MIS Department

An Introduction to Procedural and
ODbject-oriented Programming
(Object Rexx) 5

Defining Classes ("CLASS" Directive),
Defining Methods ("METHOD" Directive),
Object Rexx Classes, Object Rexx Collection Classes

Prof. Rony G. Flatscher

Vienna University of Economics and Business Administration B Wirtschaftsuniversitdt Wien B Augasse 2-6 B A-1090 Wien

Automation of Windows and Windows Applications (Object Rexx) 5, p.1 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

Implementation with Object Rexx

e Abstract Datatype

— Schema for the implementation of datatypes
e :CLASS directive

— Definition of attributes and therefore the internal data structure
- EXPOSE statement within methods or
- :METHOD directive with the keyword ATTRIBUTE

— Definition of operations (functions, procedures)
- :METHOD directive
— Instances of a class ("objects")
e Individual, unambiguously distinguishable instantiations of the same type

e Possesses all the same attributes (constitutes the data structure as defined in the
class) and operations ("methods of the class")

Automation of Windows and Windows Applications (Object Rexx) 5, p.2 © Prof. Rony G. Flatscher

Object Rexx

Messages (—, —)

e Interaction (activating of functions/procedures) with objects
(instances) exclusively via messages, which are sent to objects

— Names of messages are the names of the methods, which should be invoked

— Message operator ("twiddle") is the tilde character: —
e e.g. "ABC"~REVERSE vyields: CBA

— "Cascading" messages, two twiddles: ——
e e.g. "ABC"~~REVERSE vyields (attention!): ABC

e Sent messages activate the respective methods of the receiving object, result is
always the receiving object!

— Therefore multiple messages intended for the same object can be "cascaded"” one after
the other

e Execution of messages: left to right

Automation of Windows and Windows Applications (Object Rexx) 5, p.3 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

Implementing an ADT in Object Rexx (Example)

e Object Rexx implementation of the ADT Birthday

gl = _Birthday-New

gl-Date= "'20120901"

gl-Time= "16:00"
g2=.Birthday~-New~~""Date=""(""'20160229"")~~"Time="(""19:19"")
SAY gl-date g2~date gl-time g2~time

- :CLASS Birthday
- :METHOD date ATTRIBUTE
::METHOD time ATTRIBUTE

Output:

20120901 20160229 16:00 19:19

Automation of Windows and Windows Applications (Object Rexx) 5, p.4 © Prof. Rony G. Flatscher

Execution of Cascading Messages, 1

e Executing cascading messages in the part

g2=.Birthday~-New ~~"'date=""("200802297) ~~"time=""("19:19%)

Is carried out by the interpreter as follows:

= .Birthday~New -- regular message
~"date=""("200802297) -— cascading message
~"time="("19:197) -— cascading message
g2= -- assigning to LVALUE

Automation of Windows and Windows Applications (Object Rexx) 5, p.5 © Prof. Rony G. Flatscher

Execution of Cascading Messages, 2

e EXxecuting cascading messages in the part

x="20080229°~"+"(1) ~="*"(987) ~"/"(2) ~~"+"(6) ~"+"(1)

Is carried out by the interpreter as follows:

7200802297 ~"+"(1)-- normal message, value: 20080230~

~""*""(987) -- cascading message
= ~"/"(2) -- normal message, value: ”10040115°
~"+"(6) -— cascading message
= ~"+"(1) -- normal message, value: 10040116~
X= -— assign result to LVALUE

-—- X has the value: 710040116°

Automation of Windows and Windows Applications (Object Rexx) 5, p.6 © Prof. Rony G. Flatscher

Overview of Scopes

e Rexx and Object Rexx
— Standard scope

e Labels, variables

— Procedure scope
e Variables in procedures/functions

e Object Rexx
— Program scope

e Accessing local and public classes and routines of called/required programs

— Routine scope

e Standard+procedure+program scope

— Method scope
e Standard+procedure+program plus accessibility of attributes
— Instance methods: methods which are defined for a class ("instance™ attributes)

— Free running methods: methods which are defined before any class directive ("free
running" attributes)

Automation of Windows and Windows Applications (Object Rexx) 5, p.7 © Prof. Rony G. Flatscher

Creating Objects

e Creating new objects

— The NEW message is sent to the class

— Result is a reference to an object (an instance) of the class

If there is a method with the name INIT defined for a class, then this

method will be invoked, before control returns. This is realized by way of
sending the message INIT to the newly created object from within the

NEW method.
— If the message NEW received arguments, these will be forwarded In

the same sequence with the INIT message to the newly created

object
The INIT method is also called “constructor”

Always invoke the INIT method of the superclass!

© Prof. Rony G. Flatscher

Automation of Windows and Windows Applications (Object Rexx) 5, p.8

Abstract Datatype "Person"

Implementation of Constructor in Object Rexx

-.Person~-New("Albert',"Einstein',"45000")
-Person~New("'Vera",""Withanyname',25000)
SAY pl~-firstName pl-familyName pl-salary p2-~-firstName
SAY pl-~-firstName pl-salary pl-~increaseSalary(10000)~salary
- CLASS Person
:METHOD INIT

EXPOSE firstName familyName salary

USE ARG FfirstName, familyName, salary

self~iInit:super --

::METHOD firstName ATTRIBUTE
::METHOD familyName ATTRIBUTE
::METHOD salary ATTRIBUTE

- -METHOD @1ncreaseSalary
EXPOSE salary
USE ARG iIncrease
salary = salary + iIncrease
Output:
Albert Einstein 45000 Vera
Albert 45000 55000

Automation of Windows and Windows Applications (Object Rexx) 5, p.9 © Prof. Rony G. Flatscher

Deleting of Objects

e Objects are automatically deleted from the runtime system, if they
are not referenced anymore (becoming "garbage")

— If there is a method named UNINIT defined for a class, then this
method will be invoked, right before the unreferenced object gets
deleted. This will be invoked by the runtime system by sending the

object the message UNINIT.
e The UNINIT method is called "destructor”

Automation of Windows and Windows Applications (Object Rexx) 5, p.10 © Prof. Rony G. Flatscher

Abstract Datatype "Person"

Implementation of Destructor in Object Rexx

/**/
pl = _Person~-New("'Albert"”,"Einstein’,"45000")
p2 = _Person~-New(''Vera',"'Withanyname',b25000)
SAY pl~firstName pl~familyName pl-salary p2~firstName
SAY pl~firstName pl-salary pl-~increaseSalary(10000)~salary
DROP pl; DROP p2; CALL SysSleep(15); SAY "Finish."
:ICLASS Person
ZIMETHOD INIT

EXPOSE firstName familyName salary

USE ARG firstName, familyName, salary

self~init:super -- i1nvoke constructor of superclass
:METHOD UNINIT

EXPOSE firstName familyName salary

SAY "Object: <"firstName familyName salary'> i1s about to be destroyed."

::METHOD firstName ATTRIBUTE
::METHOD familyName ATTRIBUTE
::METHOD salary ATTRIBUTE

::METHOD increaseSalary
EXPOSE salary
USE ARG iIncrease
salary = salary + Increase

Output, for example:
Albert Einstein 45000 Vera
Albert 45000 55000
Object: <Vera Withanyname 25000> is about to be destroyed.
Finish.
Object: <Albert Einstein 55000> is about to be destroyed.

Automation of Windows and Windows Applications (Object Rexx) 5, p.11 © Prof. Rony G. Flatscher

Classification Tree

(Generalization Hierarchy)

e Generalization Hierarchy, "Classification Tree"
— Allows classification of instances (Objects), e.g. from biology

— Ordering of classes in superclasses and subclasses (schemata)

e Subordered classes ('subclasses™) inherits all properties of all
superclasses up to and including the root class

e Subclasses specialize in one way or the other the superclass(es)

— "Defining of differences"

— Sometimes it may make sense that a subclass specializes directly more
than one superclass at the same time ("multiple inheritance")
 Example: Classes representing land-born and water-born animals, where

there exists a class "amphibians", which inherits directly from the land-
born and water-born animals

Automation of Windows and Windows Applications (Object Rexx) 5, p.12 © Prof. Rony G. Flatscher

Object Rexx: Classification Tree, 1

e Prefabricated "class tree"
— Root class of Object Rexx is named "Object"

— All user defined classes are assumed to specialize the class "Object", if
no superclass is explicitly given

— Single and multiple inheritance possible

Automation of Windows and Windows Applications (Object Rexx) 5, p.13 © Prof. Rony G. Flatscher

Object Rexx: Classification Tree, 2

e Search order
— Conceptually, the object receiving a message, starts searching for a
method by the name of the received message and if found invokes it

with the supplied arguments
— If such a method is not found in the class from which the object is
created, then the search is continued in the direct superclass up to and

Including the root class

— If the method is not even found in the root class "Object", then an
error exception is thrown ("Object does not understand message")

e If there is a method named UNKNOWN defined, then instead of creating
an exception, the runtime system will invoke that method, supplying the

name of the unknown method and its arguments, if any were supplied

with the message

© Prof. Rony G. Flatscher

Automation of Windows and Windows Applications (Object Rexx) 5, p.14

Object Rexx: Classification Tree, 3

e Search order (continued)

— For the purpose of searching there are special, pre-set variables
which are only available from within methods
e super
— Always contains a reference to the immediate superclass

— Allows re-routing the starting class for searching for methods to the superclass

e self
— Always contains a reference to the object for which the method got invoked

— This way it becomes possible to send messages to the object from within a
method

— super and self determine the class where the search for
methods starts which carry the same name as the message

Automation of Windows and Windows Applications (Object Rexx) 5, p.15 © Prof. Rony G. Flatscher

Example "Dog", 1

e Problem description

— "Animal SIG" keeping dogs
e Normal dogs
e Little dogs
e Big dogs

— All dogs possess a name and are able to bark
e Normal dogs bark "Wuff Wuff"
e Little dogs bark "wuuf"
e Big dogs bark "WUFFF! WUFFF!! WUFFF!!I™

— Define appropriate classes taking advantage of inheritance
(search order)

Automation of Windows and Windows Applications (Object Rexx) 5, p.16 © Prof. Rony G. Flatscher

Example "Dog"

e Definition of a class "LittleDog", which possesses all properties common to all little

dogs

/**/

-Dog~NEW ~~"NAME=""(""Sweety") ~Bark
-BigDog~NEW ~~"NAME=""(""Grobian'") ~Bark
-LittleDog~NEW ~~"NAME="("Arnie") ~Bark
::CLASS Dog SUBCLASS Object

: :METHOD Name ATTRIBUTE

: :METHOD Bark

SAY self~Name':" "Wuff Wuff" "-" self

- :CLASS BigDog SUBCLASS dog

: :METHOD Bark
SAY self~Name':" "WUFFF! WUFFF!! WUFFFIII'™ """ gself
self~bark:super

::CLASS "LittleDog"™ SUBCLASS dog

: :METHOD Bark
SAY self~Name™":"" "wuuf" "'-" self

Output:
Sweety: Wuff Wuff - a DOG
Grobian: WUFFF! WUFFF!! WUFFFI!! - a BIGDOG
Grobran: Wuff Wuff - a BIGDOG
Arnie: wuuf - a LittleDog

Automation of Windows and Windows Applications (Object Rexx) 5, p.17 © Prof. Rony G. Flatscher

Multithreading

e Multithreading
— Multiple parts of a program execute at the same time (in parallel)
— Possible problems
e Data integrity (Object integrity)

e Deadlocks

e Object Rexx
— Inter Object-Multithreading

» Different objects (even of one and the same class) are sheltered from each other
and can be active at the same time

— Intra Object-Multithreading

e Within an instance (an object) multiple methods can execute at the same time, if
they are defined in different classes

Automation of Windows and Windows Applications (Object Rexx) 5, p.18 © Prof. Rony G. Flatscher

::CLASS Directive

e This directive causes the interpreter to create a class
— :CLASS xyz
» A class with the identifier XYZ is created
 Keywords allow to ask for/determine additional features
— PUBLIC
e Optional, class can be seen outside the program in which it is defined
— SUBCLASS, MIXINCLASS
e Optional, default value: SUBCLASS Object
— METACLASS metaclass
e Optional, default value: METACLASS Class
— INHERIT

e Optional, allows indicating those classes which are inherited in addition: multiple
inheritance

Automation of Windows and Windows Applications (Object Rexx) 5, p.19 © Prof. Rony G. Flatscher

::CLASS Directive

Example: ADT "Vehicle", 1

/**/
-Roadvehicle ~new("'Truck'™) ~drive
-WaterVehicle ~new("'Boat'') ~swim

::CLASS Vehicle
: :METHOD name ATTRIBUTE
:METHOD INIT

self~name = ARG(1)

- :CLASS RoadVehicle SUBCLASS Vehicle
- :METHOD drive
SAY self~name': "1 drive now.._""

- :CLASS WaterVehicle SUBCLASS Vehicle
- :METHOD swim
SAY self~name": "1 swim now..._.""

Output:
Truck: "1 drive now..._"
Boat: "1 swim now..."

Automation of Windows and Windows Applications (Object Rexx) 5, p.20 © Prof. Rony G. Flatscher

::CLASS Directive

Example: ADT "Vehicle", 2

/* Multiple Inheritance */

-RoadVehicle ~new(""Truck™) ~drive
-WaterVehicle ~new("'Boat'") ~sSwim
-AmphibianvVehicle ~new("SwimCar') ~show_off

::CLASS Vehicle
- :METHOD name ATTRIBUTE
::METHOD INIT

self~name = ARG(1)

::CLASS RoadVehicle MIXINCLASS Vehicle
::METHOD drive
SAY self~name": "1 drive now..."*

- :CLASS WaterVehicle MIXINCLASS Vehicle
::METHOD swim
SAY self-name™: "I swim now..."“

::CLASS AmphibianVehicle SUBCLASS RoadVehicle INHERIT WaterVehicle
:-METHOD show_off

self ~~drive ~~swim

Output:
Truck: I drive now..."
Boat: "1 swim now..."
SwimCar: "I drive now..."
SwimCar: "I swim now..."

Automation of Windows and Windows Applications (Object Rexx) 5, p.21 © Prof. Rony G. Flatscher

::CLASS Directive

Example: ADT "Vehicle", 3

‘ Vehicle ’< BaseClass

N

:C WaterVehicle)

(RoadVehicle

C AmphibianVehicle

Automation of Windows and Windows Applications (Object Rexx) 5, p.22 © Prof. Rony G. Flatscher

:METHOD Directive, 1

e This directive causes the interpreter to create a method

— :Method mmm

e A method with the identifier "MMM" is created

e Keywords allow to ask for/determine additional features
— ATTRIBUTE

e Optional, the interpreter creates two methods:
— A get method "MMM" and
— A set method "MMM=",
— Which both access the attribute MMM

Automation of Windows and Windows Applications (Object Rexx) 5, p.23 © Prof. Rony G. Flatscher

:METHOD Directive, 2

e ATTRIBUTE (continued)
— The get method MMM" is defined as:

- :METHOD MMM /* name of get method ‘MMM */
EXPOSE MMM /* allow direct access to the attribute */
RETURN MMM /* return the attribute®s value */

— The set "MMM="is defined as:
""MMM="" */

- -METHOD "*MMM="" /* name of the set method
EXPOSE MMM /* allow direct access to the attribute */

USE ARG MMM /* retrieve argument and assign it to the
attribute */

© Prof. Rony G. Flatscher

Automation of Windows and Windows Applications (Object Rexx) 5, p.24

-:METHOD Directive, 3

e Keywords allow to ask for/determine additional features
— PRIVATE

e Optional, such a method can only be activated from within an object:
self~mmm

— GUARDED, UNGUARDED
e Optional, default value: GUARDED

e Determines whether method can be run in parallel to other methods

— CLASS

e Optional, method is a class method

— PROTECTED

e Optional, access to this method can be supervised with the help of the
Object Rexx Security Manager

Automation of Windows and Windows Applications (Object Rexx) 5, p.25 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 1

Me_w (ooRexx 3.1)

Object

Class String Array Directory

Method Stem List Relation

DR
oo}
U0

Message Stream Queue Bag
Alarm —(\/IutableBuffeD GircularQueua Table
Monitor Set

oo

Supplier

Automation of Windows and Windows Applications (Object Rexx) 5, p.26 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 2

(Object)

?

i Class ’ String

_m —(\/IutableBuffeD GircularQueua Table

Monitor Set

M@ental Classes

Array

List Relation

0o
0<00

Queue

Supplier

Automation of Windows and Windows Applications (Object Rexx) 5, p.27 © Prof. Rony G. Flatscher

Fundamental Classes, 1

e Object

— Methods and attributes are available to a// Instances of Object
Rexx Classes (Objekte)
e Example: method INIT

— Constructor, initializes a freshly created object

e Class

— Interpreter creates an instance of this class ("class object") for
each ::CLASS directive
e Example: method ID
— Returns the name (the "identification") of the class object

e Example: method NEW

— Returns a new instance (object) of the class

Automation of Windows and Windows Applications (Object Rexx) 5, p.28 © Prof. Rony G. Flatscher

Fundamental Classes, 2

e Method

— Interpreter creates an instance of this class ("method
object") for each ::METHOD directive

e Example: method SOURCE

— Returns the source code of the method, if available
e Message

— For each message at runtime the interpreter creates an
Instance of this class ("method object")

e Example: method SEND

— Transmits the message to the object

Automation of Windows and Windows Applications (Object Rexx) 5, p.29 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 3

arm Class

Object

(Lo)
! Alarm) —(\/IutableBuffeD GircularQueua —(Table ’

Supplier

Automation of Windows and Windows Applications (Object Rexx) 5, p.30 © Prof. Rony G. Flatscher

Alarm Class

e Alarm

— Alarm objects allow dispatching messages at a later time

e Such messages are carried out in parallel to other activities in the
Object Rexx program ("multithreaded execution™)
e Dispatch time can be given

— In hours, minutes, seconds starting from the time of initialization of
the alarm object

— As a time and date

e Example: method CANCEL

— Cancels an alarm object, the pending message will not be dispatched

Automation of Windows and Windows Applications (Object Rexx) 5, p.31 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 4

LMo‘nitor Class

Object

(Lo)
—(\/IutableBuffeD GircularQueua —(Table ’
Monitor Set

Supplier

Automation of Windows and Windows Applications (Object Rexx) 5, p.32 © Prof. Rony G. Flatscher

Monitor Class

e Monitor

— Monitor objects allow the monitoring of messages sent to the
object
e Example: method DESTINATION
— Determines the object to be monitored

— Returns the object which gets monitored

Automation of Windows and Windows Applications (Object Rexx) 5, p.33 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 5

" sic Rexx" Classes

‘ Object ,
{ Stem ’ _‘ Relation’
< Stream ’ Bag
—(\/IutabIeBuffeD GircularQueua —(Table ’

Supplier

Automation of Windows and Windows Applications (Object Rexx) 5, p.34 © Prof. Rony G. Flatscher

"Classic Rexx'" Classes, 1

e String (1)

— String objects possess all methods, which are the counterparts of all string

functions in classic Rexx

QO D

Qo

Automation of Windows and Windows Applications

Distinctive feature: string objects never change the value they were created
with!

.string~new(*"hallo')
“"hallo""
"aloha'"
"aloha'"

a

1
a

all

+ 3
+ 3

T
1o

/*
/*
/*

/*
/*

/*
/*

new
new
new

new
new

new
new

/* a new string object

string
string
string

string
string

string
string

object
object
object

object
object

object
object

(Object Rexx) 5, p.35

with
with
with

value
value
value

value
value

value
value

of
of
of

of
of

of
of

© Prof. Rony G. Flatscher

"hallo"
"aloha"
"aloha"

Ilabll
"abb"

II4II
II7II

*/
*/
*/
*/

*/
*/

*/
*/

"Classic Rexx'" Classes, 2

e String (2)

— String functions will be transformed "behind the curtain” by Object
Rexx into the appropriate object-oriented version, by sending the
appropriate messages to the string object!

— Example: method REVERSE

e Reverses the sequence of characters in a string

SAY REVERSE(''d:\path\datei.typ'') /* function */
SAY "d:\path\datei.typ"~REVERSE /* message */

Output:
pyt.i1etad\htap\:d
pyt.i1etad\htap\:d

Automation of Windows and Windows Applications (Object Rexx) 5, p.36 © Prof. Rony G. Flatscher

"Classic Rexx" Classes, 3

e Stem (1)
— Stem objects allow any string to be used as an index
e The stem of the identifier includes the first dot

a.2 = "1 am a.2"

SAY a.1l.b "Zand\" a.2
Output:

A.1.B Zand\ I am a.2

a. = "no value"

a.2 = "1 am a.2"

SAY a.l.b ""Zand\" a.2
Output:

no value Zand\ I am a.2

a = .stem~new("'no value™) /* new stem object */
a[2] = "I am a.2"
SAY afa.l.b] "Zand\" a|2]

Output:
no valueA.1.B Zand\ 1 am a.2

Automation of Windows and Windows Applications (Object Rexx) 5, p.37 © Prof. Rony G. Flatscher

"Classic Rexx" Classes, 4

e Stem (2)
— Stem objects allow the collection of arbitrary objects with the help of string
indices

e Example: methods [] and []=
DROP a a. b b. /* Make sure that variables are deleted */

a = .stem~new(''xyz")

a[""holladi™] = "Entry for "holla.di""

b. = a /* two references to the same stem object! */

b.di.di.dumm = "Entry for "DI.DI._DUMM™"

SAY "1:" a["holladi"] “/and\" a~""[]1"C'DI.DI.DUMM™)

tmpl = "holladi™; tmp2 = "DI.DI.DUMM"

SAY "2:" a.tmpl “/and\" a.[tmp2]

SAY "3:" b.tmpl “/and\" b.[tmp2]

SAY "4:" a a. a.Unknown b b. b.Unknown aJUnknown]
Output:

1: Entry for "holla.di™ /and\ Entry for "DI.DI.DUMM"
2- A_holladi Zand\ A.DI.DI.DUMM

3: Entry for "holla.di® /and\ Entry for "DI.DI.DUMM"
4: xyz A. A_UNKNOWN B xyz xyzUNKNOWN xyzUNKNOWN

Automation of Windows and Windows Applications (Object Rexx) 5, p.38 © Prof. Rony G. Flatscher

"Classic Rexx" Classes, 5

e Stream

— Stream objects allow working with files

e Example: method NEW

0 = .stream ~NEW(''test.dat")

— Allows working with the file test.dat by sending the stream object o
the appropriate messages, e.g. OPEN for opening, LINEIN (CHARIN)
for reading from the file, LINEOUT (CHAROUT) for writing to the file,
CLOSE for closing

Automation of Windows and Windows Applications (Object Rexx) 5, p.39 © Prof. Rony G. Flatscher

Classification Tree of Object RexX, 6

ableBuffer Class

Object

Class String Array Directory

Method Stem

List Relation

oo}
U0

)0l

Message Stream Queue Bag
Alarm MutableBuffer GircularQueua Table
Monitor Set

oo

Supplier

Automation of Windows and Windows Applications (Object Rexx) 5, p.40 © Prof. Rony G. Flatscher

MutableBuffer Class

e MutableBuffer

— Class that allows to create a buffer of strings quickly

e Allows creating larges strings from little string portions much faster
than the String class

e Comparable to Java's "StringBuffer" class

— Example:
e Method APPEND

— Appends a new string chunk to the buffer

e Method STRING

— Renders the buffer to a single string and returns it

Automation of Windows and Windows Applications (Object Rexx) 5, p.41 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 6a

"Collection" Classes

Object

Class

Array Directory

Method

(T

(=)
List L Relation)
/ Queue Bag
—(\/IutabIeBuffeD GircularQueu9 —(Table ,
Set

Supplier

Automation of Windows and Windows Applications (Object Rexx) 5, p.42 © Prof. Rony G. Flatscher

Collection Classes, la

e Collection classes allow collecting Object Rexx objects

e The following methods are available

— PUT or the synonym "[]=" collects (stores) an object

collectionObject ~PUT(object, index)
collectionObject ~"[]="(object, Index) or
collectionObject|[index] = object

— AT or the synonym "[]" retrieves an object from a collection

collectionObject ~AT(1ndex)
collectionObject ~""[]"(index) or
collectionObject| 1ndex]

Automation of Windows and Windows Applications (Object Rexx) 5, p.43 © Prof. Rony G. Flatscher

Collection Classes, 1b

e Some collection classes allow supplying a list of objects to be put into the
newly created collection object. In such a case the OF message (with the
list of objects to be collected as its argument) is sent to the class instead
of the NEW message, which creates an empty collection object.

» All collected objects can be iterated using the DO...OVER block statement

— Processing loop

DO 1tem OVER tmpColl
SAY II[II I I item I I ll]ll
END

e Also one could use SUPPLIER objects for iterating over all of the
collected objects (see below)

Automation of Windows and Windows Applications (Object Rexx) 5, p.44 © Prof. Rony G. Flatscher

Collection Classes, 2

e One can arrange collection classes in two groups

— Ordered collection

e Collection classes wrthout a user defined index

— Unordered collection

e Collection classes with a user defined index
e Ordered collection classes (without a user defined index)
— Array
— List
— Queue, CircularQueue

— (Stream)

Automation of Windows and Windows Applications (Object Rexx) 5, p.45 © Prof. Rony G. Flatscher

Collection Classes, 3

Ordered Collection

e Array (1)

— Array objects allow the storing the collected objects with a pre-defined numeric index,
which must be a whole number starting with the value 1

tmpColl = .array ~of('a"™, "b", "b™)
tmpColl[4] = "c"

SAY tmpColl~string || ":"
DO 1tem OVER tmpColl

SAY Il[ll I I item I I Il]ll
END

Output:

an Array:
[a]
[b]
[b]
[c]

Automation of Windows and Windows Applications (Object Rexx) 5, p.46

© Prof. Rony G. Flatscher

Collection Classes, 4

Ordered Collection

e Array (2)
— Array objects can possess arbitrary many dimensions

e Attention! The needed memory is the Cartesian product of the maximum
number of entries of each dimension

tmpColl = _array ~new

tmpColI[2,3] = "a"

tmpColl ~"[]="C'b", 1, 1)

tmpColl ~~put('b™, 4, 5) ~~put(c', 1, 2)

SAY tmpColl~string || ":"
DO i1tem OVER tmpColl

SAY II[Il I I item I I ll]ll
END

Output:
an Array:
[b]
[c]
[al
[b]

Automation of Windows and Windows Applications (Object Rexx) 5, p.47 © Prof. Rony G. Flatscher

Collection Classes, 5

Ordered Collection

e List

— List objects allow the storing of objets in the form of a list, i.e. in an ordered
manner

tmpColl = .list ~of("a™, "b", "b", "c")

SAY tmpColl~string || ":"
DO 1tem OVER tmpColl

SAY "[" || item || "]1"
END

Output:

a List:
[a]
[b]
[b]
[c]

Automation of Windows and Windows Applications (Object Rexx) 5, p.48

© Prof. Rony G. Flatscher

Collection Classes, 6

Ordered Collection

e Queue, CircularQueue

— Queue objects allow the storing of objects at the "head" (PUSH) or at the "tail"
(QUEUE), i.e. in an ordered manner

tmpColl = _queue ~new
tmpColl ~~queue('a"™) ~~queue('b"™) ~~push('b™) ~push('c™)

SAY tmpColl~string || ":"
DO 1tem OVER tmpColl

SAY [|| item |] "]1"
END

Output:

a Queue:
[c]
[b]
[a]
[b]

Automation of Windows and Windows Applications (Object Rexx) 5, p.49

© Prof. Rony G. Flatscher

Collection Classes, 7

Ordered Collection

e Stream

— Stream objects allow the processing of streams of "lines" or "characters", being mostly
files

o = .stream~NEW("'test.dat")

e With the help of the stream object o one is able to process the file "test.dat", by sending the

stream object the appropriate messages, for instance: OPEN, LINEIN (CHARIN), LINEOUT
(CHAROUT), CLOSE...

tmpColl = _stream ~new(''test.dat')~~open
SAY "a" tmpColl~class~id || ":"
DO 1tem OVER tmpColl
SAY "[" || item || 1"
END
tmpColI~close

Possible output of the contents of the above file:

a Stream:
[This is the first line.]
L1

[The previous line was empty, now the third one i1s processed!]

Automation of Windows and Windows Applications (Object Rexx) 5, p.50 © Prof. Rony G. Flatscher

Collection Classes, 8

Unordered Collection

e Unordered collection classes
— Directory - index (any string) associates orne object only

— Relation - index (any object) can associate multiple objects (ALLAT)

e Bag - restriction: index and associated object are the same!

— Table - index (any object) associates orne object only

e Set - restriction: index and associated object are the same!

— (Stem - index (any string) associates one object only)

e There is no order in which the objects get collected

— DO...OVER (also SUPPLIER objects) enumerate the collected objects in
an arbitrary (unforeseeable) order!

Automation of Windows and Windows Applications (Object Rexx) 5, p.51 © Prof. Rony G. Flatscher

Collection Classes, 9

Unordered Collection

e Directory
— Directory objects allow the collecting of objects with a user defined index of type string (one object per
index)
tmpColl = _directory ~new

tmpColI["a_index"] = "a"
tmpColl ~"[]="(C"b", "b_index')
tmpColl ~—~PUT("b", "b_index™) ~~PUT("c", "c_index"™)
tmpColl ~~wu = "WU Wien"
tmpColl ~~rgf = "Rony G. Flatscher™
SAY "Acronym *WU®:" tmpColl~wu |] ™, "RGF":"" tmpColl~rgf
SAY tmpColl~string || ":"
DO 1tem OVER tmpColl
SAY [|| item || "1
END

Output (order could be different):
Acronym "WU": WU Wien, "RGF": Rony G. Flatscher
a Directory:
[b_i1ndex]
[c_index]
[wul
[RGF]
[a_index]

Automation of Windows and Windows Applications (Object Rexx) 5, p.52 © Prof. Rony G. Flatscher

Collection Classes, 10

Unordered Collection

e Relation

— Relation objects allow the collecting of objects with a user defined index of any
type (multiple objects per index possible)

tmpColl = _relation ~new

tmpColl["a index"] = "a"

tmpColl ~"[]="(C"b™, "b_index'™)

tmpColl ~~PUT("b™, "b_index™) ~~PUT("c", "c_index™)

SAY tmpColl~string || ":"
DO 1tem OVER tmpColl

SAY "I || 1tem || "1"
END

Output (order could be different):
a Relation:
[b_1ndex]
[c_1ndex]
[a_index]
[b_index]

Automation of Windows and Windows Applications (Object Rexx) 5, p.53 © Prof. Rony G. Flatscher

Collection Classes, 11

Unordered Collection

e Bag

— Bag objects allow the collecting of objects with a user defined index of any type

(multiple objects per index possible, index and object are the same, hence index can be
left out)

tmpColl = _bag ~new
tmpColl["a™] = "a"

tmpColl ~"[]="(C"b", "b")
tmpColl ~~PUT("'b"™) ~~PUT('c')

SAY tmpColl~string || ":"
DO i1tem OVER tmpColl

SAY ll[ll I I item I I Il]ll
END

Output (order could be different):
a Bag:
[a]
[b]
[c]
[b]

Automation of Windows and Windows Applications (Object Rexx) 5, p.54 © Prof. Rony G. Flatscher

Collection Classes, 12

Unordered Collection

e Table

— Table objects allow the collecting of objects with a user defined index of any type (one object per
index)

tmpColl = _table ~new

tmpColl["a index"] = "a"

tmpColl ~"[]="(C"b™, "b_index'™)

tmpColl ~~PUT("b™, "b_index™) ~~PUT("c", "c_index™)

SAY tmpColl~string |] ":"
DO 1tem OVER tmpColl

SAY "[™ |l item || "1
END

Output (order could be different):
a Table:
[b_index]
[c_index]
[a _1ndex]

Automation of Windows and Windows Applications (Object Rexx) 5, p.55 © Prof. Rony G. Flatscher

Collection Classes, 13

Unordered Collection

e Set

— Set objects allow the collecting of objects with a user defined index of any type (one
object per index, index and object are the same, hence index can be left out)

tmpColl = _set ~new
tmpColl["a™] = "a"

tmpColl ~"[]="C'b™, "b')
tmpColl ~~PUT("'b™) ~~PUT(*'c')

SAY tmpColl~string || ":"
DO i1tem OVER tmpColl

SAY ll[ll I I item I I Il]ll
END

Output (order could be different):
a Set:

[a]
[b]

Automation of Windows and Windows Applications (Object Rexx) 5, p.56 © Prof. Rony G. Flatscher

Collection Classes, 14

Unordered Collection

e Stem

— Stem objects allow the collecting of objects with a user defined index of type string (one object per index)

tmpColl = _stem ~new

tmpColl["a index"] = "a"

tmpColl ~"[]="(C"b", "b_index'™)

tmpColl ~~PUT("b™, "b_index™) ~~PUT("c", "c_index™)

SAY "a" tmpColl~class~id || ":"
DO 1tem OVER tmpColl

SAY "[™ |l item || "1
END

Output (order could be different):
a Stem

[b_1ndex]
[c_index]
[a_1ndex]

Automation of Windows and Windows Applications (Object Rexx) 5, p.57 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 6b

"Collection" Classes

ith UNION, INTERSECTION, XOR, (Object ,
RENCE, SUBSET
Class // Array Directory

Method

N

7 List Relation

Message 2 Queue Bag

Alarm —(\/IutableBuffeD CircularQueue -(Table)

Monitor Set

%
Supplier

= i
9]
—t
=
D
QD
3

Automation of Windows and Windows Applications (Object Rexx) 5, p.58 © Prof. Rony G. Flatscher

Collection Classes, 1

(UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)

e Example 1 (two Bags)
coll_1 = .bag ~of("a", "b”, "b™)

coll_2 = _bag ~of(b, "b"™, c')

CALL dump coll_1~UNION(coll_2), "UNION

CALL dump coll_1~INTERSECTION(coll_2), "INTERSECTION"
CALL dump coll_1~XOR(coll_2), ""XOR '
CALL dump coll_1~DIFFERENCE(coll_2), "DIFFERENCE
SAY coll_1~SUBSET(coll_1) "-" coll_1~SUBSET(coll_2)

- ROUTINE dump
USE ARG tmpColl, title

.stdout~CHAROUT(title tmpColl~string || ": ™)
DO 1tem OVER tmpColl
.stdout~CHAROUT(C'[™ || item || "1 ™)
END
SAY

Output (order could be different):

UNION a Bag: [a] [b]1 [c] [b] [b] [b]
INTERSECTION a Bag: [b] [b]

XOR a Bag: [a] [c]

DIFFERENCE a Bag: [a]

1 -0

Automation of Windows and Windows Applications (Object Rexx) 5, p.59 © Prof. Rony G. Flatscher

Collection Classes, 2

(UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)

e Example 2 (Set and Bag)
coll_1 = .set ~of("a”, "b", "b™)

coll_2 = _bag ~of(b, "b"™, c')

CALL dump coll_1~UNION(coll_2), "UNION "
CALL dump coll_1~INTERSECTION(coll_2), "INTERSECTION"
CALL dump coll_1~XOR(coll_2), ""XOR '
CALL dump coll_1~DIFFERENCE(coll_2), "DIFFERENCE
SAY coll_1~SUBSET(coll_1) "-" coll_1~SUBSET(coll_2)

- ROUTINE dump
USE ARG tmpColl, title

.stdout~CHAROUT(title tmpColl~string || ": ™)
DO 1tem OVER tmpColl
.stdout~CHAROUT(C'[™ || item || "1 ™)
END
SAY

Output (order could be different):

UNITON a Set: [a] [b] [c]
INTERSECTION a Set: [b]

XOR a Set: [a] [c]
DIFFERENCE a Set: [a]

1 -0

Automation of Windows and Windows Applications (Object Rexx) 5, p.60 © Prof. Rony G. Flatscher

Collection Classes, 3

(UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)

 Example 3 (Bag and Set)
coll_1 = _bag ~of(a™, "b", "b™)

coll_2 = _set ~of(b, "b"™, c')

CALL dump coll_1~UNION(coll_2), "UNION

CALL dump coll_1~INTERSECTION(coll_2), "INTERSECTION"
CALL dump coll_1~XOR(coll_2), ""XOR '
CALL dump coll_1~DIFFERENCE(coll_2), "DIFFERENCE
SAY coll_1~SUBSET(coll_1) "-" coll_1~SUBSET(coll_2)

- ROUTINE dump
USE ARG tmpColl, title

.stdout~CHAROUT(title tmpColl~string || ": ™)
DO 1tem OVER tmpColl
.stdout~CHAROUT(C'[™ || item || "1 ™)
END
SAY

Output (order could be different):

UNION a Bag: [a] [b] [c] [b] [b]
INTERSECTION a Bag: [b]

XOR a Bag: [a] [b] [c]
DIFFERENCE a Bag: [a] [b]

1 -0

Automation of Windows and Windows Applications (Object Rexx) 5, p.61 © Prof. Rony G. Flatscher

Collection Classes, 4

(UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)

e Result is always an object of the same type as the
receiving collection object

— Argument of a setlike message can be an arbitrary collection
object

e If the argument collection object has no user defined index
(Array, List, Queue, Stem, Stream) then the collection is
turned into a bag collection containing the collected objects

— Argument will be first converted to the type of the
receiving collection before carrying out the operation

Automation of Windows and Windows Applications (Object Rexx) 5, p.62 © Prof. Rony G. Flatscher

Classification Tree of Object Rexx, 6¢C

mﬁpator Class

(Object ’

(o) & ”

Class “ Array Directory

v/ List Relation

77
—GﬂutableBuffeD CircularQueue Table
e
/ %
I! Supplier’

Automation of Windows and Windows Applications (Object Rexx) 5, p.63 © Prof. Rony G. Flatscher

Iterator Class, 1

e Supplier
— Supplier objects allow enumerating all objects contained in a collection
e A supplier object presents each collected object and supplies the index that object is
associated with

e As the index-object pair is returned by the supplier object, there is no need to know
whether the underlying collection is one where the index is userdefined or not

— The builtin collection classes possess a method SUPPLIER which returns the
collection in the form of such a SUPPLIER object

— Example code for enumerating all collected objects

tmpSupp = tmpColI-SUPPLIER
DO WHILE tmpSupp~AVAILABLE
SAY "index [|| tmpSupp~INDEX || "] -
“item [|| tmpSupp~ITEM || "]1"
tmpSupp~NEXT
END

Automation of Windows and Windows Applications (Object Rexx) 5, p.64 © Prof. Rony G. Flatscher

Iterator Class, 2

e Example 1 (unordered collection: Relation)

tmpColl = _relation ~new

tmpColl[a_i1ndex'] = "a"

tmpColl ~""[]="(C"b", "b_index')

tmpColl ~—~PUT('b", "b_index"™) ~~PUT("c', "c_index")

SAY tmpColl~string || ":"

tmpSupp = tmpCol I-SUPPLIER
DO WHILE tmpSupp~AVAILABLE
SAY "index [|] tmpSupp~INDEX || "] ,
“item [|| tmpSupp~ITEM || "]"
tmpSupp~NEXT
END

Output (order could be different):
a Relation:

index [b_index] i1tem [b]
index [c_index] i1tem [c]
index [a_index] 1tem [a]
index [b index] 1tem [b

Automation of Windows and Windows Applications (Object Rexx) 5, p.65 © Prof. Rony G. Flatscher

Iterator Class, 3

e Example 2 (ordered collection: 2-dimensional Array)

tmpColl = _array ~new

tmpColl[2,3] = "a"

tmpColl ~"[]="(C"b", 1, 1)

tmpColl ~~put(b™, 4, 5) ~~put(c”, 1, 2)

SAY tmpColl~string || ":"

tmpSupp = tmpCol I-SUPPLIER
DO WHILE tmpSupp~AVAILABLE

SAY "index [|| tmpSupp~INDEX |] "1" .
“item [|| tmpSupp~ITEM || "]
tmpSupp~NEXT
END
Output:
an Array:

index [1,1] item [b]
index [1,2] item [c]
index [2,3] i1tem [a]
index [4,5] i1tem [b]

Automation of Windows and Windows Applications (Object Rexx) 5, p.66 © Prof. Rony G. Flatscher

Iterator Class, 4

e Example 3 (unordered collection: Set)

tmpColl = _set ~new
tmpColl["a™] = "a"

tmpColl ~"[]="C'b"", "b™)
tmpColl ~~PUT('b™) ~~PUT("'c™)

SAY tmpColl~string || ":"

tmpSupp = tmpCol I-SUPPLIER
DO WHILE tmpSupp~AVAILABLE
SAY "index [|] tmpSupp~INDEX || "] ,
“item [|| tmpSupp~ITEM || "]"
tmpSupp~NEXT
END

Output (order could be different):
a Set:

index [a] item [a]
index [b] i1tem [b]
index [c] i1tem [c]

Automation of Windows and Windows Applications (Object Rexx) 5, p.67 © Prof. Rony G. Flatscher

	An Introduction to Procedural and �Object-oriented Programming� (Object Rexx) 5
	Abstract Datatype (ADT)�Implementation with Object Rexx
	Object Rexx�Messages (~, ~~)
	Abstract Datatype (ADT)�Implementing an ADT in Object Rexx (Example)
	Execution of Cascading Messages, 1
	Execution of Cascading Messages, 2
	Overview of Scopes
	Creating Objects
	Abstract Datatype "Person"�Implementation of Constructor in Object Rexx
	Deleting of Objects
	Abstract Datatype "Person"�Implementation of Destructor in Object Rexx
	Classification Tree�(Generalization Hierarchy)
	Object Rexx: Classification Tree, 1
	Object Rexx: Classification Tree, 2
	Object Rexx: Classification Tree, 3
	Example "Dog", 1
	Example "Dog", 2
	Multithreading
	::CLASS Directive
	::CLASS Directive�Example: ADT "Vehicle", 1
	::CLASS Directive�Example: ADT "Vehicle", 2
	::CLASS Directive�Example: ADT "Vehicle", 3
	::METHOD Directive, 1
	::METHOD Directive, 2
	::METHOD Directive, 3
	Classification Tree of Object Rexx, 1
	Classification Tree of Object Rexx, 2
	Fundamental Classes, 1
	Fundamental Classes, 2
	Classification Tree of Object Rexx, 3
	Alarm Class
	Classification Tree of Object Rexx, 4
	Monitor Class
	Classification Tree of Object Rexx, 5
	"Classic Rexx" Classes, 1
	"Classic Rexx" Classes, 2
	"Classic Rexx" Classes, 3
	"Classic Rexx" Classes, 4
	"Classic Rexx" Classes, 5
	Classification Tree of Object Rexx, 6
	MutableBuffer Class
	Classification Tree of Object Rexx, 6a
	Collection Classes, 1a
	Collection Classes, 1b
	Collection Classes, 2
	Collection Classes, 3�Ordered Collection
	Collection Classes, 4�Ordered Collection
	Collection Classes, 5�Ordered Collection
	Collection Classes, 6�Ordered Collection
	Collection Classes, 7�Ordered Collection
	Collection Classes, 8�Unordered Collection
	Collection Classes, 9�Unordered Collection
	Collection Classes, 10�Unordered Collection
	Collection Classes, 11�Unordered Collection
	Collection Classes, 12�Unordered Collection
	Collection Classes, 13�Unordered Collection
	Collection Classes, 14�Unordered Collection
	Classification Tree of Object Rexx, 6b
	Collection Classes, 1� (UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)
	Collection Classes, 2� (UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)
	Collection Classes, 3� (UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)
	Collection Classes, 4� (UNION, INTERSECTION, XOR, DIFFERENCE, SUBSET)
	Classification Tree of Object Rexx, 6c
	Iterator Class, 1
	Iterator Class, 2
	Iterator Class, 3
	Iterator Class, 4

