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Classic Rexx

Execution of Programs

e File containing the program gets loaded
e Usually 1%t line, 15t column start of the string: /*

e Thereafter line by line
— Read statement
— Check statement for syntactical errors

— Execute (interpret) statement

e Lines, which are not visited are usually not checked for syntax errors!
— l.e. in IF statements the THEN- or the ELSE-branch

— Potential time bombs:

e Sometimes (maybe even after years!) a statement may be visited, which is syntactically wrong
and therefore causes the program to be aborted ("all of a sudden”)
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Object Rexx and Regina (cf. http:/www.rexx.org)

Execution of Programs

e File containing the program gets loaded

e A/l lines are read

— All statements are syntactically checked and translated into a compressed
intermediary code ("tokenized image"), which later gets executed

— No syntactic time bombs!

:REQUIRES directives are carried out
e Remaining directives (::ROUTINE, ::CLASS, ::METHOD) are carried out
e Program starts with the very first statement before the first directive

— For modules the program (all statements before the first directive) can be
used to initialise the modules themselves
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Exceptions

e (Categories (Conditions)

SYNTAX Statement not syntactically correct

FAILURE Error in external program

ERROR Error in external program, not intercepted with
"FAILURE" oder "ANY"

HALT Ctl-C (Ctl-Break): user aborts program

NOVALUE Using a non-initialised variable

USER User-defined exceptions

LOSTDIGITS  Needs more digits than NUMERIC DIGITS
NOMETHOD, NOSTRING, NOTREADY (later ... )

ANY Intercepts (represents) al/l exceptions
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Exceptions

Invoking the intended (programmed) exception handling statements with

— CALL {on]off} category [NAME label]
use a procedure to deal with the exception (from which one can return)

— SIGNAL {on]off} category [NAME label]
transfer control to the statements at the given label

e Intercepting (*catching™) exceptions can be activated with the keyword ON, and
deactivated with OFF

e One of the aforementioned categories, if using the user defined exception category
USER, then it gets followed by the userdefined exception identifier

< NAME optional, allows for defining a label which serves as the CALL or SIGNAL target

— If no explicit label is given, then the interpreter looks for a label which has the same
name as the exception
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Exceptions

« Hint: Windows Workbench
— It is not possible to use the category ANY for interception!

— The Workbench intercepts all unhandled exceptions by using ANY

e All exceptions can only be intercepted in the scope of the calling
program

— Hence, the triggering of an exception with the RAISE statement is
only interceptable in the caller

— Exception: SYNTAX
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Dealing with Exceptions in a General Manner

e Generally dealing with exceptions
— Copy the label and its code to the end of your programs
— Activate the exception handling with the "SIGNAL ON" statement at the beginning of

your program

SIGNAL ON ANY /* no label, hence "ANY" */
. Your Rexx-code ...
ANY: /* target for any exception */

exc_rc = RC /* save return code */

exc_sigl = SIGL /* save line number */

exc_type = CONDITION("C™) /* get exception type */

CALL say2stderr "REXX "RC":" exc_rc

CALL say2stderr ™ type:" exc_type

CALL say2stderr

CALL say2stderr ™ i1n line:" exc_sigl

CALL say2stderr " " SOURCELINE(exc_sigl)

EXIT -1 /* 1ndicate error */
SAY2STDERR: /* write to STDERR: */

CALL LINEOUT "STDERR:'", ARG(1)

RETURN
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Exceptions, Example 1

/* =/
SIGNAL ON SYNTAX NAME ANY /* target name "ANY' given */
SAY Nix /* Variable not initialized! */
EXIT O
ANY: /* target for any exception */

exc_rc = RC /* save return code */

exc_sigl = SIGL /* save line number */
exc_type = CONDITIONC"C'™) /* get exception type */
CALL say2stderr "REXX "RC":' exc_rc

CALL say2stderr " type:" exc_type
CALL say2stderr
CALL say2stderr " in line:" exc_sigl
CALL say2stderr " " SOURCELINE(exc_sigl)
EXIT -1 /* i1ndicate error */
SAY2STDERR: /* write to STDERR: */
CALL LINEOUT "STDERR:"", ARG(1)
RETURN
Output:
NIX
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Exceptions, Example 2

/* */
SIGNAL ON NOVALUE NAME ANY
SAY Nix /* Variable not initialized! */
EXIT O
ANY: /* target for any exception */
exc_rc = RC /* save return code */
exc_sigl = SIGL /* save line number */
exc_type = CONDITION("C'™) /* get exception type */
CALL say2stderr "REXX "RC":" exc_rc

CALL say2stderr " type:" exc_type

CALL say2stderr

CALL say2stderr " 1i1n line:" exc_sigl

CALL say2stderr " " SOURCELINE(exc_sigl)

EXIT -1 /* indicate error */
SAY2STDERR: /* write to STDERR: */

CALL LINEOUT "STDERR:", ARG(1)

RETURN

Output:
REXX "RC®": RC
type: NOVALUE
in line: 3
SAY Nix
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Raising Exceptions

e Usually, the Rexx-Interpreter raises exceptions
... but you can do it also

e RAISE statement
— RAISE category

e Creates ("'raises") the given exception

— RAISE PROPAGATE
e Can only be given during exception handling

e Re-creates the same exception in the caller, which allows the caller to also
intercept it
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Raising Exceptions, Example 1

/**/
SAY "hallo"

RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */
EXIT O

Output:

hallo

3 *~* RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */

Error 9 running C:\TEMP\wi-pub\Ilv\poolv\code\script5.rex line 3:
Unexpected WHEN or OTHERWISE

Error 9.1: WHEN has no corresponding SELECT
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Raising Exceptions, Example 2

/**/

SIGNAL ON SYNTAX /* no label, hence "SYNTAX" */

SAY "hallo”

RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */

EXIT O

SYNTAX: /* target for any exception */
SAY "In SYNTAX-exception handling code."
EXIT -1

Output:
hallo

In SYNTAX-exception handling code.
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Raising Exceptions, Example 3

/**/
SIGNAL ON ANY /* no label, hence "ANY" */
SAY "hallo”
RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */
EXIT O
ANY: /* target for any exception */
exc_rc = RC /* save return code */
exc_sigl = SIGL /* save line number */
exc_type = CONDITION("C"™) /* get exception type */
CALL say2stderr "REXX "RC":" exc_rc
CALL say2stderr type:" exc_type
CALL say2stderr
CALL say2stderr " 1n line:" exc_sigl
CALL say2stderr ' " SOURCELINE(exc_sigl)
EXIT -1 /* 1ndicate error */
SAY2STDERR: /* write to STDERR: */
CALL LINEOUT "STDERR:", ARG(1)
RETURN
Output:
hallo

REXX *RC": 9
type: SYNTAX
in line: 4
RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.13 © Prof. Rony G. Flatscher



Variables (Rexx)

e Strings
e Stem-Variables, which allow storing strings

e Arguments for procedures/functions

— Only strings allowed in classic Rexx, hence

— No Stem-Variable allowed as an argument!

e EXPOSE statement allows access to stem variables of the caller by
breaking the (desired) insulation of the local scope (created with the
PROCEDURE statement right after the label)
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Variables (Object Rexx)

e Variables are References to instances of Object Rexx classes
e Strings
e Stems

e ... (more later ...)

e Arguments for procedures/functions

— PARSE ARG statement
e Only Strings allowed

e No Stem-Variable !

e EXPOSE statement allows access to a stem variable defined in the caller

— USE ARG statement

e A//Objects are allowed as arguments
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Routines (Object RexXx)

e Routines are directives
— Therefore they start with a double-colon (::)

— Routines represent procedures and functions

e There is no EXPOSE statement available to the routine

— After a successful syntax check they are made available in the
scope
e of the program itself, and

e in addition in all superordinate (calling) programs, /f the keyword PUBLIC is given

— Define their own scope, as if they were a program of their
own!

e Therefore labels are available wrthin routines zum Aufrufen von Unterprogrammen
und Funktionen daher mdglich
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Routines (Object RexXx): 1a

/**/

SAY pp(“hello™)

CALL oha /* routine is called */
SAY pp(“Thello™)

EXIT O
pp : RETURN "<<<" || ARG(1) || ">>>"

-- ROUTINE oha PUBLIC
SAY pp(“Tholla™)
EXIT O

pp - RETURN "[" || ARGCD) || "1"

Output:

<<<hello>>>

[holla]
<<<hel lo>>>
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Routines (Object RexXx): 1b

/**/

SAY pp(“hello™)

CALL oha /* routine 1s called */
SAY pp(“hello™)

EXIT O
pp : RETURN "<<<" || ARG(1) || '">>>"

SAY  pp(“holla

EXIT O
pp - RETURN "["™ || ARGCD) |l "1V

Output:

<<<hello>>>

[holla]
<<<hello>>>
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Routines (Object RexXx): 1c

/**/

SAY pp(*hello™)

CALL oha /* routine 1s called */
SAY pp(“Thello™)

EXIT O
pp : RETURN "<<<"™ || ARG(D) || '">>>"

- - ROUTINE oha PUBLIC
SAY pp(Tholla'™)
EXIT O

pp = RETURN "["™ || ARGCD) |l "1V

Output:

<<<hello>>>

[holla]
<<<hello>>>
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Routines and Exceptions: 1

e Routines are like external procedures/functions
/**/
SIGNAL ON USER TOO_SMALL /* intercept a user exception */
CALL checkAge 10
CALL checkAge 3
CALL checkAge 7

EXIT O

TOO_SMALL: /* dealing with the user exception */
SAY "// caught exception "TOO_SMALL" \\"
EXIT -1

:-ROUTINE checkAge
PARSE ARG age
SAY "'--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE SAY ''--> checked o.k."
EXIT O

Output:

--> age: 10

--> checked o.k.

--> age: 3

// caught exception "TOO_SMALL" \\
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Routines and Exceptions: 2

e Routines are like external procedures/functions

/**/
ON USER TOO_SMALL /* intercept a user exception */
A checkAge 10
CALL checkAge 3
CALL checkAge 7

EXIT O

TOO_SMALL: /* dealing with the user exception */
SAY "// caught exception "TOO_SMALL" \\"
RETURN

:-ROUTINE checkAge
PARSE ARG age
SAY "--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE SAY '"--> checked o.k."
EXIT O

Output:
--> age: 10
--> checked o.k.
--> age: 3
// caught exception "TOO_SMALL" \\
-—> alter: 7
--> checked o.k.
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Routines and Exceptions: 3a

CALL ON ANY /* intercept anything that is not caught explicitly */
CALL ON USER TOO_SMALL /* intercept a user exception */

CALL ON USER too_big /* intercept a user exception */

CALL checkAge 10

CALL checkAge 3

CALL checkAge 7

EXIT O

ANY :  SAY "in line:" SIGL "exception:"™ CONDITIONC("C™); RETURN
Too_small: SAY *"// caught exception "TOO SMALL® \\'; RETURN
TOO_BIG: SAY "// caught exception "TOO BIG" \\''; RETURN

:-ROUTINE checkAge
PARSE ARG age
SAY "--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE IF age > 9 THEN RAISE USER too_big
ELSE SAY "--> checked o.k."
RAISE USER something_ raised
EXIT O

Output:
--> age: 10
// caught exception "TOO_BIG" \\
--> age: 3
// caught exception "TOO_SMALL" \\
--> age: 7
--> checked o.k.
in line: 7 exception: USER SOMETHING_RAISED
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Routines and Exceptions: 3b

CALL ON ANY /* intercept anything that is not caught explicitly */
CALL ON USER TOO_SMALL /* intercept a user exception */

CALL ON USER too_big /* intercept a user exception */

CALL checkAge 10

CALL checkAge 3

CALL checkAge 7

EXIT O

ANY :  SAY "in line:" SIGL "exception:"™ CONDITIONC("C™); RETURN
Too_small: SAY *"// caught exception "TOO SMALL® \\'; RETURN
TOO_BIG: SAY "// caught exception "TOO BIG" \\''; RETURN

:-ROUTINE checkAge
PARSE ARG age
SAY "--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE IF age > 9 THEN|RAISE USER too_big|
ELSE SAY "--> checked o.k."
| RAISE USER something_raised |
EXTT O

Output:
--> age: 10
// caught exception "TOO_BIG" \\
--> age: 3
// caught exception "TOO_SMALL" \\
--> age: 7
--> checked o.k.
in line: 7 exception: USER SOMETHING_RAISED
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Requires Directive (Object Rexx)

e ::Requires directive
— Allows naming a Rexx program
e Hint: for porting purposes, enclose the filename in quotes (Unix is case sensitive)

— The interpreter will call the required program before carrying out any
of the other directives (::Routine, ::Class, ::Method)

— Thereafter all of its public routines (and public classes!) are made
available
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CALL-Statement and Public Routines: 1/2

/* cmdl.rex */

SAY "In" "cmdl.rex"
CALL cmd2

SAY "In"|pp(‘"cmdl.rex™)

/* cmd3.rex */

SAY "' \1\ In" pp(‘'cmd3.rex"™)
CALL cmd4

SAY ™ \2\ In" pp('cmd3.rex")
EXIT O

- :ROUTINE pp
RETURN "c3<<" || ARG(1) || ">>c3"

Ausgabe:
In cmdl.rex
/1/ In c2[cmd2.rex]c2
\1\ In c3<<cmd3.rex>>c3
In c4<cmd4.rex>c4
\2\ In c3<<cmd3.rex>>c3
/2/ In c2[cmd2.rex]c2
In c4<<cmdl.rex>>c4

/* cmd2.rex */
SAY " /1/ In"
CALL cmd3

SAY " /2/ In"
EXIT O

pp -
RETURN *‘c2[™

/* cmd4.rex */
SAY "
EXIT O

pp -
RETURN "'c4<"

pp(‘*'cmd2.rex™)

pp(‘‘cmd2.rex™)

Il ARG(D) [ "]c2”

In" pp(*"'cmd4.rex'™)

Il ARG(1) || ">ca"

- -ROUTINE pp PUBLIC
RETURN *'c4<<" || ARG(L) || ">>c4"

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.25

© Prof. Rony G. Flatscher



CALL-Statement and Public Routines: 2/2

/* cmdl.rex */

SAY "In" "cmdl.rex"
CALL cmd2

SAY "In" pp(‘cmdl.rex™)

/* cmd3.rex */

/* cmd2.rex */
SAY " /1/ In"
CALL cmd3

SAY " /27 In"
EXIT O

pp -
RETURN *‘c2[™

/* cmd4.rex */

pp(‘*'cmd2.rex™)

pp(‘‘cmd2.rex"

Il ARG(D) [ "]c2”

SAY \1\ In" pp(“'cmd3.rex™) SAY ™ In" pp(*"'cmd4.rex'™)
CALL cmd4 EXIT O
SAY ™ \2\ In" pp(‘'cmd3.rex")
EXIT O pp -
RETURN "c4<" || ARG(1) |] ">c4"
| > ZROUTINE pp
RETURN "c3<<" || ARG(1) |] '">>c3" |::ROUTINE pp PUBLIC
RETURN "c4<<"™ |] ARG(1) || ''>>c4"
Ausgabe:

In cmdl.rex
/1/ In c2[cmd2.rex]c2
\1\ In c3<<cmd3.rex>>c3
In c4<cmd4.rex>c4
\2\ In c3<<cmd3.rex>>c3
/2/ In c2[cmd2.rex]c2
In c4<<cmdl.rex>>c4
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Requires-Directive and Public Routines

/* cmdl.rex */
SAY "In"|pp(‘'cmdl.rex’)

:-REQUIRES cmd2.rex

/* cmd3.rex */

SAY " \1\ In" pp('cmd3.rex’)
EXIT

requires cmd4.rex

- :ROUTINE pp
RETURN "c3<<" || ARG(1) || ">>c3"

Ausgabe:

In c4<cmd4.rex>c4
\1\ In c3<<cmd3.rex>>c3
/1/ In c2[cmd2.rex]c2
In cd4<<cmdl.rex>>c4
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/* cmd2.rex */

SAY * /1/ In" pp(*"'cmd2.rex™)
EXIT O

pp :
RETURN "c2[" || ARG(1) || "Jc2"

::Requires cmd3.rex

/* cmd4.rex */

SAY " In" pp(‘'cmd4.rex™)
EXIT

pp -
RETURN *‘c4<"™ || ARG(1) || ">c4"

| Z:ROUTINE pp PUBLIC

RETURN "c4<<" [[ ARG(L) || ">>c4"
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