MIS Department

An Introduction to Procedural and
Object-oriented Programming,
Automation of Windows Applications
Installment # 1

Introduction, Overview,
Statement, Procedure, Function

Prof. Rony G. Flatscher

Vienna University of Economics and Business Administration = Wirtschaftsuniversitat Wien = Augasse 2-6 m A-1090 Vienna

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.1 © Prof. Rony G. Flatscher

Overview, 1

e Course

— Basic concepts of the object-oriented paradigm
e Standard application systems
— Scripting language
e Automation ("remote controlling™) of applications
e Automation of operating systems like Linux or Windows

— Foils
http://wi.wu-wien.ac.at/Studium/Abschnitt_2/LVA_wsO04/rgf/poolv/English/foils

— Excercises

http://wi.wu-wien.ac.at/Studium/Abschnitt_2/LVA ws04/rgf/poolv/English/excercises

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.2 © Prof. Rony G. Flatscher

Overview, 2

e Why Rexx? Why Object Rexx?
— Simple syntax ("human-centric" language)
e Easy and quick to learn

— Powerful object-model

e All important concepts of the OO-paradigm available
— Windows Scripting Engine (WSE)
e Full automation of Windows applications possible
e Availability of Software

http://www.o0Rexx.org

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.3 © Prof. Rony G. Flatscher

Overview, 3

e "Interactive" lecture

— Please ask questions!

— Do not fear "wrong", "easy" or "ridiculous " questions

— Questioner concentrates on the answer (easier and more
thorough learning of new concepts)

— Questioner usually can rely on the fact that there are others
who would like to place the same question (but don't
dare/bother to do so)

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.4 © Prof. Rony G. Flatscher

History, 1

http://www?2.hursley.ibm.com/rexx/rexxhist.ntm

e 1979 - IBM (Mike F. Cowlishaw, IBM-Fellow)
— Successor of a rather cryptic script language ("EXEC") on IBM mainframes
— Goal: to create a "human-centric" language
— Interactive (Interpreter)
— REXX: Acronym for "REstructured exXtended eXecutor"

e Since 1987 IBM's "SAA" (System Application Architecture) "Procedural
Language”
— Strategic script language for all IBM platforms

— Numerous commercial and open source versions of the language, available for
practically all operating systems there are

e ANSI Rexx Standard in 1996
— ANSI "Programming Language - REXX", X3.274-1996

An Introduction to Procedural and Object-oriented Programming (0ooRexx) 1, p.5 © Prof. Rony G. Flatscher

History, 2

e Since the beginning of the 90ies

— Going back on an initiative of the powerful IBM user interest group "SHARE"
development of an object-oriented version of REXX started

e "Object-based REXX" a.k.a. "Object REXX"
— Fully compatible with classic ("procedural™) Rexx
— Internally fully object-oriented
e All classic Rexx statements are transformed into obfect-oriented ones internally!
— Powerful object model (e.g. meta-classes, multiple inheritance)
— Still a simple syntax
— Availability
e 1997 part of 0OS/2 Warp 4 (free) and free for Warp 3 (with SOM)

e 1998 AIX (first evaluation version) and Linux (free)
e 1998 for Windows 95 and Windows NT (with OLEAutomation/ActiveX)

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.6 © Prof. Rony G. Flatscher

History, 3

e Since 1996 development of "NetRexx" by the original author of Rexx,
Mike F. Cowlishaw

— Java in the "clothes" of Rexx
e NetRexx-programs are translated into Java byte code

e Simpler programming of the Java VM due to the simpler Rexx syntax
— ~30% less Code (syntactical elements) than Java

e Due to the Rexx syntax, easier to learn for the programming novice

e URLs for Rexx, Object Rexx, NetRexx
http://www.RexxLA.org/
http://www.software.ibm.com/ad/obj-rexx/
http://www2.hursley.ibm.com/rexx/
http://www2.hursley.ibm.com/orexx/
http://www2.hursley.ibm.com/netrexx/

news:comp.lang.rexx

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.7 © Prof. Rony G. Flatscher

History, 4

- May 2004

— The "Rexx Language Association" (RexxLA) and IBM start non-public
negotiations about open-sourcing Object Rexx

e IBM: Manfred Schweizer, manager of IBM's Rexx development team

e RexxLA: Pam Taylor (experienced commercial manager, USA), Mark Hessling
(maintainer of Regina and author of numerous Rexx libraries, Australia), Rony G.
Flatscher (MIS professor, Austria/Europe)

e QOctober 12th, 2004

— IBM and the Rexx Language Association (http://www.RexxLA.org) announce
that RexxLA will manage Object Rexx under the name "Open Object Rexx"
("ooRexx")

e April 2005

— The Rexx Language Association releases the opensource version “Open Object
Rexx” (0oRexx), homepage: http//www.o0Rexx.org

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.8 © Prof. Rony G. Flatscher

Basics

Minimal Rexx-Program

/> a comment */
SAY ""Hello, my beloved world"

Output:

Hello, my beloved world

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.9 © Prof. Rony G. Flatscher

Basics

RexxTry.rex

* "RexxTry.rex"
— Rexx-Program which allows interactive execution of Rexx
statements

e Transfers every Rexx statement entered through the keyboard to
the Rexx interpreter for execution

e Displays console-output or errors of entered Rexx statements
— Program ends when user enters EXIT through the keyboard

— Invoking the program via a command in a command line
window:

rexx RexxTry.rex

rexx rexxtry

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.10 © Prof. Rony G. Flatscher

Basics

Notation of Program Text

e Upper or lowercase spelling irrelevant

— All characters of a Rexx statement will be translated into
uppercase and executed

— Exception: Contents of a string remains unchanged

e Strings are delimited by apostrophes (') or by quotes ('), e.qg.
“"Richard’, "Richard®, "\{[1X\gulploaulR!{nixX }"
e Multiple blank characters are reduced to one blank

— Example
saY "\{[1}\gulpléaulRt{nix }" reverse(Abc)

becomes:

SAY "\{[1}F\gulp!saiR{nixX }" REVERSE(ABC)

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.11 © Prof. Rony G. Flatscher

Basics

Characters

e Characters outside of strings and comments must be
from the following character set

— Blank

— a thru z
— A thru Z
— Othru 9

— Exclamation mark (!), backslash (\), question mark (?),
equal sign (=), comma (,), dash/minus (-), plus (+), dot (.),
Slash (/), parenthesis (()), square parentheses ([]), asterisk (*),
tilde (=), semicolon (;), colon (:) and underline ()

An Introduction to Procedural and Object-oriented Programming (0oRexx) 1, p.12 © Prof. Rony G. Flatscher

Basics

Variables

e Variables allow storing, changing, and retrieving strings with
the help of a discretionary name called an /dentifier

A = "Hello, my beloved world"

a=""Hello, my beloved variable"

A = a ""—- changed again.™
say a

Output:

Hello, my beloved variable - changed again.

e |dentifiers must begin with a letter, an exclamation mark, a
guestion mark or an underline character, followed by one or
more of these characters, digits, and dots.

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.13 © Prof. Rony G. Flatscher

Basics

Constants

e Constants never get their values changed

e |t is possible to use literals which are string constants
appearing verbatim in an expression

— If one wishes to name constants, then there are two possibilities available

e The constant value is assigned to a variable, the value of which never gets
changed in the entire program, e.g.,

Pi = 3.14159

— The constant value can be saved in the local (.local) or global (.environment)
environment and will be referred to by an "environment symbol”, which always
start with a dot, e.qg.,

.local~p1 = 3.14159 /* Store value 3.14159 in .local */
say .pi /* retrieves value 3.14159 from .local*/

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.14 © Prof. Rony G. Flatscher

Basics

Comments

e Comments may be nested and are allowed to span multiple lines, e.g.

say 3 + /* This /**/ 1s
a /* nested
/* aha*/ comment*/ which spans
multiple lines */ 4

Output:
7

e Line comments: at the end of a statement, comments follow after two
consecutive dashes:

say 3 + 4 — this yields "7"

Output:
7

© Prof. Rony G. Flatscher

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.15

Basics

Statements, 1

e Statements consist of all characters up to and including the semi-
colon (;)

e There may an arbitrary number of statements on a line

e If the semi-colon is missing, then the end of a statement is
assumed by the end of a line

/* Convention: A comment begins in 1. line, 1. column */
SAY "Hello, my dear world";

Output:

Hello, my dear world

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.16 © Prof. Rony G. Flatscher

Basics

Statements, 2

e Statements may span multiple lines, but you need to
Indicate this with the continuation character

— Comma or Dash as the last character on the line

/* Convention: A comment begins in 1. line, 1. column */

SAY "Hello," -
"my beloved world";

Output:

Hello, my beloved world

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.17 © Prof. Rony G. Flatscher

e A block is a statement, which may comprise an arbitrary number of
statements

e A block starts with the keyword DO and ends with END

DO DO
SAY ""Hello," ; SAY ""Hello,"
SAY "world" ; SAY "‘world"
END; END
Output:
Hello,
world

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.18 © Prof. Rony G. Flatscher

Basics

Comparisons (Test Expressions), 1

 Two values (constant, variable, results of function calls) can
be compared with the following (Infix) operators
(Result: O=false or 1=true)

= equal

<> I= \= unequal

< smaller

<= smaller than
> greater

>= greater than

 Negation of Boolean (O=false, 1=true) values

\ Negator

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.19 © Prof. Rony G. Flatscher

Basics

Comparisons (Test Expressions), 2

e Boolean values can be combined
& "and" (true: 1T both arguments are true)
| “"or" (true: 1T either argument are true)

&& "exclusive or" (true: 1f one argument iIs true
and the other i1s false)

e Boolean combinations can be evaluated in a specific order if
enclosed in parentheses:
O&1 | 1 Result: 1 (= true)
(O & 1) |] 1 Result: 1 (= true)
O& (1] 1) Result: 0 (= false)

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.20 © Prof. Rony G. Flatscher

Basics

Comparisons (Test Expressions), 3

a=1

b=2

x=""Anton"’

y="" Anton

Ifa=1 then ...
ITf a=a then ...
ITf a > Db then ...

If x>y then ...

IT X ==y then ...
a<=>b & (a

\(a <= b & (a

\a

Result:
Result:

Result:

Result:
Result:

Result:
Result:
Result:

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.21

true)
true)

false)

true)
false)

true)
false)
false)

© Prof. Rony G. Flatscher

Basics

Branch, 1

e A branch determines which statement (block) should be
executed as a result of a comparison (of a Boolean value)

— |IF test _expression=.true THEN statement;

e Example:
IF age < 19 THEN SAY "‘Young."

— A branch can also determine what alternative statement (block) should be
executed, in case the Boolean value is false

— |IF test _expression=.true THEN statement; ELSE statement;

e Examples:
IF age < 19 THEN SAY "Young."
ELSE SAY "Old."

IF age < 1 THEN
DO

SAY ""Hello,"

SAY "my beloved world"
END

An Introduction to Procedural and Object-oriented Programming (0oRexx) 1, p.22 © Prof. Rony G. Flatscher

Basics

Branch, 2

e Multiple selections (SELECT)
SELECT
WHEN test expression THEN statement;

WHEN test expression THEN statement;

/* ... additional WHEN-statements */
OTHERWISE statement;
END
Example:
SELECT
WHEN age = 1 THEN SAY "Baby." ;
WHEN age = 6 THEN SAY "'Elementary school kid." ;

WHEN age >= 10 THEN SAY "Big kid." ;
OTHERWISE SAY "‘Unimportant.' ;
END

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.23 © Prof. Rony G. Flatscher

Basics

Repetition, 1

e Principally a block can be executed repeatedly

DO 3
SAY "Aual™
SAY "'Oht"
END

Output:

Aual
Oh!
Aual
Oh!
Aual
Oh!

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.24 © Prof. Rony G. Flatscher

Basics

Repetition, 2

e Using a variable to control the number of repetitions

DO a
SAY ""Aual’; SAY "Oh!"
END

Output:

Aual
Oh!
Aual
Oh!
Aual
Oh!

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.25 © Prof. Rony G. Flatscher

Basics

Repetition, 3

e Repetition using a control variable ("i" in this example)

DO 1 =1 TO 3
SAY "Aual';SAY "OhI™ 1
END

Output:

Aual
Ooh'! 1
Aual
Oht! 2
Aual
Oh! 3

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.26 © Prof. Rony G. Flatscher

Basics

Repetition, 4

e Repetition using a control variable ("i" in this example)

DO 1 =1 TO 3 BY 2
SAY ""Aual™;SAY "OhI™ 1
END

Output:

Aual
Oh! 1
Aual
Oh! 3

An Introduction to Procedural and Object-oriented Programming (0oRexx) 1, p.27 © Prof. Rony G. Flatscher

Basics

Repetition, 5

e Repetition using a control variable ("i" in this example)

DO 1 = 3.1 TO 5.7 BY 2.1
SAY ""Aual™;SAY "OhI™ 1
END

Output:

Aual
Oh! 3.1
Aual
Oh! 5.2

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.28 © Prof. Rony G. Flatscher

Basics

Repetition, 6

e Conditional repetition

1 = 2
DO WHILE 1 < 3
SAY ""Aual™;SAY "Ohal™ 1

1 =1 + 1
END

Output:

Aual
Ohal 2

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.29 © Prof. Rony G. Flatscher

Basics

Repetition, 7

e Conditional repetition

1 = 3
DO WHILE 1 < 3
SAY ""Aual™;SAY "Ohal™ 1

1 =1 + 1
END

=>No output, because block Is not executed!

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.30 © Prof. Rony G. Flatscher

Basics

Repetition, 8

e Conditional repetition

1 = 3
DO UNTIL 1 > 1
SAY ""Aual™;SAY "Ohal™ 1

1 =1 + 1
END

Output:

Aual
Oha! 3

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.31 © Prof. Rony G. Flatscher

Basics
Execution, 1

An Introduction to Procedural and Object-oriented Programming (0oRexx) 1, p.32 © Prof. Rony G. Flatscher

Basics

Execution, 2

/* */
“"del *_*"

or:

/* */
ADDRESS CMD ''del *_*"

or:

/* >/
a = "del *_.*"
a

or:
/> >/

a = "del *.*"
ADDRESS CMD a

An Introduction to Procedural and Object-oriented Programming (ooRexx) 1, p.33 © Prof. Rony G. Flatscher

	An Introduction to Procedural and �Object-oriented Programming, �Automation of Windows Applications� Installment # 1
	Overview, 1
	Overview, 2
	Overview, 3
	History, 1 http://www2.hursley.ibm.com/rexx/rexxhist.htm
	History, 2
	History, 3
	History, 4
	Basics�Minimal Rexx-Program
	Basics�RexxTry.rex
	Basics�Notation of Program Text
	Basics�Characters
	Basics�Variables
	Basics�Constants
	Basics�Comments
	Basics�Statements, 1
	Basics�Statements, 2
	Basics�Block
	Basics�Comparisons (Test Expressions), 1
	Basics�Comparisons (Test Expressions), 2
	Basics�Comparisons (Test Expressions), 3
	Basics�Branch, 1
	Basics�Branch, 2
	Basics�Repetition, 1
	Basics�Repetition, 2
	Basics�Repetition, 3
	Basics�Repetition, 4
	Basics�Repetition, 5
	Basics�Repetition, 6
	Basics�Repetition, 7
	Basics�Repetition, 8
	Basics�Execution, 1
	Basics�Execution, 2

