj;
// Method Syntax Form(s)

obj = context->NewStringTable();

Create a StringTable object.
Arguments

None

Returns

The new StringTable object.

See also methods /sStringTable, StringTableAt, String TablePut, and String TableRemove.

1.17.130. NewSupplier
This APl is available in contexts Thread, Method, Call, and Exit.

RexxSupplierObject obj;
RexxArrayObject arrl, arr2;

// Method Syntax Form(s)

obj = context->NewSupplier(arrl, arr2);

This method returns a Supplier object based on the supplied argument Arrays.

Arguments

arrl The Array of supplier items.

arr2 The Array of supplier item indexes.
Returns

The new Supplier object.

1.17.131. Nil
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;

98

NullString

// Method Syntax Form(s)
obj = context->Nil();
Returns the Rexx Nil object.
Arguments
None.
Returns

The Rexx Nil object.

1.17.132. NuliString

This APl is available in contexts Thread, Method, Call, and Exit.

RexxStringObject obj;
// Method Syntax Form(s)

obj = context->NullString();
This method returns a string object of zero length.
Arguments
None.
Returns

A null String object.

1.17.133. ObjectToCSelf

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj, scope;
POINTER ptr;

// Method Syntax Form(s)

ptr = context->0bjectToCSelf(obj);

ptr context->0bjectToCSelf(obj, scope);

Returns a pointer to the CSELF value for another object. CSELF is a special argument type used for
classes to store native pointers or structures inside an object instance. Objects that rely on CSELF
values typically set the variable CSELF inside an INIT method for the class.

This method has two forms. The first form searches all of the object's variable scopes for a variable
named CSELF. The second form searches for a variable named CSELF, beginning with the indicated
scope level. If a CSELF variable is located and the value is an instance of either the Pointer or the
Buffer class, the corresponding POINTER value will be returned as a void * value.

99

ObjectToDouble

Arguments

obj The source object.

scope A class object indicating the starting scope.
Returns

The CSELF value for the object. Returns NULL if no CSELF value was found in the target object.

See also method GetCSelf.

1.17.134. ObjectToDouble

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
double n;

logical_t flag;

// Method Syntax Form(s)

flag = context->0bjectToDouble(obj, &n);

Converts an Object to a C double value.

Arguments
obj The source object for the conversion.
n A returned converted value.

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.135. ObjectTolnt32

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
int32_t n;

logical_t flag;

// Method Syntax Form(s)

flag = context->0bjectToInt32(obj, &n);

Convert an Object into a 32-bit integer.

Arguments
obj The object to convert.
n The conversion result.
Returns

100

ObjectToInt64

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.136. ObjectTolnt64

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
int64_t n;

logical_t flag;

// Method Syntax Form(s)

flag = context->0bjectToInt64(obj, &n);

Convert an Object into a 64-bit integer.

Arguments
obj The object to be converted.
n The conversion result.
Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.137. ObjectTolntptr

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
intptr_t n;

logical_t flag;

// Method Syntax Form(s)

flag = context->0bjectToIntptr(obj, &n);

Convert an Object to an intptr_t value.

Arguments
obj The object to convert.
n The conversion result.
Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.138. ObjectToLogical

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical t flag, n;

101

ObjectToString

// Method Syntax Form(s)

flag = context->0ObjectToLogical(obj, &n);

Converts an Object to a C logical value (0 or 1).

Arguments
obj The object to convert.
n The conversion result.
Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.139. ObjectToString

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
RexxStringObject str;

// Method Syntax Form(s)
str = context->0bjectToString(obj);
Convert an Object to a String object.
Arguments
obj The source object for the conversion.
Returns

The String object.

1.17.140. ObjectToStringSize

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
size_t n;

logical t flag;

// Method Syntax Form(s)

flag = context->0ObjectToStringSize(obj, &n);

Convert an Object to a stringsize_t number value.

Arguments
obj The object to convert.
n The conversion result.

102

ObjectToStringValue

Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.141. ObjectToStringValue

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
CSTRING str;

// Method Syntax Form(s)

str = context->0bjectToStringValue(obj);
Convert an Object to a C ASCII-Z string.
Arguments
obj The source object for the conversion.

Returns

The C ASCII-Z string representation of the object.

1.17.142. ObjectToUintptr

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
uintptr_t n;

logical_t flag;

// Method Syntax Form(s)

flag = context->0bjectToUintptr(obj, &n);

Convert an Object to an uintptr_t value.

Arguments
obj The object to convert.
n The conversion result.
Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.143. ObjectToUnsignedint32

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;

103

ObjectToUnsignedInt64

uint32_t n;
logical_t flag;

// Method Syntax Form(s)

flag = context->0bjectToUnsignedInt32(obj, &n);

Convert an Object to an uint32_t value.

Arguments
obj The object to convert.
n The conversion result.
Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.144. ObjectToUnsignedint64
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
uint64_t n;

logical_t flag;

// Method Syntax Form(s)

flag = context->0bjectToUnsignedInt64(obj, &n);

Convert an Object to an uint64_t value.

Arguments
obj The object to convert.
n The conversion result.
Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.145. ObjectToValue

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;

ValueDescriptor desc;

logical t flag;

// Method Syntax Form(s)

flag = context->0ObjectTovValue(obj, &desc);

Convert a Rexx object to another type. The target type is identified by the ValueDescriptor
structure, and can be any of the types that may be used as a method or routine return type.

104

ObjectTowWholeNumber

For many conversions, it may be more appropriate to use more targeted routines such as
ObjectToWholeNumber. ObjectToValue() is capable of conversions to types such as int8_t for which
there are no specific conversion APIs.

Arguments
obj The object to be converted.
desc A C pointer to a ValueDescriptor struct that identifies the conversion type. The
converted value will be stored in the ValueDescriptor if successful.
Returns

1 = success, 0 = conversion error. If successful, desc is updated with the converted value of the
requested type.

1.17.146. ObjectToWholeNumber
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
wholenumber_t n;
logical t flag;

// Method Syntax Form(s)

flag = context->0bjectTowholeNumber(obj, &n);

Convert an Object to a whole number value.

Arguments
obj The object to convert.
n The conversion result.
Returns

1 = success, 0 = conversion error. The converted value is placed in n.

1.17.147. PointerValue
This APl is available in contexts Thread, Method, Call, and Exit.

RexxPointerObject obj;
POINTER p;

// Method Syntax Form(s)
p = context->PointerValue(obj);
Return the wrappered C pointer value from a RexxPointerObject.

Arguments

obj The source RexxPointerObject.

105

RaiseCondition

Returns

The wrappered C pointer value.

1.17.148. RaiseCondition

This APl is available in contexts Thread, Method, Call, and Exit.

CSTRING str;
RexxStringObject sobj;
RexxArrayObject arr;
Rexx0ObjectPtr obj;

// Method Syntax Form(s)
context->RaiseCondition(str, sobj, add, obj);
Raise a condition. The raised condition is held in a pending state until the method, routine, or exit

returns to the Rexx runtime. This is similar to using the RAISE instruction to raise a condition from
Rexx code.

Arguments
str The condition name.
sobj The optional condition description as a String object.
add An optional object containing additional condition information.
obj An Object that will be returned as a routine or method result if the raised condition
is not trapped by the caller.
Returns
Void.

See also methods ThrowCondition and RaiseException/0/1/2.

1.17.149. RaiseException/0/1/2

This APl is available in contexts Thread, Method, Call, and EXxit.

size_t n;
Rexx0ObjectPtr array, objl, obj2;

// Method Syntax Form(s)
context->RaiseException(n, array);
context->RaiseException@(n);
context->RaiseExceptioni(n, obj1);
context->RaiseException2(n, objl, obj2);
Raise a SYNTAX condition. The raised condition is held in a pending state until the method, routine,

or exit returns to the Rexx runtime. This is similar to using the RAISE instruction to raise a SYNTAX
condition from Rexx code.

106

ReadInput

Arguments
n The exception condition number. There are #defines for the recognized condition
errors in the oorexxerrors.h include file.
array An Array of error message substitution values.
obj1 The first substitution value for the error message.
obj2 The second substitution value for the error message.
Returns
Void.

See also methods ThrowException/0/1/2.

1.17.150. ReadInput

This APl is available in context I/O Redirector since ooRexx 5.0.

CSTRING data;
size_t length;

// Method Syntax Form(s)
context->ReadInput(&data, &length);
Returns the next item or line of data from an input redirection Rexx object that was specified using the

WITH subkeyword of an ADDRESS instruction. Items are converted to strings and missing items are
replaced by a null string.

Arguments
data The returned string. If no more items or lines are available, or there is no input
redirection, NULL is returned.
length The returned length of data. If an item is missing, or no more items or lines are
available, or there is no input redirection, 0 is returned.
Returns

Void. Arguments data and length are updated.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, IsRedirectionRequested, ReadlnputBuffer, WriteError, WriteErrorBuffer,
WriteOutput, and WriteOutputBuffer.

1.17.151. ReadlnputBuffer

This APl is available in context I/O Redirector since ooRexx 5.0.

CSTRING data;
size_t length;

// Method Syntax Form(s)

107

ReallocateObjectMemory

context->ReadInputBuffer(&data, &length);

Returns a string of all items or lines from an input redirection Rexx object that was specified using the
WITH subkeyword of an ADDRESS instruction. Iltems are converted to strings and separated by the
platform-specific line-end characters. Missing items are replaced by a null string.

Arguments
data The returned string. NULL if there is no input redirection.
length The returned length of data. 0 if there is no input redirection.
Returns

Void. Arguments data and length are updated.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, IsRedirectionRequested, Readlnput, WriteError, WriteErrorBuffer, WriteOutput,
and WriteOutputBuffer.

1.17.152. ReallocateObjectMemory

This API is available in context Method since ooRexx 5.0.

POINTER ptr;
size_t bytes;

// Method Syntax Form(s)

ptr = context->ReallocateObjectMemory(ptr, bytes);

Reallocates object memory allocated with AllocateObjectMemory. The current memory contents are
copied to the new allocation and the current allocation will be automatically freed.

Arguments

ptr A POINTER to object memory allocated with AllocateObjectMemory or reallocated
with ReallocateObjectMemory.

bytes The new memory size in bytes.

Returns

A POINTER to the reallocated object memory. If the new size is not larger than the currently allocated
memory size, the current object memory pointer is returned.

See also methods AllocateObjectMemory and FreeObjectMemory.

1.17.153. RegisterLibrary

This APl is available in contexts Thread, Method, Call, and Exit.

CSTRING name;
logical t success;

// Method Syntax Form(s)

108

ReleaseGlobalReference

success = context->RegisterLibrary(name, table);

Registers an in-process library package with the global Rexx environment. The package is processed
as if it is loaded from an external library, but without requiring the library packaging.

Arguments
name The ASCII-Z path/name of the library package, in format required by
the ::REQUIRES LIBRARY directive.
table A pointer to a RexxPackageEntry (Section 1.12, “Building an External Native
Library”) table defining the contents of the package.
Returns

True if the library was successfully registered. False is returned if a package has already be loaded or
registered with the given name.

1.17.154. ReleaseGlobalReference

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr ref;
// Method Syntax Form(s)

context->ReleaseGlobalReference(ref);

Release access to a global object reference. This removes the global garbage collection protection
from the object reference. Once released, ref should no longer be used for object operations.

Arguments
ref A global Rexx object reference.

Returns

Void.

1.17.155. ReleaselLocalReference

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr ref;
// Method Syntax Form(s)

context->ReleaseLocalReference(ref);

Removes local context protection from an object reference. Once released, ref should no longer be
used for object operations.

Arguments

ref The local Rexx object reference.

109

RequestGlobalReference

Returns

Void.

1.17.156. RequestGlobalReference
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr ref, obj;
// Method Syntax Form(s)

ref = context->RequestGlobalReference(obj);

Requests global garbage collection protection for an object reference. The returned value may be
saved in native code control blocks and used as an object reference in any API context. The obj will be
protected from garbage collection until the global reference is released with ReleaseGlobalReference.

Arguments
obj The Rexx object to be protected.

Returns

A global reference to this object that can be saved and used in any API context.

1.17.157. ResolveStemVariable

This APl is available in context Call.

Rexx0ObjectPtr obj;
RexxStemObject stem;

// Method Syntax Form(s)

stem = context->ResolveStemvariable(obj);

Resolves a stem variable object using the same mechanism applied to RexxStemObject arguments
passed to routines. If obj is a Stem object, the same Stem object will be returned. If obj is a String
object, the string value is used to resolve a stem variable from the caller's variable context. The Stem
object value of the referenced stem variable is returned as a result.

Arguments

obj The source object to be resolved to a Stem object.

Returns

The resolved Stem object.

1.17.158. SendMessage/0/1/2

This APl is available in contexts Thread, Method, Call, and Exit.

110

SendMessageScoped

Rexx0ObjectPtr obj, ret, argl, arg2;
CSTRING msg;
RexxArrayObject arr;

// Method Syntax Form(s)

ret = context->SendMessage(obj, msg, arr);

ret = context->SendMessage@(obj, msg);
ret = context->SendMessagel(obj, msg, argl);
ret = context->SendMessage2(obj, msg, argl, arg2);

Send a message to an object. Message arguments can be specified as an array of objects, or
for cases where no argument, one argument, or two arguments are needed, short cut methods
SendMessage0, SendMessagel, and SendMessage?2 can be used.

Arguments
obj The object to receive the message.
msg An ASCII-Z string containing the message name. This argument will be converted
to upper case automatically.
arr An array of message arguments to the receiving method.
arg1 The first argument to the receiving method.
arg2 The second argument to the receiving method.
Returns

The returned object. If the method does not return an object then NULLOBJECT is returned. Any
errors resulting from invoking the method will return a NULLOBJECT value. CheckCondition can be
used to check if an error occurred during the call.

1.17.159. SendMessageScoped

This API is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

Rexx0ObjectPtr obj, ret;
CSTRING msg;
RexxClassObject class;
RexxArrayObject arr;

// Method Syntax Form(s)

ret = context->SendMessageScoped(obj, msg, class, arr);

Send a message to an object with a scope override.

Arguments
obj The object to receive the message.
msg An ASCII-Z string containing the message name. This argument will be converted
to upper case automatically.
class A class object where to start searching for msg.
arr An array of message arguments.

111

SetContextVariable

Returns

The returned object. If the method does not return an object then NULLOBJECT is returned. Any
errors resulting from invoking the method will return a NULLOBJECT value. CheckCondition can be
used to check if an error occurred during the call.

1.17.160. SetContextVariable

This APl is available in contexts Call and Exit.

Rexx0ObjectPtr obj;
CSTRING name;

// Method Syntax Form(s)
context->SetContextVariable(name, obj);
Sets the value of a Rexx variable in the current call context. Only simple and stem variables may be

set using SetContextVariable(). Compound variable values may be set by retrieving the Stem object
associated with a stem variable and using SetStemElement to set the associated compound variable.

Arguments

name The name of the Rexx variable.

obj The object to assign to the variable.
Returns

Void.

1.17.161. SetGuardOff

This APl is available in context Method.

// Method Syntax Form(s)

context->SetGuardoff();

Release the guard lock for this method scope.
Arguments

None.

Returns

Void.

See also methods SetGuardOn, SetGuardOnWhenUpdated, and SetGuardOffiWhenUpdated.

1.17.162. SetGuardOffWhenUpdated

This APl is available in context Method since ooRexx 5.0.

112

SetGuardOn

CSTRING name;
Rexx0ObjectPtr ret;

// Method Syntax Form(s)

ret = context->SetGuardOffWhenUpdated(name);

Waits for an object variable to be updated and returns the new value. The guard state will be OFF on
return.

Arguments
name The name of the variable to wait for. Only simple variables or stem variables are
allowed, no compound variables.
Returns

The new value of the variable. Returns a NULLOBJECT if an error occurs.

See also methods SetGuardOn, SetGuardOnWhenUpdated, and SetGuardOff.

1.17.163. SetGuardOn

This APl is available in context Method.

// Method Syntax Form(s)

context->SetGuardon();

Obtain the guard lock for this object scope.
Arguments

None.

Returns

Void.

See also methods SetGuardOnWhenUpdated, SetGuardOff, and SetGuardOffWhenUpdated.

1.17.164. SetGuardOnWhenUpdated

This APl is available in context Method since ooRexx 5.0.

CSTRING name;
Rexx0ObjectPtr ret;

// Method Syntax Form(s)

ret = context->SetGuardOnwhenUpdated(name);

Waits for an object variable to be updated and returns the new value. The guard state will be ON on
return.

Arguments

113

SetMutableBufferCapacity

name The name of the variable to wait for. Only simple variables or stem variables are
allowed, no compound variables.

Returns
The new value of the variable. Returns a NULLOBJECT if an error occurs.

See also methods SetGuardOn, SetGuardOff, and SetGuardOffWhenUpdated.

1.17.165. SetMutableBufferCapacity

This APl is available in contexts Thread, Method, Call, and Exit.

RexxMutableBufferObject obj;
size_t len;
POINTER data;

// Method Syntax Form(s)
data = context->SetMutableBufferCapacity(obj,len);
Ensure the MutableBuffer object's data area is at least the indicated size. If necessary, the internal

data area will be reallocated. SetMutableBufferCapacity will only change the capacity if len is larger
than the current buffer capacity.

Arguments
obj The source MutableBuffer object.
len The required buffer capacity. If len is larger than the current data area, the internal
data area will be reallocated to the larger size and any existing buffer data will be
copied to the new data area.
Returns

A pointer to the MutableBuffer's data area. Because SetMutableBufferCapacity() may reallocate the
data area, the return value should replace any previous buffer pointers.

1.17.166. SetMutableBufferLength

This API is available in contexts Thread, Method, Call, and Exit.

RexxMutableBufferObject obj;
size_t len;
size_t newLen;

// Method Syntax Form(s)

newLen = context->SetMutableBufferLength(obj,len);

Sets the length of the data in the MutableBuffer's data area. If the length is greater than the current
capacity, then it will be capped at the current capacity. If len is longer than the buffer's current data
length, data will be padded with '00'x characters for the additional length. When adding characters to
the buffer's data area, you should call SetMutableBufferLength() before copying the additional data
into the buffer. If additional capacity is required, use SetMutableBufferCapacity to increase the buffer
size.

114

SetObjectVariable

Arguments
obj The source MutableBuffer object.
len The new data length. If len is larger than the current data area, the new length will
be capped at the length of the data area.
Returns

The new data length, which may be less than the indicated length if the buffer capacity is smaller.

1.17.167. SetObjectVariable

This API is available in context Method.

CSTRING str;
Rexx0ObjectPtr obj;

// Method Syntax Form(s)
context->SetObjectVariable(str, obj);

Sets an instance variable in the current method's variable scope to a new value. Only simple and stem
variables may be set using this API.

Arguments

str The name of the object variable.

obj The object to assign to the object variable.
Returns

Void.

1.17.168. SetStemArrayElement
This APl is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;

Rexx0ObjectPtr obj;

size_t n;

// Method Syntax Form(s)
context->SetStemArrayElement(sobj, n, obj);

Sets an element of the Stem object. If the element exists it is replaced. This method uses a numeric
index as the element name.

Arguments
sobj The target Stem object.
n The Stem object element number.
obj The object value assigned to the Stem object element.

115

SetStemElement

Returns

Void.

1.17.169. SetStemElement

This API is available in contexts Thread, Method, Call, and Exit.

RexxStemObject sobj;
Rexx0ObjectPtr obj;
CSTRING name;

// Method Syntax Form(s)

context->SetStemElement(sobj, name, obj);

Sets an element of the Stem object. If the element exists it is replaced.

Arguments

sobj The target Stem object.
name The Stem object element name. This is a fully resolve Stem tail element.
obj The object value assigned to the Stem object element.

Returns

Void.

1.17.170. SetThreadTrace

This APl is available in context Thread.

logical_t flag;
// Method Syntax Form(s)

context->SetThreadTrace(flag);

Sets the interactive trace state for the current thread.

Arguments
flag New state for interactive trace.

Returns

Void.

1.17.171. SetTrace

This API is available in context /nstance.

logical t flag;

116

SetVariableReferenceValue

// Method Syntax Form(s)

context->SetTrace(flag);

Sets the interactive trace state for the interpreter instance. This will enable tracing in all active threads
for the interpreter instance.

Arguments
flag The new trace state.

Returns

Void.

1.17.172. SetVariableReferenceValue

This APl is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxVariableReferenceObject ref;
Rexx0ObjectPtr value;

// Method Syntax Form(s)

context->SetVariableReferencevalue(ref, value);

Sets the value of VariableReference object ref to value.

Arguments

ref The VariableReference object.

value The object instance to be set as the value.
Returns
Void.

See also methods GetContextVariableReference, GetObjectVariableReference, IsVariableReference,
VariableReferenceName, and VariableReferenceValue.

1.17.173. String

This API is available in contexts Thread, Method, Call, and Exit.

RexxRoutineObject obj;
CSTRING str;
size_t len;

// Method Syntax Form(s)

obj = context->String(str, len);

obj context->String(str);

There are two forms of this method. Both create a new String object from a C string.

117

StringData

Arguments

str The ASCII-Z string to be converted.
len Length of the str string.

Returns

A new String object.

1.17.174. StringData
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
CSTRING str;

// Method Syntax Form(s)

str = context->StringData(obj);

Returns a pointer to the String object's string data (for read-only).

Arguments
obj The source String object for the data.

Returns
A pointer to the String object's string data.

The data pointed to does have a trailing \@ character, but note that also the data itself (like any Rexx
string) may contain embedded \0 characters. The program must not modify the data the returned
pointer points to.

1.17.175. StringGet

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
POINTER str;

size_t ¢, lenli, len2;

// Method Syntax Form(s)

c = context->StringGet(obj, leni, str, len2);

Copies all or part of the String object to a C string buffer.

Arguments
obj The source String object.
len1 The starting position within the String. This argument is 1-based
str A pointer to the target buffer for the copy. Note that the buffer is NOT zero-

terminated.

118

StringLength

len2 The number of characters to copy. This argument should be less than or equal the

size of the str buffer or a buffer overrun will result.

Returns

The number of characters actually copied.

1.17.176. StringLength

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
size_t sz;

// Method Syntax Form(s)

sz = context->StringLength(obj);
Return the length a String object.
Arguments

obj The source String object.

Returns

The string length of the String object.

1.17.177. StringLower

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr srcobj, newobj;
// Method Syntax Form(s)

newobj = context->StringLower(srcobj);

Convert a String object to lower case, returning a new String object.

Arguments

srcobj The source String object to be converted to lower case.

Returns

A new String object with the string value lower cased.

1.17.178. StringSize

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical t flag;

119

StringSizeToObject

stringsize_t n;

// Method Syntax Form(s)

obj = context->StringSize(n);

flag = context->StringSize(obj, &n);

There are two forms of this method. The first converts the stringsize_t value n to an Object. The
second converts an Object to a stringsize_t value and returns it in n.

Arguments
n For the first form, the stringsize_t value to be converted. For the second form, the
target of the conversion.
obj The object to be converted.
Returns

For the first form, an Object representation of the integer value. For the second form, 1 = success, 0 =
failure. If successful, the converted value is placed in n.

1.17.179. StringSizeToObject

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
stringsize_t sz;

// Method Syntax Form(s)
obj = context->StringSizeToObject(sz);
Convert a stringsize_t value to an Object.
Arguments
sz The stringsize_t value to be converted.
Returns

an Object that represents the C stringsize_t value.

1.17.180. StringTableAt

This API is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxStringTableObject strtab_obj;
Rexx0ObjectPtr obj;

CSTRING str;

// Method Syntax Form(s)

obj = context->StringTableAt(strtab_obj, str);

Return the object at the specified index.

120

StringTablePut

Arguments

strtab_obj The source StringTable object.

str The index into the StringTable object.
Returns

The object at the specified index. Returns NULLOBJECT if the given index does not exist.

See also methods IsStringTable, NewStringTable, StringTablePut, and StringTableRemove.

1.17.181. StringTablePut
This API is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxStringTableObject strtab_obj;
Rexx0ObjectPtr item;

CSTRING index;

// Method Syntax Form(s)

context->StringTablePut(strtab_obj, item, index);

Replace/add an Object at the specified StringTable index.

Arguments

strtab_obj The source StringTable object.

item The object instance to be stored at the index.

index The ASCII-Z string index into the StringTable object.
Returns
Void.

See also methods IsStringTable, NewStringTable, String TableAt, and String TableRemove.

1.17.182. StringTableRemove
This APl is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxStringTableObject strtab_obj;
Rexx0bjectPtr obj;
CSTRING str;

// Method Syntax Form(s)
obj = context->StringTableRemove(strtab_obj, str);
Removes and returns the object at the specified StringTable index.

Arguments

strtab_obj The source StringTable object.

121

StringUpper

str The ASCII-Z index into the StringTable object.

Returns

The object removed at the specified index. Returns NULLOBJECT if the index did not exist in the
target StringTable.

See also methods IsStringTable, NewStringTable, StringTableAt, and String TablePut.

1.17.183. StringUpper
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr srcobj, newobj;
// Method Syntax Form(s)

newobj = context->StringUpper(srcobj);

Convert a String object upper case, returning a new String object.
Arguments

srcobj The source String object.

Returns

A new String object with the string value upper cased.

1.17.184. SupplierAvailable

This APl is available in contexts Thread, Method, Call, and Exit.

RexxSupplierObjectPtr sobj;
logical_t flag;

// Method Syntax Form(s)

flag = context->SupplierAvailable(sobj);

Returns 1 if there is another supplier item available.

Arguments
sobj The source supplier object.

Returns

1 = another item available, 0 = no item available.

1.17.185. Supplierindex

This APl is available in contexts Thread, Method, Call, and Exit.

122

Supplierltem

RexxSupplierObjectPtr sobj;
Rexx0bjectPtr obj;

// Method Syntax Form(s)

obj = context->SupplierIndex(sobj);
Return the current supplier object index value.
Arguments

sobj The source supplier object.

Returns

The index object at the current supplier position.

1.17.186. Supplieritem

This API is available in contexts Thread, Method, Call, and Exit.

RexxSupplierObjectPtr sobj;
Rexx0bjectPtr obj;

// Method Syntax Form(s)

obj = context->SupplierItem(sobj);
Return the current supplier item object.
Arguments

sobj The source supplier object.

Returns

The object item at the current supplier position.

1.17.187. SupplierNext
This APl is available in contexts Thread, Method, Call, and Exit.

RexxSupplierObjectPtr sobj;
// Method Syntax Form(s)

context->SupplierNext(sobj);
Advance a Supplier object to the next enumeration position.
Arguments

sobj The source supplier object.

Returns

123

Terminate

Void.

1.17.188. Terminate

This APl is available in context Instance.

// Method Syntax Form(s)

context->Terminate();

Terminates the current Rexx interpreter instance. This call will wait for all threads to complete
processing before returning.

Arguments
None.
Returns

Void.

1.17.189. ThrowCondition

This API is available in contexts Method, Call, and Exit since ooRexx 5.0.

CSTRING str;
RexxStringObject sobj;
RexxArrayObject arr;
Rexx0bjectPtr obj;

// Method Syntax Form(s)

context->ThrowCondition(str, sobj, add, obj);

Throw a condition. The API call doesn't return and the current method, routine, or exit is exited
immediately.

Arguments
str The condition name.
sobj The optional condition description as a String object.
add An optional object containing additional condition information.
obj An Object that will be returned as a routine or method result if the raised condition
is not trapped by the caller.
Returns
Void.

See also methods RaiseCondition and ThrowException/0/1/2.

1.17.190. ThrowException/0/1/2

124

True

This APl is available in contexts Method, Call, and Exit since ooRexx 5.0.

size_t n;
Rexx0ObjectPtr array, objl, obj2;

// Method Syntax Form(s)
context->ThrowException(n, array);
context->ThrowException@(n);
context->ThrowExceptionl(n, obj1);
context->ThrowException2(n, objl, obj2);

Throw a SYNTAX condition. The API call doesn't return and the current method, routine, or exit is
exited immediately.

Arguments
n The exception condition number. There are #defines for the recognized condition
errors in the oorexxerrors.h include file.
array An Array of error message substitution values.
obj1 The first substitution value for the error message.
obj2 The second substitution value for the error message.
Returns
Void.

See also methods RaiseException/0/1/2.

1.17.191. True
This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
// Method Syntax Form(s)
obj = context->True();
This method returns the Rexx .true object.
Arguments
None.
Returns

The Rexx .true object.

1.17.192. Uintptr

This APl is available in contexts Thread, Method, Call, and Exit.

125

UintptrToObject

Rexx0ObjectPtr obj;

logical_t flag;

uintptr_t n;

// Method Syntax Form(s)

obj = context->Uintptr(&n);

flag = context->Uintptr(obj, &n);

There are two forms of this method. The first converts the uintptr_t value n to an Object. The second
converts an Object to a uintptr_t value and returns it in n.

Arguments
n For the first form, the uintptr_t value to be converted. For the second form, the
target of the conversion.
obj The object to be converted.
Returns

For the first form, an Object version of the integer. The second form returns 1 = success, 0 = failure. If
successful, the converted value is placed in n.

1.17.193. UintptrToObject

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
uintptr_t n;

// Method Syntax Form(s)

obj = context->UintptrToObject(&n);
Convert a uintptr_t value n to an Object.
Arguments
n The uintptr_t value to be converted.

Returns

An Object that represents the uintptr_t value.

1.17.194. Unsignedint32

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
logical t flag;

uint32_t n;

// Method Syntax Form(s)

obj = context->UnsignedInt32(n);

126

UnsignedInt32ToObject

flag = context->UnsignedInt32(obj, &n);

There are two forms of this method. The first converts a C 32-bit unsigned integer n to an Object. The
second converts an Object to a uint32_t value and returns it in n.

Arguments
n For the first form, the uint32_t value to be converted. For the second form, the
target of the conversion.
n The object to be converted to a uint32_t value.
Returns

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0 =
failure. If successful, the converted value is placed in n.

1.17.195. Unsignedint32ToObject

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
uint32_t n;

// Method Syntax Form(s)

obj = context->UnsignedInt32ToObject(n);

Convert a C 32-bit unsigned integer n to an Object.

Arguments
n The uint32_t value to be converted.

Returns

An Object that represents the C unsigned integer.

1.17.196. Unsignedint64

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;

logical t flag;

uinté4_t n;

// Method Syntax Form(s)

obj = context->UnsignedInt64(n);

flag = context->UnsignedInt64(obj, &n);

There are two forms of this method. The first converts a C 64-bit unsigned integer n to an Object. The
second converts an Object to a uint64_t value and returns it in n.

Arguments

127

UnsignedIint64ToObject

n For the first form, the uint64_t value to be converted. For the second form, the
target of the conversion.

n The object to be converted.

Returns

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0 =
failure. If successful, the converted value is placed in n.

1.17.197. Unsignedint64ToObject

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
uint64_t n;

// Method Syntax Form(s)

obj = context->UnsignedInt64ToObject(n);
Convert a C 64-bit unsigned integer n to an Object.
Arguments

n The uint64_t value to be converted.

Returns

An Object that represents the C unsigned integer.

1.17.198. ValuesToObject

This APl is available in contexts Thread, Method, Call, and Exit.

RexxArrayObj obj;
ValueDescriptor desc[3];

// Method Syntax Form(s)

obj = context->ValuesToObject(desc);

Converts an array of ValueDescriptor structs to an Array of objects.

Arguments
desc A C pointer to the ValueDescriptor struct array to be converted. The end of the
array is marked by a ValueDescriptor struct with all fields set to zero.
Returns

An Array object containing the converted objects.

1.17.199. ValueToObject

128

VariableReferenceName

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0bjectPtr obj;
ValueDescriptor desc;;

// Method Syntax Form(s)

obj = context->ValueToObject(&desc);

Convert a type to an Object representation. The source type is identified by the ValueDescriptor
structure, and can be any of the types that may be used as a method or routine return types.

For many conversions, it may be more appropriate to use more targeted routines such as
WholeNumberToObject. ValueToObject() is capable of converting to types such as int8_t for which
there are no specific conversion APIs.

Arguments
desc A C pointer to the ValueDescriptor struct describing the source value.

Returns

The object representing the converted value.

1.17.200. VariableReferenceName

This API is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxVariableReferenceObject ref;
RexxStringObject name;

// Method Syntax Form(s)

name = context->VariableReferenceName(ref);
Returns the name of VariableReference object ref.
Arguments

ref The VariableReference object instance.

Returns
The name of the VariableReference as a String.

See also methods GetContextVariableReference, GetObjectVariableReference, IsVariableReference,
SetVariableReferenceValue, and VariableReferenceValue.

1.17.201. VariableReferenceValue

This APl is available in contexts Thread, Method, Call, and Exit since ooRexx 5.0.

RexxVariableReferenceObject ref;
Rexx0bjectPtr value;

// Method Syntax Form(s)

129

WholeNumber

value = context->VariableReferenceValue(ref);

Returns the name of VariableReference object ref.

Arguments
ref The VariableReference object instance.

Returns
The value of the VariableReference.

See also methods GetContextVariableReference, GetObjectVariableReference, IsVariableReference,
SetVariableReferenceValue, and VariableReferenceName.

1.17.202. WholeNumber

This APl is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;

wholenumber_t n;

logical_t flag;

// Method Syntax Form(s)

obj = context->WholeNumber(n);

flag = context->WholeNumber(obj, &n);

There are two forms of this method. The first form converts a wholenumber_t value to an Object. The
second form converts an Object to a wholenumber_t value and returns it in n.

Arguments
n For the first form, the wholenumber _t value to be converted. For the second form,
the target of the conversion.
obj The source object for the conversion.
Returns

For the first form, an Object version of the integer value. For the second form, returns 1 = success, 0
failure. If successful, the converted value is placed in n.

1.17.203. WholeNumberToObject

This API is available in contexts Thread, Method, Call, and Exit.

Rexx0ObjectPtr obj;
wholenumber_t n;

// Method Syntax Form(s)

obj = context->WholeNumberToObject(n);

Convert a C wholenumber_t value to an Object.

130

WriteError

Arguments
n The C whole number to be converted.

Returns

An Object that represents the C whole number.

1.17.204. WriteError

This API is available in context I/O Redirector since ooRexx 5.0.

CSTRING data;
size_t 1length;

// Method Syntax Form(s)

context->WriteError(data, length);

Adds a string to an error output redirection Rexx object that was specified using the WITH subkeyword
of an ADDRESS instruction.

This APl is a no-op if there is no error redirection.

Arguments
data The string to be written.
length The length of data.
Returns
Void.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, IsRedirectionRequested, Readlnput, ReadlnputBuffer, WriteErrorBuffer,
WriteOutput, and WriteOutputBuffer.

1.17.205. WriteErrorBuffer

This API is available in context I/O Redirector since ooRexx 5.0.

CSTRING data;
size_t length;

// Method Syntax Form(s)

context->WriteErrorBuffer(data, length);

Adds a string composed of strings separated by the platform-specific line-end characters as separate
items or lines to an error output redirection Rexx object that was specified using the WITH subkeyword
of an ADDRESS instruction.

This APl is a no-op if there is no error redirection.

Arguments

131

WriteOutput

data The string of line-end separated strings to be written.
length The length of data. data string.

Returns

Void.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, IsRedirectionRequested, Readlnput, ReadlnputBuffer, WriteError, WriteOutput,
and WriteOutputBuffer.

1.17.206. WriteOutput

This APl is available in context I/O Redirector since ooRexx 5.0.

CSTRING data;
size_t 1length;

// Method Syntax Form(s)

context->WriteOutput(data, length);

Adds a string to an output redirection Rexx object that was specified using the WITH subkeyword of an
ADDRESS instruction.

This APl is a no-op if there is no output redirection.

Arguments
data The string to be written.
length The length of data.
Returns
Void.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, IsRedirectionRequested, Readlnput, ReadlnputBuffer, WriteError,
WriteErrorBuffer, WriteOutputBuffer.

1.17.207. WriteOutputBuffer

This APl is available in context I/O Redirector since ooRexx 5.0.

CSTRING data;
size_t length;

// Method Syntax Form(s)
context->WriteOutputBuffer(data, length);
Adds a string composed of strings separated by the platform-specific line-end characters as separate

items or lines to an output redirection Rexx object that was specified using the WITH subkeyword of
an ADDRESS instruction.

132

WriteOutputBuffer

This API is a no-op if there is no output redirection.

Arguments
data The string of line-end separated strings to be written.
length The length of data. data string.

Returns

Void.

See also methods AreOutputAndErrorSameTarget, IsErrorRedirected, IsinputRedirected,
IsOutputRedirected, IsRedirectionRequested, Readlnput, ReadlnputBuffer, WriteError, and
WriteOutput.

133

Chapter 2.

Classic Rexx Application Programming
Interfaces

This chapter describes how to interface applications to Rexx or extend the Rexx language by using
Rexx application programming interfaces (APIs). As used here, the term application refers to programs
written in languages other than Rexx. This is usually the C language. Conventions in this chapter

are based on the C language. Refer to a C programming reference manual if you need a better
understanding of these conventions.

The features described here let an application extend many parts of the Rexx language or extend
an application with Rexx. This includes creating handlers for subcommands, external functions, and
system exits.

Subcommands
are commands issued from a Rexx program. A Rexx expression is evaluated and the result is
passed as a command to the currently addressed subcommand handler. Subcommands are used
in Rexx programs running as application macros.

Functions
are direct extensions of the Rexx language. An application can create functions that extend
the native Rexx function set. Functions can be general-purpose extensions or specific to an
application.

System exits
are programmer-defined variations of the operating system. The application programmer can tailor
the Rexx interpreter behavior by replacing Rexx system requests.

Subcommand, function, and system exit handlers have similar coding, compilation, and packaging
characteristics.

In addition, applications can manipulate the variables in Rexx programs (see Section 2.7, “Variable
Pool Interface”), and execute Rexx routines directly from memory (see Section 2.11, “Macrospace
Interface”).

2.1. Handler Characteristics

The basic requirements for subcommand, function, and system exit handlers are:

» Rexx handlers must use the REXXENTRY linkage convention. Handler functions should be
declared with the appropriate type definition from the rexx.h include file. Using C++, the functions
must be declared as extern "C":
¢ RexxSubcomHandler

¢ RexxFunctionHandler
¢ RexxExitHandler

» A Rexx handler must be packaged as either of the following:
* An exported routine within a loadable library (dynamic-link library (DLL) on Windows, or shared
library on Unix-based systems.).

« An entry point within an executable (EXE) module

« A handler must be registered with Rexx before it can be used. Rexx uses the registration
information to locate and call the handler. For example, external function registration of a dynamic-

134

RXSTRINGs

link library external function identifies both the dynamic-link library and routine that contains the
external function. Also note:
< Dynamic-link library handlers are global to the system; any Rexx program can call them.

« Executable file handlers are local to the registering process; only a Rexx program running in
the same process as an executable module can call a handler packaged within that executable
module.

2.2. RXSTRINGs

Many of the Rexx application programming interfaces pass Rexx character strings to and from a Rexx
procedure. The RXSTRING data structure is used to describe Rexx character strings. An RXSTRING
is a content-insensitive, flat model character string with a theoretical maximum length of 4 gigabytes.
The following structure defines an RXSTRING:

Example 2.1. RXSTRING

typedef struct {

size_t strlength; /* length of string */
char * strptr; /* pointer to string */
} RXSTRING;
typedef RXSTRING *PRXSTRING; /* pointer to an RXSTRING */

Many programming interfaces use RXSTRINGs for input-only operations. These APIs use a constant
version of the RXSTRING, the CONSTRXSTRING.

Example 2.2. RXSTRING

typedef struct {

size_t strlength; /* length of string */
const char * strptr; /* pointer to string */
} RXSTRING;
typedef CONSTRXSTRING *PCONSTRXSTRING; /* pointer to a CONSTRXSTRING */

Notes:

1. The rexx.h include file contains a number of convenient macros for setting and testing RXSTRING
values.

2. An RXSTRING can have a value (including the null string, ") or it can be empty.
e If an RXSTRING has a value, the strptr field is not null. The RXSTRING macro
RXVALIDSTRING(string) returns TRUE.

e If an RXSTRING is the Rexx null string ("), the strptr field is not null and the strlength field is 0.
The RXSTRING macro RXZEROLENSTRING(string) returns TRUE.

e If an RXSTRING is empty, the field strptr is null. The RXSTRING macro
RXNULLSTRING(string) returns TRUE.

3. When the Rexx interpreter passes an RXSTRING to a subcommand handler, external function, or
exit handler, the interpreter adds a null character (hexadecimal zero) at the end of the RXSTRING
data. You can use the C string library functions on these strings. However, the RXSTRING data

135

Calling the Rexx Interpreter

can also contain null characters. There is no guarantee that the first null character encountered in
an RXSTRING marks the end of the string. You use the C string functions only when you do not
expect null characters in the RXSTRINGS, such as file names passed to external functions. The
strlength field in the RXSTRING does not include the terminating null character.

4. On calls to subcommand and external functions handlers, as well as to some of the exit handlers,
the Rexx interpreter expects that an RXSTRING value is returned. The Rexx interpreter provides
a default RXSTRING with a strlength of 256 for the returned information. If the returned data is
shorter than 256 characters, the handler can copy the data into the default RXSTRING and set the
strlength field to the length returned.

If the returned data is longer than 256 characters, a new RXSTRING can be allocated using
RexxAllocateMemory(size). The strptr field must point to the new storage and the strlength
must be set to the string length. The Rexx interpreter returns the newly allocated storage to the
system for the handler routine.

2.3. Calling the Rexx Interpreter

A Rexx program can be run directly from the command prompt of the operating system, or from within
an application.

2.3.1. From the Operating System

You can run a Rexx program directly from the operating system command prompt using Rexx followed
by the program name.

2.3.2. From within an Application

The Rexx interpreter is a dynamic-link library (DLL) routine (or Unix/Linux shared object). Any
application can call the Rexx interpreter to run a Rexx program. The interpreter is fully reentrant and
supports Rexx procedures running on several threads within the same process.

A C-language prototype for calling Rexx is in the rexx.h include file.

2.3.3. The RexxStart Function
RexxStart calls the Rexx interpreter to run a Rexx procedure.

retc = RexxStart(ArgCount, ArgList, ProgramName, Instore, EnvName,
CallType, Exits, ReturnCode, Result);

2.3.3.1. Parameters

ArgCount (size_t) - input
is the number of elements in the ArgList array. This is the value that the ARG() built-in function
in the Rexx program returns. ArgCount includes RXSTRINGSs that represent omitted arguments.
Omitted arguments are empty RXSTRINGs (strptr is null).

ArgList (PCONSTRXSTRING) - input
is an array of CONSTRXSTRING structures that are the Rexx program arguments.

136

The RexxStart Function

ProgramName (const char *) - input
is the address of the ASCII name of the Rexx procedure. If Instore is null, ProgramName must
contain at least the file name of the Rexx procedure. You can also provide an extension, drive,
and path. If you do not specify a file extension, the default is .REX. A Rexx program can use any
extension. If you do not provide the path and the drive, the Rexx interpreter uses the usual file
search order to locate the file.

If Instore is not null, ProgramName is the name used in the PARSE SOURCE instruction. If Instore
requests a Rexx procedure from the macrospace, ProgramName is the macrospace function
name (see Section 2.11, “Macrospace Interface”).

Instore (PRXSTRING) - input
is an array of two RXSTRING descriptors for in-storage Rexx procedures. If the strptr fields of
both RXSTRINGs are null, the interpreter searches for Rexx procedure ProgramName in the Rexx
macrospace (see Section 2.11, “Macrospace Interface”). If the procedure is not in the macrospace,
the call to RexxStart terminates with an error return code.

If either Instore strptr field is not null, Instore is used to run a Rexx procedure directly from storage.

Instore[0]
is an RXSTRING describing a memory buffer that contains the Rexx procedure source. The
source must be an exact image of a Rexx procedure disk file, complete with carriage returns,
line feeds, and end-of-file characters.

Instore[1]
is an RXSTRING containing the translated image of the Rexx procedure. If Instore[1] is empty,
the Rexx interpreter returns the translated image in Instore[1] when the Rexx procedure
finishes running. The translated image may be used in Instore[1] on subsequent RexxStart
calls.

If Instore[1] is not empty, the interpreter runs the translated image directly. The program
source provided in Instore[0] is used only if the Rexx procedure uses the SOURCELINE built-
in function. Instore[0] can be empty if SOURCELINE is not used. If Instore[0] is empty and the
procedure uses the SOURCELINE built-in function, SOURCELINE() returns no lines and any
attempt to access the source returns Error 40.

If Instore[1] is not empty, but does not contain a valid Rexx translated image, unpredictable
results can occur. The Rexx interpreter might be able to determine that the translated image is
incorrect and translate the source again.

Instore[1] is both an input and an output parameter.

If the procedure is executed from disk, the Instore pointer must be null. If the first argument string
in Arglist is exactly the string "//T" and the CallType is RXCOMMAND, the interpreter performs a
syntax check on the procedure source, but does not execute it and does not store any images.

The program calling RexxStart must release Instore[1] using RexxFreeMemory (ptr) when the
translated image is no longer needed.

Only the interpreter version that created the image can run the translated image. Therefore,
neither change the format of the translated image of a Rexx program, nor move a translated image
to other systems or save it for later use. You can, however, use the translated image several times
during a single application execution.

137

The RexxStart Function

EnvName (const char *) - input
is the address of the initial ADDRESS environment hame. The ADDRESS environment is a
subcommand handler registered using RexxRegisterSubcomExe or RexxRegisterSubcomDIl.
EnvName is used as the initial setting for the Rexx ADDRESS instruction.

If EnvName is null, the file extension is used as the initial ADDRESS environment. The
environment name cannot be longer than 250 characters.

CallType (int) - input
is the type of the Rexx procedure execution. Allowed execution types are:
RXCOMMAND
The Rexx procedure is a system or application command. Rexx commands usually have

a single argument string. The Rexx PARSE SOURCE instruction returns COMMAND as the
second token.

RXSUBROUTINE
The Rexx procedure is a subroutine of another program. The subroutine can have several

arguments and does not need to return a result. The Rexx PARSE SOURCE instruction
returns SUBROUTINE as the second token.

RXFUNCTION
The Rexx procedure is a function called from another program. The subroutine can have

several arguments and must return a result. The Rexx PARSE SOURCE instruction returns
FUNCTION as the second token.

Exits (PRXSYSEXIT) - input

is an array of RXSYSEXIT structures defining exits for the Rexx interpreter to be used. The
RXSYSEXIT structures have the following form:

Example 2.3. RXSYSEXIT

typedef struct {
const char * sysexit_name; /* name of exit handler */
int sysexit_code; /* system exit function code */
} RXSYSEXIT;

The sysexit_name is the address of an ASCII exit handler name registered with
RexxRegisterExitExe or RexxRegisterExitDIl. Sysexit_code is a code identifying the handler exit
type. See Section 2.6, “Registered System Exit Interface” for exit code definitions. An RXENDLST
entry identifies the system-exit list end. Exits must be null if exits are not used.

ReturnCode (short *) - output

is the integer form of the Result string. If the Result string is a whole number in the range -(2**15)
to 2**15-1, it is converted to an integer and also returned in ReturnCode.

Result (PRXSTRING) - output
is the string returned from the Rexx procedure with the Rexx RETURN or EXIT instruction. A
default RXSTRING can be provided for the returned result. If a default RXSTRING is not provided
or the default is too small for the returned result, the Rexx interpreter allocates an RXSTRING
using RexxAllocateMemory(size). The caller of RexxStart is responsible for releasing the
RXSTRING storage with RexxFreeMemory (ptr).

The Rexx interpreter does not add a terminating null to Result.

138

The RexxStart Function

2.3.3.2. Return Codes

The possible RexxStart return codes are:

negative

Interpreter errors. See the Appendix in the Open Object Rexx: Reference for the list of Rexx

errors.

No errors occurred. The Rexx procedure ran normally.

positive

A system return code that indicates problems finding or loading the interpreter.

When a macrospace Rexx procedure (see Section 2.11, “Macrospace Interface”) is not loaded in the
macrospace, the return code is -3 ("Program is unreadable").

2.3.3.3. Example

Example 2.4. RexxStart

The following example for RexxStart should compile and execute on Linux. A few small changes as
noted in the example, and it should compile and execute on Windows. This is dependent on having
the build environment set up correctly. Note that you need to provide a test . rex program for the

executable to pass to the interpreter:

/* rexxStartExample.c

gcc -D_GNU_SOURCE -std=c99 -pedantic -1dl rexxStartExample.c -lrexx -lrexxapi -o

rexxStartExample
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <rexx.h>

int main(int argc, char *argv[])

{

int return_code; /* interpreter return code */
short rc; /* converted return code */
CONSTRXSTRING argr[1]; /* rexx program argument string */
RXSTRING retstr; /* rexx program return value */
char return_buffer[250]; /* returned buffer */

char rexx_argument[] = "theargument";

/* build the argument string */
MAKERXSTRING(argr[0], rexx_argument, strlen(rexx_argument));

/* set up default return */

MAKERXSTRING(retstr, return_buffer, sizeof(return_buffer));

retstr.strptr[0] = 0;

return_code = RexxStart(1,
argr,

// one argument
// here it is

"./test.rex", // name of program

NULL,

// use disk version

"bash", // default address name

139

The RexxWaitForTermination Function (Deprecated)

RXCOMMAND, // called as a subcommand

NULL, // no exits

&rc, // where to put rc

&retstr); // where to put returned string

/* process return value */

printf("rc %i\n", rc);

if (retstr.strlength > 0) {
printf("ret: %s\n", retstr.strptr);

}

/* need to return storage? */
if (RXSTRPTR(retstr) != vreturn_buffer) {
RexxFreeMemory(RXSTRPTR(retstr)); /* release the RXSTRING */

}
return 0;
}
/*
In the above code, change: "./test.rex" to: ".\test.rex" and
change: "bash" to: "cmd".
For the VC++ compiler, this command line should work:

cl rexxStartExample.cpp rexx.lib rexxapi.lib

*/

When RexxStart is executed within an external program (usually a C program), the main Rexx
thread runs on the same thread as the RexxStart invocation. When the main thread terminates, the
interpreter will wait until all additional threads created from the main thread terminate before returning
control to the invoking program.

2.3.4. The RexxWaitForTermination Function (Deprecated)

RexxWaitForTermination is not supported in 4.0 and will return immediately if called. This is
maintained for binary compatibility with previous releases.

2.3.5. The RexxDidRexxTerminate Function (Deprecated)

RexxDidRexxTerminate always returns 1 for 4.0. This is maintained for binary compatibility with early
releases.

retc = RexxDidRexxTerminate();

2.4. Subcommand Interface

An application can create handlers to process commands from a Rexx program. Once created,
the subcommand handler name can be used with the RexxStart function or the Rexx ADDRESS
instruction. Subcommand handlers must be registered with the RexxRegisterSubcomExe or
RexxRegisterSubcomDIl function before they are used.

2.4.1. Registering Subcommand Handlers

140

Registering Subcommand Handlers

A subcommand handler can reside in the same module (executable or DLL) as an application, or it
can reside in a separate dynamic-link library. It is recommended that an application that runs Rexx
procedures with RexxStart uses RexxRegisterSubcomExe to register subcommand handlers. The
Rexx interpreter passes commands to the application subcommand handler entry point. Subcommand
handlers created with RexxRegisterSubcomExe are available only to Rexx programs called from the
registering application.

The RexxRegisterSubcomDIl interface creates subcommand handlers that reside in a dynamic-link
library. Any Rexx program using the Rexx ADDRESS instruction can access a dynamic-link library
subcommand handler. A dynamic-link library subcommand handler can also be registered directly from
a Rexx program using the RXSUBCOM command.

2.4.1.1. Creating Subcommand Handlers
The following example is a sample subcommand handler definition.
Example 2.5. Command handler

RexxReturnCode REXXENTRY command_handler (

PCONSTRXSTRING Command, /* Command string from Rexx */
unsigned short *Flags, /* Returned Error/Failure flags */
PRXSTRING Retstr); /* Returned RC string */
where:
Command

is the command string created by Rexx.
command is a null-terminated RXSTRING containing the issued command.

Flags
is the subcommand completion status. The subcommand handler can indicate success, error, or
failure status. The subcommand handler can set Flags to one of the following values:
RXSUBCOM_OK
The subcommand completed normally. No errors occurred during subcommand processing
and the Rexx procedure continues when the subcommand handler returns.

RXSUBCOM_ERROR

A subcommand error occurred. RXSUBCOM_ERROR indicates a subcommand error
occurred; for example, incorrect command options or syntax.

If the subcommand handler sets Flags to RXSUBCOM_ERROR, the Rexx interpreter raises
an ERROR condition if SIGNAL ON ERROR or CALL ON ERROR traps have been created.
If TRACE ERRORS has been issued, Rexx traces the command when the subcommand
handler returns.

RXSUBCOM_FAILURE

A subcommand failure occurred. RXSUBCOM_FAILURE indicates that general subcommand
processing errors have occurred. For example, unknown commands usually return
RXSUBCOM_FAILURE.

If the subcommand handler sets Flags to RXSUBCOM_FAILURE, the Rexx interpreter raises
a FAILURE condition if SIGNAL ON FAILURE or CALL ON FAILURE traps have been created.

141

Subcommand Interface Functions

If TRACE FAILURES has been issued, Rexx traces the command when the subcommand

handler returns.

Retstr

is the address of an RXSTRING for the return code. It is a character string return code that is
assigned to the Rexx special variable RC when the subcommand handler returns to Rexx. The
Rexx interpreter provides a default 256-byte RXSTRING in Retstr. A longer RXSTRING can

be allocated with RexxAllocateMemory(size) if the return string is longer than the default
RXSTRING. If the subcommand handler sets Retstr to an empty RXSTRING (a null strptr), Rexx

assigns the string 0 to RC.

2.4.1.1.1. Example

Example 2.6. Subcommand handler

RexxReturnCode REXXENTRY Edit_Commands(

PCONSTRXSTRING Command, /* Command string passed from the caller */
unsigned short *Flags, /* pointer too short for return of flags */
PRXSTRING Retstr) /* pointer to RXSTRING for RC return */
{
int command_id; /* command to process */
int rc; /* return code */
const char *scan_pointer; /* current command scan */
const char *target; /* general editor target */
scan_pointer = Command->strptr; /* point to the command */
/* resolve command */
command_id = resolve_command(&scan_pointer);
switch (command_id) { /* process based on command */
case LOCATE: /* locate command */
/* validate rest of command */
if (rc = get_target(&scan_pointer, &target)) {
Flags = RXSUBCOM_ERROR; / raise an error condition */
break; /* return to Rexx */
}
rc = locate(target); /* locate target in the file */
Flags = RXSUBCOM_OK; / not found is not an error */
break; /* finish up */
default: /* unknown command */
rc = 1; /* return code for unknown */
Flags = RXSUBCOM_FAILURE; / this is a command failure */
break;
}
sprintf(Retstr->strptr, "%d", rc); /* format return code string */
/* and set the correct length */
Retstr->strlength = strlen(Retstr->strptr);
return 0; /* processing completed */

2.4.2. Subcommand Interface Functions
The following sections explain the functions for registering and using subcommand handlers.

142

Subcommand Interface Functions

2.4.2.1. RexxRegisterSubcomDl|

RexxRegisterSubcomDI| registers a subcommand handler that resides in a dynamic-link library
routine.

retc = RexxRegisterSubcomDll(EnvName, ModuleName, EntryPoint,
UserArea, DropAuth);

2.4.2.1.1. Parameters

EnvName (const char *) - input
is the address of an ASCIl subcommand handler name.

ModuleName (const char *) - input

is the address of an ASCII dynamic-link library name. ModuleName is the DLL file containing the
subcommand handler routine.

EntryPoint (const char *) - input

is the address of an ASCII dynamic-link library procedure name. EntryPoint is the name of the
exported routine within ModuleName that Rexx calls as a subcommand handler.

UserArea (const char *) - input

is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand
handler registration. UserArea can be null if there is no user information to be saved. The
RexxQuerySubcom function can retrieve the saved user information.

DropAuth (size_t) - input
is the drop authority. DropAuth identifies the processes that can deregister the subcommand
handler. The possible DropAuth values are:
RXSUBCOM_DROPPABLE

Any process can deregister the subcommand handler with RexxDeregisterSubcom.

RXSUBCOM_NONDROP

Only a thread within the same process as the thread that registered the handler can
deregister the handler with RexxDeregisterSubcom.

2.4.2.1.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name
registered in another DLL. (To address this
subcommand, you must specify its library name.)

RXSUBCOM_NOTREG 30 Registration was unsuccessful due

to duplicate handler and module

names (RexxRegisterSubcomExe or
RexxRegisterSubcomDIl); the subroutine
environment is not registered (other Rexx
subcommand functions).

143

Subcommand Interface Functions

RXSUBCOM_NOEMEM

1002

There is insufficient memory available to
complete this request.

2.4.2.2. RexxRegisterSubcomExe

RexxRegisterSubcomExe registers a subcommand handler that resides within the application code.

retc = RexxRegisterSubcomExe(EnvName,

2.4.2.2.1. Parameters

EnvName (const char *) - input

EntryPoint, UserArea);

is the address of an ASCIl subcommand handler name.

EntryPoint (REXXPFN) - input

is the address of the subcommand handler entry point within the application executable code.

UserArea (const char *) - input

is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand
handler registration. UserArea can be null if there is no user information to be saved. The
RexxQuerySubcom function can retrieve the saved user information.

2.4.2.2.2. Return Codes

RXSUBCOM_OK

A subcommand has executed successfully.

RXSUBCOM_DUP

10

A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name
registered in another DLL. (To address this
subcommand, you must specify its library name.)

RXSUBCOM_NOTREG

30

Registration was unsuccessful due

to duplicate handler and library

names (RexxRegisterSubcomExe or
RexxRegisterSubcomDll); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOEMEM

1002

There is insufficient memory available to
complete this request.

2.4.2.2.3. Remarks

If EnvName is the same as a subcommand handler already registered with RexxRegisterSubcomDll,
RexxRegisterSubcomExe returns RXSUBCOM_DUP. This is not an error condition. It means that
RexxRegisterSubcomExe has successfully registered the new subcommand handler.

A Rexx procedure can register dynamic-link library subcommand handlers with the RXSUBCOM

command. For example:

144

Subcommand Interface Functions

Example 2.7. RXSUBCOM

/* register Dialog Manager */
/* subcommand handler */
"RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR"
Address ispcir /* send commands to dialog mgr */

The RXSUBCOM command registers the Dialog Manager subcommand handler ISPCIR as routine
ISPCIR in the ISPCIR dynamic-link library.

2.4.2.2.4. Example

Example 2.8. RexxStart

const char *user_info[2]; /* saved user information */
user_info[@] = global workarea; /* save global work area for */
user_info[1] = NULL; /* re-entrance */
rc = RexxRegisterSubcomExe("Editor", /* register editor handler */
&Edit_Commands, /* located at this address */
user_info); /* save global pointer */

2.4.2.3. RexxDeregisterSubcom
RexxDeregisterSubcom deregisters a subcommand handler.

retc = RexxDeregisterSubcom(EnvName, ModuleName);

2.4.2.3.1. Parameters

EnvName (const char *) - input
is the address of an ASCIl subcommand handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName is the name of the
dynamic-link library containing the registered subcommand handler. When ModuleName is
null, RexxDeregisterSubcom searches the RexxRegisterSubcomExe subcommand handler
list for a handler within the current process. If RexxDeregisterSubcom does not find a
RexxRegisterSubcomExe handler, it searches the RexxRegisterSubcomDIl subcommand handler
list.

2.4.2.3.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_NOTREG 30 Registration was unsuccessful due
to duplicate handler and dynalink

145

Subcommand Interface Functions

names (RexxRegisterSubcomExe or
RexxRegisterSubcomDlIl); the subroutine
environment is not registered (other Rexx
subcommand functions).

RXSUBCOM_NOCANDROP 40 The subcommand handler has been registered
as "not droppable.”

2.4.2.3.3. Remarks
The handler is removed from the active subcommand handler list.

2.4.2.4. RexxQuerySubcom
RexxQuerySubcom queries a subcommand handler and retrieves saved user information.

retc = RexxQuerySubcom(EnvName, ModuleName, Flag, UserWord);

2.4.2.4.1. Parameters

EnvName (const char *) - input
is the address of an ASCIl subcommand handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName restricts the query to a
subcommand handler within the ModuleName dynamic-link library. When ModuleName is null,
RexxQuerySubcom searches the RexxRegisterSubcomExe subcommand handler list for a
handler within the current process. If RexxQuerySubcom does not find a RexxRegisterSubcomExe
handler, it searches the RexxRegisterSubcomDIl subcommand handler list.

Flag (unsigned short *) - output
is the subcommand handler registration flag. Flag is the EnvName subcommand
handler registration status. When RexxQuerySubcom returns RXSUBCOM_OK, the
EnvName subcommand handler is currently registered. When RexxQuerySubcom returns
RXSUBCOM_NOTREG, the EnvName subcommand handler is not registered.

UserWord (char *) - output
is the address of an area that receives the user information saved with RexxRegisterSubcomExe
or RexxRegisterSubcomDIl. The userarea must be large enough to store two pointer values.
UserWord can be null if the saved user information is not required.

2.4.2.4.2. Return Codes

RXSUBCOM_OK 0 A subcommand has executed successfully.

RXSUBCOM_NOTREG 30 Registration was unsuccessful due

to duplicate handler and dynalink

names (RexxRegisterSubcomExe or
RexxRegisterSubcomDIl); the subroutine
environment is not registered (other Rexx
subcommand functions).

146

External Function Interface

2.4.2.4.3. Example

Example 2.9. Command handlers

RexxReturnCode REXXENTRY Edit_Commands(

PCONSTRXSTRING Command, /* Command string passed from the caller */
unsigned short *Flags, /* pointer too short for return of flags */
PRXSTRING Retstr) /* pointer to RXSTRING for RC return */
{
char *user_info[2]; /* saved user information */
char *global_workarea; /* application data anchor */
unsigned short query_flag; /* flag for handler query */
rc = RexxQuerySubcom("Editor", /* retrieve application work */
NULL, /* area anchor from Rexx */
&query_flag,
user_info);
global workarea = user_info[0]; /* set the global anchor */

2.5. External Function Interface

There are two types of Rexx external functions:
* Routines written in Rexx
» Routines written in other platform-supported native code (compiled) languages

External functions written in Rexx do not need to be registered. These functions are found by a disk
search for a Rexx procedure file that matches the function name.

There are two styles of native code routines supported by Open Object Rexx. Registered External
Functions are an older style of routine that is only capable of dealing with String data. These routines
do not have access to any of the object-oriented features of the language. The registered external
functions are described here, but should be considered only if compatibility with older versions of
Open Object Rexx or other Rexx interpreters is a consideration.

The newer style functions have access to Rexx objects and a fuller set of APIs for interfacing with the
interpreter runtime. These functions are the preferred method for writing Open Object Rexx extensions
are defined in Section 1.12, “Building an External Native Library”.

2.5.1. Registering External Functions

An external function can reside in the same module (executable or library) as an application, or in a
separate loadable library. RexxRegisterFunctionExe registers external functions within an application
module. External functions registered with RexxRegisterFunctionExe are available only to Rexx
programs called from the registering application.

The RexxRegisterFunctionDlIl interface registers external functions that reside in a dynamic-link library.
Any Rexx program can access such an external function after it is registered. It can also be registered
directly from a Rexx program using the Rexx RXFUNCADD built-in function.

2.5.1.1. Creating External Functions

147

Calling External Functions

The following is a sample external function definition:
Example 2.10. External functions

size_t REXXENTRY SysLoadFuncs(

const char *Name, /* name of the function */
size_t Argc, /* number of arguments */
CONSTRXSTRING Argv[], /* list of argument strings */
const char *Queuename, /* current queue name */
PRXSTRING Retstr) /* returned result string */

where:

Name
is the address of an ASCII function name used to call the external function.

Argc
is the number of elements in the Argv array. Argv contains Argc RXSTRINGs.

Argv
is an array of null-terminated CONSTRXSTRINGs for the function arguments.

Queuename
is the name of the currently defined external Rexx data queue.

Retstr
is the address of an RXSTRING for the returned value. Retstr is a character string function or
subroutine return value. When a Rexx program calls an external function with the Rexx CALL
instruction, Retstr is assigned to the special Rexx variable RESULT. When the Rexx program calls
an external function with a function call, Retstr is used directly within the Rexx expression.

The Rexx interpreter provides a default 256-byte RXSTRING in Retstr. A longer RXSTRING can
be allocated with RexxAllocateMemory(size) if the returned string is longer than 256 bytes.
The Rexx interpreter releases Retstr with RexxFreeMemory (ptr) when the external function
completes.

Returns
is an integer return code from the function. When the external function returns 0, the function
completed successfully. Retstr contains the return value. When the external function returns a
nonzero return code, the Rexx interpreter raises Rexx error 40, "Incorrect call to routine". The
Retstr value is ignored.

If the external function does not have a return value, the function must set Retstr to an empty
RXSTRING (null strptr). When an external function called as a function does not return a value,
the interpreter raises error 44, "Function or message did not return data". When an external
function called with the Rexx CALL instruction does not return a value, the Rexx interpreter drops
(unassigns) the special variable RESULT.

2.5.2. Calling External Functions

RexxRegisterFunctionExe external functions are local to the registering process. Another
process can call the RexxRegisterFunctionExe to make these functions local to this process.
RexxRegisterFunctionDIl functions, however, are available to all processes. The function names
cannot be duplicated.

148

External Function Interface Functions

2.5.2.1. Example

Example 2.11. External functions

size_t REXXENTRY SysMkDir (

const char *Name, /* name of the function */
size_t Argc, /* number of arguments */
CONSTRXSTRING Argv[], /* list of argument strings */
const char *Queuename, /* current queue name */
PRXSTRING Retstr) /* returned result string */
{
ULONG rc; /* Return code of function */
if (Argc '= 1) /* must be 1 argument */
return 40; /* incorrect call if not */
/* make the directory */
rc = !CreateDirectory(Argv[0@].strptr, NULL);
sprintf(Retstr->strptr, "%d", rc); /* result: <> 0 failed */
/* set proper string length */
Retstr->strlength = strlen(Retstr->strptr);
return 0; /* successful completion */
}

2.5.3. External Function Interface Functions

The following sections explain the functions for registering and using external functions.

2.5.3.1. RexxRegisterFunctionDlII

RexxRegisterFunctionDIl registers an external function that resides in a dynamic-link library routine.

retc RexxRegisterFunctionDll(FuncName, Mod

2.5.3.1.1. Parameters

FuncName (const char *) - input

uleName, EntryPoint);

is the address of an external function name. The function name must not exceed 1024 characters.

ModuleName (const char *) - input

is the address of an ASCII library name. ModuleName is the library file containing the external

function routine.

EntryPoint (const char *) - input

is the address of an ASCII dynamic-link procedure name. EntryPoint is the name of the exported

external function routine within ModuleName.

2.5.3.1.2. Return Codes

RXFUNC_OK

The call to the function completed successfully.

149

External Function Interface Functions

RXFUNC_NOEMEM ‘ 1002 ‘ Memory allocation failure, or related.

2.5.3.1.3. Remarks

Starting with ooRexx 5.0.0, on Windows, External functions that reside in a dynamic-link library routine
no longer require a module-definition (.DEF) file that lists the external functions in the EXPORT
section.

A Rexx procedure can register dynamic-link library-external functions with the RXFUNCADD built-in
function. For example:

Example 2.12. RXFUNCADD

/* register function SysLoadFuncs */
/* in dynamic link library RexxUTIL*/
Call RxFuncAdd "SysLoadFuncs", "RexxUTIL", "SysLoadFuncs"
Call SysLoadFuncs /* call to load other functions */

RXFUNCADD registers the external function SysLoadFuncs as routine SysLoadFuncs in the rexxutil
library. SysLoadFuncs registers additional functions in rexxutil with RexxRegisterFunctionDIl. See the
SysLoadFuncs routine below for a function registration example.

2.5.3.1.4. Example

Example 2.13. External functions

static const char *RxFncTable[] = /* function package list */
{

"SysCls",

"SysCurpos",

"SysCurState",

"SysDriveInfo",

size_t REXXENTRY SysLoadFuncs(

const char *Name, /* name of the function */
size_t Argc, /* number of arguments */
CONSTRXSTRING Argv[], /* list of argument strings */
const char *Queuename, /* current queue name */
PRXSTRING Retstr) /* returned result string */
{
INT entries; /* Number of entries */
INT J; /* counter */
Retstr->strlength = 0; /* set null string return */
if (Argc > 0) /* check arguments */
return 40; /* too many, raise an error */
/* get count of arguments */
entries = sizeof(RxFncTable)/sizeof(const char *);
/* register each function in */
for (j = 0; j < entries; j++) { /* the table */
RexxRegisterFunctionDll(RxFncTable[]j],
"RexxUTIL", RxFncTable[j]);
}
return 0; /* successful completion */
}

150

External Function Interface Functions

2.5.3.2. RexxRegisterFunctionExe

RexxRegisterFunctionExe registers an external function that resides within the application code.

retc = RexxRegisterFunctionExe(FuncName, EntryPoint);

2.5.3.2.1. Parameters

FuncName (const char *) - input
is the address of an external function name. The function name must not exceed 1024 characters.

EntryPoint (REXXPFN) - input
is the address of the external function entry point within the executable application file. Functions
registered with RexxRegisterFunctionExe are local to the current process. Rexx procedures in the
same process as the RexxRegisterFunctionExe issuer can call local external functions.

2.5.3.2.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.

RXFUNC_DEFINED 10 The requested function is already registered.

RXFUNC_NOMEM 20 There is not enough memory to register a new
function.

2.5.3.3. RexxDeregisterFunction

RexxDeregisterFunction deregisters an external function.

retc = RexxDeregisterFunction(FuncName);

2.5.3.3.1. Parameters

FuncName (const char *) - input
is the address of an external function name to be deregistered.

2.5.3.3.2. Return Codes

RXFUNC_DEFINED 10 The requested function is already registered.
RXFUNC_NOTREG 30 The requested function is not registered.

2.5.3.4. RexxQueryFunction

RexxQueryFunction queries the existence of a registered external function.

retc = RexxQueryFunction(FuncName);

2.5.3.4.1. Parameters

151

Registered System Exit Interface

FuncName (const char *) - input
is the address of an external function name to be queried.

2.5.3.4.2. Return Codes

RXFUNC_OK 0 The call to the function completed successfully.
RXFUNC_NOTREG 30 The requested function is not registered.

2.5.3.4.3. Remarks

RexxQueryFunction returns RXFUNC_OK only if the requested function is available to the current
process. If not, the RexxQueryFunction searches the external RexxRegisterFunctionDII function list.

2.6. Registered System EXxit Interface

The Rexx system exits let the programmer create a customized Rexx operating environment. You can
set up user-defined exit handlers to process specific Rexx activities.

Applications can create exits for:

« The administration of resources at the beginning and the end of interpretation

« Linkages to external functions and subcommand handlers

» Special language features; for example, input and output to standard resources
» Polling for halt and external trace events

Exit handlers are similar to subcommand handlers and external functions. Applications must register
named exit handlers with the Rexx interpreter. Exit handlers can reside in dynamic-link libraries or
within an executable application module.

2.6.1. Writing System Exit Handlers

The following is a sample exit handler definition:

Example 2.14. Rexx_l0O_exit

int REXXENTRY Rexx_IO0_exit(

int ExitNumber, /* code defining the exit function */
int Subfunction, /* code defining the exit subfunction */
PEXIT ParmBlock); /* function-dependent control block */
where:
ExitNumber

is the major function code defining the type of exit call.

Subfunction
is the subfunction code defining the exit event for the call.

ParmBlock
is a pointer to the exit parameter list.

152

Writing System Exit Handlers

The exit parameter list contains exit-specific information. See the exit descriptions following the
parameter list formats.

@

Some exit subfunctions do not have parameters. ParmBlock is set to null for exit subfunctions
without parameters.

2.6.1.1. Exit Return Codes

Exit handlers return an integer value that signals one of the following actions:

RXEXIT_HANDLED
The exit handler processed the exit subfunction and updated the subfunction parameter list as
required. The Rexx interpreter continues with processing as usual.

RXEXIT_NOT_HANDLED
The exit handler did not process the exit subfunction. The Rexx interpreter processes the
subfunction as if the exit handler were not called.

RXEXIT_RAISE_ERROR
A fatal error occurred in the exit handler. The Rexx interpreter raises Rexx error 48 ("Failure in
system service").

For example, if an application creates an input/output exit handler, one of the following happens:

* When the exit handler returns RXEXIT_NOT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter writes the output line to STDOUT.

* When the exit handler returns RXEXIT_HANDLED for an RXSIOSAY subfunction, the Rexx
interpreter assumes the exit handler has handled all required output. The interpreter does not write
the output line to STDOUT.

» When the exit handler returns RXEXIT_RAISE_ERROR for an RXSIOSAY subfunction, the
interpreter raises Rexx error 48, "Failure in system service".

2.6.1.2. Exit Parameters

Each exit subfunction has a different parameter list. All RXSTRING exit subfunction parameters are
passed as null-terminated RXSTRINGs. The RXSTRING value can also contain null characters.

For some exit subfunctions, the exit handler can return an RXSTRING character result in the
parameter list. The interpreter provides a default 256-byte RXSTRING for the result string. If the result
is longer than 256 bytes, a new RXSTRING can be allocated using RexxAllocateMemory(size).
The Rexx interpreter returns the RXSTRING storage for the exit handler.

2.6.1.3. Identifying Exit Handlers to Rexx

System exit handlers must be registered with RexxRegisterExitDIl or RexxRegisterExitExe. The
system exit handler registration is similar to the subcommand handler registration.

The Rexx system exits are enabled with the RexxStart function parameter Exits. EXits is a pointer to
an array of RXSYSEXIT structures. Each RXSYSEXIT structure in the array contains a Rexx exit code
and the address of an ASCII exit handler name. The RXENDLST exit code marks the exit list end.

153

Writing System Exit Handlers

Example 2.15. RXSYSEXIT

typedef struct {
const char * sysexit_name; /* name of exit handler */
int sysexit_code; /* system exit function code */
} RXSYSEXIT;

The Rexx interpreter calls the registered exit handler named in sysexit_name for all of the
sysexit_code subfunctions.

2.6.1.3.1. Example

Example 2.16. RXSYSEXIT

{..

const char *user_info[2]; /* saved user information */
RXSYSEXIT exit_list[2]; /* system exit list */
user_info[@] = global workarea; /* save global work area for */
user_info[1] = NULL; /* re-entrance */
rc = RexxRegisterExitExe("EditInit", /* register exit handler */
&Init_exit, /* located at this address */
user_info); /* save global pointer */
/* set up for RXINI exit */

exit_1ist[@].sysexit_name = "EditInit";

exit_1ist[0].sysexit_code RXINI;
exit_list[1].sysexit_code = RXENDLST;

return_code = RexxStart(1, /* one argument */
argv, /* argument array */
"CHANGE.ED", /* Rexx procedure name */
NULL, /* use disk version */
"Editor", /* default address name */
RXCOMMAND, /* calling as a subcommand */
exit_list, /* exit list */
&rc, /* converted return code */
&retstr); /* returned result */
/* process return value */
}
int REXXENTRY Init_exit(
int ExitNumber, /* code defining the exit function */
int Subfunction, /* code defining the exit subfunction */
PEXIT ParmBlock) /* function dependent control block */
{
char *user_info[2]; /* saved user information */
char *global_workarea; /* application data anchor */
unsigned short query_flag; /* flag for handler query */
rc = RexxQueryExit("EditInit", /* retrieve application work */
NULL, /* area anchor from Rexx */

&query_flag,

154

System Exit Definitions

user_info);

global workarea = user_info[0]; /* set the global anchor */
if (global_workarea->rexx_trace) /* trace at start? */
/* turn on macro tracing */

RexxSetTrace(global workarea->rexx_pid, global workarea->rexx_tid);
return RXEXIT_HANDLED; /* successfully handled */

}

2.6.2. System Exit Definitions

The Rexx interpreter supports the following system exits:

RXFNC
External function call exit.
RXFNCCAL
Call an external function.

RXCMD
Subcommand call exit.
RXCMDHST
Call a subcommand handler.

RXMSQ
External data queue exit.
RXMSQPLL
Pull a line from the external data queue.

RXMSQPSH
Place a line in the external data queue.

RXMSQSIZ
Return the number of lines in the external data queue.

RXMSQNAM
Set the active external data queue name.

RXSIO

Standard input and output exit.
RXSIOSAY

Write a line to the standard output stream for the SAY instruction.

RXSIOTRC
Write a line to the standard error stream for the Rexx trace or Rexx error messages.

RXSIOTRD
Read a line from the standard input stream for PULL or PARSE PULL.

RXSIODTR
Read a line from the standard input stream for interactive debugging.

RXHLT

Halt processing exit.
RXHLTTST

Test for a HALT condition.

155

System Exit Definitions

RXHLTCLR
Clear a HALT condition.

RXTRC
External trace exit.
RXTRCTST
Test for an external trace event.

RXINI
Initialization exit.
RXINIEXT

Allow additional Rexx procedure initialization.

RXTER
Termination exit.
RXTEREXT
Process Rexx procedure termination.

The following sections describe each exit subfunction, including:
e The service the subfunction provides

* When Rexx calls the exit handler

The default action when the exit is not provided or the exit handler does not process the subfunction

* The exit action

The subfunction parameter list

2.6.2.1. RXFNC

Processes calls to external functions.
RXFNCCAL
Processes calls to external functions.
* When called: When Rexx calls an external subroutine or function.
» Default action: Call the external routine using the usual external function search order.
» Exit action: Call the external routine, if possible.

« Continuation: If necessary, raise Rexx error 40 ("Incorrect call to routine™), 43 ("Routine not
found"), or 44 ("Function or message did not return data”).

* Parameter list:

Example 2.17. RXFUNC parameter list

typedef struct {
struct {

unsigned rxfferr 1, /* Invalid call to routine. */
unsigned rxffnfnd : 1; /* Function not found. */
unsigned rxffsub 1; /* Called as a subroutine if */

/* TRUE. Return values are */

156

System Exit Definitions

/* optional for subroutines, */

/* required for functions. */
} rxfnc_flags ;
const char * rxfnc_name; /* Pointer to function name. */
unsigned short rxfnc_namel; /* Length of function name. */
const char * rxfnc_que; /* Current queue name. */
unsigned short rxfnc_quel; /* Length of queue name. */
unsigned short rxfnc_argc; /* Number of args in list. */
PCONSTRXSTRING rxfnc_argv; /* Pointer to argument list. */

/* List mimics argv list for */
/* function calls, an array of */
/* RXSTRINGS. */
RXSTRING rxfnc_retc; /* Return value. */
} RXFNCCAL_PARM;

The name of the external function is defined by rxfnc_name and rxfnc_namel. The arguments
to the function are in rxfnc_argc and rxfnc_argv. If you call the named external function with the
Rexx CALL instruction (rather than using a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc_flags to indicate whether the external function call was
successful. If neither rxfferr nor rxffnfnd is TRUE, the exit handler successfully called the
external function. The error flags are checked only when the exit handler handles the request.

The exit handler sets rxffnfnd to TRUE when the exit handler cannot locate the external function.
The interpreter raises Rexx error 43, "Routine not found". The exit handler sets rxfferr to TRUE
when the exit handler locates the external function, but the external function returned an error
return code. The Rexx interpreter raises error 40, "Incorrect call to routine."”

The exit handler returns the external function result in the rxfnc_retc RXSTRING. The Rexx
interpreter raises error 44, "Function or method did not return data,” when the external routine
is called as a function and the exit handler does not return a result. When the external routine is
called with the Rexx CALL instruction, a result is not required.

2.6.2.2. RXCMD

Processes calls to subcommand handlers.

RXCMDHST
Calls a named subcommand handler.

* When called: When Rexx procedure issues a command.

» Default action: Call the named subcommand handler specified by the current Rexx ADDRESS
setting.

» EXxit action: Process the call to a named subcommand handler.

» Continuation: Raise the ERROR or FAILURE condition when indicated by the parameter list
flags.

» Parameter list:

Example 2.18. RXCMD parameter list

typedef struct {

157

System Exit Definitions

struct { /* Condition flags */
unsigned rxfcfail : 1; /* Command failed. Trap with */
/* CALL or SIGNAL on FAILURE. */
unsigned rxfcerr : 1; /* Command ERROR occurred. */
/* Trap with CALL or SIGNAL on */
/* ERROR. */

} rxcmd_flags;
const char * rxcmd_address; /* Pointer to address name. */
unsigned short rxcmd_addressl; /* Length of address name. */
const char * rxcmd_dl1l1; /* dl1 name for command. */
unsigned short rxcmd_dll_len; /* Length of dl1 name. 0 ==> */
/* executable file. */
CONSTRXSTRING rxcmd_command; /* The command string. */
RXSTRING rxcmd_retc; /* Pointer to return code */
/* buffer. User allocated. */

} RXCMDHST_PARM;

The rxemd_command field contains the issued command. Rxcmd_address, rxemd_addressl,
rxemd_dll, and rxemd_dll_len fully define the current ADDRESS setting. Rxcmd_retc is an
RXSTRING for the return code value assigned to Rexx special variable RC.

The exit handler can set rxfcfail or rxfcerr to TRUE to raise an ERROR or FAILURE condition.

2.6.2.3. RXMSQ

External data queue exit.

RXMSQPLL
Pulls a line from the external data queue.

When called: When a Rexx PULL instruction, PARSE PULL instruction, or LINEIN built-in
function reads a line from the external data queue.

Default action: Remove a line from the current Rexx data queue.
 Exit action: Return a line from the data queue that the exit handler provided.

* Parameter list:

Example 2.19. RXMSQ parameter list

typedef struct {
RXSTRING rxmsq_retc; /* Pointer to dequeued entry */
/* buffer. User allocated. */

} RXMSQPLL_PARM;

The exit handler returns the queue line in the rxmsq_retc RXSTRING.

RXMSQPSH
Places a line in the external data queue.

* When called: When a Rexx PUSH instruction, QUEUE instruction, or LINEOUT built-in function
adds a line to the data queue.

» Default action: Add the line to the current Rexx data queue.

» Exit action: Add the line to the data queue that the exit handler provided.

158

System Exit Definitions

+ Parameter list:

Example 2.20. RXMSQ parameter list

typedef struct {

struct { /* Operation flag */
unsigned rxfmlifo : 1; /* Stack entry LIFO when TRUE, */
/* FIFO when FALSE. */

} rxmsqg_flags;
CONSTRXSTRING rxmsqg_value; /* The entry to be pushed. */
} RXMSQPSH_PARM;

The rxmsq_value RXSTRING contains the line added to the queue. It is the responsibility of
the exit handler to truncate the string if the exit handler data queue has a maximum length
restriction. Rxfmlifo is the stacking order (LIFO or FIFO).

RXMSQSIZ
Returns the number of lines in the external data queue.

When called: When the Rexx QUEUED built-in function requests the size of the external data
queue.

Default action: Request the size of the current Rexx data queue.
» Exit action: Return the size of the data queue that the exit handler provided.

» Parameter list:
Example 2.21. RXMSQ parameter list

typedef struct {
size_t rxmsg_size; /* Number of Lines in Queue */
} RXMSQSIZ_PARM;

The exit handler returns the number of queue lines in rxmsq_size.

RXMSQNAM
Sets the name of the active external data queue.
* When called: Called by the RXQUEUE("SET", newname) built-in function.

» Default action: Change the current default queue to newname.
 Exit action: Change the default queue name for the data queue that the exit handler provided.

» Parameter list:
Example 2.22. RXMSQ parameter list

typedef struct {
CONSTRXSTRING rxmsg_name; /* RXSTRING containing */
/* queue name. */

} RXMSQNAM_PARM;

rxmsq_name contains the new queue name.

159

System Exit Definitions

2.6.2.4. RXSIO

Standard input and output.

@voe

The PARSE LINEIN instruction and the LINEIN, LINEOUT, LINES, CHARIN, CHAROUT, and
CHARS built-in functions do not call the RXSIO exit handler.

RXSIOSAY
Writes a line to the standard output stream.

» When called: When the SAY instruction writes a line to the standard output stream.
» Default action: Write a line to the standard output stream (STDOUT).
 Exit action: Write a line to the output stream that the exit handler provided.

» Parameter list:

Example 2.23. RXSIO parameter list

typedef struct {
CONSTRXSTRING rxsio_string; /* String to display. */
} RXSIOSAY_PARM;

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRC
Writes trace and error message output to the standard error stream.
» When called: To output lines of trace output and Rexx error messages.

» Default action: Write a line to the standard error stream ((ERROR).
» Exit action: Write a line to the error output stream that the exit handler provided.

* Parameter list:

Example 2.24. RXSIO parameter list

typedef struct {

CONSTRXSTRING rxsio_string; /* Trace line to display. */
} RXSIOTRC_PARM;

The output line is contained in rxsio_string. The output line can be of any length. It is the
responsibility of the exit handler to truncate or split the line if necessary.

RXSIOTRD
Reads from standard input stream.

160

System Exit Definitions

* When called: To read from the standard input stream for the Rexx PULL and PARSE PULL
instructions.

» Default action: Read a line from the standard input stream (STDIN).

» Exit action: Return a line from the standard input stream that the exit handler provided.

» Parameter list:
Example 2.25. RXSIO parameter list

typedef struct {

RXSTRING rxsiotrd_retc; /* RXSTRING for input. */
} RXSIOTRD_PARM;

The input stream line is returned in the rxsiotrd_retc RXSTRING.

RXSIODTR
Interactive debug input.
* When called: To read from the debug input stream for interactive debug prompts.

» Default action: Read a line from the standard input stream (STDIN).
» Exit action: Return a line from the standard debug stream that the exit handler provided.

o Parameter list:
Example 2.26. RXSIO parameter list

typedef struct {

RXSTRING rxsiodtr_retc; /* RXSTRING for input. */
} RXSIODTR_PARM;

The input stream line is returned in the rxsiodtr_retc RXSTRING.

2.6.2.5. RXHLT

HALT condition processing.

Because the RXHLT exit handler is called after every Rexx instruction, enabling this exit slows Rexx
program execution. The RexxSetHalt function can halt a Rexx program without between-instruction
polling.

RXHLTTST
Tests the HALT indicator.

« When called: When the interpreter polls externally raises HALT conditions. The exit will be
called after completion of every Rexx instruction.

» Default action: The interpreter uses the system facilities for trapping Cntrl-Break signals.
 Exit action: Return the current state of the HALT condition (either TRUE or FALSE).

« Continuation: Raise the Rexx HALT condition if the exit handler returns TRUE.

161

System Exit Definitions

» Parameter list:
Example 2.27. RXHLT parameter list

typedef struct {
struct { /* Halt flag */
unsigned rxfhhalt : 1; /* Set if HALT occurred. */

} rxhlt_flags;

} RXHLTTST_PARM;

If the exit handler sets rxfhhalt to TRUE, the HALT condition is raised in the Rexx program.

The Rexx program can retrieve the reason string using the CONDITION("D") built-in function.

RXHLTCLR
Clears the HALT condition.

* When called: When the interpreter has recognized and raised a HALT condition, to acknowledge
processing of the HALT condition.

» Default action: The interpreter resets the Cntrl-Break signal handlers.
+ Exit action: Reset exit handler HALT state to FALSE.

e Parameters: None.

2.6.2.6. RXTRC

Tests the external trace indicator.

@

Because the RXTRC exit is called after every Rexx instruction, enabling this exit slows Rexx
procedure execution. The RexxSetTrace function can turn on Rexx tracing without the between-
instruction polling.

RXTRCTST
Tests the external trace indicator.

* When called: When the interpreter polls for an external trace event. The exit is called after
completion of every Rexx instruction.

» Default action: None.
» Exit action: Return the current state of external tracing (either TRUE or FALSE).

» Continuation: When the exit handler switches from FALSE to TRUE, the Rexx interpreter enters
the interactive Rexx debug mode using TRACE ?R level of tracing. When the exit handler
switches from TRUE to FALSE, the Rexx interpreter exits the interactive debug mode.

* Parameter list:

162

System Exit Interface Functions

Example 2.28. RXTRC parameter list

typedef struct {
struct {
unsigned rxftrace : 1; /* External trace setting */
} rxtrc_flags;
} RXTRCTST_PARM;

If the exit handler switches rxftrace to TRUE, Rexx switches on the interactive debug mode. If
the exit handler switches rxftrace to FALSE, Rexx switches off the interactive debug mode.

2.6.2.7. RXINI

Initialization processing. This exit is called as the last step of Rexx program initialization.

RXINIEXT
Initialization exit.
* When called: Before the first instruction of the Rexx procedure is interpreted.

» Default action: None.

 Exit action: The exit handler can perform additional initialization. For example:
* Use RexxVariablePool to initialize application-specific variables.

* Use RexxSetTrace to switch on the interactive Rexx debug mode.

e Parameters: None.

2.6.2.8. RXTER

Termination processing.
The RXTER exit is called as the first step of Rexx program termination.

RXTEREXT
Termination exit.
» When called: After the last instruction of the Rexx procedure has been interpreted.

» Default action: None.

» Exit action: The exit handler can perform additional termination activities. For example, the exit
handler can use RexxVariablePool to retrieve the Rexx variable values.

* Parameters: None.

2.6.3. System EXxit Interface Functions

The system exit functions are similar to the subcommand handler functions. The system exit functions
are:

2.6.3.1. RexxRegisterExitDII

163

System Exit Interface Functions

RexxRegisterExitDIl registers an exit handler that resides in a dynamic-link library routine.

retc = RexxRegisterExitDll(ExitName, ModuleName, EntryPoint,
UserArea, DropAuth);

2.6.3.1.1. Parameters

ExitName (const char *) - input
is the address of an ASCII exit handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName is the DLL file containing the
exit handler routine.

EntryPoint (const char *) - input
is the address of an ASCII dynamic-link procedure name. EntryPoint is the routine within
ModuleName that Rexx calls as an exit handler.

UserArea (const char *) - input
is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand handler
registration. UserArea can be null if there is no user information to be saved. The RexxQueryExit
function can retrieve the saved user information.

DropAuth (size_t) - input
is the drop authority. DropAuth identifies the processes that can deregister the exit handler.
Possible DropAuth values are:
RXEXIT_DROPPABLE
Any process can deregister the exit handler with RexxDeregisterExit.

RXEXIT_NONDROP
Only a thread within the same process as the thread that registered the handler can
deregister the handler with RexxDeregisterExit.

2.6.3.1.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name
registered in another DLL. (To address this exit
handler, you must specify its library name.)

RXEXIT_NOEMEM 1002 There is insufficient memory available to
complete this request.

2.6.3.2. RexxRegisterExitExe

RexxRegisterExitExe registers an exit handler that resides within the application code.

retc = RexxRegisterExitExe(ExitName, EntryPoint, UserArea);

164

System Exit Interface Functions

2.6.3.2.1. Parameters

ExitName (const char *) - input
is the address of an ASCII exit handler name.

EntryPoint (REXXPFN) - input
is the address of the exit handler entry point within the application executable file.

UserArea (const char *) - input
is the address of an area of user-defined information. The user-defined information is a buffer
the size of two pointer values. The bytes UserArea buffer is saved with the subcommand handler
registration. UserArea can be null if there is no user information to be saved. The RexxQueryExit
function can retrieve the user information.

2.6.3.2.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_DUP 10 A duplicate handler name has been successfully
registered. There is either an executable handler
with the same name registered in another
process, or a DLL handler with the same name
registered in another DLL. (To address this exit
handler, you must specify its library name.)

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe
or RexxRegisterExitDIl); the exit handler is not
registered (other Rexx exit handler functions).

RXEXIT_NOEMEM 1002 There is insufficient memory available to
complete this request.

2.6.3.2.3. Remarks

If ExitName has the same name as a handler registered with RexxRegisterExitDII,
RexxRegisterExitExe returns RXEXIT_DUP, which means that the new exit handler has been properly
registered.

2.6.3.2.4. Example

Example 2.29. SYSEXIT

const char *user_info[2]; /* saved user information */
user_info[0] = global workarea; /* save global work area for */
user_info[1] = NULL; /* re-entrance */
rc = RexxRegisterExitExe("IO_Exit", /* register editor handler */
&Edit_TIO_Exit, /* located at this address */
user_info); /* save global pointer */

2.6.3.3. RexxDeregisterExit

165

System Exit Interface Functions

RexxDeregisterExit deregisters an exit handler.

retc = RexxDeregisterExit(ExitName, ModuleName);

2.6.3.3.1. Parameters

ExitName (const char *) - input
is the address of an ASCII exit handler name.

ModuleName (const char *) - input
is the address of an ASCII dynamic-link library name. ModuleName restricts the query to an
exit handler within the ModuleName library. When ModuleName is null, RexxDeregisterExit
searches the RexxRegisterExitExe exit handler list for a handler within the current process.
If RexxDeregisterExit does not find a RexxRegisterExitExe handler, it searches the
RexxRegisterExitDIl exit handler list.

2.6.3.3.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.

RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe
or RexxRegisterExitDll); the exit handler is not
registered (other Rexx exit handler functions).

RXEXIT_NOCANDROP 40 The exit handler has been registered as "not
droppable.”

2.6.3.3.3. Remarks
The handler is removed from the exit handler list.

2.6.3.4. RexxQueryEXxit

RexxQueryExit queries an exit handler and retrieves saved user information.

retc = RexxQueryExit(ExitName, ModuleName, Flag, UserWord);

2.6.3.4.1. Parameters

ExitName (const char *) - input
is the address of an ASCII exit handler name.

ModuleName (const char *) - input
restricts the query to an exit handler within the ModuleName dynamic-link library. When
ModuleName is null, RexxQueryExit searches the RexxRegisterExitExe exit handler list for a
handler within the current process. If RexxQueryExit does not find a RexxRegisterExitExe handler,
it searches the RexxRegisterExitDIl exit handler list.

Flag (unsigned short *) - output
is the ExitName exit handler registration status. When RexxQueryExit returns RXEXIT_OK, the
ExitName exit handler is currently registered. When RexxQueryExit returns RXEXIT_NOTREG,
the ExitName exit handler is not registered.

166

Variable Pool Interface

UserWord (char *) - output

is the address of an area to receive the user information saved with RexxRegisterExitExe or
RexxRegisterExitDIl. The referenced area must be large enough to store two pointer values.
UserWord can be null if the saved user information is not required.

2.6.3.4.2. Return Codes

RXEXIT_OK 0 The system exit function executed successfully.
RXEXIT_NOTREG 30 Registration was unsuccessful due to duplicate
handler and DLL names (RexxRegisterExitExe
or RexxRegisterExitDIl); the exit handler is not
registered (other Rexx exit handler functions).
2.6.3.4.3. Example
Example 2.30. Command handler
int REXXENTRY Edit_IO_Exit(
int Code, /* Major exit code */
int SubCode /* Minor exit code */
PEXIT Parms) /* Exit-specific parameters */
{
char *user_info[2]; /* saved user information */
char *global_workarea; /* application data anchor */
unsigned short query_flag; /* flag for handler query */
rc = RexxQueryExit("IO_Exit", /* retrieve application work */
NULL, /* area anchor from Rexx. */
&query_flag,
user_info);
global workarea = user_info[0]; /* set the global anchor */

2.7. Variable Pool Interface

Application programs can use the Rexx Variable Pool Interface to manipulate the variables of a

currently active Rexx procedure.

2.7.1. Interface Types

Three of the Variable Pool Interface functions (set, fetch, and drop) have dual interfaces.

2.7.1.1. Symbolic Interface

The symbolic interface uses normal Rexx variable rules when interpreting variables. Variable names
are valid Rexx symbols (in mixed case if desired) including compound symbols. Compound symbols
are referenced with tail substitution. The functions that use the symbolic interface are RXSHV_SYSET,

RXSHV_SYFET, and RXSHV_SYDRO.

167

RexxVariablePool Restrictions

2.7.1.2. Direct Interface

The direct interface uses no substitution or case translation. Simple symbols must be valid Rexx
variable names. A valid Rexx variable name:

» Does not begin with a digit or period.

» Contains only uppercase A to Z, the digits O - 9, or the characters _, ! or ? before the first period of
the name.

» Can contain any characters after the first period of the name.

Compound variables are specified using the derived name of the variable. Any characters (including
blanks) can appear after the first period of the name. No additional variable substitution is used.
RXSHV_SET, RXSHV_FETCH, and RXSHV_DROP use the direct interface.

2.7.2. RexxVariablePool Restrictions

The RexxVariablePool interface is only available from subcommand handlers, external functions, and
exit handlers. The interface will access the variable context that initiated the call to the handler code
and is only available if made from the same thread.

2.7.3. RexxVariablePool Interface Function
Rexx procedure variables are accessed using the RexxVariablePool function.

2.7.3.1. RexxVariablePool

RexxVariablePool accesses variables of a currently active Rexx procedure.

retc = RexxVariablePool(RequestBlockList);

2.7.3.1.1. Parameters

RequestBlockList (PSHVBLOCK) - input
is a linked list of shared variable request blocks (SHVBLOCK). Each block is a separate variable
access request.

The SHVBLOCK has the following form:

Example 2.31. SHVYBLOCK

typedef struct shvnode {

struct shvnode *shvnext;
CONSTRXSTRING shvname;
RXSTRING shvvalue;
size_t shvnamelen;
size_t shvvaluelen;
unsigned char shvcode;
unsigned char shvret;
} SHVBLOCK;

168

RexxVariablePool Interface Function

where:

shvnext
is the address of the next SHVYBLOCK in the request list. shvnext is null for the last request block.

shvname

is an RXSTRING containing a Rexx variable name. shvname usage varies with the SHVBLOCK
request code:

RXSHV_SET , RXSHV_SYSET, RXSHV_FETCH, RXSHV_SYFET, RXSHV_DROPV,
RXSHV_SYDRO, RXSHV_PRIV

shvname is an RXSTRING pointing to the name of the Rexx variable that the shared variable
request block accesses.

RXSHV_NEXTV

shvname is an RXSTRING defining an area of storage to receive the name of the next
variable. shvnamelen is the length of the RXSTRING area. If the variable name is longer than
the shvnamelen characters, the name is truncated and the RXSHV_TRUNC bit of shvret

is set. On return, shvname.strlength contains the length of the variable name; shvnamelen
remains unchanged.

If shvname is an empty RXSTRING (strptr is null), the Rexx interpreter allocates and
returns an RXSTRING to hold the variable name. If the Rexx interpreter allocates the
RXSTRING, an RXSHV_TRUNC condition cannot occur. However, RXSHV_MEMFL errors
are possible for these operations. If an RXSHV_MEMFL condition occurs, memory is not
allocated for that request block. The RexxVariablePool caller must release the storage with
RexxFreeMemory(ptr).

K —

The RexxVariablePool does not add a terminating null character to the variable name.

shvvalue

An RXSTRING containing a Rexx variable value. The meaning of shvvalue varies with the
SHVBLOCK request code:

RXSHV_SET , RXSHV_SYSET

shvvalue is the value assigned to the Rexx variable in shvname. shvvaluelen contains the
length of the variable value.

RXSHV_FETCH, RXSHV_SYFET , RXSHV_PRIV ,RXSHV_NEXT
shvvalue is a buffer that is used by the Rexx interpreter to return the value of the Rexx
variable shvname. shvvaluelen contains the length of the value buffer. On return,
shvvalue.strlength is set to the length of the returned value but shvvaluelen remains
unchanged. If the variable value is longer than the shvvaluelen characters, the value is
truncated and the RXSHV_TRUNC bit of shvret is set. On return, shvvalue.strlength is set to
the length of the returned value; shvvaluelen remains unchanged.

If shvvalue is an empty RXSTRING (strptr is null), the Rexx interpreter allocates and
returns an RXSTRING to hold the variable value. If the Rexx interpreter allocates the
RXSTRING, an RXSHV_TRUNC condition cannot occur. However, RXSHV_MEMFL errors
are possible for these operations. If an RXSHV_MEMFL condition occurs, memory is not

169

RexxVariablePool Interface Function

allocated for that request block. The RexxVariablePool caller must release the storage with
RexxFreeMemory(ptr).

K —

The RexxVariablePool does not add a terminating null character to the variable value.

RXSHV_DROPV , RXSHV_SYDRO
shvvalue is not used.

shvcode
The shared variable block request code. Valid request codes are:

RXSHV_SET, RXSHV_SYSET
Assign a new value to a Rexx procedure variable.

RXSHV_FETCH, RXSHV_SYFET
Retrieve the value of a Rexx procedure variable.

RXSHV_DROPV, RXSHV_SYDRO
Drop (unassign) a Rexx procedure variable.

RXSHV_PRIV
Fetch the private information of the Rexx procedure. The following information items can be
retrieved by name:

PARM
The number of arguments supplied to the Rexx procedure. The number is formatted as a
character string.

PARM.n
The nth argument string to the Rexx procedure. If the nth argument was not supplied to
the procedure (either omitted or fewer than n parameters were specified), a null string is
returned.

QUENAME
The current Rexx data queue name.

SOURCE
The Rexx procedure source string used for the PARSE SOURCE instruction.

VERSION
The Rexx interpreter version string used for the PARSE VERSION instruction.

RXSHV_NEXTV
Fetch the next variable, excluding variables hidden by PROCEDURE instructions. The
variables are not returned in any specified order.

The Rexx interpreter maintains an internal pointer to its list of variables. The variable pointer is
reset to the first Rexx variable whenever:

* An external program returns control to the interpreter

170

RexxVariablePool Interface Function

» A set, fetch, or drop RexxVariablePool function is used

RXSHV_NEXTV returns both the name and the value of Rexx variables until the end of the
variable list is reached. If no Rexx variables are left to return, RexxVariablePool sets the
RXSHV_LVAR bit in shvret.

shvret

The individual shared variable request return code. shvret is a 1-byte field of status flags for the
individual shared variable request. The shvret fields for all request blocks in the list are ORed
together to form the RexxVariablePool return code. The individual status conditions are:

RXSHV_OK
The request was processed without error (all flag bits are FALSE).

RXSHV_NEWV
The named variable was uninitialized at the time of the call.

RXSHV_LVAR
No more variables are available for an RXSHV_NEXTYV operation.

RXSHV_TRUNC

A variable value or variable name was truncated because the supplied RXSTRING was too
small for the copied value.

RXSHV_BADN
The variable name specified in shvname was invalid for the requested operation.

RXSHV_MEMFL
The Rexx interpreter was unable to obtain the storage required to complete the request.

RXSHV_BADF
The shared variable request block contains an invalid function code.

The Rexx interpreter processes each request block in the order provided. RexxVariablePool returns
to the caller after the last block is processed or a severe error occurred (such as an out-of-memory
condition).

The RexxVariablePool function return code is a composite return code for the entire set of shared
variable requests. The return codes for all of the individual requests are ORed together to form the
composite return code. Individual shared variable request return codes are returned in the shared
variable request blocks.

2.7.3.1.2. RexxVariablePool Return Codes
O0to 127
RexxVariablePool has processed the entire shared variable request block list.

The RexxVariablePool function return code is a composite return code for the entire set of shared
variable requests. The low-order 6 bits of the shvret fields for all request blocks are ORed together
to form the composite return code. Individual shared variable request status flags are returned in
the shared variable request block shvret field.

RXSHV_NOAVL
The variable pool interface was not enabled when the call was issued.

171

Dynamically Allocating and De-allocating Memory

2.7.3.1.3. Example

Example 2.32. RexxVariablePool

/***/

/* */
/* SetRexxVariable - Set the value of a Rexx variable */
/* */

/***/

int SetRexxVariable(

const char *name, /* Rexx variable to set */

char *value) /* value to assign */
{

SHVBLOCK block; /* variable pool control block*/

block.shvcode = RXSHV_SYSET; /* do a symbolic set operation*/

block.shvret=(UCHAR)O; /* clear return code field */

block.shvnext=(PSHVBLOCK)O; /* no next block */

/* set variable name string */
MAKERXSTRING(block.shvname, name, strlen(name));

/* set value string */
MAKERXSTRING(block.shvvalue, value, strlen(value));
block.shvvaluelen=strlen(value); /* set value length */
return RexxVariablePool(&block); /* set the variable */

2.8. Dynamically Allocating and De-allocating Memory

For several functions of the Rexx-APl it is necessary or possible to dynamically allocate or free
memory. Depending on the operating system, compiler and Rexx interpreter, the method for these
allocations and de- allocations vary. To write system independent code, Open Object Rexx comes
with two API function calls called RexxAllocateMemory() and RexxFreeMemory(). These functions are
wrappers for the corresponding compiler or operating system memory functions.

2.8.1. The RexxAllocateMemory() Function

void * REXXENTRY RexxAllocateMemory(size_t size);
where:

size
is the number of bytes of requested memory.

Return Codes

Returns a pointer to the newly allocated block of memory, or NULL if no memory could be allocated.

2.8.2. The RexxFreeMemory() Function

RexxReturnCode REXXENTRY RexxFreeMemory(void *MemoryBlock);

where:

172

Queue Interface

MemoryBlock
is a void pointer to the block of memory allocated by the ooRexx interpreter, or allocated by a
previous call to RexxAllocateMemory().

Return Codes

RexxFreeMemory() always returns 0.

2.9. Queue Interface

Application programs can use the Rexx Queue Interface to establish and manipulate named

gueues. Named queues prevent different Rexx programs that are running in a single session from
interfering with each other. Named queues also allow Rexx programs running in different sessions to
synchronize execution and pass data. These queuing services are entirely separate from the Windows
InterProcess Communications queues.

2.9.1. Queue Interface Functions
The following sections explain the functions for creating and using named queues.

2.9.1.1. RexxCreateQueue

RexxCreateQueue creates a new (empty) queue.

retc = RexxCreateQueue(Buffer, BufflLen, RequestedName, DupFlag);

2.9.1.1.1. Parameters

Buffer (char *) - input
is the address of the buffer where the ASCII name of the created queue is returned.

BuffLen (size_t) - input
is the size of the buffer.

RequestedName (const char *) - input
is the address of an ASCII queue name. If no queue of that name exists, a queue is created
with the requested name. If the name already exists, a queue is created, but Rexx assigns an
arbitrary name to it. In addition, the DupFlag is set. The maximum length for a queue name is
1024 characters.

When RequestedName is null, Rexx provides a name for the created queue.
In all cases, the actual queue name is passed back to the caller.
DupFlag (size_t *) - output

is the duplicate name indicator. This flag is set when the requested name already exists.

2.9.1.1.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

173

Queue Interface Functions

RXQUEUE_STORAGE 1 The name buffer is not large enough for the
gueue name.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

2.9.1.1.3. Remarks

Queue names must conform to the same syntax rules as Rexx variable names. Lowercase characters
in gueue names are translated to uppercase.

2.9.1.2. RexxOpenQueue

RexxOpenQueue creates a new (empty) queue if a queue by the given name does not already exist.
In contrast to RexxCreateQueue, RexxOpenQueue will not create a differently named queue if the
indicated queue name already exists.

retc = RexxOpenQueue(RequestedName, CreatedFlag);

2.9.1.2.1. Parameters

RequestedName (const char *) - input
is the address of an ASCII queue name. If no queue of that name exists, a queue is created with
the requested name. and the CreatedFlag will be set to TRUE. If the name already exists, this will
just return a successful return code. The maximum length for a queue name is 1024 characters.

CreatedFlag (size_t *) - output
indicates whether RexxOpenQueue created the indicated queue. If zero on return, then the named
gueue already existed.

2.9.1.2.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_STORAGE 1 The name buffer is not large enough for the
gueue name.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

2.9.1.2.3. Remarks

Queue names must conform to the same syntax rules as Rexx variable names. Lowercase characters
in gueue names are translated to uppercase.

2.9.1.3. RexxDeleteQueue
RexxDeleteQueue deletes a queue.

retc = RexxDeleteQueue(QueueName);

174

Queue Interface Functions

2.9.1.3.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be deleted.

2.9.1.3.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_ACCESS 10 The queue cannot be deleted because it is busy.

2.9.1.3.3. Remarks
If a queue is busy (for example, wait is active), it is not deleted.

2.9.1.4. RexxQueueExists

RexxQueueExists tests if name queue exists.

retc = RexxQueueExists(QueueName);

2.9.1.4.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be queried.

2.9.1.4.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

2.9.1.5. RexxQueryQueue

RexxQueryQueue returns the number of entries remaining in the named queue.

retc = RexxQueryQueue(QueueName, Count);

2.9.1.5.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be queried.

175

Queue Interface Functions

Count (size_t *) - output
is the number of entries in the queue.

2.9.1.5.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_NOTREG 9 The queue does not exist.

2.9.1.6. RexxAddQueue

RexxAddQueue adds an entry to a queue.

retc = RexxAddQueue(QueueName, EntryData, AddFlag);

2.9.1.6.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to which data is to be added.

EntryData (PCONSTRXSTRING) - input
is the address of a CONSTRXSTRING containing the data to be added to the queue.

AddFlag (size_t) - input
is the LIFO/FIFO flag. When AddFlag is RXQUEUE_LTIFO, data is added LIFO (Last In, First Out) to
the queue. When AddFlag is RXQUEUE_FIFO, data is added FIFO (First In, First Out).

2.9.1.6.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_PRIORITY 6 The order flag is not equal to RXQUEUE_LIFO
or RXQUEUE_FIFO.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_MEMFAIL 12 There is insufficient memory available to
complete the request.

2.9.1.7. RexxPullFromQueue

RexxPullFromQueue removes the top entry from the queue and returns it to the caller.

retc = RexxPullFromQueue(QueueName, DataBuf, DateTime, WaitFlag);

176

Queue Interface Functions

2.9.1.7.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue from which data is to be pulled.

DataBuf (PRXSTRING) - output
is the address of an RXSTRING for the returned value. The caller is responsible for releasing the
RXSTRING storage with RexxFreeMemory(DataBuf->strptr).

DateTime (REXXDATETIME *) - output
is the address of the entry's date and time stamp. If the date and time stamp is not needed,
DateTime may be NULL.

WaitFlag (size_t) - input
is the wait flag. When WaitFlag is RXQUEUE_NOWAIT and the queue is empty, RXQUEUE_EMPTY
is returned. Otherwise, when WaitFlag is RXQUEUE_WAIT, Rexx waits until a queue entry is
available and returns that entry to the caller.

2.9.1.7.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_BADWAITFLAG 7 The wait flag is not equal to RXQUEUE_WAIT or
RXQUEUE_NOWAIT.

RXQUEUE_EMPTY 8 Attempted to pull the item off the queue but it
was empty.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_MEMFAIL 12 There is insufficient memory available to
complete the request.

2.9.1.8. RexxClearQueue
RexxClearQueue clears all entries from a named queue.

retc = RexxClearQueue(QueueName);

2.9.1.8.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue to be cleared.

2.9.1.8.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

177

Halt and Trace Interface

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.
RXQUEUE_NOTREG 9 The queue does not exist.

2.9.1.9. RexxPullQueue (Deprecated)

RexxPullQueue removes the top entry from the queue and returns it to the caller. RexxPullQueue is
deprecated in favor of its more portable replacement RexxPullFromQueue.

retc = RexxPullQueue(QueueName, DataBuf, DateTime, WaitFlag);

2.9.1.9.1. Parameters

QueueName (const char *) - input
is the address of the ASCII name of the queue from which data is to be pulled.

DataBuf (PRXSTRING) - output
is the address of an RXSTRING for the returned value.

DateTime (PDATETIME) - output
is the address of the entry's date and time stamp.

WaitFlag (size_t) - input
is the wait flag. When WaitFlag is RXQUEUE_NOWAIT and the queue is empty, RXQUEUE_EMPTY
is returned. Otherwise, when WaitFlag is RXQUEUE_WAIT, Rexx waits until a queue entry is
available and returns that entry to the caller.

2.9.1.9.2. Return Codes

RXQUEUE_OK 0 The system queue function completed
successfully.

RXQUEUE_BADQNAME 5 The queue name is not valid, or you tried to
create or delete a queue named SESSION.

RXQUEUE_BADWAITFLAG 7 The wait flag is not equal to RXQUEUE_WAIT or
RXQUEUE_NOWAIT.

RXQUEUE_EMPTY 8 Attempted to pull the item off the queue but it
was empty.

RXQUEUE_NOTREG 9 The queue does not exist.

RXQUEUE_MEMFAIL 12 There is insufficient memory available to
complete the request.

2.9.1.9.3. Remarks
The caller is responsible for freeing the returned memory that DataBuf points to.

2.10. Halt and Trace Interface

178

Halt and Trace Interface Functions

The halt and trace functions raise a Rexx HALT condition or change the Rexx interactive debug mode
while a Rexx procedure is running. You might prefer these interfaces to the RXHLT and RXTRC
system exits. The system exits require an additional call to an exit routine after each Rexx instruction
completes, possibly causing a noticeable performance degradation. The Halt and Trace functions,

on the contrary, are a single request to change the halt or trace state and do not degrade the Rexx
procedure performance.

2.10.1. Halt and Trace Interface Functions
The Halt and Trace functions are:

2.10.1.1. RexxSetHalt

RexxSetHalt raises a HALT condition in a running Rexx program.

retc = RexxSetHalt(ProcessId, ThreadId);

2.10.1.1.1. Parameters

Processld (process_id_t) - input
is the process ID of the target Rexx procedure. Processlid is the application process that called the
RexxStart function.

Threadld (thread_id_t) - input
is the thread D of the target Rexx procedure. Threadld is the application thread that called the
RexxStart function. If Threadld=0, all the threads of the process are canceled.

2.10.1.1.2. Return Codes

RXARI_OK 0 The function completed successfully.
RXARI_NOT_FOUND 1 The target Rexx procedure was not found.
RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

2.10.1.1.3. Remarks
This call is not processed if the target Rexx program is running with the RXHLT exit enabled.

2.10.1.2. RexxSetTrace

RexxSetTrace turns on the interactive debug mode for a Rexx procedure.

retc = RexxSetTrace(ProcessId, ThreadId);

2.10.1.2.1. Parameters

Processld (process_id_t) - input
is the process ID of the target Rexx procedure. Processld is the application process that called the
RexxStart function.

179

Macrospace Interface

Threadld (thread_id_t) - input
is the thread D of the target Rexx procedure. Threadld is the application thread that called the
RexxStart function. If Threadld=0, all the threads of the process are traced.

2.10.1.2.2. Return Codes

RXARI_OK 0 The function completed successfully.
RXARI_NOT_FOUND 1 The target Rexx procedure was not found.
RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

2.10.1.2.3. Remarks
A RexxSetTrace call is not processed if the Rexx procedure is using the RXTRC exit.

2.10.1.3. RexxResetTrace

RexxResetTrace turns off the interactive debug mode for a Rexx procedure.

retc = RexxResetTrace(ProcessId,ThreadId);

2.10.1.3.1. Parameters

Processld (process_id_t) - input
is the process ID of the target Rexx procedure. Processld is the application process that called the
RexxStart function.

Threadld (thread_id_t) - input
is the thread ID of the target Rexx procedure. Threadld is the application thread that called the
RexxStart function. If Threadld=0, the trace of all threads of the process is reset.

2.10.1.3.2. Return Codes

RXARI_OK 0 The function completed successfully.
RXARI_NOT_FOUND 1 The target Rexx procedure was not found.
RXARI_PROCESSING_ERROR 2 A failure in Rexx processing occurred.

2.10.1.3.3. Remarks

» A RexxResetTrace call is not processed if the Rexx procedure uses the RXTRC exit.

« Interactive debugging is not turned off unless the interactive debug mode was originally started with
RexxSetTrace.

2.11. Macrospace Interface

The macrospace can improve the performance of Rexx procedures by maintaining Rexx procedure
images in memory for immediate load and execution. This is useful for frequently-used procedures
and functions such as editor macros.

180

Search Order

Programs registered in the Rexx macrospace are available to all processes. You can run them by
using the RexxStart function or calling them as functions or subroutines from other Rexx procedures.

Procedures in the macrospace are called in the same way as other Rexx external functions. However,
the macrospace Rexx procedures can be placed at the front or at the very end of the external function
search order.

Procedures in the macrospace are stored without source code information and therefore cannot be
traced.

Rexx procedures in the macrospace can be saved to a disk file. A saved macrospace file can be
reloaded with a single call to RexxLoadMacroSpace. An application, such as an editor, can create
its own library of frequently-used functions and load the entire library into memory for fast access.
Several macrospace libraries can be created and loaded.

@voe

The TRACE keyword instruction cannot be used in the Rexx macrospace. Since macrospace
uses the tokenized format, it is not possible to get the source code from macrospace to trace a
function.

2.11.1. Search Order

When RexxAddMacro loads a Rexx procedure into the macrospace, the position in the external
function search order is specified. Possible values are:

RXMACRO_SEARCH_BEFORE
The Rexx interpreter locates a function registered with RXMACRO_SEARCH_BEFORE before
any registered functions or external Rexx files.

RXMACRO_SEARCH_AFTER
The Rexx interpreter locates a function registered with RXMACRO_SEARCH_AFTER after any
registered functions or external Rexx files.

2.11.2. Storage of Macrospace Libraries

The Rexx macrospace is stored in separate process using a daemon process. Macrospace routines
are retrieved using interprocess call (IPC) mechanisms. A package file that is loaded in the local
process might be preferable to loading routines in the macrospace.

2.11.3. Macrospace Interface Functions
The functions to manipulate macrospaces are:

2.11.3.1. RexxAddMacro

RexxAddMacro loads a Rexx procedure into the macrospace.

retc = RexxAddMacro(FuncName, SourceFile, Position);

2.11.3.1.1. Parameters

181

Macrospace Interface Functions

FuncName (const char *) - input
is the address of the ASCII function name. Rexx procedures in the macrospace are called using
the assigned function name.

SourceFile (const char *) - input
is the address of the ASCII file specification for the Rexx procedure source file. When a file
extension is not supplied, .CMD is used. When the full path is not specified, the current directory
and path are searched.

Position (size_t) - input
is the position in the Rexx external function search order. Possible values are:
RXMACRO_SEARCH_BEFORE

The Rexx interpreter locates the function before any registered functions or external Rexx
files.

RXMACRO_SEARCH_AFTER
The Rexx interpreter locates the function after any registered functions or external Rexx files.

2.11.3.1.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NO_STORAGE 1 There was not enough memory to
complete the requested function.

RXMACRO_SOURCE_NOT_FOUND 7 The requested file was not found.

RXMACRO_INVALID_POSITION 8 An invalid search-order position
request flag was used.

2.11.3.2. RexxDropMacro

RexxDropMacro removes a Rexx procedure from the macrospace.

retc = RexxDropMacro(FuncName);

2.11.3.2.1. Parameter

FuncName (const char *) - input
is the address of the ASCII function name.

2.11.3.2.2. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.
RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

2.11.3.3. RexxClearMacroSpace

RexxClearMacroSpace removes all loaded Rexx procedures from the macrospace.

182

Macrospace Interface Functions

retc = RexxClearMacroSpace();

2.11.3.3.1. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.
RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

2.11.3.3.2. Remarks

RexxClearMacroSpace must be used with care. This function removes all functions from the
macrospace, including functions loaded by other processes.

2.11.3.4. RexxSaveMacroSpace

RexxSaveMacroSpace saves all or part of the macrospace Rexx procedures to a disk file.

retc = RexxSaveMacroSpace(FuncCount, FuncNames, MacroLibFile);

2.11.3.4.1. Parameters

FuncCount (size_t) - input
Number of Rexx procedures to be saved.

FuncNames (const char **) - input
is the address of a list of ASCII function names. FuncCount gives the size of the function list.

MacroLibFile (const char *) - input

is the address of the ASCII macrospace file name. If MacroLibFile already exists, it is replaced
with the new file.

2.11.3.4.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found
in the macrospace.

RXMACRO_EXTENSION_REQUIRED 3 An extension is required for the
macrospace file name.

RXMACRO_FILE_ERROR 5 An error occurred accessing a
macrospace file.

2.11.3.4.3. Remarks

When FuncCount is 0 or FuncNames is null, RexxSaveMacroSpace saves all functions in the
macrospace.

Saved macrospace files can be used only with the same interpreter version that created the images. If
RexxLoadMacroSpace is called to load a saved macrospace and the release level or service level is

183

Macrospace Interface Functions

incorrect, RexxLoadMacroSpace fails. The Rexx procedures must then be reloaded individually from
the original source programs.

2.11.3.5. RexxLoadMacroSpace

RexxLoadMacroSpace loads all or part of the Rexx procedures from a saved macrospace file.

retc = RexxLoadMacroSpace(FuncCount, FuncNames, MacroLibFile);

2.11.3.5.1. Parameters

FuncCount (size_t) - input
is the number of Rexx procedures to load from the saved macrospace.

FuncNames (const char **) - input
is the address of a list of Rexx function names. FuncCount gives the size of the function list.

MacroLibFile (const char *) - input
is the address of the saved macrospace file name.

2.11.3.5.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.
RXMACRO_NO_STORAGE 1 There was not enough memory to
complete the requested function.
RXMACRO_NOT_FOUND 2 The requested function was not found
in the macrospace.
RXMACRO_ALREADY_EXISTS 4 Duplicate functions cannot be loaded
from a macrospace file.
RXMACRO_FILE_ERROR 5 An error occurred accessing a
macrospace file.
RXMACRO_SIGNATURE_ERROR 6 A macrospace save file does not
contain valid function images.

2.11.3.5.3. Remarks

When FuncCount is 0 or FuncNames is null, RexxLoadMacroSpace loads all Rexx procedures from
the saved file.

If a RexxLoadMacroSpace call replaces an existing macrospace Rexx procedure, the entire load
request is discarded and the macrospace remains unchanged.

2.11.3.6. RexxQueryMacro

RexxQueryMacro searches the macrospace for a specified function.

retc = RexxQueryMacro(FuncName, Position)

184

Macrospace Interface Functions

2.11.3.6.1. Parameters

FuncName (const char *) - input
is the address of an ASCII function name.

Position (unsigned short *) - output
is the address of an unsigned short integer flag. If the function is loaded in the macrospace,
Position is set to the search-order position of the current function.

2.11.3.6.2. Return Codes

RXMACRO_OK 0 The call to the function completed successfully.
RXMACRO_NOT_FOUND 2 The requested function was not found in the
macrospace.

2.11.3.7. RexxReorderMacro

RexxReorderMacro changes the search order position of a loaded macrospace function.

retc = RexxReorderMacro(FuncName, Position)

2.11.3.7.1. Parameters

FuncName (const char *) - input
is the address of an ASCII macrospace function name.

Position (ULONG) - input
is the new search-order position of the macrospace function. Possible values are:
RXMACRO_SEARCH_BEFORE

The Rexx interpreter locates the function before any registered functions or external Rexx
files.

RXMACRO_SEARCH_AFTER
The Rexx interpreter locates the function after any registered functions or external Rexx files.

2.11.3.7.2. Return Codes

RXMACRO_OK 0 The call to the function completed
successfully.

RXMACRO_NOT_FOUND 2 The requested function was not found
in the macrospace.

RXMACRO _INVALID_POSITION 8 An invalid search-order position
request flag was used.

185

Appendix A. Notices

Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

A.l. Trademarks

Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3

AlX

IBM

Lotus
0Ss/2
S/390
VisualAge

AMD is a trademark of Advanced Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

186

Source Code For This Document

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

A.2. Source Code For This Document

The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix B, Common Public
License Version 1.0. The source code is available at https://sourceforge.net/p/oorexx/code-0/HEAD/
tree/docs/.

The source code for this document is maintained in DocBook SGML/XML format.

Creztix DUCEE’GI{

with g Sowree for
Documerieiion

The railroad diagrams were generated with the help of "Railroad Diagram Generator" located at
https://github.com/GuntherRademacher/rr. Special thanks to Gunther Rademacher for creating and
maintaining this tool.

\/
i

187

https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://github.com/GuntherRademacher/rr

Appendix B. Common Public License
Version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

B.1. Definitions

"Contribution" means:

1. inthe case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. inthe case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution ‘originates’ from a Contributor if it was added to the Program

by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program” means the Contributions distributed in accordance with this Agreement.

"Recipient” means anyone who receives the Program under this Agreement, including all Contributors.

B.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement

188

Requirements

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

B.3. Requirements

A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and
2. itslicense agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fithess for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. acopy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

B.4. Commercial Distribution

Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in

a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified

189

No Warranty

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product

X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

B.5. No Warranty

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

B.6. Disclaimer of Liability

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE

OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

B.7. General

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.

190

General

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.

The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify

this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve

as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will

be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

191

Appendix C. Revision History

Revision 0-0 Aug 2016
Initial creation for 5.0

192

Index

A

AddCommandEnvironment, 45
AllocateObjectMemory, 46
application programming interfaces
exit handler, 29, 152
exit interface, 29, 152
RexxDeregisterExit, 165
RexxQueryExit, 166
RexxRegisterExitDIl, 163
RexxRegisterExitExe, 164
external function interface, 147
RexxDeregisterFunction, 151
RexxQueryFunction, 151
RexxRegisterFunctionDIIl, 149
RexxRegisterFunctionExe, 151
halt and trace interface, 178
RexxResetTrace, 180
RexxSetHalt, 179
RexxSetTrace, 179
handler definitions, 140
handler interface
subcommand handler, 141
invoking the Rexx interpreter, 136
RexxDidRexxTerminate, 140
RexxStart, 136
RexxWaitForTermination, 140
macrospace interface, 180
RexxAddMacro, 181
RexxClearMacroSpace, 182
RexxDropMacro, 182
RexxLoadMacroSpace, 184
RexxQueryMacro, 184
RexxReorderMacro, 185
RexxSaveMacroSpace, 183
gueue interface, 173
RexxAddQueue, 176
RexxClearQueue, 177
RexxCreateQueue, 173
RexxDeleteQueue, 174
RexxOpenQueue, 174
RexxPullFromQueue, 176
RexxPullQueue, 178
RexxQueryExists, 175
RexxQueryQueue, 175
RexxCreatelnterpreter, 3
RXSTRING data structure, 135
RXSTRING, 135
RXSYSEXIT, 138, 154
SHVBLOCK, 168
RXSYSEXIT data structure, 138
SHVBLOCK, 168

subcommand interface, 140
RexxDeregisterSubcom, 145
RexxQuerySubcom, 146
RexxRegisterSubcomDIl, 143
RexxRegisterSubcomExe, 144

system memory interface, 172
RexxAllocateMemory, 172
RexxFreeMemory, 172

variable pool interface, 167
RexxVariablePool, 168

AreQutputAndErrorSameTarget, 46
Array, 47
ArrayAppend, 47
ArrayAppendString, 48
ArrayAt, 48
ArrayDimension, 48
Arrayltems, 49
ArrayOfFour, 49
ArrayOfOne, 50
ArrayOfThree, 50
ArrayOfTwo, 50
ArrayPut, 51
ArraySize, 51
AttachThread, 52

B

BufferData, 52
BufferLength, 52
BufferStringData, 53
BufferStringLength, 53

C

Call context methods

AddCommandEnvironment, 45
Array, 47
ArrayAppend, 47
ArrayAppendString, 48
ArrayAt, 48
ArrayDimension, 48
Arrayltems, 49
ArrayOfFour, 49
ArrayOfOne, 50
ArrayOfThree, 50
ArrayOfTwo, 50
ArrayPut, 51
ArraySize, 51
BufferData, 52
BufferLength, 52
BufferStringData, 53
BufferStringLength, 53
CallProgram, 54
CallRoutine, 54
CheckCondition, 55

193

ClearCondition, 55
CString, 55
DecodeConditioninfo, 56
DirectoryAt, 57
DirectoryPut, 57
DirectoryRemove, 58
DisplayCondition, 58
Double, 58
DoubleToObject, 59
DoubleToObjectWithPrecision, 59
DropContextVariable, 60
DropStemArrayElement, 60
DropStemElement, 61
False, 61

FindClass, 62
FindPackageClass, 62
FinishBufferString, 63
GetAllContextVariables, 64
GetAllStemElements, 65
GetApplicationData, 65
GetArgument, 65
GetArguments, 66
GetCallerContext, 66
GetConditioninfo, 66
GetContextDigits, 67
GetContextForm, 67
GetContextFuzz, 68
GetContextVariable, 68
GetContextVariableReference, 68
GetGlobalEnvironment, 69
Getlnterpreterinstance, 70
GetLocalEnvironment, 70
GetMethodPackage, 71
GetPackageClasses, 72
GetPackageMethods, 73
GetPackagePublicClasses, 73
GetPackagePublicRoutines, 73
GetPackageRoutines, 74
GetRoutine, 74
GetRoutineName, 75
GetRoutinePackage, 75
GetStemArrayElement, 76
GetStemElement, 77
GetStemValue, 77
HasMethod, 78

Int32, 79

Int32ToObject, 79

Int64, 80

Int64ToObject, 80
InterpreterVersion, 81
Intptr, 81

IntptrToObject, 82
InvalidRoutine, 82

IsArray, 82

IsBuffer, 83

IsDirectory, 83
IsinstanceOf, 84
IsMethod, 85
IsMutableBuffer, 85
IsOfType, 86

IsPointer, 87

IsRoutine, 87

IsStem, 88

IsString, 88
IsStringTable, 89
IsVariableReference, 89
Languagelevel, 89
LoadLibrary, 90
LoadPackage, 90
LoadPackageFromData, 91
Logical, 91
LogicalToObject, 92
MutableBufferCapacity, 92
MutableBufferData, 92
MutableBufferLength, 93
NewArray, 93

NewBuffer, 94
NewBufferString, 94
NewDirectory, 94
NewMethod, 95
NewMutableBuffer, 95
NewPointer, 96
NewRoutine, 96
NewStem, 96

NewsString, 97
NewsStringFromAsciiz, 97
NewStringTable, 98
NewSupplier, 98

Nil, 98

NullString, 99
ObjectToCSelf, 99
ObjectToDouble, 100
ObjectToInt32, 100
ObjectToInt64, 101
ObjectTolntptr, 101
ObjectToLogical, 101
ObjectToString, 102
ObjectToStringSize, 102
ObjectToStringValue, 103
ObjectToUintptr, 103
ObjectToUnsignedInt32, 103
ObjectToUnsignedint64, 104
ObjectToValue, 104
ObjectTowholeNumber, 105
PointerValue, 105
RaiseCondition, 106
RaiseException, 106
RaiseException0, 106

194

RaiseExceptionl, 106 CheckCondition, 55

RaiseException2, 106 ClearCondition, 55
RegisterLibrary, 108 Common Public License, 188
ReleaseGlobalReference, 109 CPL, 188
ReleaselLocalReference, 109 CsString, 55
RequestGlobalReference, 110

ResolveStemVariable, 110 D

SendMessage, 110 DecodeConditioninfo, 56
SendMessage0, 110 DetachThread, 56
SendMessagel, 110 DirectoryAt, 57

SendMessage2, 110
SendMessageScoped, 111
SetContextVariable, 112

DirectoryPut, 57
DirectoryRemove, 58
DisplayCondition, 58

SetMutableBufferCapacity, 114 Double. 58
SetMutableBufferLength, 114 DoubleToObject, 59
SetStemArrayElement, 115 DoubleToObjectWithPrecision, 59
SetStemEIement, 116 DropContextVariable, 60
SetVariableReferenceValue, 117 DropObjectVariable, 60

String, 117
StringData, 118
StringGet, 118

DropStemArrayElement, 60
DropStemElement, 61

StringLength, 119 E
StringLower, 119

StringSize, 119 Exit context methods
StringSizeToObject, 120 AddCommandEnvironment, 45
StringTableAt, 120 Array, 47
StringTablePut, 121 ArrayAppend, 47
StringTableRemove, 121 ArrayAppendString, 48
StringUpper, 122 ArrayAt, 48
SupplierAvailable, 122 ArrayDimension, 48
Supplierindex, 122 Arrayltems, 49
Supplierltem, 123 ArrayOfFour, 49
SupplierNext, 123 ArrayOfOne, 50, 50, 50
ThrowCondition, 124 ArrayPut, 51
ThrowException, 124 ArraySize, 51
ThrowException0, 124 BufferData, 52
ThrowException1, 124 BufferLength, 52
ThrowException2, 124 BufferStringData, 53
True, 125 BufferStringLength, 53
Uintptr, 125 CallProgram, 54
UintptrToObject, 126 CallRoutine, 54
UnsignedInt32, 126 CheckCondition, 55
UnsignedInt32ToObject, 127 ClearCondition, 55
Unsignedint64, 127 CString, 55
Unsignedint64ToObject, 128 DfecodeConditionlnfo, 56
ValuesToObject, 128 DirectoryAt, 57
ValueToObject, 128 DirectoryPut, 57
VariableReferenceName, 129 DirectoryRemove, 58
VariableReferenceValue, 129 DisplayCondition, 58
WholeNumber, 130 Double, 58
WholeNumberToObject, 130 DoubleToObject, 59

calling the Rexx interpreter, 136 DoubleToObjectWithPrecision, 59
CallProgram, 54 DropContextVariable, 60
CallRoutine, 54 DropStemArrayElement, 60

195

DropStemElement, 61 MutableBufferLength, 93

False, 61 NewArray, 93

FindClass, 62 NewBuffer, 94
FindPackageClass, 62 NewBufferString, 94
FinishBufferString, 63 NewDirectory, 94
GetAllContextVariables, 64 NewMethod, 95
GetAllStemElements, 65 NewMutableBuffer, 95
GetApplicationData, 65 NewPointer, 96
GetCallerContext, 66 NewRoutine, 96
GetConditioninfo, 66 NewStem, 96
GetContextVariable, 68 NewsString, 97
GetContextVariableReference, 68 NewStringFromAsciiz, 97
GetGlobalEnvironment, 69 NewsStringTable, 98
Getlnterpreterinstance, 70 NewSupplier, 98
GetLocalEnvironment, 70 Nil, 98

GetMethodPackage, 71 NullString, 99
GetPackageClasses, 72 ObjectToCSelf, 99
GetPackageMethods, 73 ObjectToDouble, 100
GetPackagePublicClasses, 73 ObjectToInt32, 100
GetPackagePublicRoutines, 73 ObjectToInt64, 101
GetPackageRoutines, 74 ObjectTolntptr, 101
GetRoutinePackage, 75 ObjectToLogical, 101
GetStemArrayElement, 76 ObjectToString, 102
GetStemElement, 77 ObjectToStringSize, 102
GetStemValue, 77 ObjectToStringValue, 103
HasMethod, 78 ObjectToUintptr, 103

Int32, 79 ObjectToUnsignedInt32, 103
Int32ToObject, 79 ObjectToUnsignedInt64, 104
Int64, 80 ObjectToValue, 104
Int64ToObject, 80 ObjectTowholeNumber, 105
InterpreterVersion, 81 PointerValue, 105

Intptr, 81 RaiseCondition, 106
IntptrToObject, 82 RaiseException, 106

IsArray, 82 RaiseException0, 106
IsBuffer, 83 RaiseExceptionl, 106
IsDirectory, 83 RaiseException2, 106
IsinstanceOf, 84 RegisterLibrary, 108
IsMethod, 85 ReleaseGlobalReference, 109
IsMutableBuffer, 85 ReleaselLocalReference, 109
IsOfType, 86 RequestGlobalReference, 110
IsPointer, 87 SendMessage, 110
IsRoutine, 87 SendMessageO0, 110

IsStem, 88 SendMessagel, 110
IsString, 88 SendMessage2, 110
IsStringTable, 89 SendMessageScoped, 111
IsVariableReference, 89 SetContextVariable, 112
Languagelevel, 89 SetMutableBufferCapacity, 114
LoadLibrary, 90 SetMutableBufferLength, 114
LoadPackage, 90 SetStemArrayElement, 115
LoadPackageFromData, 91 SetStemElement, 116
Logical, 91 SetVariableReferenceValue, 117
LogicalToObject, 92 String, 117
MutableBufferCapacity, 92 StringData, 118
MutableBufferData, 92 StringGet, 118

196

StringLength, 119
StringLower, 119
StringSize, 119
StringSizeToObject, 120
StringTableAt, 120
StringTablePut, 121
StringTableRemove, 121
StringUpper, 122
SupplierAvailable, 122
Supplierindex, 122
Supplierltem, 123
SupplierNext, 123
ThrowCondition, 124
ThrowException, 124
ThrowException0, 124
ThrowExceptionl, 124
ThrowException2, 124
True, 125
Uintptr, 125
UintptrToObject, 126
UnsignedInt32, 126
UnsignedInt32ToObject, 127
UnsignedInt64, 127
Unsignedint64ToObject, 128
ValuesToObject, 128
ValueToObiject, 128
VariableReferenceName, 129
VariableReferenceValue, 129
WholeNumber, 130
WholeNumberToObiject, 130
exits, 29, 152
external command exit, 36, 157
external function exit, 33, 35, 156
external function interface
description, 147
interface functions, 149
returned results, 148
RexxDeregisterFunction, 151
RexxQueryFunction, 151
RexxRegisterFunctionDII, 149
RexxRegisterFunctionExe, 151
simple function, 149
simple registration, 151
writing, 147
external HALT exit, 41, 161
external 1/0O exit, 39, 160
external queue exit, 37, 158
external trace exit, 42, 162

F

False, 61

FindClass, 62
FindContextClass, 62
FindPackageClass, 62

FinishBufferString, 63
ForwardMessage, 63
FreeObjectMemory, 64

G

GetAllContextVariables, 64
GetAllStemElements, 65
GetApplicationData, 65
GetArgument, 65
GetArguments, 66
GetCallerContext, 66
GetConditionInfo, 66
GetContextDigits, 67
GetContextForm, 67
GetContextFuzz, 68
GetContextVariable, 68
GetContextVariableReference, 68
GetCSelf, 69
GetGlobalEnvironment, 69
Getlnterpreterinstance, 70
GetlLocalEnvironment, 70
GetMessageName, 70
GetMethod, 71
GetMethodPackage, 71
GetObjectVariable, 71
GetObjectVariableReference, 72
GetPackageClasses, 72
GetPackageMethods, 73
GetPackagePublicClasses, 73
GetPackagePublicRoutines, 73
GetPackageRoutines, 74
GetRoutine, 74
GetRoutineName, 75
GetRoutinePackage, 75
GetScope, 75

GetSelf, 76
GetStemArrayElement, 76
GetStemElement, 77
GetStemValue, 77

GetSuper, 77

H

Halt, 78

HaltThread, 78
HasMethod, 78

host command exit, 36, 157

I/O Redirector context methods

AreOutputAndErrorSameTarget, 46

IsErrorRedirected, 84
IsinputRedirected, 84
IsOutputRedirected, 86

197

IsRedirectionRequested, 87
ReadInput, 107
ReadInputBuffer, 107
WriteError, 131
WriteErrorBuffer, 131
WriteOutput, 132
WriteOutputBuffer, 132
initialization exit, 43, 163
Int32, 79
Int32ToObject, 79
Int64, 80
Int64ToObject, 80
InterpreterVersion, 81
Intptr, 81
IntptrToObject, 82
InvalidRoutine, 82
invoking the Rexx interpreter, 136
IsArray, 82
IsBuffer, 83
IsDirectory, 83
IsErrorRedirected, 84
IsinputRedirected, 84
IsInstanceOf, 84
IsMethod, 85
IsMutableBuffer, 85
IsOfType, 86
IsOutputRedirected, 86
IsPointer, 87
IsRedirectionRequested, 87
IsRoutine, 87
IsStem, 88
IsString, 88
IsStringTable, 89
IsVariableReference, 89

L

Language Level, 89

License, Common Public, 188
License, Open Object Rexx, 188
LoadLibrary, 90

LoadPackage, 90
LoadPackageFromData, 91
Logical, 91

LogicalToObject, 92

M

macrospace interface
description, 180
RexxAddMacro, 181
RexxClearMacroSpace, 182
RexxDropMacro, 182
RexxLoadMacroSpace, 184
RexxQueryMacro, 184

RexxReorderMacro, 185
RexxSaveMacroSpace, 183

Method context methods

AddCommandEnvironment, 45
AllocateObjectMemory, 46
Array, 47

ArrayAppend, 47
ArrayAppendString, 48
ArrayAt, 48
ArrayDimension, 48
Arrayltems, 49
ArrayOfFour, 49
ArrayOfOne, 50
ArrayOfThree, 50
ArrayOfTwo, 50

ArrayPut, 51

ArraySize, 51

BufferData, 52
BufferLength, 52
BufferStringData, 53
BufferStringLength, 53
CallProgram, 54
CallRoutine, 54
CheckCondition, 55
ClearCondition, 55
CString, 55
DecodeConditioninfo, 56
DirectoryAt, 57
DirectoryPut, 57
DirectoryRemove, 58
DisplayCondition, 58
Double, 58
DoubleToObject, 59
DoubleToObjectWithPrecision, 59
DropObijectVariable, 60
DropStemArrayElement, 60
DropStemElement, 61
False, 61

FindClass, 62
FindContextClass, 62
FindPackageClass, 62
FinishBufferString, 63
ForwardMessage, 63
FreeObjectMemory, 64
GetAllStemElements, 65
GetApplicationData, 65
GetArgument, 65
GetArguments, 66
GetConditioninfo, 66
GetCSelf, 69
GetGlobalEnvironment, 69
Getlnterpreterinstance, 70
GetlLocalEnvironment, 70
GetMessageName, 70

198

GetMethod, 71
GetMethodPackage, 71
GetObjectVariable, 71
GetObjectVariableReference, 72
GetPackageClasses, 72
GetPackageMethods, 73
GetPackagePublicClasses, 73
GetPackagePublicRoutines, 73
GetPackageRoutines, 74
GetRoutinePackage, 75
GetScope, 75

GetSelf, 76
GetStemArrayElement, 76
GetStemElement, 77
GetStemValue, 77
GetSuper, 77

HasMethod, 78

Int32, 79

Int32ToObject, 79

Int64, 80

Int64ToObject, 80
InterpreterVersion, 81
Intptr, 81

IntptrToObject, 82

IsArray, 82

IsBuffer, 83

IsDirectory, 83
IsinstanceOf, 84
IsMethod, 85
IsMutableBuffer, 85
IsOfType, 86

IsPointer, 87

IsRoutine, 87

IsStem, 88

IsString, 88

IsStringTable, 89
IsVariableReference, 89
Languagelevel, 89
LoadLibrary, 90
LoadPackage, 90
LoadPackageFromData, 91
Logical, 91
LogicalToObject, 92
MutableBufferCapacity, 92
MutableBufferData, 92
MutableBufferLength, 93
NewArray, 93

NewBuffer, 94
NewBufferString, 94
NewDirectory, 94
NewMethod, 95
NewMutableBuffer, 95
NewPointer, 96
NewRoutine, 96

NewStem, 96

NewsString, 97
NewsStringFromAsciiz, 97
NewsStringTable, 98
NewSupplier, 98

Nil, 98

NullString, 99

ObjectToCSelf, 99
ObjectToDouble, 100
ObjectToInt32, 100
ObjectToInt64, 101
ObjectTolntptr, 101
ObjectToLogical, 101
ObjectToString, 102
ObjectToStringSize, 102
ObjectToStringValue, 103
ObjectToUintptr, 103
ObjectToUnsignedint32, 103
ObjectToUnsignedint64, 104
ObjectToValue, 104
ObjectTowholeNumber, 105
PointerValue, 105
RaiseCondition, 106
RaiseException, 106
RaiseException0, 106
RaiseExceptionl, 106
RaiseException2, 106
ReallocateObjectMemory, 108
RegisterLibrary, 108
ReleaseGlobalReference, 109
ReleaselLocalReference, 109
RequestGlobalReference, 110
SendMessage, 110
SendMessage0, 110
SendMessagel, 110
SendMessage2, 110
SendMessageScoped, 111
SetGuardOff, 112
SetGuardOffWhenUpdated, 112
SetGuardOn, 113
SetGuardOnWhenUpdated, 113
SetMutableBufferCapacity, 114
SetMutableBufferLength, 114
SetObjectVariable, 115
SetStemArrayElement, 115
SetStemElement, 116
SetVariableReferenceValue, 117
String, 117

StringData, 118

StringGet, 118

StringLength, 119
StringLower, 119

StringSize, 119
StringSizeToObject, 120

199

StringTableAt, 120
StringTablePut, 121
StringTableRemove, 121
StringUpper, 122
SupplierAvailable, 122
Supplierindex, 122
Supplierltem, 123
SupplierNext, 123
ThrowCondition, 124
ThrowException, 124
ThrowException0, 124
ThrowExceptionl, 124
ThrowException2, 124
True, 125
Uintptr, 125
UintptrToObject, 126
UnsignedInt32, 126
Unsignedint32ToObject, 127
Unsignedint64, 127
UnsignedInt64ToObject, 128
ValuesToObject, 128
ValueToObiject, 128
VariableReferenceName, 129
VariableReferenceValue, 129
WholeNumber, 130
WholeNumberToObject, 130
MutableBufferCapacity, 92
MutableBufferData, 92
MutableBufferLength, 93

N

NewArray, 93
NewBuffer, 94
NewBufferString, 94
NewDirectory, 94
NewMethod, 95
NewMutableBuffer, 95
NewPointer, 96
NewRoutine, 96
NewStem, 96
NewsString, 97
NewsStringFromAsciiz, 97
NewsStringTable, 98
NewSupplier, 98

Nil, 98

Notices, 186
NOVALUE exit, 40
NullString, 99

(0)

ObjectToCSelf, 99
ObjectToDouble, 100
ObjectToInt32, 100

ObjectToInt64, 101
ObjectTolntptr, 101
ObjectToLogical, 101
ObjectToString, 102
ObjectToStringSize, 102
ObjectToStringValue, 103
ObjectToUintptr, 103
ObjectToUnsignedint32, 103
ObjectToUnsignedInt64, 104
ObjectToValue, 104
ObjectTowholeNumber, 105
ooRexx License, 188

Open Object Rexx License, 188

P

PointerValue, 105

Q

gueue exit, 37, 158

gueue interface
description, 173, 178
RexxAddQueue, 176
RexxClearQueue, 177
RexxCreateQueue, 173
RexxDeleteQueue, 174
RexxOpenQueue, 174
RexxPullFromQueue, 176
RexxPullQueue, 178
RexxQueryQueue, 175
RexxQueueExists, 175
RexxResetTrace, 180
RexxSetHalt, 179
RexxSetTrace, 179

R

RaiseCondition, 106
RaiseException, 106
RaiseException0, 106
RaiseExceptionl, 106
RaiseException2, 106
ReadInput, 107
ReadInputBuffer, 107
ReallocateObjectMemory, 108
RegisterLibrary, 108
ReleaseGlobalReference, 109
ReleaselLocalReference, 109
RequestGlobalReference, 110
ResolveStemVariable, 110
Rexx instance context methods

AddCommandEnvironment, 45

AttachThread, 52

Halt, 78

InterpreterVersion, 81

200

Languagelevel, 89

SetTrace, 116

Terminate, 124
Rexx interpreter, invoking, 136
RexxAddMacro, 181
RexxAddQueue, 176
RexxAllocateMemory, 172
RexxClearMacroSpace, 182
RexxClearQueue, 177
RexxContextExit interface

exit functions, 43

external function exit, 33, 35

external HALT exit, 41

host command exit, 36

initialization exit, 43

NOVALUE exit, 40, 41

gueue exit, 37

RexxContextExit data structure, 31

RXCMD exit, 31, 36
RXEXF exit, 31, 34
RXFNC exit, 31, 35
RXHLT exit, 32, 41
RXINI exit, 33, 43
RXMSQ exit, 32, 37
RXNOVAL exit, 32, 40
RXOFNC exit, 31, 33
RXSIO exit, 32, 39
RXTER exit, 33, 43
RXTRC exit, 32, 42
RXVALUE exit, 32, 41
scripting function exit, 34
termination exit, 43
tracing exit, 42
RexxContextExitHandler interface
definition, 29
RexxCreatelnterpreter, 3
RexxCreateQueue, 173
RexxDeleteQueue, 174
RexxDeregisterExit, 165
RexxDeregisterFunction, 151
RexxDeregisterSubcom, 145
RexxDidRexxTerminate, 140
RexxDropMacro, 182
RexxFreeMemory, 172
RexxLoadMacroSpace, 184
RexxOpenQueue, 174
RexxPullFromQueue, 176
RexxPullQueue, 178
RexxQueryExit, 166
RexxQueryFunction, 151
RexxQueryMacro, 184
RexxQueryQueue, 175
RexxQuerySubcom, 146
RexxQueueExists, 175

RexxRegisterExitDIl, 163
RexxRegisterExitExe, 164
RexxRegisterFunctionDII, 149
RexxRegisterFunctionExe, 151
RexxRegisterSubcomDIl, 143
RexxRegisterSubcomExe, 144
RexxReorderMacro, 185
RexxResetTrace, 180
RexxSaveMacroSpace, 183
RexxSetHalt, 179
RexxSetTrace, 179
RexxStart, 136

example using, 139

exit example, 145

using exits, 138

using in-storage programs, 137

using macrospace programs, 137
RexxVariablePool, 168
RexxWaitForTermination, 140
RXCMD exit, 36, 157
RXEXF exit, 34
RXFNC exit, 35, 156
RXHLT exit, 41, 161
RXINI exit, 43, 163
RXMSQ exit, 37, 158
RXNOVAL exit, 40
RXOFNC exit, 33
RXSIO exit, 39, 160
RXSTRING, 135

definition, 135

null terminated, 135

returning, 136
RXSYSEXIT data structure, 138
RXTER exit, 43, 163
RXTRC exit, 42, 162
RXVALUE exit, 41

S

scripting function exit, 34
SendMessage, 110
SendMessageO, 110
SendMessagel, 110
SendMessage2, 110
SendMessageScoped, 111
session I/0 exit, 39, 160
SetContextVariable, 112
SetGuardOff, 112
SetGuardOffWhenUpdated, 112
SetGuardOn, 113
SetGuardOnWhenUpdated, 113
SetMutableBufferCapacity, 114
SetMutableBufferLength, 114
SetObjectVariable, 115
SetStemArrayElement, 115

201

SetStemElement, 116
SetThreadTrace, 116
SetTrace, 116
SetVariableReferenceValue, 117
SHVBLOCK, 168
String, 117
StringData, 118
StringGet, 118
StringLength, 119
StringLower, 119
StringSize, 119
StringSizeToObject, 120
StringTableAt, 120
StringTablePut, 121
StringTableRemove, 121
StringUpper, 122
subcommand interface
definition, 141
description, 140
registering, 141
RexxDeregisterSubcom, 145
RexxQuerySubcom, 146
RexxRegisterSubcomDll, 143
RexxRegisterSubcomExe, 144
subcommand errors, 141
subcommand failures, 141
subcommand handler example, 142
subcommand return code, 142
SupplierAvailable, 122
Supplierindex, 122
Supplierltem, 123
SupplierNext, 123
SYSEXIT interface
definition, 152
description, 152
exit functions, 163
external function exit, 156
external HALT exit, 161
host command exit, 157
initialization exit, 163
gueue exit, 158
registration example, 165
RexxDeregisterExit, 165
RexxQueryExit, 166
RexxRegisterExitDIl, 163
RexxRegisterExitExe, 164
RXCMD exit, 155, 157
RXFNC exit, 155, 156
RXHLT exit, 155, 161
RXINI exit, 156, 163
RXMSQ exit, 155, 158
RXSIO exit, 155, 160
RXSYSEXIT data structure, 154
RXTER exit, 156, 163

T

RXTRC exit, 156, 162
sample exit, 154
termination exit, 163
tracing exit, 162

Terminate, 124
termination exit, 43, 163
thread, 143, 164, 179, 180
Thread context methods

AddCommandEnvironment, 45
Array, 47

ArrayAppend, 47
ArrayAppendString, 48
ArrayAt, 48
ArrayDimension, 48
Arrayltems, 49
ArrayOfFour, 49
ArrayOfOne, 50
ArrayOfThree, 50
ArrayOfTwo, 50

ArrayPut, 51

ArraySize, 51

BufferData, 52
BufferLength, 52
BufferStringData, 53
BufferStringLength, 53
CallProgram, 54
CallRoutine, 54
CheckCondition, 55
ClearCondition, 55
Cstring, 55
DecodeConditioninfo, 56
DetachThread, 56
DirectoryAt, 57
DirectoryPut, 57
DirectoryRemove, 58
DisplayCondition, 58
Double, 58
DoubleToObject, 59
DoubleToObjectWithPrecision, 59
DropStemArrayElement, 60
DropStemElement, 61
False, 61

FindClass, 62
FindPackageClass, 62
FinishBufferString, 63
GetAllStemElements, 65
GetApplicationData, 65
GetConditionInfo, 66
GetGlobalEnvironment, 69
Getlnterpreterinstance, 70
GetLocalEnvironment, 70
GetMethodPackage, 71

202

GetPackageClasses, 72
GetPackageMethods, 73
GetPackagePublicClasses, 73

GetPackagePublicRoutines, 73

GetPackageRoutines, 74
GetRoutinePackage, 75
GetStemArrayElement, 76
GetStemElement, 77
GetStemValue, 77
HaltThread, 78
HasMethod, 78

Int32, 79

Int32ToObject, 79

Int64, 80

Int64ToObject, 80
InterpreterVersion, 81
Intptr, 81

IntptrToObject, 82
IsArray, 82

IsBuffer, 83

IsDirectory, 83
IsinstanceOf, 84
IsMethod, 85
IsMutableBuffer, 85
IsOfType, 86

IsPointer, 87

IsRoutine, 87

IsStem, 88

IsString, 88
IsStringTable, 89
IsVariableReference, 89
Languagelevel, 89
LoadLibrary, 90
LoadPackage, 90
LoadPackageFromData, 91
Logical, 91
LogicalToObject, 92
MutableBufferCapacity, 92
MutableBufferData, 92
MutableBufferLength, 93
NewArray, 93

NewBuffer, 94
NewBufferString, 94
NewDirectory, 94
NewMethod, 95
NewMutableBuffer, 95
NewPointer, 96
NewRoutine, 96
NewStem, 96
NewsString, 97
NewsStringFromAsciiz, 97
NewsStringTable, 98
NewSupplier, 98

Nil, 98

NullString, 99

ObjectToCSelf, 99
ObjectToDouble, 100
ObjectToInt32, 100
ObjectToInt64, 101
ObjectTolntptr, 101
ObjectToLogical, 101
ObjectToString, 102
ObjectToStringSize, 102
ObjectToStringValue, 103
ObjectToUintptr, 103
ObjectToUnsignedint32, 103
ObjectToUnsignedInt64, 104
ObjectTowholeNumber, 105
PointerValue, 105
RaiseCondition, 106
RaiseException, 106
RaiseException0, 106
RaiseExceptionl, 106
RaiseException2, 106
RegisterLibrary, 108
ReleaseGlobalReference, 109
ReleaselLocalReference, 109
RequestGlobalReference, 110
SendMessage, 110
SendMessage0, 110
SendMessagel, 110
SendMessage?2, 110
SendMessageScoped, 111
SetMutableBufferCapacity, 114
SetMutableBufferLength, 114
SetStemArrayElement, 115
SetStemElement, 116
SetThreadTrace, 116

SetVariableReferenceValue, 117

String, 117

StringData, 118
StringGet, 118
StringLength, 119
StringLower, 119
StringSize, 119
StringSizeToObject, 120
StringTableAt, 120
StringTablePut, 121
StringTableRemove, 121
StringUpper, 122
SupplierAvailable, 122
Supplierindex, 122
Supplierltem, 123
SupplierNext, 123
ThrowCondition, 124
ThrowException, 124
ThrowException0, 124
ThrowExceptionl, 124

203

ThrowException2, 124 W

qute,t12l525 WholeNumber, 130
U!ntptr,T Obicct. 126 WholeNumberToObiject, 130
IntptrioLnject, WriteError, 131

an!gneg:ng;lé% ¢ 127 WriteErrorBuffer, 131
nsignedin object, WriteOutput, 132

Unsignedinté4, 127 WriteOutputBuffer, 132
UnsignedInt64ToObject, 128
ValuesToObject, 128
ValueToObiject, 128
VariableReferenceName, 129
VariableReferenceValue, 129
WholeNumber, 130
WholeNumberToObject, 130
ThrowCondition, 124
ThrowException, 124
ThrowException0, 124
ThrowExceptionl, 124
ThrowException2, 124
True, 125

U

Uintptr, 125

UintptrToObject, 126
UnsignedInt32, 126
Unsignedint32ToObject, 127
Unsignedint64, 127
UnsignedInt64ToObject, 128

Vv

VALUE exit, 41
ValuesToObject, 128
ValueToObject, 128
variable pool interface
description, 167
direct interface, 168
dropping a variable, 170
fetching next variable, 169
fetching private information, 169
fetching variables, 169
restrictions, 168
return codes, 170, 171
returning variable names, 169
returning variable value, 169
RexxVariablePool, 168
RexxVariablePool example, 172
setting variables, 169
shared variable pool request block, 168
SHVBLOCK data structure, 168
symbolic interface, 167
VariableReferenceName, 129
VariableReferenceValue, 129

204

	Open Object Rexx
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Notes and Warnings

	2. How to Read the Syntax Diagrams
	3. Getting Help and Submitting Feedback
	3.1. The Open Object Rexx SourceForge Site
	3.2. The Rexx Language Association Mailing List

	4. Related Information

	Chapter 1. Rexx C++ Application Programming Interfaces
	1.1. Rexx Interpreter API
	1.1.1. RexxCreateInterpreter
	1.1.2. Interpreter Instance Options

	1.2. Data Types Used in APIs
	1.2.1. Rexx Object Types
	1.2.2. Rexx Numeric Types

	1.3. Introduction to API Vectors
	1.4. Threading Considerations
	1.5. Garbage Collection Considerations
	1.6. Rexx Interpreter Instance Interface
	1.7. Rexx Thread Context Interface
	1.8. Rexx Method Context Interface
	1.9. Rexx Call Context Interface
	1.10. Rexx Exit Context Interface
	1.11. Rexx I/O Redirector Context Interface
	1.12. Building an External Native Library
	1.13. Defining Library Routines
	1.13.1. Routine Declarations
	1.13.2. Routine Argument Types

	1.14. Defining Library Methods
	1.14.1. Method Declarations
	1.14.2. Method Argument Types
	1.14.3. Pointer, Buffer, and CSELF
	1.14.3.1. The Buffer class
	1.14.3.2. The Pointer class
	1.14.3.3. The POINTER method type
	1.14.3.4. The CSELF method type

	1.15. Rexx Exits Interface
	1.15.1. Writing Context Exit Handlers
	1.15.1.1. Exit Return Codes
	1.15.1.2. Exit Parameters
	1.15.1.3. Identifying Exit Handlers to Rexx

	1.15.2. Context Exit Definitions
	1.15.2.1. RXOFNC
	1.15.2.2. RXEXF
	1.15.2.3. RXFNC
	1.15.2.4. RXCMD
	1.15.2.5. RXMSQ
	1.15.2.6. RXSIO
	1.15.2.7. RXNOVAL
	1.15.2.8. RXVALUE
	1.15.2.9. RXHLT
	1.15.2.10. RXTRC
	1.15.2.11. RXINI
	1.15.2.12. RXTER

	1.16. Command Handler Interface
	1.17. Rexx Interface Methods Listing
	1.17.1. AddCommandEnvironment
	1.17.2. AllocateObjectMemory
	1.17.3. AreOutputAndErrorSameTarget
	1.17.4. Array
	1.17.5. ArrayAppend
	1.17.6. ArrayAppendString
	1.17.7. ArrayAt
	1.17.8. ArrayDimension
	1.17.9. ArrayItems
	1.17.10. ArrayOfFour
	1.17.11. ArrayOfOne
	1.17.12. ArrayOfThree
	1.17.13. ArrayOfTwo
	1.17.14. ArrayPut
	1.17.15. ArraySize
	1.17.16. AttachThread
	1.17.17. BufferData
	1.17.18. BufferLength
	1.17.19. BufferStringData
	1.17.20. BufferStringLength
	1.17.21. CallProgram
	1.17.22. CallRoutine
	1.17.23. CheckCondition
	1.17.24. ClearCondition
	1.17.25. CString
	1.17.26. DecodeConditionInfo
	1.17.27. DetachThread
	1.17.28. DirectoryAt
	1.17.29. DirectoryPut
	1.17.30. DirectoryRemove
	1.17.31. DisplayCondition
	1.17.32. Double
	1.17.33. DoubleToObject
	1.17.34. DoubleToObjectWithPrecision
	1.17.35. DropContextVariable
	1.17.36. DropObjectVariable
	1.17.37. DropStemArrayElement
	1.17.38. DropStemElement
	1.17.39. False
	1.17.40. FindClass
	1.17.41. FindContextClass
	1.17.42. FindPackageClass
	1.17.43. FinishBufferString
	1.17.44. ForwardMessage
	1.17.45. FreeObjectMemory
	1.17.46. GetAllContextVariables
	1.17.47. GetAllStemElements
	1.17.48. GetApplicationData
	1.17.49. GetArgument
	1.17.50. GetArguments
	1.17.51. GetCallerContext
	1.17.52. GetConditionInfo
	1.17.53. GetContextDigits
	1.17.54. GetContextForm
	1.17.55. GetContextFuzz
	1.17.56. GetContextVariable
	1.17.57. GetContextVariableReference
	1.17.58. GetCSelf
	1.17.59. GetGlobalEnvironment
	1.17.60. GetInterpreterInstance
	1.17.61. GetLocalEnvironment
	1.17.62. GetMessageName
	1.17.63. GetMethod
	1.17.64. GetMethodPackage
	1.17.65. GetObjectVariable
	1.17.66. GetObjectVariableReference
	1.17.67. GetPackageClasses
	1.17.68. GetPackageMethods
	1.17.69. GetPackagePublicClasses
	1.17.70. GetPackagePublicRoutines
	1.17.71. GetPackageRoutines
	1.17.72. GetRoutine
	1.17.73. GetRoutineName
	1.17.74. GetRoutinePackage
	1.17.75. GetScope
	1.17.76. GetSelf
	1.17.77. GetStemArrayElement
	1.17.78. GetStemElement
	1.17.79. GetStemValue
	1.17.80. GetSuper
	1.17.81. Halt
	1.17.82. HaltThread
	1.17.83. HasMethod
	1.17.84. Int32
	1.17.85. Int32ToObject
	1.17.86. Int64
	1.17.87. Int64ToObject
	1.17.88. InterpreterVersion
	1.17.89. Intptr
	1.17.90. IntptrToObject
	1.17.91. InvalidRoutine
	1.17.92. IsArray
	1.17.93. IsBuffer
	1.17.94. IsDirectory
	1.17.95. IsErrorRedirected
	1.17.96. IsInputRedirected
	1.17.97. IsInstanceOf
	1.17.98. IsMethod
	1.17.99. IsMutableBuffer
	1.17.100. IsOfType
	1.17.101. IsOutputRedirected
	1.17.102. IsPointer
	1.17.103. IsRedirectionRequested
	1.17.104. IsRoutine
	1.17.105. IsStem
	1.17.106. IsString
	1.17.107. IsStringTable
	1.17.108. IsVariableReference
	1.17.109. LanguageLevel
	1.17.110. LoadLibrary
	1.17.111. LoadPackage
	1.17.112. LoadPackageFromData
	1.17.113. Logical
	1.17.114. LogicalToObject
	1.17.115. MutableBufferCapacity
	1.17.116. MutableBufferData
	1.17.117. MutableBufferLength
	1.17.118. NewArray
	1.17.119. NewBuffer
	1.17.120. NewBufferString
	1.17.121. NewDirectory
	1.17.122. NewMethod
	1.17.123. NewMutableBuffer
	1.17.124. NewPointer
	1.17.125. NewRoutine
	1.17.126. NewStem
	1.17.127. NewString
	1.17.128. NewStringFromAsciiz
	1.17.129. NewStringTable
	1.17.130. NewSupplier
	1.17.131. Nil
	1.17.132. NullString
	1.17.133. ObjectToCSelf
	1.17.134. ObjectToDouble
	1.17.135. ObjectToInt32
	1.17.136. ObjectToInt64
	1.17.137. ObjectToIntptr
	1.17.138. ObjectToLogical
	1.17.139. ObjectToString
	1.17.140. ObjectToStringSize
	1.17.141. ObjectToStringValue
	1.17.142. ObjectToUintptr
	1.17.143. ObjectToUnsignedInt32
	1.17.144. ObjectToUnsignedInt64
	1.17.145. ObjectToValue
	1.17.146. ObjectToWholeNumber
	1.17.147. PointerValue
	1.17.148. RaiseCondition
	1.17.149. RaiseException/0/1/2
	1.17.150. ReadInput
	1.17.151. ReadInputBuffer
	1.17.152. ReallocateObjectMemory
	1.17.153. RegisterLibrary
	1.17.154. ReleaseGlobalReference
	1.17.155. ReleaseLocalReference
	1.17.156. RequestGlobalReference
	1.17.157. ResolveStemVariable
	1.17.158. SendMessage/0/1/2
	1.17.159. SendMessageScoped
	1.17.160. SetContextVariable
	1.17.161. SetGuardOff
	1.17.162. SetGuardOffWhenUpdated
	1.17.163. SetGuardOn
	1.17.164. SetGuardOnWhenUpdated
	1.17.165. SetMutableBufferCapacity
	1.17.166. SetMutableBufferLength
	1.17.167. SetObjectVariable
	1.17.168. SetStemArrayElement
	1.17.169. SetStemElement
	1.17.170. SetThreadTrace
	1.17.171. SetTrace
	1.17.172. SetVariableReferenceValue
	1.17.173. String
	1.17.174. StringData
	1.17.175. StringGet
	1.17.176. StringLength
	1.17.177. StringLower
	1.17.178. StringSize
	1.17.179. StringSizeToObject
	1.17.180. StringTableAt
	1.17.181. StringTablePut
	1.17.182. StringTableRemove
	1.17.183. StringUpper
	1.17.184. SupplierAvailable
	1.17.185. SupplierIndex
	1.17.186. SupplierItem
	1.17.187. SupplierNext
	1.17.188. Terminate
	1.17.189. ThrowCondition
	1.17.190. ThrowException/0/1/2
	1.17.191. True
	1.17.192. Uintptr
	1.17.193. UintptrToObject
	1.17.194. UnsignedInt32
	1.17.195. UnsignedInt32ToObject
	1.17.196. UnsignedInt64
	1.17.197. UnsignedInt64ToObject
	1.17.198. ValuesToObject
	1.17.199. ValueToObject
	1.17.200. VariableReferenceName
	1.17.201. VariableReferenceValue
	1.17.202. WholeNumber
	1.17.203. WholeNumberToObject
	1.17.204. WriteError
	1.17.205. WriteErrorBuffer
	1.17.206. WriteOutput
	1.17.207. WriteOutputBuffer

	Chapter 2. Classic Rexx Application Programming Interfaces
	2.1. Handler Characteristics
	2.2. RXSTRINGs
	2.3. Calling the Rexx Interpreter
	2.3.1. From the Operating System
	2.3.2. From within an Application
	2.3.3. The RexxStart Function
	2.3.3.1. Parameters
	2.3.3.2. Return Codes
	2.3.3.3. Example

	2.3.4. The RexxWaitForTermination Function (Deprecated)
	2.3.5. The RexxDidRexxTerminate Function (Deprecated)

	2.4. Subcommand Interface
	2.4.1. Registering Subcommand Handlers
	2.4.1.1. Creating Subcommand Handlers
	2.4.1.1.1. Example

	2.4.2. Subcommand Interface Functions
	2.4.2.1. RexxRegisterSubcomDll
	2.4.2.1.1. Parameters
	2.4.2.1.2. Return Codes

	2.4.2.2. RexxRegisterSubcomExe
	2.4.2.2.1. Parameters
	2.4.2.2.2. Return Codes
	2.4.2.2.3. Remarks
	2.4.2.2.4. Example

	2.4.2.3. RexxDeregisterSubcom
	2.4.2.3.1. Parameters
	2.4.2.3.2. Return Codes
	2.4.2.3.3. Remarks

	2.4.2.4. RexxQuerySubcom
	2.4.2.4.1. Parameters
	2.4.2.4.2. Return Codes
	2.4.2.4.3. Example

	2.5. External Function Interface
	2.5.1. Registering External Functions
	2.5.1.1. Creating External Functions

	2.5.2. Calling External Functions
	2.5.2.1. Example

	2.5.3. External Function Interface Functions
	2.5.3.1. RexxRegisterFunctionDll
	2.5.3.1.1. Parameters
	2.5.3.1.2. Return Codes
	2.5.3.1.3. Remarks
	2.5.3.1.4. Example

	2.5.3.2. RexxRegisterFunctionExe
	2.5.3.2.1. Parameters
	2.5.3.2.2. Return Codes

	2.5.3.3. RexxDeregisterFunction
	2.5.3.3.1. Parameters
	2.5.3.3.2. Return Codes

	2.5.3.4. RexxQueryFunction
	2.5.3.4.1. Parameters
	2.5.3.4.2. Return Codes
	2.5.3.4.3. Remarks

	2.6. Registered System Exit Interface
	2.6.1. Writing System Exit Handlers
	2.6.1.1. Exit Return Codes
	2.6.1.2. Exit Parameters
	2.6.1.3. Identifying Exit Handlers to Rexx
	2.6.1.3.1. Example

	2.6.2. System Exit Definitions
	2.6.2.1. RXFNC
	2.6.2.2. RXCMD
	2.6.2.3. RXMSQ
	2.6.2.4. RXSIO
	2.6.2.5. RXHLT
	2.6.2.6. RXTRC
	2.6.2.7. RXINI
	2.6.2.8. RXTER

	2.6.3. System Exit Interface Functions
	2.6.3.1. RexxRegisterExitDll
	2.6.3.1.1. Parameters
	2.6.3.1.2. Return Codes

	2.6.3.2. RexxRegisterExitExe
	2.6.3.2.1. Parameters
	2.6.3.2.2. Return Codes
	2.6.3.2.3. Remarks
	2.6.3.2.4. Example

	2.6.3.3. RexxDeregisterExit
	2.6.3.3.1. Parameters
	2.6.3.3.2. Return Codes
	2.6.3.3.3. Remarks

	2.6.3.4. RexxQueryExit
	2.6.3.4.1. Parameters
	2.6.3.4.2. Return Codes
	2.6.3.4.3. Example

	2.7. Variable Pool Interface
	2.7.1. Interface Types
	2.7.1.1. Symbolic Interface
	2.7.1.2. Direct Interface

	2.7.2. RexxVariablePool Restrictions
	2.7.3. RexxVariablePool Interface Function
	2.7.3.1. RexxVariablePool
	2.7.3.1.1. Parameters
	2.7.3.1.2. RexxVariablePool Return Codes
	2.7.3.1.3. Example

	2.8. Dynamically Allocating and De-allocating Memory
	2.8.1. The RexxAllocateMemory() Function
	2.8.2. The RexxFreeMemory() Function

	2.9. Queue Interface
	2.9.1. Queue Interface Functions
	2.9.1.1. RexxCreateQueue
	2.9.1.1.1. Parameters
	2.9.1.1.2. Return Codes
	2.9.1.1.3. Remarks

	2.9.1.2. RexxOpenQueue
	2.9.1.2.1. Parameters
	2.9.1.2.2. Return Codes
	2.9.1.2.3. Remarks

	2.9.1.3. RexxDeleteQueue
	2.9.1.3.1. Parameters
	2.9.1.3.2. Return Codes
	2.9.1.3.3. Remarks

	2.9.1.4. RexxQueueExists
	2.9.1.4.1. Parameters
	2.9.1.4.2. Return Codes

	2.9.1.5. RexxQueryQueue
	2.9.1.5.1. Parameters
	2.9.1.5.2. Return Codes

	2.9.1.6. RexxAddQueue
	2.9.1.6.1. Parameters
	2.9.1.6.2. Return Codes

	2.9.1.7. RexxPullFromQueue
	2.9.1.7.1. Parameters
	2.9.1.7.2. Return Codes

	2.9.1.8. RexxClearQueue
	2.9.1.8.1. Parameters
	2.9.1.8.2. Return Codes

	2.9.1.9. RexxPullQueue (Deprecated)
	2.9.1.9.1. Parameters
	2.9.1.9.2. Return Codes
	2.9.1.9.3. Remarks

	2.10. Halt and Trace Interface
	2.10.1. Halt and Trace Interface Functions
	2.10.1.1. RexxSetHalt
	2.10.1.1.1. Parameters
	2.10.1.1.2. Return Codes
	2.10.1.1.3. Remarks

	2.10.1.2. RexxSetTrace
	2.10.1.2.1. Parameters
	2.10.1.2.2. Return Codes
	2.10.1.2.3. Remarks

	2.10.1.3. RexxResetTrace
	2.10.1.3.1. Parameters
	2.10.1.3.2. Return Codes
	2.10.1.3.3. Remarks

	2.11. Macrospace Interface
	2.11.1. Search Order
	2.11.2. Storage of Macrospace Libraries
	2.11.3. Macrospace Interface Functions
	2.11.3.1. RexxAddMacro
	2.11.3.1.1. Parameters
	2.11.3.1.2. Return Codes

	2.11.3.2. RexxDropMacro
	2.11.3.2.1. Parameter
	2.11.3.2.2. Return Codes

	2.11.3.3. RexxClearMacroSpace
	2.11.3.3.1. Return Codes
	2.11.3.3.2. Remarks

	2.11.3.4. RexxSaveMacroSpace
	2.11.3.4.1. Parameters
	2.11.3.4.2. Return Codes
	2.11.3.4.3. Remarks

	2.11.3.5. RexxLoadMacroSpace
	2.11.3.5.1. Parameters
	2.11.3.5.2. Return Codes
	2.11.3.5.3. Remarks

	2.11.3.6. RexxQueryMacro
	2.11.3.6.1. Parameters
	2.11.3.6.2. Return Codes

	2.11.3.7. RexxReorderMacro
	2.11.3.7.1. Parameters
	2.11.3.7.2. Return Codes

	Appendix A. Notices
	A.1. Trademarks
	A.2. Source Code For This Document

	Appendix B. Common Public License Version 1.0
	B.1. Definitions
	B.2. Grant of Rights
	B.3. Requirements
	B.4. Commercial Distribution
	B.5. No Warranty
	B.6. Disclaimer of Liability
	B.7. General

	Appendix C. Revision History
	Index

