
Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

BSF4ooRexxooRexxREXX

Business Programming 1 Business Programming 2

Security,
Debugging

Commands,
APIs

Window-
Automatisation,
Web-Scripting

Graphical User
Interfaces (GUI),

Sockets,
...

Basics,
Parsing

Multithreading in ooRexx

2 Prof. Rony G. Flatscher

Overview
● Multithreading (MT)
● Howto kick off MT
● Guard lock
● Semaphores
● Roundup

3 Prof. Rony G. Flatscher

Multithreading
● Multithreading

– Parallel (concurrent) execution of parts of a program on different (multiple)
"threads of execution" within a process

● ooRexx MT
– Inter-object MT

● Different objects can execute methods on different threads concurrently
– Intra-object MT

● In a specific object methods from different class (scopes) can execute on different
threads concurrently

4 Prof. Rony G. Flatscher

Howto Kick Off MT, 1
● Externally

– E.g. a GUI dispatches messages concurrently from the GUI thread

● From within ooRexx programs
– REPLY keyword statement in methods

● Returns from the method and
● Remainder of the method gets executed on a separate thread

– START message of the root class .Object
– START message to a message object (instance of .Message)
– .Alarm class dispatching a message on a separate thread

5 Prof. Rony G. Flatscher

Howto Kick Off MT, REPLY, 2
p=.PingPong~new
p~ping -- will reply
do i=1 to 4
 say ti(.context) "pong #" i "(sleeping 0.10s)"
 call sysSleep 0.1 -- sleep 1/10 second
end

::class PingPong
::method ping
 reply -- return, remainder on new thread
 do i=1 to 4
 sleepTime=random(1,10)/100 -- sleep between 1/100 and 1/10 seconds
 say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
 call sysSleep sleepTime
 end

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I2] pong # 1 (sleeping 0.10s)
[T2] [I1] ping # 1 (sleeping 0.05s)
[T2] [I1] ping # 2 (sleeping 0.09s)
[T1] [I2] pong # 2 (sleeping 0.10s)
[T2] [I1] ping # 3 (sleeping 0.07s)
[T2] [I1] ping # 4 (sleeping 0.09s)
[T1] [I2] pong # 3 (sleeping 0.10s)
[T1] [I2] pong # 4 (sleeping 0.10s)

Possible output:

6 Prof. Rony G. Flatscher

Howto Kick Off MT, .Object's START, 3
p=.PingPong~new
p~start("ping") -- Object's start method
do i=1 to 4
 say ti(.context) "pong #" i "(sleeping 0.10s)"
 call sysSleep 0.1 -- sleep 1/10 second
end

::class PingPong
::method ping -- will run on separate thread
 do i=1 to 4
 sleepTime=random(1,10)/100 -- sleep between 1/100 and 1/10 seconds
 say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
 call sysSleep sleepTime
 end

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I1] pong # 1 (sleeping 0.10s)
[T2] [I2] ping # 1 (sleeping 0.02s)
[T2] [I2] ping # 2 (sleeping 0.01s)
[T2] [I2] ping # 3 (sleeping 0.05s)
[T1] [I1] pong # 2 (sleeping 0.10s)
[T2] [I2] ping # 4 (sleeping 0.01s)
[T1] [I1] pong # 3 (sleeping 0.10s)
[T1] [I1] pong # 4 (sleeping 0.10s)

Possible output:

7 Prof. Rony G. Flatscher

Howto Kick Off MT, .Message's START, 3
p=.PingPong~new
m=.message~new(p,"ping")
m~start -- Message's start method
do i=1 to 4
 say ti(.context) "pong #" i "(sleeping 0.10s)"
 call sysSleep 0.1 -- sleep 1/10 second
end

::class PingPong
::method ping -- will run on separate thread
 do i=1 to 4
 sleepTime=random(1,10)/100 -- sleep between 1/100 and 1/10 seconds
 say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
 call sysSleep sleepTime
 end

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I1] pong # 1 (sleeping 0.10s)
[T2] [I2] ping # 1 (sleeping 0.02s)
[T2] [I2] ping # 2 (sleeping 0.08s)
[T1] [I1] pong # 2 (sleeping 0.10s)
[T2] [I2] ping # 3 (sleeping 0.03s)
[T2] [I2] ping # 4 (sleeping 0.09s)
[T1] [I1] pong # 3 (sleeping 0.10s)
[T1] [I1] pong # 4 (sleeping 0.10s)

Possible output:

8 Prof. Rony G. Flatscher

Howto Kick Off MT, .Alarm, 3
p=.PingPong~new
do i=1 to 4
 sleepTime=random(1,10)/100 -- sleep between 5/100 and 1/10 seconds
 .alarm~new(sleepTime,.message~new(p,'ping','i',i,"in an alarm" sleepTime))
 say ti(.context) "pong #" i "(sleeping 0.10s)"
 call sysSleep 0.1 -- sleep 1/10 second, no alarms can be created for 0.1s !
end

::class PingPong
::method ping -- alarm will run on a separate thread
 use arg i, sleepTime
 say ti(.context) "ping #" i "(sleeping" sleepTime"s)"

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I2] pong # 1 (sleeping 0.10s)
[T2] [I3] ping # 1 (sleeping in an alarm 0.02s)
[T1] [I2] pong # 2 (sleeping 0.10s)
[T2] [I5] ping # 2 (sleeping in an alarm 0.02s)
[T1] [I2] pong # 3 (sleeping 0.10s)
[T2] [I7] ping # 3 (sleeping in an alarm 0.04s)
[T1] [I2] pong # 4 (sleeping 0.10s)
[T2] [I9] ping # 4 (sleeping in an alarm 0.1s)

Possible output:

9 Prof. Rony G. Flatscher

Guard Lock, 1
● By default all methods of a class are guarded
● Only one of the guarded method of a class can execute, after acquiring

the guard lock, all other guarded methods of the class are blocked
– Therefore all guarded methods of a class can only execute sequentially!

● A guarded method can invoke other methods which get the guard lock
and increase the guard lock count by one
– Upon return the guard lock count gets reduced by one

● If a guarded method returns and the guard lock count drops to 0, then
one of the blocked methods will become executable and gain the guard
lock

10 Prof. Rony G. Flatscher

Guard Lock, 2
● A guarded method owning the guard lock can free the guard lock with

the GUARD OFF keyword statement and turns into an unguarded
method

● An unguarded method may wish to acquire the guard lock by issuing
the GUARD ON keyword statement and turns into a guarded method
that gets blocked until the guard lock gets acquired

11 Prof. Rony G. Flatscher

Guard Lock, 3
p=.PingPong~new
p~start("ping") -- dispatch message on a new thread
p~start("pong") -- dispatch message on a new thread
do until p~done=2
 call syssleep 0.01
 say "p~done="p~done
end

::class PingPong
::method init
 self~done=0 -- initialize attribute
::method ping -- alarm will run on a separate thread
 reply
 do i=1 to 4
 say ti(.context) "ping #" i
 end
 self~done+=1

::method pong -- alarm will run on a separate thread
 reply
 do i=1 to 4
 say ti(.context) "pong #" i
 end
 self~done+=1

::attribute done

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3] [I2] ping # 1
[T3] [I2] ping # 2
[T3] [I2] ping # 3
[T3] [I2] ping # 4
[T2] [I3] pong # 1
[T2] [I3] pong # 2
[T2] [I3] pong # 3
[T2] [I3] pong # 4
p~done=2

Possible output:

12 Prof. Rony G. Flatscher

Guard Lock, 4
.traceObject~option="Standard"
p=.PingPong~new
p~start("ping") -- dispatch message on a new thread
p~start("pong") -- dispatch message on a new thread
do until p~done=2
 call syssleep 0.01
 say "p~done="p~done
end

::class PingPong
::method init
 self~done=0 -- initialize attribute
::method ping -- alarm will run on a separate thread
 reply
 do i=1 to 4
 trace all
 say ti(.context) "ping #" i
 trace normal
 end
 self~done+=1

::method pong -- alarm will run on a separate thread
 reply
 do i=1 to 4
 trace all
 say ti(.context) "pong #" i
 trace normal
 end
 self~done+=1

::attribute done

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3 I2 G A1 L1 *] 17 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 1
[T3 I2 G A1 L1 *] 18 *-* trace normal
[T3 I2 G A1 L1 *] 17 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 2
[T3 I2 G A1 L1 *] 18 *-* trace normal
[T3 I2 G A1 L1 *] 17 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 3
[T3 I2 G A1 L1 *] 18 *-* trace normal
[T3 I2 G A1 L1 *] 17 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 4
[T3 I2 G A1 L1 *] 18 *-* trace normal
[T2 I3 G A1 L1 *] 26 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 1
[T2 I3 G A1 L1 *] 27 *-* trace normal
[T2 I3 G A1 L1 *] 26 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 2
[T2 I3 G A1 L1 *] 27 *-* trace normal
[T2 I3 G A1 L1 *] 26 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 3
[T2 I3 G A1 L1 *] 27 *-* trace normal
[T2 I3 G A1 L1 *] 26 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 4
[T2 I3 G A1 L1 *] 27 *-* trace normal
p~done=2

Possible output:

13 Prof. Rony G. Flatscher

Guard Lock, 5
ep=.PingPong~new
p~start("ping") -- dispatch message on a new thread
p~start("pong") -- dispatch message on a new thread
do until p~done=2
 call syssleep 0.01
 say "p~done="p~done
end

::class PingPong
::method init
 self~done=0 -- initialize attribute
::method ping -- alarm will run on a separate thread
 reply
 do i=1 to 4
 guard on -- acquire guard lock -> guarded
 say ti(.context) "ping #" i
 guard off -- release guard lock -> unguarded
 end
 guard on
 self~done+=1

::method pong -- alarm will run on a separate thread
 reply
 do i=1 to 4
 guard on -- acquire guard lock -> guarded
 say ti(.context) "pong #" i
 guard off -- release guard lock -> unguarded
 end
 guard on
 self~done+=1

::attribute done

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3] [I2] ping # 1
[T2] [I3] pong # 1
[T3] [I2] ping # 2
[T2] [I3] pong # 2
[T3] [I2] ping # 3
[T2] [I3] pong # 3
[T3] [I2] ping # 4
[T2] [I3] pong # 4
p~done=2

Possible output:

14 Prof. Rony G. Flatscher

Guard Lock, 6
.traceObject~option="Standard"
p=.PingPong~new
p~start("ping") -- dispatch message on a new thread
p~start("pong") -- dispatch message on a new thread
do until p~done=2
 call syssleep 0.01
 say "p~done="p~done
end

::class PingPong
::method init
 self~done=0 -- initialize attribute
::method ping -- alarm will run on a separate thread
 reply
 do i=1 to 4
 trace all
 guard on -- acquire guard lock -> guarded
 say ti(.context) "ping #" i
 guard off -- release guard lock -> unguarded
 trace normal
 end
 trace all
 guard on
 self~done+=1

::method pong -- alarm will run on a separate thread
 reply
 do i=1 to 4
 trace all
 guard on -- acquire guard lock -> guarded
 say ti(.context) "pong #" i
 guard off -- release guard lock -> unguarded
 trace normal
 end
 trace all
 guard on
 self~done+=1

::attribute done

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T3 I2 G A1 L1 *] 17 *-* guard on -- acquire guard lock -> guarded
[T3 I2 G A1 L1 *] 18 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 1
[T3 I2 G A1 L1 *] 19 *-* guard off -- release guard lock -> unguarded
[T3 I2 Gu A1 L1] 20 *-* trace normal
[T2 I3 G A1 L1 *] 30 *-* guard on -- acquire guard lock -> guarded
[T3 I2 Gu A1 L1] 17 *-* guard on -- acquire guard lock -> guarded
[T2 I3 G A1 L1 *] 31 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 1
[T2 I3 G A1 L1 *] 32 *-* guard off -- release guard lock -> unguarded
[T2 I3 Gu A1 L1] 33 *-* trace normal
[T3 I2 G A1 L1 *] 18 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 2
[T2 I3 Gu A1 L1] 30 *-* guard on -- acquire guard lock -> guarded
[T3 I2 G A1 L1 *] 19 *-* guard off -- release guard lock -> unguarded
[T3 I2 Gu A1 L1] 20 *-* trace normal
[T2 I3 G A1 L1 *] 31 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 2
[T3 I2 Gu A1 L1] 17 *-* guard on -- acquire guard lock -> guarded
[T2 I3 G A1 L1 *] 32 *-* guard off -- release guard lock -> unguarded
[T2 I3 Gu A1 L1] 33 *-* trace normal
[T3 I2 G A1 L1 *] 18 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 3
[T2 I3 Gu A1 L1] 30 *-* guard on -- acquire guard lock -> guarded
[T3 I2 G A1 L1 *] 19 *-* guard off -- release guard lock -> unguarded
[T3 I2 Gu A1 L1] 20 *-* trace normal
[T2 I3 G A1 L1 *] 31 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 3
[T3 I2 Gu A1 L1] 17 *-* guard on -- acquire guard lock -> guarded
[T2 I3 G A1 L1 *] 32 *-* guard off -- release guard lock -> unguarded
[T2 I3 Gu A1 L1] 33 *-* trace normal
p~done=0
[T3 I2 G A1 L1 *] 18 *-* say ti(.context) "ping #" i
[T3] [I2] ping # 4
[T2 I3 Gu A1 L1] 30 *-* guard on -- acquire guard lock -> guarded
[T3 I2 G A1 L1 *] 19 *-* guard off -- release guard lock -> unguarded
[T3 I2 Gu A1 L1] 20 *-* trace normal
[T2 I3 G A1 L1 *] 31 *-* say ti(.context) "pong #" i
[T2] [I3] pong # 4
[T3 I2 Gu A1 L1] 23 *-* guard on
[T2 I3 G A1 L1 *] 32 *-* guard off -- release guard lock -> unguarded
[T2 I3 Gu A1 L1] 33 *-* trace normal
p~done=0
[T3 I2 G A1 L1 *] 24 *-* self~done+=1
[T2 I3 Gu A1 L1] 36 *-* guard on
[T2 I3 G A1 L1 *] 37 *-* self~done+=1
p~done=2

Possible output:

15 Prof. Rony G. Flatscher

Semaphores, 1
● Semaphores can be used to synchronize multithreaded programs
● ooRexx comes with two built-in semaphore classes

– EventSemaphore, cf. rexxref.pdf, "5.4.7. EventSemaphore Class"
– MutexSemaphore, cf. rexxref.pdf, "5.4.12. MutexSemaphore Class"

● Examples from rexxref.pdf get discussed

16 Prof. Rony G. Flatscher

Semaphores, 2
EventSemaphore Class
event = .EventSemaphore~new -- ooRexx 5.1. sample
say "main starts tasks"
do nr = 1 to 3
 .task~new~waitFor(event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
 reply
 use strict arg event, name
 ti=ti(.context) -- get thread and invocation IDs
 say ti name "waits"
 event~wait
 say ti name "runs"

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

main starts tasks
[T2] [I2] task 2 waits
[T3] [I1] task 1 waits
[T4] [I3] task 3 waits
main posts
main ends
[T3] [I1] task 1 runs
[T2] [I2] task 2 runs
[T4] [I3] task 3 runs

Possible output:

17 Prof. Rony G. Flatscher

Semaphores, 3
MutexSemaphore Class
mutex = .MutexSemaphore~new
.Task~new~startWork(mutex, "work 1")
.Task~new~startWork(mutex, "work 2")
say ti(.context) "work tasks started"

::class Task
::method startWork unguarded
 expose mutex name
 use strict arg mutex, name
 reply
 self~doWork(1)

::method doWork unguarded
 expose mutex name
 use strict arg level
 -- three levels of nested acquires
 if level > 3 then return
 mutex~acquire
 say ti(.context) name level
 self~doWork(level + 1)

::routine ti
 use arg ctxt
 return "[T"ctxt~thread"] [I"ctxt~invocation"]"

[T1] [I3] work tasks started
[T2] [I4] work 1 1
[T2] [I5] work 1 2
[T2] [I6] work 1 3
[T3] [I7] work 2 1
[T3] [I8] work 2 2
[T3] [I9] work 2 3

Possible output:

18 Prof. Rony G. Flatscher

Roundup
● Easy to create multi-threaded programs in ooRexx

– REPLY keyword statement
– START method in .Object
– START method in .Message
– .Alarm class

● Guard locks to guard execution of guarded methods in a class
– Unguarded methods can run concurrently to guarded methods

● Semaphores to synchronize multithreaded parts
– EventSemaphore, MutexSemaphore

● For debugging with TRACE set .TraceObject's option class attribute to
"Standard" to gain insight in multithreaded execution

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

