Modeling the Evolution of Aspect Configurations using
Model Transformations

Uwe Zdun, Mark Strembeck
Institute of Information Systems, New Media Lab
Vienna University of Economics, Austria

{uwe.zdun|mark.strembeck}@wu-wien.ac.at

ABSTRACT To address these problems, this paper proposes an appmach t
model the behavioral evolution of aspect configurationftware
systems using model transformation diagrams. In other syove

use a model transformation to represent the aspect weaiepg s
The model transformation diagrams are an extension to UMLIA.
particular, they model the aspect weaving dependenciesmoiel
transformations between different UML Activity Diagramidere,

In this paper we introduce an approach to address the ewolofi
aspect configurations with model transformations. We usdeino
transformation diagrams (MTDs) to define valid behavioralidei
states of a system as well as valid transitions between ttases.
MTD transformations can be used to define evolutionary cesng

in the weaving process of an aspect-oriented system. Te &bioa L . S o

straightforward incorporation of aspects in UML models,exéend the Activity Dlagrams. show the behavior in the .SyStem witlied

UML2 activity diagrams with joinpoint start and end nodes this ent as_pec_t conf_lguratlpns. To enat_)le the model!ng of aspéted

paper, each model state in an MTD refers to an extended UML2 behaylor n Activity Diagrams we introduce a simple exten;tq

activity diagram. Ac_tlvny Diagrams fpr representing the start and end of thi@-j
points of an aspect in the control flow.

1. INTRODUCTION

In recent years a number of approaches for UML-based model- 2. THE APPROACH
ing of aspects have been proposed. Some approaches ard-exten In this section, we explain our model transformation diagsa
ing the UML using a UML profile (see e.g. [6, 2]), others penfor and our extension to Activity Diagrams for representing shert
a meta-model extension, i.e. they extend the UML familiyani-| and end of the joinpoints of aspects.
guages with new language elements (see e.g. [10, 4]). Shdset . .
approaches focus on mapping the elements of aspect-atienté 2.1 Model Transformation Diagrams
ronments (mainly the concepts are based on Aspect] [7]) th UM We have defined the Model Transformation Diagrams (MTD) as a
modeling elements. That is, the focus is on representingcsiin meta-model extension to the UML 2.0 standard (see FigtieTb
UML models. define MTDs formally, we specify the new packalg®del Trans-
The effects of applying aspects —i.e. how a model evolven if a formations. The graphical notation of our model transformation
aspect is woven — have only been marginally in focus of aspect diagrams is similar to UML2 interaction overview diagrarnsw-
oriented modeling approaches so far. This concern, howisvien- ever, the MTD semantics differ significantly. The UML2 iraetion
portant to be considered for a number of situations: overview diagrams are a variant of activity diagrams andiiles
the flow of control between different nodes (see [9]). In castt,

e In the early stages of system design we need to trans- our MTDs are a variant of state machines. Model transfownati
late requirements into classes and aspects. In particular, diagrams describe changes of specification of a softwarersys
we require some approach to show the evolution from a These changes are modeled through transitions betweerediff
non-aspect-orineted model to an aspect-oriented model, asdiagrams. In this paper, we use only UML2 activity diagrams i
well as the interactions between the aspect-oriented andthe MTDs, to model transformations of thehavioral model state.
non-aspect-oriented parts of the system. (Please note that in our full meta-model definition, ther aso

structural model states, but these are not used in this paper

e Often a number of different aspect configurations can be wo- The main transition type used in MTDs dransform transitions.
ven for one and the same system. That is, the aspects wWo-Transform transitions express that the source model sttte tran-
ven into the system can be changed either at compile-time, sition is transformed to the target model state of the ttmmsi A
load-time, or runtime — depending on the used aspect weaving transition from one behavioral model state to another méaais
mechanism. For example, consider a logging aspect, which is the behavior of a certain system aspect is transformed s @fter
woven into the debugging environment only, but not into the the transition, the system behavior conforms to the stateifipd

productive system. Here, the evolution options resultiogf by the transition’s target. For instance, the example itians in
the weaving time for the aspect configurations and their cor- Figure 2 show two model transformations between two agtili-
responding effects should be modeled as well. grams: one adds a condition between the two activities, laadet

)))) verse transformations removes the condition. Figure 2aistains
e Often aspects have interdependencies or interactions@mon

each other, a concern which of course should be modeled. 1pe 1o the page limit we do not include the full formal defiiti

For instance, consider a persistence aspect is allowed to bejncluding OCL constraints of the meta-model extension hbu
woven, but only if a storage device aspect is woven as well. provide only the corresponding meta-model as an overview.

Package ModelTransformations

. . StateMachine
=) .
ModelTransformationStateMachine (from BehaviorStateMachines)
+stateMachine § 0..1
«enumeration» 1..% | +region
PsequStateKind . Region +container
(from BehaviorStateMachines) A 9 .
(from BehaviorStateMachines) 0.1
initial
deepHistory +container ¥ 0..1
shallowHistory
*om
jS:lkCtlon * | +subvertex +source * * | +transition
gm)rlclgomt Vertex 1 +outgoing Transition
exitlgoint (from BehaviorStateMachines) | +target * | (from BehaviorStateMachines)
terminate [f 1 +incoming
State 1 FinalState
PseudoState (from BehaviorStateMachines) (from BehaviorStateMachines)
(from BehaviorStateMachines)
kind: PseudoStateKind
+
ModelStateUse refersTo ModelState
0.1
* +argument
Action .
(from BasicActions) StructuralModelState BehavioralModelState
0.1 0.1 0.1
*_| +instance *_| +class * | +activity
InstanceSpecification Class Activity

(from Kernel)

(from Kernel)

(from FundamentalActivities)

Figure 1: Meta-model for Message Transformation Diagrams (M TD)

MTD Identifier Token

MTD Name

Identifier Token for
activity diagrams

Diagram name

Diagram describing a valid
behavioral system state

r g

mtd MyExampleMTD

ad SystemBehaviorB)

o>

Activity
A

Activity
B

(@<

Ky
ad SystemBehaworB

«transform»

[condition
«transform»

A

-®

=/

]

‘ [condition2

1]

Activity

f

MTD state machine

MTD transform transitions
MTD state

Figure 2: Informal overview for the elements of MTDs

informal explanations for our notations. A formal UML metadel
extension for MTDs can be found in [11].

Activity Diagram to indicate that the interception of thentm! flow

by the aspect “AspectName” has ended. Optionally, JoiriSteémt

In the first place, MTDs are a means to depict possible model Activities can have atagged value “pointcut” that indisdtee name

transformations. The idea, presented in this paper, is pdyape
transform transitions in the MTDs to model aspect weavirg-re
tionships. This way different behavioral model states shovdels
of the behavior of the system in different aspect configareti The
transform transitions then show the possible (“legal”) vieg steps
between these model states.

2.2 Extending Activity Diagrams with Join-
point Start and End Activities

In our approach, we model the behavior of aspects as pareof th
activity diagrams describing the system’s behavior. Thawe show
scenarios of the aspect in action. However, it is necessatistin-
guish the aspect-oriented and non-aspect-oriented dahs activ-
ity diagram. Moreover, in case more then one aspect is used, w
need to distinguish different the aspects modeled in thes saativ-
ity diagram.. Otherwise we would not be able to properly nhode
aspect interactions.

NODE TYPE | NOTATION | Explanation & Reference ‘

JoinpointStart is an Activity that can be used
in an Activity Diagram to indicate that the
aspect "AspectName" has intercepted the
control flow at this point. All subsequent steps
in the Activity Diagram until a JoinpointEnd
Activity with "AspectName" is reached are

JompomtStart handled by the aspect "AspectName".

AspectName

Optionally, a Joinpoint Start node can have a
tagged value "pointcut” that indicates the name
of a pointcut designating this joinpoint.

See Activity from FundamentalActivities.

JoinpointEnd is an Activity that can be used
in an Activity Diagram to indicate that the
interception of the control flow by the aspect
"AspectName" has ended.

JoinpointEnd

I AspectName I

See Activity from FundamentalActivities.

Figure 3: Definition of two Activities for start and end of joi n-
points in Activity Diagrams

ad Order Creation)

Receive
Order

Order Order

Figure 4: Activity Diagram for order creation

To address this problem, we introduce two new Activitiesuds s
classes of the UML2 Activity meta-class (from FundamentailA
ities, see [9]). JoinpointStart is an Activity that can bedisn an
Activity Diagram to indicate that the aspect referred to*¥igpect-
Name” has intercepted the control flow at this point. All stapan
Activity Diagram between a JoinpointStart and the corresiiy
JoinpointEnd Activity (referred to via the same “AspectNgjrare
handled by the respective “AspectName” aspect. In additigs
possible for another aspect to intercept the control floneitmeen.
In other words: JoinpointEnd is an Activity that can be usedn

of a pointcut designating this joinpoint. Figure 3 summesithe
definitions.

3. EXAMPLE: ORDER HANDLING

In this section, we consider an example from the early stafes
designing an order handling system. In a first step, we desgjm-
ple activity for order creation according to the followinigost sce-
nario description: when an order is received, an order ¢hjeeds
to be created and then the order object is filled with valudsis T
simple control flow is shown in the activity diagram “Orderecr
ation” in Figure 4.

ad Order Creation & Order Check)
. Receive
Order
Order @
[order rejected]
I Order Check I
[order accepted] \L
Order @ @

Create Fill
Order | i Order @
Order Order

Figure 5: Activity Diagram for combining order creation wit h
order checking

A

A

Next, we design other fundamental activities of order hizugdl
During the ongoing design work, we realize that in some gusto
systems which should be used with the order handling system,
check is required, whether the order can be accepted or os. T
check is not only relevant for order creation, but it musbdie per-
formed before an order is changed or re-submitted. ThuseOrd
Check” is a cross-cutting concern in our system and shoufddm:
eled as an aspect. To do so, we need to intercept the contnol flo
between the Receive Order and Create Order activities. |&8Imi
we need to extend other activity diagrams that have joirtpdie-
longing to this aspect. The pointcuts for the corresponaisigect
can be derived in later design stages by looking at all oecges
of the aspect’s joinpoints and by defining proper (crossiugtdes-
ignations for these points in the control flow. The woven asj®
shown in the Activity Diagram “Order Creation & Order Chedk”
Figure 5.

A second aspect that cross-cuts many order handling aesivit
“Order Persistence”. This aspect needs to intercept thiealdiow
after the order is filled in, and must call the Make Persistetivity.
The woven aspect is shown in the Activity Diagram “Order Girea
& Order Persistence” in Figure 6.

For this aspect we need to consider one special case, théfugh.
the aspect “Order Check” is configured, all rejected ordeosiksl be

ad Order Creation & Order Persistence)

Receive

Create
Order

Order

Figure 6: Activity Diagram for combining order creation wit h
persistence

logged in the persistence store. That is, the two aspectsdmain-
terdependency among each other. Because both aspectsianabp
extensions, we need to model this interaction in a separetigity
Diagram “Order Creation & Order Check & Order Persistence” i
Figure 7. Here, we can see that the “Order Persistence” taspec
cross-cutting the activities in this diagram. If the aspeaised, a
rejected order log entry object is created, and the Makeistens
Activity is called.

Finally, we need to model the possible weaving-time aspest e
lutions for this system. We use an MTD to show the possiblewwea
ing configurations for the two optional aspects describedabThe
diagram in Figure 8 shows that in any case the basic “Order Cre
ation” diagram is the starting point for weaving. The aspesaver
can either weave order persistence, order checking, or pecas
If one of the two aspects is chosen, the other aspect canmnaiitio
be woven as well. In this case, the behavioral state of theesys
is transformed to the Activity Diagram “Order Creation & @rd
Check & Order Persistence”, so that the aspect interacsiomod-
eled as well.

Please note that in this example we have shown the aspect weav
ing process independently of the concrete weaving time. apur
proach is capable to model aspect weaving at compile-tiosal-I
time, or runtime. Though, the MTD needs to be changed slightl
if runtime weaving is supported. Runtime weaving would mean
that we could turn off the aspects again. That is, we wouldint
duce backward transformations between the model statesr{tuz
“mrefs” in the figure) to model runtime weaving properly.

4. RELATED WORK

Aldawud et al. [1] present a number of steps they apply to ode
aspect-oriented systems. In particular, they model thie stgstem
structure via class diagrams. System behavior, includsmeets
and crosscutting, is modeled with UML statecharts. Thgiraach,
however, is not able to depict evolutionary changes regyliiom
(static or dynamic) weaving of aspects which is one of thenmai
benefits of MTDs.

Gray et al. [3] describe an elaborated approach to suppoecas
oriented domain modeling which has partially similar okijes

ad Order Creation & Order Check & Order Persistence)

Receive Order Persistence
Order

Rejected
Order Check

Order
[order rejected]

Make
Persistent

Log Entry

Order Persistence

[order accepted]

Order Check

Figure 7: Activity Diagram for combining order creation wit h
persistence and order checking

to our approach. For each modeling domain they define domain-
specific weavers which operate on the abstraction layer afetso
(not source code). To specify these weavers they definedrtbec

ded constraint language (ECL) as an extension to the OMGbbje
constraint language (OCL). The ECL is used to specify t@nsf
mations between models and to specify strategies that dediwe

a concern is applied in a certain model context. ECL operates
XML files which are used to store the corresponding models and
Gray et al. implemented a tool to generate C++ source code fro
ECL specifications.

Barros and Gomes [2] use UML2 activity diagrams to model
crosscutting in aspect-oriented development. They defineva
composition operation they call “activity addition” via &ML pro-
file. Activity additions are used for weaving a crosscuttomgcern
in amodel. In particular, they define two stereotypes to nearkain
nodes in activity diagrams that define the so called interfamdes
which are then used to merge two or more activity diagramd, an
the so called subtraction nodes which define what nodes pdwel t
removed from a given activity diagram.

Jezequel et al. [5] represent crosscutting behavior usimg ¢
tract and aspect models in UML. They model contracts usind.UM
stereotypes, and represents aspects using parameteviiasbra-
tions equipped with transformation rules expressed with. ©@h-
straints. OCL is used in the transformations for navigaitirsgances
of the UML meta-model.

Han et al. [4] present an approach to support modeling of étdpe
language features to narrow the gap between implemensdiamsed
on AspectJ and the corresponding models. Mahoney and Btad [
describe a way to use statecharts and virtual finite staténimes
to model platform specific behavior as crosscutting coreefimey

mtd Order Creation with Aspects)

«transform»
[weave order persistence]

mref J

Order Creation & «transform»
Order Persistence

[no more aspects]

[weave order check]

mref J

Order Creation

mref J
Order Creation & %
Order Check & [no more aspects]

Order Persistence

mref J

Order Creation &
Order Check

«transform»

[weave order persistence]

[weave order check]
[no aspects]
«transform»

[no more aspects]

Figure 8: MTD for order creation with its aspects

especially plan to evaluate the effectiveness of their @ggr in a
model driven development context. Tkatchenko and Kiczgles

present an approach to model crosscutting concerns. Thegmdex

the UML with a joint point model, advice and inter-type deala
tions, and role bindings. Moreover, they provide a weaverocess
the corresponding extensions.

5. CONCLUSION

In this paper, we briefly presented an approach to model the ev

lution of aspect configurations via model transformatiohs par-
ticular, we defined model transformation diagrams (MTDspas

UML2 extension. In essence, MTDs are state machines whieh ar

applied to model the evolution of software systems. Eacte sta

an MTD refers to a model that defines a valid structural or beha

ioral specification of the corresponding system. Transgioetween
those states describe valid transformations between thoskels.

In this paper, however, we focused on the specification oabeh

ioral system facets to model the evolution of aspect conditijms.
Therefore, we additionally introduced Joinpoint start @mdl ac-
tivities that allow for a clear separation of the aspectwted and
non-aspect-oriented parts of a system specification, dsasehe
modeling of crosscutting aspects. In our future work, we prib-

vide tool support for MTDs both on the modeling level and seur

code level. In addition to behavioral states, we also usetsiral
model states in MTDs to model the evolution of structuraleasp
models.

6. REFERENCES

[1] O. Aldawud, A. Bader, and T. Elrad. Weaving with
Statecharts. Ifroc. of the Workshop on Aspect Oriented
Modeling with UML, April 2002.

[2] J. Barros and L. Gomes. Towards the Support for
Crosscutting Concerns in Activity Diagrams: a Graphical
Approach. InProc. of the AOSD Modeling with UML
Workshop, October 2003.

[3] J. Gray, T. Bapty, S. Neema, D. Schmidt, A. Gokhale, and
B. Natarajan. An Approach for Supporting Aspect-Oriented
Domain Modeling. InProc. of the 2nd International
Conference on Generative Programming and Component
Engineering (GPCE),, September 2003.

[4] Y. Han, G. Kniesel, and A. Cremers. Towards Visual Aspect

by a Meta Model and Modeling Notation. Froc. of the
International Workshop on Aspect-Oriented Modeling, March
2005.

J. Jezequel, N. Plouzeau, T. Weis, and K. Geihs. From
contracts to aspects in uml designs. In O. Aldawud, G. Booch,
S. Clarke, T. Elrad, W. Harrison, M. Kande, and

A. Strohmeier, editorsispect-Oriented Modeling with UML,
Enschede, The Netherlands, April 2002.
http://Iglwww.epfl.ch/workshops/aosd-uml/index.html.

M. M. Kande, J. Kienzle, and A. Strohmeier. From AOP to
UML — A Bottom-Up Approach. IrProc. of the Workshop on
Aspect Oriented Modeling with UML, April 2002.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Pahmd
W. G. Griswold. Getting started with AspectJ.
Communications of the ACM, 44(10):59-65, Oct 2001.

M. Mahoney and T. Elrad. Modeling Platform Specific
Attributes of a System as Crosscutting Concerns using
Aspect-Oriented Statecharts and Virtual Finite State
Machines . InProc. of the International Workshop on
Aspect-Oriented Modeling, March 2005.

The Object Management Group. Unified Modeling Language:
Superstructure.
http://www.omg.org/technology/documents/formal/urtih,
August 2005. Version 2.0, formal/05-07-04, Object
Management Group.

M. Tkatchenko and G. Kiczales. Uniform Support for
Modeling Crosscutting Structure. Rroc. of the International
Wbrkshop on Aspect-Oriented Modeling, March 2005.

U. Zdun and M. Strembeck. Modeling Composition in
Dynamic Programming Environments with Model
Transformations. IfProc. of the 5th International Symposium
on Software Composition, Vienna, Austria, March 2006.
LNCS, Springer-Verlag.

