Department of Information Systems
and Operations Management -

Multithreading in ooRexx

Business Programming 1 Business Programming 2
Rg;g(REXX @@ ooRexx @ BSF4o00Rexx
. : Graphical User
Basics, Commands, Wmd_ow . Security, Interfaces (GUI),
Parsing APIs Automatisation, Debugging : Sockets
Web-Scripting : ’

Vienna University of Economics and Business = Welthandelsplatz 1, D2-C = A-1020 Vienna Prof. Rony G. Flatscher

Overview @@

e Multithreading (MT)
 Howto kick off MT
* Guard lock
 Semaphores

* Roundup

Prof. Rony G. Flatscher

Multithreading @@

e Multithreading

- Parallel (concurrent) execution of parts of a program on different (multiple)
"threads of execution" within a process

* 00ORexx MT
- Inter-object MT
» Different objects can execute methods on different threads concurrently
- Intra-object MT

* Inaspecific object methods from different class (scopes) can execute on different
threads concurrently

Prof. Rony G. Flatscher

Howto Kick Off MT, 1 e

e Externally
- E.g. a GUI dispatches messages concurrently from the GUI thread

* From within ooRexx programs
- REPLY keyword statement in methods
* Returns from the method and
* Remainder of the method gets executed on a separate thread
— START message of the root class .Object
- START message to a message object (instance of .Message)
- .Alarm class dispatching a message on a separate thread

Prof. Rony G. Flatscher

Howto Kick Off MT, REPLY, 2

p=.PingPong-~new Possible output:
p~ping -- will reply
do i=1 to 4 .
say ti(.context) "pong #" i "(sleeping 0.10s)" [T1] [I2] pong # 1 (sleep}ng 0.10s)
call sysSleep 0.1 -- sleep 1/10 second [T2] [I1] ping # 1 (sleeping 0.05s)
Sl [T2] [I1] ping # 2 (sleeping 0.09s)
[T1] [I2] pong # 2 (sleeping 0.10s)
::class PingPong [T2] [I1] ping # 3 (sleeping 0.07s)
- :method ping [T2] [I1] ping # 4 (sleeping 0.09s)
reply -- return, remainder on new thread [T1] [I2] pong # 3 (sleep}ng 0.16s)
Ao d=1 ms Al [T1] [I2] pong # 4 (sleeping 0.10s)
sleepTime=random(1,10) /1060 -- sleep between 1/100 and 1/10 seconds

say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
call sysSleep sleepTime
end

::routine ti

use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

Prof. Rony G. Flatscher

Howto Kick Off MT, .Object's START, 3

p=. PingPong-new . Possible output:
p~start("ping") -- Object's start method
do i=1 to 4 .
say ti(.context) "pong #" i "(sleeping 0.10s)" [T1] [I1] pong # 1 (sleep}ng 0.16s)
call sysSleep 0.1 -- sleep 1/10 second [T2] [I2] ping # 1 (sleeping 0.02s)
Sl [T2] [I2] ping # 2 (sleeping 0.01s)
[T2] [I2] ping # 3 (sleeping 0.05s)
::class PingPong [T1] [I1] pong # 2 (sleeping 0.10s)
: :method ping -- will run on separate thread [T2] [I2] ping # 4 (sleep}ng 0.01s)
do i=1 to 4 [T1] [I1] pong # 3 (sleeping 0.10s)
sleepTime=random(1,10) /100 -- sleep between 1/100 and 1/10 seconds [T1] [I1] pong # 4 (sleeping 0.10s)

say ti(.context) "ping #" i "(sleeping" sleepTime's)"
call sysSleep sleepTime
end

::routine ti

use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

Prof. Rony G. Flatscher

Howto Kick Off MT, .Message's START, 3

p=.PingPong~new Possible output:

m=.message~new(p, "ping")

m~start -- Message's start method .

do i=1 to 4 [T1] [I1] pong # 1 (sleeping 0.10s)
say ti(.context) "pong #" i "(sleeping 0.10s)" [T2] [I2] p}ng # 1 (sleep}ng 0.02s)
call sysSleep 0.1 -- sleep 1/10 second [T2] [I2] ping # 2 (sleeping 0.08s)

] [T1] [I1] pong # 2 (sleeping 0.10s)

[T2] [I2] ping # 3 (sleeping 0.03s)

::class PingPong [T2] [I2] ping # 4 (sleeping 0.09s)

::method ping -- will run on separate thread [T1] [I1] pong # 3 (sleep}ng 0.10s)
o il e 4 [T1] [I1] pong # 4 (sleeping 0.10s)

sleepTime=random(1,10) /1060 -- sleep between 1/100 and 1/10 seconds

say ti(.context) "ping #" i "(sleeping" sleepTime"s)"
call sysSleep sleepTime
end

::routine ti

use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

Prof. Rony G. Flatscher

Howto Kick Off MT, .Alarm, 3

p=.PingPong~new

do i=1 to 4
sleepTime=random(1,10) /100 -- sleep between 5/100 and 1/10 seconds
.alarm~new(sleepTime, .message~new(p, 'ping','i',i,"in an alarm" sleepTime))
say ti(.context) "pong #" i "(sleeping 0.10s)"

call sysSleep 0.1 -- sleep 1/10 second, no alarms can be created for 0.1s !

end

::class PingPong

::method ping -- alarm will run on a separate thread
use arg i, sleepTime
say ti(.context) "ping #" i "(sleeping" sleepTime"s)"

::routine ti
use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

/

Possible output:

[T1]
[(12]
[T1]
[T2]
[T1]
[T2]
[(T1]
[T2]

[12]
[I3]
[I2]
[I5]
[12]
[17]
[I2]
[19]

pong
ping
pong
ping
pong
ping
pong
ping

#
#
#
#
#
#
#
#

AP OOWWNDNPEPRP

(sleeping 0.10s)
(sleeping in an alarm 0.02s)
(sleeping 0.10s)
(sleeping in an alarm 0.02s)
(sleeping 0.10s)
(sleeping in an alarm 0.04s)
(sleeping 0.10s)
(sleeping in an alarm 0.1s)

Prof. Rony G. Flatscher

Guard Lock, 1 e

* By default all methods of a class are guarded

* Only one of the guarded method of a class can execute, after acquiring
the guard lock, all other guarded methods of the class are blocked
— Therefore all guarded methods of a class can only execute sequentially!

A guarded method can invoke other methods which get the guard lock

and increase the guard lock count by one
- Upon return the guard lock count gets reduced by one

» Ifaguarded method returns and the guard lock count drops to O, then
one of the blocked methods will become executable and gain the guard
lock

Prof. Rony G. Flatscher

Guard Lock, 2 e

* A guarded method owning the guard lock can free the guard lock with
the GUARD OFF keyword statement and turns into an unguarded
method

 Anunguarded method may wish to acquire the guard lock by issuing
the GUARD ON keyword statement and turns into a guarded method
that gets blocked until the guard lock gets acquired

10 Prof. Rony G. Flatscher

Guard Lock, 3

11

p=.PingPong~new
p~start("ping") -- dispatch message on a new thread
p~start("pong") -- dispatch message on a new thread
do until p~done=2

call syssleep 0.01

say "p~done="p~done
end

::class PingPong
::method init

self~done=0 -- initialize attribute
::method ping -- alarm will Tun on a separate thread
reply
do i=1 to 4
say ti(.context) "ping #" i
end

self~done+=1

::method pong -- alarm will run on a separate thread
reply
do i=1 to 4
say ti(.context) "pong #" i
end

self~done+=1
::attribute done
::routine ti

use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

Possible output:

[T3]
[T3]
[T3]
[T3]
[T2]
[T2]
[T2]
[T2]

[I2]
[I2]
[I2]
[I2]
[I3]
[I3]
[I3]
[I3]

p~done=2

ping
ping
ping
ping
pong
pong
pong
pong

i
i
i
i
i
i
i
i

rOwWNPEPPROWNPRE

Prof. Rony G. Flatscher

Guard Lock, 4

.traceObject~option="Standaxd" H .
= oo e Possible output:
p~start("ping") -- dispatch message on a new thread
p~start("pong") -- dispatch message on a new thread _ . "o n
do until p-done=2 [T3 I2 G .AZL L1 *] 17 *-% say ti(.context) "ping i
call syssleep 0.01 [T3] [12] ping i 1
say "p~done="p~done [T3 I2 G Al L1 =] 18 *-* trace normal
end [T3 I2 G Al L1 =%] 17 *-x say ti(.context) "ping 4"
::class PingPong [T3] [12] P o 2
- method init [T3 I2 G Al L1] 18 x-x trace normal
self~done=0 -- initialize attribute [T3 I2 G A1 L1 =«] 17 *-% say ti(.context) "ping #"
::method ping -- alarm will run on a separate thread [T3] [I2] ping # 3
giplizl o 4 [T3 I2 G Al L1 =«] 18 %*-%x trace normal
trace all [T3 I2 G Al L1 =] 17 *-% say ti(.context) "ping #"
say ti(.context) "ping #" i [T3] [I2] ping # 4
trace normal [T3 I2 G Al L1 =«] 18 x-x trace normal
§22f~done+—1 [T2 I3 G Al L1 =] 26 *-* say ti(.context) "pong #"
- [T2] [I3] pong # 1
::method pong -- alarm will Tun on a separate thread [T2 I3 G Al L1 =] 27 *-% trace normal
reply [T2 I3 G Al L1 =] 26 *-% say ti(.context) "pong #"
do i=1 to 4 [T2] [I3] pong # 2
e T2 I3 6 AL L1 *] 27 t 1
say ti(.context) "pong #" i [* *ox Iace-lworma
trace normal [T2 I3 G Al L1 =«] 26 *-x% say ti(.context) "pong #"
end [T2] [I3] pong # 3
sl -tz [T2 I3 G Al L1 =*] 27 %-% trace normal
. attribute done [T2 I3 G Al L1 =] 26 *-% say ti(.context) "pong #"
[T2] [I3] pong # 4
::routine ti [T2 I3 G A1 L1 =] 27 *-% trace normal
12 use arg ctxt p~done=2 @ 2©

return "[T"ctxt~thread"] [I"ctxt~invocation"]"

Guard Lock, 5

ep=.PingPong~new . .
p~start("ping") -- dispatch message on a new thread POSSIble OUtpUt.
p~start("pong") -- dispatch message on a new thread
do until p~done=2 .
call syssleep 0.01 [T3] [I2] ping # 1
say "p~done="p~done [T2] [I3] pong # 1
end [T3] [I2] ping # 2
::class PingPong [T2] [I3] pc_)ng # 2
::method init [T3] [I2] ping # 3
self~done=0 -- initialize attribute [T2] [I3] pong i+ 3
::method ping -- alarm will run on a separate thread
ey [T3] [I2] ping # 4
do i=1 to 4 [T2] [I3] pong # 4
guard on -- acquire guard lock -> guarded p~dcn1e:2
say ti(.context) "ping #" i
guard off -- release guard lock -> unguarded
end
guard on

self~done+=1

::method pong -- alarm will run on a separate thread
reply
do i=1 to 4
guard on -- acquire guard lock -> guarded
say ti(.context) "pong #" i
guard off -- release guard lock -> unguarded
end
guard on

self~done+=1
::attribute done
::routine ti

use arg ctxt

return "[T"ctxt~thread"] [I"ctxt~invocation"]" Prof. Rony G. Flatscher

Guard Lock, 6

14

.traceObject~option="Standard"
p=.PingPong~new
p~start("ping")
p~start("pong")
do until p~done=2

call syssleep 0.01

say "p~done="p~done
end

-- dispatch message on a new thread
-- dispatch message on a new thread

::class PingPong
:method init
self~done=0 -- initialize attribute
::method ping -- alarm will run on a separate thread
reply
do i=1 to 4
trace all
guard on -- acquire guard lock -> guarded
say ti(.context) "ping #" i
guard off -- release guard lock -> unguarded
trace normal
end
trace all
guard on
self~done+=1

::method pong

reply

do i=1 to 4
trace all
guard on -- acquire guard lock -> guarded
say ti(.context) "pong #" i
guard off -- release guard lock -> unguarded
trace normal

end

trace all

guard on

self~done+=1

-- alarm will run on a separate thread

::attribute done

r:iroutine ti
use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

Possible output:

[T3
[T3
[T3]
[T3
[T3
[T2
[T3
[T2
[T2]
[T2
[T2
[T3
[T3]
[T2
[T3
[T3
[T2
[T2]
[T3
[T2
[T2
[T3
[T3]
[T2
[T3
[T3
[T2
[T2]
[T3
[T2
[T2

I2 G Al
I2 G Al
[I2] ping
I2 G Al
I2 Gu Al
I3 G Al
I2 Gu Al
I3 G A1
[I3] pong
I3 G A1
I3 Gu Al
I2 G Al
[I2] ping
I3 Gu Al
I2 G Al
I2 Gu Al
I3 G A1
[I3] pong
I2 Gu Al
I3 G A1
I3 Gu Al
I2 G Al
[I2] ping
I3 Gu Al
I2 G Al
I2 Gu Al
I3 G A1
[I3] pong
I2 Gu Al
I3 G A1
I3 Gu Al

p~done=0

[T3
[T3]
[T2
[T3
[T3
[T2
[T2]
[T3
[T2
[T2

I2 G Al
[I2] ping
I3 Gu Al
I2 G Al
I2 Gu Al
I3 G A1
[I3] pong
I2 Gu Al
I3 G A1
I3 Gu Al

p~done=0

[T3
[T2
[T2

I2 G Al
I3 Gu Al
I3 G A1

p~done=2

e

[

e

17
18

24
36
37

* -k
* -k

* -k

guard on -- acquire guard
say ti(.context) "ping #" i

guard off -- release guard
trace normal

guard on -- acquire guard
guard on -- acquire guard

say ti(.context) "pong #" i

guard off
trace normal
say ti(.context) "ping #" i

-- release guard

guard on -- acquire guard
guard off -- release guard
trace normal

say ti(.context) "pong #" i

guard on -- acquire guard
guard off -- release guard
trace normal

say ti(.context) "ping #" i

guard on -- acquire guard
guard off -- release guard
trace normal

say ti(.context) "pong #" i

guard on -- acquire guard
guard off -- release guard
trace normal

say ti(.context) "ping #" i

guard on -- acquire guard
guard off -- release guard
trace normal

say ti(.context) "pong #" i

*-% guard on

* -k
* =%

guard off
trace normal

-- release guard

*-% self~done+=1
*-% guard on
*-% self~done+=1

lock

lock

lock

lock

lock

lock
lock

lock
lock

lock
lock

lock
lock

lock
lock

lock

'
v

guarded
-> unguarded
-> guarded

-> guarded

-> unguarded

-> guarded
-> unguarded

-> guarded
-> unguarded

-> guarded
-> unguarded

-> guarded
-> unguarded

-> guarded
-> unguarded

-> unguarded

Prof. Rony G. Flatscher

Semaphores, 1 @@

15

 Semaphores can be used to synchronize multithreaded programs

 00Rexx comes with two built-in semaphore classes
- EventSemaphore, cf. rexxref.pdf, "5.4.7. EventSemaphore Class"
- MutexSemaphore, cf. rexxref.pdf, "5.4.12. MutexSemaphore Class"

 Examples from rexxref.pdf get discussed

Prof. Rony G. Flatscher

Semaphores, 2
EventSemaphore Class

16

event = .EventSemaphore~new -- oORexx 5.1. sample
say "main starts tasks"
do nr =1 to 3
.task~new~waitFor (event, "task" nr)
end
call SysSleep 0.1
say "main posts"
event~post
say "main ends"

::class Task
::method waitFor
reply
use strict arg event, name

ti=ti(.context) -- get thread and invocation IDs

say ti name "waits"
event~wait
say ti name "runs"

::routine ti
use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

Possible output:

main
[T2]
[T3]
[T4]
main
main
[T3]
[T2]
[T4]

starts tasks

[I2] task 2 waits
[I1] task 1 waits
[I3] task 3 waits
posts

ends

[I1] task 1 runs
[I2] task 2 runs
[I3] task 3 runs

Prof. Rony G. Flatscher

Semaphores, 3
MutexSemaphore Class

mutex = .MutexSemaphore~new

. Task~new~startWork (mutex, "work 1")
. Task~new~startWork (mutex, "work 2")
say ti(.context) "work tasks started"

::class Task

::method startWork unguarded
expose mutex name
use strict arg mutex, name
reply
self~doWork (1)

: :method doWork unguarded
expose mutex name
use strict arg level
-- three levels of nested acquires
if level > 3 then return
mutex~acquire
say ti(.context) name level
self~doWork(level + 1)

::routine ti

use arg ctxt
return "[T"ctxt~thread"] [I"ctxt~invocation"]"

17

Possible output:

[T1]
[(12]
[T2]
[T2]
[T3]
[T3]
(T3]

[I3]
[I4]
[I5]
[I6]
[17]
(18]
[I9]

work
work
work
work
work
work
work

t
1
1
1
2
2
2

1

WNEFE WN

asks started

Prof. Rony G. Flatscher

Roundup @@ \

18

Easy to create multi-threaded programs in ooRexx
- REPLY keyword statement

— START method in .Object

— START method in .Message

- .Alarm class

Guard locks to guard execution of guarded methods in a class
- Unguarded methods can run concurrently to guarded methods

Semaphores to synchronize multithreaded parts
- EventSemaphore, MutexSemaphore

For debugging with TRACE set .TraceObject's option class attribute to
"Standard" to gain insight in multithreaded execution

Prof. Rony G. Flatscher

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

