MIS Department

Abteilung fir
Wirtschaftsinformatik

An Introduction to Procedural and
Object-oriented Programming
(Object Rexx) 3

Exceptions, References, Directives
(::routine, ::requires)

Prof. Rony G. Flatscher

Vienna University of Economics and Business Administration B Wirtschaftsuniversitat Wien B Augasse 2-6 B A-1090 Wien

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.1 © Prof. Rony G. Flatscher

Classic Rexx

Execution of Programs

e File containing the program gets loaded
e Usually 1%t line, 15t column start of the string: /*

e Thereafter line by line
— Read statement
— Check statement for syntactical errors

— Execute (interpret) statement

e Lines, which are not visited are usually not checked for syntax errors!
— l.e. in IF statements the THEN- or the ELSE-branch

— Potential time bombs:

e Sometimes (maybe even after years!) a statement may be visited, which is syntactically wrong
and therefore causes the program to be aborted ("all of a sudden”)

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.2 © Prof. Rony G. Flatscher

Object Rexx and Regina (cf. http:/www.rexx.org)

Execution of Programs

e File containing the program gets loaded

e A/l lines are read

— All statements are syntactically checked and translated into a compressed
intermediary code ("tokenized image"), which later gets executed

— No syntactic time bombs!

:REQUIRES directives are carried out
e Remaining directives (::ROUTINE, ::CLASS, ::METHOD) are carried out
e Program starts with the very first statement before the first directive

— For modules the program (all statements before the first directive) can be
used to initialise the modules themselves

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.3 © Prof. Rony G. Flatscher

Exceptions

e (Categories (Conditions)

SYNTAX Statement not syntactically correct

FAILURE Error in external program

ERROR Error in external program, not intercepted with
"FAILURE" oder "ANY"

HALT Ctl-C (Ctl-Break): user aborts program

NOVALUE Using a non-initialised variable

USER User-defined exceptions

LOSTDIGITS Needs more digits than NUMERIC DIGITS
NOMETHOD, NOSTRING, NOTREADY (later ...)

ANY Intercepts (represents) al/l exceptions

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.4 © Prof. Rony G. Flatscher

Exceptions

Invoking the intended (programmed) exception handling statements with

— CALL {on]off} category [NAME label]
use a procedure to deal with the exception (from which one can return)

— SIGNAL {on]off} category [NAME label]
transfer control to the statements at the given label

e Intercepting (*catching™) exceptions can be activated with the keyword ON, and
deactivated with OFF

e One of the aforementioned categories, if using the user defined exception category
USER, then it gets followed by the userdefined exception identifier

< NAME optional, allows for defining a label which serves as the CALL or SIGNAL target

— If no explicit label is given, then the interpreter looks for a label which has the same
name as the exception

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.5 © Prof. Rony G. Flatscher

Exceptions

« Hint: Windows Workbench
— It is not possible to use the category ANY for interception!

— The Workbench intercepts all unhandled exceptions by using ANY

e All exceptions can only be intercepted in the scope of the calling
program

— Hence, the triggering of an exception with the RAISE statement is
only interceptable in the caller

— Exception: SYNTAX

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.6 © Prof. Rony G. Flatscher

Dealing with Exceptions in a General Manner

e Generally dealing with exceptions
— Copy the label and its code to the end of your programs
— Activate the exception handling with the "SIGNAL ON" statement at the beginning of

your program

SIGNAL ON ANY /* no label, hence "ANY" */
. Your Rexx-code ...
ANY: /* target for any exception */

exc_rc = RC /* save return code */

exc_sigl = SIGL /* save line number */

exc_type = CONDITION("C™) /* get exception type */

CALL say2stderr "REXX "RC":" exc_rc

CALL say2stderr ™ type:" exc_type

CALL say2stderr

CALL say2stderr ™ i1n line:" exc_sigl

CALL say2stderr " " SOURCELINE(exc_sigl)

EXIT -1 /* 1ndicate error */
SAY2STDERR: /* write to STDERR: */

CALL LINEOUT "STDERR:'", ARG(1)

RETURN

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.7 © Prof. Rony G. Flatscher

Exceptions, Example 1

/* =/
SIGNAL ON SYNTAX NAME ANY /* target name "ANY' given */
SAY Nix /* Variable not initialized! */
EXIT O
ANY: /* target for any exception */

exc_rc = RC /* save return code */

exc_sigl = SIGL /* save line number */
exc_type = CONDITIONC"C'™) /* get exception type */
CALL say2stderr "REXX "RC":' exc_rc

CALL say2stderr " type:" exc_type
CALL say2stderr
CALL say2stderr " in line:" exc_sigl
CALL say2stderr " " SOURCELINE(exc_sigl)
EXIT -1 /* i1ndicate error */
SAY2STDERR: /* write to STDERR: */
CALL LINEOUT "STDERR:"", ARG(1)
RETURN
Output:
NIX

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.8 © Prof. Rony G. Flatscher

Exceptions, Example 2

/* */
SIGNAL ON NOVALUE NAME ANY
SAY Nix /* Variable not initialized! */
EXIT O
ANY: /* target for any exception */
exc_rc = RC /* save return code */
exc_sigl = SIGL /* save line number */
exc_type = CONDITION("C'™) /* get exception type */
CALL say2stderr "REXX "RC":" exc_rc

CALL say2stderr " type:" exc_type

CALL say2stderr

CALL say2stderr " 1i1n line:" exc_sigl

CALL say2stderr " " SOURCELINE(exc_sigl)

EXIT -1 /* indicate error */
SAY2STDERR: /* write to STDERR: */

CALL LINEOUT "STDERR:", ARG(1)

RETURN

Output:
REXX "RC®": RC
type: NOVALUE
in line: 3
SAY Nix

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.9 © Prof. Rony G. Flatscher

Raising Exceptions

e Usually, the Rexx-Interpreter raises exceptions
... but you can do it also

e RAISE statement
— RAISE category

e Creates ("'raises") the given exception

— RAISE PROPAGATE
e Can only be given during exception handling

e Re-creates the same exception in the caller, which allows the caller to also
intercept it

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.10 © Prof. Rony G. Flatscher

Raising Exceptions, Example 1

/**/
SAY "hallo"

RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */
EXIT O

Output:

hallo

3 *~* RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */

Error 9 running C:\TEMP\wi-pub\Ilv\poolv\code\script5.rex line 3:
Unexpected WHEN or OTHERWISE

Error 9.1: WHEN has no corresponding SELECT

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.11

© Prof. Rony G. Flatscher

Raising Exceptions, Example 2

/**/

SIGNAL ON SYNTAX /* no label, hence "SYNTAX" */

SAY "hallo”

RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */

EXIT O

SYNTAX: /* target for any exception */
SAY "In SYNTAX-exception handling code."
EXIT -1

Output:
hallo

In SYNTAX-exception handling code.

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.12 © Prof. Rony G. Flatscher

Raising Exceptions, Example 3

/**/
SIGNAL ON ANY /* no label, hence "ANY" */
SAY "hallo”
RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */
EXIT O
ANY: /* target for any exception */
exc_rc = RC /* save return code */
exc_sigl = SIGL /* save line number */
exc_type = CONDITION("C"™) /* get exception type */
CALL say2stderr "REXX "RC":" exc_rc
CALL say2stderr type:" exc_type
CALL say2stderr
CALL say2stderr " 1n line:" exc_sigl
CALL say2stderr ' " SOURCELINE(exc_sigl)
EXIT -1 /* 1ndicate error */
SAY2STDERR: /* write to STDERR: */
CALL LINEOUT "STDERR:", ARG(1)
RETURN
Output:
hallo

REXX *RC": 9
type: SYNTAX
in line: 4
RAISE SYNTAX 9.1 /* Pretend syntax error # 9.1 */

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.13 © Prof. Rony G. Flatscher

Variables (Rexx)

e Strings
e Stem-Variables, which allow storing strings

e Arguments for procedures/functions

— Only strings allowed in classic Rexx, hence

— No Stem-Variable allowed as an argument!

e EXPOSE statement allows access to stem variables of the caller by
breaking the (desired) insulation of the local scope (created with the
PROCEDURE statement right after the label)

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.14 © Prof. Rony G. Flatscher

Variables (Object Rexx)

e Variables are References to instances of Object Rexx classes
e Strings
e Stems

e ... (more later ...)

e Arguments for procedures/functions

— PARSE ARG statement
e Only Strings allowed

e No Stem-Variable !

e EXPOSE statement allows access to a stem variable defined in the caller

— USE ARG statement

e A//Objects are allowed as arguments

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.15 © Prof. Rony G. Flatscher

Routines (Object RexXx)

e Routines are directives
— Therefore they start with a double-colon (::)

— Routines represent procedures and functions

e There is no EXPOSE statement available to the routine

— After a successful syntax check they are made available in the
scope
e of the program itself, and

e in addition in all superordinate (calling) programs, /f the keyword PUBLIC is given

— Define their own scope, as if they were a program of their
own!

e Therefore labels are available wrthin routines zum Aufrufen von Unterprogrammen
und Funktionen daher mdglich

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.16 © Prof. Rony G. Flatscher

Routines (Object RexXx): 1a

/**/

SAY pp(“hello™)

CALL oha /* routine is called */
SAY pp(“Thello™)

EXIT O
pp : RETURN "<<<" || ARG(1) || ">>>"

-- ROUTINE oha PUBLIC
SAY pp(“Tholla™)
EXIT O

pp - RETURN "[" || ARGCD) || "1"

Output:

<<<hello>>>

[holla]
<<<hel lo>>>

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.17 © Prof. Rony G. Flatscher

Routines (Object RexXx): 1b

/**/

SAY pp(“hello™)

CALL oha /* routine 1s called */
SAY pp(“hello™)

EXIT O
pp : RETURN "<<<" || ARG(1) || '">>>"

SAY pp(“holla

EXIT O
pp - RETURN "["™ || ARGCD) |l "1V

Output:

<<<hello>>>

[holla]
<<<hello>>>

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.18 © Prof. Rony G. Flatscher

Routines (Object RexXx): 1c

/**/

SAY pp(*hello™)

CALL oha /* routine 1s called */
SAY pp(“Thello™)

EXIT O
pp : RETURN "<<<"™ || ARG(D) || '">>>"

- - ROUTINE oha PUBLIC
SAY pp(Tholla'™)
EXIT O

pp = RETURN "["™ || ARGCD) |l "1V

Output:

<<<hello>>>

[holla]
<<<hello>>>

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.19 © Prof. Rony G. Flatscher

Routines and Exceptions: 1

e Routines are like external procedures/functions
/**/
SIGNAL ON USER TOO_SMALL /* intercept a user exception */
CALL checkAge 10
CALL checkAge 3
CALL checkAge 7

EXIT O

TOO_SMALL: /* dealing with the user exception */
SAY "// caught exception "TOO_SMALL" \\"
EXIT -1

:-ROUTINE checkAge
PARSE ARG age
SAY "'--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE SAY ''--> checked o.k."
EXIT O

Output:

--> age: 10

--> checked o.k.

--> age: 3

// caught exception "TOO_SMALL" \\

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.20 © Prof. Rony G. Flatscher

Routines and Exceptions: 2

e Routines are like external procedures/functions

/**/
ON USER TOO_SMALL /* intercept a user exception */
A checkAge 10
CALL checkAge 3
CALL checkAge 7

EXIT O

TOO_SMALL: /* dealing with the user exception */
SAY "// caught exception "TOO_SMALL" \\"
RETURN

:-ROUTINE checkAge
PARSE ARG age
SAY "--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE SAY '"--> checked o.k."
EXIT O

Output:
--> age: 10
--> checked o.k.
--> age: 3
// caught exception "TOO_SMALL" \\
-—> alter: 7
--> checked o.k.

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.21 © Prof. Rony G. Flatscher

Routines and Exceptions: 3a

CALL ON ANY /* intercept anything that is not caught explicitly */
CALL ON USER TOO_SMALL /* intercept a user exception */

CALL ON USER too_big /* intercept a user exception */

CALL checkAge 10

CALL checkAge 3

CALL checkAge 7

EXIT O

ANY : SAY "in line:" SIGL "exception:"™ CONDITIONC("C™); RETURN
Too_small: SAY *"// caught exception "TOO SMALL® \\'; RETURN
TOO_BIG: SAY "// caught exception "TOO BIG" \\''; RETURN

:-ROUTINE checkAge
PARSE ARG age
SAY "--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE IF age > 9 THEN RAISE USER too_big
ELSE SAY "--> checked o.k."
RAISE USER something_ raised
EXIT O

Output:
--> age: 10
// caught exception "TOO_BIG" \\
--> age: 3
// caught exception "TOO_SMALL" \\
--> age: 7
--> checked o.k.
in line: 7 exception: USER SOMETHING_RAISED

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.22 © Prof. Rony G. Flatscher

Routines and Exceptions: 3b

CALL ON ANY /* intercept anything that is not caught explicitly */
CALL ON USER TOO_SMALL /* intercept a user exception */

CALL ON USER too_big /* intercept a user exception */

CALL checkAge 10

CALL checkAge 3

CALL checkAge 7

EXIT O

ANY : SAY "in line:" SIGL "exception:"™ CONDITIONC("C™); RETURN
Too_small: SAY *"// caught exception "TOO SMALL® \\'; RETURN
TOO_BIG: SAY "// caught exception "TOO BIG" \\''; RETURN

:-ROUTINE checkAge
PARSE ARG age
SAY "--> age:" age
IF age < 6 THEN RAISE USER too_small
ELSE IF age > 9 THEN|RAISE USER too_big|
ELSE SAY "--> checked o.k."
| RAISE USER something_raised |
EXTT O

Output:
--> age: 10
// caught exception "TOO_BIG" \\
--> age: 3
// caught exception "TOO_SMALL" \\
--> age: 7
--> checked o.k.
in line: 7 exception: USER SOMETHING_RAISED

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.23 © Prof. Rony G. Flatscher

Requires Directive (Object Rexx)

e ::Requires directive
— Allows naming a Rexx program
e Hint: for porting purposes, enclose the filename in quotes (Unix is case sensitive)

— The interpreter will call the required program before carrying out any
of the other directives (::Routine, ::Class, ::Method)

— Thereafter all of its public routines (and public classes!) are made
available

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.24 © Prof. Rony G. Flatscher

CALL-Statement and Public Routines: 1/2

/* cmdl.rex */

SAY "In" "cmdl.rex"
CALL cmd2

SAY "In"|pp(‘"cmdl.rex™)

/* cmd3.rex */

SAY "' \1\ In" pp(‘'cmd3.rex"™)
CALL cmd4

SAY ™ \2\ In" pp('cmd3.rex")
EXIT O

- :ROUTINE pp
RETURN "c3<<" || ARG(1) || ">>c3"

Ausgabe:
In cmdl.rex
/1/ In c2[cmd2.rex]c2
\1\ In c3<<cmd3.rex>>c3
In c4<cmd4.rex>c4
\2\ In c3<<cmd3.rex>>c3
/2/ In c2[cmd2.rex]c2
In c4<<cmdl.rex>>c4

/* cmd2.rex */
SAY " /1/ In"
CALL cmd3

SAY " /2/ In"
EXIT O

pp -
RETURN *‘c2[™

/* cmd4.rex */
SAY "
EXIT O

pp -
RETURN "'c4<"

pp(‘*'cmd2.rex™)

pp(‘‘cmd2.rex™)

Il ARG(D) ["]c2”

In" pp(*"'cmd4.rex'™)

Il ARG(1) || ">ca"

- -ROUTINE pp PUBLIC
RETURN *'c4<<" || ARG(L) || ">>c4"

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.25

© Prof. Rony G. Flatscher

CALL-Statement and Public Routines: 2/2

/* cmdl.rex */

SAY "In" "cmdl.rex"
CALL cmd2

SAY "In" pp(‘cmdl.rex™)

/* cmd3.rex */

/* cmd2.rex */
SAY " /1/ In"
CALL cmd3

SAY " /27 In"
EXIT O

pp -
RETURN *‘c2[™

/* cmd4.rex */

pp(‘*'cmd2.rex™)

pp(‘‘cmd2.rex"

Il ARG(D) ["]c2”

SAY \1\ In" pp(“'cmd3.rex™) SAY ™ In" pp(*"'cmd4.rex'™)
CALL cmd4 EXIT O
SAY ™ \2\ In" pp(‘'cmd3.rex")
EXIT O pp -
RETURN "c4<" || ARG(1) |] ">c4"
| > ZROUTINE pp
RETURN "c3<<" || ARG(1) |] '">>c3" |::ROUTINE pp PUBLIC
RETURN "c4<<"™ |] ARG(1) || ''>>c4"
Ausgabe:

In cmdl.rex
/1/ In c2[cmd2.rex]c2
\1\ In c3<<cmd3.rex>>c3
In c4<cmd4.rex>c4
\2\ In c3<<cmd3.rex>>c3
/2/ In c2[cmd2.rex]c2
In c4<<cmdl.rex>>c4

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.26

© Prof. Rony G. Flatscher

Requires-Directive and Public Routines

/* cmdl.rex */
SAY "In"|pp(‘'cmdl.rex’)

:-REQUIRES cmd2.rex

/* cmd3.rex */

SAY " \1\ In" pp('cmd3.rex’)
EXIT

requires cmd4.rex

- :ROUTINE pp
RETURN "c3<<" || ARG(1) || ">>c3"

Ausgabe:

In c4<cmd4.rex>c4
\1\ In c3<<cmd3.rex>>c3
/1/ In c2[cmd2.rex]c2
In cd4<<cmdl.rex>>c4

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 3, p.27

/* cmd2.rex */

SAY * /1/ In" pp(*"'cmd2.rex™)
EXIT O

pp :
RETURN "c2[" || ARG(1) || "Jc2"

::Requires cmd3.rex

/* cmd4.rex */

SAY " In" pp(‘'cmd4.rex™)
EXIT

pp -
RETURN *‘c4<"™ || ARG(1) || ">c4"

| Z:ROUTINE pp PUBLIC

RETURN "c4<<" [[ARG(L) || ">>c4"

© Prof. Rony G. Flatscher

	An Introduction to Procedural and �Object-oriented Programming� (Object Rexx) 3
	Classic Rexx�Execution of Programs
	Object Rexx and Regina (cf. http:/www.rexx.org)�Execution of Programs
	Exceptions
	Exceptions
	Exceptions
	Dealing with Exceptions in a General Manner
	Exceptions, Example 1
	Exceptions, Example 2
	Raising Exceptions
	Raising Exceptions, Example 1
	Raising Exceptions, Example 2
	Raising Exceptions, Example 3
	Variables (Rexx)
	Variables (Object Rexx)
	Routines (Object Rexx)
	Routines (Object Rexx): 1a
	Routines (Object Rexx): 1b
	Routines (Object Rexx): 1c
	Routines and Exceptions: 1
	Routines and Exceptions: 2
	Routines and Exceptions: 3a
	Routines and Exceptions: 3b
	Requires Directive (Object Rexx)
	CALL-Statement and Public Routines: 1/2
	CALL-Statement and Public Routines: 2/2
	Requires-Directive and Public Routines

