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Overview
● Multithreading (MT)
● Howto kick off MT
● Guard lock
● Semaphores
● Roundup



3 Prof. Rony G. Flatscher

Multithreading
● Multithreading

– Parallel (concurrent) execution of parts of a program on different (multiple) 
"threads of execution" within a process

● ooRexx MT
– Inter-object MT

● Different objects can execute methods on different threads concurrently
– Intra-object MT

● In a specific object methods from different class (scopes) can execute on different 
threads concurrently
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Howto Kick Off MT, 1
● Externally

– E.g. a GUI dispatches messages concurrently from the GUI thread

● From within ooRexx programs
– REPLY keyword statement in methods

● Returns from the method and
● Remainder of the method gets executed on a separate thread 

– START message of the root class .Object
– START message to a message object (instance of .Message)
– .Alarm class dispatching a message on a separate thread
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Howto Kick Off MT, REPLY, 2
p=.PingPong~new
p~ping      -- will reply
do i=1 to 4
   say ti(.context) "pong #" i "(sleeping 0.10s)"
   call sysSleep 0.1       -- sleep 1/10 second
end

::class PingPong
::method ping
  reply     -- return, remainder on new thread
  do i=1 to 4
     sleepTime=random(1,10)/100  -- sleep between 1/100 and 1/10 seconds
     say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
     call sysSleep sleepTime
  end

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I2] pong # 1 (sleeping 0.10s)
[T2] [I1] ping # 1 (sleeping 0.05s)
[T2] [I1] ping # 2 (sleeping 0.09s)
[T1] [I2] pong # 2 (sleeping 0.10s)
[T2] [I1] ping # 3 (sleeping 0.07s)
[T2] [I1] ping # 4 (sleeping 0.09s)
[T1] [I2] pong # 3 (sleeping 0.10s)
[T1] [I2] pong # 4 (sleeping 0.10s)

Possible output:
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Howto Kick Off MT, .Object's START, 3
p=.PingPong~new
p~start("ping")      -- Object's start method
do i=1 to 4
   say ti(.context) "pong #" i "(sleeping 0.10s)"
   call sysSleep 0.1 -- sleep 1/10 second
end

::class PingPong
::method ping        -- will run on separate thread
  do i=1 to 4
     sleepTime=random(1,10)/100  -- sleep between 1/100 and 1/10 seconds
     say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
     call sysSleep sleepTime
  end

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I1] pong # 1 (sleeping 0.10s)
[T2] [I2] ping # 1 (sleeping 0.02s)
[T2] [I2] ping # 2 (sleeping 0.01s)
[T2] [I2] ping # 3 (sleeping 0.05s)
[T1] [I1] pong # 2 (sleeping 0.10s)
[T2] [I2] ping # 4 (sleeping 0.01s)
[T1] [I1] pong # 3 (sleeping 0.10s)
[T1] [I1] pong # 4 (sleeping 0.10s)

Possible output:
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Howto Kick Off MT, .Message's START, 3
p=.PingPong~new
m=.message~new(p,"ping")
m~start              -- Message's start method
do i=1 to 4
   say ti(.context) "pong #" i "(sleeping 0.10s)"
   call sysSleep 0.1 -- sleep 1/10 second
end

::class PingPong
::method ping        -- will run on separate thread
  do i=1 to 4
     sleepTime=random(1,10)/100  -- sleep between 1/100 and 1/10 seconds
     say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
     call sysSleep sleepTime
  end

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I1] pong # 1 (sleeping 0.10s)
[T2] [I2] ping # 1 (sleeping 0.02s)
[T2] [I2] ping # 2 (sleeping 0.08s)
[T1] [I1] pong # 2 (sleeping 0.10s)
[T2] [I2] ping # 3 (sleeping 0.03s)
[T2] [I2] ping # 4 (sleeping 0.09s)
[T1] [I1] pong # 3 (sleeping 0.10s)
[T1] [I1] pong # 4 (sleeping 0.10s)

Possible output:
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Howto Kick Off MT, .Alarm, 3
p=.PingPong~new
do i=1 to 4
   sleepTime=random(1,10)/100  -- sleep between 5/100 and 1/10 seconds
   .alarm~new(sleepTime,.message~new(p,'ping','i',i,"in an alarm" sleepTime))
   say ti(.context) "pong #" i "(sleeping 0.10s)"
   call sysSleep 0.1 -- sleep 1/10 second, no alarms can be created for 0.1s !
end

::class PingPong
::method ping        -- alarm will run on a separate thread
  use arg i, sleepTime
  say ti(.context) "ping #" i "(sleeping" sleepTime"s)"

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I2] pong # 1 (sleeping 0.10s)
[T2] [I3] ping # 1 (sleeping in an alarm 0.02s)
[T1] [I2] pong # 2 (sleeping 0.10s)
[T2] [I5] ping # 2 (sleeping in an alarm 0.02s)
[T1] [I2] pong # 3 (sleeping 0.10s)
[T2] [I7] ping # 3 (sleeping in an alarm 0.04s)
[T1] [I2] pong # 4 (sleeping 0.10s)
[T2] [I9] ping # 4 (sleeping in an alarm 0.1s)

Possible output:
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Guard Lock, 1
● By default all methods of a class are guarded
● Only one of the guarded method of a class can execute, after acquiring 

the guard lock, all other guarded methods of the class are blocked
– Therefore all guarded methods of a class can only execute sequentially! 

● A guarded method can invoke other methods which get the guard lock 
and increase the guard lock count by one
– Upon return the guard lock count gets reduced by one

● If a guarded method returns and the guard lock count drops to 0, then 
one of the blocked methods will become executable and gain the guard 
lock
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Guard Lock, 2
● A guarded method owning the guard lock can free the guard lock with 

the GUARD OFF keyword statement and turns into an unguarded 
method

● An unguarded method may wish to acquire the guard lock by issuing 
the GUARD ON keyword statement and turns into a guarded method 
that gets blocked until the guard lock gets acquired
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Guard Lock, 3
p=.PingPong~new
p~start("ping")   -- dispatch message on a new thread
p~start("pong")   -- dispatch message on a new thread
do until p~done=2
  call syssleep 0.01
  say "p~done="p~done
end

::class PingPong
::method init
  self~done=0        -- initialize attribute
::method ping        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     say ti(.context) "ping #" i
  end
  self~done+=1

::method pong        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     say ti(.context) "pong #" i
  end
  self~done+=1

::attribute done

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3] [I2] ping # 1
[T3] [I2] ping # 2
[T3] [I2] ping # 3
[T3] [I2] ping # 4
[T2] [I3] pong # 1
[T2] [I3] pong # 2
[T2] [I3] pong # 3
[T2] [I3] pong # 4
p~done=2

Possible output:
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Guard Lock, 4
.traceObject~option="Standard"
p=.PingPong~new
p~start("ping")   -- dispatch message on a new thread
p~start("pong")   -- dispatch message on a new thread
do until p~done=2
  call syssleep 0.01
  say "p~done="p~done
end

::class PingPong
::method init
  self~done=0        -- initialize attribute
::method ping        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     trace all
     say ti(.context) "ping #" i
     trace normal
  end
  self~done+=1

::method pong        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     trace all
     say ti(.context) "pong #" i
     trace normal
  end
  self~done+=1

::attribute done

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3  I2  G  A1  L1  * ]     17 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 1
[T3  I2  G  A1  L1  * ]     18 *-*   trace normal
[T3  I2  G  A1  L1  * ]     17 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 2
[T3  I2  G  A1  L1  * ]     18 *-*   trace normal
[T3  I2  G  A1  L1  * ]     17 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 3
[T3  I2  G  A1  L1  * ]     18 *-*   trace normal
[T3  I2  G  A1  L1  * ]     17 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 4
[T3  I2  G  A1  L1  * ]     18 *-*   trace normal
[T2  I3  G  A1  L1  * ]     26 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 1
[T2  I3  G  A1  L1  * ]     27 *-*   trace normal
[T2  I3  G  A1  L1  * ]     26 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 2
[T2  I3  G  A1  L1  * ]     27 *-*   trace normal
[T2  I3  G  A1  L1  * ]     26 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 3
[T2  I3  G  A1  L1  * ]     27 *-*   trace normal
[T2  I3  G  A1  L1  * ]     26 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 4
[T2  I3  G  A1  L1  * ]     27 *-*   trace normal
p~done=2

Possible output:
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Guard Lock, 5
ep=.PingPong~new
p~start("ping")   -- dispatch message on a new thread
p~start("pong")   -- dispatch message on a new thread
do until p~done=2
  call syssleep 0.01
  say "p~done="p~done
end

::class PingPong
::method init
  self~done=0        -- initialize attribute
::method ping        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     guard on        -- acquire guard lock -> guarded
     say ti(.context) "ping #" i
     guard off       -- release guard lock -> unguarded
  end
  guard on
  self~done+=1

::method pong        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     guard on        -- acquire guard lock -> guarded
     say ti(.context) "pong #" i
     guard off       -- release guard lock -> unguarded
  end
  guard on
  self~done+=1

::attribute done

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3] [I2] ping # 1
[T2] [I3] pong # 1
[T3] [I2] ping # 2
[T2] [I3] pong # 2
[T3] [I2] ping # 3
[T2] [I3] pong # 3
[T3] [I2] ping # 4
[T2] [I3] pong # 4
p~done=2

Possible output:
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Guard Lock, 6
.traceObject~option="Standard"
p=.PingPong~new
p~start("ping")   -- dispatch message on a new thread
p~start("pong")   -- dispatch message on a new thread
do until p~done=2
  call syssleep 0.01
  say "p~done="p~done
end

::class PingPong
::method init
  self~done=0        -- initialize attribute
::method ping        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     trace all
     guard on        -- acquire guard lock -> guarded
     say ti(.context) "ping #" i
     guard off       -- release guard lock -> unguarded
     trace normal
  end
  trace all
  guard on
  self~done+=1

::method pong        -- alarm will run on a separate thread
  reply
  do i=1 to 4
     trace all
     guard on        -- acquire guard lock -> guarded
     say ti(.context) "pong #" i
     guard off       -- release guard lock -> unguarded
     trace normal
  end
  trace all
  guard on
  self~done+=1

::attribute done

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3  I2  G  A1  L1  * ]     17 *-*   guard on        -- acquire guard lock -> guarded
[T3  I2  G  A1  L1  * ]     18 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 1
[T3  I2  G  A1  L1  * ]     19 *-*   guard off       -- release guard lock -> unguarded
[T3  I2  Gu A1  L1    ]     20 *-*   trace normal
[T2  I3  G  A1  L1  * ]     30 *-*   guard on        -- acquire guard lock -> guarded
[T3  I2  Gu A1  L1    ]     17 *-*   guard on        -- acquire guard lock -> guarded
[T2  I3  G  A1  L1  * ]     31 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 1
[T2  I3  G  A1  L1  * ]     32 *-*   guard off       -- release guard lock -> unguarded
[T2  I3  Gu A1  L1    ]     33 *-*   trace normal
[T3  I2  G  A1  L1  * ]     18 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 2
[T2  I3  Gu A1  L1    ]     30 *-*   guard on        -- acquire guard lock -> guarded
[T3  I2  G  A1  L1  * ]     19 *-*   guard off       -- release guard lock -> unguarded
[T3  I2  Gu A1  L1    ]     20 *-*   trace normal
[T2  I3  G  A1  L1  * ]     31 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 2
[T3  I2  Gu A1  L1    ]     17 *-*   guard on        -- acquire guard lock -> guarded
[T2  I3  G  A1  L1  * ]     32 *-*   guard off       -- release guard lock -> unguarded
[T2  I3  Gu A1  L1    ]     33 *-*   trace normal
[T3  I2  G  A1  L1  * ]     18 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 3
[T2  I3  Gu A1  L1    ]     30 *-*   guard on        -- acquire guard lock -> guarded
[T3  I2  G  A1  L1  * ]     19 *-*   guard off       -- release guard lock -> unguarded
[T3  I2  Gu A1  L1    ]     20 *-*   trace normal
[T2  I3  G  A1  L1  * ]     31 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 3
[T3  I2  Gu A1  L1    ]     17 *-*   guard on        -- acquire guard lock -> guarded
[T2  I3  G  A1  L1  * ]     32 *-*   guard off       -- release guard lock -> unguarded
[T2  I3  Gu A1  L1    ]     33 *-*   trace normal
p~done=0
[T3  I2  G  A1  L1  * ]     18 *-*   say ti(.context) "ping #" i
[T3] [I2] ping # 4
[T2  I3  Gu A1  L1    ]     30 *-*   guard on        -- acquire guard lock -> guarded
[T3  I2  G  A1  L1  * ]     19 *-*   guard off       -- release guard lock -> unguarded
[T3  I2  Gu A1  L1    ]     20 *-*   trace normal
[T2  I3  G  A1  L1  * ]     31 *-*   say ti(.context) "pong #" i
[T2] [I3] pong # 4
[T3  I2  Gu A1  L1    ]     23 *-* guard on
[T2  I3  G  A1  L1  * ]     32 *-*   guard off       -- release guard lock -> unguarded
[T2  I3  Gu A1  L1    ]     33 *-*   trace normal
p~done=0
[T3  I2  G  A1  L1  * ]     24 *-* self~done+=1
[T2  I3  Gu A1  L1    ]     36 *-* guard on
[T2  I3  G  A1  L1  * ]     37 *-* self~done+=1
p~done=2

Possible output:



15 Prof. Rony G. Flatscher

Semaphores, 1
● Semaphores can be used to synchronize multithreaded programs
● ooRexx comes with two built-in semaphore classes

– EventSemaphore, cf. rexxref.pdf, "5.4.7. EventSemaphore Class"
– MutexSemaphore, cf. rexxref.pdf, "5.4.12. MutexSemaphore Class"

● Examples from rexxref.pdf get discussed



16 Prof. Rony G. Flatscher

Semaphores, 2
EventSemaphore Class
event = .EventSemaphore~new   -- ooRexx 5.1. sample
say "main starts tasks"
do nr = 1 to 3
   .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
   reply
   use strict arg event, name
   ti=ti(.context)   -- get thread and invocation IDs
   say ti name "waits"
   event~wait
   say ti name "runs"

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

main starts tasks
[T2] [I2] task 2 waits
[T3] [I1] task 1 waits
[T4] [I3] task 3 waits
main posts
main ends
[T3] [I1] task 1 runs
[T2] [I2] task 2 runs
[T4] [I3] task 3 runs

Possible output:
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Semaphores, 3
MutexSemaphore Class
mutex = .MutexSemaphore~new
.Task~new~startWork(mutex, "work 1")
.Task~new~startWork(mutex, "work 2")
say ti(.context) "work tasks started"

::class Task
::method startWork unguarded
   expose mutex name
   use strict arg mutex, name
   reply
   self~doWork(1)

::method doWork unguarded
   expose mutex name
   use strict arg level
   -- three levels of nested acquires
   if level > 3 then return
   mutex~acquire
   say ti(.context) name level
   self~doWork(level + 1)

::routine ti
  use arg ctxt
  return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I3] work tasks started
[T2] [I4] work 1 1
[T2] [I5] work 1 2
[T2] [I6] work 1 3
[T3] [I7] work 2 1
[T3] [I8] work 2 2
[T3] [I9] work 2 3

Possible output:
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Roundup
● Easy to create multi-threaded programs in ooRexx

– REPLY keyword statement
– START method in .Object
– START method in .Message 
– .Alarm class

● Guard locks to guard execution of guarded methods in a class
– Unguarded methods can run concurrently to guarded methods

● Semaphores to synchronize multithreaded parts
– EventSemaphore, MutexSemaphore

● For debugging with TRACE set .TraceObject's option class attribute to 
"Standard" to gain insight in multithreaded execution
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