MIS Department

An Introduction to Procedural and
Object-oriented Programming
(Object Rexx) 4

Abstract Datatype, Classes, Methods, Attributes,
Messages, Scopes, Generalizing Class Hierarchy,
Inheritance

Prof. Rony G. Flatscher

Vienna University of Economics and Business Administration B Wirtschaftsuniversitat Wien B Augasse 2-6 B A-1090 Wien

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.1 © Prof. Rony G. Flatscher

Datatype (DT)

e Datatype
— Defines the set of acceptable values
— Defines the allowable operations (e.g. adding, concatenating)

— Example

e Datatype Birthday
— E.g. defines a valid date and a valid time
— Allowable operations, e.g. change/query the values of the stored date
and time

e Datatype Person
— E.g. defines first name, family name, salary
— Allowable operations, e.g. changing the values for first name, family
name, salary, increase salary

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.2 © Prof. Rony G. Flatscher

Datatype (DT)

Classic Rexx, Problems

e No means to expl/icit/y define structures to represent a
datatype

e No means to explicit/y define operations which are only
valid for a specific datatype

e Attempt to encode the structure with the help of
— Strings

— Stem-Variables

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.3 © Prof. Rony G. Flatscher

Datatype (DT)

Classic Rexx, Possible Solution 1

e Encoding with the help of Strings

— E.g. data of type Birthday
20050901 16:00""
20080229 19:19"

— E.g. data of type Person
“"Albert Einstein 45000
"Vera Withanyname 25000

— Processing only possible if the following is known to everyone
e Number and sequence of the DT-"fields" (columns)

e Dimension of the columns (variable, fixed width)

e For instance encoded ASCII-files

— Variable column width, hence a delimiting character necessary
E.g. "Comma Delimited Format"

— Fixed column width

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.4 © Prof. Rony G. Flatscher

Datatype (DT)

Classic Rexx, Possible Solution 2

e Encoding with the help of stems

— E.g. data of type Birthday

e Collection of string encoded data with the help of stems
birth.1 = 20120901 16:00"

birth.2 = 20160229 19:19"

— Processing only possible if one knows the number, sequence and width of columns of
the DT-"fields", e.g. SysFileTree()

e Structuring and collection of the string encoded data with the help of

stems
birth.1l.eDate = ""20120901"
birth.1.eTime = "16:00"
birth.2.eDate = ""20160229"
birth.2.eTime = "19:19"

— Processing already possible, if one knows only the identifiers (names) of the individual
DT-"fields"!

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.5 © Prof. Rony G. Flatscher

Datatype (DT)

Classic Rexx, Possible Solution 3

e Encoding with the help of stems
— E.g. data of type Person

e Structuring with the help of stems

pers.eFirstName = ""Albert”
pers.eLastName = "'Einstein”
pers.eSalary = ""45000"

and
pers.eFirstName = "Vera"
pers.eLastName = "Withanyname"
pers.eSalary = ""25000"

e If using stems one must introduce an additional index in order to be able
to store both persons above, independent of each other!

e The latter assignments ("Vera") would replace ("overwrite") the first ones
("Albert")

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.6 © Prof. Rony G. Flatscher

Datatype (DT)

Classic RexXx, Discussion of Possible Solutions

e DT structure

— Encoding in strings and stems
e Crook, as implementation dependent!

e Error prone
e DT operations

— No possibility to define operations for datatypes!
e Functions and procedures must be defined on their own

e Direct access to strings and stems must be realized via EXPOSE
statements

— Problems with scopes, source of errors
e Insulating ("Encapsulating") of individual DT extensions
("Iinstances") not possible

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.7 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

e Abstract Datatype
— Schema for the implementation of datatypes
e Definition of Attributes
— Results in the data structure
e Definition of Operations (“Behaviour”)
— Functions, Procedures
— Internal datastructures and values are usually
e Not visible from the "outside"
e Not directly editable from the "outside"
e Encapsulation !
— Schema must be implemented in an appropriate Programming language

e Classic Rexx is not really appropriate for this

e Object Rexx /s - as any other object-oriented - programming language appropriate

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.8 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

Implementation with Object Rexx

e Abstract Datatype

— Schema for the implementation of datatypes
e :CLASS directive

— Definition of attributes and therefore the internal datastructure
- EXPOSE statement within methods or
- :METHOD directive with the keyword ATTRIBUTE

— Definition of operations (functions, procedures)
- :METHOD directive
— Instance of classes ("object")

e Individual, unambiguously distinguishible instantiations of the same type

e Possesses all the same attributes (constitute the datastructure as defined in the
class) and operations ("methods of the class")

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.9 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

Example: Definition of an ADT

e Object Rexx implementation of the ADT Birthday

/**/

- :CLASS Birthday
::METHOD date ATTRIBUTE
::METHOD time ATTRIBUTE

e Object
— Instance (extension) of an ADT, i.e., of a class

e Uniquely distinguishible from other objects (even) of the same type

— Creation: sending the message NEW to a class
e Accessing the class via its environment symbol

— Dot, immediately followed by the class identifier (hame of the class), e.g.

objectl = .String~-NEW("hallo™) /* Object Rexx version */
object2 = "hallo” /* classic Rexx version */

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.10 © Prof. Rony G. Flatscher

Object Rexx

Messages

e Interaction (activating of functions/procedures) with objects
(instances) exclusively via messages, which are sent to objects

— Names of messages are the names of the methods, that should be invoked

— Message operator ("twiddle") is the tilde character: —
e E.g. "ABC"'~REVERSE vyields: CBA

— "Cascading" messages, two twiddles: ——
e E.g. "ABC'"'~~REVERSE vyields (attention!): ABC

e Sent messages activate the respective methods of the receiving object, result is
always the receiving object!

— Therefore multiple messages intended for the same object can be "cascaded" one after
the other

e Execution of messages: left to right

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.11 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

Example: Using of an ADT

e Object Rexx implementation of the ADT Birthday

gl = .Birthday—-New

gl~Date= "'20120901"

gl-Time= ""16:00"
g2=.Birthday~New~~"Date="(""20160229")~~"Time="(""19:19")
SAY gl-~date g2~date gl-time g2-~time

- -CLASS Birthday

::METHOD date ATTRIBUTE
::METHOD time ATTRIBUTE

Output:

20120901 20160229 16:00 19:19

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.12 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

Example: Using of an ADT, 2

e Object Rexx implementation of the ADT Birthday

gl = _.Birthday [-New]
gl [~Date ="20120901"

gl ~Time = ""16:00"
g2=.Birthday |~New||~~"Date=""("'20160229"") |~~"Time=""("'19:19")
SAY gl~date|g2~date |gl-time| g2~-time

- -CLASS Birthday
- :METHOD date ATTRIBUTE
::METHOD time ATTRIBUTE

Output:

20120901 20160229 16:00 19:19

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.13 © Prof. Rony G. Flatscher

e Scope

— Determines the visibility of labels, variables, classes, routines,
methods and attributes

e C(Cf. article
http://wi.wu-wien.ac.at/rgf/rexx/orx07/Local.pdf
e "Standard Scope”

— Determines which labels are visible

e Labels are only visible within a program (until the end of the program or
until the first directive led in by a double colon ::, whatever comes first)

e Labels within of ::ROUTINE and ::METHOD directives are only visible
within these directives

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.14 © Prof. Rony G. Flatscher

Scope (2)

e "Procedure Scope"

— Determines, which variables of the caller are visible (accessible)
from within the called procedure/function

e Labels, without a PROCEDURE statement
— All variables of the calling part of the program are accessible
e Labels, followed by a PROCEDURE statement

— Variables of the calling part of the program are not accessible
(are hidden)
- "Local scope"

- But: with the help of the EXPOSE statement which may immediately
follow a PROCEDURE statement one can deliberately define direct access
to variables of the calling part of the program

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.15 © Prof. Rony G. Flatscher

Scope (3)

e "Program Scope”

— Determines that all classes and routines defined in a
program are accessible

e Local classes and routines cannot be hidden/overwritten

e Classes and routines can be defined to be public

— In addition, this scope determines, that public classes and
public routines of called or required (::REQUIRES directive)
programs become accessible

e Attention!

— If different programs are called one after the after, and contain public classes
or public routines with the same names, then those classes/routines are
accessible that are defined in the /ast called program

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.16 © Prof. Rony G. Flatscher

Scope (4)

 "Routine Scope”

— Defines it own scope for
e Labels ("standard scope") and

» Variables ("procedure scope")

— Accessing classes and routines is determined by the "program
scope”

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.17 © Prof. Rony G. Flatscher

e "Method Scope”

— Defines its own scope for
e Labels ("standard scope") and

e Variables ("procedure scope")

— Accessing classes and routines is determined by the "program scope"

— Attributes

e Within a method it is possible to use the EXPOSE statement (immediately
following the method directive) to list those attributes of the class which
should be made directly available for access from within the method.

» Defining attributes and their access methods can be alternatively carried
out by using an ATTRIBUTE method directive.

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.18 © Prof. Rony G. Flatscher

Scope (6)

e "Method Scope" (continued)

— Determines w#iich attributes can be accessed dlirectly from
within a method

— There are two types of scopes which determine the
accessibility of attributes

e Attributes, which are defined in methods assigned to classes
— Methods defined after a class directive
— Share the same set of ("instance") attributes

e Attributes, which are defined in "free running methods"
— Methods which are defined before a class directive
— Share the same set of ("free running") attributes

— Hint: accessing free running methods is possible via the environment symbol
.METHODS from within the program where there are defined

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.19 © Prof. Rony G. Flatscher

Overview of Scopes

e Rexx und Object Rexx

— Standard scope
e Labels, variables

— Procedure scope
e Variables in procedures/functions

e Object Rexx
— Program scope

e Accessing local and public classes and routines of called/required programs

— Routine scope
e Standard+procedure+program scope

— Method scope
e Standard+procedure+program plus accessibility of attributes
— Instance methods: methods, which are defined for a class ("instance" attributes)

— Free running methods: methods, which are defined before any class directive ("free
running” attributes)

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.20 © Prof. Rony G. Flatscher

Abstract Datatype "Person"

Implementation in Object Rexx, 1

/**/

pl = .Person~New; pl-firstName= "Albert™;

pl~familyName= "Einstein'; pl-salary=45000
p2=_.Person~New~~"FfirstName=""("Vera™)~~""salary=""("25000")
p2~~""fami lyName=""(""Withanyname'")

SAY pl~firstName pl-familyName pl-salary

SAY p2~fFirstName p2~-familyName p2~salary

SAY "Total costs of salaries:" pl-salary + p2-salary

- -CLASS Person

- :METHOD firstName ATTRIBUTE
::METHOD familyName ATTRIBUTE
- :METHOD salary ATTRIBUTE

Output:
Albert Einstein 45000

Vera Withanyname 25000
Total costs of salaries: 70000

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.21 © Prof. Rony G. Flatscher

Abstract Datatype "Person"

Implementation in Object Rexx, 2

/**/

pl = _.Person—~New; pl~firstName= "Albert';
pl~familyName= "Einstein"; pl-salary= "45000"
p2=.Person~New~~"firstName=""(""Vera')~~""salary="(25000)
p2~~""fami lyName=""C""Withanyname'")

SAY pl~firstName pl~familyName pl-salary p2-~firstName

SAY pl~firstName| pl~salary| pl~~increaseSalary(10000)~salary
:CLASS Person

::METHOD firstName ATTRIBUTE
::METHOD familyName ATTRIBUTE
- :METHOD salary ATTRIBUTE
- -METHOD &ncreaseSalary

EXPOSE salary

USE ARG iIncrease

salary = salary + iIncrease

Output:

Albert Einstein 45000 Vera
Albert 45000 55000

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.22 © Prof. Rony G. Flatscher

Creating Objects

e Creating new objects
— The NEW message is sent to the class
— Result is a reference to an object (an instance) of the class

e |If there is a method with the name INIT defined for a class, then
this method will be invoked, before control returns. This is realized
by way of sending the message INIT to the newly created object
from whithin the NEW method.

— If the message NEW received arguments, these will be

forwarded In the same sequence with the INIT message to
the newly created object

e The INIT method is also called "constructor”

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.23 © Prof. Rony G. Flatscher

Abstract Datatype "Person"

Implementation in Object Rexx, Constructor

= .Person~-New("'Albert","Einstein’,""45000"")

p2 = .Person~New(''Vera',"'Withanyname',b25000)

SAY pl-~firstName pl~familyName pl-salary p2~firstName

SAY pl~firstName pl-salary pl-~increaseSalary(10000)~salary
:2CLASS Person

:-METHOD INIT

EXPOSE firstName familyName salary

USE ARG firstName, familyName, salary

:ZMETHOD firstName ATTRIBUTE
::METHOD familyName ATTRIBUTE
:ZMETHOD salary ATTRIBUTE

- METHOD &ncreaseSalary
EXPOSE salary
USE ARG i1ncrease
salary = salary + iIncrease

Output:
Albert Einstein 45000 Vera

Albert 45000 55000

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.24 © Prof. Rony G. Flatscher

Deleting of Objects

e Objects are automatically deleted from the runtime system, if they
are not referenced anymore (becoming "garbage")

— If there is a method named UNINIT defined for a class, then this
method will be invoked, right before the unreferenced object gets
deleted. This will be invoked by the runtime system by sending the

object the message UNINIT.
e The UNINIT method is called "destructor”

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.25 © Prof. Rony G. Flatscher

The Rexx "DROP" statement

e DROP statement

e The DROP statement allows the explicit deleting of a variable

e If a variable is destroyed its reference to an existing object is
removed

— There is still the possibility that there are other variables which still
possess references to such an object

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.26 © Prof. Rony G. Flatscher

Abstrakter Datentyp "Person”

Umsetzung in Object Rexx, Destruktor

/**/
pl = .Person~-New("*Albert","Einstein’,"45000")
p2 = _Person~New(''Vera", " Withanyname',b25000)

SAY pl~firstName pl~familyName pl-~salary p2~firstName
SAY pl~firstName pl-salary pl-~increaseSalary(10000)~salary
DROP pl; DROP p2; CALL SysSleep(15); SAY "Finish.”
:ZCLASS Person
:METHOD INIT
EXPOSE firstName familyName salary
USE ARG firstName, familyName, salary
:ZMETHOD UNINIT
EXPOSE firstName familyName salary
SAY "Object: <"firstName familyName salary’> i1s about to be destroyed."

::METHOD firstName ATTRIBUTE
::METHOD familyName ATTRIBUTE
::METHOD salary ATTRIBUTE

:METHOD increaseSalary
EXPOSE salary
USE ARG iIncrease
salary = salary + increase

Output, for example:
Albert Einstein 45000 Vera
Albert 45000 55000
Object: <Vera Withanyname 25000> is about to be destroyed.
Finish.
Object: <Albert Einstein 55000> 1s about to be destroyed.

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.27 © Prof. Rony G. Flatscher

Abstract Datatype (ADT)

Implementation in Object Rexx

e Abstract Datatype (Repetition)
— Schema for the implementation of datatypes
e Definition of Attributes
— Results in the data structure
e Definition of Operations (“Behaviour”)
— Functions, Procedures
— Internal datastructures and values are usually
e Not visible from the "outside"
e Not directly editable from the "outside"
e Encapsulation !
— Schema must be implemented in an appropriate Programming language

e Classic Rexx is not really appropriate for this

e Object Rexx /s - as any other object-oriented - programming language appropriate

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.28 © Prof. Rony G. Flatscher

Classification Tree

(Generalization Hierarchy)

e Generalization Hierarchy, "Classification Tree"
— Allows classification of instances (Objects), e.g. from biology

— Ordering of classes in superclasses and subclasses (schemata)

e Subordered classes ("subclasses") inherits all properties of all
superclasses up to and including the root class

e Subclasses specialize in one way or the other the superclass(es)

— "Defining of differences"

— Sometimes it may make sense, that a subclass specializes directly
more than one superclass at the same time ("multiple inheritance")
e Example: Classes representing landborn and waterborn animals, where

there exists a class "amphibians", which inherits directly from the landborn
and waterborn animals

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.29 © Prof. Rony G. Flatscher

Object Rexx: Classification Tree, 1

e Prefabricated "class tree"
— Root class of Object Rexx is named "Object"

— All user defined classes are assumed to specialize the class "Object", if
no superclass is explicitly given

— Single and multiple inheritance possible

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.30 © Prof. Rony G. Flatscher

Object Rexx: Classification Tree, 2

e Search order

— Conceptually, the object receiving a message, starts searching for a
method by the name of the received message and if found invokes it
with the supplied arguments

— If such a method is not found in the class, from which the object is
created, then the search is continued in the direct superclass up to and
Including the root class

— If the method is not even found in the root class "Object", then an
error exception is thrown ("Object does not understand message")

e If there is a method named UNKNOWN defined, then instead of creating
an exception the runtime system will invoke that method, supplying the
name of the unknown method and its arguments, if any were supplied

with the message

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.31 © Prof. Rony G. Flatscher

Object Rexx: Classification Tree, 2

e Search order (continued)

— For the purpose of searching there are special, pre-set variables
which are only available from within methods
e super
— Always contains a reference to the immediate superclass
— Allows re-routing the starting class for searching for methods to the superclass

e self
— Always contains a reference to the object for which the method got invoked

— This way it becomes possible to send messages to the object from within a
method

— super and self determine the class, where the search for
methods starts which carry the same name as the message

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.32 © Prof. Rony G. Flatscher

Example "Dog", 1

e Problem description

— "Animal SIG" keeping dogs
 Normal dogs
e Little dogs
e Big dogs

— All dogs possess a nhame and are able to bark
e Normal dogs bark "Wuff Wuff"
e Little dogs bark "wuuf"
e Big dogs bark "WUFFF! WUFFF!! WUFFF!!I™

— Define appropriate classes taking advantage of inheritance
(search order)

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.33 © Prof. Rony G. Flatscher

Example "Dog", 2

e Definition of a class "Dog", which possess all properties
which are common to all types of dogs

/**/
hl = .Dog |~NEW |~~""NAME=""("'Sweety"")||~-Bark

:-CLASS Dog
: -METHOD Name ATTRIBUTE
- -METHOD Bark
SAY self~Name'":"" "Wuff Wuff"

Output:

Sweety: Wuff Wuff

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.34 © Prof. Rony G. Flatscher

Example "Dog", 3

e Definition of a class "BigDog", which possesses all properties common to all big dogs

/**/

hl = _.Dog ~NEW ~~""NAME=""("'Sweety'') -~Bark
-Bighog ~NEW ~~"NAME=""("'Grobian') ~Bark

::CLASS Dog SUBCLASS Object

- :METHOD Name ATTRIBUTE
- :METHOD Bark
SAY self~-Name":"" "Wuff Wuff

:-CLASS Bigbog SUBCLASS dog
- :METHOD Bark
SAY self-Name":"" "WUFFF! WUFFF!! WUFFF1II*"

Output:

Sweety: Wuff Wuff
Grobian: WUFFF! WUFFFI! WUFFF!I1!

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.35 © Prof. Rony G. Flatscher

Example "Dog", 4

e Definition of a class "LittleDog", which possesses all properties common to all little

dogs

/**/

-Dog~NEW ~~"NAME=""(""Sweety") ~Bark
-BigDog~NEW ~~"NAME=""(""Grobian'") ~Bark
.LittleDog~NEW ~~"NAME=""(""Arnie') ~Bark
::CLASS Dog

: :METHOD Name ATTRIBUTE

: :METHOD Bark

SAY self~Name':" "Wuff Wuff"

- :CLASS BigbDog SUBCLASS dog
- :METHOD Bark
SAY self~Name':"" "WUFFF! WUFFF!! WUFFFIII™
::CLASS LittleDog SUBCLASS dog
- :METHOD Bark
SAY self~Name':" "wuuf"

Output:
Sweety: Wuff Wuff

Grobian: WUFFF! WUFFFI! WUFFFII1
Arnie: wuuf

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.36 © Prof. Rony G. Flatscher

Example "Dog", 5

e Definition of a class "LittleDog", which possesses all properties common to all little

dogs

/**/

-Dog~NEW ~~"NAME=""(""Sweety'') ~Bark
-BigDog~NEW ~~"NAME:"("Grobian") ~Bark
-LittleDog~-NEW ~~"NAME=""(""Arnie'") ~Bark
::CLASS Dog SUBCLASS Object

- :METHOD Name ATTRIBUTE

::METHOD Bark

SAY self~Name":" "Wuff Wuff" "-'" self

- :CLASS BigDbog SUBCLASS dog
: :METHOD Bark
SAY self~Name':" "WUFFF! WUFFF!! WUFFFItI*™ *-* self
::CLASS "LittleDog"™ SUBCLASS dog
: :METHOD Bark
SAY self~Name'":"" “wuuf" "-" self
Output:
Sweety: Wuff Wuff - a DOG
Grobran: WUFFF! WUFFF!! WUFFF!!! - a BIGDOG
Arnie: wuuf - a LittleDog

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.37 © Prof. Rony G. Flatscher

Multithreading

e Multithreading
— Multiple parts of a program execute at the same time (in parallel)
— Possible problems
e Data integrity (Object integrity)
e Deadlocks

e Object Rexx
— Inter Object-Multithreading

e Different objects (even of one and the same class) are sheltered from each other
and can be active at the same time

— Intra Object-Multithreading

e Within an instance (an object) multiple methods can execute at the same time, if
they are defined in different classes

An Introduction to Procedural and Object-oriented Programming (Object Rexx) 4, p.38 © Prof. Rony G. Flatscher

	An Introduction to Procedural and �Object-oriented Programming� (Object Rexx) 4
	Datatype (DT)
	Datatype (DT)�Classic Rexx, Problems
	Datatype (DT)�Classic Rexx, Possible Solution 1
	Datatype (DT)�Classic Rexx, Possible Solution 2
	Datatype (DT)�Classic Rexx, Possible Solution 3
	Datatype (DT)�Classic Rexx, Discussion of Possible Solutions
	Abstract Datatype (ADT)
	Abstract Datatype (ADT)�Implementation with Object Rexx
	Abstract Datatype (ADT)�Example: Definition of an ADT
	Object Rexx�Messages
	Abstract Datatype (ADT)�Example: Using of an ADT
	Abstract Datatype (ADT)�Example: Using of an ADT, 2
	Scope (1)
	Scope (2)
	Scope (3)
	Scope (4)
	Scope (5)
	Scope (6)
	Overview of Scopes
	Abstract Datatype "Person"�Implementation in Object Rexx, 1
	Abstract Datatype "Person"�Implementation in Object Rexx, 2
	Creating Objects
	Abstract Datatype "Person"�Implementation in Object Rexx, Constructor
	Deleting of Objects
	The Rexx "DROP" statement
	Abstrakter Datentyp "Person"�Umsetzung in Object Rexx, Destruktor
	Abstract Datatype (ADT)�Implementation in Object Rexx
	Classification Tree�(Generalization Hierarchy)
	Object Rexx: Classification Tree, 1
	Object Rexx: Classification Tree, 2
	Object Rexx: Classification Tree, 2
	Example "Dog", 1
	Example "Dog", 2
	Example "Dog", 3
	Example "Dog", 4
	Example "Dog", 5
	Multithreading

