
ooRexx
Documentation 4.2.4

ooDialog User Guide
Sunday, May 4, 2025 svn revision 12982

ooRexx Documentation 4.2.4 ooDialog User Guide
Sunday, May 4, 2025 svn revision 12982
Edition 2025.05.04 (last revised on 2025-05-04 with r12979)

Author Open Object Rexx™
Author W. David Ashley
Author Rony G. Flatscher
Author Rick McGuire
Author Mark Miesfeld
Author Lee Peedin
Author Oliver Sims
Author Jon Wolfers

Copyright © 2005-2025 Rexx Language Association. All rights reserved.

Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: https://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

https://www.oorexx.org/license.html

Preface vi
1. Document Conventions ... vi

1.1. Typographic Conventions .. vi
1.2. Notes and Warnings ... vi

2. How to Read the Syntax Diagrams ... vii
3. Getting Help and Submitting Feedback ... viii

3.1. The Open Object Rexx SourceForge Site .. viii
3.2. The Rexx Language Association Mailing List .. x
3.3. comp.lang.rexx Newsgroup .. x

4. Related Information .. x

1. About This Book 1
1.1. Who Should Use This Book .. 1
1.2. How This Book is Structured ... 1

2. Hello ooDialog World 2
2.1. Getting Started ... 2
2.2. Visible Behavior .. 4

2.2.1. Adding Controls to the Dialog ... 4
2.2.2. Making The Controls Work ... 5

3. Re-Structuring the Code 7
3.1. Fixing the Structure ... 8

3.1.1. The "View" Component .. 8
3.1.2. The "Model" Component ... 9
3.1.3. The "Data" Component ... 9

3.2. Reducing Coupling .. 9

4. Using Resource Dialogs 12
4.1. Naming and Coding Conventions ... 13

4.1.1. Naming Conventions .. 13
4.1.2. Coding Conventions ... 13

4.2. Resource Scripts and Resource File Editors ... 14
4.3. Coding an RcDialog Class ... 15

4.3.1. Setting Up the Dialog Window .. 16
4.3.2. Specifying the Active Controls ... 17
4.3.3. Application Data and Function .. 20

5. Using Binary Resource Dialogs 23
5.1. Dialog Initiation ... 23
5.2. Using a Binary Resource File .. 23

5.2.1. DLL Compilation ... 23
5.2.2. Differences between RcDialog and ResDialog ... 24

5.3. Dialog Controls ... 25
5.3.1. Radiobuttons .. 25
5.3.2. The Numeric Edit Control ... 25
5.3.3. Menu Accelerators ... 26
5.3.4. The "About" Dialog ... 27
5.3.5. Minimize and Maximize Buttons .. 28

5.4. Code Structure .. 28
5.4.1. Data Types .. 28
5.4.2. View Data vs Application data ... 29
5.4.3. Multiple Dialogs per File ... 29
5.4.4. Externalized Strings .. 30

5.5. Designing a Dialog .. 30
5.6. Controlling Dialog Cancel .. 31

iii

6. An Application Workplace 33
6.1. Program Structure ... 33

6.1.1. Overview .. 33
6.1.2. Some Implications .. 34
6.1.3. Application Function and Naming .. 35

6.2. Popups and Parents ... 36
6.2.1. Starting a Popup Dialog ... 36
6.2.2. Offsetting Dialogs ... 38
6.2.3. Use of 'Interpret' ... 39

6.3. Icons and Lists ... 39
6.3.1. The Icon View .. 40
6.3.2. The Report View .. 41

6.4. Re-sizing Dialogs .. 44
6.5. Creating Icons .. 44
6.6. Utility Dialogs .. 46

7. Towards A Working Application 47
7.1. Introduction ... 47
7.2. The Model-View Framework .. 47

7.2.1. MVF Objective ... 48
7.2.2. MVF Overview ... 49
7.2.3. An Example - The 'Person' Component ... 50
7.2.4. MVF Classes ... 51

7.3. Components and Data .. 54
7.3.1. Kinds of Component ... 54
7.3.2. GenericFile Data Formats ... 55
7.3.3. Compound Data ... 56

7.4. The Message Sender .. 57
7.5. Revisiting Re-sizing ... 57
7.6. The Order Form .. 58
7.7. Completing the Application .. 60

8. Dialog-to-Dialog Drag-Drop 61
8.1. Introduction ... 61
8.2. Direct Manipulation ... 61
8.3. Refactoring the MVF ... 63
8.4. Using the MVF .. 65
8.5. Event Management ... 66
8.6. The Order Form .. 67
8.7. To Be Continued ... 68

A. Dialog Attributes and AutoDetection 69

B. Testing Popups in Stand-Alone Mode 72
B.1. Stand-Alone Testing .. 72
B.2. Visual Offsetting ... 73

C. Dialog Creation Methods 76

D. The Model-View Framework 78
D.1. Components, Files, and Folders .. 78
D.2. MVF Classes .. 78

D.2.1. Management Classes .. 79
D.2.2. The View Manager .. 79
D.2.3. Component Superclasses ... 79

D.3. MVF Operations ... 80
D.4. Class Naming Constraints ... 80

iv

D.5. The Requires List ... 80

E. Direct Manipulation 82
E.1. The Mouse Class ... 82
E.2. Factoring the Drag/Drop Code ... 83
E.3. Enabling Drag/Drop .. 83
E.4. Pickup and Drag ... 85
E.5. Drop on a Target .. 86

F. Notices 87
F.1. Trademarks ... 87
F.2. Source Code For This Document ... 88

G. Common Public License Version 1.0 89
G.1. Definitions .. 89
G.2. Grant of Rights .. 89
G.3. Requirements ... 90
G.4. Commercial Distribution .. 90
G.5. No Warranty ... 91
G.6. Disclaimer of Liability .. 91
G.7. General .. 91

H. Revision History 93

Index 94

v

Preface
This book provides a general user's guide to the ooDialog framework, and is a companion book to
the ooDialog Reference. The ooDialog framework is part of the Open Object Rexx distribution on the
Windows® platform. The User Guide discusses the general ideas needed to use the framework to its
best advantage.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions
Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return .true or .false, the result of
performing the comparison operation.

This method is exactly equivalent to subWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any hasEntry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters
added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

vi

How to Read the Syntax Diagrams

Important

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>--- symbol indicates the beginning of a statement.

The ---> symbol indicates that the statement syntax is continued on the next line.

The >--- symbol indicates that a statement is continued from the previous line.

The --->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end
with the ---> symbol.

• Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item------------------------------------><

• Optional items appear below the main path.

>>-STATEMENT--+---------------+--------------------------------><
 +-optional_item-+

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choice1-+-----------------------------><
 +-required_choice2-+

• If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT--+------------------+-----------------------------><
 +-optional_choice1-+
 +-optional_choice2-+

vii

Getting Help and Submitting Feedback

• If one of the items is the default, it appears above the main path and the remaining choices are
shown below.

 +-default_choice--+
>>-STATEMENT--+-----------------+------------------------------><
 +-optional_choice-+
 +-optional_choice-+

• An arrow returning to the left above the main line indicates an item that can be repeated.

 +-----------------+
 V |
>>-STATEMENT----repeatable_item-+------------------------------><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment |-------------------------------------><

fragment:

|--expansion_provides_greater_detail----------------------------|

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but
you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

 +-,------+
 V |
>>-MAX(----number-+--)---><

3. Getting Help and Submitting Feedback
The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

3.1. The Open Object Rexx SourceForge Site
The Open Object Rexx Project1 utilizes SourceForge2 to house the ooRexx Project3 source
repositories, mailing lists and other project features. Over time it has become apparent that the
Developer and User mailing lists are better tools for carrying on discussions concerning ooRexx and

1 http://www.oorexx.org/
2 http://sourceforge.net/
3 http://sourceforge.net/projects/oorexx

viii

http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx

The Open Object Rexx SourceForge Site

that the Forums provided by SourceForge are cumbersome to use. The ooRexx user is most likely to
get timely replies from one of the mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions4

page. This list is for discussing ooRexx project development activities and future interpreter
enhancements. It also supports a historical archive of past messages.

The Users Mailing List
You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions5 page.
This list is for discussing using ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions6

page. This list is only used to announce significant ooRexx project events.

The Bug Mailing List
You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions7 page. This
list is only used for monitoring changes to the ooRexx bug tracking system.

Bug Reports
You can create a bug report at ooRexx Bug Report8 page. Please try to provide as much
information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to
debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at ooRexx Documentation
Report9 page. Please try to provide as much information in a documentation report as possible.
In addition to listing the document and section the report concerns, direct quotes of the text
will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can suggest ooRexx features at the ooRexx Feature Requests10 page.

Patch Reports
If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch
Report11 page. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report and attach the
patch to it.

4 http://sourceforge.net/mail/?group_id=119701
5 http://sourceforge.net/mail/?group_id=119701
6 http://sourceforge.net/mail/?group_id=119701
7 http://sourceforge.net/mail/?group_id=119701
8 http://sourceforge.net/tracker/?group_id=119701&atid=684730
9 http://sourceforge.net/tracker/?group_id=119701&atid=1001880
10 http://sourceforge.net/tracker/?group_id=119701&atid=684733
11 http://sourceforge.net/tracker/?group_id=119701&atid=684732

ix

http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://sourceforge.net/tracker/?group_id=119701&atid=684732

The Rexx Language Association Mailing List

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They
are located on the ooRexx Forums12 page. There are currently three forums available: Help,
Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association13 maintains a mailing list for its members. This mailing list is only
available to RexxLA members thus you will need to join RexxLA in order to get on the list. The dues
for RexxLA membership are small and are charged on a yearly basis. For details on joining RexxLA
please refer to the RexxLA Home Page14 or the RexxLA Membership Application15 page.

3.3. comp.lang.rexx Newsgroup
The comp.lang.rexx16 newsgroup is a good place to obtain help from many individuals within the Rexx
community. You can obtain help on Open Object Rexx or on any number of other Rexx interpreters
and tools.

4. Related Information
Open Object Rexx: Windows ooDialog Reference

Open Object Rexx: Programming Guide

Open Object Rexx: Reference

12 http://sourceforge.net/forum/?group_id=119701
13 http://www.rexxla.org/
14 http://rexxla.org/
15 http://www.rexxla.org/rexxla/join.html
16 http://groups.google.com/group/comp.lang.rexx/topics?hl=en

x

http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en

Chapter 1.

About This Book
This book provides a general user's guide to the ooDialog framework, and is a companion book to
the ooDialog Reference. The ooDialog framework is part of the Open Object Rexx distribution on the
Windows® platform. The User Guide discusses the general ideas needed to use the framework to its
best advantage.

1.1. Who Should Use This Book
This book is intended for Open Object Rexx programmers who want to design graphical user
interfaces for their applications using ooDialog. It is intended to paint a broader picture of how to use
ooDialog than the a purely reference manual can. Readers will gain a better understanding of the
general concepts used in the ooDialog framework.

In addition to ooDialog concepts, some discussion of how the underlying Windows dialogs and
controls behave and are normally programmed is included. The will give the reader some idea of what
can and can not be done using ooDialog. Knowing some of the inherent capabilities and restrictions of
the operating system allows ooRexx programmers to better design their programs.

1.2. How This Book is Structured
This book takes the reader through a series of exercises, each exercise building on the previous
one. The final exercise will complete a simple Sales Order Management application. The intent is not
to provide a realistic application, but rather to illustrate the use of the main ooDialog features while
building a working if simplistic application. While not production-strength, this sample application will
include a number of different dialogs, together with, in later chapters, a sample model-view framework
of the kind often used to provide the application programmer with greater development simplicity.

In the course of these exercises, various key ooDialog concepts are discussed. However, this book
is not, and is not intended to be, a technical reference for ooDialog. Rather it is an introduction to
ooDialog. Its intent is merely to familiarize the reader with the basics. The reader is assumed to be
reasonably familiar with the object-orientation concepts, and also with programming using ooRexx.

Completed code for each exercise is available from the samples sub-directory of the ooRexx
installation directory. Specifically, the code for the exercises will be in samples\oodialog
\userGuide\exercises. Note that exercise numbers are aligned with chapter numbers. Thus the
first exercise, introduced in Chapter 2, is found in the folder Exercise02.

1

Chapter 2.

Hello ooDialog World
The purpose of ooDialog is to enable ooRexx developers to provide users with a graphical user
interface or "GUI". A GUI is a collection of windows and dialogs. Each contains a number of controls,
such as edit controls, push buttons, list boxes, and so forth. The user keys data into controls (e.g.
types into an edit control) or manipulates controls with a mouse (e.g. selects an item in a listbox).
Some of these actions invoke application code which in turn makes some change to the window or
dialog, or causes some other action such as data access, or both.

Before continuing, it's worth distinguishing between a "window" and a "dialog". A dialog is a stylized
form of window that is familiar to most users. As dialogs have evolved they have become more useful,
and can now provide the user interface function for many applications. Also, a dialog is drawn by the
operating system, while drawing a normal window is mostly the programmer's responsibility. Thus
producing an application needs much less programming work because the ooRexx programmer
doesn't need to know or understand the low-level mechanics of drawing to the screen. In summary,
dialogs now have many window functions, and are much easier to produce. And it's this that makes
ooDialog a particularly useful extension to ooRexx.

There are three general areas of concern in designing an ooDialog application:
• Designing the appearance of a dialog

• Designing the desired user interactions with the dialog

• Designing the code that implements both appearance and interactions

And there are three corresponding areas of implementation concern:
• Laying out the dialog

• Implementing the actions requested by users of a dialog

• Showing the results of those actions to the user.

This document does not pretend to be a guide to best practice in the areas of design, although it tries
to conform with good design principles. However, this document does aim to familiarize readers with
the essentials of ooDialog application implementation.

So, before starting the first exercise, please make sure that you have downloaded and installed the
latest versions of ooRexx and ooDialog. Please also run one or more of the samples in Start -->
All Programs --> Open Object Rexx --> ooRexx Samples --> ooDialog to ensure
that your installation works properly.

And please do use the ooDialog Reference for details on any ooDialog class, method or
function mentioned in this Guide.

2.1. Getting Started
The first exercise creates and displays a blank dialog with the title "Hello World!". Try running it -
it's the file HelloWorld.rex in the folder C:\Program Files\ooRexx\samples\oodialog\userGuide
\exercises\Exercise02 (exercise numbers map to chapter numbers). Figure 2.1, “The 'Hello World'
Dialog” shows what you should see.

The Command Prompt window that appears with the Hello World dialog can be useful for debugging,
but it can be dispensed with, and later we'll find out how. For now, let's look at the Hello World code
(excluding comments):

2

Getting Started

Figure 2.1. The 'Hello World' Dialog

First, there's code that kicks things off:

 dlg = .HelloWorld~new
 dlg~execute("SHOWTOP", IDI_DLG_OOREXX)

The first statement creates an instance of the class HelloWorld, and assigns the instance to the
variable dlg (the HelloWorld class is defined in the third part of the code). The second statement
invokes the execute method of HelloWorld, and it is this that displays the dialog. The first
parameter SHOWTOP is one of several ways of defining how the dialog is surfaced (see the ooDialog
Reference for details). The second parameter states that the icon at the extreme top left of the dialog
should be the normal ooRexx icon. This graphic is termed a "resource" in ooDialog, and there are a
number of such predefined constants (again, see the ooDialog Reference for details).

Note that the usual naming conventions are observed: upper camel case for classes (e.g.
HelloWorld) and lower camel case for variables (including of course instance variables - e.g. dlg).

Second, there's a directive to ooRexx to use ooDialog:

 ::REQUIRES "ooDialog.cls"

This directive allows all the classes defined by ooDialog to be accessible to our program. If this
statement is absent, then the following error appears on the initiating command prompt:

 16 *-* ::class 'HelloWorld' subclass UserDialog
 Error 98 running ... Exercise02\HelloWorld.rex line 58: Execution error
 Error 98.909: Class "USERDIALOG" not found

Note that it's UserDialog (the superclass for HelloWorld) that's not found. This is because the
::requires ooDialog.cls statement not only says we're using ooDialog, but also provides
access to all the classes provided by ooDialog.

Finally, there's the definition of the class HelloWorld:

 ::CLASS HelloWorld SUBCLASS UserDialog
 ::METHOD init
 forward class (super) continue
 self~create(30, 30, 257, 123, "Hello World", "CENTER")

3

Visible Behavior

The first line defines a class called HelloWorld as a subclass of the ooDialog-provided class
UserDialog (and yet again, but finally, see the ooDialog Reference for full details). Among other
things, UserDialog enables the programmer to define the dialog layout in code. This can get
cumbersome in more complex dialogs, and later we'll meet a simpler way of defining the dialog layout.

The second line defines the init method of HelloWorld, and the third line forwards the init
message to the superclass which then does the heavy work of creating the dialog. But why use
forward instead of self~init:super? The reason is that forward applies not only to the method
but also to all its arguments, whatever these may be. Which is exactly what's required here.

Finally, the last line sends a create message to self and hence to UserDialog. This method
defines the "template" to be used for the dialog. The parameters are as follows:
• The first two parameters define, in "dialog units", the x and y position on the screen of the top left

corner of the dialog. Dialog units (rather than pels) are used to provide device independence.

• The third and fourth parameters define the width and height of the dialog, again in dialog units.

• The fifth parameter is the dialog's title, and the last parameter - CENTER - is the dialog "style" (of
which there are several). CENTER states that regardless of the first two parameters, the dialog
will be positioned in the center of the screen. Styles are an important part of dialog definition. Try
removing the CENTER parameter (and its preceding comma of course) and see what happens.
Then replace the CENTER parameter, and (just to make sure that you've replaced it correctly) run
the program again, and this time try to re-size the dialog. You can't. Then replace "CENTER" by
"CENTER THICKFRAME" and re-run the program. The dialog now has a sizable border. Thus styles
not only affect appearance, they can also define behavior.

With this instance of the HelloWorld class having been set up properly, the dialog is actually
surfaced (made visible) by the execute message (handled by HelloWorld's superclass) sent by the
second statement in the program which was:

 dlg~execute("SHOWTOP", IDI_DLG_OOREXX)

Now let's add some behavior to the dialog. We're going to build a "Words of Wisdom" dialog that will
display words of wisdom when a button is pressed.

2.2. Visible Behavior
This section is in two parts. First we create a dialog that invites the user to press a button for more
"words of wisdom" - but the button doesn't work. Second, we make the button work. In this way, we
both add to the way dialogs are populated with controls, and also show how user input is handled.

2.2.1. Adding Controls to the Dialog
First, try running Wow.rex from the Exercises\Exercise02 folder ("Wow" being short for "Words
of Wisdom"). You should see a dialog entitled "Words of Wisdom" which is blank with the exception
of some (alleged) words of wisdom and two push-buttons. One of these does nothing, the other
(Cancel) closes the dialog. These buttons are examples of "controls" - sometimes called "widgets" -
that populate a dialog and enable both display of information and user interaction with the dialog.

Now let's look at the code. The first seven lines (excluding comments and blank lines) are essentially
the same as the first seven in HelloWorld.rex:

 dlg = .WordsOfWisdom~new
 dlg~execute("SHOWTOP", IDI_DLG_OOREXX)
 ::REQUIRES "ooDialog.cls"
 ::CLASS 'WordsOfWisdom' SUBCLASS UserDialog

4

Making The Controls Work

 ::METHOD init
 forward class (super) continue
 self~create(30, 30, 257, 123, "Words of Wisdom", "CENTER")

However, a defineDialog method has been added:

 ::METHOD defineDialog
 self~createPushButton(901, 142, 99, 50, 14, "DEFAULT", "More wisdom")
 self~createPushButton(IDCANCEL, 197, 99, 50, 14, ,"Cancel")
 self~createStaticText(-1, 40, 40, 200, 20, , -
 "Complex problems have simple solutions"||.endofline||"- which are wrong.")

This method is invoked automatically by the superclass, and consists of three statements each of
which creates a control. The first two each create a pushbutton:
• A "More Wisdom" pushbutton, which has been given the resource ID of "901" (the first parameter).

Controls are identified by numbers (IDs) or, as we'll see later, by symbolic names. You can pick any
number although numbers -1 and 1 through 50 are pre-defined by ooDialog. For example, resource
ID "1" is an "OK" button. Resource numbers or IDs identify controls to the underlying Windows
platform, and can be given in either numeric or symbolic form, as will be discussed in Chapter 3.
Each control should have a different number (although there are some situations, which will be met
later, where it's useful for two or more controls to have the same number). The next four parameters
define the position of the button in the dialog, and the sixth ("DEFAULT") specifies that this button is
to be the default action for pressing the enter key. The seventh parameter is the text shown on the
button.

• A "Cancel" pushbutton, whose ID IDCANCEL makes this button perform the standard dialog
cancel action - that is, close the dialog without saving any changes. (An OK button should save
any changes made by the user, and then close the dialog - preferably with an intervening "Save
changes?" message box with options "Yes", "No, and "Cancel".)

The third statement creates some static text (text that cannot be changed by the user), with the text
itself as the last parameter. The first parameter is the resource number "-1" which is the pre-defined
resource ID for a Static Text control (although you can use other numbers above 50 - for example if
you want to distinguish between different static text controls or when you want to programmatically
change the text - neither of which is a requirement here). The next four parameters define the size and
position of the static text control. Last but not least is the text to be displayed. This text comprises the
initial (and so far only) "words of wisdom".

Now we need to make the More wisdom button work, which we now do in Wow2.rex.

2.2.2. Making The Controls Work
First, run Wow2.rex. When you click the More wisdom pushbutton, you see different text appearing
in the center of the screen, replacing the previous text. By the way, you'll also see debug information
appear on the command prompt each time you click the More wisdom button - there's a "say"
statement in the code that's not mentioned here, but you can easily find it. The real question at the
moment is: how do we create the pushbutton's visible behavior?

When a control is actioned by a user (e.g. pressing a pushbutton), we need some way in the program
of kicking off a method that provides a visible response. Remember that a key principle of UI design
is that of least astonishment: if the user is astonished by what the computer is doing in response to
a wholly innocent user interaction with some UI widget, then that principle is breached. Of course,
astonishment can be pleasant or unpleasant; and if you can create ooDialog GUIs which pleasantly
astonish their users, then you probably don't need to read this Guide.

In ooDialog, there are a number of ways of connecting a user action to a method. However, a
user action is actually signaled by an event emitted from the underlying Windows GUI software

5

Making The Controls Work

infrastructure. ooDialog connects that event to a method in the ooRexx dialog object. So the source of
the event (the user action) is not ooDialog. This means that if you want to capture a user action that
the Windows infrastructure doesn't capture (for example hovering the mouse over an edit control),
then there's no way ooDialog can do it either.

Having said that, one of the simplest ways of having a user action connected to an ooRexx method
is by supplying the name of the method as a parameter of the actionable control. And, since a
pushbutton control provides for just such an approach, that's what we'll do here. The first lines of code
in Wow2.rex - down to the defineDialog method - are almost identical to those of wow.rex, with
two significant changes. The method is as follows:

 ::method defineDialog
 self~createPushButton(901, 142, 99, 50, 14, "DEFAULT", "More wisdom", OkClicked)
 self~createPushButton(IDCANCEL, 197, 99, 50, 14, ,"Cancel")
 self~createStaticText(101, 40, 40, 200, 40, , "Click 'More wisdom'")

The two significant changes are as follows. Firstly, the statement self~createPushButton
has an additional parameter okClicked. This is the name of the method that is automatically
invoked by ooDialog when the user clicks on the More wisdom pushbutton. Secondly, the statement
self~createStaticText has the ID 101 rather than -1 since we want to have the text changed
when the "More Wisdom" button is pressed. Also, the space for text to be displayed has increased
from 20 to 40, and the initial text has been changed to "Click 'More wisdom'".

However, the major change to the program is the new okClicked method that picks a "words of
wisdom" text and displays it. Pseudocode for this method is as follows:

 Method okClicked
 Create array 'arrWow' and add a 'words of wisdom' text strings to each of seven
 array elements.
 Create an object representing the static text field
 Pick a "words of wisdom" text randomly from 'arrWow'
 Show that text in the static text field.
 return

Have a look at it the code that implements this method in Wow2.rex. Note that the penultimate
pseudocode statement above - "show that text in the static text field" - is implemented in two steps.
First the statement newText = self~newStatic(101) creates an object that represents the static
text control, the resource number 101 defining the control to be represented. Second, that object is
used to change the control's text in the statement newText~setText(arrWow[i]).

Finally, you may ask why a full code listing is not shown here. The reason is that I'd really rather not.
Why not? Doesn't it work? Well, yes, the code works OK. But the design is not good. Aside from
performance considerations (the code creates and populates a new array each time the button is
clicked), there is absolutely no separation of design concerns. And this is arguably the most important
thing for any application - especially one with a GUI. There are three important areas of design
concern - UI display and interaction, the "business" that the dialog performs (here the business of
selecting the text), and the provision of persistent data (here the seven strings comprising the "words
of wisdom"). But we'll start to fix this in the next chapter.

6

Chapter 3.

Re-Structuring the Code
The current code is not good. It works - but only because it's very simple. The problem is its design -
its structure. There are three quite different concerns which, for all but he simplest of programs, should
be separated. These are: the user interface (aka UI or GUI) including both presentation and user
action; the data (in our case a set of text strings); and the "business" concept that we're implementing.
And the "business" of this code is picking a single text string from a set of "words of wisdom" strings.
The code in the Exercise03 folder separates these concerns, with no change as far as the user's
concerned.

The three areas of concern have a relationship with the Model-View-Controller or MVC concept (see
Model-View-Controller1). However, the role of the Controller in classic MVC is handled largely by
ooDialog and the underlying Windows UI platform. This leaves us with the View and the Model, where
the Model is the "business" - that is, an implementation of the relevant part of the real business - and
the View is the part that provides for user interaction. But these two concepts - View and Model - are
insufficient. To these two must be added data - that is, data-on-disk (aka "persistent data"). So three
areas of concern are required: View, Model, and Data.

At this point, the reader may wish to skip the next three paragraphs which provide a rationale for the
View-Model-Data terminology, and introduce the concept of software "components". However, please
come back here if later the use of the term "component" is not obvious.

While the model-view-data scheme works well for the PC-resident single-user applications introduced
in this Guide, it does not scale to distributed systems with multiple concurrent users where, aside from
anything else, the data is on a remote server or available from a remote service. For such systems,
additional architectural concepts are required. See, for example, chapters 1 and 2 of "Enterprise
Service Oriented Architectures" by McGovern, Sims, Jain & Little; or "Business Component Factory"
by Herzum & Sims. Dealing with large-scale distributed systems, both of these references use the
terms "user", "workspace" and "workspace-resource" instead of "view", "model" and "data". Although
the semantics are identical, this document uses the latter terms since they are both simpler and
shorter.

Model components implement the essence of an application. Views enable the user to take action
and see the result. Data components know where the data is, and handle the mechanics of reading
and writing to disk. (For distributed multi-user applications, the Model would invoke some service on a
back-end server, where there would probably be another kind of Model component which in turn would
use a separate Data component that accesses a corporate database or remote service).

But why use the term "component" instead of "class"? The answer is (as will be seen in later
exercises) that for industrial-strength apps, a component generally consists of a number of classes.
And a single class can seldom be independently "plugged in" to a runtime environment without the
other classes required fully to implement a single business concept in its View, Model or Data role.
A component, however, is intended to be "pluggable" into the runtime, since it is all and only the
implementation of one of the "view", "model", or "data" aspect of a business concept. This distinction
between class and component is not so obvious using ooRexx as it is with compiled languages, where
classes are seen by the developer in source code, but the artifact that is loaded into the runtime is
a compiled *.exe or *.dll. Thus one of the purposes of a component is to extend the concept of low
coupling and high cohesion into the runtime. Finally, the name given to the set of "view", "model"
and "data" components that implement a given business concept such as "Customer" is "Business
Component". The interface of a Business Component is defined as the interface of the "model"
component.

1 http://en.wikipedia.org/wiki/model-view-controller

7

http://en.wikipedia.org/wiki/model-view-controller
http://en.wikipedia.org/wiki/model-view-controller

Fixing the Structure

Let's now look at the implementation of each of these three areas of concern. In the second part of this
chapter, we'll further reduce coupling.

3.1. Fixing the Structure
First, re-run Wow2.rex in the Exercise02 folder, and then run Wow3.rex from the Exercise03
folder. To the user, they're identical. However, in Wow3.rex the code has been re-structured so that
there are now three different classes, each implementing one of the three areas of concern. We'll look
at each class in turn, but first here's a whiteboard-level picture of how the three classes interact to
produce a "words of wisdom" string on the screen.

Figure 3.1. Exercise03 Structure

Now look at the Wow3.rex code. It consists of the three classes shown in the diagram: WowView,
WowPicker, and WowData. "Wow" in the names is short for "words of wisdom".

3.1.1. The "View" Component
The WowView class implements the UI area of concern (it's a single-class component). The init
method is identical to that of Exercise02's Wow2 except that it also creates an instance of WowPicker
called (unsurprisingly) wowPicker. There's also an expose statement to make the wowPicker
object available to other methods.

The defineDialog method has not changed. But the okClicked method is different - and much
shorter:

 ::method okClicked
 expose wowPicker newText
 wow = wowPicker~pickWow
 newText~setText(wow)
 return

To get the "words of wisdom" to display, it now merely asks wowPicker for a string to display.

One other change is that instead of creating a new static text control every time the button is pressed,
the control is created once in the new initDialog method and re-used in the okClicked method.
The initDialog method is called automatically by ooDialog after the dialog has been created in
order to allow controls to be initialized (the "init" in "initDialog" stands for "initialize").

In summary, all knowledge of picking a string, and of the set from which to pick, has been exported
elsewhere. The WowView class now addresses only the areas of GUI display and GUI interaction. This

8

The "Model" Component

is crucially important. A good way to make a complex task hopelessly complicated is to mix "model"
and "data" concerns with the "view" concerns.

3.1.2. The "Model" Component
The class implementing the model component - WowPicker - is very simple:

 ::METHOD init
 expose wowSet
 dataSource = .WowData~new
 wowSet = dataSource~readWowSet
 return

 ::METHOD pickWow
 expose wowSet
 i = random(1,7)
 return wowSet[i]

The initmethod gets a reference to an instance of the class WowData - which handles the data
area of concern - and then gets a set of Words of Wisdom into the array variable wowSet. Then in the
method pickWow a Words of Wisdom string is picked randomly from wowSet and returned.

3.1.3. The "Data" Component
The last (extremely simple) class in Wow3.rex is WowData. In its init method, it loads up an array
of seven text strings into the instance variable arrWow, and in its readWowSet method returns that
array to the caller. One can see how this it might be enhanced, for example by providing a method that
renews the set of "words of wisdom" from a larger set in a disk file.

3.2. Reducing Coupling

The three classes in Wow3.rex are reasonably decoupled: the dialog is in one class, the business
logic (such as it is) in another, and the data in a third. Notice however that both WowView and
WowPicker create a reference to another class (WowPicker and WowData respectively) in order to
invoke them. Each of these three classes can be called a "main" class, since each is the main (and
in this case only) class implementing a separate area of responsibility. In more complex applications,
each component (area of responsibility) will have one main class and a number of subsidiary classes
- for example, a (main) SalesOrder class with subsidiary OrderLine and DeliveryInstructions classes.
The intent of a component is to be, as much as possible, a self-contained unit of business function.

Now, when considering more complex applications, it is arguable that it is not the responsibility of
either class to know about the creation of instances of other classes. Later we will see that, for each
important business concept (such as SalesOrder, Customer, or Product), each component (view,
model, and data) will have a number of classes, and each will have one main class expressing the
core of the business concept. If these three kinds of component are to be as independent as possible,
then each should know as little as possible about the others. Such independence is usefully enhanced
if a way is found to move the knowledge of how to get references to the main classes to a fourth area.
And there is just such an area - the application.

In ooDialog programs, there is often a block of code at the beginning of the program file that kicks
off a dialog by instantiating an ooDialog class. From there, all the behavior is in the dialog classes.
This "kick-off" block of code can be used to reduce coupling by pre-instantiating the main classes,
and storing the object references in .local. Thus no main class has to know how to instantiate any
other main class. But, when a main class gets the object reference for another main class instance,
doesn't the first class have to know the correct name of the object reference in .local? Well, yes, but

9

Reducing Coupling

even that could be fixed - for example by providing a business-oriented instance reference such as
Customer Number, and having some third party object handle the instantiation.

An example of decoupling the three areas of concern is provided in the Exercise03 folder. Try
running Startup.rex. It behaves exactly as Wow3.rex does. However, the code is now structured
into four *.rex files: Startup, WowView, WowModel, and WowData. The code in Startup.rex is
very simple:

 .local~my.idWowData = .WowData~new
 .local~my.idWowPicker = .WowPicker~new
 dlg = .WowView~new

 .local~my.idWowData~activate
 .local~my.idWowPicker~activate
 dlg~activate

 ::REQUIRES "WowView.rex"
 ::REQUIRES "WowModel.rex"
 ::REQUIRES "WowData.rex"

The first three statements create the three classes, with the ids of the first two being stored in
.local. Creation of the dialog is done by the third statement (dlg = .WowView~new). The next
three statements send an activate message to each of the three classes. This is because when
dealing with complex applications with "main" classes (each in their own component), it is very useful
to distinguish between two kinds of class setups: firstly the technical creation of a class (done by
invoking the init method), and secondly the initial setup of various application-related things (done
by invoking an activate method.

Notice that WowView's init> method returns to the caller. The activate method, on the other
hand, does not return until the dialog is closed. This is because the statement that actually surfaces
the dialog - self~execute("SHOWTOP", IDI_DLG_OOREXX) is the last statement in WowView's
activate method. And once the dialog is surfaced using SHOWTOP, control only returns to the
application (that is, to Startup.rex) when the dialog is closed (although, as will be discussed later,
there are ways to return control much sooner).

But why move the self~execute("SHOWTOP"...) statement into the activate method of the
MyDialog class? After all, it would work just as well if it were the last statement in the Startup file. The
reason is that the business of surfacing the dialog window is arguably not that of the application; rather
it's the business of the view's class object. Thus the application is reduced as much as possible to a
simple "kickoff" script, while the real work is done by the classes that are kicked off.

There is, however, one important consequence of this move. Since the
self~execute("SHOWTOP"...) statement does not return until the dialog is closed, the method
blocks on this statement, and there is potential for a hang. In Wow3.rex, this statement was at the end
of the "application" part of the program, and as there was nothing after it, the block didn't matter. But
re-factoring the classes into different files has moved it to the activate method of WowView. This
introduces a concurrency issue. If not dealt with, then when the user clicks the More wisdom button,
the okClicked method can not run until the activate method ends - that is, until the user closes
the dialog window - a real catch 22, where the result is that no words of wisdom will appear.

The reason WowView works is because its activate method has the unguarded option specified on
its method statement. Try commenting "UNGUARDED" out and running the exercise without it.

As a general rule, event handling methods such as okClicked should be unguarded. Indeed,
WowView runs happily if the "unguarded" option is moved to the okClicked method statement - or
indeed if it's on both method statements.

10

Reducing Coupling

In the next chapter, we leave "words of wisdom", and start building a more realistic application.

11

Chapter 4.

Using Resource Dialogs
This chapter starts to build the components of the eventual sample application. The completed
application will be a somewhat simplistic sales order processing application, and will look something
like this:

Figure 4.1. The Sales Order Management Application

The purpose of this application is to provide a vehicle for exploring various ooDialog concepts and
facilities, and this chapter addresses the use of "resource files" in the context of a "View" component
called "CustomerView" - that is, a view of a customer.

Designing what a dialog will look like on the screen involves positioning and sizing various controls
such as edit fields, lists, buttons, menus, etc., as well as defining how the window itself will appear.
The resulting set of control and window definitions is called a "resource definition" or "dialog template".
A file that contains a dialog template is called a "resource file". There are two kinds of resource file: a
"resource script file" that's human-readable with (say) Notepad, and a compiled "binary resource file".

ooDialog provides two classes that read their dialog template from a resource file: RcDialog and
ResDialog. The former gets its resource template from a resource script file, the latter from a
compiled binary resource file (a dll). This chapter addresses the use of RcDialog; the next chapter
discusses ResDialog.

The easiest and arguably the best way to define the layout of a dialog template is to use a "resource
editor". A resource editor is a "wysiwyg" (what you see is what you get) development tool that allows a
developer to design a window layout visually. The output is a resource file. This avoids the sometimes
tortuous effort of laying out the dialog programmatically. Although using a resource editor is certainly
not the be-all and end-all of ooDialog programming, it's very useful for getting started quickly, and is
the recommended way to define ooDialog window layouts.

The vehicles for exploring resource files will be the Customer View and (in the next chapter) the
Product View parts of the sample application. Although simplistic, these parts of the eventual order
management application are sufficiently complex for some naming and coding conventions to be
useful, and the next section describes these conventions. Then the use of a resource script is
introduced in the context of the "CustomerView" dialog. Finally, the three major parts of a dialog are
discussed.

12

Naming and Coding Conventions

4.1. Naming and Coding Conventions

4.1.1. Naming Conventions

Readers may prefer to skip this section, at least for the time being, and go straight to Resource Scripts
and Resource File Editors (Section 4.2, “Resource Scripts and Resource File Editors”).

In Chapter 3 there was a brief discussion about separation of concerns into three areas: the UI
including both presentation and user action, the "business" or rather the "model" of the business, and
accessing data. From here onwards, this approach becomes an important convention for the structure
of the sample Order Management application. Essentially we adopt a "component" approach to the
application. Thus the "customer" concept is implemented by three "main" classes: CustomerView,
CustomerModel, and CustomerData. That is, the naming convention used to distinguish between
the three different kinds of "main" classes is to append one of the suffices "View", "Model", or "Data" to
the class name. Each of these main classes is a component in its own right, as opposed to subsidiary
classes such as an "address" class used within a Customer View main class. Such subsidiary classes
are generally included in the same file as the main class (but in cases where several main classes use
the same subsidiary class, they are usually stored in a separate file). The name given to the group of
main classes that contribute to a single important business concept such as "customer" is "business
component". Thus in the sample application, CustomerView, CustomerModel and CustomerData are
three "main" component parts of the "Customer Business Component". (By the way, the interface
of a business component is generally considered to be the interface of the Model main class). So -
components can be made up of other components.

Normally, each main class (plus any subsidiary classes) would be in its own file. However, since the
focus is on View components, the Model and Data components are placed in a single file, called
xxxModelData.rex, where "xxx" is the business component name such as "Customer".

By the way, in real-life systems there would probably be four parts to a concept such as "Customer" - a
view and a user-oriented model both supporting the user, and, supporting multiple concurrent users on
a server or back-end system, a business-oriented "model" plus a data part that accesses the corporate
database. Also by the way, in real-life supply chain management applications, addresses are typically
treated as separate entities rather than being lumped in with such concepts as Customer, Employee or
Supplier.

Finally, variables often have a prefix that indicates what the variable is. For example, an edit control
that holds a customer number would be named ecCustNo, the ec being short for "edit control". And
a data-only class such as an address is prefixed by bt for "business type"; so an address class would
be named btAddress.

4.1.2. Coding Conventions
The following coding conventions are used in the exercise code. First, ooRexx directives and their
options are capitalized. Second, classes, methods, and routines are separated from each other by
dotted or solid lines which in some editors are displayed in a different color from the executable
code. This provides visual separation of methods and classes which is useful in larger programs.
Third, camel case is used for variable names, with class names having their first letter capitalized.
Finally, when an ooRexx program in one of the exercises is run, comments produced with an ooRexx
"say" instruction may appear in the command prompt window. The format used as a prefix for such
comments is class-method-nn - a little excessive for simple single-class programs, but useful for
larger multi-class applications.

13

Resource Scripts and Resource File Editors

4.2. Resource Scripts and Resource File Editors
Our first foray into the sample Order Management application is to examine a simple Customer View
component built using a resource editor.

But which resource editor? Well, if you happen to have Microsoft's development kit, you'll find it has
a resource editor. Alternatively, there are a number of fee and free resource editors available on the
web. The author of this Guide happened to use a freeware product called "ResEdit", available from
this link:

ResEdit Home Page1

Occasional hints about ResEdit usage will appear from time to time. In addition, comments about
the use of resource file editors will assume ResEdit, and may well be inapplicable to other resource
editors. If you plan to use ResEdit, please be aware that a number of Microsoft header files are
required. These can be obtained at no charge from Microsoft Windows SDK under "Developer Tools"
at this link:

Microsoft Windows Software Development2

Or do a web search for "microsoft windows sdk". The header files should be downloaded into a folder,
and the full path name of that folder must be specified to ResEdit in "Options - Preferences - General -
Include paths".

A resource file editor outputs a window layout to a "resource file", which ooDialog can then use to lay
out controls on a dialog automatically. There are two kinds of resource file: a human-readable file with
the extension ".rc" (and sometimes ".dlg"), and a binary (compiled) file with the extension ".dll".

Locate the folder Exercise04, and run Startup.rex. You see a "Customer" dialog. Explore the
menu and behavior of this dialog. Note the following:
• A number of comments appear on the console; ignore them for the time being.

• The title bar (the blue bar right at the top of the dialog window) shows the string *CustomerName*
rather than the Customer's name, suggesting that the programmer has either made an error or (as
in this case) has left a marker for future modification.

• Edit controls are shown grayed out or "disabled" - that is, not editable.

• The "Action" menu has four items.

• One button - "Record Changes" is disabled, the other is not.

Make sure you exercise the menu items and buttons to explore the dialog's behavior. You'll find
that some expected behavior is not implemented, and results in a message-box - for example "The
'Print...' menu item is not yet implemented.". Note also the tab order - that is, the order of controls
reached as you press the tab key. This is defined by the sequence in which controls appear in the *.rc
file. If the tab order is not as you'd like it, you can edit the *.rc file with NotePad (or some other text
editor) and use cut-and-paste to achieve the desired tab order.

By the way, note that the menu item Last Order and the pushbutton Show Last Order should
produce the same result, but they don't. This is nothing more than a development trick to check
whether the right event-handler is invoked by the right control. An alternative is to use a say
instruction. And, of course, a given function should use a single method, no matter how many different
ways it's invoked.

1 http://www.resedit.net/
2 http://msdn.microsoft.com/en-us/windows/bb980924

14

http://www.resedit.net/
http://msdn.microsoft.com/en-us/windows/bb980924
http://www.resedit.net/
http://msdn.microsoft.com/en-us/windows/bb980924

Coding an RcDialog Class

Now double-click the file CustomerView.rc in the Exercise04a folder. The file should open
in ResEdit (or your own preferred resource editor). In the ResEdit "Resources" window, click on
IDD_CUST_DIALOG and the dialog layout tool opens, looking like this:

Figure 4.2. A Resource Editor

You might move or re-size some of the controls, save the file, then re-run to see your changes
implemented. Check the files in the Exercise04 folder. The files needed by ooDialog to create
the window are CustomerView.rc and CustomerView.h. Both of these are generated by the
resource editor. Why two files? Well, names for resources in the .rc file are intended to be reasonably
comprehensible - e.g. IDC_CUST_EDT_CUSTNO. But Windows requires resources at run-time to be
identified by numbers. The mapping between resource names and resource numbers is done in the .h
file. (ResEdit tip: to cause the .h file to be named the same as the .rc file, on the menu bar select
Options - Preferences - Code Generation - Files, then set the Header file name to %barefilename
%.h.)

Finally, a hint from hard experience. Some resource editors have been known, very occasionally, to
assign the same ID number to two different controls in the .h file, or to omit a resource from the .rc
file. So, if some error occurs which, on re-checking the code, seems inexplicable, it could be worth
checking the .h file to see whether the same number has been assigned to two symbolic IDs. If so,
you can try hand-editing the .h file then re-starting the resource editor. If the .h file looks OK, then you
might check the .rc file to see if all the resources are there.

4.3. Coding an RcDialog Class
Having discussed coding conventions and resource editors, this section now looks in detail at the
code in the Exercise04 folder. First, look at Startup.rex in an editor. Aside from creating and
activating CustomerData and CustomerModel classes in the same way as in the previous exercise,
there's only one other executable statement: call startCustomerView. This routine is in the
CustomerView.rex file (it's generally good practice to separate application startup concerns - such
as (in this case) creating new dialogs - from the various working parts of the application).

Now look at CustomerView.rex in an editor. Look for the CLASS statement:

15

Setting Up the Dialog Window

 ::CLASS "CustomerView" SUBCLASS RcDialog PUBLIC

CustomerView is a subclass of the ooDialog-provided class RcDialog, which gets its dialog
layout from a resource script file that is human-readable (using a text editor). RcDialog is one of two
important ooDialog classes that use resource scripts; the other is ResDialog, which uses a binary
(compiled) resource file as illustrated in the next chapter. More information on resource files can be
found in the ooDialog Reference.

View classes can be seen as consisting of three major parts: setting up the dialog window, specifying
the "active" controls (i.e. controls that need to be accessed programmatically), and handling the
application data and function. Let's look at each of these in the context of CustomerView.rex.

4.3.1. Setting Up the Dialog Window
When you ran StartUp.rex, there were an initial set of comments displayed in the command prompt
window, as follows:

 StartCustomerView Routine-01: Start.
 CustomerView-init-01.
 CustomerView-createMenuBar-01.
 StartCustomerView Routine-02: dlg~activate.
 CustomerView-activate-01.
 CustomerView-initDialog-01.
 CustomerView-getData-01.
 CustomerModel-query-01.
 CustomerData-getData-01.
 CustomerView-showData-01.

These comments trace the process of establishing the dialog to the point of making the dialog visible
and getting the application data to display - in other words, setting up the dialog. One routine and
seven methods of CustomerView are involved, as follows:
1. First, the routine (at the end of the CustomerView.rex file) uses the .Application class

to set application defaults in the statement .Application~setDefaults(...). The first
parameter - "O" for "only" - specifies that only the *.h file provided as the second parameter is
to be used for symbolic IDs. The IDs in this file are added to the application's global constants
directory (aka "globalConstDir"). The third (optional) parameter turns autoDetection off. Try
commenting out this third parameter to see the result of leaving autodetection switched on (which
is the default). Also, see Appendix A, Dialog Attributes and AutoDetection for a discussion of what
autodetection is and where it may be useful.

The routine then creates an instance of the CustomerView class as a subclass of RcDialog.

2. In the init method of the new view instance, first the superclass is invoked (this is an ooDialog
requirement), and then the createMenuBar method is called. Note that if the menubar
creation fails (i.e. returns .false), then arguably the dialog should not be created. In this case,
initCode, which is an attribute of the .Dialog class, should be set to a non-zero value. This
attribute represents the success of initialization of a dialog object. After the init method of the
RcDialog superclass has executed, initCode will be zero if the dialog initialization detected no
errors, but will be non-zero if initialization failed or an error was detected.

3. The createMenuBar method creates a menubar (in this case an instance of the
ScriptMenuBar class) that specifies the name of the *.rc file and also the menubar's symbolic
ID in both the *.h file and the *.rc file. Note that after creation, the menubar is just another object,
and is not yet associated with the dialog. The code at this point boldly assumes that the menubar
instance was successfully created (not really best practice) and returns to the init method and
from there back to the ...

16

Specifying the Active Controls

4. ...StartCustomerView routine, which invokes the dialog's activate method.

5. The activate method issues SHOWTOP to the view's superclass, which then sends itself an
initDialog message.

6. The initDialog method attaches the menubar to itself (that is, to the dialog instance). The
remainder of the method specifies the active controls (addressed in the next section), and finally
invokes the getData and showData methods.

The above sequence may seems a little heavy just to show a dialog. But much of it is concerned
not only with getting the data to show in the dialog's controls, but also with providing for the user to
modify that data. Focusing only on what is required to display the dialog with no data, then the process
requires only four methods and a total of 20 ooRexx statements including the ::Method statements
but excluding the say instructions. And if we didn't care too much for effective program structure or
error checking, it could be squished down to just ten instructions as follows:

 ::ROUTINE startCustomerView PUBLIC
 .Application~setDefaults("O", "CustomerView.h", .false)
 dlg = .CustomerView~new("customerView.rc", IDD_CUST_DIALOG)
 dlg~activate
 ::CLASS CustomerView SUBCLASS RcDialog PUBLIC
 ::METHOD init
 forward class (super) continue
 self~execute("SHOWTOP")
 ::METHOD initDialog
 menuBar = .scriptMenuBar~new("CustomerView.rc", "IDR_CUST_MENU", , , .true)
 menuBar~attachTo(self)

And if the ::class, ::method, and ::routine directives are excluded, only six statements are
required: defining CustomerView.h as the *.h file, the .CustomerView~new to create a dialog
instance, the call to super in the init method, issuing execute("SHOWTOP"), creating a menubar,
and attaching the menubar to the dialog.

In other words, dialogs of significant complexity can be created and displayed with only six executable
statements. And that is the real power of resource dialogs.

4.3.2. Specifying the Active Controls
An "active control" is a control that requires behavior to be programmed, while a "passive" control
(such as text that never changes) appears only in the resource file, and is of no concern to the
program. The behavior associated with an active control is of two kinds: outbound or program-to-
screen - i.e. providing the user with information; and inbound or keyboard/mouse-to-program - i.e.
signaling the program about a user event. Outbound behavior means changing the state of a control
- for example, disabling a pushbutton, or displaying text in an edit control. Inbound behavior is a user
event that requires the program to take some action - e.g. the user selects a menu item, or clicks a
pushbutton. Much inbound behavior is ignored by the program (e.g. the user placing the cursor in
an edit control). For both inbound behavior that is relevant to the program, and also for outbound
behavior, the relevant controls must be made available to the programmer as ooRexx objects.

17

Specifying the Active Controls

Now controls are actually created by Windows, based on information in the resource file, with each
control being created and managed by facilities built into the Windows operating system. However, the
ooRexx programmer accesses controls via instances of ooDialog classes, so that each control on a
window is represented by an ooRexx object in the ooRexx dialog code that serves as a proxy for the
underlying Windows control. And it is ooDialog that creates the required link between such ooRexx
objects and the underlying Windows controls - and hence between the ooRexx object and the visible
controls on the screen. This is illustrated in the following diagram

Figure 4.3. ooRexx Proxy Controls and Real Windows Controls

In the diagram, A and B are the ooRexx proxy controls in an ooRexx dialog instance (aDialog). When
the dialog is to be displayed, ooDialog communicates with the Windows runtime and directs it to
create a native Windows dialog (aDialog'), complete with controls A' and B'. This is known as the
"underlying dialog" (see the ooDialog Reference). Windows then displays this dialog on the screen (A
Dialog''), where the controls (A'' and B'') are visible to the user. From then, any user interaction with
the visible dialog goes between the screen and the underlying dialog. Of course, ooDialog hooks into
these interactions, and makes them available to the ooRexx dialog (e.g. by invoking its event handler
methods). By the way, and rather obviously (but we'll say it anyway), this means that ooDialog cannot
provide any GUI function that is not already provided by the underlying Windows facilities.

To manage controls, ooDialog provides an ooRexx class for each control type. The link between
an ooRexx proxy control and the corresponding control in the underlying dialog is created via the
control's symbolic ID in the .rc and .h files. Creating the ooRexx control proxies is typically done in
the initDialog method. In the CustomerView code for example, in order to display the Customer
Number in an edit control (outbound active behavior) an ooRexx proxy is created in the initDialog
method as follows (where custControls is a directory object that makes the expose statements
shorter):

 custControls[ecCustNo] = self~newEdit("IDC_CUST_EDT_CUSTNO")

The item associated with the index ecCustNo is the proxy ooRexx object for the Windows edit control
that will contain the customer number; self is the dialog instance; newEdit is the method of the
Dialog Object (see the ooDialog Reference) that creates the ooRexx proxy for the underlying Windows
control; and IDC_CUST_EDT_CUSTNO is the control's symbolic ID from the .h file. After execution of
the statement, custControls[ecCustNo] is an instance of the ooDialog Edit class (that is, an
instance of the proxy edit control), and ooDialog has made sure, in the instance's creation, that it is

18

Specifying the Active Controls

internally linked via the underlying dialog to the edit control on the screen identified in the .h and .rc
files as IDC_CUST_EDT_CUSTNO.

To avoid tedious repetition, from now on this document will assume an understanding of the
relationship between an ooRexx proxy instance and the instance in the underlying dialog.

A number of other outbound active controls are created in the initDialog method - as many as
there are fields on the dialog that need to have data placed in them when the dialog opens. In addition,
a Record Changes pushbutton proxy is created so that the button can be enabled (outbound active
behavior) when a user chooses the menu option Update... (inbound active behavior).

After this, the following statement appears:

 self~connectButtonEvent("IDC_CUST_BTN_RECORDCHANGES","CLICKED",recordChanges)

This is an example of specifying an "event handler" (inbound active behavior). Suppose the user
presses the Record Changes button. The Windows runtime signals the event, which ooDialog picks
up. The above statement declares that this event - i.e.that the pushbutton identified in the .h file
as IDC_CUST_BTN_RECORDCHANGES has just been CLICKED - will invoke the recordChanges
method. In other words, the statement defines recordChanges as the event-handling method for
the Record Changes pushbutton. The same is done for the Show Last Order pushbutton, where the
event handler is specified to be the method showLastOrder.

Notice that each of the event handler methods are specified as UNGUARDED. In general, an event
handler should be unguarded to preclude the possibility that some guarded method in the dialog object
is executing at the time the event notification is generated. For further information, see the ooDialog
Reference. Note also that event-handling methods must be PUBLIC, since they are invoked from
outside the ooRexx dialog class by the underlying ooDialog code (and of course an ooRexx method is
public unless PRIVATE is specified).

Specification of active controls is generally done in the initDialog method. Indeed, in the
CustomerView class, specification of active controls occupies most of this method.

Note that menubar actions are not specified. This is because the menu items in CustomerView.rex
are "auto-connected" (see "Menu Command Event Connections" in the ooDialog Reference). Auto-
connection is specified in the last parameter of the following .ScriptMenuBar~new statement in the
createMenuBar method:

 menuBar = .ScriptMenuBar~new("CustomerView.rc", "IDR_CUST_MENU", , , .true)

 Setting this parameter to .true (the default is .false) specifies that all menu items will
be connected automatically to a method with the same name as the visible caption or text. In
CustomerView.rc the "Actions" sub-menu is:

 MENUITEM "New Customer...", IDM_CUST_NEW
 MENUITEM "Update...", IDM_CUST_UPDATE
 MENUITEM "Print...", IDM_CUST_PRINT
 MENUITEM "Last Order", IDM_CUST_LAST_ORDER

Spaces and trailing dots are stripped, giving method names of "NewCustomer", "Update", "Print",
and "LastOrder". In the "MenuBar Methods" part of the CustomerView code, a method is provided
for each of these menu items. Note that the print and newCustomer methods do nothing other
than show a messagebox saying that the function is not implemented. Best practice suggests that
an explanatory message is much better than the alternative (to see what this alternative is, try
commenting out the print method).

19

Application Data and Function

But before the menu actions will work, the menuBar object must be associated with the dialog object.
This is done by this statement (at the beginning of the initDialog method):

 menuBar~attachTo(self)

By the way, an alternative approach is to create the menubar in the initDialog method, and attach
the menu at the same time using the previously omitted 6th parameter, self:

 menuBar = .ScriptMenuBar~new("CustomerView.rc", "IDR_CUST_MENU", , , .true, self)

In this case, the statement menuBar~attachTo(self) should be omitted. The point here is that
while the menubar can be created any time, it cannot be attached until the underlying dialog has been
created; that is in the initDialog method at the earliest.

At this point, the dialog is displayed complete with all its controls. But there is no data shown.
When executed, it looks as if the data appears at the same time as the window, but it does not.
To illustrate this, insert two call SysSleep(2) statements, one just before the statement
menuBar~attachTo(self) and one just after. Run the program and you'll see the window without
menubar, then the menubar will appear, and then the data.

The last two statements in the initDialog method kick off the initial parts of the Application and
Data Function category. The first invokes a method to retrieve the data for this customer, the second to
display it. At which point the dialog sits back and waits for the user to do something.

4.3.3. Application Data and Function
Designing the application function/data-handling part of a main view class is more complex than is
often thought. The designer has to consider the various possible states of the dialog, and also which
state transitions are valid. Sometimes state and state transition charts are used to plan and record
UI interactions. And, in doing this design work, the first consideration is the user. Indeed, providing
what the user needs and likes is probably the most difficult aspect of GUI development. But who is
"the user"? Well, this document would be going well outside its remit to embark on addressing this
question. Suffice to say that there are a number of sources for information on usability, among which
one of the author's favorites is "The Inmates Are Running The Asylum" by Alan Cooper. But here, the
main concern is use of ooDialog rather than UI design per se, and so in this document, the subject of
UI design must take a back seat.

In the case of .CustomerView, the application behavior is very simple:
• On initial display of the CustomerView instance, populate the controls with data. This is done by

invoking (at the end of the initDialog method) the getData and showData methods. The first
gets the data for this customer (hard-coded in the CustomerData class), and the second displays
that data. The dialog then waits for user input.

• On Update being menu-selected, the update method is automatically invoked. This method
first enables the edit controls so that the user can modify the data, and then enables the Record
Changes button. Looking at the code, you'll see that some methods operate directly on the control,
while others operate on the dialog, with the control's symbolic ID being provided as a parameter.
Although not a hard and fast principle, the distinction, loosely, is that operating directly is done
where there is no ambiguity (e.g. changing the state of an edit control from read-only to read/write),
whereas operating indirectly through the dialog is done where the action is in the context of the
window (e.g. setting the input focus on a control and hence off another).

• When the Record Changes button is pressed, the recordChanges method is invoked. This first
checks whether anything has in fact been changed. If it has, a comment is output to the console,

20

Application Data and Function

and the state is set back to the starting position with the Record Changes button and edit controls
disabled. If nothing has been changed, a message box is displayed.

• Finally, several minimal or dummy actions are provided as place-markers for possible future use:
three menu items (New Customer..., Print..., and Last Order) and a Show Last Order pushbutton.

The above function is delivered through nine methods: five event handler methods (three for menu
items and two for pushbuttons) and four methods supporting the event handlers. Between them, they
deliver the application and data function. The next section examines the ooDialog aspects of the
application function.

4.3.3.1. The getData and showData Methods
The getData method retrieves data from an instance of CustomerModel (which in turn gets the data
from an instance of CustomerData).

The showData method uses the setText method (see the ooDialog Reference) to set the text of the
various controls to the customer's data. There are two things to note here:
• First, each control is in fact a separate window in its own right. Thus the setText method can be

used to set the text for any control. For example, the text on a pushbutton can be changed using this
method. To check this out, try inserting this statement at the end of the update method:

 custControls[btnRecordChanges]~setText("Press me")

When "Update" is menu-selected, the text on the button changes.

• Second, the Customer Address data is an array, which for display in a multi-line edit control must
be transformed into a text string with line-ends inserted at appropriate places. This is done in the
showData method. Data transformation of this sort is very usual within view classes; after all,
it's the responsibility of any View class (or of its subsidiary classes or routines) to handle any re-
formatting for display purposes.

4.3.3.2. The update and recordChanges Methods
The update method "enables" the edit controls and the Record Changes button so that the user can
make changes and then make the changes permanent (i.e. "record" them). Enabling edit controls is
done by sending them the message setReadOnly with the parameter .false. For example:

 custControls[ecCustName]~setReadOnly(.false)

Pushbuttons are enabled by invoking enableControl on the dialog with the control's symbolic ID as
the single parameter, as shown in the first statement below. The second statement below puts focus
on the push-button - in this case by invoking the button's state method. Finally, the cursor is placed
in the Customer Name edit control by invoking the dialog's focusControl method.

 self~enableControl("IDC_CUST_BTN_RECORDCHANGES")
 custControls[btnRecordChanges]~state = "FOCUS" -- Put focus on the button
 self~focusControl("IDC_CUST_EDT_CUSTNAME") -- place cursor in the CustName edit
 control.

The dialog is now in a state whereby the user can make changes to the data. When the user presses
the Record Changes button, the recordChanges method is invoked. Processing from this point is
almost all plain ooRexx with little ooDialog involvement:
• The recordChanges method reads data from dialog controls using the getText and getLine

methods of the Edit Control. Any view-formatted data is transformed into application format (in this
case, the Address needs to be transformed from strings with line-end characters to an array).

21

Application Data and Function

• Then the checkForChanges method is invoked with, as a parameter, the data just read in from the
dialog controls.

• If the data has not changed, a message box is displayed. If it has changed, then the old data is
replaced with the new. Finally, in either case, the edit controls are set to read-only, and the "Record
Changes" button is disabled.

Suppose in the middle of updating, the user presses the Escape key by mistake? Try it. The dialog
disappears - together with any changes made. This is certainly not best practice, and is addressed in
the next chapter (see Controlling Dialog Cancel) which discusses the use of ooDialog's ResDialog
class. A dialog subclassed from ResDialog uses a compiled resource file (a *dll file) instead of the .rc
file required by an RcDialog subclass.

22

Chapter 5.

Using Binary Resource Dialogs
This chapter uses a "Product View" class as the context for discussing the following topics: first,
Dialog Initiation; second (Using a Binary Resource File) (that is, *.dll files) and the differences in using
these as opposed to script resource files; third Dialog Controls not met in previous exercises; fourth
some changes to Code Structure; fifth a brief visit to some Dialog Design considerations; and sixth,
Controlling Dialog Cancel.

But first, run Startup.rex in the Exercise05 folder. A ProductView dialog appears. Check out the
behavior of the dialog - there are several new behaviors compared to CustomerView. In particular,
aside from controls not used in previous exercises, the behavior includes more realistic application-
level edit checks - that is, implementation of some (fairly trivial) "business rules". For example, menu-
select Actions → Update Product, then change the UOM (Unit of Measure) from 6 to 20, and then
press the Save Changes button.

5.1. Dialog Initiation
Previous exercise have used either the "application" or "startup" program, or a separate
ooRexx routine, for dialog initiation. By "initiation" is meant the two statements "dlg=.
[DialogClassName]~new" and "dlg~execute()". In other words, the responsibility for
issuing these two initiation statements - which are essential for the creation of the dialog - have
previously been outside the dialog class. If they could be moved within the class, then encapsulation
would be enhanced - always a desirable thing. The question is, how? Well, ooRexx has a mature
implementation of OO that (among other things) allows for class methods (as opposed to instance
methods). Using this feature of ooRexx, the initiation statements can be quite happily moved into
a class method. Thus the ProductView class has a method called newInstance which, with
comments and "say" instructions removed, is as follows:

 ::METHOD newInstance CLASS PUBLIC UNGUARDED
 .Application~setDefaults("O", "ProductView.h", .false)
 dlg = .ProductView~new("res\ProductView.dll", IDD_PRODUCT_VIEW)
 dlg~activate

The newInstance method is invoked from Startup.rex by the statement
.ProductView~newInstance. So all knowledge about initiating a dialog is moved inside that
dialog's class, and from now on this approach will be used. Note also that the first parameter of the
.ProductView~new() statement allows file paths to be specified.

5.2. Using a Binary Resource File

5.2.1. DLL Compilation

ooDialog's ResDialog class (a subclass of UserDialog) requires a resource-only DLL. A resource-
only DLL is a resource script (*.rc) file that has been compiled into binary (or *.dll) format. Most
resource editors have this function. ResEdit is capable compiling a *.rc file, but with three caveats:

• It must be done from the command line:

resedit -convert filename.rc filename.dll

• At compile time, the *.h file and any *.bmp files must be in the same directory as the .rc file. If
present and referenced by the .rc file, *.bmp and *.ico files are compiled into the DLL.

23

Differences between RcDialog and ResDialog

• The version of ResEdit used at the time of writing was 1.5.10-Win32. Comments about usage of
ResEdit apply to this version, and may vary in later versions.

At run-time, a ResDialog class needs only the *.dll and the *.h files.

Finally, it's worth mentioning the freely-available Microsoft SDK available at Microsoft Windows
Software Development1 which can also be used for compiling resource-only DLLs. The resource
compiler is called RC.exe, and outputs a *.res file. This is them linked using link.exe to produce the
DLL. For example, the following illustrates ProductView.rc being compiled then linked to produce
ProductView.dll:

 C:\>rc ProductView.rc
 Microsoft (R) Windows (R) Resource Compiler Version 6.1.7600.16385
 Copyright (C) Microsoft Corporation. All rights reserved.

 C:\>link ProductView.res /NOENTRY /DLL /MACHINE:X86 /OUT:ProductView.dll
 Microsoft (R) Incremental Linker Version 10.00.30319.01
 Copyright (C) Microsoft Corporation. All rights reserved.

Successful compilation depends on both the PATH and the "INCLUDE" environment variable
containing the appropriate settings, as follows (at the time of writing and assuming everything is on the
C: drive):

 PATHS
 C:\Program Files\Microsoft SDKs\Windows\v7.0A\bin;
 C:\Program Files\Microsoft Visual Studio 10.0\VC\BIN;
 C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE

 'Include' Environment Variable:
 INCLUDE=C:\Program Files\Microsoft SDKs\Windows\v7.0A\Include;
 C:\Program Files\Microsoft Visual Studio 10.0\VC\include

The first two paths should be added automatically when the SDK is installed. If the third (or any of the
other two) is/are missing, then add it/them using the PATH command, e.g.:

path=%PATH%;C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE

To see if the INCLUDE environment variable is present, enter set on the command prompt and
examine the output. If it is not present, then enter the following in the command prompt:

C:\>set INCLUDE=C:\Program Files\Microsoft SDKs\Windows\v7.0A\Include;C:
\Program Files\Microsoft Visual Studio 10.0\VC\include

5.2.2. Differences between RcDialog and ResDialog
The Exercise05 folder contains a Product View component, the main class ProductView being a
subclass of the ooDialog ResDialog class. The difference between ResDialog and RcDialog
(aside from the resource file) is mainly in the handling of the menubar. Console outputs from dialog
creation for CustomerView (an RcDialog subclass) and ProductView (a ResDialog subclass) are
as follows:

CustomerView ProductView

StartCustomerView Routine-01: Start. .ProductView-newInstance-01: Start.
CustomerView-init-01. ProductView-init-01.

1 http://msdn.microsoft.com/en-us/windows/desktop/bb980924

24

http://msdn.microsoft.com/en-us/windows/desktop/bb980924
http://msdn.microsoft.com/en-us/windows/desktop/bb980924
http://msdn.microsoft.com/en-us/windows/desktop/bb980924

Dialog Controls

CustomerView-createMenuBar-01.
StartCustomerView Routine-02: dlg~activate. .ProductView-newInstance-02: dlg~Activate.
CustomerView-activate-01. ProductView-activate-01.
CustomerView-initDialog-01. ProductView-initDialog-01

There are two visible differences. First, as discussed above, instead of creating the ProductView
instance in a routine, as was the case for CustomerView, the startup file invokes a class method -
newInstance - which does much the same as CustomerView's routine.

The second difference is the absence of a createMenuBar method. Now this method was not strictly
necessary in CustomerView - the menu could have been created in the init or theinitDialog
methods. (See Appendix C, Dialog Creation Methods for a comparison of dialog startup methods in an
RcDialog, a ResDialog and a UserDialog.)

A third and less visible difference is that when a dialog has multiple resources such as bitmaps and/
or icons, the number of files required for an RcDialog class can result in a minor file management
challenge in the runtime environment. A ResDialog class, on the other hand, needs only two files: the
*.dll and the *.h.

5.3. Dialog Controls
There are five features of ProductView's controls that have not yet been introduced in this Guide.
They are: radio buttons, a numeric-only edit field, menu accelerators, an image control (in the "About"
dialog), and providing the dialog with minimize and maximize buttons (not really controls, but useful to
discuss here).

5.3.1. Radiobuttons

For Radio Buttons to operate automatically - i.e. when an "off" button is clicked the previously "on"
button goes off - they must be within a Group Box. This is defined in the *.rc file first as a GROUPBOX
control with the style WS_GROUP. After this is defined, the radio buttons (which must have the
AUTORADIOBUTTON style) are placed in the groupbox. However, the containment is done through the
order of controls in the *.rc file. To achieve this using ResEdit, first drag a Group Box control onto the
dialog, and set the "Group" property to "True". Then drag the radio buttons from the controls palette
into the group box. Finally, and importantly, set the "Auto" behavior of each radio button to "True" (this
sets its style in the *rc file to AUTORADIOBUTTON rather than just RADIOBUTTON). For a single group,
it is not necessary to set the "Group" property to "True". However, if there are two or more independent
group boxes, then it is required in order to differentiate between the groups.

When initially displayed, no radiobuttons are "on". In the Product View, radiobuttons show whether
the size of the product is small, medium or large. Since size is an attribute of the particular product
being displayed (i.e. it's a field in the data that was supposedly read from some database), the correct
radiobutton must be turned on. This is done in the showData method.

5.3.2. The Numeric Edit Control

If you haven't tried entering an invalid number into the List Price or UOM fields of Product View, then
try it. You'll find that keying a non-digit (including "-" or "+"), or keying more that two decimal digits in
the Price field, or trying to key any decimals in the UOM field, will all result in a warning balloon being
displayed. This behavior is provided by a mixin class called NumberOnlyEditEx.cls, available
from the ooDialog "Samples" folder and copied into this User Guide's Exercise05\Support folder
for convenience. NumberOnlyEditEx illustrates how a control can be extended through ooRexx's
mixin capability. The mixin is applied when NumberOnlyEditEx is "::required" - its first executable

25

Menu Accelerators

statement being: .Edit~inherit(.NumberOnlyEditEx, .EditControl), with "Edit" being the
name of ooDialog's Edit Control class.

Briefly, numeric-only edit controls are set up as follows (full details are in the comments at the front of
the NumberOnlyEditEx.cls file):

1. Specify ::requires "Support\NumberOnlyEditEx.cls" at the top of the dialog class file.

2. Initialize the edit control (the one that's to be restricted to numeric-only entry) in the initDialog
method by invoking the mixin's initDecimalOnly method on the control instance. In
ProductView this is done for the product price control by this statement:

prodControls[ecProdPrice]~initDecimalOnly(2,.false)

The first parameter defines the allowable number of decimal places, the second whether or
not a sign is allowed. As in CustomerView the controls are grouped in the directory object
prodControls for ease of "exposing" them across methods; also, edit control instances have the
prefix "ec" in conformance with the Naming Conventions mentioned in Chapter 4.

3. For each decimal-only edit control, a character event must be connected to an event handler
method in the dialog object (ooDialog's edit control sends an event to the dialog when each
character is entered). In ProductView, this is done in the initDialog method as follows:

 prodControls[ecProdPrice]~connectCharEvent(onChar)

4. Provide the event handler method. The event handler method onChar in ProductView is as
follows:

 ::METHOD onChar UNGUARDED
 -- called for each character entered in the price or UOM fields.
 forward to (arg(6))

The sixth argument to the event handler is the control object where the character event occurred,
and the event must be forwarded to that object - that is, to the eventful edit control. The event is
then handled by the mixin class, where the numeric-only editing is done.

5.3.3. Menu Accelerators

Open the Product View dialog, and then press the Alt key on the keyboard, followed by the
down-arrow key. The Actions menu is first highlighted and then opened. The top menu item is
Update Product - with an underscore beneath the "U". Pressing the "U" key will then initiate the
Update Product behavior. The underlined letter is known as an "accelerator" key. It is produced
by placing an ampersand (&) immediately before the letter that's to be the accelerator key in the
*.rc file. In ProductView.rc, you'll see the Update menu item defined as MENUITEM "&Update
Product",IDM_PROD_UPDATE.

Interestingly, if you mouse-click on the Actions menu to open it, the "U" is not underscored - although
pressing the "U" key still initiates the update action. This is standard Windows behavior, and ooDialog
does not change it (although some third-party Windows apps such as Adobe's Reader do preserve the
underscore when a menu is mouse-opened).

26

The "About" Dialog

5.3.4. The "About" Dialog
Product View has a "Help" menu with one entry: About.... Clicking this menu item surfaces a simple
"about" dialog, containing an image of a well-wrapped product. Double-clicking the image results in
a message box acknowledging the action. This section discusses firstly how the image is created,
and second making the image "active". The code for the About dialog is in the class AboutDialog
towards the end of the ProductView.rex file.

5.3.4.1. Creating the Image

An image is created by placing a bitmap (a file of type "*.bmp") into a "Picture Control". The bitmap
and Picture control are both defined in the *.rc file, but placing the image into the picture control is
done in code. The following sections provide more detail.

5.3.4.1.1. Defining the Image
Assuming the bitmap image is already created as a bitmap file (a *.bmp file), then, using ResEdit, the
*.rc file is created as follows (assuming you've already created a ResEdit project):

1. Select File --> Add a resource... --> Bitmap. Two options are presented: "create from an existing
file", or "create a new resource". Click the former, which results in a File Open dialog.

2. Select the bitmap file and click Open. This produces a Path designation messagebox with two
options: Absolute path or Relative path. It is usually best to choose "relative path". On clicking
OK ...

3. ...a bitmap resource (named IDB_BITMAP1 or some such) is added to the project and the
bitmap image is displayed. If you want to change the name, then right-click on the bitmap in the
Resources pane and select Rename. Note that the bitmap file is shown in the bitmap resource's
"Path" property

4. Finally, drag a Picture Control from the controls palette and place it in the dialog. Then change
the Picture Control's Notify, Type, and RealSizeControl attributes to True, Bitmap and True
respectively. These attributes define the "styles" of the control to (respectively) issuing a mouse
event, allowing a file of type "bmp" to be displayed, and fitting the bitmap to the space available.

It's worth mentioning that the Picture Control is one of four types of Static Control - text, graphics,
image, and owner-drawn. In the *.rc file, these are defined by their "styles". A "style" is an
essential and basic concept in Windows. While many styles are shown in the ooDialog Reference,
the full authoritative list of styles is found in the Microsoft Control Library2. Look up the Static
Control, and you'll find around thirty different styles.

5.3.4.1.2. Mapping an Image to a Picture Control
As mentioned above, the image (of a parcel) displayed in the About dialog is referenced in the *.rc file,
and hence is referenced in the *.dll file. What now needs to happen is to associate the image with the
static control that will contain it. This is done in the dialog's initDialog method as follows:

 resImage = .ResourceImage~new("", self)
 image = resImage~getImage(IDB_PROD_ICON)
 stImage = self~newStatic(IDC_PRODABT_ICON_PLACE)~setImage(image)

2 http://msdn.microsoft.com/en-us/library/bb773169%28v=VS.85%29.aspx

27

http://msdn.microsoft.com/en-us/library/bb773169%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb773169%28v=VS.85%29.aspx

Minimize and Maximize Buttons

The first statement creates an instance of ooDialog's ResourceImage class. The second statement
uses the ResourceImages's getImage method to return an instance of the Image class. The last
statement creates a static control proxy and sets the image in it. (And the following two statements in
the method create a font and apply it to the static text in the dialog).

5.3.4.2. Making the Image "Active"
Making the image respond to mouse clicks is merely a matter of defining the image-static control in the
*.rc file as having the style SS_NOTIFY which, using ResEdit (and as mentioned in Section 5.3.4.1.1,
“Defining the Image”), merely requires the "Notify" attribute to be set to "True". When the image is
double-clicked, the dialog is sent an event. This event is connected to the showMsgBox event-handler
method by the statement self~connectStaticNotify(... showMsgBox). The showMsgBox
method then displays a messagebox.

You may notice the leaving method. This is invoked automatically when the underlying Windows
dialog is being closed. Its purpose is to allow for clean-up. In the case of the About dialog, the
two resources used (an image and a font) are released. This is not really necessary in this simple
application, but is a good habit to get into.

5.3.5. Minimize and Maximize Buttons

The Product View dialog has a minimize button and a disabled maximize button, both at the top
right of the dialog to the right of the title bar and to the left of the close button. The minimize button
is defined in the *.rc file. When only one button is specified, Windows automatically includes both
buttons, but with the non-specified button being disabled.

If you look in ProductView.rc file, you will see the following styles defined for the dialog (slightly re-
formatted for readability):

 STYLE DS_3DLOOK | DS_CENTER | DS_SHELLFONT | WS_CAPTION | WS_VISIBLE |
 WS_GROUP | WS_POPUP | WS_THICKFRAME | WS_SYSMENU

So where is the WS_MINIMIZEBOX style (as mentioned in the ooDialog Reference)? Well, one of the
curiosities of Windows, probably historical, is that both the WS_MINIMIZEBOX style and the WS_GROUP
style (defined in the Windows WinUser.h file) map to the same numeric value (0x00020000L). Also,
the WS_MAXIMIZEBOX and WS_TABSTOP styles both map the same number (0x00010000L). Clearly
ResEdit likes the older form, and includes a WS_GROUP when you specify a Minimize Box. Luckily,
ooDialog accepts either.

You might try adding either or both of the styles WS_MINIMIZEBOX and WS_MAXIMIZEBOX to
CustomerView.rc in Exercise04. The line to change is the one starting: STYLE DS_3DLOOK. Then
run the exercise,and check the result. You should see the Customer dialog as before except for the
minimize and/or maximize buttons.

5.4. Code Structure
Although broadly similar to the code structure in Exercise04, Exercise05 introduces several new
structural concepts (at least new in this Guide). These are: the use of "data types", differentiation
between view data and application data, more than one dialog in a file, externalized strings, and a
more complex dialog design.

5.4.1. Data Types

28

View Data vs Application data

Most non-trivial software systems consist of a number of components. Each of these could in principle
be written in a different programming language (assuming of course that all the languages share are
supported by common invocation mechanisms). Within each component there are typically some
number of classes, and these interact privately. Because interaction between components tends to
be "data-heavy", it is usual to define specific "data-only" classes, so that everyone can be sure of
using the same data structures. Examples are: a Customer data class, an Address data class, and a
SalesOrder data class. Each such class is often referred to as a "type" (a term that in some quarters is
a synonym for "class").

Our sample Sales Order application conforms with this idea, and so a number of "data types"
will be introduced. In Exercise05, the Product Data type (the class ProductDT at the end of the
ProductModelData.rex file) specifies the attributes or fields required to fully define product
data. This class needs no methods, since the data elements of ProductDT are defined as ooRexx
attributes. Indeed, the single method in this class is merely a convenience method that lists the
contents of a ProductDT instance on the console. This method is used (for illustration purposes only)
in ProductView at the end of the saveChanges method.

5.4.2. View Data vs Application data
There is often a difference between data that the user sees or enters on a dialog and the data that
flows between components in data types (just as there are differences between data in a normalized
database and data as used by application code). For example, on the Product View dialog, a price is
shown with two decimal digits after a decimal point. Price in the ProductDT data type, on the other
hand, has no decimal places - it's expressed in units of 1/100s of the currency unit (that is, in cents if
the currency unit is the Dollar). Thus the price data type must be transformed both when displayed to
the user and when read in by the program.

The principle for where to do the transformation is simple: do it as close to the screen as possible (just
as, at the other end, transformation to database formats are done as close to the DB programming
interface (e.g. SQL) as possible, meaning that most of the application code across the system can use
the same normative data formats.) Following this principle, the first thing the event handler method
saveChanges does is to invoke the dialog's method xformView2App (transform view to app format).
For example, a new price may have been entered with one or zero decimal digits, and so needs to be
converted correctly to a whole number of cents. Conversely, reformatting for display is handled in the
showData method. The end result is that all other methods in ProductView can assume that data
is in the format defined by the data type. And this simplifies things a great deal - especially given that
one never wants to confuse 10000 for ten thousand dollars when it's really 100 dollars!

5.4.3. Multiple Dialogs per File
The file ProductView.rex contains two dialogs - the main ProductView class and the
AboutDialog class. Note that the resources for both dialogs are defined in the same ResEdit project,
and hence in the same *.rc file. Thus both are compiled into the ProductView.dll file. This means
that the single statement .Application~setDefaults("O","ProductView.h",.false) in the
newInstance method of the ProductView class applies to the About dialog as well.

You may notice that the "About" dialog launched in ProductView's about method is modal.
That is, the Product View window cannot be accessed while the About window is open. This is
because "About" is launched using the execute method. Making an "about box" modal seems quite
reasonable. But in the next chapter, alternatives to execute will be used in order to launch non-modal
dialogs.

29

Externalized Strings

5.4.4. Externalized Strings
It is generally deemed to be good practice to externalize any strings that are visible to the user.
This enables someone who needs to translate the application for use by speakers of a different
language to do so without touching any executable code. Providing such a facility is often called
"internationalization" or "I18N" for short. While this Guide does not pretend to have addressed all I18N
requirements, at least it indicates an understanding of the need. Thus the human-readable strings that
appear in the HRS class ("HRS" = "Human-Readable Strings") at the end of the ProductView.rex
file are used for messages in messageboxes. Other strings such as the static text on the dialogs, and
text in the About dialog are hard-coded either in code or in the *.rc file (and hence in the *.dll file).
While not good practice, this is done in the Exercises for code readability reasons - the alternative
being to add more code to the dialogs.

5.5. Designing a Dialog

A program does only what its programmer specifies. But a user could do anything. This is why
designing dialogs is often quite complicated. What could the user do? What must the dialog do? These
are two questions that sometimes seem to intertwine into an irresolvable mess. In ProductView,
the most complex piece of behavior is when the user chooses the update menu item. A useful way to
plot the possible interactions is to use a UML Activity Diagram, with user actions on one side and the
corresponding program actions on the other. The following figure shows one such diagram.

30

Controlling Dialog Cancel

Figure 5.1. ProductView Behavior Diagram

The main thing this diagram illustrates is how the user can go in circles (should he/she wish to) without
affecting what the code needs to do. This is helped a great deal by providing a "refresh" function, so
that if the user gets mixed up in entering data, s/he can go back to the beginning and start again.

5.6. Controlling Dialog Cancel
Windows provides three ways for the user to cancel a dialog: by pressing the Esc key, by clicking on
the "close" icon at the extreme top right of the dialog, or by clicking the close action on the system
menu (click the icon at the extreme top left of the window). All three of these actions result in a
"cancel" message being sent to the dialog, and the default superclass behavior is silently to close the
dialog. In general, since these default actions are standard for all Windows dialogs, they should not be
over-ridden except perhaps to display an "are you sure?" message if, for example, the user is half-way
through some unit of work.

The Product View code provides a simple illustration of this in that, depending on the state of the
dialog, a modal "are you sure you want to exit" message is displayed. Product View can be said to
have three states, as illustrated by the UML state diagram below. In the diagram, ovals are states, and
the lines between them are state transitions. A solid circle is the start, and a smaller solid circle with a
ring around it is the end.

31

Controlling Dialog Cancel

Figure 5.2. ProductView State Diagram

The three states are as follows:

1. The first state is called "closable" - that is, not in the process of being updated. This state is in
being when the value of the attribute dialogState (defined in the ::attribute directive
immediately after the ::class directive) is "closable".

2. The second state is called "in update" and is in being when the value of the dialogState
attribute is "inUpdate". If the user selects any of the close actions in this state, then the third
state is entered. The "InUpdate" state is terminated by the user menu selecting Refresh Data or
pressing the Save Changes button - either of which cause the dialog to return to the "Closable"
state.

3. The third state is the modal "exit messagebox" state which, depending on the user's choice, either
closes the dialog or returns to the "In Update" state. If the user selects "close", then the dialog
closes immediately.

32

Chapter 6.

An Application Workplace
This chapter introduces the Order Management application, which is designed as a "workplace" for
a user handling sales orders. As such, it provides access to the required components - customers,
products, orders, and order forms. A common approach for a "workplace" dialog is to provide an icon
for each component that the user may wish to use. In the Exercise06 folder, run startup.rex.
The Sales Order Management dialog opens, and consists mainly of a List View containing four icons.
Move the icons around; double-click them and if a Customer, Product, or Order List appears then
double-click a list item; re-size the "Order Management" window; check out the menu items and the
pushbuttons. As you see, while much of the application function is absent, the data is hard-coded,
and there is some redundancy (e.g. every time you double-click on an item in a list view a new Model
and Data object is created), the essential parts of the Order Management application mentioned in
Chapter 4, Using Resource Dialogs are visible. This chapter addresses the following topics in the
context of the Order Management application:

• Program Structure

• Popups and Parents

• Icons and Lists

• Re-sizing Dialogs

• Creating Icons

• Utility Dialogs

6.1. Program Structure

6.1.1. Overview
In Exercise 6, each business component has its own folder: Customer, Order, OrderMgr, and
Product. Customer and Product are more or less identical to the same components introduced
in Exercises 4 and 5 except for the addition of a list view (CustomerListView.rex and
ProductListView.rex). Placing each business component into a separate folder helps promote
high cohesion and low coupling in the software, since the internals of each business component
should be opaque to other business components. Thus another application (e.g. Customer
Relationship Management) could well be able to make use of the Customer business component
without change. The Order Manager (OrderMgr) business component is unlikely to be re-used in
other applications as it is a kind of "container" business component that "choreographs" the other
business components. To the user, creating a new sales order consists of "choreographing" the
various business aspects required - creating an Order Form (used to assemble the customer order),
searching for and selecting a specific Customer, searching for and selecting one or more Products,
recording the quantities ordered, and producing a Sales Order that is the "contract" between supplier
and customer. Of course, the OrderMgr component could be used by "higher-level" components
such as business processes or workflows (for example a fulfilment process). In systems organized
according to these principles, invocation of components takes the form of a directed acyclic graph.

Within each business component are a number of components. For example, the Customer business
component contains a Customer View and a CustomerList View, as well as CustomerModel and
CustomerData components. Also in the folder are the other files (.h, .rc, .bmp and .ico) required. As
in Exercise 04, CustomerView gets its data from CustomerModel, which in turn gets its data from
CustomerData. However, CustomerListView is rather skeletal, and its data is hard-coded. In a
later exercise, this will be modified, and will get its data directly from CustomerData (there being

33

Some Implications

no need, in this simple example, for a ListModel component). Note that aside from the list views,
the Customer and Product business components are essentially the same as in Exercises 4 and 5
respectively.

The Order Manager business component is implemented by the view class OrderMgrView. This
contains the code for handling a re-sizable dialog (see Re-sizing Dialogs). OrderMgrView contains
the code specific to the Order Management application. The only reason for splitting the code like this
is that it seems to fall happily into these two parts. This reduces the amount of code in any one class
or file, and so (arguably) makes for better readability.

Note that the "data" of the Order Manager business component is the set of icons and their associated
data. Examples of possible additional components could be a "commodities" component which shows
the commodities required to produce a given product; or a credit-check component that links to an
external credit-check agency.

The Order business component is extremely skeletal, but will be developed further in a later exercise.

Finally, it's worth noting that the folder structure, while useful for development, is not necessarily the
most appropriate structure for a deployed application. A more appropriate deployment structure will be
described in a later chapter.

6.1.2. Some Implications
Choosing this folder structure for the development of the application has certain design implications
worth mentioning. These are: file paths, the use of .Application, and the handling of externalized
human-readable strings.

6.1.2.1. File Paths

When an ooRexx program is run, the current (or "home") directory is that from which the program is
started. That is, if a program is started on a command prompt like this: c:\aaa\bbb>myprog.rex,
then the current directory will be c:\aaa\bbb. However, if the program is started like this: c:
\aaa>bbb\myprog.rex, then the current directory will be c:\aaa. In Exercise 6, all programs are
started from the Exercise06 folder. Thus any relative paths must be relative to the Exercise06
folder. However, using ResEdit with relative paths, the path for a resource such as a dialog icon is
relative to the folder in which the *.rc file is created. For example, if CustomerView.rc is created in
the Customer folder, then the icon will be specified in CustomerView.rc with the path ".\\bmp\
\Customer.ico". So the path for the icon resource in the *.rc file will be wrong, and the dialog icon
will not be shown.

The solution is either to edit the *.rc file and change the icon resource's path, or (better) create the *.rc
file in the Exercise06 folder and then move it into the Customer folder.

Considering the implication of paths also applies to other parts of the code, such as header files
specified in the .Application~addToConstDir(...) statement and dialog creation statements
such as dlg = .CustomerView~new(...).

In summary, all paths (if not absolute) must be relative to the folder from which the program is started.
This is why, when running a stand-alone test such as startupCustomer.rex, the program must be
started from the Exercise06 folder, since the design decision was taken to make all paths relative to
Exercise06 folder.

This discussion on paths prompts two thoughts (at least). First, is there not a way to have some
support code manage paths, so that each component asks this support code for the path it should

34

Application Function and Naming

use? While this may be feasible, it's not specifically an ooDialog questions, and so is not pursued
here. Second, using the ResDialog class instead of RcDialog reduces the problem of paths, since
resources such as icons and bitmaps are placed in the *.dll file.

6.1.2.2. .Application Usage
The startup.rex file applies application-wide defaults through the statement
.Application~setDefaults("O", , .false) . However, the header file for each view class
is included at the beginning of its file. For example, .Application~addToConstDir("Customer
\CustomerView.h") is the first executable statement in CustomerView.rex. For a
shipped application that includes multiple classes, it would be much better to provide all the
~addToConstDir() statements in the startup file after, say, the ~setDefaults() statement.
However, because at this stage the application is still in a pre-deployment state, and each component
needs to be able to be unit-tested (see Appendix B, Testing Popups in Stand-Alone Mode), it was
deemed better to include the ~addToConstDir() statements in each view file. An alternative was to
duplicate them in the unit-test startup programs, but code duplication is generally not the best strategy.

6.1.2.3. Externalized Strings
All components that display information to the user have the displayed strings separated from code
either in a class whose name is prefaced "HRS" for "Human-Readable Strings" or in a *.rc file. Each
such class name has a suffix - e.g. "HRScv" for the CustomerView class. The reason for the suffix is
to distinguish the various HRS classes if the various files were later to be placed into a single file for
application deployment purposes.

Human-readable strings in *.rc classes are a problem when internationalization is a requirement.
"Internationalization" (often referred to as I18N - there are 20 letters in the word) is the term given to
providing for translation of human-readable text into other languages. An immediate solution is to
display the translated strings from within the program rather than from the *.rc file. The initDialog
method is a good place to do this. Try inserting the following in CustomerView.rex, say just before
the statement self~getData in the initDialog method:

 custNameLabel = self~newStatic("IDC_CUST_LBL_CUSTNAME")
 custNameLabel~setText("Namen:")

The Customer View will be displayed with "Namen" (German) instead of "Name" (English).

Of course, this text should come from an HRS class or better from a proper I18N resource file. Such
files would be produced using special I18N tools. These tools take account of the many considerations
and gotchas of internationalization. For example, in our trivial attempt to change the label from
English "Name" to German "Namen", we've lost the colon at the end. This is because the horizontal
space given to this particular static text in CustomerView.rc is not big enough. Some authorities
suggest that 150% of the space required for English is needed to allow for proper translations to other
languages. And this is only one of the lesser considerations in the task of internationalization. The
following quote from the Wikipedia entry illustrates something of the full complexity of I18N: "It should
be noted that 'internationalized' does not necessarily mean that a system can be used absolutely
anywhere, since simultaneous support for all possible locales is both practically almost impossible and
commercially very hard to justify. In many cases an internationalized system includes full support only
for the most spoken languages, plus any others of particular relevance to the application."

6.1.3. Application Function and Naming
One of the first things to notice about Exercise 6 is that there is very little application function. For
example, data is all hard-coded, and all Customers have identical data, as do all Products and

35

Popups and Parents

all Orders (this will be fixed in the next exercise). The second thing is that while there's an Order
component to display and change existing sales orders, there's a separate OrderForm component for
creating new sales orders. But there is no way to create new Customers or Products. This will not be
fixed in the next exercise, mainly because providing this function would not exercise any new ooDialog
features. However, in the next exercise data will be able to be read from a data file.

The reason for having a different dialog for creating as opposed to viewing and updating is that in real
applications, creating a Customer, or Product, or Order generally requires a more complex process
than simply updating. For example, creating a Customer often cannot be done without a credit check
and establishing the customer's bank details in the accounting system. In our Order Management
application, only the Order component has a separate Order Creation dialog, in order to exercise, in
a later chapter, more ooDialog capabilities. So, for present purposes, we assume that Customer and
Product creation takes place outside of the sample Order Management application.

Although perhaps not immediately apparent, a specific naming convention has been used.
This convention is useful to differentiate between the various parts of the application. Thus "X
Management" is the name given to the application as a whole (in our case "X" is "Sales Order").
Generally, an application constructed from a number of relatively autonomous components has
one or more "coordinator" or "process" components that arrange for the "choreographing" of other
components. These are often called "Managers" - hence the "Order Manager" component that
provides the framework for the application. Finally, entities such as Customer are given the entity
name - "Customer", "Product", "OrderList", etc. - followed by the suffix "View", "Model", or "Data" as
discussed in Chapter 3, Re-Structuring the Code.

Finally, starting an application that can make changes to a business is generally guarded by some
form of security. When starting the sample application, this is trivially represented by a password
dialog, which is visible if you start the application (in the Exercise06 folder) with the command
startup enterPW instead of just startup. Yes, this is the wrong way round, but its purpose is to
illustrate the code required for a password prompt. It is very simple, and uses one of the many and
useful ooDialog built-in dialogs - PasswordBox(...) - as follows:

 parse arg pwOption
 if pwOption = "enterPW" then do
 pwd = PasswordBox("Please enter your password","Sign In")
 if pwd \= "Password" then exit
 end

6.2. Popups and Parents
This section addresses how the various dialogs in the Order Management application are launched.
First, the way in which dialogs are started is addressed. Second, the use of the interpret statement
in displaying dialogs by double-clicking an icon in the "Order Management" window is discussed.

6.2.1. Starting a Popup Dialog

In previous chapters, dialogs have been started using the statement self~execute(...). The
~execute method makes the dialogs "modal", that is, access to other dialogs is blocked until the
dialog is closed. A good example of a modal dialog is the Help-About dialog in Exercise 5. While this is
open, the Product View dialog is blocked.

The dialogs in Exercise 6 are not modal; they are "amodal" or "modeless". Any of them can
be accessed by the user at any time. A modeless dialog is created by using the ~popup or
~popupAsChild methods in place of ~execute. The difference between the two is as follows.

36

Starting a Popup Dialog

• ~popup() - If dialog A pops up dialog B, then B exists independently of A. Either can be accessed
by the user at any time. Either can be closed without affecting the other. The application ends only
when both are closed.

• ~popupAsChild(parentDlg) - If dialog A pops up dialog B as its child, then B's existence
depends on A's. If A is closed, so does B. However, as with ~popup either can be accessed by the
user at any time. Note that the only required argument for ~popupAsChild(parentDlg) is the
parent dialog.

For the Order Management application, ~popupAsChild is used. Thus while OrderMgrView
is started with ~execute, all other dialogs in the Order Management application are started with
~popupAsChild(rootDlg) where the "root" (or parent) dialog is always OrderMgrView. Thus all
dialogs are modeless and independent of each other, except that when OrderMgrView is closed,
everything else closes and the application ends. (Note that ProductView's "About" dialog is still
modal: it blocks access to the specific instance of ProductView from which it is launched; other
instances of ProductView are unaffected, as are other dialogs.)

So, for a dialog to be "popped up as child", there has to be a parent dialog that was surfaced with
either ~popup or ~execute. This presents a problem for stand-alone testing. The solution adopted
in this exercise is illustrated by the following code fragment, taken from CustomerListView's
activate method (which is called from its newInstance class method):

 ::METHOD activate UNGUARDED
 expose rootDlg
 use arg rootDlg
 if rootDlg = "SA" then do -- If standalone operation required
 rootDlg = self -- To pass on to children
 self~execute("SHOWTOP","IDI_CUSTLIST_DLGICON")
 end
 else self~popupAsChild(rootDlg, "SHOWTOP", ,"IDI_CUSTLIST_DLGICON")
 return

This code illustrates the two ways of starting a dialog. For stand-alone testing (see Appendix B,
Testing Popups in Stand-Alone Mode), the dialog is started using self~execute(). In normal
operation, however, it is started by self~popupAsChild(...). Notice that the first parameter
of ~popupAsChild(rootDlg, ...) is the OrderMgrView dialog, which is passed to the
newInstance class method and thence as the parameter rootDlg to the activate method. Thus
CustomerListView is both a child of OrderMgrView and parent of CustomerView. Later in
CustomerListView, a Customer is displayed by the user double-clicking on an item in the List View.
The event handler method (showCustomer) that surfaces the Customer is as follows:

 ::METHOD showCustomer UNGUARDED
 expose lvCustomers rootDlg
 item = lvCustomers~selected
 if item = -1 then do -- if no item selected.
 ret = MessageDialog(.HRSclv~nilSelected, self~hwnd, title, 'WARNING')
 return
 end
 info=.Directory~new
 if lvCustomers~getItemInfo(item, info) then do
 .local~my.idCustomerData = .CustomerData~new -- create Customer Data instance
 .local~my.idCustomerModel = .CustomerModel~new -- create Customer Model instance
 .local~my.idCustomerData~activate
 .local~my.idCustomerModel~activate
 .CustomerView~newInstance(rootDlg,"CU003")
 self~disableControl("IDC_CUSTLIST_SHOWCUST")
 end
 else do

37

Offsetting Dialogs

 say "CustomerListView-showCustomer-04: ~getItemInfo returned .false."
 end

The list of customers is shown in a ListView control (see Icons and Lists below). The showCustomer
method is invoked when the user double-clicks on an item in the list. This item is identified
by the statement item = lvCustomers~selected, the proxy object for the list control
being lvCustomers (an item is automatically selected when it is double-clicked). If no
item is selected, an error message is displayed, and the method returns. The data in the
selected row is then placed in a directory (with an error check in case ~getItemInfo returns
.false). The next statements (.local~my...) create instances of the CustomerModel
and CustomerData classes. Then an instance of CustomerView is created by the statement
.CustomerView~newInstance(rootDlg,"CU003"). The second parameter is the Customer
Number, which is ignored in Exercise 6 (but which will be used in a later exercise). Finally, the Show
Customer pushbutton is disabled.

The approach to establishing the model and data objects shown here is not ideal. Indeed, the
above code merely satisfies the requirement for a CustomerView object to have access to a
CustomerModel instance which in turn needs access to an instance of CustomerData. And, in this
exercise, the data is all hard-coded. The next exercise will illustrate a much better way of doing this,
with data being read from a disk file (a notional "data base").

6.2.2. Offsetting Dialogs
When creating a resource file for a dialog, it is unusual to define the position of the dialog on the
screen. Instead, the option to center the dialog in the screen is often used. This is the option applied in
Exercise 6. However, when a number of different dialogs are all surfaced in the same place they tend
to overlap each other, so making things difficult for the user who has to continually move dialogs away
from the center. A better approach is to offset newly-surfaced dialogs from existing ones such that the
new dialog pops up in the best place from a user point of view. This is possible with ooDialog, but is
not simple.

However, ooDialog also provides a half-way house, where simple code produces a useful result. This
simpler code is discussed in Section B.2, “Visual Offsetting” in Appendix B, Testing Popups in Stand-
Alone Mode. The following code illustrates the key functions:

 -- In 'parent' dialog:
 ::METHOD getPopupPos
 popupPos = self~getRealPos
 popupPos~incr(100,100)
 return popupPos

 -- In 'child' dialog:
 ::METHOD offset
 use arg popupPos
 self~moveTo(popupPos, 'SHOWWINDOW')
 self~ensureVisible()

The "parent" dialog finds its own position on the screen with parentPos=self~getRealPos>
(where parentPos is an instance of the Point class). It then increments the point's x and
y coordinates using the point's incr method. The result is the child dialog's desired position.
When the parent dialog pops up a "child" dialog, it passes this desired position to the child dialog.
From the child dialog's initDialog method, either in-line or with a method call, the instruction
self~moveTo(popupPos,...) moves the child dialog to the desired position. Finally, the
instruction self~ensureVisible() ensures that the child dialog is wholly on the screen and not
partly invisible.

38

Use of 'Interpret'

6.2.3. Use of 'Interpret'
When an icon in the "Order Management" dialog is double-clicked, a child dialog is surfaced.
This is handled by two methods in the OrderMgrView class. First, the event-handling method
onDoubleClick catches the double-click, works out which icon (or "record" - see Icons and Lists
below) was double-clicked, and then calls the showModel method. This method uses an interpret
instruction to launch a view of the component represented by chosen icon, as follows:

 use arg record
 className = record~ID
 viewClassName = className||"View"
 interpret "."||viewClassName||"~newInstance(self)"

Thus in principle icons for additional components can be added without changing the code. An
alternative to using interpret would be to use the ooRexx Message class. Then again, an arguably
better approach could have been to hold the class object in the record, and to invoke newInstance
directly on the class object. However, in the next exercise, the mechanics of invoking the various
components (given a class name and an "instance name" such as a customer number) will be moved
to support classes.

Finally, a separate file - RequiresList.rex - contains the set of ::requires statements
for the components that might be surfaced. This is why the first executable statement in the file
OrderMgrView.rex is call "OrderMgr\RequiresList.rex". While these statements could
have been included in OrderMgrView.rex, they were separated as they can be thought of as
"configuration", and it's arguably better to keep configuration separate from code.

6.3. Icons and Lists

A ListView should not be confused with a ListBox. A ListView is a souped-up ListBox with lots of
additional features. In particular:

• An item in a ListView can be a complex structure or "record" containing multiple fields. One of these
fields is termed the "label" of the item.

• ListView items can be displayed in four different styles (or modes):
• Icon view - each item appears as a full-sized icon with a label below it. Items can be dragged

around the ListView.

• Small-icon view - each item appears as a small icon with a label to its right. Items can be dragged
around the ListView.

• List view - each item appears as a label with an optional small icon to its left.

• Report view - each item appears as a row in a table with an optional small icon to its left.

The four different modes are well illustrated by the sample program oodListViews.rex located in
the ooRexx\samples\oodialog folder.

In the Order Management application, a ListView control in the "Icon" style provides the main area
of the OrderMgrView dialog where draggable icons represent the various components of the
application. (The ListView control in the "Report" style is used to provide the tabular lists for the
CustomerListView, ProductListView, and OrderListView dialogs.)

39

The Icon View

6.3.1. The Icon View
The Order Manager dialog is provided by two classes: OrderMgrBaseView and OrderMgrView.
The former handles re-sizing, and to do this it needs to know about the ListView control. But the latter
also needs to know about the ListView control. To provide for both requirements, the proxy for the
ListView control is stored in OrderMgrBaseView as a private attribute named lv.

Five things are needed to produce an icon view: first, create (or obtain) some icons; second, specify
the ICON style for the ListView control; third, create an ImageList from the icons (required by the
ListView control); fourth, create a set of records (one record per icon) to be loaded into the ListView;
and fifth, load the icons and records into the ListView.

1. Produce the Icons

The large "icons" in the ListView are actually bitmaps. Icons and bitmaps have different formats,
and different uses, and there are a number of differences between them. The bitmaps themselves
are in the folders of the relevant business components, so the "icon" for the Customer List, for
example, is Exercise06\Customer\bmp\CustList.bmp (the *.ico files are the dialog icons).
See Creating Icons for further information.

2. Specify the ICON Style

The icon style for a ListView control is specified either in the *.rc file as the LVS_ICON
(in ResEdit, set the "View" property to "Icon"), or in a UserDialog, by creating
the ListView control in the initDialog method using the ICON style - e.g.:
self~createListView(IDC_ORDMGMT_ICONS, ... "ICON") where the first parameter is
the ID for the ListView control.

3. Create an ImageList

The ListView documentation provides several ways to load icons. Probably the easiest is to create
an instance of the ImageList class which is then loaded into the ListView. In OrderMgrView,
this is done in the createIconList method (invoked from the init method) as follows:

 ::METHOD createIconList PRIVATE
 expose iconList
 imgCustList = .Image~getImage("customer\bmp\CustList.bmp")
 imgProdList = .Image~getImage("product\res\ProdList.bmp")
 imgOrderList = .Image~getImage("order\bmp\OrderList.bmp")
 imgOrderForm = .Image~getImage("order\bmp\OrderForm.bmp")
 -- Boldly assume no errors in creating the Image List or in the ~getImage
 statements.
 iconList = .ImageList~create(.Size~new(64, 64), .Image~toID(ILC_COLOR4), 4,
 0)
 iconList~add(imgCustList) -- item 0 in the list
 iconList~add(imgProdList) -- item 1 in the list
 iconList~add(imgOrderList) -- item 2 in the list
 iconList~add(imgOrderForm) -- item 3 in the list
 imgCustList~release
 imgProdList~release
 imgOrderList~release
 imgOrderForm~release
 return

For each icon, only two statements are required: create an Image from file, and then copy it to the
ImageList (and a third, if you're a polite programmer, clean up afterwards by releasing the image).

4. Create Records

40

The Report View

Records are typically created in the init method (or in a method invoked from there). In
OrderMgrView the records are created in the initRecords method which is invoked from
init. Each record has two fields: the class name of the dialog to be surfaced when a user
double-clicks on an icon, and the text to appear beneath the icon. The design choice for these
records is that each record is a directory, and each directory is stored in an array. The array index
of a record is equivalent to the position of its icon in the ImageList (remembering that arrays
are 1-based while ImageLists are 0-based). The code for creating the record array is as follows
(showing only the Sales Orders item for brevity):

 ::METHOD initRecords PRIVATE
 expose records
 records = .array~new()
 ...
 rec = .directory~new
 rec~ID = "OrderList" -- Class Name
 rec~name = "Sales Orders" -- Text to display under the icon
 records[3] = rec
 ...
 return records

5. Load the ImageList and the Records

Loading icon images and records into the ListView is done in OrderMgrView's initDialog
method:

 ::METHOD initDialog
 expose records iconList
 self~initDialog:super
 self~lv~setImageList(iconList, .Image~toID(LVSIL_NORMAL))
 do i=1 to records~items
 self~lv~addRow(, i-1, records[i]~name)
 end

The icons in the ImageList are all applied to the ListView control in the single statement,
self~lv~setImageList(...). The second parameter of the setImageList method
specifies the size of the icons by invoking the toID method of the Image class with the parameter
LVSIL_NORMAL. This is the flag for the icon view as opposed to the list, report, or small icon
views. The Image class is used to work with and manipulate images. The icons having been set,
the records are then added using the ListView's addRow method. The first parameter is the index
of the list item (if omitted, the record is added after the last). The second parameter is the index of
the icon to be used with this record, and the last parameter is the label for the list item - the string
"Customer List" in the case of the first item added.

6.3.2. The Report View
Three of the icons in the Sales Order Management dialog surface a list when double-clicked - the
Customer List, Product List, and Order List. These three components are technically very similar - so
that a "list superclass" could perhaps be useful. However, in Exercise 6 this is not done, and each list
is quite separate. Nevertheless, their similarity means that discussing one list - the Customer List -
effectively addresses all three.

A list view with the "Report View" style provides for a variable number of columns, each item
appearing on a separate line with information arranged in columns. Each line may have a small icon
at the left of each line. Note that the fields in a ListView must be defined in code, since a Windows
resource file does not support the definition of columns within the list view.

41

The Report View

The following code fragment from the CustomerListView class shows how the List View (without
small icons) is defined:

 ::METHOD initDialog
 expose menuBar lvCustomers btnShowCustomer
 ...
 lvCustomers = self~newListView("IDC_CUSTLIST_LIST");
 lvCustomers~addExtendedStyle(GRIDLINES FULLROWSELECT)
 lvCustomers~insertColumnPX(0,"Number",60,"LEFT")
 lvCustomers~insertColumnPX(1,"Name",220,"LEFT")
 lvCustomers~insertColumnPX(2,"Zip",80,"LEFT")
 self~connectListViewEvent("IDC_CUSTLIST_LIST","CLICK",itemSelected) -- Single click
 self~connectListViewEvent("IDC_CUSTLIST_LIST","ACTIVATE",openItem) -- Double-click
 self~connectButtonEvent("IDC_CUSTLIST_SHOWCUST","CLICKED",showCustomer)
 self~loadList

First, a proxy for the ListView control, lvCustomers, is created. Then, in the second statement, the
list view is formatted using "extended styles" (of which there are around twenty). Extended styles
are defined by Microsoft, and can only be added after the underlying Windows control has been
created - that is, (normally) in the initDialog method. In the above code, only two extended styles
are applied: GRIDLINES and FULLROWSELECT. Both apply only to the Report View. The former
draws gridlines around all items; the latter defines that, when a row is selected by the user, the
whole row is highlighted rather than just the first column. Then there are three ~insertColumnPX
statements, each adding a column to the list view - "Number", "Name", and "Zip". Following these
are two ~connectListViewEvent statements that define event handler methods for single click
and a double-click - itemSelected and openItem. The latter merely invokes the showCustomer
method, as does the second-to-last statement ~connectButtonEvent which defines the event
handler method for the pushbutton.

The last statement in the above invokes the loadList method, which loads the list view with data, as
follows:

 ::METHOD loadList
 expose lvCustomers
 lvCustomers~addRow(, ,"CU001", "ABC Inc.", "TX 20152")
 lvCustomers~addRow(, ,"CU002", "Frith Inc.", "CA 30543")
 lvCustomers~addRow(, ,"CU003", "LMN & Co", "NY 47290-1201")
 lvCustomers~addRow(, ,"CU005", "EJ Smith", "NJ 12345")
 lvCustomers~addRow(, ,"CU010", "Red-On Inc.","AZ 12345")
 lvCustomers~addRow(, ,"AB15784", "Joe Bloggs & Co Ltd","LB7 4EJ")
 lvCustomers~setColumnWidth(1)

The ~addRow method adds a row of data into the list view. As can be seen, the data in the list is hard-
coded (but this will be fixed in the next exercise). The first parameter is the 0-based index of the item,
and defaults to the index of the last item added plus 1 (if no items already in the list view, this defaults
to 0). Note however that when the user creates the dialog, the last item appears first not last. This is
because the *.rc file specifies the style LVS_SORTASCENDING. The second parameter is the index (in
an ImageList) of the item's icon should that be required. Finally, the last statement sets the width of
the second column to that of the longest text entry. Note that loading the list view with data could have
been done in the initDialog method. However, the separation of concerns principle points strongly
to separating the formatting of the list view from loading data into the list view.

Surfacing a Customer from the Customer List is done in one of two ways: either double click on an
item, or select the item and then press the Show Customer button. Both invoke the showCustomer>
method. These two approaches are implemented by the following code (error-handling code omitted):

 -- 1. Double-Click:

 ::METHOD initDialog

42

The Report View

 ...
 self~connectListViewEvent("IDC_CUSTLIST_LIST","ACTIVATE",openItem) -- Double-click
 ...

 ::METHOD openItem UNGUARDED
 self~showCustomer

 -- 2. Select (single click) then press button:

 ::METHOD initDialog
 ...
 self~connectListViewEvent("IDC_CUSTLIST_LIST","CLICK",itemSelected) -- Single click
 self~connectButtonEvent("IDC_CUSTLIST_SHOWCUST","CLICKED",showCustomer)
 ...

 ::METHOD itemSelected UNGUARDED
 use arg id, itemIndex, columnIndex, keyState
 if itemIndex > -1 then self~enableControl("IDC_CUSTLIST_SHOWCUST")
 else self~disableControl("IDC_CUSTLIST_SHOWCUST")

In the first approach, If the user double-clicks on a row, and the row is empty, the second click of the
double-click is ignored, else the double-click method (openItem) is invoked. This is turn invokes
showCustomer. In the second approach, the itemSelected method is fired when the user clicks on
a row in the ListView. If the user clicks on an empty row, then itemIndex is set to -1, else it is set to
the 0-based row number. As can be seen, both approaches invoke the showCustomer method, which
is as follows (where lvCustomers is the proxy for the List View control):

 ::METHOD showCustomer UNGUARDED
 expose lvCustomers rootDlg
 item = lvCustomers~selected
 info=.Directory~new
 lvCustomers~getItemInfo(item, info)
 .local~my.idCustomerData = .CustomerData~new -- create CustomerData instance
 .local~my.idCustomerModel = .CustomerModel~new -- create CustomerModel instance
 .local~my.idCustomerData~activate
 .local~my.idCustomerModel~activate
 .CustomerView~newInstance(rootDlg,"CU003")
 self~disableControl("IDC_CUSTLIST_SHOWCUST")

First, the relevant row (item)is found using the ~selected method of the List View. Then a
directory is created, and the data from the selected row is placed into the directory by the List View's
getItemInfo method. Thirdly, the Customer Data and Model objects are instantiated, and then the
CustomerView is instantiated (CustomerView depends on CustomerModel being available). As can
be seen, in this version of CustomerListView the data from the ListView is ignored, and the same
Customer is surfaced regardless. This is also true for the other List Views. In the next exercise this will
be fixed so that instantiation of the Model and Data objects will be handled elsewhere, and the correct
instance will be shown.

Finally, two items about ListViews. First, to change the font for the data in a ListView, use the
createFont method of the dialog (actually a method in ooDialog's "WindowsExtensions" mixin).
For example, try inserting the following in CustomerListView's initDialog method, immediately
before the statement self~loadList:

 font = self~createFontEx("Ariel", 10)
 lvCustomers~setFont(font)

Save and run. You should see the data in the ListView displayed using the Ariel 10-pitch font.

The second item concerns the appearance of the ListView control. If you place the mouse over
one of the headers, its appearance changes and if you click it, it acts rather like a pushbutton. But

43

Re-sizing Dialogs

nothing happens, although you might expect it to sort the list according to values in the clicked
column). The reason it does not is that CustomerListView.rc does not include the style
LVS_NOSORTHEADER. Try adding this to the resource file (change "... LVS_SORTASCENDING, ..." to
"... LVS_SORTASCENDING | LVS_NOSORTHEADER, ..."), then re-run. On the other hand, should
you wish to change things so that the data is sorted, then check out the sortItems method in the
"List View Controls" chapter in the ooDialog reference.

6.4. Re-sizing Dialogs
If you haven't already done so, try re-sizing the Order Management dialog. The ListView containing
the icons expands to match the new window size, and the two push-buttons both move (and change
in size) in proportion. The re-sizing functionality is provided by the ooDialog-provided mixin class
ResizingAdmin. All that is required is to specify this mixin in the ::Class statement, and the dialog
will be re-sizeable. Note that together with the dialog, controls are also re-sized. Often, however, it is
necessary for some controls not to be resized, or, for example, only to be re-sized in one dimension.
This can be specified, for each control, by using the controlSizing method of the ResizingAdmin
class. Essentially, this method provides for "pinning" individual controls in relation either to the dialog,
or to other controls.

Re-sizing is also provided by the DlgAreaU class. This ingenious class was written some time ago
when ooDialog capabilities were much less developed than they are today. It works by parsing the
source code of a subclass' defineDialog method at run-time. However, this constrains it to being
used only with UserDialog, where the dialog template is created through explicit control creation
statements. In addition, since the source code is required at run-time, it will not work if the source
code is tokenized using rexxc. For information about using this approach to re-sizing dialogs, see the
documentation for the DlgAreaU class in the ooDialog Reference manual or the copious comments
in dlgAreaUDemoThree.rex (which can be found in the ooRexx samples folder in oodialog
\resizableDialogs\DialogAreaU).

6.5. Creating Icons
This section discusses first the creation of icons and bitmaps, and secondly how the icons in the
OrderMgrView dialog are loaded into its icon-style List view.

Various questions arise when creating icons for the first time - especially since the whole area of
images in Windows is not, at first glance, simple. This section lists some of the main points about
creating icons.

First, it's important to establish whether what's required is an icon (file type *.ico) or a bitmap (file
type *.bmp). The "icons" in OrderMgrView dialog are actually bitmaps. But a "dialog icon" (the icon
displayed in the left hand corner of the title bar of a dialog) is an icon, not a bitmap. A number of tools
are available for creating and editing images, icons, bitmaps etc., some of them providing conversion
and re-sizing capabilities. One such is GIMP (GNU Image Manipulation Program), a freely distributed
piece of software, from http://www.gimp.org.

Second, the size of a dialog icon is variable. That is, an icon larger than the space available will be
shrunk to fit. The dialog icons in this exercise are all 64x64 in size, and are automatically shrunk to
fit. For resource dialogs, the dialog icon is specified in the resource file, and its ID in the resource file
is specified in the self~execute(...) method. For UserDialog dialogs, the dialog icon is loaded
by the addIconResource method. The two arguments to this method are a resource ID and the file
name of the icon, for example: dlg~addIconResource(105,"MyPicture.ico"). The resource
ID is then specified in the dlg~execute("SHOWTOP, 105) statement.

44

Creating Icons

Finally, the "icons" in the "Order Management" dialog are bitmaps of size 64x64. These are not shrunk;
a smaller icon will look smaller. These bitmaps are loaded into the ListView programmatically. The
code that loads the bitmaps into the ListView is as follows (with repetitive statements removed):

 ::METHOD createIconList PRIVATE
 expose iconList
 imgCustList = .Image~getImage("customer\bmp\CustList.bmp")
 ...
 iconList = .ImageList~create(.Size~new(64, 64), .Image~toID(ILC_COLOR4), 4, 0)
 iconList~add(imgCustList)
 ...
 imgCustList~release
 ...
 return

 ::METHOD initRecords PRIVATE
 -- Called from init - This method simulates getting the "data" for the OrderMgr view.
 expose records
 records = .array~new()
 ...
 rec = .directory~new
 rec~ID = "ProductList"
 rec~name = "Product List"
 records[2] = rec
 ...
 return records

 ::METHOD initDialog
 expose records iconList
 self~initDialog:super
 self~lv~setImageList(iconList, .Image~toID(LVSIL_NORMAL))
 do i=1 to records~items
 self~lv~addRow(, i-1, records[i]~name)
 end

The icon view requires icons to be loaded from an "image list" - that is, an instance of the ImageList
class. It is the function of the createIconList method (invoked from init) to produce such
an image list. To build the image list - called iconList in the above - each bitmap is first loaded
from disk into an instance of the .Image class using the getImage method. Then the statement
iconList=.ImageList~create(...) creates an empty image list, into which each of the four
images is loaded using the add method. Finally, each separate image is released. By the end of this
method, an image list has been created, but has not yet been loaded into the list view.

As with the "Record View" used for CustomerListView, items in an "Icon View" are loaded
as "records". In this case, each record consists of an icon and a text label for that icon. The
initRecords method does just that - sets up the records in an array called records. The record
id is used to hold the class name (e.g. "ProductList") of the component to be launched when the user
double-clicks an icon.

Finally, in the initDialog method, the image list (lv) is first set into (added to) the list view, following
which the records are added. It is a user responsibility to make sure the sequence of icons in the icon
list matches the sequence of text data in the records array.

To complete the behavior of the OrderMgrView component, there remains the task, when the user
double-clicks on an icon, of surfacing the required component. This is done by the following code in
OrderMgrView:

 ::METHOD onDoubleClick UNGUARDED
 expose records
 index = self~lv~focused -- lv is an attribute of the superclass.
 record = records[index+1]

45

Utility Dialogs

 self~showModel(record)

 ::METHOD showModel UNGUARDED
 use arg record
 className = record~ID
 viewClassName = className||"View"
 interpret "."||viewClassName||"~newInstance(self)"
 say "OrderMgrView-showModel-02:"

The onDoubleClick method is the event handler method defined for the list view. The first statement
(after expose records) finds which icon has focus - that is, which one was double-clicked. The
second retrieves the corresponding record, and then showModel is invoked with the appropriate
record. In showModel an appropriate view is created and surfaced using the interpet instruction in
much the same way that CustomerList did for individual Customer views (see Section 6.2.3, “Use of
'Interpret'”).

It remains only to mention that the above code will allow as many lists to be created and surfaced as
the user wishes. This may or may not be what's required. It is of course possible to arrange things so
that only a single list for each of Customers, Products and Orders is allowed. In such a case, when the
user double-clicks on an icon, the appropriate list would be "surfaced" in the proper sense of the word
- that is, created and shown as the top-level dialog, or, if already created, would have focus put on it so
that, if hidden under other dialogs, it will pop to the "surface" - that is, become the topmost window on
the screen.

6.6. Utility Dialogs

A subject not yet mentioned is the use of ooDialog utility classes and routines that can be used in
any ooRexx program. The routines are very simple, and are often one-liners. As an example, in this
exercise the startup program provides for entry of a password using the (one-line) PasswordBox
routine. Invoking startup enterPW produces a password box that will accept the password
"Password". If you get the password wrong, the startup routine will silently end. The code is as follows:

 parse arg pwOption
 if pwOption = "enterPW" then do
 pwd = PasswordBox("Please enter your password","Sign In")
 if pwd \= "Password" then exit
 end
 .OrderMgmtView~newInstance
 ::REQUIRES "OrderMgmt\OrderMgmtView.rex"

Check out the ooDialog Reference for the whole set of classes and routines.

46

Chapter 7.

Towards A Working Application

7.1. Introduction
This chapter, and the accompanying Exercise, provides much of the infrastructure for an application
that uses model-view-data component concepts. The infrastructure implements a pattern called the
"Model-View Framework" which removes from the application developer most of the work involved in
instantiating View, Model and Data components, reading data from disk, and providing that data to a
dialog.

Open the Exercise07 folder and start the Order Management application by double-clicking on
startup.rex. Try it out. Explore the function which, while not complete, is much more so than in
the previous exercise. In particular, note that application data is now read from files. For example, the
Customer data is read from the file CustomerFile.txt. However, although data can be changed in
some dialogs, the changed data does not (in this exercise) update the files.

Also, note that the Help menu on the main Sales Order Management dialog now includes an option
Message Sender (discussed in Message Sender). Click this option and a "Message Sender"
dialog opens. This sends messages to (invokes methods on) the various components, and is a
useful debugging tool that replaces the "stand-alone" function used in Exercise 6. For example, try
sending a "query" message to the Customer whose key is BA0314. To do this, key "CustomerModel
BA0314" (without the quotes) in the Target field , "query" in the Method field, and then press Send.
The customer's data is returned in the Reply field as a name-value string.

Now try using the Message Sender to surface a Product dialog - say the view for Product CU003. To
do this, select ObjectMgr The in the Target combo-box pull-down, showModel in the Method field,
and type ProductModel CU003 in the Data field. Now press Send. The Product dialog for instance
CU003 appears.

The "Object Manager" (which could also be called "ComponentManager" since it manages application
components as opposed to any old ooRexx object) is a support class that instantiates a component
by invoking its newInstance class method. It also keeps track of which components have been
instantiated. For more detail see The Object Manager

Consider now what has to happen to display a Product dialog. First, a ProductData instance must
be created, and its data is read from disk. Then the appropriate ProductModel component must
be instantiated and its data retrieved from the ProductData component. Finally, an instance of
ProductView has to be created and its data retrieved from the ProductModel component by
invoking its query method.

This sequence is a pattern - the "Model-View Framework" pattern - that can be applied to most
business components, and hence can be handled by superclasses instead of by duplicated code in
application components.

The next section in this chapter introduces the Model-View Framework - its objectives, a brief overview
of its function, an example of use, and the classes that implement it. Then Components and Data
discusses first the different "kinds" of application component and also the data formats returned by
data components. The fourth section provides additional detail on the Message Sender, and then
Dialog Re-sizing for the Order Manager dialog is re-visited. Finally the use of Control Dialogs for the
Order Form is described.

7.2. The Model-View Framework
This section presents the externals of the MVF. For some additional detail, see Appendix D, The
Model-View Framework.

47

MVF Objective

7.2.1. MVF Objective
The objective of the Model-View Framework (MVF) is to provide a mechanism whereby application
components can read and write data and display views without needing to be aware of how this is
done. Thus the MVF supports view-model-data separation of concerns in application components.
The MVF comprises three superclasses for application components called Model, xxView (where
"xx" is "Rc", "Res" or "Ud") 1, and GenericFile (for data components), plus two "manager" objects:
ObjectMgr and ViewMgr.

When a user double-clicks on an item in say the Customer List dialog, the confident expectation is that
a Customer dialog that shows the data associated with the list item will be displayed. Now consider
what has to happen to make that Customer dialog appear:

1. Create the appropriate data component, which...

2. ... opens the correct file and reads the data.

3. Create the model component and provide it with its "key" (e.g. customer number).

4. In the model component, get a reference to the data component.

5. Invoke a method on the data component to retrieve the data associated with the model's key.

6. Create a view component.

7. Provide the view component with the model's data.

8. Make the dialog (including data) visible.

This sequence set of actions assumes that none of the component instances involved are yet
activated. However, the MVF must also work when some or all are activated. For example, if a
Customer dialog exists but is minimized, and the user double-clicks on that customer in a Customer
List dialog, then the MVF need only surface the Customer dialog. Thus the MVF distinguishes
between a number of different states, and relieves the programmer from having to code the logic for
each component and for each possible state.

Consider, for example, the code in OrderMgrView that launches a List View. On the left is the
Exercise 6 code, and on the right is the Exercise 7 code (equivalent or identical statements have been
placed on the same line for comparison).

 OrderMgrView
 Exercise 6 Exercise 7
 ---------- ----------
::METHOD showModel UNGUARDED ::METHOD showModel UNGUARDED
 expose idObjectMgr
 use arg record use arg record
 className = record~ID className = record~ID
 viewClassName = className||"View"
 interpret "."||viewClassName||- r = idObjectMgr~showModel(classname, -
 "~newInstance(self)" "a", self)

The key difference is that in Exercise 6 the Customer List is launched without any concern for the
data - because the data is hard-coded in the List View. In Exercise 7, on the other hand, the data is
read from disk and provided to the List View. This is done by the showModel method of the Object
Manager (idObjectMgr), its id having been retrieved from .local in the init method.

1The three "xxView" classes are identical except for their superclasses - RcDialog, ResDialog and UserDialog respectively (in
the next exercise, it is planned that these will be merged into a single mixin class).

48

MVF Overview

In the Exercise 7 code, the second parameter in the showModel method is "a". This indicates that
the List View instance is "anonymous". Instance names and "kinds" of component are discussed in
Section 7.3.1, “Kinds of Component”.

Now that the Customer List View has been created, consider what happens when the user double-
clicks on an item in the list. In Exercise 6, the list data was hard-coded. In Exercise 7 it is read from
disk by the CustomerData class. In both exercises, launching a Customer View from the list (when
the user double-clicks on a list item) is done by the showCustomer method as follows (excluding
code common to both):

 CustomerListView
 Exercise 6 Exercise 7
 ---------- ----------
::METHOD showCustomer UNGUARDED ::METHOD showCustomer UNGUARDED

 .local~my.idCustomerData = .CustomerData~new
 .local~my.idCustomerModel = .CustomerModel~new
 .local~my.idCustomerData~activate
 .local~my.idCustomerModel~activate
 objectMgr = .local~my.ObjectMgr
 .CustomerView~newInstance(rootDlg,"CU003") objectMgr~showModel("CustomerModel", -
 info~text, rootDlg)

In Exercise 6, before the CustomerView is instantiated, the CustomerData and CustomerModel
components must be instantiated, and their object IDs stored in .local for later access by the
CustomerView and CustomerModel objects. This is needed because, although no data is actually read
from disk, the CustomerView invokes a method on CustomerModel which invokes CustomerData.

In Exercise 7, on the other hand, the value of info~text (the index read from the selected ListView
row) is the Customer Number, and is used as the Customer object's instance name. The Object
Manager's showModel method then manages or "choreographs" the sequence of method invocations
required to surface the Customer View dialog, and (if necessary) create the appropriate model
and data objects. This choreography, using function in the Model, xxView and GenericData
superclasses, results in the Customer View being surfaced with its data read from disk and displayed.
See Section D.3, “MVF Operations” for a full description of the way in which this is done.

Finally, note that in Exercise 7, the names of the possible List Model classes (e.g.
CustomerListModel) are hard-coded in the initRecords method of OrderMgrView (although
these would arguably be better placed in some configuration file).

7.2.2. MVF Overview
The MVF consists of five classes: ObjectMgr, ViewMgr, Model, xxView (i.e. RcView, ResView, and
UdView), and GenericFile (see MVF Classes for more detail). These are all located in the folder
ooRexx\samples\oodialog\userGuide\exercises\Exercise07\Support. Together, they
provide for the three different types of application component - view, model, and data. Each model
gets its data from its data component, and each model has a single view. (A production-strength MVF
could support multiple views of the same model by providing an "Open as..." option for a given icon
or list item. This would display a selection of views, similar to the "Open with..." function provided by a
button-2 click on an item in Windows Explorer.)

MVF requires that each component has a text name, the name being the class name of the main
class (such as "CustomerModel", "ProductView" or "OrderData") together with an instance name.
 For components with a "key" such as Customer Number, the instance name is the key (e.g.
"CustomerModel BA0314"). For components that are "singletons" - that is, there can logically be only
one instance, the name is "The". An example of a singleton is a data component (e.g. "CustomerData

49

An Example - The 'Person' Component

The"). Finally, some components - such as lists - are anonymous: when an anonymous component is
instantiated, its instance name is given as "a" or "A", and its real instance name - such as a number
as in "CustomerList 3" - is assigned by the Model super-class (part of the MVF) during instantiation.
The instance name is important to MVF since its internal logic differs slightly depending on which kind
of instance name is used - a "key" name, a singleton name, or an anonymous name. (Note that this
naming convention could be relaxed if components were named in a configuration file; however, the
distinctions between the different kinds of component would remain.) See Section 7.3.1, “Kinds of
Component” for further discussion.

7.2.3. An Example - The 'Person' Component

A key question is, what does the MVF look like to the programmer? This section answers this question
using the Person component (which has minimal function) as an example. But first, using the Message
Sender, try sending a showModel message to ObjectMgr The with the data PersonModel PA150.
The Person dialog appears, and the MVF has handled the task of ensuring that both the Data
and Model components are active before the View is launched. First, MVF checks to see if they
are already activated; if not, it instantiates them (the Data instance first, then the Model). Second,
on instantiation, PersonModel's superclass asks the PersonData instance for its data. Third,
PersonView's superclass asks PersonModel for its data. Finally, the dialog for Person PA150
appears.

The code required to conform with the MVF is shown in the Person component in ooRexx\samples
\oodialog\userGuide\exercises\Exercise07\Extras\Person, and those requirements are
as follows:

• A Data Component (a subclass of GenericFile)

::METHOD newInstance CLASS PUBLIC
 ...
 -- Check if an instance has already been created; if so, return .false.
 ...
 idData = self~new()
 return idData

::METHOD init PRIVATE
 ...
 records = self~init:super(fileName, columns)
 ...

Data components such as PersonData are required to provide a newInstance class method,
which is invoked by the MVF. No parameters are provided. This method first checks if an instance
has already been created. If not, it is created, and its object ID is returned to the MVF (i.e. to the
caller).

In the init method, the superclass' init method is invoked with the filename and the number
of columns in the file as parameters. Invocation of super with these parameters is an MVF
requirement.

• A Model Component (a subclass of Model)

::METHOD newInstance CLASS PUBLIC
 use strict arg instanceName
 forward class (super) continue
 modelId = RESULT
 return modelId

 ::METHOD init

50

MVF Classes

 use strict arg myData

Model components such as PersonModel are required to provide a newInstance class method
with one required argument - the model's instance name. The method must be forwarded to the
Model superclass, which first retrieves the intended instance's data from its data component, and
then creates an instance of itself with the instance data as a parameter. The new instance must then
be returned.

• A View Component (a subclass of RcView, ResView, or UdView)

::METHOD newInstance CLASS PUBLIC
 use strict arg modelId, rootDlg
 -- create dialog, e.g. "dlg = .PersonView~new(...)"
 dlg~activate(modelId, rootDlg)
 return dlg

::METHOD activate UNGUARDED
 use strict arg modelId, rootDlg
 forward class (super) continue
 personData = RESULT

View components such as PersonView must provide a newInstance class method and an
activate method. The newInstance method is invoked by MVF with the view's model id (and
also the root dialog - that is, the Order Manager dialog). After the dialog is created, MVF requires
that activate, with the model's id as the first argument, be invoked on the new dialog. In the
activate method, the superclass must be invoked using forward. The superclass returns the
Model's data in RESULT. Finally, the id of the new dialog must be returned.

The above is how a "named" component uses MVF. By "named" is meant a component whose identity
is a combination of its class and a specific "key" such as a Customer Number, or Product Number.
However, there are three other kinds of component: a "singleton" such as a data component, a "form"
such as the Order Form, and "anonymous" such as a Customer List. These are discussed below in
Section 7.3.1, “Kinds of Component”.

7.2.4. MVF Classes
This section describes each of the classes that comprise the MVF. They are, the Object Manager, the
View Manager, plus three superclasses, one for each of Model, View, and Data components.

7.2.4.1. The Object Manager

The Object Manager (ObjectMgr.rex in the userGuide\exercises\Support folder) is a
"singleton" class (there can only logically be one of them) and has the external name "ObjectMgr The".
It maintains a table (called the "Object Bag") of all instantiated components. The public methods of the
Object Manager are:

• getComponentId (with parameters className and instanceName) - Returns the id of the
requested component. If the id is not in the Object Bag, then it sends newInstance to the class
object className. If the class does not not exist, .false is returned.

• list - Lists the contents of the ObjectBag on the Command Prompt. The following shows the
results of sending list to the Object Bag after (a) the application was started, then (b) the Customer
List icon was double-clicked, (c) a Customer in the list was double-clicked, and (d) the Message
Sender was used to send a query message to ProductModel LM400:

Object Bag List:

51

MVF Classes

--
Class-Instance Model Id ViewClass-Inst
------------------------ ------------------------ ------------------------
 CUSTOMERLISTVIEW-26701042 a CUSTOMERLISTVIEW .nil
 PRODUCTMODEL-LM400 a PRODUCTMODEL .nil
 CUSTOMERVIEW-267047652 a CUSTOMERVIEW .nil
 CUSTOMERLISTMODEL-1 a CUSTOMERLISTMODEL CUSTOMERLISTVIEW-26701042
 CUSTOMERDATA-THE a CUSTOMERDATA .nil
 PRODUCTDATA-THE a PRODUCTDATA .nil
 CUSTOMERMODEL-BA0314 a CUSTOMERMODEL CUSTOMERVIEW-267047652
 --

The instance name for a View component is derived by invoking identityHash on its id.

• showModel(className, instanceName) - Shows the View for the specified Model. If the View
exists, then it is surfaced. If not, then if the Data component is not already instantiated, it is
instantiated. If the Model component is not already instantiated, it is instantiated. Then the View
is instantiated. All instantiations use the newInstance method. All dialogs except the "application"
dialog (that is, Order Manager) and the Message Sender are created and/or surfaced using the
showModel method.

For further information on how the showModel method of the Object Manager works, see Section D.3,
“MVF Operations”.

7.2.4.2. The 'Model' Superclass

Model is the MVF superclass for all model components, and provides key methods for subclasses as
follows:

• newInstance - invoked by the Object Manager (which ensures that the required data component
is instantiated) with an instance name as the single parameter. The id of the data component is
retrieved from Object Manager, after which getRecord (or getFile for a "list" component) is
invoked on the data component. Then self~new is invoked with model's data as a parameter.
Model also provides an instance attribute myData that contains the instance data returned from the
data component.

• getInstanceName is invoked by the Object Manager's showModel method for anonymous
components only (such as a CustomerListModel). It adds 1 to a class variable and returns it.
(However, for OrderFormModel, the method is over-ridden and OrderFormModel itself returns a
new order number (see Order Form).

• query - A component framework generally requires that components provide specific methods
defined by the framework. Aside from instance creation methods, a "well-known" method is required
for MVF to access a model component's data. This method has the name "query", and it must
conform to a specific protocol as follows:
• If a component's query method is invoked with no parameters, then it must return a directory

containing all the "public" data it has. The directory indexes are the labels for the data as defined
in the "database" (although this is not usually the case for real production-strength systems,
where the data dictionary for application-level components often differs from the column names in
an SQL database).

For example, use the Message Sender to send query to PersonModel PA150. A directory is
returned by PersonModel, and the Message Sender presents the directory in name-value form
in its Reply field as follows:

dob: 751513; baseSalary: 38000; number: PA150; jobDescr: Packer;

52

MVF Classes

familyName: James; firstName: Alfred;

• If a component's query method is invoked with one parameter, and when that parameter is a
directory, an array, or a string, then only those fields specified by name are returned.

For example, use the Message Sender to query the first name and family name for "PersonModel
PA150". To do this, specify the fields by name (case-sensitive) in the Data edit field, as follows:
firstName familyName (note - field names are case-sensitive). On pressing the Send button, the
data firstName: Alfred; familyName: James; is returned as a directory which Message Sender
unpacks and presents as a string in the Reply field.

For debugging purposes, you can use MessageSender to send a set of data names as a string
(as in the example just given), a directory, or an array. To send as a directory, enclose each name
in square brackets, e.g.: [firstName] [familyName]. To send as an array, place a vertical bar
before each name, e.g: | firstName | familyName.

7.2.4.3. The 'View' Superclass

There are three View superclasses in the Support folder: RcView, ResView, and UdView. They are
identical except for their superclasses - RcDialog, ResDialog and UserDialog respectively (their
function could be provided by a single mixin class, and this is planned for a later version of the User
Guide exercises). Important methods are:

• activate - This is invoked by the subclass, which must provide the view's model id as the
single argument. A query message is invoked on the model, which returns the model's data as
a directory. In addition, this method saves information used to tidy up the view in the leaving
method.

• leaving - This method is automatically invoked by ooDialog when a dialog closes. Its only
function is to inform the Object Manager that the view is about to close. The Object Manager then
removes the view from the Object Bag (otherwise it might later try to surface a non-existant view!).

• offset - This method offsets dialogs from the Order Management dialog when first opened.
Although not used elsewhere in this exercise, the effect can be seen using the "Person" component
in the Exercise07\Extras\Person folder. First, use the Message Sender to launch a Person
dialog (for example send showModel to ObjectMgr The with the data PersonModel PA150).
The Person dialog appears in the center of the screen. Now un-comment the last line (--
self~offset:super) in the initDialog method of PersonView, save, re-start the application,
and launch the Person dialog as before. Note that the dialog "flickers" when opened - it seems to
open for a fraction of a second in the centre of the screen, then re-appears offset from Message
Sender. The flicker results from the .rc file containing the dialog property WS_VISIBLE (in ResEdit
the behavior property "visible" is set to true). First it appears in the center of the screen, then moves
to the offset position. Now remove "| WS_VISIBLE" from the .rc file, save, and re-run. The Person
dialog appears without a flicker but offset (from the Message Sender).

7.2.4.4. The 'GenericFile' Superclass

The data superclass is called "GenericFile" since it acts on any file having the defined format. Open
any of the .txt data files (e.g. PersonFile.txt to see the format. Essentially, the first line in the file
must be the column names (or labels). A label must not contain spaces. Lines 2 to n are the data
values, each separated by a vertical bar character. The main methods are:

53

Components and Data

• getRecord - Invoked with a record key (e.g. a Customer Number) as its single argument, reads the
record from the file defined in the subclass, and returns a "record directory".

• getFile - Returns the file in "file as directory" format.

• list - Lists the file on the console.

See GenericFile Data Formats for a description of the "record directory" and "file as directory" formats.

7.3. Components and Data

7.3.1. Kinds of Component

There are four "kinds" of components in Exercise07: "named", "singleton", "anonymous", and "form".
• A "named" component instance is identified by a unique name derived from the instance's data

(analogous to a database key). An example is CustomerModel, where each instance is identified
by its Customer Number. The external name for such an instance is of the form model class name,
model instance name - e.g. "CustomerModel AB0784". Note that a "Form" component such as the
Order Form is of the named component kind, since although it starts out without a name, it is (and
must be) given its name (such as an order number) when first instantiated. This is done when the
Object Manager invokes its getInstanceName class method. A View component is named by
its object reference number (that is, the number returned by invoking identityHash on the view
instance).

• "Singleton" instances are those for which there can logically only be a single instance - for
example, data components such as CustomerData, or the Order Manager (which in Exercise07 is
a view-only component). Their instance name is always "The".

• An "anonymous" component is one for which there can logically be more than one instance,
but which do not have any obvious distinguishing name. Thus they are initially given the
instance name "A". Examples are list components such as CustomerListModel. Instances
of an anonymous component are provided with a system-generated number. For example,
the name of a Customer List Model is a unique number generated by its superclass,
starting at '1'. For example, to create an instance of CustomerListModel, the message
getComponentId("CustomerListModel","A") is sent to ObjectMgr which, on seeing
instance name "a" or "A", invokes getInstanceName on the ListModel class object, which is
handled by the Model superclass. Model returns a number starting at "1".

• A "form" instance such as a Sales Order Form or a Purchase Request form is a special kind of
component. Initially it is anonymous, and although when created there is no database record of
it, there will be after it's completed and the user hits OK. A new number (e.g. an order number) is
assigned to a form when it is created, and this number is used as the database key when, after
completion, the form is committed to the database. For example, the Order Form component
assumes that this will happen, and so its instance name is a unique Sales Order number. This is
created by the getInstanceName class method of OrderFormModel which over-rides the same
method in its superclass (Model).

The above classification covers almost all the kinds of dialog found in a typical UI environment
handling business systems. To test this, consider the "Words of Wisdom" business component
in Exercise03, which was implemented as a view, a model, and a data component. The
...Exercise07\Extras\Wow4 folder contains the same set of components, but modified to use the
MVF. Code no longer required is commented out with the comment v01-00; methods or statements
added for MVF use are commented with MVF; modified statements are commented v01-00-->MVF;

54

GenericFile Data Formats

and unchanged statements are commented v01-00. (Actually, Wow is somewhat schizophrenic, in
that it can be launched either as a singleton or as anonymous - that is, with an instance name of "The"
or "A". If "The", then only one instance is allowed. If "A", then multiple instances can be created.)

As mentioned above, this whole approach of having component names define the type of component
is not particularly scalable. A better approach - certainly for production-strength apps - is to provide
a configuration file that names the classes and states what type they are. Such a file might look
something like this, and would remove the need for using class names as the basis for managing
instances:

<modelClass name="Product", type="named", dataClass="ProductDB"/>
<modelClass name="NewOrder", type="form"/>
<modelClass name="CustomerList",type="anonymous"/>
<modelClass name="SalesOrder", type="named><viewClass name="MySpecialView"/></modelClass>
<modelClass name="Wow", type="singleton"
 <viewClass name="WowView">
 <dataClass name="WowData" source="sql">
</modelClass>

7.3.2. GenericFile Data Formats
Fields in a file record are separated by a vertical bar character, and field names are defined in the first
line of the file. All data files have the file extension ".txt". GenericFile's getRecord method returns
a single record (for example a Customer record) in a "record directory", whose format is as follows:

 "Record Directory" format (using sample data values):

 Indexes Items
 +- - - - - - - - - - - - - -+
 | CustNo | BA0314 |
 +- - - - - + - - - - - - - -+
 | CustName | LMN & Partners |
 +- - - - - + - - - - - - - -+
 | Zip | 84394 |
 +- - - - - + - - - - - - - -+
 + ... | ... |
 +- - - - - - - - - - - - - -+

A complete file (for example the Customer File retrieved and displayed by the CustomerList
component) is returned by GenericFile's getFile method in "File as Directory" format, as follows:

 "File Directory" format (using sample data values):

 Indexes Items
 +- +
 |Headers | CustNo | CustName | | 1D array
 |- - - - + - - - - + - - - - - - - - - - -+ - - -|
 |Records | AB0784 | ABC Enterprises Inc. | | 2D array
	- - - - + - - - - - - - - - - -+ - - -		
	AC0027	Frith Motors Inc.
	- - - - + - - - - - - - - - - -+ - - -		
	... + ... + ...		
- - - - + - - - - - - - - - - - - - - - -+ - - -+			
Count	n	Integer	
 +- - - - + - +

The data format for an Order is a combination of data from three files - OrderData, CustomerData, and
ProductData - and is described in Compound Data

55

Compound Data

7.3.3. Compound Data
"Compound data" is data assembled from two or more files. In Relational Data Base terms, this
is a "join". The one example of compound data in Exercise 7 is the OrderData class, where
the init method uses the superclass's getFile method to read each of the two Order files
(OrderHeader.txt and OrderDetail.txt). This data is stored in two attributes, dirOrderHeaders and
dirOrderLines. Then the addCustomerInfo method is called to get selected Customer data
(e.g. Customer Addresses) from the CustomerData component, and this data is then added to the
dirOrderHeaders attribute. Finally, the addProductInfo method accesses the ProductData
component to get selected Product data (e.g. Product Names) which is added to the dirOrderLines
attribute.

The dirOrderHeaders format is as follows:

 Indexes Items
+---+
|Headers|OrderNo|CustNo|Date |Disc|Cmtd|Cust |Cust|CustAddr | Zip | <a 1D array>
| | | | | | |Name |Disc| | |
|- - - -+- - - -+ - - -+ - - -+- - +- - +- - -+- - +- - - - -+ - - - -|
|Records|SO-1234|AB0784|120821| 2 | N |ABC..| B1 |2154 En..|FL 37043| <a 2D array>
+- - - -+- - - -+ - - -+ - - -+- - +- - +- - -+- - |- - - - -+- - - - |
 |SO-2345|BA0314|110815| 1.5| Y |LMN..| C2 |116 Hig..|NV 84394|
 |- - - -+ - - -+ - - -+- - +- - +- - -+- - |- - - - -+- - - - |
 |SO-3456|BA0314|120527| 0 | Y |LMN..| C2 |116 Hig..+NV 84394|
 |- - - -+- - - +- - - +- - +- - +- - -+- - +- - - - -|- - - - |
 |SO-4567|CU0003|120630| 0 | Y |Red..| A1 |43 Main..|AR 48231|
 |- - - -+ - - -+ - - -+- - +- - +- - -+- - +- - - - -+- - - - |
 |SO-4569|AC0027|120824| 5 | N |Fri..| B1 |124 Fre..|TX 78254|
 +---+

And the format of the dirOrderLines attribute is as follows:

 Indexes Items
 +-------------------+
 | Count | 12 |
 |- - - - -+- - - - -+- - - - -+- - -+- - - - - - -+
 | Headers | OrderNo | ProdNo | Qty | ProdName | <a 1D array>
 |- - - - -+- - - - -+- - - - -+- - -+- - - - - - -|
 | Records | SO-1234 | AB100/W | 5 | Baffle | <a 2D array>
 +- - - - -+- - - - -+- - - - -+- - -+- - - - - - -|
 | SO-1234 | CF300/X | 6 | Widget Box |
 |- - - - -+- - - - -+- - -+- - - - - - -|
 | SO-1234 | EF500/W | 15 | Slodget |
 |- - - - -+- - - - -+- - -+- - - - - - -|

 |- - - - -+- - - - -+- - -+- - - - - - -|
 | SO-4569 | XY200 | 12 | Blad Anchor |
 +- - - - -+- - - - -+- - -+- - - - - - -+

Since the Order data is held in two attributes of OrderData, the getRecord and getFile
methods are over-ridden, and handled entirely by the OrderData class. While getFile is very
simple - merely returning dirOrderHeaders (which is sufficient for the Order List component),
the getRecord method needs to build the data for a single Order from both dirOrderHeaders
and dirOrderLines. Thus it also over-rides its superclass method, and builds a directory called
"dirOrderRecord" whose format is as follows:

 "dirOrderRecord" format (using data values from Order No SO-1234):

 Indexes Items
 +- +
 | OrderNo | SO-1234 |

56

The Message Sender

 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | CustNo | AB0784 |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | CustName | ABC Enterprises Inc. |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | CustAddr | 2145 Engle Blvd,Hardtown,FL |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | Zip | 37043 |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | Cmtd | N |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | CustDisc | B1 |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | Disc | 2 |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | Date | 120821 |
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | OrderLineHdrs | OrderNo ProdNo Qty ProdName | <a 1D array>
 +- - - - - - - -+- - - - - - - - - - - - - - - - +
 | OrderLines | SO-1234 AB100/W 5 Baffle | <a 2D array>
 | | SO-1234 CF300/X 6 Widget Box |
 | | SO-1234 EF500/W 15 Slodget |
 +- +

Finally, a listOrders method is provided, since the list method of GenericFile cannot list data
from more than one file.

7.4. The Message Sender
The Message Sender is launched from the Help menu of the Sales Order Management dialog and
is used to "send messages to" (aka "invoke methods on") components. It illustrates a useful kind of
debugging aid, and replaces the special component-specific "startup" scripts provided in Exercise 6.
While a useful aid, it is provided as merely a demonstration of the kind of debugging aid that can be
deployed when using a component-based architecture with a Model-View Framework. Thus it does
not pretend to be all-encompassing, and the results of sending some messages may be unpredictable.
In addition, its display of data returned is limited. For example, a "query" message sent to a List
component only displays the directory indexes and items as follows:

 RECORDS: an Array; COUNT: 5; HEADERS: an Array;

Some commonly-used target objects and messages are provided in the two combo boxes Target
and Method. For repetitive testing of a given component, additional targets and messages can be
temporarily "stored" in the combo boxes, so saving in typing time. However, such additions to the
combo boxes are thrown away when the Message Sender is closed.

The "Data" section can be used to send data to a component. The data formats sent must be either a
string, an array, or a directory. To send an array, place a "|" (vertical bar) character before each array
element. To send a directory, use square brackets for indexes- for example, [Name] Jim Brooks [Age]
34.

The Message Sender is located in the Support folder. It is implemented as two ooRexx classes and
a routine. The classes are a main dialog class and a separate data-only class for visible strings. The
routine sends a message by constructing an instance of the ooRexx Message class, then invoking its
send method. Multiple copies of the Message Sender can be launched concurrently.

7.5. Revisiting Re-sizing

57

The Order Form

In Exercise 6, the Order Manager is a re-sizeable dialog, However, when re-sized, all controls were
also enlarged (or shrunk). Normally, to have all controls change size is not a requirement; rather
controls such as push buttons and edit fields should usually not change their size.

In Exercise 7, only the "container" for the icons is required to re-size. Other controls should not
change. This is achieved by "pinning" the other controls so that they do not move or expand/contract.
For example, the "Reset Icons" button is pinned to the left side and to the bottom side of the dialog,
so preventing the button from moving away from the bottom-left of the dialog. In addition, to prevent
the button changing its size, the top side of the button is pinned to the bottom side, and the right
side is pinned to the left side. Code to define such constraints must be placed in a defineSizing
method which is automatically invoked by ooDialog before the underlying dialog is created. If nothing
is defined, the default is to do nothing. Note that in this method, no other method that requires the
underlying dialog to exist can be invoked. Note also that this method must return .false.

Specifying how controls behave when the dialog is re-sized is done by invoking the controlSizing
method (a method of ooDialog's ResizingAdmin class) on 'self'. As an example, the following code
defines the resizing behavior of the "Reset Icons" button on the Order Management dialog:

 ::METHOD defineSizing
 ...
 self~controlSizing(IDC_ORDMGR_RESET, -
 .array~of('STATIONARY', 'LEFT'), -
 .array~of('STATIONARY', 'BOTTOM'), -
 .array~of('MYLEFT', 'LEFT'), -
 .array~of('MYTOP', 'TOP') -
)

The controlSizing method takes five arguments: a control's resource ID (e.g. the Reset button)
and four arrays. The first array addresses the left side of the control, the second the top, the third the
right, and the fourth the bottom. So: left, top, right, bottom. For each side there is an array, and each
array has three items. First the type of pin. Second the edge of the "other" window (remembering
that each dialog and each control is actually a "window"). Third the id of the other window to which
this control is pinned, the default being the resource id of the main dialog (in our case the Order
Management dialog.

So, taking the second parameter as an example, "STATIONARY" means that the left side of the Reset
button must not move away (or towards) the second parameter, i.e. the "LEFT" side of the dialog.

Consider the last parameter - the array 'MYTOP', 'TOP'. The keyword 'MYTOP' is a special keyword
that can only be used for the bottom edge of a control. It pins the bottom edge of the control to its top
edge. This has the effect of keeping the height of the control constant. Similarly, 'MYLEFT' pins the
right side of the control to the left side, so keeping the width of the control constant. Note that in this
case the second parameter is ignored, although it must be a valid sizing parameter.

The result of all this is that the Reset button does not move from the bottom left corner of the dialog,
and its size remains constant.

For further information about the ResizingAdmin class, see the ooDialog Reference. In addition, the
folder Program Files\ooRexx\samples\oodialog\ contains examples of re-sizeable dialogs in
resizableDialogs\ResizingAdmin. Here, the program augmentedResize.rex has copious
and excellent comments on the various aspects of re-sizing. Worth a read!

7.6. The Order Form

Open an Order Form from the icon in the Order Management dialog. Although still not functional, the
format of the dialog looks much more like a usable sales order form than in the previous exercise.

58

The Order Form

The main part of the form is a Tab Control with two tabs - one for entering customer details, the other
for product details. ooDialog supports two approaches to embedding content in a Tab Control: a
Property Sheet Dialog with a Property Sheet Page for each tab, and a Resource Dialog with a Control
Dialog for each tab.2 One important difference is that while the Property Sheet Dialog approach is
simpler (more is handled by the operating system), it does not allow for interesting controls to be
placed on the main dialog outside the Tab Control. Thus the alternate approach - Control Dialogs - is
used for the Order Form.

The instance name for the new Order Form is the Order Number. When the icon on the Order
Management dialog is double-clicked, the MVF is used to surface the OrderForm dialog. The
sequence of operation is as follows (with detail irrelevant to the Order Form omitted):

• OrderMgrView sends showModel("OrderFormModel", "a") to the Object Manager.

• The Object Manager sees that the instance name is "anonymous", and so sends
getInstanceName to the class object (.OrderFormModel in this case).

• OrderFormModel provides this class method, and returns the next Order Number.

• The Object Manager uses the new Order Number as the instance name for the Order Form, and...

• ... sends newInstance(instanceName,...) to .OrderFormModel, which then instantiates an
OrderModel instance.

• The Object Manager then sends newInstance to .OrderFormView, which then creates an
instance of the OrderFormView dialog.

The Order Form consists of three dialogs - the main Resource File Dialog (an RcDialog) plus two
Control Dialogs (RcControlDialog) in a Tab Control. The two Control Dialogs - one for Customer
Details and one for details of Products ordered, are created in the activate method as follows:

 cd1 = .CustDetailsDlg~new("Order\OrderFormView.rc", IDD_ORDFORM_CUST_DIALOG)
 cd2 = .OrderLinesDlg~new("Order\OrderFormView.rc", IDD_ORDFORM_ORDLINES_DIALOG)
 tabContent = .array~of(cd1, cd2)
 cd1~ownerDialog = self
 self~prep(tabContent)

The prep method is then called to set up the tabs:

 ::METHOD prep
 expose tabContent lastSelected havePositioned
 use strict arg tabContent
 havePositioned = .array~of(.false, .false)
 lastSelected = 0
 self~connectTabEvent(IDC_ORDFORM_TABS, SELCHANGE, onNewTab)

The 'havePositioned' array is used to determine if the page dialogs have been positioned, and both
are marked as not positioned. Then "no tab yet selected" is set. Finally, an event handling method is
connected to the event onNewTab (which is invoked when the user clicks on a tab).

Next, in the initDialog method, the tabs are added to the tab control, their size is calculated, and
the control dialog used for the first page is positioned and shown:

 ::METHOD initDialog

2By "resource dialog" is meant an RcDialog, a ResDialog or a UserDialog. The two former have resources defined in a resource
file, whereas the latter's resources are defined programmatically. See the ooDialog Reference for a full description.

59

Completing the Application

 expose ... tabContent lastSelected ...
 ...
 tabControl = self~newTab(IDC_ORDFORM_TABS)
 tabControl~addSequence("Customer Details", "Order Lines")
 ...
 self~calculateDisplayArea
 self~positionAndShow(1)

The two methods calculateDisplayArea and positionAndShow are well-commented, and are
copied from the ooDialog sample program oodListViews.rex - one of the excellent samples in
the samples\oodialog\propertySheet.tabControls folder, which is in the Program Files
\ooRexx folder.

Note that it's essential to properly close the control dialogs in the cancel and/or ok methods. This
must be done using the endExecution method.

Finally, the Order Form illustrates one use of the DateTimePicker control. This is a very fully-
featured control, providing many ways of displaying and manipulating date and time. For the Order
Form it allows the user easily to specify the Order Date. It's partly configured in the .rc file (in ResEdit,
Use Spin Control is set to false and Format is set to Short Date), and partly in code, as follows:

 ::METHOD initDialog
 ...
 orderDate = self~newDateTimePicker(IDC_ORDFORM_DATE);
 orderDate~setFormat("MMM dd',' yyyy")
 today = .DateTime~today
 maxOrderDate = today~addYears(1)
 orderDate~setRange(.array~of(today,maxOrderDate))

First the format of the edit field is set. Then the ooRexx DateTime class is used to set the allowable
range of dates that the user can enter: the range is from "today" (i.e. the day on which the dialog is
used) to a year from "today".

7.7. Completing the Application
At this point, there is more to do to complete the application. For example, generic function such as
that found in the List components could be moved to a superclass; the three view superclasses could
be made into a single mixin class; the Order Form needs to provide for data to be entered and stored;
SQL could be used for data-on-disk; updates could properly implemented, and it would be nice if the
user could use drag-and-drop to enter data into the Order Form. It is planned that some or all of these
functions will be addressed in the next version of this Guide.

60

Chapter 8.

Dialog-to-Dialog Drag-Drop

8.1. Introduction
Exercise 8 introduces drag-drop - sometimes known as "direct manipulation" - between dialog
components. Try opening an Order Form, then open a Customer dialog. Drag the Customer to an
Order Form dialog and drop. The customer details are entered automatically. Drag a Product dialog to
the OrderForm dialog and the product number is entered. Drag-drop as it appears to the application
developer is discussed in the section Direct Manipulation, and further detail is provided in Appendix E,
Direct Manipulation.

However, Exercise 8 also introduces a number of other things. Although not apparent to the user,
substantial changes have been made to the MVF class structure. In particular, the unfortunate
duplication of code in the three View superclasses of previous exercises is removed. The new
structure is discussed in Refactoring the MVF, while the consequential changes at the application level
are described in Using the MVF.

You may have noticed in Exercise 7 that the process hangs when you close the Order Management
dialog without first closing all Order Form dialogs. This problem, and its solution, is addressed in Event
Management.

Also, some enhancements to the Section 8.6, “The Order Form” function are briefly described.

Finally, the last section - Section 8.7, “To Be Continued” gives a brief preview of some of the function
planned for the next version of this Guide.

8.2. Direct Manipulation

Direct manipulation (or drag-drop) is the use of the mouse to drag a small mouse icon representing
a dialog around the screen and drop it on other dialogs, resulting in sopme form of comunication
between the two dialogs. To try this out, first surface a Customer dialog (e.g. by double-clicking on
an item in the Customer List dialog). Second, create an Order Form dialog by double-clicking on the
OrderForm icon in the Order Manager dialog. Now place the mouse cursor over the Customer dialog
then press and hold the "primary" button (usually the left mouse button). 1 Start dragging - you'll see
the mouse cursor change to a no-entry (or "no-drop") symbol. Drag it over the OrderForm. The mouse
cursor changes to a Customer symbol, meaning a drop is allowed. Now release the mouse button -
that it, "drop" the Customer onto the Order Form. The customer details appear on the Order Form.

Behind this operation there is some quite complex code (discussed in Appendix E, Direct
Manipulation), implemented by a Drag-Drop Framework consisting of code within the View
superclass and a new "manager" object called the "Drag Manager" (DragMgr.rex in the
Exercise08\Support) folder). The objective of the Drag-Drop Framework is to make drag/drop as
simple as possible fort he application developer. Thus the code within application components is very
simple. In the drag-drop context, there are two kinds of component: a "source" dialog that is dragged,
and a "target" dialog that is dragged over and/or dropped upon (dragging more than one component is
not supported in Exercise 8). Note that, if it makes sense, a dialog may be both a source and a target.
The code required to participate in drag-drop is as follows:

• A Source Dialog

1The "primary" button defaults to being the left-hand button, but this can be changed in the Windows Mouse Properties so that
it's the right-hand button.

61

Direct Manipulation

To enable support for dragging from a source dialog, simply provide the following superclass
invocation when the dialog is started (typically in the initDialog method):

 r = self~dmSetAsSource:super("<cursor file name>")

The cursor file (with file extension "cur") must be given with its path. For example, the cursor file
name in CustomerView is Customer\bmp\Customer.cur. A cursor file can be created using an
appropriate tool.2

• A Target Dialog

To enable a dialog to accept a drop, simply provide the following superclass invocation when the
dialog is started (typically in the initDialog method):

 r = self~dmSetAsTarget:super(dropArea)

The single optional parameter defines the area within the dialog onto which a drop is allowed. If
omitted, the drop area defaults to the dialog window less 10 on each side.

In a target dialog, two things have to be done. First, when being dragged over, decide whether a
drop is acceptable, so that the mouse cursor can be set (by the Drag/Drop Framework) as either no-
drop or ok-to-drop. Second, if acceptable, accept the drop if it happens (the user might cancel the
operation by pressing the Escape key, or may carry on dragging over one dialog to another).

• Drop acceptable?

When the Drag/Drop Framework detects that the mouse is over a dialog other than the source
dialog, it checks whether a drop is acceptable by sending a dmQueryDrop message to the class
object of the target's model component. This message has a single parameter - the name of the
source model's class. For example, a drop on an Order Form sends the dmQueryDrop message
to .OrderFormModel, which accepts a drop of a Customer as follows:

 ::METHOD dmQueryDrop CLASS PUBLIC
 use arg sourceClassName
 if sourceClassName = "CUSTOMERMODEL" then return .true
 else return .false

Returning .true changes the mouse cursor to the "drop ok" icon; returning .false changes the
mouse cursor to the "no entry" or "no drop allowed" cursor (the code for doing this is in the Drag/
Drop Framework).

Why ask the class object and not the View instance if a drop is OK? Well, in the general case, a
user might want to drop on some visible representation of a target such as an item in a ListView.
To get to the right item, the mouse cursor could be dragged over many other items. If each
is asked if a drop is allowed, then each must first be instantiated, and this could mean many
database accesses. Much better to check with an object that's already instantiated - such as
the class object (class objects are instantiated when the program starts). Note, however, that in
Exercise 8 only instantiated and visible dialogs can be drag-drop targets.

• Drop happens

2One such tool is GConvert [http://www.gdgsoft.com/gconvert/index.aspx]. However, there are others, and mention of this
particular product should not be interpreted as a preference.

62

http://www.gdgsoft.com/gconvert/index.aspx
http://www.gdgsoft.com/gconvert/index.aspx

Refactoring the MVF

If a drop is acceptable, and if the user then releases the mouse button, then the view instance
receives a dmDrop message from the Drag/Drop Framework. (In OrderFormView.rex it is the
main dialog rather than one of the control dialogs that receives this message.) This message
has two parameters: the source dialog's model, and the source dialog. The target's dmDrop
method typically asks the source's model object for data. For example, the drop method in
OrderFormView is as follows:

 ::METHOD dmDrop PUBLIC
 expose cd1 cd2
 use strict arg sourceModel, sourceDlg
 parse var sourceModel . modelName
 select
 when modelName = "CUSTOMERMODEL" then do
 cd1~getCustomer(sourceModel); return .true; end
 when modelName = "PRODUCTMODEL" then do
 cd2~getProduct(sourceModel); return .true; end
 end
 return .false

Note that the variables cd1 and cd2 are the Customer Details and the Product Details control
dialogs respectively (see Section 8.6, “The Order Form”). The method getCustomerData
in the Customer Details control dialog invokes query on the source's model instance - in this
case CustomerModel. The customer details part of the Order Form is then populated with the
customer data received. Similarly for product details.

8.3. Refactoring the MVF
Exercise 8 introduces a new superclass for components called Component, which becomes part of
the MVF. Component handles event management on behalf of subclasses. In addition, the duplicate
View superclasses (RcView, ResView, and UdView) are replaced by a single View superclass.
Ideally, and using parts of the Customer business component as an example, the desired class
structure would be as follows (where a blue border indicates an application component, red an
ooDialog class, green an MVF class, and black an ooRexx-provided class):

63

Refactoring the MVF

Figure 8.1. Exercise08 Notional Class Structure

However, this structure requires multiple inheritance: each "view" component (such as
CustomerView) subclasses two superclasses - RcDialog and View. But this form of multiple
inheritance is not supported by ooRexx. However, ooRexx does provide "mixin" classes. A mixin class
 is a class that is "mixed into" the single-inheritance class hierarchy. It's a very useful way to provide
more than one effective superclass. Technically, making a class a mixin adds the ability to use the
class in the "inherit" option of another class lower down the class hierarchy. In all other respects the
mixin is a normal class.

64

Using the MVF

In Exercise 8, the ooRexx mixin facility is used to provide a single "View" mixin class. However,
we also want View effectively to be a subclass of Component. The solution used here is to make
Component a mixin as well (but note that there may well be other ways of achieving the objective).
As long as View and Component do not have the same method names, then all will be well. The
resulting class hierarchy is as follows (with ProductView added to illustrate an additional ooDialog
superclass):

Figure 8.2. Exercise08 Class Structure

Solid lines are normal "subclass" lines, while dotted lines are mixin "inherits". The ooRexx class
definitions required for the Customer business component to operate with the two mixins is as follows
(with unnatural spacing to show differences more clearly):

 ::CLASS Component PUBLIC MIXINCLASS Object

 ::CLASS View PUBLIC MIXINCLASS PlainBaseDialog

 ::CLASS Model SUBCLASS Object PUBLIC INHERIT Component

 ::CLASS GenericFile SUBCLASS Object PUBLIC INHERIT Component

 ::CLASS CustomerView SUBCLASS RcDialog PUBLIC INHERIT Component View

 ::CLASS CustomerModel SUBCLASS Model PUBLIC

 ::CLASS CustomerData SUBCLASS GenericFile PUBLIC

In summary, to comply with MVF, a View application component "inherits" both View and Component,
while a Model or Data component inherits only Component.

8.4. Using the MVF
For the application developer, using the revised MVF is very simple, as follows.

65

Event Management

For View components such as CustomerView.rex:

• Add to the start of the *.rex file:

 ::REQUIRES "Support\View.rex"
 ::REQUIRES "Support\Component.rex"

• Sublass from RcView, ResView, or UdView as appropriate.

• Add to the end of the ::CLASS statement "INHERIT View Component".

• In the init method, immediately after forward class (super) continue", add
self~initView. This ensures that the View mixin is properly initialized (just supering init results
in a run-time error).

For Model and Data components, there's no change; merely ensure there's a

 ::REQUIRES "Support\Model.rex"

at the start of any Model program file, and a

 ::REQUIRES "Support\GenericFile.rex"

at the start of any Data program file.

8.5. Event Management
If an Order Form is open when the Order Management application is closed, then the process hangs.
The reason for this is that the OrderForm's control dialogs must be cleaned up explicitly when the
Order Form dialog is closed - else the control dialogs are left in limbo, and the process cannot close.
The solution is to tell all Order Form dialogs to close when the user closes the application (that is,
when the Order Management dialog is closed). But how should this be done? Somehow, all active
Order Form dialogs must be told about the "application close" event so they can clean up the two
control dialogs.

One solution might be for the Order Management dialog to tell each Order Form that the application
is about to close. Perhaps the Order Management dialog could inquire of the Object Manager as
to which Order Form dialogs exist, and then send each of them a "close now" message. However,
a more elegant solution - and one that has much wider potential use - is to provide an event
management framework.

A simple event management framework (EMF) is introduced in Exercise 8. The object that keeps
track of events and who's interested in them is the Event Manager (the file EventMgr.rex in
the Exercise08\Support folder). The code that "talks" directly to the Event Manager is in the
Component mixin. Application-level components merely super event requests, and Component does
the rest.

Note that events handled by the Event Manager must not be confused with events generated by
ooDialog, such as menu selection events.

The EMF works like this. First, a dialog component (such as the Order Form) decides that it's
interested in some event - say "AppClosing". When this event occurs, it wants to be sent a message
so that it can take appropriate action. To express its interest, the component supers (e.g. in its
activate method) a registerInterest message. This has two parameters - the event in
which it's interested and its object id (i.e. self). For example, the "register interest" invocation in
OrderFormView is:

66

The Order Form

 self~registerInterest("appClosing", self)

This message is handled by the Component mixin, which forwards the message to the Event
Manager, which then adds the event to its directory of events. In this directory, each index is the event
name, and each item is an array of objects that have expressed interest in that event. Some time later,
when the Order Manager (OrderMgrView - which in Exercise 8 mixes-in and so inherits from both
ResizingAdmin and Component) is closed, it asks for the event "appClosing" to be triggered:

 self~triggerEvent("appClosing")

The Component mixin sends this to the Event Manager which then sends a notify message to each
component that has registered interest in this event. The Order Form provides a method to capture
this event and close its control dialogs:

 ::METHOD notify PUBLIC
 use strict arg event
 if event = "AppClosing" then self~closeControlDialogs

Thus each Order Form that's open when the app closes receives a notification so that it can close its
control dialogs.

Note that this simple event management framework is fairly generic, and can be used for any event
by any component. The only constraint is that event names should be unique across an application.
For example, triggering an "AppClosing" event to signal that a dialog is opening is likely to have
unfortunate consequences (although the Event Manager will be quite happy).

Finally, note that the Event Manager has a list method which lists all registered events on the
console.

8.6. The Order Form
The Order Form dialog is now partly semi-functional. Aside from the enhancements already mentioned
(drag/drop and closing properly on app close), several new capabilities are added:

1. Customer details can be entered using the keyboard (as well as with drag/drop). Type a customer
number (e.g. "CU0003") into the "Customer Number" field on the "Customer Details" tab. The
"Find Customer" button is enabled. Click on the button, and the Customer details are entered
on the form. Accessing customer details is done by the following code (excluding error-handling
code):

 ::METHOD findCustomer UNGUARDED
 expose ecCustNum objectMgr
 custNo = ecCustNum~getLine(1)
 idCust = objectMgr~getComponentId("CustomerModel",custNo)
 dirCustData = idCust~query
 self~setCustomer(dirCustData)

2. Products can also be entered using the keyboard. Click on the "Order Lines" tab, and enter a
product number (e.g. "CU003") into the "Product No." field. Then enter a quantity in the "Quantity"
field. Finally, click the "Add Order Line" button. A line item for that product is entered into the Order
Details list view.

3. Third, totals are added up and discounts applied. However, removing a line item does not, in this
version, decrement the order totals (a serious omission in a real system!).

67

To Be Continued

4. Finally, try double-clicking on an Order Line. A product dialog for the line item is surfaced. This
uses the same code (mutatis mutandis) as that for surfacing a Customer dilaog.

Capabilities missing in this exercise include saving the Order to disk when it's complete, allowing use
of the enter key for the "Find Customer" and "Add Order Line" buttons, and ensuring that the totals are
always correct. In addition, the calculation of totals should be done in the Model component, not in the
View. This is because a major role of a model component is to implement business rules. The results
of applying such rules is then made visible by the View component. In summary, the Model should do
the "business" part while the View should make the business visible and provide for new info to be
entered.

8.7. To Be Continued
In the next version of this Guide, the development of the Order Management application will be
continued. In particular, it is planned to move the text data files to an SQLite3 database, which will
provide for data to be updated as well as read. SQLite will be accessed using ooSQLite4 - the ooRexx
language interface to SQLite.

A second function planned is drag/drop of a component from a list view such as CustomerListView
to an Order Form. The Order Form will see this as a drop of a specific Customer rather than of a
Customer List.

You may have noticed that most of the code in the List View components (e.g.
CustomerListView.rex) is identical aside from some variable names. This cries out for a ListView
superclass. Exercise 9 will introduce just such a superclass, and the individual list views will merely
configure the view and provide a call-back method for any data needing specific attention - for
example formatting a date field according to country-specific usage.

Finally, aside from other enhancements, it is planned to show how an application consisting of multiple
dialogs can be "packaged" so that the many folders and .rexfiles are simplified into a much smaller
number of files.

3 http://www.sqlite.org/index.html
4 http://sourceforge.net/projects/oorexx/files/ooSQLite/

68

http://www.sqlite.org/index.html
http://sourceforge.net/projects/oorexx/files/ooSQLite/
http://www.sqlite.org/index.html
http://sourceforge.net/projects/oorexx/files/ooSQLite/

Appendix A. Dialog Attributes and
AutoDetection
Since the early days of ooDialog, a dialog's controls (listboxes, edit controls, radio buttons, etc.)
have been treated as attributes of the dialog object. An ooRexx program could set the attributes'
data values in an ooRexx compound symbol (aka stem variable or compound variable) before the
dialog was created. Then, when the dialog was created, those values were automatically passed
to the controls in the underlying Windows dialog and so were visible to the user. Data could then
be entered or modified by the user. When the user closed the dialog, the data (whether changed or
unchanged) was automatically communicated from the underlying Windows dialog to the ooRexx
dialog and placed in the compound symbol, after which the dialog closed and returned control to the
next ooRexx statement in the program. The data was then available to the ooRexx programmer in the
same compound symbol.

This function is still supported by ooDialog. The compound symbol is often referred to as "dialog data",
and the process of automatically moving data between the ooRexx dialog and the underlying Windows
constructs is called "automatic data detection" or "auto detection" for short. The aim of this appendix
is to illustrate, through a simple example, how automatic data detection is coded. The example,
ASimpleDialog.rex, can be found in the Exercise04\Extras\DlgData folder. When executed,
the dialog looks like this:

Figure A.1. A Simple Dialog

The program does the following:
• Sets the value "It's a fine day today." in a dialog attribute value in an edit control.

• Creates and then displays the dialog.

• When the dialog is closed, retrieves the attribute value as modified (or not) by the user.

• Sets up an appropriate message (this is straight ooRexx and forms the bulk of the program!).

• Displays the message in a message box.

The ooDialog content of the program is very simple, and is as follows:

-- (1) Set text in the edit control:
statement = "It's a fine day today."
dlgData.IDC_EDIT1 = statement

-- (2a) Create the dialog defined by the .rc file:
dlg = .ASimpleDialog~new("ASimpleDialog.rc", IDD_DIALOG1, dlgData., "ASimpleDialog.h")

69

-- (2b) Display the dialog:
ret = dlg~execute("SHOWTOP", IDI_DLG_OOREXX)

-- (3) When the dialog is closed, and if the user pressed OK, then retrieve
-- the data provided by the user:
if ret == 1 then do -- if the user pressed OK
 statement2 = dlgData.1002 -- get data from the edit control
 agree = dlgData.IDC_RADIO1 -- get the state of the radio buttons:
 disagree = dlgData.1004

-- (4) Set up the appropriate message to display:

 /* a number of lines of ooRexx code */

-- (5) Display a message to respond to the user's choices:
ret = MessageDialog(msg, 0, title, 'OK', icon, 'TOPMOST')

::requires "ooDialog.cls"

::CLASS ASimpleDialog SUBCLASS RcDialog

As illustrated by section (1) of the code, data is first set up in the stem dlgData. by the statement:
dlgData.IDC_EDIT1 = statement. Note that the name dlgData. is not reserved - it could be any
name. When the dialog is created, the text "It's a fine day today." is automatically placed in the edit
control identified by the symbolic ID IDC_EDIT1.

Section (2) creates and displays the dialog. Only two statements are required to do this:

 dlg = .ASimpleDialog~new("ASimpleDialog.rc", IDD_DIALOG1, dlgData.,"ASimpleDialog.h")
 ret = dlg~execute("SHOWTOP", IDI_DLG_OOREXX)

The first parameter of the dialog creation statement is the name of the .rc file, and the second
the symbolic ID of the dialog as defined in that file. The third parameter - dlgData. - is the
stem variable that contains the data - that is the attribute values - to be placed in the dialog's
controls. Finally, the fourth parameter is the header file, which can be omitted if the statement
.application~useGlobalConstDir("O", "ASimpleDialog.h") is placed at the start of the
program.

The class ASimpleDialog is defined at the end of the program. Note the extreme simplicity of coding
a simple form-filling dialog class. No methods are needed - the dialog consists of a single ::CLASS
statement. The superclass, RcDialog, provides all the function needed.

Section (3) of the code shows how data is retrieved from the controls via dlgData after the dialog has
been closed by the user. Note that a mixture of numeric and symbolic IDs can be used, as illustrated
by statements such as disagree = dlgData.1004. Indeed, a control can be referenced by its symbolic
ID in one place and by its numeric ID in another, as illustrated by the use of both IDC_EDIT1 and
1002 to refer to the edit control. However, from a program comprehensibility point of view, it is not
good practice to mix symbolic and numeric resource IDs in the same program. Further, it is generally
held that using only symbolic IDs is best practice.

Section (4) of the code analyzes the user's input. Finally, section (5) displays a message box to inform
the user of the results.

In order to illustrate the same function using .ResDialog the program ASimpleDialog2.rex is
included in the Exercise04\Extras\DlgData folder together with its *.dll file.

Finally, when desired, there are two ways to turn auto detection off (by default it is turned on). First, by
the Application Manager (see the ooDialog Reference), and second programmatically by intercepting
the initAutoDetection message. This is automatically sent to the dialog by the ooDialog framework

70

when the dialog is instantiated. To turn auto detection off, just invoke noAutoDetection on self. Try
adding the following method to ASimpleDialog

 ::CLASS ASimpleDialog SUBCLASS RcDialog
 ::method initAutoDetection
 self~noAutoDetection

When the program is run, the edit control is blank. On pressing "OK", the dialog closes and an error
is reported on the console. The error occurs because the radio button "data" (i.e. a boolean) is not
returned, and so an "if" statement fails because it's expecting a boolean value to be tested.

71

Appendix B. Testing Popups in Stand-
Alone Mode
This appendix discusses two separate aspects of "popup" dialogs. The first aspect is testing popped-
up dialogs in stand-alone mode - that is, without having to run the "parent" dialog from which the
popped-up dialog is launched. The second aspect is the issue of how a popped-up dialog can be
visually offset from its "parent" so that it does not obscure the parent.

B.1. Stand-Alone Testing
Consider four dialogs called Parent, Child, Grandchild, and GreatGrandChild. Parent is the
"application" - the dialog that opens first, and from which other dialogs are directly or indirectly
surfaced. Parent can thus be called the "root" dialog, and is designed to run in "standalone" mode -
that is, it is not surfaced by some other dialog. It pops up Child dialogs, each of which may pop-up
Grandchild dialogs, which in turn may pop-up GreatGrandchild dialogs, and so on.

When testing an application, there is often a need to test an individual dialog which, in the application,
is a "child" that's invoked by a "parent" dialog which issues self~popUpAsChild(...) - rather than
self~execute(...) - to surface the child dialog. In addition, popping-up requires the parent dialog to be
specified as a method argument: self~popUpAsChild(parent,...).

In the Order Management application, the OrderMgrView class is the parent for all child dialogs.
The reason for using popupAsChild is so that, for example, a CustomerList can be closed without
automatically closing any Customer dialogs that might have been opened from it.

Now, using the parent dialog (Order Manager in our case) as some sort of test-harness that will
eventually surface the child dialog to be tested can be time-consuming and irritating. However, if a
child dialog is started without the parent first being run, it must still be able to invoke subordinate
dialogs in the same way as if it were running as part of the full application. Thus there is a need to
enable individual child dialogs to be tested in "stand-alone" mode, without using the parent dialog
just to surface them, but invoking other "subordinate" dialogs as if it was not being run stand-alone.
In addition, a stand-alone test of what is normally a "child" dialog will require the child to act as the
parent of any "grandchild" dialogs that it invokes, which means that the child must pass its own id to
the grandchild instead of passing the parent's.

One approach to resolving this problem is to have two versions of each child dialog - one using
~execute(...) and one using ~popupAsChild(...). This results in two code bases for each dialog - which
can quickly get out of sync. Not the best idea.

An arguably better solution is to build each dialog so it can be run either individually (stand-alone) or
within the application. The file Popups.rex in the folder Exercise06\Extras\Popups shows a
way of doing this, using dialogs that are as simple as possible.

The rules illustrated by the code in Popups.rex are as follows, assuming an application consisting of
a single Parent dialog that invokes one or more Child dialogs, each of which may invoke one or more
Grandchild dialogs, each of which may invoke one or more GreatGrandChild dialogs. The child and
grandchild dialogs are "intermediate" dialogs. The GreatGrandChild dialog is a "leaf" dialog - that is,
it does not invoke any other dialog (except of course those integral to its own functioning such as an
About box or a data entry sub-dialog).

The Parent Dialog:

 (1) Is invoked from a Startup script with:
 .ParentDialog~newInstance

72

Visual Offsetting

 (2) Provides an event handling method that sufaces a Child dialog:

 ::METHOD popup UNGUARDED
 ...
 .ChildDialog~newInstance(self)
 ...

An Intermediate Dialog:

 (1) For stand-alone testing is invoked from a Startup script with:
 .AnIntermediateDlg~newInstance("SA")

 (2) Provides the following methods (among others):

 ::METHOD newInstance CLASS
 use arg rootDlg
 ...
 dlg = self~new
 dlg~activate(rootDlg)

 ::METHOD activate UNGUARDED
 expose rootDlg
 use arg rootDlg
 ...
 if rootDlg = "SA" then do -- If standalone operation required
 rootDlg = self -- To pass on to subordinates
 self~execute("SHOWTOP")
 end
 else self~popupAsChild(rootDlg, "SHOWTOP")

 ::METHOD popup UNGUARDED -- An event handler method
 expose rootDlg
 .ASubordinateDlg~newInstance(rootDlg)

A Leaf Dialog:

 (1) For standalone testing is invoked from a Startup script with:
 .ALeafDlg~newInstance("SA")

 (2) Provides the following methods (among others):

 ::METHOD newInstance CLASS
 use arg rootDlg
 ...
 dlg = self~new
 dlg~activate(rootDlg)

 ::METHOD activate
 use arg rootDlg
 if rootDlg = "SA" then self~execute("SHOWTOP")
 else self~popupAsChild(rootDlg, "SHOWTOP")

Try running the Popups.rex program without any parameters. Note that as each "junior" dialog is
created (by pressing the pushbutton in the "senior" dialog) it completely obscures its parent. This
is because all dialogs are coded to surface in the center of the screen (by the style "CENTER in the
create method), and second all dialogs are the same size. The next section illustrates a useful way to
offset the subordinate dialogs so that at least some part of the senior dialog is still visible.

B.2. Visual Offsetting
The program OffsetPopups.rex in the exercises\Exercise06\Extras\Popups folder is a
copy of Popups.rex with added code to handle dialog offsetting (comments show where statements
have been added or modified). If no parameters are provided, the offset defaults to zero and the

73

Visual Offsetting

behavior is identical to that of Popups.rex. Try running the program with an offset of 100 by entering
OffsetPopups 100 on a command prompt. You'll see that popped-up dialogs are offset from the
dialogs from which they're popped up, and do not now obscure them. Entering OffsetPopups ?
provides help.

In OffsetPopups.rex, all classes are subclassed from a View class (itself subclassed from
UserDialog) which has one class attribute and two methods, getPopupPos and offset, as follows:

 ::CLASS View SUBCLASS UserDialog

 ::ATTRIBUTE offsetAmount CLASS PUBLIC

 ::METHOD getPopupPos
 popupPos = self~getRealpos
 offset = .View~offsetAmount
 popupPos~incr(offset,offset)
 return popupPos

 ::METHOD offset
 use arg dlgPos
 self~moveTo(dlgPos, 'SHOWWINDOW')
 self~ensureVisible()

The class attribute offsetAmount is set at the start of the program, and defines the amount of space by
which to offset a junior dialog. The term "junior dialog" in this section refers to a dialog that is popped
up by a "senior dialog", and in the sample code refers to any of the classes Child, GrandChild,
andGreatGrandChild. "Senior dialog" refers to the dialog that pops up a junior dialog, and in the
sample code refers to any of the classes Parent, Child, and GrandChild

In brief, the method getPopupPos is used by a senior dialog to establish where it wants a junior dialog
to pop up. The junior dialog then uses the offset method to (a) move itself to the desired position, and
(b) to ensure that it is wholly visible on the screen and not partly off the screen.

In detail:
• getPopupPos - This method is used by the senior dialog to establish where on the screen the junior

dialog is to appear (relative to the senior dialog). The first statement popupPos = self~getRealPos
gets the position of the senior dialog as a point object (see ooDialog Reference) whose attributes
are the point's x and y screen coordinates (that is, the top-left corner of the dialog). The point object
is assigned to popupPos.

• The second statement, offset = .View~offsetAmount gets the offset amount stored in the class
attribute.

• Then the statement popupPos~incr(offset,offset) increments each coordinate of the popupPos
object by the amount defined by offset. That is, popupPos is now the desired new position of the
junior dialog.

• Finally, the desired junior dialog's position is returned, and the senior dialog then passes it to the
junior dialog when the latter is created via its newInstance method.

• offset - This method is invoked from the the junior dialog's initDialog method in order
to move itself to the position (dlgPos) defined by the senior dialog. The first statement
(self~moveTo(dlgPos,'SHOWWINDOW')) moves the dialog. However, if the senior dialog is near
the bottom or right-hand edge of the screen, the junior dialog could surface half-off the screen in the
correct offset position. But half-off the screen is not particularly friendly.So...

• ... the last statement (self~ensureVisible()) ensures that the current dialog is wholly visible.
However, because it's so fast, you don't see this re-positioning. To see the re-positioning, insert

74

Visual Offsetting

call sysSleep(2) just before the last statement, run the program, and move the parent dialog to the
bottom of the screen. Then popup the child dialog. It appears half-off the screen, then after two
seconds it snaps up to a wholly-visible position. Neat.

75

Appendix C. Dialog Creation Methods
This appendix provides a programmer's aide-memoire for the methods required to create and set up
a dialog using one of the more usual superclasses - UserDialog, RcDialog or ResDialog. Menu
creation is included even though this is technically quite separate from dialog creation, and does not
have to be done in the init method.

The following table shows, for each of the three main dialog types, the method invocations that the
programmer must code and the methods (invoked by ooDialog-provided superclasses as part of the
dialog creation framework) that the programmer must provide.

Table C.1. Dialog Creation - Method Sequences

 Methods /
 ~Invocations

UserDialog RcDialog ResDialog Comment

.Dlg~new(...) Yes. Yes. Yes. Class Method

init Yes.
 Yes.
 Create Menubar
 .ScriptMenuBar~new

Yes.
 Must be passed to
 the superclass using
 forward class
 (super) continue

defineDialog
 Yes.
 Programmer creates
 the Dialog Template
 using
 self~create...(...)

 Optional.
 Dialog Template is
 defined by the *.rc
 file, but additional
 controls (or menu
 items) can be added
 here.

 No.
 Not invoked -
 Dialog Template is
 defined by the *.dll
 file - so controls or
 menu items cannot
 be added.

 Called by super's
 init method
 (but not for
 ResDialogs)

 Purpose: create the
 Dialog Template.

dlg~execute Yes. Yes. Yes.
 Creates the Under-
 lying Dialog based
 on the Dialog
 Template

initDialog
 Create "proxies" for
 controls and initialize
 them using
 ctl=self~new...(...)

 Create Menubar
 .BinaryMenuBar
 ~new()

 Create "proxies" for
 controls and initialize
 them using
 ctl=self~new...(...)

 Attach Menubar using
 ~attachTo(self)

 Create "proxies" for
 controls and initialize
 them using
 ctl=self~new...(...)

 Create Menubar
 .BinaryMenuBar
 ~new()

 Called automatically
 after ~execute is
 invoked.

First, as for all ooRexx objects, the ~new method creates an instance of a dialog class, and the init
method is then invoked on the new instance, which must invoke the superclass' init using forward
class (super) continue. For RcDialog subclasses, a menubar could be created in this method, but
could also be created later.

The defineDialog method (see the ooDialog Reference) is invoked automatically by the superclass' init
method. This method provides for the creation of the "Dialog Template" (see the ooDialog Reference)
- that is, the layout of controls on the dialog. For a UserDialog the dialog template must be created
using self~create(...) instructions. For an RcDialog the dialog template is normally fully-defined by
the *.rc file, but can optionally be enhanced here. However, in the case of ResDialog, the dialog
template is fully-defined by the *.dll file, and cannot be changed programmatically. Therefore, a
defineDialog message is not sent to a ResDialog.

On exit from the defineDialog method, the dialog template is established.

76

The "underlying dialog" (see the ooDialog Reference) is then created and surfaced (made visible to
the user) by invoking the superclass' execute method.

The last method in the table - initDialog - is provided for the programmer to initialize the various
controls, e.g. setting an edit control to its initial data value, or pre-selecting a radio button. This is done
by creating "proxies" for those controls that need to be manipulated within the program, typically using
proxy = self~new...(...) statements. It's worth remembering that the "init" in initDialog means "initialize"
- not to be confused with the ooRexx init method.

Finally, although the creation of a menubar is mentioned in the table, technically it is not part of dialog
creation. A menubar can be created any time. However, it can only be attached to a dialog after the
underlying dialog is created. Thus the first opportunity to attach a menubar to the dialog is in the
initDialog method; but it can be done later.

77

Appendix D. The Model-View
Framework
A description of the Model-View Framework (MVF) is given in MVF Overview. This appendix provides
some further detail on certain aspects of the MVF. By the way, the MVF should really be called "Model-
View-Data Framework", since it also encompasses data components; however, historically such
frameworks have omitted the term "data" in their names, and here we lazily conform with precedence.
The following areas are addressed:

• A brief review of what is meant by "component"

• The classes that make up the MVF

• An "under-the-covers" example of a common MVF operation.

D.1. Components, Files, and Folders
A "component" is one of three kinds: a Model, View, or Data component. A component may have
more than one class. For example, the "ProductView" component (in the Exercise07\Product
folder) consists of three classes: ProductView, AboutDialog, and HRSpv. The first of these is the
"main" class in the component (sometimes called the "focus class"), the other two being "subsidiary"
classes (sometimes called "support" classes). The ProductView component, together with the
ProductModel, ProductListModel, ProductListView, and ProductData components
make up the "Product Business Component". Thus a "business component" consists of one or
more components, each of which has a "main" class and naught or more subsidiary classes. Thus
(by design) a Business Component is a collection of components that implements all and only
a significant business concept.1 Finally, a business component is packaged within a folder that
bears its name, the individual components being packaged in .rex files. Thus the Product business
component is the folder Product which contains a number of files, most of them executables such
as ProductModelsData.rex which contains the ProductModel, ProductListModel, and
ProductData components.

D.2. MVF Classes

The Model-View Framework (MVF) manages the components that are assembled to make up an
application. There are two main parts to the MVF:
• Two management classes called the "Object Manager" (ObjectMgr.rex) and the "View

Manager" (ViewMgr.rex)

• A set of superclasses - Model, GenericFile, and three View superclasses - RcView.rex,
ResView.rex, and UdView.rex. The three View superclasses are identical except for their
superclasses - RcDialog, ResDialog, and UserDialog respectively.2

All MVF classes are in the Exercises/Support folder.

1The definition of a "significant business concept" in the context of components has been addressed in a number of sources,
including "Enterprise Service-Oriented Architectures", McGovern, Sims, Jain & Little, Springer 2006.
2The three View superclasses should properly be mixins rather than different files, and a future version of the Guide may take
this approach.

78

Management Classes

D.2.1. Management Classes

D.2.1.1. The Object Manager

The Object Manager is at the heart of the Model-View Framework. Its public methods are described
in The Object Manager. Briefly, the function of the Object Manager is to relieve the programmer from
having to be concerned with the various management aspects in a multi-dialog application. Thus
the Object Manager, in conjunction with other MVF classes, implements common patterns such as
the "get component id" pattern, and the "show a view of a model" pattern. An example of how the
getComponentId method works is shown below in Section D.3, “MVF Operations”.

D.2.2. The View Manager

The View Manager manages common function to do with views (or dialogs) that are not appropriate
(from a design point of view) for the View superclasses.

In Exercise 7, View Manager is used only for offsetting dialogs, which is demonstrated by
PersonView (in the Exercise07\Extras\Person folder). First, un-comment the statement
"self~offset:super in the initDialog method. Then launch a Person Model instance using
Message Sender to send a showModel message with the data, PersonModel PA150 to the Object
Manager. The person dialog appears offset from the Message Sender.

The offsetting is done by the two dialogs involved: the "parent" dialog from which offsetting is to be
done, and the "offset" dialog that appears offset from the parent. The sequence of operation is as
follows:

 A. Setup:
 1. ViewMgr sets its 'dlgOffset' attribute in its 'init' method (set to 200
 in Exercise 7).

 B. Execution:
 1. The parent dialog (e.g. MessageSender) sets itself as the 'parent' (from which
 offsetting is to be done) by setting ViewMgr's 'parentOffsetDialog' attribute.
 2. The parent launches the 'child' offset dialog by sending 'showModel' to the
 Object Manager.
 3. The offset dialog (e.g. Person View) issues 'self~offset:super' in its
 'initDialog' method.
 4. This is handled by the superclass (RcView for PersonView), which first asks
 ViewMgr for the offset amount (attribute 'dlgOffset'), and then moves the new
 dialog by the offset amount.

Note that application components only do steps 1, 2, and 3, the code for which is as follows:

 1. Parent - <some method>: .local~my.ViewMgr~parentOffsetDlg = self
 2. r = .local~my.objectMgr~showModel(childModel, -
 childInstance, rootDlg)
 3. Child - initDialog: self~offset:super

In summary, using the MVF, it takes very little effort by the application programmer to perform dialog
offsetting.

D.2.3. Component Superclasses

Superclasses provided for application components are: Model, GenericFile, and a set of view (or
dialog) superclasses: RcView, ResView, and UdView. These are described in MVF Overview.

79

MVF Operations

D.3. MVF Operations
The following shows the sequence of operations that takes place when a getComponentId operation
is invoked on the Object Manager. For this example, it is assumed that no instance exists at the start
of the operation.

 (1) X --> invokes "getComponentId('PersonModel','PA150') on ObjectMgr.
 (2) <-- ObjectMgr, if the object ref for "PersonModel PA150" exists, returns it to X.
 (3) Else ObjMgr invokes "newInstance" (with the instance name "PA150" as an
 argument) on .PersonModel.
 (4) --> .PersonModel forwards to its superclass (.Model) which, in order to get
 this instance's data, invokes "getComponentId('PersonData','The')" on
 ObjectMgr.
 (5) --> ObjectMgr, if "PersonData The" exists,
 (6) <-- returns its object ref to .Model.
 (7) Else ObjectMgr invokes "newInstance", with the instance name "The",
 on .PersonData.
 (8) --> .PersonData creates an instance of itself ("Person Data The") and
 the instance's 'init' method uses its superclass to read its file
 from disk.
 (9) <-- The object ref for "PersonData The" is returned to ObjectMgr.
 (10) <-- ObjectMgr stores the object ref (and name) for "PersonData The",
 and returns it to .Model.
 (11) .Model then invokes "query", with the instance name ("PA150"),
 on "PersonData The".
 (12) --> "PersonData The" uses its superclass ("GenericFile") to read
 the data from disk, and
 (13) <-- returns the instance data (as a directory) to .Model.
 (14) .Model issues "self~new" with the instance data as a parameter,
 so creating a PersonModel instance.
 (15) --> PersonModel's init method saves the data and
 (16) <-- returns to .Model
 (17) <-- .Model returns the id to ObjectMgr.
 (18) X <-- ObjectMgr returns the id to X.

The Object Manager maintains a table of all active component instances. They can be listed on the
console by using the Message sender to send a list message to ObjectMgr The. See The Object
Manager for a description of the Object Manager's public methods.

D.4. Class Naming Constraints
The software architecture used for the Order Management application defines several different kinds
of component. These are "Named", "Singleton", "Anonymous", and "Form", and are fully described
in Section 7.3.1, “Kinds of Component”. The MVF must be aware of these differences, since the fine
detail of its operations sometimes depend on the kind of class being dealt with. For example, one
difference between showing a view of a Customer and showing a view of a Customer List is that
the former requires one record to be returned from the Customer Data component, while the latter
requires the complete file to be returned. In Exercise07, the MVF discovers what kind of component
is being dealt with by specific words in the class name ("List", "Form") or by the instance name being
"A" or "a". A better way of specifying the kinds of component could be through configuration, where the
folder for each component would contain a configuration file which the MVF would read.

D.5. The Requires List

An oorexx class that is instantiated from another file must be specified in an ooRexx "requires"
statement. However, in the MVF, component instantiation (or, to be precise, instantiation of the
main class in a component) is handled by ObjectMgr. This mean that ObjectMgr must provide
a ::requires statement for each component. However, to avoid changing the ObjectMgr.rex

80

The Requires List

file, a separate file (RequiresList.rex in the Exercise07 folder) containing only the desired
set of ::requires statements is used. ObjectMgr.rex calls this file as a routine (call
"RequiresList.rex") as its first executable statement. In this way, additional components can be
added to the application merely by adding their file names to this file. Of course, if a configuration file
approach were to be used, then the MVF could generate the appropriate RequiresList file.

81

Appendix E. Direct Manipulation
This appendix provides an overview of the internals of the direct manipulation or "drag/drop" function
provided from Exercise08 onwards. Drag/drop is handled by a framework that relieves the application
developer from almost all of the necessary complexities of drag/drop. This framework is implemented
by a cooperation between the View superclass and a new "manager" class, the Drag Manager
(DragMgr.rex) both of which are located in the Exercise08\Support folder. A description of the
application developer's view of drag/drop is provided in Chapter 8, Direct Manipulation.

This Appendix discusses the following aspects of the "mechanics" of drag/drop:

• The Mouse Class

• Factoring the Drag/Drop Code

• Enabling Drag/Drop

• Pickup and Drag

• Drop on Target

E.1. The Mouse Class
Drag/drop is enabled through ooDialog's Mouse class. When a window (a dialog or a control such
as a List View) is to be the source of a drag operation, then an instance of the Mouse class must
be instantiated (typically in the dialog's initDialog method) and associated with the window. For
example:

 mouse = .Mouse~new(self)

Mouse events are then connected to the mouse instance. For example, here's the code for connecting
a left-button-down (aka "start drag" or "pickup") event:

 mouse~connectEvent('LBUTTONDOWN', dmOnLBdown)

This defines the method dmOnLBdown as the event handler for a pickup. Other drag/drop events
include mouse movement (dragging with the left button down) and a drop (left button up).

When the user presses and holds the left mouse button then a pickup event is detected, and the "Left
Button Down" event handler method is invoked. In this method, the mouse instance is "captured" as
follows:

 if mouse~dragDetect(...) then do
 ...
 mouse~capture()
 ...
 end

The dragDetect method returns .true if the user has indeed started dragging. Note that all drag/
drop events are sent to the object in which the mouse was instantiated - and each mouse instance
is affiliated with a specific window object. For clarity, in the above code various statements to do with
setting the drag cursor and establishing the initial state of the drag operation (e.g. the "we're not over a
target" state) are omitted.

82

Factoring the Drag/Drop Code

E.2. Factoring the Drag/Drop Code
Drag/drop code is not particularly simple. So the question is, can the code be factored so that much of
the detail can be delegated so that the application developer finds drag/drop easy to implement? To
answer this, we start by defining the things that must be done by the application developer; everything
else can then be delegated to a superclass or other "manager" object. This minimum set, for simple
drag/drop operations between dialogs, is as follows:
• Define the dialog window (or control window within a dialog) that is to be the drag/drop "source" (i.e.

that it can be picked up). This includes:
• The area within the window from which a pickup is valid.

• The cursor icon to be used in dragging from a source window.

• Define the dialog window (or a control window within a dialog) that will accept a drop. This includes
the area within the window in which a drop is valid.

Definition of both source and target dialogs is handled by an invocation of the superclass in an
application dialog's initDialog method (as discussed in the next section). Everything else is
handled by the View superclass (the superclass of all "view" components and located in the Support
folder).

Finally, View delegates most of the detailed handling of a drag/drop operation to the Drag Manager
(DragMgr.rex - also located in the Support folder).

E.3. Enabling Drag/Drop
In Exercise08, all mouse events are registered in the View superclass. However, only an application-
level dialog can define itself as a potential source for a drag operation. It does this by supering (from
its initDialog method) a dmSetAsSource message (as shown at the top of Figure E.1, “Drag/Drop
Setup”). A mouse instance is created in the superclass's dmSetAsSource method and the pickup,
drag, and drop events are connected to View methods. Finally, View sends a setSource message
to the Drag Manager informing it that a new source dialog is present (the dialog's mouse instance
being included as one of the arguments). The Drag Manager stores this information in a table. When
a drag is started, it is the Drag Manager that manages the fine detail of the operation, finding the right
mouse instance from its table of source and target windows.

Now, if mouse events are fired during drag/drop, then what object instance receives these events?
The answer is the object that instantiated the mouse - that is, the application-level view component -
although handling these events is done in the View superclass, from where they're passed to the Drag
Manager.

83

Enabling Drag/Drop

The diagram "Figure E.1, “Drag/Drop Setup”" shows how components are enabled for either dragging
or dropping.

Figure E.1. Drag/Drop Setup

In the diagram, a component view that can be "picked up and dragged" is called a source dialog.
 It defines itself as a "source" by supering to View a dmSetAsSource message (typically from
its initDialog method). There are three parameters to this message: first (obligatory) is the file
name of the cursor to show when dragging (a *.cur file), and second (optional) the area of the
source dialog from which it's valid to "pick up" - i.e. to start dragging, and the third (optional) is a
control window when the pickup is from a specific control in the dialog. If the second parameter is not
provided, then the superclass defaults to the dialog area less 10 on each side. If the third argum,ent is
not provided, it default to the dialog window.

In its dmSetAsSource method, View first creates an instance of the .Mouse class, and registers
three event handling methods - LBUTTONDOWN), MOUSEMOVE and LBUTTONUP. If these events are
not defined then drag/drop operations are ignored. It then invokes the setSource method of the
Drag Manager with five arguments: the source window, the mouse instance, the cursor filename, the
source's valid pickup area, and the source dialog. The Drag Manager then adds the source window
to its table of sources. Note that if a dmSetAsSource message is not supered by a dialog, then no
mouse events are handled, and so nothing happens when mouse button 1 is pressed and held.

A view component that will accept a drop is called a target dialog. It defines itself as a target
by supering a dmSetAsTarget message (typically from its initDialog method) to its View
superclass. The only argument is the area in the dialog in which a drop is allowed. If omitted,
the default is the dialog client area less 10 on each side. View then invokes the Drag Manager's
setTarget method with three parameters: the dialog id, the dialog's window handle, and area within
the dialog within which a drop is allowed.

84

Pickup and Drag

Finally, note that a view component can be both a source and a target.

E.4. Pickup and Drag
The top part of the following figure shows the pickup and drag operation. The lower half shows a drop.

Figure E.2. Drag/Drop Operation

The operation is as follows:
1. The operation starts with the user pressing and holding the "primary" button (usually the left

button) of the mouse while over a "source" dialog. This results in the event LBUTTONDOWN being
signaled to the source dialog. This is handled by the View superclass's dmOnLBdown method,
which in turn invokes the Drag Manager's dmPickup method. The Drag Manager then "captures"
the mouse instance (using the Mouse class's capture method). This results in all mouse
messages being sent to the source dialog where they are handled by the View superclass.

2. As the mouse is dragged, multiple MOUSEMOVE events are handled by the View superclass, which
delegates them to the Darg Manager. For each such message, the Drag Manager checks if the
mouse is over a target that’s registered in its Target Table. If no, then nop. If yes, then a possible
target has been found, at which point the Drag Manager:

• Sends a dmQueryDrop message to the class object of the target view's model with source's
model class name as the single parameter. Why the class object? And why that of the target
view's model? The reason is that, in the general case, the user may drag the mouse across a
large number of possible targets such as multiple entries in a list view. And it could well be that

85

Drop on a Target

each item in the list represents a model and view instance (e.g. a list of Customers). Further,
it may well be that none of them are instantiated (which could well involve accessing a data
base of some sort). Now all that's required for the drag operation is a simple yes/no answer: can
the source be dropped or not. Thus in order to avoid excessive and pointless processing, the
model's class object is invoked. The target object returns a simple yes or no as to whether as
drop on an instance of the target class is permissible.

• If the potential target returns true, then the Drag Manager set the cursor to the "drop OK"
cursor - that is, the cursor provided by the source dialog when it told its superclass that it was a
potential drag source.

E.5. Drop on a Target
The drop is illustrated diagrammatically in the bottom half of Drag/Drop Operation. A dialog (or a
control within a dialog) sets itself as a potential drop target by supering a dmSetAsTarget message.
The View superclass then sends the Drag Manager a setTarget message with three parameters:
the dialog id, the dialog's window id, and the drop area. The Drag Manager stores this information in
a table. A drop occurs when the user releases the left button. When this happens, the event handling
method dmOnLBup in the View superclass is invoked. View then sends the Drag Manager a dmDrop
message. This has three arguments: the dialog id, the key state, and the mouse position. The Drag
Manager first releases the mouse and resets the mouse cursor. Then it sends a dmDrop message to
the target view's model object, with two arguments: the model id of the source object, and the source
dialog's id.

The target object then does whatever it wishes to do. Often target's action is to send a query
message to the source model in order to get its data. The drag-drop operation is now complete.

86

Appendix F. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

F.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advanced Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

87

Source Code For This Document

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

F.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix G, Common Public
License Version 1.0. The source code is available at https://sourceforge.net/p/oorexx/code-0/HEAD/
tree/docs/.

The source code for this document is maintained in DocBook SGML/XML format.

The railroad diagrams were generated with the help of "Railroad Diagram Generator" located at
https://github.com/GuntherRademacher/rr. Special thanks to Gunther Rademacher for creating and
maintaining this tool.

R R

88

https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://github.com/GuntherRademacher/rr

Appendix G. Common Public License
Version 1.0
THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

G.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program
by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

G.2. Grant of Rights
1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement

89

Requirements

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

G.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

G.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified

90

No Warranty

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

G.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

G.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE
OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

G.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.

91

General

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.
The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify
this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve
as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

92

Appendix H. Revision History
Revision 1-0 Fri Jan 4 2013 Oliver Sims

First version, exercises 02-06.

Revision 1-1 Fri Mar 22 2013 Oliver Sims
Second version, exercises 02-07.

Revision 1-2 Fri Aug 31 2013 Oliver Sims
Third version, exercises 02-08.

93

Index

Symbols
.Application

and Unit-Testing, 35
setDefaults, 16

A
Accelerator key

in menus, 26
activate method

in View superclass, 53
Attributes, of a dialog, 69
Autoconnection, 19
AutoDetection

turning off, 70
Automatic data detection, 69

B
Binary Resource Dialogs, 23
Binary resource files, 23
Bitmap Editor, 44
Blocking

concurrency issue, 10
Business Component, 7, 78

C
Class methods

newInstance, 23
Code structure, 7
Common Public License, 89
Compilation

DLLs, 23
Compiling a resource file, 24
Component, 9

Kinds of, 54
Name, 49
Person, 50

Component concepts, 7
Reference, 7

Component names
Naming convention, 36

Concurrency issue, 10
Control

Re-sizing, 57
Control Dialog, 59, 59
Controls

ListView, 39
RadioButton, 25
Styles, 27

Controls Library, 27
Convention

Naming, 13
Coupling, 9
CPL, 89
Creating an Image, 27
CustomerView component, 12

D
Data Types, 28
DateTime class, 60
DateTimePicker, 60
Debugging, 53
defineSizing method, 58
Design of a dialog, 30
Design, of dialogs, 12
Dialog

Creation, 76
Design, 30
Re-sizing, 57

Dialog Attributes, 69
Dialog Data, 69
Dialog template, 12
Direct manipulation, 61, 82

Source dialog, 84
Target dialog, 84

dlgdata, 69
DLL

Compiling, 23
Drag-Drop, 61
Drag-drop, 82

E
Edit control

Numeric-only, 25
Event handler, 19

Public method, 19
Exercise location, 2

F
File path, 34
Font

in a ListView, 43

G
Generic File, 53
getFile method, 54
getInstanceName, 52
getRecord method, 54
globalConstDir, 16

I
Icon editor, 44
Icons

in a ListView, 39

94

Image
creating, 27

Internationalization, 35

K
Kinds of component, 54

L
leaving

method, 28
leaving method, 53
License, Common Public, 89
License, Open Object Rexx, 89
list method, 54
List View

Sorting, 44
ListView, 39

Font, 43
Location

of Exercises>, 2

M
Main class, 78
Maximize Button, 28
menuBar

RcDialog, 19
Menus

Accelerator key, 26
Message Sender, 57

Debugging, 53
methods

leaving, 28
Methods

defineSizing, 58
Dialog Creation, 76

Microsoft
Controls Library, 27

Minimize Button, 28
Mixins, 64
Model, 79

Methods, 52
Model-View Framework

Internals, 78
Multiple inheritance, 64
MVF

GenericFile, 53
Model, 52
Object Manager, 51
View, 53

MVF classes, 78
Model, 79
Object Manager, 79
View Manager, 79

N
Name

Component, 49
Naming convention

Components, 36
Naming conventions, 13
newInstance, 52

Class method, 23
Notices, 87
Numeric edit control, 25

O
Object Manager, 79

Methods, 51
offset method, 53
ooRexx License, 89
Open Object Rexx License, 89
Order Form dialog, 58
OrderForm

DateTime class, 60
DateTimePicker, 60

OrderFormModel, 52
OrderMgr component, 33
overview, 2

P
Parents

Popups, 36
Password dialog, 46
Person component, 50
Point object, 74
PopupAsChild, 37
Popups

Parents, 36
PopupAsChild, 37
Stand-alone Testing, 72

ProductView component, 23
Property Sheet, 59
Property Sheet Page, 59
Proxy for controls, 18

Q
Query method, 52

R
Radio Button, 25
RcDialog

menuBar, 19
RcView, 53
Re-sizing

Controls, 57
Dialogs, 57

Requires List, 80

95

ResDialog, 23
Resource files needed, 24

Resource definition, 12
Resource Dialogs, 12
Resource File, 12
Resource file

Binary, 23
Compiling, 23

Resource files
ResDialog, 24

Resource numbers, 5
ResView, 53

S
setDefaults, 16
Source dialog, 84
Standalone testing, 72
Styles

Controls, 27
Subsidiary class, 78
Superclasses

GenericFile, 53, 53
Model, 52
View, 53

T
Tab Control

Control Dialog, 59
Property Sheet, 59

Tab order, 14
Target dialog, 84
Testing

Popups, 72

U
UdView, 53
Unguarded, 10
Unguarded method, 19
Unit-testing

Placement of .Application statement, 35
Utility routine

PasswordBox, 46

V
View

Methods, 53
View Manager, 79
View superclass

activate method, 53
leaving method, 53
offset method, 53

96

	ooDialog User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Notes and Warnings

	2. How to Read the Syntax Diagrams
	3. Getting Help and Submitting Feedback
	3.1. The Open Object Rexx SourceForge Site
	3.2. The Rexx Language Association Mailing List
	3.3. comp.lang.rexx Newsgroup

	4. Related Information

	Chapter 1. About This Book
	1.1. Who Should Use This Book
	1.2. How This Book is Structured

	Chapter 2. Hello ooDialog World
	2.1. Getting Started
	2.2. Visible Behavior
	2.2.1. Adding Controls to the Dialog
	2.2.2. Making The Controls Work

	Chapter 3. Re-Structuring the Code
	3.1. Fixing the Structure
	3.1.1. The "View" Component
	3.1.2. The "Model" Component
	3.1.3. The "Data" Component

	3.2. Reducing Coupling

	Chapter 4. Using Resource Dialogs
	4.1. Naming and Coding Conventions
	4.1.1. Naming Conventions
	4.1.2. Coding Conventions

	4.2. Resource Scripts and Resource File Editors
	4.3. Coding an RcDialog Class
	4.3.1. Setting Up the Dialog Window
	4.3.2. Specifying the Active Controls
	4.3.3. Application Data and Function
	4.3.3.1. The getData and showData Methods
	4.3.3.2. The update and recordChanges Methods

	Chapter 5. Using Binary Resource Dialogs
	5.1. Dialog Initiation
	5.2. Using a Binary Resource File
	5.2.1. DLL Compilation
	5.2.2. Differences between RcDialog and ResDialog

	5.3. Dialog Controls
	5.3.1. Radiobuttons
	5.3.2. The Numeric Edit Control
	5.3.3. Menu Accelerators
	5.3.4. The "About" Dialog
	5.3.4.1. Creating the Image
	5.3.4.1.1. Defining the Image
	5.3.4.1.2. Mapping an Image to a Picture Control

	5.3.4.2. Making the Image "Active"

	5.3.5. Minimize and Maximize Buttons

	5.4. Code Structure
	5.4.1. Data Types
	5.4.2. View Data vs Application data
	5.4.3. Multiple Dialogs per File
	5.4.4. Externalized Strings

	5.5. Designing a Dialog
	5.6. Controlling Dialog Cancel

	Chapter 6. An Application Workplace
	6.1. Program Structure
	6.1.1. Overview
	6.1.2. Some Implications
	6.1.2.1. File Paths
	6.1.2.2. .Application Usage
	6.1.2.3. Externalized Strings

	6.1.3. Application Function and Naming

	6.2. Popups and Parents
	6.2.1. Starting a Popup Dialog
	6.2.2. Offsetting Dialogs
	6.2.3. Use of 'Interpret'

	6.3. Icons and Lists
	6.3.1. The Icon View
	6.3.2. The Report View

	6.4. Re-sizing Dialogs
	6.5. Creating Icons
	6.6. Utility Dialogs

	Chapter 7. Towards A Working Application
	7.1. Introduction
	7.2. The Model-View Framework
	7.2.1. MVF Objective
	7.2.2. MVF Overview
	7.2.3. An Example - The 'Person' Component
	7.2.4. MVF Classes
	7.2.4.1. The Object Manager
	7.2.4.2. The 'Model' Superclass
	7.2.4.3. The 'View' Superclass
	7.2.4.4. The 'GenericFile' Superclass

	7.3. Components and Data
	7.3.1. Kinds of Component
	7.3.2. GenericFile Data Formats
	7.3.3. Compound Data

	7.4. The Message Sender
	7.5. Revisiting Re-sizing
	7.6. The Order Form
	7.7. Completing the Application

	Chapter 8. Dialog-to-Dialog Drag-Drop
	8.1. Introduction
	8.2. Direct Manipulation
	8.3. Refactoring the MVF
	8.4. Using the MVF
	8.5. Event Management
	8.6. The Order Form
	8.7. To Be Continued

	Appendix A. Dialog Attributes and AutoDetection
	Appendix B. Testing Popups in Stand-Alone Mode
	B.1. Stand-Alone Testing
	B.2. Visual Offsetting

	Appendix C. Dialog Creation Methods
	Appendix D. The Model-View Framework
	D.1. Components, Files, and Folders
	D.2. MVF Classes
	D.2.1. Management Classes
	D.2.1.1. The Object Manager

	D.2.2. The View Manager
	D.2.3. Component Superclasses

	D.3. MVF Operations
	D.4. Class Naming Constraints
	D.5. The Requires List

	Appendix E. Direct Manipulation
	E.1. The Mouse Class
	E.2. Factoring the Drag/Drop Code
	E.3. Enabling Drag/Drop
	E.4. Pickup and Drag
	E.5. Drop on a Target

	Appendix F. Notices
	F.1. Trademarks
	F.2. Source Code For This Document

	Appendix G. Common Public License Version 1.0
	G.1. Definitions
	G.2. Grant of Rights
	G.3. Requirements
	G.4. Commercial Distribution
	G.5. No Warranty
	G.6. Disclaimer of Liability
	G.7. General

	Appendix H. Revision History
	Index

